151
|
Thompson EC, Cobb BS, Sabbattini P, Meixlsperger S, Parelho V, Liberg D, Taylor B, Dillon N, Georgopoulos K, Jumaa H, Smale ST, Fisher AG, Merkenschlager M. Ikaros DNA-Binding Proteins as Integral Components of B Cell Developmental-Stage-Specific Regulatory Circuits. Immunity 2007; 26:335-44. [PMID: 17363301 DOI: 10.1016/j.immuni.2007.02.010] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2006] [Revised: 11/27/2006] [Accepted: 02/12/2007] [Indexed: 01/08/2023]
Abstract
Ikaros DNA-binding proteins are critical for the development of lymphocytes and other hematopoietic lineages, but it remains unclear how they cooperate with other regulators of signaling and transcription to achieve ordered gene expression during development. Here, we show that Ikaros proteins regulate the pre-BCR component lambda5 in a stage-specific manner. In pre-BI cells, Ikaros modulated lambda5 expression in competition with the transcriptional activator EBF. This required Ikaros binding to the Igll1 (lambda5) promoter and was abolished either by mutation of the Ikaros DNA-binding domain or by deletion of a single Ikaros site from the Igll1 promoter. At the transition from the pre-BI to pre-BII stage, the expression of the Ikaros family member Aiolos was upregulated and required for the efficient silencing of Igll1. Aiolos expression was controlled by pre-BCR signals via the adaptor protein SLP-65. Thus, pre-BCR signaling regulates Aiolos and the silencing of Igll1 via a developmental-stage-specific feedback loop.
Collapse
Affiliation(s)
- Elizabeth C Thompson
- Lymphocyte Development Group, MRC Clinical Sciences Centre, Imperial College London, Du Cane Road, London W12 0NN, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
152
|
Tabayashi T, Ishimaru F, Takata M, Kataoka I, Nakase K, Kozuka T, Tanimoto M. Characterization of the short isoform of Helios overexpressed in patients with T-cell malignancies. Cancer Sci 2007; 98:182-8. [PMID: 17297655 PMCID: PMC11159431 DOI: 10.1111/j.1349-7006.2006.00372.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
In an earlier report, we demonstrated overexpression of a short isoform of Helios, Hel-5, which lacks three of four N-terminal zinc fingers, in patients with adult T-cell leukemia/lymphoma. Here, we characterized Hel-5 using immunoprecipitation, and gel shift and luciferase promoter assays, and found that Hel-5 lacks the repressor function observed with a full-length isoform of Helios. Moreover, Hel-5 associates with the full-length isoforms of the Ikaros gene family, Ikaros, Aiolos and Helios, and inhibits their DNA binding activity when present in excess, leading to dominant-negative effects on the full-length isoforms of the Ikaros gene family. Our results suggest a critical role for Helios in the mechanism of leukemogenesis.
Collapse
Affiliation(s)
- Takayuki Tabayashi
- Department of Medicine, University of Okayama, 2-5-1 Shikatacho, Okayama 700-8558, Japan
| | | | | | | | | | | | | |
Collapse
|
153
|
Ronni T, Payne KJ, Ho S, Bradley MN, Dorsam G, Dovat S. Human Ikaros Function in Activated T Cells Is Regulated by Coordinated Expression of Its Largest Isoforms. J Biol Chem 2007; 282:2538-47. [PMID: 17135265 DOI: 10.1074/jbc.m605627200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Ikaros gene is alternately spliced to generate multiple zinc finger proteins involved in gene regulation and chromatin remodeling. Whereas murine studies have provided important information regarding the role of Ikaros in the mouse, little is known of Ikaros function in human. We report functional analyses of the two largest human Ikaros (hIK) isoforms, hIK-VI and hIK-H, in T cells. Abundant expression of hIK-H, the largest described isoform, is restricted to human hematopoietic cells. We find that the DNA binding affinity of hIK-H differs from that of hIK-VI. Co-expression of hIk-H with hIk-VI alters the ability of Ikaros complexes to bind DNA motifs found in pericentromeric heterochromatin (PC-HC). In the nucleus, hIK-VI is localized solely in PC-HC, whereas the hIK-H protein exhibits dual centromeric and non-centromeric localization. Mutational analysis defined the amino acids responsible for the distinct DNA binding ability of hIK-H, as well as the sequence required for the specific subcellular localization of this isoform. In proliferating cells, the binding of hIK-H to the upstream regulatory region of known Ikaros target genes correlates with their positive regulation by Ikaros. Results suggest that expression of hIK-H protein restricts affinity of Ikaros protein complexes toward specific PC-HC repeats. We propose a model, whereby the binding of hIK-H-deficient Ikaros complexes to the regulatory sequence of target genes would recruit these genes to the restrictive pericentromeric compartment, resulting in their repression. The presence of hIK-H in the Ikaros complex would alter its affinity for PC-HC, leading to chromatin remodeling and activation of target genes.
Collapse
Affiliation(s)
- Tapani Ronni
- Mattel Children's Hospital, Los Angeles, California 90095, USA
| | | | | | | | | | | |
Collapse
|
154
|
Zhang Z, Swindle CS, Bates JT, Ko R, Cotta CV, Klug CA. Expression of a non-DNA-binding isoform of Helios induces T-cell lymphoma in mice. Blood 2006; 109:2190-7. [PMID: 17110463 PMCID: PMC1801072 DOI: 10.1182/blood-2005-01-031930] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Helios is a zinc-finger protein belonging to the Ikaros family of transcriptional regulators. It is expressed, along with Ikaros, throughout early stages of thymocyte development where it quantitatively associates with Ikaros through C-terminal zinc-finger domains that mediate heterodimerization between Ikaros family members. To understand the role of Helios in T-cell development, we used a retroviral vector to express full-length Helios or a Helios isoform that lacked the N-terminal DNA-binding domain in hematopoietic progenitor cells of reconstituted mice. Constitutive expression of full-length Helios resulted in an inhibition of T-cell development at the double-negative stage within the thymus. Although expression of the DNA-binding mutant of Helios did not contribute to developmental abnormalities at early times after transplantation, 60% of animals that expressed the Helios DNA-binding mutant developed an aggressive and transplantable T-cell lymphoma 4 to 10 months after transplantation. These results demonstrate a vital function for Helios in maintaining normal homeostasis of developing T cells and formally show that non-DNA-binding isoforms of Helios are lymphomagenic if aberrantly expressed within the T-cell lineage.
Collapse
MESH Headings
- Animals
- Cell Differentiation
- Cell Proliferation
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Cells, Cultured
- DNA-Binding Proteins/classification
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Gene Expression
- Killer Cells, Natural/cytology
- Killer Cells, Natural/metabolism
- Lymphoma, T-Cell/genetics
- Lymphoma, T-Cell/metabolism
- Lymphoma, T-Cell/pathology
- Mice
- Mice, Inbred C57BL
- Mutation/genetics
- Protein Isoforms/genetics
- Protein Isoforms/metabolism
- Thymus Gland/cytology
- Thymus Gland/metabolism
- Transcription Factors/classification
- Transcription Factors/genetics
- Transcription Factors/metabolism
Collapse
Affiliation(s)
- Zheng Zhang
- Department of Microbiology, Division of Developmental and Clinical Immunology, University of Alabama at Birmingham, AL, USA
| | | | | | | | | | | |
Collapse
|
155
|
Fraenkel S, Bergman Y. Variability and Exclusion in Host and Parasite: Epigenetic Regulation of Ig and var Expression. THE JOURNAL OF IMMUNOLOGY 2006; 177:5767-74. [PMID: 17056499 DOI: 10.4049/jimmunol.177.9.5767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The immune system generates highly diverse AgRs of different specificities from a pool of designated genomic loci, each containing large arrays of genes. Ultimately, each B or T cell expresses a receptor of a single type on its surface. Immune evasion by the malaria parasite Plasmodium falciparum is mediated by the mutually exclusive expression of a single member of the var family of genes, which encodes variant surface Ags. In this review, we discuss the similarities as well as the unique characteristics of the epigenetic mechanisms involved in the establishment of mutually exclusive expression in the immune and parasite systems.
Collapse
Affiliation(s)
- Shira Fraenkel
- Department of Experimental Medicine and Cancer Research, Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | | |
Collapse
|
156
|
Schorpp M, Bialecki M, Diekhoff D, Walderich B, Odenthal J, Maischein HM, Zapata AG, Boehm T. Conserved functions of Ikaros in vertebrate lymphocyte development: genetic evidence for distinct larval and adult phases of T cell development and two lineages of B cells in zebrafish. THE JOURNAL OF IMMUNOLOGY 2006; 177:2463-76. [PMID: 16888008 DOI: 10.4049/jimmunol.177.4.2463] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Zebrafish has been advocated as an alternative animal model to study lymphocyte development, although the similarities in the genetic requirements of lymphopoiesis between fish and mammals have not yet been investigated. In this study, we examine the role of the transcription factor Ikaros in zebrafish lymphopoiesis. In fish larvae homozygous for an ikaros allele predicted to lack the C-terminal zinc fingers, T lymphopoiesis is absent; the presence of V(H)DmuJmu rearrangements in adolescent fish is delayed in mutants. In adolescent mutant fish, T cells expressing tcrb and tcrd and B cells expressing igm are formed with low efficiency and display an oligoclonal Ag receptor repertoire. By contrast, B cells expressing the igz isotype do not develop, providing genetic evidence for two separate B cell lineages in zebrafish. Thus, Ikaros appears to play similar roles in fish and mammalian lymphopoiesis.
Collapse
Affiliation(s)
- Michael Schorpp
- Department of Developmental Immunology, Max-Planck Institute of Immunobiology, D-79108 Freiburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
157
|
Yamazaki K, Crowe DL, Shuler CF. Hunchback sequence binding protein suppresses mouse TGF-β3 promoter in vitro. Biochem Biophys Res Commun 2006; 346:802-9. [PMID: 16781676 DOI: 10.1016/j.bbrc.2006.05.178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2006] [Accepted: 05/29/2006] [Indexed: 10/24/2022]
Abstract
Transforming growth factor-beta3 (TGF-beta3) has a specific role in vivo in the patterning of embryonic and tissue-specific gene expression. We have cloned and sequenced the mouse TGF-beta3 5'-flanking region to study the transcriptional regulation of this gene. Promoter fragments were cloned into a promoterless luciferase reporter plasmid to study functional activity in a human skin melanoma cell line A375 (A375). Sequential 5'-deletion encompassing DNA sequences from -2297 to -1003 bp exhibited high promoter activity in A375 cells, whereas the promoter activity decreased to minimal in the -742 to 104 bp regions, suggesting both positive and negative transcriptional regulation in the TGF-beta3 promoter. The fragment containing 1.8 kb had the highest luciferase activity. Characterization of this 1.8 kb 5'-flanking region upstream of the translation start site showed a putative hunchback-binding site consensus sequence. The electrophoretic mobility shift assay (EMSA) and transient transfection experiments showed that the putative hunchback-binding site is functional and regulated TGF-beta3 promoter transcriptional activity. The DNA-complex including the hunchback sequence binding protein (HbSBP) was important for suppression of the promoter activity in A375 cells. Mutation of the hunchback consensus sequence resulted in up to 2-fold higher promoter activity than the wild type construct. There was an absence of HbSBP in other cell lines tested including 3T3 fibroblast and B-16 mouse skin melanoma as determined by EMSA and Western blot analysis. HbSBP may function as a TGF-beta3 gene transcriptional regulator and may be expressed in a cell type-specific manner.
Collapse
Affiliation(s)
- Kiyomi Yamazaki
- Center for Craniofacial Molecular Biology, School of Dentistry, University of Southern California, Los Angeles, CA, USA
| | | | | |
Collapse
|
158
|
Mehle A, Thomas ER, Rajendran KS, Gabuzda D. A zinc-binding region in Vif binds Cul5 and determines cullin selection. J Biol Chem 2006; 281:17259-17265. [PMID: 16636053 DOI: 10.1074/jbc.m602413200] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human immunodeficiency virus-1 (HIV-1) Vif overcomes the anti-viral activity of APOBEC3G by targeting it for ubiquitination via a Cullin 5-ElonginB-ElonginC (Cul5-EloBC) E3 ligase. Vif associates with Cul5-EloBC through a BC-box motif that binds EloC, but the mechanism by which Vif selectively recruits Cul5 is poorly understood. Here we report that a region of Vif (residues 100-142) upstream of the BC-box binds selectively to Cul5 in the absence of EloC. This region contains a zinc coordination site HX5CX17-18CX3-5H (HCCH), with His/Cys residues at positions 108, 114, 133, and 139 coordinating one zinc ion. The HCCH zinc coordination site, which is conserved among primate lentivirus Vif proteins, does not correspond to any known class of zinc-binding motif. Mutations of His/Cys residues in the HCCH motif impair zinc coordination, Cul5 binding, and APOBEC3G degradation. Mutations of conserved hydrophobic residues (Ile-120, Ala-123, and Leu-124) located between the two Cys residues in the HCCH motif disrupt binding of the zinc-coordinating region to Cul5 and inhibit APOBEC3G degradation. The Vif binding site maps to the first cullin repeat in the N terminus of Cul5. These data suggest that the zinc-binding region in Vif is a novel cullin interaction domain that mediates selective binding to Cul5. We propose that the HCCH zinc-binding motif facilitates Vif-Cul5 binding by playing a structural role in positioning hydrophobic residues for direct contact with Cul5.
Collapse
Affiliation(s)
- Andrew Mehle
- Department of Cancer Immunology and AIDS, Dana Farber Cancer Institute, Boston, Massachusetts 02115; Departments of Pathology, Harvard Medical School, Boston, Massachusetts 02115
| | - Elaine R Thomas
- Department of Cancer Immunology and AIDS, Dana Farber Cancer Institute, Boston, Massachusetts 02115; Departments of Pathology, Harvard Medical School, Boston, Massachusetts 02115
| | - Kottampatty S Rajendran
- Department of Cancer Immunology and AIDS, Dana Farber Cancer Institute, Boston, Massachusetts 02115; Departments of Pathology, Harvard Medical School, Boston, Massachusetts 02115
| | - Dana Gabuzda
- Department of Cancer Immunology and AIDS, Dana Farber Cancer Institute, Boston, Massachusetts 02115; Departments of Neurology, Harvard Medical School, Boston, Massachusetts 02115.
| |
Collapse
|
159
|
Nera KP, Alinikula J, Terho P, Narvi E, Törnquist K, Kurosaki T, Buerstedde JM, Lassila O. Ikaros has a crucial role in regulation of B cell receptor signaling. Eur J Immunol 2006; 36:516-25. [PMID: 16482514 DOI: 10.1002/eji.200535418] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The transcription factor Ikaros, a key regulator of hematopoiesis, has an essential role in lymphocyte development. In mice, fetal lymphoid differentiation is blocked in the absence of Ikaros, and whereas T cells develop postnatally, B cells are totally absent. The significance of Ikaros in the B cell development is evident, but how Ikaros regulates B cell function has neither been established nor previously been studied with B cells that lack Ikaros expression. Here we show that disruption of Ikaros in the chicken B cell line DT40 induces a B cell receptor (BCR) signaling defect with reduced phospholipase Cgamma2 phosphorylation and impaired intracellular calcium mobilization, which is restored by Ikaros reintroduction. Furthermore, we show that lack of Ikaros induces hyperphosphorylation of Casitas B lymphoma protein subsequent to BCR activation. These results indicate that the absolute need of Ikaros for development, cell fate decisions and maintenance of B cells is due to the enhancement of BCR signaling.
Collapse
Affiliation(s)
- Kalle-Pekka Nera
- Turku Graduate School of Biomedical Sciences, University of Turku, Turku, Finland.
| | | | | | | | | | | | | | | |
Collapse
|
160
|
Dumortier A, Jeannet R, Kirstetter P, Kleinmann E, Sellars M, dos Santos NR, Thibault C, Barths J, Ghysdael J, Punt JA, Kastner P, Chan S. Notch activation is an early and critical event during T-Cell leukemogenesis in Ikaros-deficient mice. Mol Cell Biol 2006; 26:209-20. [PMID: 16354692 PMCID: PMC1317628 DOI: 10.1128/mcb.26.1.209-220.2006] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Ikaros transcription factor is both a key regulator of lymphocyte differentiation and a tumor suppressor in T lymphocytes. Mice carrying a hypomorphic mutation (Ik(L/L)) in the Ikaros gene all develop thymic lymphomas. Ik(L/L) tumors always exhibit strong activation of the Notch pathway, which is required for tumor cell proliferation in vitro. Notch activation occurs early in tumorigenesis and may precede transformation, as ectopic expression of the Notch targets Hes-1 and Deltex-1 is detected in thymocytes from young Ik(L/L) mice with no overt signs of transformation. Notch activation is further amplified by secondary mutations that lead to C-terminal truncations of Notch 1. Strikingly, restoration of Ikaros activity in tumor cells leads to a rapid and specific downregulation of Notch target gene expression and proliferation arrest. Furthermore, Ikaros binds to the Notch-responsive element in the Hes-1 promoter and represses Notch-dependent transcription from this promoter. Thus, Ikaros-mediated repression of Notch target gene expression may play a critical role in defining the tumor suppressor function of this factor.
Collapse
Affiliation(s)
- Alexis Dumortier
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS-INSERM-ULP, BP 10142, 67404 Illkirch, CU Strasbourg, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
161
|
Giesecke AV, Fang R, Joung JK. Synthetic protein-protein interaction domains created by shuffling Cys2His2 zinc-fingers. Mol Syst Biol 2006; 2:2006.2011. [PMID: 16732192 PMCID: PMC1681485 DOI: 10.1038/msb4100053] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2005] [Accepted: 01/20/2006] [Indexed: 11/24/2022] Open
Abstract
Cys2His2 zinc-fingers (C2H2 ZFs) mediate a wide variety of protein–DNA and protein–protein interactions. DNA-binding C2H2 ZFs can be shuffled to yield artificial proteins with different DNA-binding specificities. Here we demonstrate that shuffling of C2H2 ZFs from transcription factor dimerization zinc-finger (DZF) domains can also yield two-finger DZFs with novel protein–protein interaction specificities. We show that these synthetic protein–protein interaction domains can be used to mediate activation of a single-copy reporter gene in bacterial cells and of an endogenous gene in human cells. In addition, the synthetic two-finger domains we constructed can also be linked together to create more extended, four-finger interfaces. Our results demonstrate that shuffling of C2H2 ZFs can yield artificial protein-interaction components that should be useful for applications in synthetic biology.
Collapse
Affiliation(s)
- Astrid V Giesecke
- Molecular Pathology Unit, Department of Pathology, Massachusetts General Hospital, Charlestown, MA, USA
- Universität Regensburg, Institut für Zoologie, Regensburg, Germany
| | - Rui Fang
- Molecular Pathology Unit, Department of Pathology, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - J Keith Joung
- Molecular Pathology Unit, Department of Pathology, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Pathology, Harvard Medical School, Boston, MA, USA
- Molecular Pathology Unit, Department of Pathology, Massachusetts General Hospital, 149 13th Street, Room 7139, 7th floor, Charlestown, MA 02129, USA. Tel.: +1 6177269462; Fax: +1 6177265684; E-mail:
| |
Collapse
|
162
|
Liu M, Ge Y, Payton SG, Aboukameel A, Buck S, Flatley RM, Haska C, Mohammad R, Taub JW, Matherly LH. Transcriptional regulation of the human reduced folate carrier in childhood acute lymphoblastic leukemia cells. Clin Cancer Res 2006; 12:608-16. [PMID: 16428507 DOI: 10.1158/1078-0432.ccr-05-1954] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The transcriptional regulation of the human reduced folate carrier (hRFC), involved in cellular uptake of methotrexate and reduced folates, was studied in childhood acute lymphoblastic leukemia (ALL). The hRFC gene is regulated by six noncoding exons (A1/A2 and A to E) and multiple promoters. In ALL, hRFC-A1/A2 and hRFC-B are the major transcript forms. EXPERIMENTAL DESIGN RNAs from 18 ALL lymphoblast specimens and 10 nonobese diabetic/severe combined immunodeficient ALL xenografts were assayed by real-time reverse transcription-PCR for hRFC-A1/A2 and hRFC-B transcripts and for transcripts encoding USF1, GATA1, Sp1, and Ikaros transcription factors. For the xenografts, gel shift and chromatin immunoprecipitation assays assessed transcription factor binding to the hRFC-A1/A2 and hRFC-B promoters. CpG methylation density within a 334-bp region, including the core hRFC-B promoter, was established by bisulfite sequencing. hRFC-A1/A2 and hRFC-B promoter polymorphisms were assayed by DNA sequencing. RESULTS For the 28 ALLs, hRFC-A1/A2 and hRFC-B transcripts spanned a 546-fold range. By chromatin immunoprecipitation and gel shift assays, binding was confirmed for USF1 and GATA1 for hRFC-A1/A2, and for Sp1, USF1, and Ikaros for hRFC-B. hRFC transcript levels correlated with those for GATA1 and USF1 for hRFC-A1/A2 and with Sp1 and USF1 transcripts for hRFC-B. CpG methylation in ALL did not correlate with hRFC-B transcripts. In 40 ALL and 17 non-ALL specimens, 2 cosegregating high-frequency polymorphisms (T-1309/C-1217 and C-1309/T-1217; allelic frequencies of 36% and 64%, respectively) were detected in the A1/A2 promoter; none were detected in promoter B. The hRFC-A1/A2 polymorphisms only slightly affected promoter activity. CONCLUSIONS Our results show a complex regulation of hRFC in ALL involving the hRFC-A1/A2 and hRFC-B promoters and noncoding exons. Although Sp1, USF1, and GATA1 levels are critical determinants of hRFC transcription in ALL, neither DNA methylation nor promoter polymorphisms contribute to differences in hRFC expression.
Collapse
Affiliation(s)
- Mingjun Liu
- Developmental Therapeutics Program, Barbara Ann Karmanos Cancer Institute, 110 East Warren Avenue, Detroit, MI 48201, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
163
|
Roessler S, Grosschedl R. Role of transcription factors in commitment and differentiation of early B lymphoid cells. Semin Immunol 2006; 18:12-9. [PMID: 16431127 DOI: 10.1016/j.smim.2005.12.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
B lymphopoiesis is a differentiation process in which hematopoietic stem cells are converted into antibody-producing plasma cells. B cell differentiation involves multiple steps, including cell specification, commitment to the B cell lineage, immunoglobulin rearrangements, maturation of B cells and terminal differentiation into plasma cells. Each of these steps is controlled by signaling pathways and transcription factors that act in synergy, feedback-loops or cross-antagonism to generate complex regulatory networks that allow for plasticity and stability of B cell differentiation.
Collapse
Affiliation(s)
- Stephanie Roessler
- Max-Planck Institute of Immunobiology, Department of Cellular and Molecular Immunology, Stubeweg 51, 79108 Freiburg, Germany
| | | |
Collapse
|
164
|
Yamamoto E, Ito T, Abe A, Sido F, Ino K, Itakura A, Mizutani S, Dovat S, Nomura S, Kikkawa F. Ikaros is expressed in human extravillous trophoblasts and involved in their migration and invasion. Mol Hum Reprod 2005; 11:825-31. [PMID: 16364975 DOI: 10.1093/molehr/gah239] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The transcriptional factor Ikaros was originally found to function as a key regulator of lymphocyte differentiation. In addition, we have reported that Ikaros regulates the human placental leucine aminopeptidase (P-LAP)/insulin-regulated aminopeptidase (IRAP) gene in choriocarcinoma trophoblastic cells, suggesting that Ikaros might be involved in placental development, while even its presence in human placenta remains undetermined. We therefore sought to clarify the location and roles of Ikaros in human placenta. Immunohistochemical analysis showed modest Ikaris expression in syncytium, and intense expression in extravillous trophoblasts (EVTs) in first trimester placenta. Western blot analysis showed that villous trophoblasts principally expressed Ikaros-2/3, while Ikaros-x (Ikx) was predominantly expressed in cultured EVTs. Furthermore, to investigate the functional role of Ikx in EVTs, the EVT cell line HTR-8/SVneo was infected with a retrovirus vector expressing the hemagglutinin (HA)-tagged dominant negative isoform Ikaros-6 (Ik6), which prevents the DNA-binding activity of Ikx. Antibody against HA showed successful transduction of Ik6 in HTR-8/SVneo cells on immunocytochemistry and Western blotting. Transduction of Ik6 significantly reduced the migratory and invasive abilities of HTR-8/SVneo cells. These results suggest that Ikx is involved in migration and invasion of EVTs in early placentation.
Collapse
Affiliation(s)
- E Yamamoto
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
165
|
Dovat S, Montecino-Rodriguez E, Schuman V, Teitell MA, Dorshkind K, Smale ST. Transgenic expression of Helios in B lineage cells alters B cell properties and promotes lymphomagenesis. THE JOURNAL OF IMMUNOLOGY 2005; 175:3508-15. [PMID: 16148093 DOI: 10.4049/jimmunol.175.6.3508] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Helios, a member of the Ikaros family of DNA-binding proteins, is expressed in multipotential lymphoid progenitors and throughout the T lineage. However, in most B lineage cells, Helios is not expressed, suggesting that its absence may be critical for B cell development and function. To test this possibility, transgenic mice were generated that express Helios under the control of an Ig mu enhancer. Commitment to the B cell lineage was unaltered in Helios transgenic mice, and numbers of surface IgM(+) B cells were normal in the bone marrow and spleen. However, both bone marrow and splenic B cells exhibited prolonged survival and enhanced proliferation. B cells in Helios transgenic mice were also hyperresponsive to Ag stimulation. These alterations were observed even though the concentration of ectopic Helios in B lineage cells, like that of endogenous Helios in thymocytes, was well below the concentration of Ikaros. Further evidence that ectopic Helios expression contributes to B cell abnormalities was provided by the observation that Helios transgenic mice developed metastatic lymphoma as they aged. Taken together, these results demonstrate that silencing of Helios is critical for normal B cell function.
Collapse
Affiliation(s)
- Sinisa Dovat
- Mattel Children's Hospital and Department of Pediatrics, University of California, Los Angeles, CA 90095, USA
| | | | | | | | | | | |
Collapse
|
166
|
Yap WH, Yeoh E, Tay A, Brenner S, Venkatesh B. STAT4 is a target of the hematopoietic zinc-finger transcription factor Ikaros in T cells. FEBS Lett 2005; 579:4470-8. [PMID: 16081070 DOI: 10.1016/j.febslet.2005.07.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2005] [Revised: 07/10/2005] [Accepted: 07/13/2005] [Indexed: 11/16/2022]
Abstract
STAT4 is a transcription factor activated in response to IL-12, and is involved in Th1 cell development. The molecular mechanisms controlling the transcription of the STAT4 gene are however, unclear. Sequence comparison of the 5' flanking regions of human, mouse and pufferfish (Fugu rubripes) Stat4 genes revealed a high frequency of Ikaros (Ik) binding elements in all three species. We then investigated the role of Ik binding elements in the human STAT4 promoter using Jurkat T cells. Transactivation, electrophoretic mobility shift assay and RNA interference-mediated gene knockdown experiments revealed that Ik is involved in the regulation of STAT4 in human T cells.
Collapse
Affiliation(s)
- Wai-Ho Yap
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore 138673, Singapore
| | | | | | | | | |
Collapse
|
167
|
Kuhnert F, Campagnolo L, Xiong JW, Lemons D, Fitch MJ, Zou Z, Kiosses WB, Gardner H, Stuhlmann H. Dosage-dependent requirement for mouse Vezf1 in vascular system development. Dev Biol 2005; 283:140-56. [PMID: 15882861 PMCID: PMC1453095 DOI: 10.1016/j.ydbio.2005.04.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2004] [Revised: 03/13/2005] [Accepted: 04/06/2005] [Indexed: 11/26/2022]
Abstract
Vezf1 is an early development gene that encodes a zinc finger transcription factor. In the developing embryo, Vezf1 is expressed in the yolk sac mesoderm and the endothelium of the developing vasculature and, in addition, in mesodermal and neuronal tissues. Targeted inactivation of Vezf1 in mice reveals that it acts in a closely regulated, dose-dependent fashion on the development of the blood vascular and lymphatic system. Homozygous mutant embryos display vascular remodeling defects and loss of vascular integrity leading to localized hemorrhaging. Ultrastructural analysis shows defective endothelial cell adhesion and tight junction formation in the mutant vessels. Moreover, in heterozygous embryos, haploinsufficiency is observed that is characterized by lymphatic hypervascularization associated with hemorrhaging and edema in the jugular region; a phenotype reminiscent of the human congenital lymphatic malformation syndrome cystic hygroma.
Collapse
Affiliation(s)
- Frank Kuhnert
- Department of Cell Biology, Division of Vascular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
168
|
Cobb BS, Smale ST. Ikaros-family proteins: in search of molecular functions during lymphocyte development. Curr Top Microbiol Immunol 2005; 290:29-47. [PMID: 16480038 DOI: 10.1007/3-540-26363-2_3] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The regulatory steps that lead to the differentiation of hematopoietic cells from a multipotential stem cell remain largely unknown. A beginning to the understanding of these steps has come from the study of DNA-binding proteins that are thought to regulate the expression of genes required for specific developmental events. Ikaros is the founding member of a small family of DNA-binding proteins required for lymphocyte development, but the members of this family differ from other key regulators of lymphopoiesis in that direct target genes have not been conclusively identified, and reasonable support has been presented for only a few potential targets. Therefore, the molecular mechanisms that Ikaros uses for regulating lymphocyte development remain largely unknown. Current data suggest that, in some instances, Ikaros may function as a typical transcription factor. However, recent results suggest that it may function more broadly, perhaps in the formation of silent and active chromatin structures. In this review, our current knowledge of the molecular functions of Ikaros will be discussed.
Collapse
Affiliation(s)
- B S Cobb
- Department of Microbiology, Immunology and Molecular Genetics, Howard Hughes Medical Institute, University of California, Los Angeles 90095-1662, USA
| | | |
Collapse
|
169
|
Abstract
Epigenetic events that contribute to the assembly and maintenance of silent chromatin structures have been defined through genetic, molecular, and cytological studies in a variety of eukaryotic model organisms. However, the precise cascade of events responsible for converting a developmentally regulated gene from an active euchromatic state to a heritably silent heterochromatic state remains to be elucidated. To establish a molecular framework for studying this cascade, we examined the temporal order of events associated with silencing of the murine terminal transferase (Dntt) gene during thymocyte maturation. This article describes our findings in the context of current knowledge of gene silencing mechanisms.
Collapse
Affiliation(s)
- Ruey-Chyi Su
- Howard Hughes Medical Institute, Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, USA
| | | | | |
Collapse
|
170
|
Kakinuma S, Nishimura M, Kubo A, Nagai JY, Amasaki Y, Majima HJ, Sado T, Shimada Y. Frequent retention of heterozygosity for point mutations in p53 and Ikaros in N-ethyl-N-nitrosourea-induced mouse thymic lymphomas. Mutat Res 2005; 572:132-41. [PMID: 15790496 DOI: 10.1016/j.mrfmmm.2005.01.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2004] [Revised: 12/29/2004] [Accepted: 01/07/2005] [Indexed: 10/25/2022]
Abstract
In agreement with Knudson's two-hit theory, recent findings indicate that the inactivation of tumor suppressor genes is not only mediated by the loss of function but also by the dominant-negative or gain-of-function activity. The former generally accompanies loss of a wild-type allele whereas in the latter a wild-type allele is retained. N-Ethyl-N-nitrosourea (ENU), which efficiently induces point mutations, reportedly leads to the development of tumors by activating ras oncogenes. Little is known about how ENU affects tumor suppressor genes and, therefore, we examined ENU-induced mutations of p53 and Ikaros in thymic lymphomas and compared these with mutations of Kras. In addition, loss of heterozygosity was examined for chromosome 11 to which both p53 and Ikaros were mapped. The frequency of point mutations in p53 and Ikaros was 30% (8/27) and 19% (5/27), respectively, comparable to that observed in Kras (33%: 9/27). In total, 14 of the 27 thymic lymphomas examined (52%) harbored mutations in at least one of these genes. One Ikaros mutation was located at the splice donor site, generating a novel splice isoform lacking zinc finger 3, Ik (F3del). Interestingly, 90% (10/11) of the tumors with point mutations retained wild-type alleles of p53 and Ikaros. Sequence analysis revealed that the most common nucleic acid substitutions were T>A (4/8) in p53, T>C (4/5) in Ikaros and G>A/T (8/9) in Kras, suggesting that the spectrum of mutations was gene dependent. These results suggest that point mutations in tumor suppressor genes without loss of the wild-type allele play an important role in ENU-induced lymphomagenesis.
Collapse
Affiliation(s)
- Shizuko Kakinuma
- Low Dose Radiation Effect Research Project, National Institute of Radiological Sciences, Chiba, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
171
|
Clouaire T, Roussigne M, Ecochard V, Mathe C, Amalric F, Girard JP. The THAP domain of THAP1 is a large C2CH module with zinc-dependent sequence-specific DNA-binding activity. Proc Natl Acad Sci U S A 2005; 102:6907-12. [PMID: 15863623 PMCID: PMC1100732 DOI: 10.1073/pnas.0406882102] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We have recently described an evolutionarily conserved protein motif, designated the THAP domain, which defines a previously uncharacterized family of cellular factors (THAP proteins). The THAP domain exhibits similarities to the site-specific DNA-binding domain of Drosophila P element transposase, including a putative metal-coordinating C2CH signature (CX(2-4)CX(35-53)CX(2)H). In this article, we report a comprehensive list of approximately 100 distinct THAP proteins in model animal organisms, including human nuclear proapoptotic factors THAP1 and DAP4/THAP0, transcriptional repressor THAP7, zebrafish orthologue of cell cycle regulator E2F6, and Caenorhabditis elegans chromatin-associated protein HIM-17 and cell-cycle regulators LIN-36 and LIN-15B. In addition, we demonstrate the biochemical function of the THAP domain as a zinc-dependent sequence-specific DNA-binding domain belonging to the zinc-finger superfamily. In vitro binding-site selection allowed us to identify an 11-nucleotide consensus DNA-binding sequence specifically recognized by the THAP domain of human THAP1. Mutations of single nucleotide positions in this sequence abrogated THAP-domain binding. Experiments with the zinc chelator 1,10-o-phenanthroline revealed that the THAP domain is a zinc-dependent DNA-binding domain. Site-directed mutagenesis of single cysteine or histidine residues supported a role for the C2CH motif in zinc coordination and DNA-binding activity. The four other conserved residues (P, W, F, and P), which define the THAP consensus sequence, were also found to be required for DNA binding. Together with previous genetic data obtained in C. elegans, our results suggest that cellular THAP proteins may function as zinc-dependent sequence-specific DNA-binding factors with roles in proliferation, apoptosis, cell cycle, chromosome segregation, chromatin modification, and transcriptional regulation.
Collapse
Affiliation(s)
- Thomas Clouaire
- Laboratoire de Biologie Vasculaire, Equipe Labellisée La Ligue 2003, Institut de Pharmacologie et de Biologie Structurale, Centre National de la Recherche Scientifique Unité Mixte de Recherche 5089, 205 Route de Narbonne, 31077 Toulouse, France
| | | | | | | | | | | |
Collapse
|
172
|
Abstract
Ikaros plays a key role in lymphocyte development and homeostasis by both potentiating and repressing gene expression. Here we show that Ikaros interacts with components of the SUMO pathway and is SUMOylated in vivo. Two SUMOylation sites are identified on Ikaros whose simultaneous modification results in a loss of Ikaros' repression function. Ikaros SUMOylation disrupts its participation in both histone deacetylase (HDAC)-dependent and HDAC-independent repression but does not influence its nuclear localization into pericentromeric heterochromatin. These studies reveal a new dynamic way by which Ikaros-mediated gene repression is controlled by SUMOylation.
Collapse
Affiliation(s)
- Pablo Gómez-del Arco
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | | | | |
Collapse
|
173
|
Ezzat S, Mader R, Yu S, Ning T, Poussier P, Asa SL. Ikaros integrates endocrine and immune system development. J Clin Invest 2005. [DOI: 10.1172/jci200522486] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
174
|
Sabbattini P, Dillon N. The λ5–VpreB1 locus—a model system for studying gene regulation during early B cell development. Semin Immunol 2005; 17:121-7. [PMID: 15737573 DOI: 10.1016/j.smim.2005.01.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The lambda5 and VpreB genes encode the components of the surrogate light-chain, which forms part of the pre-B cell receptor. In mouse, the lambda5 and VpreB1 genes of mouse are closely linked and coordinately regulated by a locus control region (LCR). Activation of the genes in pro-B cells depends on the combined effects of early B cell factor (EBF) and the E2A factors E12 and E47. Silencing of lambda5 expression in mature B cells occurs through the action of Ikaros on the gene promoter where it may compete for binding of EBF and initiate the formation of a silent chromatin structure.
Collapse
Affiliation(s)
- Pierangela Sabbattini
- Gene Regulation and Chromatin Group, MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College, Hammersmith Campus, Du Cane Road, London W12 ONN, UK.
| | | |
Collapse
|
175
|
Kathrein KL, Lorenz R, Innes AM, Griffiths E, Winandy S. Ikaros induces quiescence and T-cell differentiation in a leukemia cell line. Mol Cell Biol 2005; 25:1645-54. [PMID: 15713624 PMCID: PMC549358 DOI: 10.1128/mcb.25.5.1645-1654.2005] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Ikaros is a hematopoietic cell-specific zinc finger DNA binding protein that plays an important role in lymphocyte development. Genetic disruption of Ikaros results in T-cell transformation. Ikaros null mice develop leukemia with 100% penetrance. It has been hypothesized that Ikaros controls gene expression through its association with chromatin remodeling complexes. The development of leukemia in Ikaros null mice suggests that Ikaros has the characteristics of a tumor suppressor gene. In this report, we show that the introduction of Ikaros into an established mouse Ikaros null T leukemia cell line leads to growth arrest at the G0/G1 stage of the cell cycle. This arrest is associated with up-regulation of the cell cycle-dependent kinase inhibitor p27kip1, the induction of expression of T-cell differentiation markers, and a global and specific increase in histone H3 acetylation status. These studies provide strong evidence that Ikaros possesses the properties of a bona fide tumor suppressor gene for the T-cell lineage and offer insight into the mechanism of Ikaros's tumor suppressive activity.
Collapse
Affiliation(s)
- Katie L Kathrein
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, 320 E. Superior St., Morton 6-639, Chicago, IL 60611, USA
| | | | | | | | | |
Collapse
|
176
|
Liu M, Whetstine J, Payton S, Ge Y, Flatley R, Matherly L. Roles of USF, Ikaros and Sp proteins in the transcriptional regulation of the human reduced folate carrier B promoter. Biochem J 2005; 383:249-57. [PMID: 15214842 PMCID: PMC1134065 DOI: 10.1042/bj20040414] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The hRFC (human reduced folate carrier) is ubiquitously but differentially expressed in human tissues and its levels are regulated by up to seven non-coding regions (A1, A2, A, B, C, D and E) and at least four promoters. For the hRFC-B basal promoter, regulation involves binding of Sp (specificity protein) transcription factors to a critical GC-box. By transiently transfecting HT1080 cells with 5'- and 3'-deletion constructs spanning 1057 bp of upstream sequence, a transcriptionally important region was localized to 158 bp flanking the transcriptional start sites. By gel shift and chromatin immunoprecipitation assays, USF (upstream stimulatory factor), Sp1 and Ikaros-related proteins were bound to consensus elements (one E-box, two GC-box and three Ikaros) within this region. The functional importance of these elements was confirmed by transient tranfections of HT1080 cells with hRFC-B reporter constructs in which they were mutated, and by co-transfections of Drosophila Mel-2 cells with wild-type hRFC-B promoter and expression constructs for USF1, USF2a, Sp1 and Ikaros 2 and 8. Both USF1 and Sp1 proteins transactivated the hRFC-B promoter. Sp1 combined with USF1 resulted in a synergistic transactivation. Identical results were obtained with USF2a. Ikaros 2 was a repressor of hRFC-B promoter activity whose effects were partly reversed by the dominant-negative Ikaros 8. In HT1080 cells, transfection with Ikaros 2 decreased endogenous hRFC-B transcripts, whereas USF1 and Sp1 increased transcript levels. Ikaros 2 also decreased reporter gene activity and levels of acetylated chromatin associated with the endogenous promoter. Collectively, these results identify transcriptionally important regions in the hRFC-B promoter that include multiple GC-box, Ikaros and E-box elements. Our results also suggest that co-operative interactions between transcription factors Sp1 and USF are essential for high-level hRFC-B transactivation and imply that these effects are modulated by the family of Ikaros proteins and by histone acetylation.
Collapse
Affiliation(s)
- Mingjun Liu
- *Experimental and Clinical Therapeutics Program, Barbara Ann Karmanos Cancer Institute, 110 E. Warren Ave., Detroit, MI 48201, U.S.A
| | - Johnathan R. Whetstine
- †Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, U.S.A
| | - Scott G. Payton
- †Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, U.S.A
| | - Yubin Ge
- *Experimental and Clinical Therapeutics Program, Barbara Ann Karmanos Cancer Institute, 110 E. Warren Ave., Detroit, MI 48201, U.S.A
| | - Robin M. Flatley
- *Experimental and Clinical Therapeutics Program, Barbara Ann Karmanos Cancer Institute, 110 E. Warren Ave., Detroit, MI 48201, U.S.A
| | - Larry H. Matherly
- *Experimental and Clinical Therapeutics Program, Barbara Ann Karmanos Cancer Institute, 110 E. Warren Ave., Detroit, MI 48201, U.S.A
- †Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, U.S.A
- To whom correspondence should be addressed, at the Barbara Ann Karmanos Cancer Institute, Detroit, MI, U.S.A. (email )
| |
Collapse
|
177
|
Mascarell L, Truffa-Bachi P. T lymphocyte activation initiates the degradation of the CD62L encoding mRNA and increases the transcription of the corresponding gene. Immunol Lett 2005; 94:115-22. [PMID: 15234543 DOI: 10.1016/j.imlet.2004.04.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2004] [Revised: 04/19/2004] [Accepted: 04/19/2004] [Indexed: 11/19/2022]
Abstract
Following T-cell activation, CD62L, a member of the selectin family of cell adhesion molecules, is proteolytically cleaved by a constitutive endoprotease and subsequently re-expressed. To define whether the cleavage regulates CD62L gene transcription, we have analyzed the outcome of T-cell activation on the level of CD62L gene transcription and mRNA stability. Here, we report that CD62L shedding correlates with the concomitant upregulation of CD62L gene transcription and the rapid degradation of the corresponding mRNA. Novel protein synthesis is not required for CD62L gene upregulation, mRNA degradation or protein shedding. The three events are insensitive to cyclosporin A (CSA) and, thus, do not depend on the calcineurin signaling pathway. Activation of T cells in presence of a metallo-protease inhibitor, that protects CD62L shedding, does not prevent CD62L gene upregulation or mRNA degradation. In contrast induction of CD62L shedding by the chemically-induced dissociation of calmodulin from the CD62L cytosolic tail, in absence of T-cell activation, has no consequences on the levels of CD62L gene transcription or mRNA accumulation. These data demonstrate that the transcriptional and post-transcriptional events are exclusively regulated by T-cell activation and not by the CD62L density on cell membrane.
Collapse
Affiliation(s)
- Laurent Mascarell
- Unité de Biologie des Populations Lymphocytaires, Department of Immunology, Institut Pasteur, 25 rue du Dr Roux, Cedex 15, 75724 Paris, France.
| | | |
Collapse
|
178
|
Calzavara-Silva CE, Prosdocimi F, Abath FGC, Pena SDJ, Franco GR. Nucleic acid binding properties of SmZF1, a zinc finger protein of Schistosoma mansoni. Int J Parasitol 2005; 34:1211-9. [PMID: 15491583 DOI: 10.1016/j.ijpara.2004.07.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2004] [Revised: 07/06/2004] [Accepted: 07/12/2004] [Indexed: 11/22/2022]
Abstract
During its life cycle, the flat worm Schistosoma mansoni is exposed to diverse environmental conditions and changes its morphological form. Each change calls for distinct patterns of gene expression. In order to understand the regulation of gene expression, it is necessary to identify regulatory elements in the promoter region of genes, and DNA transacting factors that control transcription. Zinc finger protein domains are responsible for transcription regulation of diverse genes in a wide range of organisms and are also involved in the promotion of protein-protein interactions. A transcript homologous to zinc finger gene sequences was isolated from a S. mansoni adult worm cDNA library and named SmZF1. It codes for a protein of 164 amino acids presenting three C(2)H(2) type zinc finger motifs. The recombinant SmZF1 protein was expressed and used on electrophoretic mobility shift assays to investigate the binding specificity of SmZF1 for DNA and RNA oligonucleotides. Our results demonstrated that SmZF1 binds both ds and ss DNA oligonucleotides, with an apparent preference for the specific D1-3DNA oligonucleotide, and also binds RNA oligonucleotides with lower affinity. Although we found that SmZF1 recognises DNA and RNA oligonucleotides not containing putative target sites, SmZF1 binds preferentially to sequence specific sites. Furthermore, unrelated oligonucleotides are not able to abolish this interaction. In silico studies identified putative SmZF1 binding sites in the complete genome of three model organisms and in partial genome sequences of S. mansoni. Six Drosophila genes presented these binding sites in their promoter region, indicating that they might be controlled by transcription factors containing zinc fingers motifs. Taken together, these results suggest that SmZF1 acts as a putative transcription factor of S. mansoni.
Collapse
Affiliation(s)
- C E Calzavara-Silva
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais-UFMG, Avenida Antônio Carlos 6627, Belo Horizonte, MG 31270-010, Brazil
| | | | | | | | | |
Collapse
|
179
|
Abstract
The development of mature B and T cells in the lymphoid system involves a series of molecular decisions that culminate in the expression of a single antigen receptor on the cell surface, a phenomenon termed allelic exclusion. While feedback inhibition of the recombinase-activation gene proteins evidently plays an important role in the maintenance of allelic exclusion, the initial restriction of rearrangement to only one allele in each cell seems to be achieved through monoallelic epigenetic changes. Epigenetic mechanisms involved in the establishment of allelic exclusion also play a central role in other types of monoallelic expression, including X-chromosome inactivation in female cells, and parental imprinting. In all three systems, the inequality of the two alleles seems to be achieved mainly by differential DNA methylation, asynchronous DNA replication, differential chromatin modifications, unequal nuclear localization, and non-coding RNA. In this review, we discuss the unifying features among these monoallelically expressed systems and the unique characteristics displayed by each of them.
Collapse
Affiliation(s)
- Maya Goldmit
- Department of Experimental Medicine and Cancer Research, The Hebrew University Medical School, Jerusalem, Israel
| | | |
Collapse
|
180
|
Park G, Bruno KS, Staiger CJ, Talbot NJ, Xu JR. Independent genetic mechanisms mediate turgor generation and penetration peg formation during plant infection in the rice blast fungus. Mol Microbiol 2004; 53:1695-707. [PMID: 15341648 DOI: 10.1111/j.1365-2958.2004.04220.x] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The first barrier to infection encountered by foliar pathogens is the host cuticle. To traverse this obstacle, many fungi produce specialized infection cells called appressoria. MST12 is essential for appressorium-mediated penetration and infectious growth by the rice pathogen Magnaporthe grisea. In this study, we have characterized in detail the penetration defects of an mst12 deletion mutant. Appressoria formed by the mst12 mutant developed normal turgor pressure and ultrastructure but failed to form penetration pegs either on cellophane membranes or on plant epidermal cells. Deletion and site-directed mutagenesis analyses indicated that both the homeodomain and zinc finger domains, but not the middle region, of MST12 are essential for appressorial penetration and plant infection. The mst12 mutant appeared to be defective in microtubule reorganization associated with penetration peg formation. In mature appressoria, the mutant lacked vertical microtubules observed in the wild type. The mst12 mutant also failed to elicit localized host defence responses, including papilla formation and autofluorescence. Our data indicate that generation of appressorium turgor pressure and formation of the penetration peg are two independent processes. MST12 may play important roles in regulating penetration peg formation and directing the physical forces exerted by the appressorium turgor in mature appressoria.
Collapse
Affiliation(s)
- Gyungsoon Park
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | | | |
Collapse
|
181
|
Goldmit M, Ji Y, Skok J, Roldan E, Jung S, Cedar H, Bergman Y. Epigenetic ontogeny of the Igk locus during B cell development. Nat Immunol 2004; 6:198-203. [PMID: 15619624 DOI: 10.1038/ni1154] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2004] [Accepted: 11/23/2004] [Indexed: 11/09/2022]
Abstract
To become accessible for rearrangement, the immunoglobulin kappa locus must undergo a series of epigenetic changes. This begins in pro-B cells with the relocation of both immunoglobulin kappa alleles from the periphery to the center of the nucleus. In pre-B cells, one allele became preferentially packaged into an active chromatin structure characterized by histone acetylation and methylation of histone H3 lysine 4, while the other allele was recruited to heterochromatin, where it was associated with heterochromatin protein-gamma and Ikaros. These events in cis made only one allele accessible to trans-acting factors, such as RelB, which mediated DNA demethylation, to facilitate rearrangement. These results suggest that early B lymphoid epigenetic changes generate differential structures that serve as the basis for allelic exclusion.
Collapse
Affiliation(s)
- Maya Goldmit
- Department of Experimental Medicine, Hebrew University Medical School, Jerusalem 91120, Israel
| | | | | | | | | | | | | |
Collapse
|
182
|
Ezzat S, Yu S, Asa SL. The zinc finger Ikaros transcription factor regulates pituitary growth hormone and prolactin gene expression through distinct effects on chromatin accessibility. Mol Endocrinol 2004; 19:1004-11. [PMID: 15618287 DOI: 10.1210/me.2004-0432] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The Ikaros transcription factors perform critical functions in the control of lymphohematopoiesis and immune regulation. Family members contain multiple zinc fingers that mediate DNA binding but have also been implicated as part of a complex chromatin-remodeling network. We show here that Ikaros is expressed in pituitary mammosomatotrophs where it regulates the GH and prolactin (PRL) genes. Ikaros was detected by Northern and Western blotting in GH4 pituitary mammosomatotroph cells. Wild-type Ikaros (Ik1) inhibits GH mRNA and protein expression but stimulates PRL mRNA and protein levels. Ikaros does not bind directly to the proximal GH promoter but abrogates the effect of the histone deacetylation inhibitor trichostatin A on this region. Ikaros selectively deacetylates histone 3 residues on the proximal transfected or endogenous GH promoter and limits access of the Pit1 activator. In contrast, Ikaros acetylates histone 3 on the proximal PRL promoter and facilitates Pit1 binding to this region in the same cells. These data provide evidence for Ikaros-mediated histone acetylation and chromatin remodeling in the selective regulation of pituitary GH and PRL hormone gene expression.
Collapse
Affiliation(s)
- Shereen Ezzat
- Department of Medicine, Mount Sinai Hospital and University of Toronto, Ontario, Canada
| | | | | |
Collapse
|
183
|
Beverly LJ, Capobianco AJ. Targeting promiscuous signaling pathways in cancer: another Notch in the bedpost. Trends Mol Med 2004; 10:591-8. [PMID: 15567329 DOI: 10.1016/j.molmed.2004.10.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The chromosomal translocation t(7;9)(q34;q34.3) in human T-cell acute lymphoblastic leukemia results in the constitutive activation of Notch (Nic). Reported mutations in Ikaros cause the loss of DNA-binding, which in turn leads to a loss of repressive activity. Recently, these two mutations have been shown to cooperate in leukemogenesis. The current model proposes that the combination of the loss of Ikaros activity and the gain of constitutive Notch activity disrupts the normal balance between repression and activation at common regulatory elements. Furthermore, the model is extended to suggest that multiple transcription factors coordinate transcriptional repression and activation through these common regulatory elements. In leukemogenesis, the breakdown of this coordinate regulation underlies one of the pathophysiological mechanisms. Finally, using Notch as a template, potential points of interdiction by designer therapeutics are discussed.
Collapse
Affiliation(s)
- Levi J Beverly
- The Wistar Institute, Molecular and Cellular Oncogenesis Program, 3601 Spruce Street, Philadelphia, PA 19104, USA
| | | |
Collapse
|
184
|
Kaiser FJ, Brega P, Raff ML, Byers PH, Gallati S, Kay TT, de Almeida S, Horsthemke B, Lüdecke HJ. Novel missense mutations in the TRPS1 transcription factor define the nuclear localization signal. Eur J Hum Genet 2004; 12:121-6. [PMID: 14560312 DOI: 10.1038/sj.ejhg.5201094] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Deletion or mutation of the TRPS1 gene leads to the tricho-rhino-phalangeal syndromes (TRPS). The gene encodes a zinc-finger transcription factor, which contains two regions with basic amino acids LRRRRG (NLS1) and RRRTRKR (NLS2) that resemble potential nuclear localization signals (NLSs). Here, we describe the identification of novel TRPS1 mutations in patients with TRPS type I (TRPS I) and provide, by reconstructing the mutant TRPS1 proteins and subcellular localization studies, evidence that only the RRRTRKR motif functions as a NLS. Two different mutations affect the last arginine residue of this motif. The exchanges of arginine to histidine, found in two unrelated patients with TRPS I, as well as the exchange of arginine to cysteine, found in another unrelated patient, prevent the translocation of the mutant TRPS1 to the nucleus when ectopically expressed in COS 7 cells. In contrast, a mutant that lacks the conserved GATA-type zinc-finger domain and most of the LRRRRG motif is able to enter the nucleus.
Collapse
Affiliation(s)
- Frank J Kaiser
- Institut für Humangenetik, Universitätsklinikum, Hufelandstr 55, Essen D-45122, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
185
|
Abstract
The generation of B-lymphocytes from hematopoietic stem cells is controlled by multiple transcription factors regulating distinct developmental aspects. Ikaros and PU.1 act in parallel pathways to control the development of lymphoid progenitors in part by regulating the expression of essential signaling receptors (Flt3, c-Kit, and IL-7R alpha). The generation of the earliest B cell progenitors depends on E2A and EBF, which coordinately activate the B cell gene expression program and immunoglobulin heavy-chain gene rearrangements at the onset of B-lymphopoiesis. Pax5 restricts the developmental options of lymphoid progenitors to the B cell lineage by repressing the transcription of lineage-inappropriate genes and simultaneously activating the expression of B-lymphoid signaling molecules. LEF1 and Sox4 contribute to the survival and proliferation of pro-B cells in response to extracellular signals. Finally, IRF4 and IRF8 together control the termination of pre-B cell receptor signaling and thus promote differentiation to small pre-B cells undergoing light-chain gene rearrangements.
Collapse
Affiliation(s)
- Meinrad Busslinger
- Research Institute of Molecular Pathology, Vienna Biocenter, A-1030 Vienna, Austria.
| |
Collapse
|
186
|
Ruiz A, Jiang J, Kempski H, Brady HJM. Overexpression of the Ikaros 6 isoform is restricted to t(4;11) acute lymphoblastic leukaemia in children and infants and has a role in B-cell survival. Br J Haematol 2004; 125:31-7. [PMID: 15015965 DOI: 10.1111/j.1365-2141.2004.04854.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The Ikaros transcription factor has been shown to play an important role in the differentiation of both myeloid and lymphoid lineages. Mice heterozygous for a dominant negative (DN) ikaros isoform develop T-cell leukaemia and lymphoma with 100% penetrance. Overexpression of DN Ikaros isoforms has been reported in some forms of leukaemia, such as childhood acute myelomonocytic and monocytic leukaemias, adult B-cell acute lymphoblastic leukaemias (B ALL) and in childhood and adult pre-B ALL. In this study, the expression of Ikaros isoforms in 49 infant and childhood leukaemia patients was analysed by reverse transcription polymerase chain reaction and Western blot analysis. We found overexpression of the DN Ikaros 6 (Ik6) isoform in a subset of leukaemia patients harbouring t(4;11) translocations. To further study the consequences of Ik6 overexpression in B ALL, we inducibly expressed Ik6 in BaF3 cells and found that Ik6 overexpression delayed cell death after interleukin-3 withdrawal, suggesting that overexpression of Ik6 found in t(4;11) B cells could contribute to leukaemogenesis by preventing the apoptosis of cells in an environment with reduced survival factors.
Collapse
Affiliation(s)
- Anna Ruiz
- Molecular Haematology and Cancer Biology Unit, Institute of Child Health, University College London, London, UK
| | | | | | | |
Collapse
|
187
|
Gómez-del Arco P, Maki K, Georgopoulos K. Phosphorylation controls Ikaros's ability to negatively regulate the G(1)-S transition. Mol Cell Biol 2004; 24:2797-807. [PMID: 15024069 PMCID: PMC371126 DOI: 10.1128/mcb.24.7.2797-2807.2004] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ikaros is a key regulator of lymphocyte proliferative responses. Inactivating mutations in Ikaros cause antigen-mediated lymphocyte hyperproliferation and the rapid development of leukemia and lymphoma. Here we show that Ikaros's ability to negatively regulate the G(1)-S transition can be modulated by phosphorylation of a serine/threonine-rich conserved region (p1) in exon 8. Ikaros phosphorylation in p1 is induced during the G(1)-S transition. Mutations that prevent phosphorylation in p1 increase Ikaros's ability to impede cell cycle progression and its affinity for DNA. Casein kinase II, whose increased activity in lymphocytes leads to transformation, is a key player in Ikaros p1 phosphorylation. We thus propose that Ikaros's activity as a regulator of the G(1)-S transition is controlled by phosphorylation in response to signaling events that down-modulate its DNA binding activity.
Collapse
Affiliation(s)
- Pablo Gómez-del Arco
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | | | | |
Collapse
|
188
|
Cupit PM, Hansen JD, McCarty AS, White G, Chioda M, Spada F, Smale ST, Cunningham C. Ikaros family members from the agnathan Myxine glutinosa and the urochordate Oikopleura dioica: emergence of an essential transcription factor for adaptive immunity. THE JOURNAL OF IMMUNOLOGY 2004; 171:6006-13. [PMID: 14634112 DOI: 10.4049/jimmunol.171.11.6006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The Ikaros multigene family encodes a number of zinc finger transcription factors that play key roles in vertebrate hemopoietic stem cell differentiation and the generation of B, T, and NK cell lineages. In this study, we describe the identification and characterization of an Ikaros family-like (IFL) protein from the agnathan hagfish Myxine glutinosa and the marine urochordate Oikopleura dioica, both of which lie on the evolutionary boundary between the vertebrates and invertebrates. The IFL molecules identified in these animals displayed high conservation in the zinc finger motifs critical for DNA binding and dimerization in comparison with those of jawed vertebrates. Expression of the IFL gene in hagfish was strongest in blood, intestine, and gills. In O. dioica, transcription from the IFL gene was initiated at or around the time of hatching and maintained throughout the life span of the animal. In situ hybridization localized O. dioica IFL expression to the Fol cells, which are responsible for generating the food filter of the house. Biochemical analysis of the DNA binding and dimerization domains from M. glutinosa and O. dioici IFLs showed that M. glutinosa behaves as a true Ikaros family member. Taken together, these results indicate that the properties associated with the Ikaros family preceded the emergence of the jawed vertebrates and thus adaptive immunity.
Collapse
Affiliation(s)
- Pauline M Cupit
- Sars International Centre for Marine Molecular Biology, High Technology Centre, Bergen, Norway
| | | | | | | | | | | | | | | |
Collapse
|
189
|
Yasumura K, Sugimura I, Igarashi K, Kakinuma S, Nishimura M, Doi M, Shimada Y. Altered expression of Tfg and Dap3 in Ikaros-defective T-cell lymphomas induced by X-irradiation in B6C3F1 mice. Br J Haematol 2004; 124:179-85. [PMID: 14687027 DOI: 10.1046/j.1365-2141.2003.04768.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Ikaros is a Kruppel-type zinc finger protein that is essential for normal lymphocyte development and differentiation. Recently, it has been demonstrated that Ikaros is frequently inactivated in both human and mouse leukaemias/lymphomas. Although this inactivation is thought to be involved in leukaemogenesis, little is known about the molecular mechanisms that lead to neoplastic transformation. To identify the genes that may be controlled by Ikaros, we performed differential display analysis of RNAs from mouse 3T3-L1 cells that had been transfected with the Ikaros gene. Two cDNAs, the Trk-fused gene (Tfg) and death-associated protein 3 gene (Dap3) were upregulated in Ikaros-transfected cells. Expression of Tfg and Dap3 was consistently downregulated in radiation-induced T-cell lymphomas that exhibited defective Ikaros expression. These results suggest that Tfg and Dap3 function downstream of Ikaros and may be involved in radiation-induced lymphomagenesis.
Collapse
Affiliation(s)
- Kyoko Yasumura
- Graduate School of Pharmaceutical Sciences, Chiba University, Inage-ku, Chiba, Japan
| | | | | | | | | | | | | |
Collapse
|
190
|
Tschan MP, Fischer KM, Fung VS, Pirnia F, Borner MM, Fey MF, Tobler A, Torbett BE. Alternative splicing of the human cyclin D-binding Myb-like protein (hDMP1) yields a truncated protein isoform that alters macrophage differentiation patterns. J Biol Chem 2003; 278:42750-60. [PMID: 12917399 DOI: 10.1074/jbc.m307067200] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We have cloned two novel, alternatively spliced messages of human cyclin D-binding Myb-like protein (hDMP1). The known, full-length protein has been named hDMP1alpha and the new isoforms, hDMP1beta and hDMP1gamma. The hDMP1alpha, -beta, and -gamma splice variants have unique expression patterns in normal hematopoietic cells; hDMP1beta mRNA transcripts are strongly expressed in quiescent CD34+ cells and freshly isolated peripheral blood leukocytes, as compared with hDMP1alpha. In contrast, activated T-cells and developing myeloid cells, macrophages, and granulocytes express low levels of hDMP1beta transcripts, and hDMP1gamma is ubiquitously and weakly expressed. Mouse Dmp1 has been shown to activate CD13/aminopeptidase N (APN) and p19ARF gene expression via binding to canonical DNA recognition sites in the respective promoters. Assessment of CD13/APN promoter responsiveness demonstrated that hDMP1alpha but not hDMP1beta and -gamma, is a transcriptional activator. Furthermore, hDMP1beta was found to inhibit the CD13/APN promoter transactivation ability of hDMP1alpha. Stable, ectopic expression of hDMP1beta and, to a lesser extent hDMP1gamma, reduced endogenous cell surface levels of CD13/APN in U937 cells. Moreover, stable, ectopic expression of hDMP1beta altered phorbol 12-myristate 13-acetate-induced terminal differentiation of U937 cells to macrophages and resulted in maintenance of proliferation. These results demonstrate that hDMP1beta antagonizes hDMP1alpha activity and suggest that cellular functions of hDMP1 may be regulated by cellular hDMP1 isoform levels.
Collapse
Affiliation(s)
- Mario P Tschan
- Scripps Research Institute, Department of Molecular and Experimental Medicine, La Jolla, California 92037, USA
| | | | | | | | | | | | | | | |
Collapse
|
191
|
Westman BJ, Perdomo J, Sunde M, Crossley M, Mackay JP. The C-terminal domain of Eos forms a high order complex in solution. J Biol Chem 2003; 278:42419-26. [PMID: 12917396 DOI: 10.1074/jbc.m306817200] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ikaros family transcription factors play important roles in the control of hematopoiesis. Family members are predicted to contain up to six classic zinc fingers that are arranged into N- and C-terminal domains. The N-terminal domain is responsible for site-specific DNA binding, whereas the C-terminal domain primarily mediates the homo- and hetero-oligomerization between family members. Although the mechanisms of action of these proteins are not completely understood, the zinc finger domains are known to play a central role. In the current study, we have sought to understand the physical and functional properties of these domains, in particular the C-terminal domain. We show that the N-terminal domain from Eos, and not its C-terminal region, is required to recognize GGGA consensus sequences. Surprisingly, in contrast to the behavior exhibited by Ikaros, the C-terminal domain of Eos inhibits the DNA-binding activity of the full-length protein. In addition, we have used a range of biophysical techniques to demonstrate that the C-terminal domain of Eos mediates the formation of complexes that consist of nine or ten molecules. These results constitute the first direct demonstration that Ikaros family proteins can form higher order complexes in solution, and we discuss this unexpected result in the context of what is currently known about the family members and their possible mechanism of action.
Collapse
Affiliation(s)
- Belinda J Westman
- School of Molecular and Microbial Biosciences, University of Sydney, New South Wales 2006, Australia
| | | | | | | | | |
Collapse
|
192
|
Ezzat S, Yu S, Asa SL. Ikaros isoforms in human pituitary tumors: distinct localization, histone acetylation, and activation of the 5' fibroblast growth factor receptor-4 promoter. THE AMERICAN JOURNAL OF PATHOLOGY 2003; 163:1177-84. [PMID: 12937159 PMCID: PMC1868268 DOI: 10.1016/s0002-9440(10)63477-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Targeted expression of a human pituitary tumor derived-fibroblast growth factor receptor-4 (FGFR4) recapitulates pituitary tumorigenesis. We have shown that FGFR4 is a target for Ikaros, a zinc finger-containing transcription factor that localizes to heterochromatin regions and participates in higher order chromatin complexes and control of gene expression. We report here the expression of Ikaros and functional differences between its alternatively spliced variants in human pituitary tumors. Ik1 expression was detected in human pituitary tumors and we also identified a truncated isoform consistent with the non-DNA-binding Ik6 isoform in a subset of adenomas by reverse transcriptase-polymerase chain reaction, sequencing, and Western immunoblotting. Transfection of Ik6 in GH4 pituitary cells resulted in predominantly cytoplasmic expression as compared to Ik1, which resulted in exclusively nuclear expression as determined by immunofluorescence and immunoblotting of fractionated protein. Immunohistochemistry of primary human pituitary adenomas localized Ikaros expression to the nuclear compartment but also in the cytoplasm, the latter consistent with Ik6. Expression of Ikaros and truncated non-DNA-binding isoforms was also suggested by electromobility shift assays using nuclear proteins from primary human pituitary adenomas. Ik6 resulted in reversal of the effects of Ik1 on wild-type 5' FGFR4 promoter activity, histone acetylation, and regulation of the endogenous gene. We conclude that dominant-negative Ik6 isoforms with their distinct localization and effects on Ik1 action may contribute to the altered expression of FGFR4 and possibly other target genes in human pituitary tumors.
Collapse
Affiliation(s)
- Shereen Ezzat
- Department of Medicine, Mount Sinai Hospital, University Health Network, University of Toronto, 610 University Avenue, 4-302, Toronto, Ontario, Canada M5G 2M9.
| | - Shunjiang Yu
- From the Department of Medicine,*Mount Sinai Hospital, and the Department of Pathology,†University Health Network, University of Toronto, The Freeman Centre for Endocrine Oncology, and The Ontario Cancer Institute, Toronto, Ontario, Canada
| | - Sylvia L. Asa
- From the Department of Medicine,*Mount Sinai Hospital, and the Department of Pathology,†University Health Network, University of Toronto, The Freeman Centre for Endocrine Oncology, and The Ontario Cancer Institute, Toronto, Ontario, Canada
| |
Collapse
|
193
|
Han W, Pentecost BT, Spivack SD. Functional evaluation of novel single nucleotide polymorphisms and haplotypes in the promoter regions of CYP1B1 and CYP1A1 genes. Mol Carcinog 2003; 37:158-69. [PMID: 12884367 DOI: 10.1002/mc.10132] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Interindividual variation in the expression of the carcinogen- and estrogen-metabolizing enzymes cytochrome P4501B1 and 1A1 (CYP1B1 and CYP1A1) has been detected in human lung. To search for polymorphisms with functional consequences for CYP1B1 and CYP1A1 gene expression, we examined 1.5 kb of the promoter region of each gene. Genomic DNA from 21 Caucasian individuals was amplified by polymerase chain reaction (PCR) for direct cycle sequencing. Eight single nucleotide polymorphisms (SNPs) for CYP1B1 and 13 SNPs for CYP1A1 were found. The majority of polymorphisms occurred as multiSNP combinations for individual subjects. The wild-type sequences were cloned into a luciferase reporter construct. The most frequent polymorphisms were then recreated by iterative site-directed mutagenesis, replicating single polymorphisms and multiSNP combinations. These wild-type and variant constructs were functionally evaluated in transient transfection experiments employing exposures to either the index polycyclic aromatic hydrocarbon (PAH) inducer benzo[a]pyrene (B[a]P), a composite mixture of cigarette smoke extract (CSE), or the repressor chemopreventive agent trans-3,4,5-trihydroxystilbene (reseveratrol). Results indicated that all wild-type and variant constructs responded in qualitatively concordant fashion to the inducers and to the repressor. The CYP1B1 haplotypes and the majority of CYP1A1 haplotypes were shown to have no functional consequence, as compared to those of the wild-type promoter sequences. Two constructs of composite polymorphisms of CYP1A1 appeared to result in a statistically significant increase in basal promoter activity (1.38- and 1.50-fold, respectively), but the degree of functional impact was judged unlikely to be biologically important in vivo. We conclude that the observed promoter region polymorphisms in these genes are common, but are of unclear functional consequence.
Collapse
Affiliation(s)
- Weiguo Han
- Laboratory of Human Toxicology and Molecular Epidemiology, Wadsworth Center, NYS Department of Health, Albany, New York 12201-0509, USA
| | | | | |
Collapse
|
194
|
Papathanasiou P, Perkins AC, Cobb BS, Ferrini R, Sridharan R, Hoyne GF, Nelms KA, Smale ST, Goodnow CC. Widespread failure of hematolymphoid differentiation caused by a recessive niche-filling allele of the Ikaros transcription factor. Immunity 2003; 19:131-44. [PMID: 12871645 DOI: 10.1016/s1074-7613(03)00168-7] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
A central issue in understanding the hematolymphoid system is the generation of appropriate mutant alleles in mice to reveal the function of regulatory genes. Here we describe a mouse strain, Plastic, with a point mutation in a zinc finger of Ikaros that disrupts DNA binding but preserves efficient assembly of the full-length protein into higher order complexes. Ikaros(Plastic) homozygosity is embryonically lethal with severe defects in terminal erythrocyte and granulocyte differentiation, excessive macrophage formation, and blocked lymphopoiesis, while heterozygotes display a partial block in lymphocyte differentiation. The contrast with more circumscribed effects of Ikaros alleles that ablate the full-length protein highlights the importance in mammals of generating recessive niche-filling alleles that inactivate function without creating a void in multimolecular assemblies.
Collapse
Affiliation(s)
- Peter Papathanasiou
- Australian Cancer Research Foundation Genetics Laboratory and Medical Genome Centre, John Curtin School of Medical Research, Australian National University, ACT 2601, Canberra, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
195
|
Beverly LJ, Capobianco AJ. Perturbation of Ikaros isoform selection by MLV integration is a cooperative event in Notch(IC)-induced T cell leukemogenesis. Cancer Cell 2003; 3:551-64. [PMID: 12842084 DOI: 10.1016/s1535-6108(03)00137-5] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The chromosomal translocation t(7;9)(q34;q34.3) in human T cell acute lymphoblastic leukemia (T-ALL) results in the aberrant expression of the intracellular domain of Notch (N(ic)). Consistent with the current multistep model for tumorigenesis, mice that express N(ic) in T cell progenitors develop a T-ALL-like disease with a lengthened latency. Proviral insertional mutagenesis greatly accelerated the onset of leukemia in N(ic) transgenic mice. We demonstrate that the Ikaros (Ik) locus is a common target of proviral integration in N(ic) transgenic mice, which results in the loss of Ik DNA binding activity through altered isoform expression. We propose that cooperative leukemogenesis occurs in cells that have constitutive N(ic) and altered Ik isoform expression because genes normally repressed by Ik become activated by N(ic)/CSL.
Collapse
MESH Headings
- Acute Disease
- Animals
- Cell Transformation, Neoplastic
- DNA Primers/chemistry
- DNA, Viral/genetics
- DNA-Binding Proteins
- Gene Expression Regulation, Neoplastic
- Humans
- Ikaros Transcription Factor
- Leukemia Virus, Murine/genetics
- Leukemia-Lymphoma, Adult T-Cell/genetics
- Leukemia-Lymphoma, Adult T-Cell/metabolism
- Leukemia-Lymphoma, Adult T-Cell/virology
- Membrane Glycoproteins/metabolism
- Membrane Proteins/chemistry
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Mice
- Mice, Transgenic
- Protein Isoforms
- RNA, Neoplasm/genetics
- Receptors, Cell Surface/chemistry
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Receptors, Notch
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Tumor Cells, Cultured/transplantation
- Virus Integration
- Zinc Fingers
Collapse
Affiliation(s)
- Levi J Beverly
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267, USA
| | | |
Collapse
|
196
|
Sezaki N, Ishimaru F, Takata M, Tabayashi T, Nakase K, Kozuka T, Fujii K, Nakayama H, Teshima T, Harada M, Tanimoto M. Over-expression of the dominant-negative isoform of Ikaros confers resistance to dexamethasone-induced and anti-IgM-induced apoptosis. Br J Haematol 2003; 121:165-9. [PMID: 12670348 DOI: 10.1046/j.1365-2141.2003.04263.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In previous studies, we demonstrated an over-expression of the dominant-negative isoform of the transcription factor Ikaros, Ik-6, in patients with B-cell malignancies, including blast crisis of chronic myelogenous leukaemia and acute lymphoblastic leukaemia. To investigate the consequence of over-expression of Ik-6 in B cells, we constructed Ik-6 transfectants of the FDH-1 and Ramos cell lines. FDH-1, which was established from a patient with early pre-B acute lymphoblastic leukaemia, undergoes apoptosis with dexamethasone treatment, whereas Ramos undergoes apoptosis following anti-IgM antibody treatment. Compared with the wild type, the over-expression of Ik-6 rendered the FDH-1 and Ramos transfectants resistant to dexamethasone-induced and anti-IgM-induced apoptosis respectively. An immunoblotting study demonstrated bcl-2 upregulation in anti-IgM-induced Ramos Ik-6 transfectants, but not in FDH-1 Ik-6 transfectants. Further investigations of the mechanism of leukaemogenesis associated with the over-expression of Ik-6 are warranted.
Collapse
Affiliation(s)
- Nobuo Sezaki
- Department of Medicine, University of Okayama, 2-5-1 Shikata-cho, Okayama 700-8558, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
197
|
Ström L, Lundgren M, Severinson E. Binding of Ikaros to germline Ig heavy chain gamma1 and epsilon promoters. Mol Immunol 2003; 39:771-82. [PMID: 12617992 DOI: 10.1016/s0161-5890(03)00004-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Immunoglobulin (Ig) class switching occurs in activated B cells and results in production of antigen-specific IgA, IgE or IgG. It involves a DNA recombination event and is partly regulated by germline (GL) immunoglobulin heavy chain promoters. Ikaros is an abundant nuclear protein expressed in hematopoietic cells. Many different functions have been ascribed to Ikaros, such as transcriptional activation or repression, cell cycle control and tumor suppression. A typical feature of Ikaros is its expression in large clusters in the nucleus of activated lymphocytes. We give evidence that Ikaros can bind to several sites in the germline gamma1 and epsilon immunoglobulin heavy chain promoters, in a cooperative manner. Using a promoter reporter assay, we found evidence that Ikaros can suppress germline gamma1 and epsilon promoter activity in a B cell line. When a mutated non-DNA-binding form of Ikaros was introduced into primary activated B cells by retrovirus transduction, the endogenous Ikaros clusters were disrupted. In spite of this, there was no effect on transcription or Ig class switching. The data are discussed in relation to the different hypotheses for the function of Ikaros.
Collapse
Affiliation(s)
- Lena Ström
- Department of Cell and Molecular Biology, Karolinska Institute, Box 285, SE-171 77 Stockholm, Sweden
| | | | | |
Collapse
|
198
|
Abstract
The C2H2 zinc finger is the most prevalent protein motif in the mammalian proteome. Two C2H2 fingers in Ikaros are dedicated to homotypic interactions between family members. We show here that these fingers comprise a bona fide dimerization domain. Dimerization is highly selective, however, as homologous domains from the TRPS-1 and Drosophila Hunchback proteins support homodimerization, but not heterodimerization with Ikaros. Ikaros-Hunchback selectivity is determined by 11 residues concentrated within the alpha-helical regions typically involved in base recognition. Preferential homodimerization of one chimeric protein predicts a parallel dimer interface and establishes the feasibility of creating novel dimer specificities. These results demonstrate that the C2H2 motif provides a versatile platform for both sequence-specific protein-nucleic acid interactions and highly specific dimerization.
Collapse
Affiliation(s)
- Aaron S McCarty
- Howard Hughes Medical Institute, Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | | | | | | |
Collapse
|
199
|
Sun P, Loh HH. Transcriptional regulation of mouse delta-opioid receptor gene. Ikaros-2 and upstream stimulatory factor synergize in trans-activating mouse delta-opioid receptor gene in T cells. J Biol Chem 2003; 278:2304-8. [PMID: 12431989 DOI: 10.1074/jbc.m208162200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Considerable evidence indicates that transcription of the delta-opioid receptor (dor) gene is correlated with both the expression of DOR on T cells and the capacity of DOR agonists to modulate the immunological functions of the T cell. We previously reported that increased Ikaros (Ik) binding activity over an Ik-binding site at -378 to -374 (with the translation start site designated as +1) in the mouse dor promoter was required for the enhanced transcription of dor gene in phytohemagglutinin-activated EL-4 cells, a mouse T cell line that constitutively expresses DOR. In the present study, we have analyzed further the mouse dor promoter in EL-4 cells and have demonstrated that Ik-2 homodimers bind to the -378/-374 Ik-binding site and exerts a position-dependent trans-activation effect on the dor promoter. Moreover, an E box (-185 to -180) that binds upstream stimulatory factor is essential for the dor promoter activity in both resting and phytohemagglutinin-activated T cells. Furthermore, we have demonstrated that Ik-2 and upstream stimulatory factor synergize in trans-activating the dor promoter via the putative Ik-binding site and the E box, respectively.
Collapse
Affiliation(s)
- Ping Sun
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis 55455, USA.
| | | |
Collapse
|
200
|
Perdomo J, Crossley M. The Ikaros family protein Eos associates with C-terminal-binding protein corepressors. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:5885-92. [PMID: 12444977 DOI: 10.1046/j.1432-1033.2002.03313.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Eos is a zinc finger transcription factor of the Ikaros family. It binds typical GGGAA Ikaros recognition sites in DNA and functions as a transcriptional repressor. Here we show that Eos associates with the corepressor C-terminal-binding protein (CtBP). CtBP has previously been shown to bind Pro-X-Asp-Leu-Ser (PXDLS) motifs in several DNA-binding proteins. We note that Eos contains a related motif PEDLA, and we demonstrate that CtBP can bind this site weakly but that it also contacts additional regions of Eos. Consistent with this finding, mutation of the PEDLA motif does not negate CtBP binding or CtBP-mediated repression by Eos. CtBP has previously been shown to bind to a PXDLS-type motif in Ikaros, and we show that another Ikaros-related protein TRPS1 also contains a PXDLS CtBP contact motif within its repression domain. We conclude that several Ikaros family proteins utilize CtBP corepressors to inhibit gene expression.
Collapse
Affiliation(s)
- José Perdomo
- Department of Biochemistry, G08, University of Sydney, NSW, Australia
| | | |
Collapse
|