151
|
Crestani CC, Alves FH, Gomes FV, Resstel LB, Correa FM, Herman JP. Mechanisms in the bed nucleus of the stria terminalis involved in control of autonomic and neuroendocrine functions: a review. Curr Neuropharmacol 2013; 11:141-59. [PMID: 23997750 PMCID: PMC3637669 DOI: 10.2174/1570159x11311020002] [Citation(s) in RCA: 180] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 11/21/2012] [Accepted: 12/03/2012] [Indexed: 12/22/2022] Open
Abstract
The bed nucleus of the stria terminalis (BNST) is a heterogeneous and complex limbic forebrain structure, which plays an important role in controlling autonomic, neuroendocrine and behavioral responses. The BNST is thought to serve as a key relay connecting limbic forebrain structures to hypothalamic and brainstem regions associated with autonomic and neuroendocrine functions. Its control of physiological and behavioral activity is mediated by local action of numerous neurotransmitters. In the present review we discuss the role of the BNST in control of both autonomic and neuroendocrine function. A description of BNST control of cardiovascular and hypothalamus-pituitary-adrenal axisactivity at rest and during physiological challenges (stress and physical exercise) is presented. Moreover, evidence for modulation of hypothalamic magnocellular neurons activity is also discussed. We attempt to focus on the discussion of BNST neurochemical mechanisms. Therefore, the source and targets of neurochemical inputs to BNST subregions and their role in control of autonomic and neuroendocrine function is discussed in details.
Collapse
Affiliation(s)
- Carlos C Crestani
- Laboratory of Pharmacology, Department of Natural Active Principles and Toxicology, School of Pharmaceutical Sciences, São Paulo State University, UNESP, Araraquara, SP, 14801-902, Brazil
| | | | | | | | | | | |
Collapse
|
152
|
Stamatakis AM, Sparta DR, Jennings JH, McElligott ZA, Decot H, Stuber GD. Amygdala and bed nucleus of the stria terminalis circuitry: Implications for addiction-related behaviors. Neuropharmacology 2013; 76 Pt B:320-8. [PMID: 23752096 DOI: 10.1016/j.neuropharm.2013.05.046] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 05/20/2013] [Accepted: 05/22/2013] [Indexed: 02/07/2023]
Abstract
Complex motivated behavioral processes, such as those that can go awry following substance abuse and other neuropsychiatric disorders, are mediated by a distributive network of neurons that reside throughout the brain. Neural circuits within the amygdala regions, such as the basolateral amygdala (BLA), and downstream targets such as the bed nucleus of the stria terminalis (BNST), are critical neuroanatomical structures for orchestrating emotional behavioral responses that may influence motivated actions such as the reinstatement of drug seeking behavior. Here, we review the functional neurocircuitry of the BLA and the BNST, and discuss how these circuits may guide maladaptive behavioral processes such as those seen in addiction. Thus, further study of the functional connectivity within these brain regions and others may provide insight for the development of new treatment strategies for substance use disorders. This article is part of a Special Issue entitled 'NIDA 40th Anniversary Issue'.
Collapse
Affiliation(s)
- Alice M Stamatakis
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Neurobiology Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | | | | | |
Collapse
|
153
|
Nieh EH, Kim SY, Namburi P, Tye KM. Optogenetic dissection of neural circuits underlying emotional valence and motivated behaviors. Brain Res 2013; 1511:73-92. [PMID: 23142759 PMCID: PMC4099056 DOI: 10.1016/j.brainres.2012.11.001] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2012] [Revised: 11/01/2012] [Accepted: 11/02/2012] [Indexed: 12/26/2022]
Abstract
The neural circuits underlying emotional valence and motivated behaviors are several synapses away from both defined sensory inputs and quantifiable motor outputs. Electrophysiology has provided us with a suitable means for observing neural activity during behavior, but methods for controlling activity for the purpose of studying motivated behaviors have been inadequate: electrical stimulation lacks cellular specificity and pharmacological manipulation lacks temporal resolution. The recent emergence of optogenetic tools provides a new means for establishing causal relationships between neural activity and behavior. Optogenetics, the use of genetically-encodable light-activated proteins, permits the modulation of specific neural circuit elements with millisecond precision. The ability to control individual cell types, and even projections between distal regions, allows us to investigate functional connectivity in a causal manner. The greatest consequence of controlling neural activity with finer precision has been the characterization of individual neural circuits within anatomical brain regions as defined functional units. Within the mesolimbic dopamine system, optogenetics has helped separate subsets of dopamine neurons with distinct functions for reward, aversion and salience processing, elucidated GABA neuronal effects on behavior, and characterized connectivity with forebrain and cortical structures. Within the striatum, optogenetics has confirmed the opposing relationship between direct and indirect pathway medium spiny neurons (MSNs), in addition to characterizing the inhibition of MSNs by cholinergic interneurons. Within the hypothalamus, optogenetics has helped overcome the heterogeneity in neuronal cell-type and revealed distinct circuits mediating aggression and feeding. Within the amygdala, optogenetics has allowed the study of intra-amygdala microcircuitry as well as interconnections with distal regions involved in fear and anxiety. In this review, we will present the body of optogenetic studies that has significantly enhanced our understanding of emotional valence and motivated behaviors. This article is part of a Special Issue entitled Optogenetics (7th BRES).
Collapse
Affiliation(s)
- Edward H. Nieh
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sung-Yon Kim
- Department of Bioengineering, Neurosciences Program, Stanford University, Stanford, CA, USA
| | - Praneeth Namburi
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kay M. Tye
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
154
|
Deolindo MV, Reis DG, Crestani CC, Tavares RF, Resstel LBM, Corrêa FMA. NMDA receptors in the lateral hypothalamus have an inhibitory influence on the tachycardiac response to acute restraint stress in rats. Eur J Neurosci 2013; 38:2374-81. [DOI: 10.1111/ejn.12246] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2013] [Revised: 03/14/2013] [Accepted: 04/03/2013] [Indexed: 02/06/2023]
Affiliation(s)
- Milena V. Deolindo
- Department of Pharmacology; School of Medicine of Ribeirão Preto; University of São Paulo; Ribeirão Preto Brazil
| | - Daniel G. Reis
- Department of Pharmacology; School of Medicine of Ribeirão Preto; University of São Paulo; Ribeirão Preto Brazil
| | - Carlos C. Crestani
- Department of Natural Active Principles and Toxicology; School of Pharmaceutical Sciences; São Paulo State University - UNESP; Araraquara Brazil
| | - Rodrigo F. Tavares
- Department of Pharmacology; School of Medicine of Ribeirão Preto; University of São Paulo; Ribeirão Preto Brazil
| | - Leonardo B. M. Resstel
- Department of Pharmacology; School of Medicine of Ribeirão Preto; University of São Paulo; Ribeirão Preto Brazil
| | - Fernando M. A. Corrêa
- Department of Pharmacology; School of Medicine of Ribeirão Preto; University of São Paulo; Ribeirão Preto Brazil
| |
Collapse
|
155
|
A corticotropin releasing factor pathway for ethanol regulation of the ventral tegmental area in the bed nucleus of the stria terminalis. J Neurosci 2013; 33:950-60. [PMID: 23325234 DOI: 10.1523/jneurosci.2949-12.2013] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A growing literature suggests that catecholamines and corticotropin-releasing factor (CRF) interact in a serial manner to activate the bed nucleus of the stria terminalis (BNST) to drive stress- or cue-induced drug- and alcohol-seeking behaviors. Data suggest that these behaviors are driven in part by BNST projections to the ventral tegmental area (VTA). Together, these findings suggest the existence of a CRF-signaling pathway within the BNST that is engaged by catecholamines and regulates the activity of BNST neurons projecting to the VTA. Here we test three aspects of this model to determine: (1) whether catecholamines modify CRF neuron activity in the BNST; (2) whether CRF regulates excitatory drive onto VTA-projecting BNST neurons; and (3) whether this system is altered by ethanol exposure and withdrawal. A CRF neuron fluorescent reporter strategy was used to identify BNST CRF neurons for whole-cell patch-clamp analysis in acutely prepared slices. Using this approach, we found that both dopamine and isoproterenol significantly depolarized BNST CRF neurons. Furthermore, using a fluorescent microsphere-based identification strategy we found that CRF enhances the frequency of spontaneous EPSCs onto VTA-projecting BNST neurons in naive mice. This action of CRF was occluded during acute withdrawal from chronic intermittent ethanol exposure. These findings suggest that dopamine and isoproterenol may enhance CRF release from local BNST sources, leading to enhancement of excitatory neurotransmission on VTA-projecting neurons, and that this pathway is engaged by patterns of alcohol exposure and withdrawal known to drive excessive alcohol intake.
Collapse
|
156
|
Diverging neural pathways assemble a behavioural state from separable features in anxiety. Nature 2013; 496:219-23. [PMID: 23515158 DOI: 10.1038/nature12018] [Citation(s) in RCA: 463] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 02/18/2013] [Indexed: 12/23/2022]
Abstract
Behavioural states in mammals, such as the anxious state, are characterized by several features that are coordinately regulated by diverse nervous system outputs, ranging from behavioural choice patterns to changes in physiology (in anxiety, exemplified respectively by risk-avoidance and respiratory rate alterations). Here we investigate if and how defined neural projections arising from a single coordinating brain region in mice could mediate diverse features of anxiety. Integrating behavioural assays, in vivo and in vitro electrophysiology, respiratory physiology and optogenetics, we identify a surprising new role for the bed nucleus of the stria terminalis (BNST) in the coordinated modulation of diverse anxiety features. First, two BNST subregions were unexpectedly found to exert opposite effects on the anxious state: oval BNST activity promoted several independent anxious state features, whereas anterodorsal BNST-associated activity exerted anxiolytic influence for the same features. Notably, we found that three distinct anterodorsal BNST efferent projections-to the lateral hypothalamus, parabrachial nucleus and ventral tegmental area-each implemented an independent feature of anxiolysis: reduced risk-avoidance, reduced respiratory rate, and increased positive valence, respectively. Furthermore, selective inhibition of corresponding circuit elements in freely moving mice showed opposing behavioural effects compared with excitation, and in vivo recordings during free behaviour showed native spiking patterns in anterodorsal BNST neurons that differentiated safe and anxiogenic environments. These results demonstrate that distinct BNST subregions exert opposite effects in modulating anxiety, establish separable anxiolytic roles for different anterodorsal BNST projections, and illustrate circuit mechanisms underlying selection of features for the assembly of the anxious state.
Collapse
|
157
|
Jennings JH, Sparta DR, Stamatakis AM, Ung RL, Pleil KE, Kash TL, Stuber GD. Distinct extended amygdala circuits for divergent motivational states. Nature 2013; 496:224-8. [PMID: 23515155 PMCID: PMC3778934 DOI: 10.1038/nature12041] [Citation(s) in RCA: 524] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 02/25/2013] [Indexed: 02/07/2023]
Abstract
The comorbidity of anxiety and dysfunctional reward processing in illnesses such as addiction1 and depression2 suggests that common neural circuitry contributes to these disparate neuropsychiatric symptoms. The extended amygdala, including the bed nucleus of the stria terminalis (BNST), modulates fear and anxiety3,4, but also projects to the ventral tegmental area (VTA) 5,6, a region implicated in reward and aversion7–13, thus providing a candidate neural substrate for integrating diverse emotional states. However, the precise functional connectivity between distinct BNST projection neurons and their postsynaptic targets in the VTA, as well as the role of this circuit in controlling motivational states have not been described. Here, we recorded and manipulated the activity of genetically and neurochemically identified VTA-projecting BNST neurons in freely behaving mice. Collectively, aversive stimuli exposure produced heterogeneous firing patterns in VTA-projecting BNST neurons. In contrast, in vivo optically-identified glutamatergic projection neurons displayed a net enhancement of activity to aversive stimuli, whereas the firing rate of identified GABAergic projection neurons was suppressed. Channelrhodopsin-2 (ChR2) assisted circuit mapping revealed that both BNST glutamatergic and GABAergic projections preferentially innervate postsynaptic non-dopaminergic VTA neurons, thus providing a mechanistic framework for in vivo circuit perturbations. In vivo photostimulation of BNST glutamatergic projections resulted in aversive and anxiogenic behavioral phenotypes. In contrast, activation of BNST GABAergic projections produced rewarding and anxiolytic phenotypes, which were also recapitulated by direct inhibition of VTA GABAergic neurons. These data demonstrate that functionally opposing BNST to VTA circuits regulate rewarding and aversive motivational states and may serve as a critical circuit node for bidirectionally normalizing maladaptive behaviors.
Collapse
Affiliation(s)
- Joshua H Jennings
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | | | | | |
Collapse
|
158
|
|
159
|
Turesson HK, Rodríguez-Sierra OE, Pare D. Intrinsic connections in the anterior part of the bed nucleus of the stria terminalis. J Neurophysiol 2013; 109:2438-50. [PMID: 23446692 DOI: 10.1152/jn.00004.2013] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Intrinsic connections in the anterior portion of the bed nucleus of the stria terminalis (BNST-A) were studied using patch recordings and ultraviolet (UV) glutamate uncaging (GU) in vitro. UV light was delivered at small BNST-A sites in a grid-like pattern while evoked responses were monitored in different BNST-A regions. Three sectors were distinguished in the BNST-A using fiber bundles readily identifiable in transilluminated slices: the anterior commissure, dividing the BNST-A into dorsal and ventral (BNST-AV) regions, and the intra-BNST component of the stria terminalis, subdividing the dorsal portion into medial (BNST-AM) and lateral (BNST-AL) regions. Overall, GU elicited GABAergic inhibitory postsynaptic potentials (IPSPs) more frequently than excitatory postsynaptic potentials. The incidence of intraregional connections was higher than interregional links. With respect to the latter, asymmetric connections were seen between different parts of the BNST-A. Indeed, while reciprocal connections were found between the BNST-AL and BNST-AM, BNST-AL to BNST-AM connections were more frequent than in the opposite direction. Similarly, while GU in the BNST-AM or BNST-AL often elicited IPSPs in BNST-AV cells, the opposite was rarely seen. Within the BNST-AM, connections were polarized, with dorsal GU sites eliciting IPSPs in more ventrally located cells more frequently than the opposite. This trend was not seen in other regions of the BNST. Consistent with this, most BNST-AM cells had dorsally directed dendrites and ventrally ramified axons, whereas this morphological polarization was not seen in other parts of the BNST-A. Overall, our results reveal a hitherto unsuspected level of asymmetry in the connections within and between different BNST-A regions, implying a degree of interdependence in their activity.
Collapse
Affiliation(s)
- Hjalmar K Turesson
- Center for Molecular and Behavioral Neuroscience, Rutgers State University, Newark, New Jersey 07102, USA
| | | | | |
Collapse
|
160
|
Hott SC, Gomes FV, Fabri DRS, Reis DG, Crestani CC, Côrrea FMA, Resstel LBM. Both α1- and β1-adrenoceptors in the bed nucleus of the stria terminalis are involved in the expression of conditioned contextual fear. Br J Pharmacol 2013; 167:207-21. [PMID: 22506532 DOI: 10.1111/j.1476-5381.2012.01985.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE The bed nucleus of the stria terminalis (BNST) is a limbic structure that is involved in the expression of conditioned contextual fear. Among the numerous neural inputs to the BNST, noradrenergic synaptic terminals are prominent and some evidence suggests an activation of this noradrenergic neurotransmission in the BNST during aversive situations. Here, we have investigated the involvement of the BNST noradrenergic system in the modulation of behavioural and autonomic responses induced by conditioned contextual fear in rats. EXPERIMENTAL APPROACH Male Wistar rats with cannulae bilaterally implanted into the BNST were submitted to a 10 min conditioning session (6 footshocks, 1.5 ma/ 3 s). Twenty-four hours later freezing and autonomic responses (mean arterial pressure, heart rate and cutaneous temperature) to the conditioning box were measured for 10 min. The adrenoceptor antagonists were administered 10 min before the re-exposure to the aversive context. KEY RESULTS L-propranolol, a non-selective β-adrenoceptor antagonist, and phentolamine, a non-selective α-adrenoceptor antagonist, reduced both freezing and autonomic responses induced by aversive context. Similar results were observed with CGP20712, a selective β(1) -adrenoceptor antagonist, and WB4101, a selective α(1) -antagonist, but not with ICI118,551, a selective β(2) -adrenoceptor antagonist or RX821002, a selective α(2) -antagonist. CONCLUSIONS AND IMPLICATIONS These findings support the idea that noradrenergic neurotransmission in the BNST via α(1) - and β(1) -adrenoceptors is involved in the expression of conditioned contextual fear.
Collapse
Affiliation(s)
- Sara C Hott
- Department of Pharmacology, School of Medicine, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | | | | | | | | | | |
Collapse
|
161
|
Silberman Y, Winder DG. Emerging role for corticotropin releasing factor signaling in the bed nucleus of the stria terminalis at the intersection of stress and reward. Front Psychiatry 2013; 4:42. [PMID: 23755023 PMCID: PMC3665954 DOI: 10.3389/fpsyt.2013.00042] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 05/13/2013] [Indexed: 12/12/2022] Open
Abstract
Stress and anxiety play an important role in the development and maintenance of drug and alcohol addiction. The bed nucleus of the stria terminalis (BNST), a brain region involved in the production of long-term stress-related behaviors, plays an important role in animal models of relapse, such as reinstatement to previously extinguished drug-seeking behaviors. While a number of neurotransmitter systems have been suggested to play a role in these behaviors, recent evidence points to the neuropeptide corticotropin releasing factor (CRF) as being critically important in BNST-mediated reinstatement behaviors. Although numerous studies indicate that the BNST is a complex brain region with multiple afferent and efferent systems and a variety of cell types, there has only been limited work to determine how CRF modulates this complex neuronal system at the circuit level. Recent work from our lab and others have begun to unravel these BNST neurocircuits and explore their roles in CRF-related reinstatement behaviors. This review will examine the role of CRF signaling in drug addiction and reinstatement with an emphasis on critical neurocircuitry within the BNST that may offer new insights into treatments for addiction.
Collapse
Affiliation(s)
- Yuval Silberman
- Neuroscience Program in Substance Abuse, Department of Molecular Physiology and Biophysics, Vanderbilt Brain Institute , Nashville, TN , USA
| | | |
Collapse
|
162
|
Welkenhuysen M, Gligorijevic I, Ameye L, Prodanov D, Van Huffel S, Nuttin B. Neuronal activity in the bed nucleus of the stria terminalis in a rat model for obsessive-compulsive disorder. Behav Brain Res 2012. [PMID: 23195114 DOI: 10.1016/j.bbr.2012.11.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In search of a new potential target for deep brain stimulation in patients with obsessive-compulsive disorder (OCD), we evaluated the single-cell activity of neurons in the bed nucleus of the stria terminalis (BST) in urethane-anesthetized rats in an animal model for OCD, the schedule-induced polydipsia (SIP) model, and compared this to the BST activity in control rats and to a third group of rats which were introduced in the model but did not develop the SIP, and thus were considered resistant. We compared the firing rate and firing pattern of BST neurons between these groups, between hemispheres and made a correlation of the firing rate and firing pattern to the position in the BST. The variability of BST neurons in SIP rats was lower and the randomness higher than BST neurons in control rats or resistant rats. The firing rate of BST neurons in SIP rats was significantly higher and the burst index lower than BST neurons in resistant rats but not in control rats. Also, neurons from the right hemisphere in the SIP group had a higher burst index than neurons from the left hemisphere. However, this is opposite in the resistant and control group. Third, we found a higher bursting index with increasing (more ventral) depth of recording. These findings suggest that schedule-induced polydipsia, which models compulsive behavior in humans, induces a change in firing behavior of BST neurons.
Collapse
Affiliation(s)
- Marleen Welkenhuysen
- Laboratory of Experimental Functional Neurosurgery, Department of Neurosciences, K.U. Leuven, Provisorium II, Minderbroedersstraat 19 Box 1033, 3000 Leuven, Belgium.
| | | | | | | | | | | |
Collapse
|
163
|
Ventura-Silva AP, Pêgo JM, Sousa JC, Marques AR, Rodrigues AJ, Marques F, Cerqueira JJ, Almeida OFX, Sousa N. Stress shifts the response of the bed nucleus of the stria terminalis to an anxiogenic mode. Eur J Neurosci 2012; 36:3396-406. [DOI: 10.1111/j.1460-9568.2012.08262.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
164
|
Hahn JD, Swanson LW. Connections of the lateral hypothalamic area juxtadorsomedial region in the male rat. J Comp Neurol 2012; 520:1831-90. [PMID: 22488503 DOI: 10.1002/cne.23064] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The connections of the lateral hypothalamic area juxtadorsomedial region (LHAjd) were investigated in a series of pathway-tracing experiments involving iontophoretic co-injection of the tracers Phaseolus vulgaris-leucoagglutinin (PHA-L; for outputs) and cholera toxin B subunit (CTB; for inputs). Results revealed that the LHAjd has connections with some 318 distinct gray matter regions encompassing all four subsystems-motor, sensory, cognitive, and behavioral state-included in a basic structure-function network model of the nervous system. Integration of these subsystems is necessary for the coordination and control of emotion and behavior, and in that regard the connections of the LHAjd indicate that it may have a prominent role. Furthermore, the LHAjd connections, together with the connections of other LHA differentiations studied similarly to date, indicate a distinct topographic organization that suggests each LHA differentiation has specifically differing degrees of involvement in the control of multiple behaviors. For the LHAjd, its involvement to a high degree in the control of defensive behavior, and to a lesser degree in the control of other behaviors, including ingestive and reproductive, is suggested. Moreover, the connections of the LHAjd suggest that its possible role in the control of these behaviors may be very broad in scope because they involve the somatic, neuroendocrine, and autonomic divisions of the nervous system. In addition, we suggest that connections between LHA differentiations may provide, at the level of the hypothalamus, a neuronal substrate for the coordinated control of multiple themes in the behavioral repertoire.
Collapse
Affiliation(s)
- Joel D Hahn
- Department of Biological Sciences, University of Southern California, Los Angeles, California 90089-2520, USA.
| | | |
Collapse
|
165
|
Cai L, Bakalli H, Rinaman L. Yohimbine anxiogenesis in the elevated plus maze is disrupted by bilaterally disconnecting the bed nucleus of the stria terminalis from the central nucleus of the amygdala. Neuroscience 2012; 223:200-8. [PMID: 22890081 DOI: 10.1016/j.neuroscience.2012.08.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 08/02/2012] [Accepted: 08/06/2012] [Indexed: 11/24/2022]
Abstract
The α2 adrenergic receptor antagonist yohimbine (YO) is a sympathomimetic drug that crosses the blood-brain barrier after systemic administration. YO promotes increased transmitter release from noradrenergic (NA) axon terminals in the central nucleus of the amygdala (CEA), bed nucleus of the stria terminalis (BST), hypothalamus, and other brain regions implicated in physiological and behavioral responses to stressful and threatening stimuli. YO is potently anxiogenic in humans and experimental animals, including rats. To determine whether direct connections between the CEA and anterolateral group of BST nuclei (algBST) are necessary for YO anxiogenesis in rats, neurotoxic ibotenate lesions of the CEA in one hemisphere and the ipsi- or contralateral algBST were conducted to disrupt CEA-algBST communication uni- or bilaterally. Sham-lesioned controls received microinjections of vehicle into the CEA and algBST. Two weeks later, behavior was assessed in the elevated plus maze (EPMZ) in rats after i.p. saline or YO (1.0mg/kg). Central ibotenate lesion placement and extent was assessed post-mortem in NeuN-immunolabeled tissue sections. The ability of YO to increase anxiety-like behavior in the EPMZ was similarly robust in rats with sham lesions or ipsilateral CEA-algBST lesions. Conversely, YO anxiogenesis in the EPMZ was disrupted in rats with asymmetric lesions designed to bilaterally disconnect the CEA and algBST, whereas neither unilateral nor bilateral disconnecting lesions altered EPMZ behavior in rats after i.p. saline. We conclude that the anxiogenic effects of increased NA signaling in rats after YO require direct CEA-algBST interactions that do not shape EPMZ behavior under baseline conditions.
Collapse
Affiliation(s)
- L Cai
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | | | | |
Collapse
|
166
|
Deep-brain stimulation for anorexia nervosa. World Neurosurg 2012; 80:S29.e1-10. [PMID: 22743198 DOI: 10.1016/j.wneu.2012.06.039] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 05/25/2012] [Accepted: 06/21/2012] [Indexed: 01/11/2023]
Abstract
OBJECTIVE Anorexia nervosa (AN) is a complex and severe, sometimes life-threatening, psychiatric disorder with high relapse rates under standard treatment. After decades of brain-lesioning procedures offered as a last resort, deep-brain stimulation (DBS) has come under investigation in the last few years as a treatment option for severe and refractory AN. METHODS AND RESULTS In this jointly written article, Sun et al. (the Shanghai group) report an average of 65% increase in body weight in four severe and refractory patients with AN after they underwent the DBS procedure (average follow-up: 38 months). All patients weighed greater than 85% of expected body weight and thus no longer met the diagnostic criteria of AN at last follow-up. Nuttin et al. (the Leuven group) describe other clinical studies that provide evidence for the use of DBS for AN and further discuss patient selection criteria, target selection, and adverse event of this evolving therapy. CONCLUSION Preliminary results from the Shanghai group and other clinical centers showed that the use of DBS to treat AN may be a valuable option for weight restoration in otherwise-refractory and life-threatening cases. The nature of this procedure, however, remains investigational and should not be viewed as a standard clinical treatment option. Further scientific investigation is essential to warrant the long-term efficacy and safety of DBS for AN.
Collapse
|
167
|
Kash TL. The role of biogenic amine signaling in the bed nucleus of the stria terminals in alcohol abuse. Alcohol 2012; 46:303-8. [PMID: 22449787 DOI: 10.1016/j.alcohol.2011.12.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 12/22/2011] [Accepted: 12/27/2011] [Indexed: 12/01/2022]
Abstract
There is a growing body of evidence that suggests that stress and anxiety can influence the development of alcohol use disorders. This influence is believed to be due in part to persistent adaptations in discrete brain regions that underlie stress responsivity. One structure that has been proposed to be a site of important neuroadaptations underlying this behavior is the extended amygdala. The extended amygdala is a series of extensively inter-connected limbic structures including the central nucleus of the amygdala (CeA) and the bed nucleus of the stria terminalis (BNST). These structures are critical regulators of behavioral and physiological activation associated with anxiety. Additionally, numerous reports have suggested that these regions are involved in increased drinking behavior associated with chronic alcohol exposure and withdrawal. The focus of this review will be to discuss the role of the BNST in regulation of behavior, to provide some insight in to the circuitry of the BNST, and to discuss the actions of the biogenic amines, serotonin, dopamine and norepinephrine, in the BNST.
Collapse
Affiliation(s)
- Thomas Louis Kash
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
168
|
Tran L, Wiskur B, Greenwood-Van Meerveld B. The role of the anteriolateral bed nucleus of the stria terminalis in stress-induced nociception. Am J Physiol Gastrointest Liver Physiol 2012; 302:G1301-9. [PMID: 22492693 DOI: 10.1152/ajpgi.00501.2011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Activation of the central amygdala (CeA) by corticosterone (CORT) induces somatic and colonic hypersensitivity through corticotrophin-releasing factor (CRF)-dependent mechanisms. However, the importance of the bed nucleus of the stria terminalis (BNST), part of the extended amygdala, on nociception remains unexplored. In the present study, we test the hypothesis that stimulation of the CeA by CORT induces somatic and colonic hypersensitivity through activation of the anteriolateral BNST (BNST(AL)). Animals were implanted with micropellets of CORT or cholesterol (CHOL) onto the CeA or the BNST(AL). Mechanical sensitivity was quantified using electronic von Frey filaments, and colonic nociception was measured by quantifying a visceromotor response to graded colorectal distension. In situ hybridization was used to determine mRNA levels for CRF, CRF(1), and CRF(2) receptors in the BNST(AL). In a second group, animals were implanted bilaterally with 1) CORT or CHOL micropellets onto the CeA; and 2) cannulas localized to the BNST(AL) to administer a CRF(1) receptor antagonist (CP376395). Animals implanted with CORT onto the CeA, but not the BNST(AL), exhibited increased expression of CRF mRNA and increased CRF(1)-to-CRF(2) receptor ratio in the BNST, as well as somatic and colonic hypersensitivity compared with CHOL controls. Infusion of CP376395 into the BNST(AL) inhibited somatic and colonic hypersensitivity in response to elevated amygdala CORT. Somatic and colonic hypersensitivity induced by elevated amygdala CORT is mediated via a CRF(1) receptor-dependent mechanism in the BNST(AL). The CeA through a descending pathway involving the BNST(AL) plays a pivotal role in somatic and colonic nociception.
Collapse
Affiliation(s)
- Lee Tran
- VA Medical Center, Oklahoma City, OK 73104, USA
| | | | | |
Collapse
|
169
|
Oberlander JG, Henderson LP. Corticotropin-releasing factor modulation of forebrain GABAergic transmission has a pivotal role in the expression of anabolic steroid-induced anxiety in the female mouse. Neuropsychopharmacology 2012; 37:1483-99. [PMID: 22298120 PMCID: PMC3327853 DOI: 10.1038/npp.2011.334] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 12/20/2011] [Accepted: 12/20/2011] [Indexed: 12/14/2022]
Abstract
Increased anxiety is commonly observed in individuals who illicitly administer anabolic androgenic steroids (AAS). Behavioral effects of steroid abuse have become an increasing concern in adults and adolescents of both sexes. The dorsolateral bed nucleus of the stria terminalis (dlBnST) has a critical role in the expression of diffuse anxiety and is a key site of action for the anxiogenic neuromodulator, corticotropin releasing factor (CRF). Here we demonstrate that chronic, but not acute, exposure of female mice during adolescence to AAS augments anxiety-like behaviors; effects that were blocked by central infusion of the CRF receptor type 1 antagonist, antalarmin. AAS treatment selectively increased action potential (AP) firing in neurons of the central amygdala (CeA) that project to the dlBnST, increased the frequency of GABA(A) receptor-mediated spontaneous inhibitory postsynaptic currents (sIPSCs) in dlBnST target neurons, and decreased both c-FOS immunoreactivity (IR) and AP frequency in these postsynaptic cells. Acute application of antalarmin abrogated the enhancement of GABAergic inhibition induced by chronic AAS exposure whereas application of CRF to brain slices of naïve mice mimicked the actions of this treatment. These results, in concert with previous data demonstrating that chronic AAS treatment results in enhanced levels of CRF mRNA in the CeA and increased CRF-IR in the dlBnST neuropil, are consistent with a mechanism in which the enhanced anxiety elicited by chronic AAS exposure involves augmented inhibitory activity of CeA afferents to the dlBnST and CRF-dependent enhancement of GABAergic inhibition in this brain region.
Collapse
Affiliation(s)
- Joseph G Oberlander
- Department of Physiology & Neurobiology, Dartmouth Medical School, Hanover, NH, USA
| | - Leslie P Henderson
- Department of Physiology & Neurobiology, Dartmouth Medical School, Hanover, NH, USA
| |
Collapse
|
170
|
Johnson PL, Samuels BC, Fitz SD, Federici LM, Hammes N, Early MC, Truitt W, Lowry CA, Shekhar A. Orexin 1 receptors are a novel target to modulate panic responses and the panic brain network. Physiol Behav 2012; 107:733-42. [PMID: 22554617 DOI: 10.1016/j.physbeh.2012.04.016] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 03/28/2012] [Accepted: 04/17/2012] [Indexed: 12/29/2022]
Abstract
BACKGROUND Although the hypothalamic orexin system is known to regulate appetitive behaviors and promote wakefulness and arousal (Sakurai, 2007 [56]), this system may also be important in adaptive and pathological anxiety/stress responses (Suzuki et al., 2005 [4]). In a recent study, we demonstrated that CSF orexin levels were significantly higher in patients experiencing panic attacks compared to non-panicking depressed subjects (Johnson et al., 2010 [9]). Furthermore, genetically silencing orexin synthesis or blocking orexin 1 receptors attenuated lactate-induced panic in an animal model of panic disorder. Therefore, in the present study, we tested if orexin (ORX) modulates panic responses and brain pathways activated by two different panicogenic drugs. METHODS We conducted a series of pharmacological, behavioral, physiological and immunohistochemical experiments to study the modulation by the orexinergic inputs of anxiety behaviors, autonomic responses, and activation of brain pathways elicited by systemic injections of anxiogenic/panicogenic drugs in rats. RESULTS We show that systemic injections of two different anxiogenic/panicogenic drugs (FG-7142, an inverse agonist at the benzodiazepine site of the GABA(A) receptor, and caffeine, a nonselective competitive adenosine receptor antagonist) increased c-Fos induction in a specific subset of orexin neurons located in the dorsomedial/perifornical (DMH/PeF) but not the lateral hypothalamus. Pretreating rats with an orexin 1 receptor antagonist attenuated the FG-7142-induced anxiety-like behaviors, increased heart rate, and neuronal activation in key panic pathways, including subregions of the central nucleus of the amygdala, bed nucleus of the stria terminalis, periaqueductal gray and in the rostroventrolateral medulla. CONCLUSION Overall, the data here suggest that the ORX neurons in the DMH/PeF region are critical to eliciting coordinated panic responses and that ORX1 receptor antagonists constitute a potential novel treatment strategy for panic and related anxiety disorders. The neural pathways through which ORX1 receptor antagonists attenuate panic responses involve the extended amygdala, periaqueductal gray, and medullary autonomic centers.
Collapse
Affiliation(s)
- Philip L Johnson
- Institute of Psychiatric Research, Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
171
|
Granjeiro ÉM, Gomes FV, Alves FH, Crestani CC, Corrêa FM, Resstel LB. Bed nucleus of the stria terminalis and the cardiovascular responses to chemoreflex activation. Auton Neurosci 2012; 167:21-6. [DOI: 10.1016/j.autneu.2011.11.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Revised: 11/20/2011] [Accepted: 11/25/2011] [Indexed: 01/06/2023]
|
172
|
Moreno N, Morona R, López JM, Domínguez L, Joven A, Bandín S, González A. Characterization of the bed nucleus of the stria terminalis in the forebrain of anuran amphibians. J Comp Neurol 2012; 520:330-63. [PMID: 21674496 DOI: 10.1002/cne.22694] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Major common features have been reported for the organization of the basal telencephalon in amniotes, and most characteristics were thought to be acquired in the transition from anamniotes to amniotes. However, gene expression, neurochemical, and hodological data obtained for the basal ganglia and septal and amygdaloid complexes in amphibians (anamniotic tetrapods) have strengthened the idea of a conserved organization in tetrapods. A poorly characterized region in the forebrain of amniotes has been the bed nucleus of the stria terminalis (BST), but numerous recent investigations have characterized it as a member of the extended amygdala. Our study analyzes the main features of the BST in anuran amphibians to establish putative homologies with amniotes. Gene expression patterns during development identified the anuran BST as a subpallial, nonstriatal territory. The BST shows Nkx2.1 and Lhx7 expression and contains an Islet1-positive cell subpopulation derived from the lateral ganglionic eminence. Immunohistochemistry for diverse peptides and neurotransmitters revealed that the distinct chemoarchitecture of the BST is strongly conserved among tetrapods. In vitro tracing techniques with dextran amines revealed important connections between the BST and the central and medial amygdala, septal territories, medial pallium, preoptic area, lateral hypothalamus, thalamus, and prethalamus. The BST receives dopaminergic projections from the ventral tegmental area and is connected with the laterodorsal tegmental nucleus and the rostral raphe in the brainstem. All these data suggest that the anuran BST shares many features with its counterpart in amniotes and belongs to a basal continuum, likely controlling similar reflexes, reponses, and behaviors in tetrapods.
Collapse
Affiliation(s)
- Nerea Moreno
- Department of Cell Biology, Faculty of Biology, University Complutense of Madrid, Madrid, Spain.
| | | | | | | | | | | | | |
Collapse
|
173
|
Bienkowski MS, Rinaman L. Common and distinct neural inputs to the medial central nucleus of the amygdala and anterior ventrolateral bed nucleus of stria terminalis in rats. Brain Struct Funct 2012; 218:187-208. [PMID: 22362201 DOI: 10.1007/s00429-012-0393-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 01/31/2012] [Indexed: 02/04/2023]
Abstract
The central nucleus of the amygdala (CEA) and lateral bed nucleus of stria terminalis (BST) are highly interconnected limbic forebrain regions that share similar connectivity with other brain regions that coordinate behavioral and physiological responses to internal and environmental stressors. Their similar connectivity is frequently referred to when describing the CEA and lateral BST together as a unified "central extended amygdala". However, the CEA and BST reportedly play distinct roles in behavioral and physiological responses associated with fear, anxiety, and social defeat, presumably due to differences in connectivity. To identify common and unique sources of input to the CEA and lateral BST, we performed dual retrograde tracing. Fluorogold and cholera toxin β were iontophoresed into the medial CEA (CEAm) and the anterior ventrolateral BST (BSTvl) of adult male rats. The anatomical distribution of tracer-labeled neurons was mapped throughout the brain. Regions with overlapping populations of CEAm- and BSTvl-projecting neurons were further examined for the presence of double-labeled neurons. Although most regions with input to the mCEA also projected to the BSTvl, and vice versa, cortical and sensory system-related regions projected more robustly to the CEAm, while motor system-related regions primarily innervated the BSTvl. The incidence of double-labeled neurons with collateralized axonal inputs to the CEAm and BSTvl was relatively small (~2 to 13%) and varied across regions, suggesting regional differences in the degree of coordinated CEAm and BSTvl input. The demonstrated similarities and differences in inputs to CEAm and BSTvl provide new anatomical insights into the functional organization of these limbic forebrain regions.
Collapse
Affiliation(s)
- Michael S Bienkowski
- Department of Neuroscience, University of Pittsburgh, A210 Langley Hall, Pittsburgh, PA 15260, USA
| | | |
Collapse
|
174
|
Myers B, McKlveen JM, Herman JP. Neural Regulation of the Stress Response: The Many Faces of Feedback. Cell Mol Neurobiol 2012; 32:10.1007/s10571-012-9801-y. [PMID: 22302180 PMCID: PMC3956711 DOI: 10.1007/s10571-012-9801-y] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 01/10/2012] [Indexed: 12/15/2022]
Abstract
The mammalian stress response is an integrated physiological and psychological reaction to real or perceived adversity. Glucocorticoids (GCs) are an important component of this response, acting to redistribute energy resources to both optimize survival in the face of challenge and restore homeostasis after the immediate threat has subsided. Release of GCs is mediated by the hypothalamo-pituitary-adrenocortical (HPA) axis, driven by a neural signal originating in the paraventricular nucleus (PVN). Stress levels of GCs bind to glucocorticoid receptors (GRs) in multiple body compartments, including brain, and consequently have wide-reaching actions. For this reason, GCs serve a vital function in feedback inhibition of their own secretion. Fast, non-genomic feedback inhibition of the HPA axis is mediated at least in part by GC signaling in the PVN, acting by a cannabinoid-dependent mechanism to rapidly reduce both neural activity and GC release. Delayed feedback termination of the HPA axis response is mediated by forebrain GRs, presumably by genomic mechanisms. GCs also act in the brainstem to attenuate neuropeptidergic excitatory input to the PVN via acceleration of mRNA degradation, providing a mechanism to attenuate future responses to stressors. Thus, rather than having a single defined feedback switch, GCs work through multiple neurocircuits and signaling mechanisms to coordinate HPA axis activity to suit the overall needs of multiple body systems.
Collapse
Affiliation(s)
- Brent Myers
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Metabolic Diseases Institute, 2170 E. Galbraith Rd, Cincinnati, OH, 45237-0506, USA,
| | | | | |
Collapse
|
175
|
Tallis M, Thompson R, Russ TA, Burns GAPC. Knowledge synthesis with maps of neural connectivity. Front Neuroinform 2011; 5:24. [PMID: 22053155 PMCID: PMC3205380 DOI: 10.3389/fninf.2011.00024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Accepted: 10/13/2011] [Indexed: 01/27/2023] Open
Abstract
This paper describes software for neuroanatomical knowledge synthesis based on neural connectivity data. This software supports a mature methodology developed since the early 1990s. Over this time, the Swanson laboratory at USC has generated an account of the neural connectivity of the sub-structures of the hypothalamus, amygdala, septum, hippocampus, and bed nucleus of the stria terminalis. This is based on neuroanatomical data maps drawn into a standard brain atlas by experts. In earlier work, we presented an application for visualizing and comparing anatomical macro connections using the Swanson third edition atlas as a framework for accurate registration. Here we describe major improvements to the NeuARt application based on the incorporation of a knowledge representation of experimental design. We also present improvements in the interface and features of the data mapping components within a unified web-application. As a step toward developing an accurate sub-regional account of neural connectivity, we provide navigational access between the data maps and a semantic representation of area-to-area connections that they support. We do so based on an approach called "Knowledge Engineering from Experimental Design" (KEfED) model that is based on experimental variables. We have extended the underlying KEfED representation of tract-tracing experiments by incorporating the definition of a neuronanatomical data map as a measurement variable in the study design. This paper describes the software design of a web-application that allows anatomical data sets to be described within a standard experimental context and thus indexed by non-spatial experimental design features.
Collapse
Affiliation(s)
- Marcelo Tallis
- Information Sciences Institute, University of Southern California Marina del Rey, CA, USA
| | | | | | | |
Collapse
|
176
|
Zahm DS, Cheng AY, Lee TJ, Ghobadi CW, Schwartz ZM, Geisler S, Parsely KP, Gruber C, Veh RW. Inputs to the midbrain dopaminergic complex in the rat, with emphasis on extended amygdala-recipient sectors. J Comp Neurol 2011; 519:3159-88. [PMID: 21618227 PMCID: PMC3174784 DOI: 10.1002/cne.22670] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The midbrain dopaminergic neuronal groups A8, A9, A10, and A10dc occupy, respectively, the retrorubral field (RRF), substantia nigra compacta (SNc), ventral tegmental area (VTA), and ventrolateral periaqueductal gray (PAGvl). Collectively, these structures give rise to a mixed dopaminergic and nondopaminergic projection system that essentially permits adaptive behavior. However, knowledge is incomplete regarding how the afferents of these structures are organized. Although the VTA is known to receive numerous afferents from cortex, basal forebrain, and brainstem and the SNc is widely perceived as receiving inputs mainly from the striatum, the afferents of the RRF and PAGvl have yet to be assessed comprehensively. This study was performed to provide an account of those connections and to seek a better understanding of how afferents might contribute to the functional interrelatedness of the VTA, SNc, RRF, and PAGvl. Ventral midbrain structures received injections of retrograde tracer, and the resulting retrogradely labeled structures were targeted with injections of anterogradely transported Phaseolus vulgaris leucoagglutinin. Whereas all injections of retrograde tracer into the VTA, SNc, RRF, or PAGvl produced labeling in many structures extending from the cortex to caudal brainstem, pronounced labeling of structures making up the central division of the extended amygdala occurred following injections that involved the RRF and PAGvl. The anterograde tracing supported this finding, and the combination of retrograde and anterograde labeling data also confirmed reports from other groups indicating that the SNc receives robust input from many of the same structures that innervate the VTA, RRF, and PAGvl.
Collapse
Affiliation(s)
- Daniel S Zahm
- Department of Pharmacological and Physiological Science, St. Louis University School of Medicine, St. Louis, Missouri 63104, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
177
|
Corticotropin-releasing factor and noradrenergic signalling exert reciprocal control over startle reactivity. Int J Neuropsychopharmacol 2011; 14:1179-94. [PMID: 21205416 PMCID: PMC3601827 DOI: 10.1017/s1461145710001409] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Corticotropin-releasing factor (CRF) and norepinephrine (NE) levels are altered in post-traumatic stress disorder and may be related to symptoms of hyperarousal, including exaggerated startle, in these patients. In animals, activation of both systems modulates anxiety behaviours including startle plasticity; however, it is unknown if they exert their actions orthogonally or dependently. We tested the hypothesis that NE receptor activation is required for CRF effects on startle and that CRF1 receptor activation is required for NE effects on startle. The study examined the effects of: (1) α2 agonist clonidine (0.18 mg/kg i.p.), α1 antagonist prazosin (0.8 mg/kg), and β1/2 antagonist propranolol (0.8, 8.0 mg/kg) pretreatment on ovine-CRF (oCRF)- (0.6 nmol) induced increases in startle reactivity and disruption of prepulse inhibition (PPI); (2) α2 antagonist atipamezole (1-30 mg/kg) and α1 agonist cirazoline (0.025-1.0 mg/kg) treatment on startle; (3) CRF1 antagonist (antalarmin, 14 mg/kg) pretreatment on atipamezole- (10.0 mg/kg) induced increases in startle. oCRF robustly increased startle and reduced PPI. Pretreatment with clonidine or prazosin, but not propranolol, blocked oCRF-induced increases in startle but had no effect on oCRF-induced disruptions in PPI. Atipamezole treatment increased startle, which was partially attenuated by CRF1 antagonist pretreatment. Cirazoline treatment did not increase startle. These findings suggest that CRF modulation of startle, but not PPI, requires activation of α1 adrenergic receptors, while CRF1 activation also contributes to NE modulation of startle. These data support a bi-directional model of CRF-NE modulation of stress responses and suggest that both systems must be activated to induce stress effects on startle reactivity.
Collapse
|
178
|
Wu Y, Moriya-Ito K, Iwakura T, Tsutiya A, Ichikawa M, Ohtani-Kaneko R. Sexually dimorphic effects of estrogen on spines in cultures of accessory olfactory bulb. Neurosci Lett 2011; 500:77-81. [DOI: 10.1016/j.neulet.2011.06.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Revised: 05/08/2011] [Accepted: 06/03/2011] [Indexed: 10/18/2022]
|
179
|
McGinty VB, Hayden BY, Heilbronner SR, Dumont EC, Graves SM, Mirrione MM, du Hoffmann J, Sartor GC, España RA, Millan EZ, Difeliceantonio AG, Marchant NJ, Napier TC, Root DH, Borgland SL, Treadway MT, Floresco SB, McGinty JF, Haber S. Emerging, reemerging, and forgotten brain areas of the reward circuit: Notes from the 2010 Motivational Neural Networks conference. Behav Brain Res 2011; 225:348-57. [PMID: 21816177 DOI: 10.1016/j.bbr.2011.07.036] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Accepted: 07/18/2011] [Indexed: 10/17/2022]
Abstract
On April 24-27, 2010, the Motivational Neuronal Networks meeting took place in Wrightsville Beach, North Carolina. The conference was devoted to "Emerging, re-emerging, and forgotten brain areas" of the reward circuit. A central feature of the conference was four scholarly discussions of cutting-edge topics related to the conference's theme. These discussions form the basis of the present review, which summarizes areas of consensus and controversy, and serves as a roadmap for the next several years of research.
Collapse
Affiliation(s)
- Vincent B McGinty
- Department of Neurobiology, Stanford University, Stanford, CA 94305-5125, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
180
|
Alves FHF, Crestani CC, Busnardo C, Antunes-Rodrigues J, Gomes FV, Resstel LBM, Corrêa FMA. Hypothalamic supraoptic but not paraventricular nucleus is involved in cardiovascular responses to carbachol microinjected into the bed nucleus of stria terminalis of unanesthetized rats. Brain Res 2011; 1393:31-43. [PMID: 21466795 DOI: 10.1016/j.brainres.2011.03.067] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Revised: 03/28/2011] [Accepted: 03/29/2011] [Indexed: 02/06/2023]
Abstract
Microinjection of the cholinergic agonist carbachol into the bed nucleus of the stria terminalis (BST) has been reported to cause pressor response in unanesthetized rats, which was shown to be mediated by an acute release of vasopressin into the systemic circulation and followed by baroreflex-mediated bradycardia. In the present study, we tested the possible involvement of the hypothalamic paraventricular (PVN) and supraoptic (SON) nuclei in the pressor response evoked by carbachol microinjection into the BST of unanesthetized rats. For this, cardiovascular responses following carbachol (1 nmol/100 nL) microinjection into the BST were studied before and after PVN or SON pretreatment, either ipsilateral or contralateral in relation to BST microinjection site, with the nonselective neurotransmission blocker cobalt chloride (CoCl₂, 1 mM/100 nL). Carbachol microinjection into the BST evoked pressor response. Moreover, BST treatment with carbachol significantly increased plasma vasopressin levels, thus confirming previous evidences that carbachol microinjection into the BST evokes pressor response due to vasopressin release into the circulation. SON pretreatment with CoCl₂, either ipsilateral or contralateral in relation to BST microinjection site, inhibited the pressor response to carbachol microinjection into the BST. However, CoCl₂ microinjection into the ipsilateral or contralateral PVN did not affect carbachol-evoked pressor response. In conclusion, our results suggest that pressor response to carbachol microinjection into the BST is mediated by SON magnocellular neurons, without significant involvement of those in the PVN. The results also indicate that responses to carbachol microinjection into the BST are mediated by a neural pathway that depends on the activation of both ipsilateral and contralateral SON.
Collapse
Affiliation(s)
- Fernando H F Alves
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.
| | | | | | | | | | | | | |
Collapse
|
181
|
Alves F, Resstel L, Correa F, Crestani C. Bed nucleus of the stria terminalis α1- and α2-adrenoceptors differentially modulate the cardiovascular responses to exercise in rats. Neuroscience 2011; 177:74-83. [DOI: 10.1016/j.neuroscience.2011.01.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Revised: 12/01/2010] [Accepted: 01/03/2011] [Indexed: 02/01/2023]
|
182
|
Zhang C, Kang Y, Lundy RF. Terminal field specificity of forebrain efferent axons to the pontine parabrachial nucleus and medullary reticular formation. Brain Res 2011; 1368:108-18. [PMID: 21040715 PMCID: PMC3053030 DOI: 10.1016/j.brainres.2010.10.086] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Revised: 10/20/2010] [Accepted: 10/22/2010] [Indexed: 02/06/2023]
Abstract
The pontine parabrachial nucleus (PBN) and medullary reticular formation (RF) are hindbrain regions that, respectively, process sensory input and coordinate motor output related to ingestive behavior. Neural processing in each hindbrain site is subject to modulation originating from several forebrain structures including the insular gustatory cortex (IC), bed nucleus of the stria terminalis (BNST), central nucleus of the amygdala (CeA), and lateral hypothalamus (LH). The present study combined electrophysiology and retrograde tracing techniques to determine the extent of overlap between neurons within the IC, BNST, CeA and LH that target both the PBN and RF. One fluorescent retrograde tracer, red (RFB) or green (GFB) latex microbeads, was injected into the gustatory PBN under electrophysiological guidance and a different retrograde tracer, GFB or fluorogold (FG), into the ipsilateral RF using the location of gustatory NST as a point of reference. Brain tissue containing each forebrain region was sectioned, scanned using a confocal microscope, and scored for the number of single and double labeled neurons. Neurons innervating the RF only, the PBN only, or both the medullary RF and PBN were observed, largely intermingled, in each forebrain region. The CeA contained the largest number of cells retrogradely labeled after tracer injection into either hindbrain region. For each forebrain area except the IC, the origin of descending input to the RF and PBN was almost entirely ipsilateral. Axons from a small percentage of hindbrain projecting forebrain neurons targeted both the PBN and RF. Target specific and non-specific inputs from a variety of forebrain nuclei to the hindbrain likely reflect functional specialization in the control of ingestive behaviors.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Yi Kang
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Robert F. Lundy
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| |
Collapse
|
183
|
Li XF, Lin YS, Kinsey-Jones JS, Milligan SR, Lightman SL, O'Byrne KT. The role of the bed nucleus of the stria terminalis in stress-induced inhibition of pulsatile luteinising hormone secretion in the female rat. J Neuroendocrinol 2011; 23:3-11. [PMID: 21073554 DOI: 10.1111/j.1365-2826.2010.02071.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The bed nucleus of the stria terminalis (BNST) occupies a central position in the neural circuitry regulating the hypothalamic-pituitary-adrenocortical axis response to stress. The potential role of the BNST in stress-induced suppression of the gondotrophin-releasing hormone (GnRH) pulse generator, the central regulator of the reproductive system, was assessed by examining the effects of micro-infusion of corticotrophin-releasing factor (CRF) or its antagonist into the BNST on pulsatile luteinising hormone (LH) secretion or stress-induced inhibition of LH pulses, respectively. Ovariectomised oestrogen-treated rats were implanted chronically with bilateral cannulae in the dorsolateral BNST and i.v. catheters. CRF (25, 50 or 100 pmol in 200 nl of artificial cerebrospinal fluid) administered bilaterally into the BNST resulted in a dose-dependent decrease in LH pulse frequency, and induced Fos expression in glutamic acid decarboxylase immunostained neurones in the medial preoptic area. These results suggest that the activation of hypothalamic GABAergic neurones in response to intra-BNST administration of CRF may be involved in the suppression of LH pulses. Furthermore, administration of CRF antagonist (280 pmol astressin-B, three times at 20-min intervals) into the BNST effectively blocked the suppression of pulsatile LH secretion in response to restraint (1 h) but not hypoglycaemic (0.25 U insulin/kg, i.v.) stress. These data suggest that CRF innervation of the dorsolateral BNST plays a key, but differential, role in stress-induced suppression of the GnRH pulse generator.
Collapse
Affiliation(s)
- X F Li
- Division of Reproduction & Endocrinology, King's College London, London, UK
| | | | | | | | | | | |
Collapse
|
184
|
Pitts MW, Takahashi LK. The central amygdala nucleus via corticotropin-releasing factor is necessary for time-limited consolidation processing but not storage of contextual fear memory. Neurobiol Learn Mem 2010; 95:86-91. [PMID: 21093597 DOI: 10.1016/j.nlm.2010.11.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Revised: 10/30/2010] [Accepted: 11/08/2010] [Indexed: 10/18/2022]
Abstract
The central nucleus of the amygdala (CeA) is traditionally portrayed in fear conditioning as the key neural output that relays conditioned information established in the basolateral amygdala complex to extra-amygdalar brain structures that generate emotional responses. However, several recent studies have questioned this serial processing view of the amygdalar fear conditioning circuit by showing an influence of the CeA on memory consolidation. We previously reported that inhibition of endogenous CeA secretion of corticotropin-releasing factor (CRF) at the time of contextual training effectively impaired fear memory consolidation. However, the time-dependent range of CeA CRF secretion in facilitating consolidation processing has not been examined. Therefore, to address this issue, we performed CeA site-specific microinjections of CRF antisense oligonucleotides (CRF ASO) at several post-training time intervals. Rats microinjected with CRF ASO at post-training intervals up to 24-h subsequently exhibited significant impairments in contextual freezing retention in contrast to animals treated 96-h after training. To further establish the validity of the results, CeA fiber-sparing lesions were made at two distinct post-training periods (24-h and 96-h), corresponding respectively to the temporal intervals when CeA CRF ASO administration disrupted or had no significant effects on memory consolidation. Similar to the CeA CRF ASO results, CeA lesions made 24-h, but not 96-h, after training induced significant freezing deficits in the retention test. In conclusion, the current results demonstrate: (1) an extended involvement of CeA CRF in contextual memory consolidation and (2) that contextual fear memory storage is not dependent on a functional CeA.
Collapse
Affiliation(s)
- Matthew W Pitts
- Department of Cell & Molecular Biology, John A. Burns School of Medicine, University of Hawaii, HI 96813, USA.
| | | |
Collapse
|
185
|
Rinaman L. Hindbrain noradrenergic A2 neurons: diverse roles in autonomic, endocrine, cognitive, and behavioral functions. Am J Physiol Regul Integr Comp Physiol 2010; 300:R222-35. [PMID: 20962208 DOI: 10.1152/ajpregu.00556.2010] [Citation(s) in RCA: 157] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Central noradrenergic (NA) signaling is broadly implicated in behavioral and physiological processes related to attention, arousal, motivation, learning and memory, and homeostasis. This review focuses on the A2 cell group of NA neurons, located within the hindbrain dorsal vagal complex (DVC). The intra-DVC location of A2 neurons supports their role in vagal sensory-motor reflex arcs and visceral motor outflow. A2 neurons also are reciprocally connected with multiple brain stem, hypothalamic, and limbic forebrain regions. The extra-DVC connections of A2 neurons provide a route through which emotional and cognitive events can modulate visceral motor outflow and also a route through which interoceptive feedback from the body can impact hypothalamic functions as well as emotional and cognitive processing. This review considers some of the hallmark anatomical and chemical features of A2 neurons, followed by presentation of evidence supporting a role for A2 neurons in modulating food intake, affective behavior, behavioral and physiological stress responses, emotional learning, and drug dependence. Increased knowledge about the organization and function of the A2 cell group and the neural circuits in which A2 neurons participate should contribute to a better understanding of how the brain orchestrates adaptive responses to the various threats and opportunities of life and should further reveal the central underpinnings of stress-related physiological and emotional dysregulation.
Collapse
Affiliation(s)
- Linda Rinaman
- Dept. of Neuroscience, University of Pittsburgh, A210 Langley Hall, Pittsburgh, PA 15260, USA.
| |
Collapse
|
186
|
The medial preoptic nucleus integrates the central influences of testosterone on the paraventricular nucleus of the hypothalamus and its extended circuitries. J Neurosci 2010; 30:11762-70. [PMID: 20810896 DOI: 10.1523/jneurosci.2852-10.2010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Testosterone contributes to sex differences in hypothalamic-pituitary-adrenal (HPA) function in humans and rodents, but the central organization of this regulation remains unclear. The medial preoptic nucleus (MPN) stands out as an important candidate in this regard because it contains androgen receptors and projects to forebrain nuclei integrating cognitive-affective information and regulating HPA responses to homeostatic threat. These include the HPA effector neurons of the paraventricular nucleus (PVN) of the hypothalamus, medial amygdala, and lateral septum. To test the extent to which androgen receptors in the MPN engage these cell groups, we compared in adult male rats the effects of unilateral microimplants of testosterone and the androgen receptor antagonist hydroxyflutamide into the MPN on acute restraint induced activation and/or neuropeptide expression levels. The basic effects of these implants were lateralized to the sides of the nuclei ipsilateral to the implants. Testosterone, but not hydroxyflutamide implants, decreased stress-induced Fos and arginine vasopressin (AVP) heteronuclear RNA expression in the PVN, as well as Fos expression in the lateral septum. In unstressed animals, AVP mRNA expression in the PVN decreased and increased in response to testosterone and hydroxflutamide MPN implants, respectively. The differential influences of these implants on AVP mRNA expression were opposite in the medial amygdala. These results confirm a role for androgen receptors in the MPN to concurrently modulate neuropeptide expression and activational responses in the PVN and its extended circuitries. This suggests that the MPN is capable of bridging converging limbic influences to the HPA axis with changes in gonadal status.
Collapse
|
187
|
Kalamatianos T, Faulkes CG, Oosthuizen MK, Poorun R, Bennett NC, Coen CW. Telencephalic binding sites for oxytocin and social organization: A comparative study of eusocial naked mole-rats and solitary cape mole-rats. J Comp Neurol 2010; 518:1792-813. [DOI: 10.1002/cne.22302] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
188
|
Pape HC, Pare D. Plastic synaptic networks of the amygdala for the acquisition, expression, and extinction of conditioned fear. Physiol Rev 2010; 90:419-63. [PMID: 20393190 DOI: 10.1152/physrev.00037.2009] [Citation(s) in RCA: 766] [Impact Index Per Article: 51.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The last 10 years have witnessed a surge of interest for the mechanisms underlying the acquisition and extinction of classically conditioned fear responses. In part, this results from the realization that abnormalities in fear learning mechanisms likely participate in the development and/or maintenance of human anxiety disorders. The simplicity and robustness of this learning paradigm, coupled with the fact that the underlying circuitry is evolutionarily well conserved, make it an ideal model to study the basic biology of memory and identify genetic factors and neuronal systems that regulate the normal and pathological expressions of learned fear. Critical advances have been made in determining how modified neuronal functions upon fear acquisition become stabilized during fear memory consolidation and how these processes are controlled in the course of fear memory extinction. With these advances came the realization that activity in remote neuronal networks must be coordinated for these events to take place. In this paper, we review these mechanisms of coordinated network activity and the molecular cascades leading to enduring fear memory, and allowing for their extinction. We will focus on Pavlovian fear conditioning as a model and the amygdala as a key component for the acquisition and extinction of fear responses.
Collapse
Affiliation(s)
- Hans-Christian Pape
- Institute of Physiology, Westfaelische Wilhelms-University, Muenster, Germany; and Rutgers State University, Newark, New Jersey, USA.
| | | |
Collapse
|
189
|
Potes CS, Lutz TA, Riediger T. Identification of central projections from amylin-activated neurons to the lateral hypothalamus. Brain Res 2010; 1334:31-44. [PMID: 20382134 DOI: 10.1016/j.brainres.2010.03.114] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Revised: 03/22/2010] [Accepted: 03/24/2010] [Indexed: 01/10/2023]
Abstract
The ability of the pancreatic hormone amylin to inhibit food intake relies on a direct activation of the area postrema (AP). This activation is synaptically transmitted to the nucleus of the solitary tract (NTS), the lateral parabrachial nucleus (LPB), the central amygdaloid nucleus (Ce) and the lateral bed nucleus of stria terminalis (BSTL). Interestingly, neurons of the rostro-dorsal lateral hypothalamic area (dLHA), which are activated during fasting, are inhibited by peripheral amylin, although they lack amylin receptors. Using the retrograde tracer cholera toxin-B (Ctb) we analyzed whether the dLHA receives neuronal projections from amylin-activated brain areas. The anterograde tracer biotinylated dextran-amine (BDA) was used to confirm the projections and to identify further neuronal pathways potentially involved in amylin signaling. We identified dense projections from the amylin activated neurons in the LPB and sparse projections from the NTS to the dLHA. LPB fiber efferents were found in close proximity to dLHA nuclei activated by 24h of fasting. The AP and the Ce showed no projections to the dLHA. Dense efferents were also observed from the LPB to other hypothalamic areas, namely to the ventromedial, dorsomedial, paraventricular and arcuate nuclei. This study provides neuroanatomical evidence that among the amylin activated areas, the LPB provides the strongest input to the dLHA, thus it may mediate the amylin-induced inhibition of the dLHA.
Collapse
Affiliation(s)
- Catarina Soares Potes
- Institute of Veterinary Physiology and Zurich Center for Integrative Human Physiology, University of Zurich, 8057 Zurich Switzerland
| | | | | |
Collapse
|
190
|
Weiser MJ, Foradori CD, Handa RJ. Estrogen receptor beta activation prevents glucocorticoid receptor-dependent effects of the central nucleus of the amygdala on behavior and neuroendocrine function. Brain Res 2010; 1336:78-88. [PMID: 20381466 DOI: 10.1016/j.brainres.2010.03.098] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Revised: 02/26/2010] [Accepted: 03/27/2010] [Indexed: 11/24/2022]
Abstract
Neuropsychiatric disorders such as anxiety and depression have formidable economic and societal impacts. A dysregulation of the hypothalamo-pituitary-adrenal (HPA) axis leading to elevated endogenous glucocorticoid levels is often associated with such disorders. Chronically high glucocorticoid levels may act upon the central nucleus of the amygdala (CeA) to alter normally adaptive responses into those that are maladaptive and detrimental. In addition to glucocorticoids, other steroid hormones such as estradiol and androgens can also modify hormonal and behavioral responses to threatening stimuli. In particular, estrogen receptor beta (ERbeta) agonists have been shown to be anxiolytic. Consequently, these experiments addressed the hypothesis that the selective stimulation of glucocorticoid receptor (GR) in the CeA would increase anxiety-like behaviors and HPA axis reactivity to stress, and further, that an ERbeta agonist could modulate these effects. Young adult female Sprague-Dawley rats were ovariectomized and bilaterally implanted via stereotaxic surgery with a wax pellet containing the selective GR agonist RU28362 or a blank pellet, to a region just dorsal to the CeA. Four days later, animals were administered the ERbeta agonist S-DPN or vehicle (with four daily sc injections). Anxiety-type behaviors were measured using the elevated plus maze (EPM). Central RU28362 implants caused significantly higher anxiety-type behaviors in the EPM and greater plasma CORT levels than controls given a blank central implant. Moreover, S-DPN treated animals, regardless of type of central implant, displayed significantly lower anxiety-type behaviors and post-EPM plasma CORT levels than vehicle treated controls or vehicle treated animals implanted with RU28362. These results indicate that selective activation of GR within the CeA is anxiogenic, and peripheral administration of an ERbeta agonist can overcome this effect. These data suggest that estradiol signaling via ERbeta prevents glucocorticoid-dependent effects of the CeA on behavior and neuroendocrine function.
Collapse
Affiliation(s)
- Michael J Weiser
- Department of Biomedical Sciences, Neuroscience Division, Colorado State University, Fort Collins, CO, USA
| | | | | |
Collapse
|
191
|
Hahn JD, Swanson LW. Distinct patterns of neuronal inputs and outputs of the juxtaparaventricular and suprafornical regions of the lateral hypothalamic area in the male rat. ACTA ACUST UNITED AC 2010; 64:14-103. [PMID: 20170674 DOI: 10.1016/j.brainresrev.2010.02.002] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Revised: 02/09/2010] [Accepted: 02/10/2010] [Indexed: 12/26/2022]
Abstract
We have analyzed at high resolution the neuroanatomical connections of the juxtaparaventricular region of the lateral hypothalamic area (LHAjp); as a control and in comparison to this, we also performed a preliminary analysis of a nearby LHA region that is dorsal to the fornix, namely the LHA suprafornical region (LHAs). The connections of these LHA regions were revealed with a coinjection tract-tracing technique involving a retrograde (cholera toxin B subunit) and anterograde (Phaseolus vulgaris leucoagglutinin) tracer. The LHAjp and LHAs together connect with almost every major division of the cerebrum and cerebrospinal trunk, but their connection profiles are markedly different and distinct. In simple terms, the connections of the LHAjp indicate a possible primary role in the modulation of defensive behavior; for the LHAs, a role in the modulation of ingestive behavior is suggested. However, the relation of the LHAjp and LHAs to potential modulation of these behaviors, as indicated by their neuroanatomical connections, appears to be highly integrative as it includes each of the major functional divisions of the nervous system that together determine behavior, i.e., cognitive, state, sensory, and motor. Furthermore, although a primary role is indicated for each region with respect to a particular mode of behavior, intermode modulation of behavior is also indicated. In summary, the extrinsic connections of the LHAjp and LHAs (so far as we have described them) suggest that these regions have a profoundly integrative role in which they may participate in the orchestrated modulation of elaborate behavioral repertoires.
Collapse
Affiliation(s)
- Joel D Hahn
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089-2520, USA.
| | | |
Collapse
|
192
|
Puente N, Elezgarai I, Lafourcade M, Reguero L, Marsicano G, Georges F, Manzoni OJ, Grandes P. Localization and function of the cannabinoid CB1 receptor in the anterolateral bed nucleus of the stria terminalis. PLoS One 2010; 5:e8869. [PMID: 20111610 PMCID: PMC2810340 DOI: 10.1371/journal.pone.0008869] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Accepted: 01/04/2010] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The bed nucleus of the stria terminalis (BNST) is involved in behaviors related to natural reward, drug addiction and stress. In spite of the emerging role of the endogenous cannabinoid (eCB) system in these behaviors, little is known about the anatomy and function of this system in the anterolateral BNST (alBNST). The aim of this study was to provide a detailed morphological characterization of the localization of the cannabinoid 1 (CB1) receptor a necessary step toward a better understanding of the physiological roles of the eCB system in this region of the brain. METHODOLOGY/PRINCIPAL FINDINGS We have combined anatomical approaches at the confocal and electron microscopy level to ex-vivo electrophysiological techniques. Here, we report that CB1 is localized on presynaptic membranes of about 55% of immunopositive synaptic terminals for the vesicular glutamate transporter 1 (vGluT1), which contain abundant spherical, clear synaptic vesicles and make asymmetrical synapses with alBNST neurons. About 64% of vGluT1 immunonegative synaptic terminals show CB1 immunolabeling. Furthermore, 30% and 35% of presynaptic boutons localize CB1 in alBNST of conditional mutant mice lacking CB1 mainly from GABAergic neurons (GABA-CB1-KO mice) and mainly from cortical glutamatergic neurons (Glu-CB1-KO mice), respectively. Extracellular field recordings and whole cell patch clamp in the alBNST rat brain slice preparation revealed that activation of CB1 strongly inhibits excitatory and inhibitory synaptic transmission. CONCLUSIONS/SIGNIFICANCE This study supports the anterolateral BNST as a potential neuronal substrate of the effects of cannabinoids on stress-related behaviors.
Collapse
Affiliation(s)
- Nagore Puente
- Department of Neurosciences, Faculty of Medicine and Dentistry, Basque Country University, Bilbao, Spain
| | - Izaskun Elezgarai
- Department of Neurosciences, Faculty of Medicine and Dentistry, Basque Country University, Bilbao, Spain
| | - Mathieu Lafourcade
- INSERM U862 Equipe “Physiopathologie de la Transmission et de la Plasticité Synaptique”, Bordeaux, France
| | - Leire Reguero
- Department of Neurosciences, Faculty of Medicine and Dentistry, Basque Country University, Bilbao, Spain
| | - Giovanni Marsicano
- “Endocannabinoids and Neuroadaptation”, INSERM U862 NeuroCentre Magendie, Université Bordeaux 2, Bordeaux, France
| | - François Georges
- INSERM U862 Equipe “Physiopathologie de la Transmission et de la Plasticité Synaptique”, Bordeaux, France
| | - Olivier J. Manzoni
- INSERM U862 Equipe “Physiopathologie de la Transmission et de la Plasticité Synaptique”, Bordeaux, France
| | - Pedro Grandes
- Department of Neurosciences, Faculty of Medicine and Dentistry, Basque Country University, Bilbao, Spain
| |
Collapse
|
193
|
Guo JD, Rainnie DG. Presynaptic 5-HT(1B) receptor-mediated serotonergic inhibition of glutamate transmission in the bed nucleus of the stria terminalis. Neuroscience 2009; 165:1390-401. [PMID: 19963045 DOI: 10.1016/j.neuroscience.2009.11.071] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Revised: 11/20/2009] [Accepted: 11/29/2009] [Indexed: 11/16/2022]
Abstract
Activation of neurons in the bed nucleus of the stria terminalis (BNST) plays a critical role in stress and anxiety-related behaviors. Previously, we have shown that serotonin (5-HT) can directly modulate BNST neuronal excitability by an action at postsynaptic receptors. In this study we built upon that work to examine the effects of 5-HT on excitatory neurotransmission in an in vitro rat BNST slice preparation. Bath application of 5-HT reversibly reduced the amplitude of evoked excitatory postsynaptic currents (eEPSCs). These effects were mimicked by the 5-HT(1B/D) receptor agonist, sumatriptan, and by the 5-HT(1B) receptor selective agonist, CP93129. Conversely, the effects of 5-HT and sumatriptan could be blocked by the 5-HT(1B) receptor-selective antagonist, GR55562. In contrast, the 5-HT(1A) receptor agonist 8-OH DPAT or antagonist WAY 100635 could not mimic or block the effect of 5-HT on eEPSCs. Together, these data suggest that the 5-HT-induced attenuation of eEPSCs was mediated by 5-HT(1B) receptor activation. Moreover, sumatriptan had no effect on the amplitude of the postsynaptic current elicited by pressure applied AMPA, suggesting a possible presynaptic locus for the 5-HT(1B) receptor. Furthermore, 5-HT, sumatriptan and CP93129 all increased the paired pulse ratio of eEPSCs while they concomitantly decreased the amplitude of eEPSCs, suggesting that these agonists act to reduce glutamate release probability at presynaptic locus. Consistent with this observation, sumatriptan decreased the frequency of miniature EPSCs, but had no effect on their amplitude. Taken together, these results suggest that 5-HT suppresses glutamatergic neurotransmission in the BNST by activating presynaptic 5-HT(1B) receptors to decrease glutamate release from presynaptic terminals. This study illustrates a new pathway by which the activity of BNST neurons can be indirectly modulated by 5-HT, and suggests a potential new target for the development of novel treatments for depression and anxiety disorders.
Collapse
Affiliation(s)
- J-D Guo
- Department of Psychiatry and Behavioral Sciences, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | | |
Collapse
|
194
|
Park J, Kile BM, Wightman RM. In vivo voltammetric monitoring of norepinephrine release in the rat ventral bed nucleus of the stria terminalis and anteroventral thalamic nucleus. Eur J Neurosci 2009; 30:2121-33. [PMID: 20128849 DOI: 10.1111/j.1460-9568.2009.07005.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The role and contribution of the dense noradrenergic innervation in the ventral bed nucleus of the stria terminalis (vBNST) and anteroventral thalamic nucleus (AV) to biological function and animal behaviors is poorly understood due to the small size of these nuclei. The aim of this study was to compare norepinephrine release and uptake in the vBNST with that in the AV of anesthetized rats. Measurements were made in vivo with fast-scan cyclic voltammetry following electrical stimulation of noradrenergic projection pathways, either the dorsal noradrenergic bundle (DNB) or the ventral noradrenergic bundle (VNB). The substance detected was identified as norepinephrine based upon voltammetric, anatomical, neurochemical and pharmacological evidence. Fast-scan cyclic voltammetry enables the selective monitoring of local norepinephrine overflow in the vBNST evoked by the stimulation of either the DNB or the VNB while norepinephrine in the AV was only evoked by DNB stimulation. The alpha2-adrenoceptor antagonist yohimbine and the norepinephrine uptake inhibitor desipramine increased norepinephrine overflow and slowed its disappearance in both regions. However, control of extracellular norepinephrine by both autoreceptors and uptake was greater in the AV. The greater control exerted by autoreceptors and uptake in the AV resulted in reduced extracellular concentration compared with the v BNST when large numbers of stimulation pulses were employed. The differences in noradrenergic transmission observed in the terminal fields of the v BNST and the AV may differentially regulate activity in these two regions that both contain high densities of norepinephrine terminals.
Collapse
Affiliation(s)
- Jinwoo Park
- Department of Chemistry and Neuroscience Center, University of North Carolina , Chapel Hill, NC 27599-3290, USA
| | | | | |
Collapse
|
195
|
Walker DL, Miles LA, Davis M. Selective participation of the bed nucleus of the stria terminalis and CRF in sustained anxiety-like versus phasic fear-like responses. Prog Neuropsychopharmacol Biol Psychiatry 2009; 33:1291-308. [PMID: 19595731 PMCID: PMC2783512 DOI: 10.1016/j.pnpbp.2009.06.022] [Citation(s) in RCA: 258] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Revised: 06/26/2009] [Accepted: 06/29/2009] [Indexed: 01/09/2023]
Abstract
The medial division of the central nucleus of the amygdala (CeA(M)) and the lateral division of the bed nucleus of the stria terminalis (BNST(L)) are closely related. Both receive projections from the basolateral amygdala (BLA) and both project to brain areas that mediate fear-influenced behaviors. In contrast to CeA(M) however, initial attempts to implicate the BNST in conditioned fear responses were largely unsuccessful. More recent studies have shown that the BNST does participate in some types of anxiety and stress responses. Here, we review evidence suggesting that the CeA(M) and BNST(L) are functionally complementary, with CeA(M) mediating short- but not long-duration threat responses (i.e., phasic fear) and BNST(L) mediating long- but not short-duration responses (sustained fear or 'anxiety'). We also review findings implicating the stress-related peptide corticotropin-releasing factor (CRF) in sustained but not phasic threat responses, and attempt to integrate these findings into a neural circuit model which accounts for these and related observations.
Collapse
Affiliation(s)
- D. L. Walker
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Emory University, Atlanta, GA, USA,Correspondence should be addressed to: David L. Walker, Emory University School of Medicine, 954 Gatewood Road NE, Yerkes Neurosci Bldg – Rm 5214, Atlanta, GA 30329, Ph: (404) 727-3587, Fax: (404) 727-8070,
| | | | - M. Davis
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Emory University, Atlanta, GA, USA,The Center for Behavior Neurosci, Emory University, Atlanta, GA, USA
| |
Collapse
|
196
|
Poulin JF, Arbour D, Laforest S, Drolet G. Neuroanatomical characterization of endogenous opioids in the bed nucleus of the stria terminalis. Prog Neuropsychopharmacol Biol Psychiatry 2009; 33:1356-65. [PMID: 19583989 DOI: 10.1016/j.pnpbp.2009.06.021] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2009] [Revised: 06/26/2009] [Accepted: 06/29/2009] [Indexed: 12/21/2022]
Abstract
Numerous neuroanatomical data indicate that the bed nucleus of the stria terminalis (BST) provides an interface between cortical and amygdaloid neurons, and effector neurons modulating motor, autonomic and neuroendocrine responses. Distinct divisions of the BST may be involved in stress response, homeostatic regulation, nociception, and motivated behaviors. Endogenous opioid peptides and receptors are expressed in the BST, but their exact distribution is poorly characterized. The present study used in situ hybridization in order to characterize the endogenous opioid system of the BST, focusing on both enkephalin and dynorphin neuropeptides, as well as their respective receptors (mu, delta, and kappa opioid receptors). We report that preprodynorphin mRNA is observed in distinct nuclei of the BST, namely the fusiform, oval and anterior lateral nuclei. In contrast, there is a widespread expression of preproenkephalin mRNA in both anterior and posterior divisions of the BST. Similarly, mu and kappa opioid receptors are broadly expressed in the BST, whereas delta opioid receptor mRNA was observed only in the principal nucleus. For further characterization of enkephalin-expressing neurons of the BST, we performed a double fluorescent in situ hybridization in order to reveal the coexpression of enkephalin peptides and markers of GABAergic and glutamatergic neurons. Although most neurons of the BST are GABAergic, there is also a modest population of glutamatergic cells expressing vesicular glutamate transporter 2 (VGLUT2) in specific nuclei of the BST. Finally, we identified a previously unreported population of enkephalinergic neurons expressing VGLUT2, which is principally located in the posterior BST.
Collapse
Affiliation(s)
- Jean-François Poulin
- Centre de recherche du CHUQ (CHUL), Neurosciences, Université Laval, Québec, QC, Canada.
| | | | | | | |
Collapse
|
197
|
McElligott ZA, Winder DG. Modulation of glutamatergic synaptic transmission in the bed nucleus of the stria terminalis. Prog Neuropsychopharmacol Biol Psychiatry 2009; 33:1329-35. [PMID: 19524008 PMCID: PMC2783684 DOI: 10.1016/j.pnpbp.2009.05.022] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Revised: 05/12/2009] [Accepted: 05/14/2009] [Indexed: 11/27/2022]
Abstract
Glutamate, catecholamine and neuropeptide signaling within the bed nucleus of the stria terminalis (BNST) have all been identified as key participants in anxiety-like behaviors and behaviors related to withdrawal from exposure to substances of abuse. The BNST is thought to serve as a key relay between limbic cognitive centers and reward, stress and anxiety nuclei. Human studies and animal models have demonstrated that stressors and drugs of abuse can result in long term behavioral modifications that can culminate in psychological diseases such as addiction and post-traumatic stress disorder. The ability of catecholamines and neuropeptides to influence synaptic glutamatergic transmission (stemming from cognitive centers) within the BNST may have profound consequences over these behaviors. In this review we highlight studies examining synaptic plasticity and modulation of excitatory transmission within the BNST, emphasizing how such modulation may result in alterations in anxiety and reward related behavior.
Collapse
Affiliation(s)
| | - Danny G. Winder
- Vanderbilt Brain Institute, Vanderbilt University Medical Center, Nashville, TN, USA, Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN, USA, Kennedy Center For Human Development, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
198
|
Dumont EC. What is the bed nucleus of the stria terminalis? Prog Neuropsychopharmacol Biol Psychiatry 2009; 33:1289-90. [PMID: 19602427 PMCID: PMC4011829 DOI: 10.1016/j.pnpbp.2009.07.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Accepted: 07/08/2009] [Indexed: 10/20/2022]
|
199
|
Crestani CC, Deolindo MV, Alves FHF, Resstel LBM, Correa FMA. Non-N-methyl-d-aspartate glutamate receptors in the lateral hypothalamus modulate cardiac baroreflex responses in conscious rats. Clin Exp Pharmacol Physiol 2009; 36:1079-85. [DOI: 10.1111/j.1440-1681.2009.05191.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
200
|
Crestani CC, Alves FHF, Resstel LBM, Correa FMA. The bed nucleus of the stria terminalis modulates exercise-evoked cardiovascular responses in rats. Exp Physiol 2009; 95:69-79. [DOI: 10.1113/expphysiol.2009.049056] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|