151
|
Zhao Y, Tang Y, Liu S, Jia T, Zhou D, Xu H. Foodborne TiO 2 Nanoparticles Induced More Severe Hepatotoxicity in Fructose-Induced Metabolic Syndrome Mice via Exacerbating Oxidative Stress-Mediated Intestinal Barrier Damage. Foods 2021; 10:foods10050986. [PMID: 33946424 PMCID: PMC8147135 DOI: 10.3390/foods10050986] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 12/25/2022] Open
Abstract
The hazard of titanium dioxide nanoparticles (TiO2 NPs) in diseased population should be given focus due to the huge number of these NPs in foods and medicine. This study aimed to evaluate the stronger biological adverse effect of oral exposure to TiO2 NPs in a fructose-induced metabolic syndrome mouse model. Compared to the normal mice, low-dose (2 mg/kg) TiO2 NPs did not cause severe hepatotoxicity. However, high-dose (20 mg/kg) TiO2 NPs induced aggravated hepatic inflammation, fibrosis, and apoptosis, with substantial alteration of related biochemical parameters in the mouse model. Moreover, significantly increased Ti and lipopolysaccharide burden were observed in metabolic syndrome murine liver and serum, which possibly worsened the portend intestinal leakage. The expression of tight junction-related protein showed that TiO2 NPs induced further increase in serious intestinal permeability. The intestinal inflammatory and oxidative stress response in the model were also assessed. Results showed that TiO2 NPs caused more severe intestinal inflammatory injury by intensifying the oxidative stress in metabolic syndrome mice and then induced further liver injury. This work provides information on the insights into the toxic effect of TiO2 NPs in sub-healthy population.
Collapse
Affiliation(s)
- Yu Zhao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; (Y.Z.); (Y.T.); (S.L.); (T.J.)
| | - Yizhou Tang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; (Y.Z.); (Y.T.); (S.L.); (T.J.)
| | - Shanji Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; (Y.Z.); (Y.T.); (S.L.); (T.J.)
| | - Tiantian Jia
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; (Y.Z.); (Y.T.); (S.L.); (T.J.)
| | - Donggen Zhou
- Ningbo International Travel HealthCare Center, Ningbo 315012, China
- Correspondence: (D.Z.); (H.X.)
| | - Hengyi Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; (Y.Z.); (Y.T.); (S.L.); (T.J.)
- Correspondence: (D.Z.); (H.X.)
| |
Collapse
|
152
|
Baranowska-Wójcik E, Gustaw K, Szwajgier D, Oleszczuk P, Pawlikowska-Pawlęga B, Pawelec J, Kapral-Piotrowska J. Four Types of TiO 2 Reduced the Growth of Selected Lactic Acid Bacteria Strains. Foods 2021; 10:foods10050939. [PMID: 33923019 PMCID: PMC8146636 DOI: 10.3390/foods10050939] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/14/2021] [Accepted: 04/22/2021] [Indexed: 12/16/2022] Open
Abstract
Food-grade titanium dioxide (TiO2) containing a nanoparticle fraction (TiO2 NPs -nanoparticles) is widely used as a food additive (E171 in the EU). In recent years, it has increasingly been raising controversies as to the presence or absence of its harmful effects on the gastrointestinal microbiota. The complexity and variability of microbiota species present in the human gastrointestinal tract impede the assessment of the impact of food additives on this ecosystem. As unicellular organisms, bacteria are a very convenient research model for investigation of the toxicity of nanoparticles. We examined the effect of TiO2 (three types of food-grade E171 and one TiO2 NPs, 21 nm) on the growth of 17 strains of lactic acid bacteria colonizing the human digestive tract. Each bacterial strain was treated with TiO2 at four concentrations (60, 150, 300, and 600 mg/L TiO2). The differences in the growth of the individual strains were caused by the type and concentration of TiO2. It was shown that the growth of a majority of the analyzed strains was decreased by the application of E171 and TiO2 NPs already at the concentration of 150 and 300 mg/L. At the highest dose (600 mg/L) of the nanoparticles, the reactions of the bacteria to the different TiO2 types used in the experiment varied.
Collapse
Affiliation(s)
- Ewa Baranowska-Wójcik
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences, Skromna Street 8, 20-704 Lublin, Poland;
- Correspondence: (E.B.-W.); (D.S.); Tel.: +48-81-462-33-94 (E.B.-W.); Tel.: +48-81-462-33-68 (D.S.)
| | - Klaudia Gustaw
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences, Skromna Street 8, 20-704 Lublin, Poland;
| | - Dominik Szwajgier
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences, Skromna Street 8, 20-704 Lublin, Poland;
- Correspondence: (E.B.-W.); (D.S.); Tel.: +48-81-462-33-94 (E.B.-W.); Tel.: +48-81-462-33-68 (D.S.)
| | - Patryk Oleszczuk
- Department of Radiochemistry and Environmental Chemistry, Faculty of Chemistry, Maria Curie-Skłodowska University, 20-031 Lublin, Poland;
| | - Bożena Pawlikowska-Pawlęga
- Department of Functional Anatomy and Cytobiology, Faculty of Biology and Biotechnology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland; (B.P.-P.); (J.K.-P.)
| | - Jarosław Pawelec
- Institute Microscopic Laboratory, Faculty of Biology and Biotechnology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland;
| | - Justyna Kapral-Piotrowska
- Department of Functional Anatomy and Cytobiology, Faculty of Biology and Biotechnology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland; (B.P.-P.); (J.K.-P.)
| |
Collapse
|
153
|
Abdelhameed RE, Abu-Elsaad NI, Abdel Latef AAH, Metwally RA. Tracking of Zinc Ferrite Nanoparticle Effects on Pea ( Pisum sativum L.) Plant Growth, Pigments, Mineral Content and Arbuscular Mycorrhizal Colonization. PLANTS 2021; 10:plants10030583. [PMID: 33808615 PMCID: PMC8003511 DOI: 10.3390/plants10030583] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 01/09/2023]
Abstract
Important gaps in knowledge remain regarding the potential of nanoparticles (NPs) for plants, particularly the existence of helpful microorganisms, for instance, arbuscular mycorrhizal (AM) fungi present in the soil. Hence, more profound studies are required to distinguish the impact of NPs on plant growth inoculated with AM fungi and their role in NP uptake to develop smart nanotechnology implementations in crop improvement. Zinc ferrite (ZnFe2O4) NPs are prepared via the citrate technique and defined by X-ray diffraction (XRD) as well as transmission electron microscopy for several physical properties. The analysis of the XRD pattern confirmed the creation of a nanocrystalline structure with a crystallite size equal to 25.4 nm. The effects of ZnFe2O4 NP on AM fungi, growth and pigment content as well as nutrient uptake of pea (Pisum sativum) plants were assessed. ZnFe2O4 NP application caused a slight decrease in root colonization. However, its application showed an augmentation of 74.36% and 91.89% in AM pea plant shoots and roots’ fresh weights, respectively, compared to the control. Moreover, the synthesized ZnFe2O4 NP uptake by plant roots and their contents were enhanced by AM fungi. These findings suggest the safe use of ZnFe2O4 NPs in nano-agricultural applications for plant development with AM fungi.
Collapse
Affiliation(s)
- Reda E. Abdelhameed
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
- Correspondence: (R.E.A.); or (A.A.H.A.L.); (R.A.M.)
| | - Nagwa I. Abu-Elsaad
- Physics Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt;
| | - Arafat Abdel Hamed Abdel Latef
- Department of Biology, Turabah University College, Turabah Branch, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
- Correspondence: (R.E.A.); or (A.A.H.A.L.); (R.A.M.)
| | - Rabab A. Metwally
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
- Correspondence: (R.E.A.); or (A.A.H.A.L.); (R.A.M.)
| |
Collapse
|
154
|
Suitability of Different Titanium Dioxide Nanotube Morphologies for Photocatalytic Water Treatment. NANOMATERIALS 2021; 11:nano11030708. [PMID: 33799849 PMCID: PMC7998466 DOI: 10.3390/nano11030708] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/03/2021] [Accepted: 03/08/2021] [Indexed: 11/20/2022]
Abstract
Photocatalysis has long been touted as one of the most promising technologies for environmental remediation. The ability of photocatalysts to degrade a host of different pollutants, especially recalcitrant molecules, is certainly appealing. Titanium dioxide (TiO2) has been used extensively for this purpose. Anodic oxidation allows for the synthesis of a highly ordered nanotubular structure with a high degree of tunability. In this study, a series of TiO2 arrays were synthesised using different electrolytes and different potentials. Mixed anatase-rutile photocatalysts with excellent wettability were achieved with all the experimental iterations. Under UVA light, all the materials showed significant photoactivity towards different organic pollutants. The nanotubes synthesised in the ethylene glycol-based electrolyte exhibited the best performance, with near complete degradation of all the pollutants. The antibacterial activity of this same material was similarly high, with extremely low bacterial survival rates. Increasing the voltage resulted in wider and longer nanotubes, characteristics which increase the level of photocatalytic activity. The ease of synthesis coupled with the excellent activity makes this a viable material that can be used in flat-plate reactors and that is suitable for photocatalytic water treatment.
Collapse
|
155
|
Malakar A, Kanel SR, Ray C, Snow DD, Nadagouda MN. Nanomaterials in the environment, human exposure pathway, and health effects: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 759:143470. [PMID: 33248790 DOI: 10.1016/j.scitotenv.2020.143470] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/24/2020] [Accepted: 10/24/2020] [Indexed: 05/04/2023]
Abstract
Nanomaterials (NMs), both natural and synthetic, are produced, transformed, and exported into our environment daily. Natural NMs annual flux to the environment is around 97% of the total and is significantly higher than synthetic NMs. However, synthetic NMs are considered to have a detrimental effect on the environment. The extensive usage of synthetic NMs in different fields, including chemical, engineering, electronics, and medicine, makes them susceptible to be discharged into the atmosphere, various water sources, soil, and landfill waste. As ever-larger quantities of NMs end up in our environment and start interacting with the biota, it is crucial to understand their behavior under various environmental conditions, their exposure pathway, and their health effects on human beings. This review paper comprises a large portion of the latest research on NMs and the environment. The article describes the natural and synthetic NMs, covering both incidental and engineered NMs and their behavior in the natural environment. The review includes a brief discussion on sampling strategies and various analytical tools to study NMs in complex environmental matrices. The interaction of NMs in natural environments and their pathway to human exposure has been summarized. The potential of NMs to impact human health has been elaborated. The nanotoxicological effect of NMs based on their inherent properties concerning to human health is also reviewed. The knowledge gaps and future research needs on NMs are reported. The findings in this paper will be a resource for researchers working on NMs all over the world to understand better the challenges associated with NMs in the natural environment and their human health effects.
Collapse
Affiliation(s)
- Arindam Malakar
- Nebraska Water Center, part of the Robert B. Daugherty Water for Food Global Institute 2021 Transformation Drive, University of Nebraska, Lincoln, NE 68588-0844, USA
| | - Sushil R Kanel
- Nebraska Water Center, part of the Robert B. Daugherty Water for Food Global Institute 2021 Transformation Drive, University of Nebraska, Lincoln, NE 68588-0844, USA; Department of Chemistry, Wright State University, Dayton, OH 45435, USA.
| | - Chittaranjan Ray
- Nebraska Water Center, part of the Robert B. Daugherty Water for Food Global Institute 2021 Transformation Drive, University of Nebraska, Lincoln, NE 68588-0844, USA
| | - Daniel D Snow
- School of Natural Resources and Nebraska Water Center, part of the Robert B. Daugherty Water for Food Global Institute, 202 Water Sciences Laboratory, University of Nebraska, Lincoln, NE 68583-0844, USA
| | - Mallikarjuna N Nadagouda
- Department of Mechanical and Materials Engineering, Wright State University, 3640 Colonel Glenn Hwy., Dayton, OH 45435, USA
| |
Collapse
|
156
|
Comparative Photo-Electrochemical and Photocatalytic Studies with Nanosized TiO2 Photocatalysts towards Organic Pollutants Oxidation. Catalysts 2021. [DOI: 10.3390/catal11030349] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The size of TiO2 can significantly affect both its photocatalytic and photo-electrochemical properties, thus altering the photooxidation of organic pollutants in air or water. In this work, we give an account of the photo-electrochemical and photocatalytic features of some nanosized TiO2 commercial powders towards a model reaction, the photooxidation of acetone. Cyclic voltammograms (CV) of TiO2 particulate electrodes under UV illumination experiments were carried out in either saturated O2 or N2 solutions for a direct correlation with the photocatalytic process. In addition, the effect of different reaction conditions on the photocatalytic efficiency under UV light in both aqueous and gaseous phases was also investigated. CV curves with the addition of acetone under UV light showed a negative shift of the photocurrent onset, confirming the efficient transfer of photoproduced reactive oxygen species (ROSs), e.g., hydroxyl radicals or holes to acetone molecules. The photocatalytic experiments showed that the two nano-sized samples exhibit the best photocatalytic performance. The different photoactivity of the larger-sized samples is probably attributed to their morphological differences, affecting both the amount and distribution of free ROSs involved in the photooxidation reaction. Finally, a direct correlation between the photocatalytic measurements in gas phase and the photo-electrochemical measurements in aqueous phase is given, thus evincing the important role of the substrate-surface interaction with similar acetone concentrations.
Collapse
|
157
|
Kuper CF, Pieters RHH, van Bilsen JHM. Nanomaterials and the Serosal Immune System in the Thoracic and Peritoneal Cavities. Int J Mol Sci 2021; 22:ijms22052610. [PMID: 33807632 PMCID: PMC7961545 DOI: 10.3390/ijms22052610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 02/23/2021] [Accepted: 02/27/2021] [Indexed: 11/16/2022] Open
Abstract
The thoracic and peritoneal cavities are lined by serous membranes and are home of the serosal immune system. This immune system fuses innate and adaptive immunity, to maintain local homeostasis and repair local tissue damage, and to cooperate closely with the mucosal immune system. Innate lymphoid cells (ILCs) are found abundantly in the thoracic and peritoneal cavities, and they are crucial in first defense against pathogenic viruses and bacteria. Nanomaterials (NMs) can enter the cavities intentionally for medical purposes, or unintentionally following environmental exposure; subsequent serosal inflammation and cancer (mesothelioma) has gained significant interest. However, reports on adverse effects of NM on ILCs and other components of the serosal immune system are scarce or even lacking. As ILCs are crucial in the first defense against pathogenic viruses and bacteria, it is possible that serosal exposure to NM may lead to a reduced resistance against pathogens. Additionally, affected serosal lymphoid tissues and cells may disturb adipose tissue homeostasis. This review aims to provide insight into key effects of NM on the serosal immune system.
Collapse
Affiliation(s)
- C. Frieke Kuper
- Consultant, Haagstraat 13, 3581 SW Utrecht, The Netherlands
- Correspondence: (C.F.K.); (J.H.M.v.B.)
| | - Raymond H. H. Pieters
- Immunotoxicology, Institute for Risk Assessment Sciences, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands;
- Innovative Testing in Life Sciences & Chemistry, Research Centre for Healthy and Sustainable Living, University of Applied Sciences Utrecht, Padualaan 97, 3584 CH Utrecht, The Netherlands
| | - Jolanda H. M. van Bilsen
- Department for Risk Analysis for Products in Development, Netherlands Organization for Applied Scientific Research (TNO), Princetonlaan 6, 3584 CB Utrecht, The Netherlands
- Correspondence: (C.F.K.); (J.H.M.v.B.)
| |
Collapse
|
158
|
Omerović N, Djisalov M, Živojević K, Mladenović M, Vunduk J, Milenković I, Knežević NŽ, Gadjanski I, Vidić J. Antimicrobial nanoparticles and biodegradable polymer composites for active food packaging applications. Compr Rev Food Sci Food Saf 2021; 20:2428-2454. [DOI: 10.1111/1541-4337.12727] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 01/25/2021] [Accepted: 02/01/2021] [Indexed: 12/28/2022]
Affiliation(s)
- Nejra Omerović
- BioSense Institute University of Novi Sad Novi Sad Serbia
| | - Mila Djisalov
- BioSense Institute University of Novi Sad Novi Sad Serbia
| | | | | | - Jovana Vunduk
- Ekofungi Ltd. Belgrade Serbia
- Faculty of Agriculture, Institute of Food Technology and Biochemistry University of Belgrade Belgrade Serbia
| | | | | | | | - Jasmina Vidić
- Micalis Institute, INRAE, AgroParisTech Université Paris‐Saclay Jouy en Josas France
| |
Collapse
|
159
|
Givelet L, Truffier-Boutry D, Noël L, Damlencourt JF, Jitaru P, Guérin T. Optimisation and application of an analytical approach for the characterisation of TiO 2 nanoparticles in food additives and pharmaceuticals by single particle inductively coupled plasma-mass spectrometry. Talanta 2021; 224:121873. [PMID: 33379082 DOI: 10.1016/j.talanta.2020.121873] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/31/2020] [Accepted: 11/04/2020] [Indexed: 10/23/2022]
Abstract
This study was designed to optimise an analytical method for characterising TiO2 nanoparticles (NPs) in food additives and pharmaceuticals by inductively coupled plasma-mass spectrometry in single particle mode (spICP-MS). Several parameters, including transport efficiency (TE), were assessed and optimised using the NM-100 reference material. We found that self-aspiration for sample intake and use of the concentration-based method for TE was optimal for characterising TiO2 NPs. No spectral interference was observed with either 49Ti or 48Ti isotopes. The optimised Excel spreadsheet developed for this study not only provided additional parameters but gave results closer to the NM-100 reference value than the ICP-MS software. The method was then applied to the analysis of a selection of food samples and pharmaceuticals. The average diameter of TiO2 particles ranged from 86 to 179 nm in the food samples and from 131 to 197 nm in the pharmaceuticals, while the nanoparticular fraction was between 19 and 68% in food, and between 13 and 45% in pharmaceuticals.
Collapse
Affiliation(s)
- Lucas Givelet
- Anses, Laboratory for Food Safety, F-94701, Maisons-Alfort, France; Univ. Grenoble Alpes, CEA, LITEN, F-38000, Grenoble, France
| | | | - Laurent Noël
- The French Directorate General for Food, Ministry of Agriculture, Agro-16 Food and Forestry, F-75015, Paris, France
| | | | - Petru Jitaru
- Anses, Laboratory for Food Safety, F-94701, Maisons-Alfort, France
| | - Thierry Guérin
- Anses, Laboratory for Food Safety, F-94701, Maisons-Alfort, France.
| |
Collapse
|
160
|
Wang WM, Chen CY, Lu TH, Yang YF, Liao CM. Estimates of lung burden risk associated with long-term exposure to TiO 2 nanoparticles as a UV-filter in sprays. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:10.1007/s11356-021-12924-8. [PMID: 33625711 DOI: 10.1007/s11356-021-12924-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 02/08/2021] [Indexed: 06/12/2023]
Abstract
Titanium dioxide (TiO2) nanoparticles (NPs) are employed as an ultraviolet filter in sunscreen products because of their high ultraviolet absorptivity. However, sunscreen sprays may pose health risks due to the toxicity of inhaled TiO2 NPs. Therefore, we estimated the potential human health risk posed by inhaled TiO2 NPs emitted from sunscreen sprays. The physiology-based lung model was employed to predict the lung TiO2 NPs burden caused by long-term exposure. A Hill-based dose-response model described the relationship between lung inflammation and TiO2 NP accumulation. The Weibull threshold model was used to estimate the threshold amount of accumulation inducing 0.5% of the maximum increase in neutrophils. The potential health risk was assessed using a hazard quotient-based probabilistic risk model. All data obtained to date indicate that application of sunscreen sprays poses no significant health risk. However, using data simulations based on the threshold criterion, we discovered that in terms of practical strategies for preventing the risks posed by inhaled TiO2 NPs emitted from spray products, the suggested daily use amount and pressing number are 40 g (95% confidence interval: 11-146 g) and 66 (18-245), respectively. In this study, we successfully translated the potential health risk of long-term exposure to NP-containing sunscreen sprays and recommendations for daily application into mechanistic insights.
Collapse
Affiliation(s)
- Wei-Min Wang
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, 10617, Taiwan, Republic of China
| | - Chi-Yun Chen
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, 10617, Taiwan, Republic of China
| | - Tien-Hsuan Lu
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, 10617, Taiwan, Republic of China
| | - Ying-Fei Yang
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, 10617, Taiwan, Republic of China
| | - Chung-Min Liao
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, 10617, Taiwan, Republic of China.
| |
Collapse
|
161
|
Li J, Yang X, Zhang Z, Xiao H, Sun W, Huang W, Li Y, Chen C, Sun Y. Aggregation kinetics of diesel soot nanoparticles in artificial and human sweat solutions: Effects of sweat constituents, pH, and temperature. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123614. [PMID: 32829227 DOI: 10.1016/j.jhazmat.2020.123614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 07/07/2020] [Accepted: 07/28/2020] [Indexed: 06/11/2023]
Abstract
Soot nanoparticles (SNPs) are airborne contaminants that could potentially penetrate skin, but their aggregation after contact with sweat may lower their health risks. This study investigated SNP aggregation kinetics in 4 artificial sweat standards and 21 human sweat samples. Effects of sweat inorganic (NaCl, Na2HPO4, and NaH2PO4) and organic (L-histidine, lactic acid, and urea) constituents, pH, temperature, and concentrations were examined. Results showed that SNP aggregation rates in 4 standards followed American Association of Textile Chemists and Colorists (AATCC) > British Standard (EN) > International Standard Organization (ISO) pH 5.5 > ISO pH 8.0, and could be described by the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. The aggregation rates increased with concentrations of SNPs, inorganic salts, L-histidine, and lactic acid, decreased with increasing pH and concentration of urea, and were weakly influenced by temperature. Systematic characterizations revealed SNP adsorption for organic sweat constituents. SNPs aggregated rapidly to ∼1000 nm in AATCC, but remained stable in ISO pH 8.0 and > 14/21 human sweat fluids over 20 min. The SNP aggregation rates correlated negatively with pH (r = -0.531*) and |ζ potential| (r = -0.464*) of human sweat samples. Sweat evaporation could promote aggregation of SNPs, hence lowering their potential harm via dermal exposure.
Collapse
Affiliation(s)
- Jing Li
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, Guangdong, 510642, China; College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, Shanxi, 030024, China
| | - Xingjian Yang
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Zhen Zhang
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Harry Xiao
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Weimin Sun
- Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangzhou, Guangdong, 510650, China
| | - Weilin Huang
- Department of Environmental Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Yongtao Li
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Chengyu Chen
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, Guangdong, 510642, China.
| | - Yan Sun
- Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangzhou, Guangdong, 510650, China; Agricultural Environmental Protection and Rural Energy Station, Department of Agriculture and Rural Affairs of Guangdong Province, Guangzhou, Guangdong, 510500, China
| |
Collapse
|
162
|
Vineetha VP, Devika P, Prasitha K, Anilkumar TV. Tinospora cordifolia ameliorated titanium dioxide nanoparticle-induced toxicity via regulating oxidative stress-activated MAPK and NRF2/Keap1 signaling pathways in Nile tilapia (Oreochromis niloticus). Comp Biochem Physiol C Toxicol Pharmacol 2021; 240:108908. [PMID: 33022381 DOI: 10.1016/j.cbpc.2020.108908] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/10/2020] [Accepted: 09/27/2020] [Indexed: 01/21/2023]
Abstract
Titanium dioxide nanoparticle (TNP) has been suggested for use in fish farms to prevent or alleviate bacterial diseases owing to its bactericidal property. Unfortunately, the interaction of TNP with cells impaired the host defenses of fish resulting in increased mortality during bacterial challenges. The present study evaluated the efficacy of the ethanolic extract of Tinospora cordifolia (TCE) as a dietary supplement in ameliorating TNP induced toxicity in Nile tilapia (Oreochromis niloticus). The fishes were exposed to environmentally relevant concentration (10 mg/L) of TNP for 14 days and the effect of TCE supplemented feed at 3 different doses (5, 10, and 15 g/kg) was studied. TCE signally increased the weight gain, specific growth rate, and decreased feed conversion ratio in fish. TCE significantly (P < 0.05) ameliorated the toxic effects caused by TNP by increasing the antioxidant (CAT, SOD, GPx) activity and decreasing the levels of serum enzymes (ALT, AST, ALP, ACP), macromolecular oxidation, excessive ROS production, and pro-inflammatory cytokines (IL-1β, IL-6, IL-8, INF-γ, TNF-α, PGE-2). TNP bioaccumulation and histopathological alterations in gill, liver, and kidney were also significantly alleviated by TCE supplementation. TCE perceptibly regulated the expression of heat shock proteins (HSP60, -70), MAPKs (pERK1/2, pp38), antioxidant (NRF2, Keap1, HO-1), apoptotic (p53, PDRG1), and anti-apoptotic (AKT, Bcl2) proteins in fish. Regarding disease resistance, the TCE co-treated groups showed reduced cumulative mortality and higher relative percent survival with A. hydrophila. Our results suggest that TNP-induced apoptosis is mediated by the MAPK/NRF2/Keap1 pathway and underlines the therapeutic potential of TCE in aqua-farming.
Collapse
Affiliation(s)
- Vadavanath Prabhakaran Vineetha
- Department of Aquatic Animal Health Management, Kerala University of Fisheries and Ocean Studies, Panangad, Kochi 682506, Kerala, India.
| | - Pillai Devika
- Department of Aquatic Animal Health Management, Kerala University of Fisheries and Ocean Studies, Panangad, Kochi 682506, Kerala, India
| | - Krishnakumar Prasitha
- School of Ocean Science and Technology, Kerala University of Fisheries and Ocean Studies, Panangad, Kochi 682506, Kerala, India
| | - Thapasimuthu Vijayamma Anilkumar
- Division of Experimental Pathology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram 695012, Kerala, India
| |
Collapse
|
163
|
Plant isoflavones can affect accumulation and impact of silver and titania nanoparticles on ovarian cells. Endocr Regul 2021; 55:52-60. [PMID: 33600664 DOI: 10.2478/enr-2021-0007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Objectives. The application of nanoparticles is experiencing a rapid growth, but it faces a problem of their toxicity, especially adverse effects on female reproduction. Food and medicinal plants and their isoflavones can be protectors against environmental stressors, but their ability to abate the adverse effects of nanoparticles has not been studied yet. In the present study, we examined the effect of silver (AgNPs) and titanium dioxide (titania, TiO2NPs) nanoparticles alone or in combination with plant phytoestrogens/antioxidants (resveratrol, diosgenin, and quercetin) on accumulation of nanoparticles, and progesterone release by cultured porcine ovarian granulosa cells.Methods. Porcine granulosa cells were incubated in the presence of AgNPs or TiO2NPs (0.1, 1, 10 or 100 µg/ml) alone or in combination with resveratrol, diosgenin or quercetin (10 µg/ml) for 48 h. The accumulation of tested nanoparticles by granulosa cells was assessed under light microscope. Progesterone concentration in culture media was measured by ELISA kit.Results. Cells accumulated both AgNPs and TiO2NPs in a dose-dependent manner. AgNPs, but not TiO2NPs, at highest dose (100 µg/ml) resulted in a destruction of cell monolayer. Both Ag-NPs and TiO2NPs reduced progesterone release. Resveratrol, diosgenin, and quercetin promoted accumulation of both AgNPs and TiO2NPs in ovarian cells and inhibited the progesterone output. Furthermore, resveratrol and diosgenin, but not quercetin, prevented the suppressive action of both AgNPs, and TiO2NPs on progesterone release.Conclusions. These observations (1) demonstrate accumulation of AgNPs and TiO2NPs in ovarian cells, (2) confirm the toxic impact of AgNPs, and TiO2NPs on these cells, (3) confirm the inhibitory effects of plant polyphenols/phytoestrogens on ovarian steroidogenesis, (4) show the ability of these isoflavones to increase the accumulation of AgNPs and TiO2NPs, and (5) show their ability to reduce the suppressive effect of AgNPs and TiO2NPs on ovarian progesterone release. The suppressive effect of AgNPs and TiO2NPs on ovarian functions should be taken into account by their exposition. However, these adverse effects could be mitigated by some plant isoflavones.
Collapse
|
164
|
Shabbir S, Kulyar MFEA, Bhutta ZA, Boruah P, Asif M. Toxicological Consequences of Titanium Dioxide Nanoparticles (TiO 2NPs) and Their Jeopardy to Human Population. BIONANOSCIENCE 2021; 11:621-632. [PMID: 33520589 PMCID: PMC7835448 DOI: 10.1007/s12668-021-00836-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2021] [Indexed: 01/31/2023]
Abstract
Titanium dioxide nanoparticles (TiO2 NPs) are the most produced nanomaterial for food additives, pigments, photocatalysis, and personal care products. These nanomaterials are at the forefront of rapidly developing indispensable nanotechnology. In all these nanomaterials, titanium dioxide (TiO2) is the most common nanomaterial which is being synthesized for many years. These nanoparticles of TiO2 are widely used at the commercial level, especially in cosmetic industries. High usage in such a way has increased the toxicological consequences of the human population. Several studies have shown that TiO2 NPs accumulated after oral exposure or inhalation in the alimentary canal, lungs, heart, liver, spleen, cardiac muscle, and kidneys. Additionally, in mice and rats, they disturb glucose and lipid homeostasis. Moreover, TiO2 nanoparticles primarily cause adverse reactions by inducing oxidative stress that leads to cell damage, inflammation, genotoxicity, and adverse immune responses. The form and level of destruction are strongly based on the physical and chemical properties of TiO2 nanoparticles, which administer their reactivity and bioavailability. Studies give indications that TiO2 NPs cause both DNA strand breaks and chromosomal damages. The effects of genotoxicity do not depend only on particle surface changes, size, and exposure route, but also relies on the duration of exposure. Most of these effects may be because of a very high dose of TiO2 NPs. Despite increased production and use, epidemiological data for TiO2 NPs is still missing. This review discusses previous research regarding the impact of TiO2 NP toxicity on human health and highlights areas that require further understanding in concern of jeopardy to the human population. This review is important to point out areas where extensive research is needed; thus, their possible impact on individual health should be investigated in more details.
Collapse
Affiliation(s)
- Samina Shabbir
- Biogas Institute of Ministry of Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| | | | - Zeeshan Ahmad Bhutta
- The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian, Scotland EH25 9RG UK
| | - Prerona Boruah
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Muhammad Asif
- Department of Surgery, University of Veterinary and Animal Sciences, Lahore, Punjab 54000 Pakistan
| |
Collapse
|
165
|
Assessment of the Influence of Crystalline Form on Cyto-Genotoxic and Inflammatory Effects Induced by TiO 2 Nanoparticles on Human Bronchial and Alveolar Cells. NANOMATERIALS 2021; 11:nano11010253. [PMID: 33478013 PMCID: PMC7835860 DOI: 10.3390/nano11010253] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 12/18/2022]
Abstract
Titanium dioxide nanoparticles (TiO2NPs) are increasingly used in consumer products, industrial and medical applications, raising concerns on their potential toxicity. The available in vitro and in vivo studies on these NPs show controversial results. Crystalline structure is the physicochemical characteristic that seems to influence mainly TiO2NPs toxicity, so its effect needs to be further studied. We aimed to study whether and how crystalline form influences potential cyto-genotoxic and inflammatory effects induced by two commercial TiO2NPs (TiO2-A, mainly anatase; TiO2-B, mainly rutile) in human alveolar A549 and bronchial BEAS-2B cells exposed to 1–40 µg/mL. Cell viability (WST-1), membrane damage (LDH release), IL-6, IL-8 and TNF-α release (ELISA) and direct/oxidative DNA damage (fpg-comet assay) were evaluated. Physicochemical characterization included analysis of crystalline form (TEM and XRD), specific surface area (BET), agglomeration (DLS) and Z-potential (ELS). Our results show that TiO2-A NPs induce in BEAS-2B cytotoxicity and a slight inflammation and in A549 slight oxidative effects, whereas TiO2-B NPs induce genotoxic/oxidative effects in both cell lines, revealing different toxicity mechanisms for the two tested NPs. In conclusion, our study confirms the influence of crystalline form on cellular response, also demonstrating the suitability of our in vitro model to screen early TiO2NPs effects.
Collapse
|
166
|
Calatayud Arroyo M, García Barrera T, Callejón Leblic B, Arias Borrego A, Collado MC. A review of the impact of xenobiotics from dietary sources on infant health: Early life exposures and the role of the microbiota. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 269:115994. [PMID: 33310490 DOI: 10.1016/j.envpol.2020.115994] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 09/22/2020] [Accepted: 11/02/2020] [Indexed: 06/12/2023]
Abstract
Xenobiotics are worldwide distributed and humans are unavoidably exposed to multiple chemical compounds during life, from preconception to adulthood. The human microbiota is mainly settled during early life and modulate host health and fitness. One of the main routes for chemical exposure is by intake of contaminated food and water. Thus, the interplay between diet-xenobiotics-microbiota during pregnancy and perinatal period may have relevant consequences for infant and adult health. Maternal exposure to metal(oid)s, persistent organic pollutants, and some food additives can modify the infant's microbiota with unknown consequences for child or adult health. Toxicants' exposure may also modulate the maternal transfer of microorganisms to the progeny during birth and breastfeeding; however, scarce information is available. The rapid increase in releasing novel chemicals to the environment, the exposure to chemical mixtures, the chronic/low dose scenario, and the delay in science-stakeholders action call for novel and groundbreaking approaches to improve a comprehensive risk assessment in sensitive population groups like pregnant women and neonates, with emphasis on microbiota as modulating factor and target-organ of xenobiotic's toxicity.
Collapse
Affiliation(s)
- M Calatayud Arroyo
- Department of Biotechnology, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Agustin Escardino 7, Paterna, Valencia, 46980, Spain.
| | - T García Barrera
- Research Center on Natural Resources, Health and the Environment (RENSMA), Department of Chemistry "Prof. J.C. Vílchez Martín", University of Huelva, Fuerzas Armadas Ave., Huelva, 21120, Spain
| | - B Callejón Leblic
- Research Center on Natural Resources, Health and the Environment (RENSMA), Department of Chemistry "Prof. J.C. Vílchez Martín", University of Huelva, Fuerzas Armadas Ave., Huelva, 21120, Spain
| | - A Arias Borrego
- Research Center on Natural Resources, Health and the Environment (RENSMA), Department of Chemistry "Prof. J.C. Vílchez Martín", University of Huelva, Fuerzas Armadas Ave., Huelva, 21120, Spain
| | - M C Collado
- Department of Biotechnology, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Agustin Escardino 7, Paterna, Valencia, 46980, Spain.
| |
Collapse
|
167
|
Ishizaka T, Chatterjee M, Kawanami H. Rapid and continuous fabrication of TiO 2 nanoparticles encapsulated by polyimide fine particles using a multistep flow-system and their application. RSC Adv 2021; 11:2083-2087. [PMID: 35424204 PMCID: PMC8693696 DOI: 10.1039/d0ra09810h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 12/17/2020] [Indexed: 11/21/2022] Open
Abstract
PI fine particles encapsulating a large number of TiO2 nanoparticles (PI FPs/TiO2 NPs) were successfully fabricated rapidly and continuously by the emulsion re-precipitation method using a multistep flow synthetic system. The fabricated material, PI FPs/TiO2 NPs, was spherical in structure with a diameter of 214 nm, and the mean size of TiO2 NPs was 5.2 nm. Line scan elemental analysis with SEM-EDX showed that the TiO2 NPs were disproportionately embedded near the surface of the PI FPs. UV-vis transmission spectra revealed high UV shielding efficiency of the PI FPs/TiO2 NPs as the NPs are located near the surface. We rapidly and continuously fabricated TiO2 nanoparticles encapsulated by polymer fine particles, and the fabricated nanomaterials showed high UV shielding efficiency.![]()
Collapse
Affiliation(s)
- Takayuki Ishizaka
- Research Institute for Chemical Process Technology
- National Institute of Advanced Industrial Science and Technology (AIST)
- Sendai
- Japan
| | - Maya Chatterjee
- Research Institute for Chemical Process Technology
- National Institute of Advanced Industrial Science and Technology (AIST)
- Sendai
- Japan
| | - Hajime Kawanami
- Interdisciplinary Research Center for Catalytic Chemistry
- National Institute of Advanced Industrial Science and Technology (AIST)
- Tsukuba
- Japan
| |
Collapse
|
168
|
Mok ZH, Proctor G, Thanou M. Emerging nanomaterials for dental treatments. Emerg Top Life Sci 2020; 4:613-625. [PMID: 33200780 PMCID: PMC7752085 DOI: 10.1042/etls20200195] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 10/20/2020] [Accepted: 10/26/2020] [Indexed: 01/08/2023]
Abstract
The emergence of nanomaterials for dental treatments is encouraged by the nanotopography of the tooth structure, together with the promising benefits of nanomedicine. The use of nanoparticles in dentistry, also termed as 'nanodentistry', has manifested in applications for remineralisation, antimicrobial activity, local anaesthesia, anti-inflammation, osteoconductivity and stem cell differentiation. Besides the applications on dental tissues, nanoparticles have been used to enhance the mechanical properties of dental composites, improving their bonding and anchorage and reducing friction. The small particle size allows for enhanced permeation into deeper lesions, and reduction in porosities of dental composites for higher mechanical strength. The large surface area to volume ratio allows for enhanced bioactivity such as bonding and integration, and more intense action towards microorganisms. Controlled release of encapsulated bioactive molecules such as drugs and growth factors enables them to be delivered more precisely, with site-targeted delivery for localised treatments. These properties have benefitted across multiple fields within dentistry, including periodontology and endodontics and reengineering of dental prosthetics and braces. This review summarises the current literature on the emerging field of nanomaterials for dental treatments.
Collapse
Affiliation(s)
- Zi Hong Mok
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King's College London, London, U.K
| | - Gordon Proctor
- Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, U.K
| | - Maya Thanou
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King's College London, London, U.K
| |
Collapse
|
169
|
Kose O, Stalet M, Leclerc L, Forest V. Influence of the physicochemical features of TiO 2 nanoparticles on the formation of a protein corona and impact on cytotoxicity. RSC Adv 2020; 10:43950-43959. [PMID: 35517183 PMCID: PMC9058407 DOI: 10.1039/d0ra08429h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 11/24/2020] [Indexed: 12/22/2022] Open
Abstract
Due to their unique properties TiO2 nanoparticles are widely used. The adverse effects they may elicit are usually studied in relation to their physicochemical features. However, a factor is often neglected: the influence of the protein corona formed around nanoparticles upon contact with biological media. Indeed, although it is acknowledged that it can strongly influence nanoparticle toxicity, it is not systematically considered. The aim of this study was to characterize the formation of the protein corona of TiO2 nanoparticles as a function of the main nanoparticle properties and investigate potential relationship with the cytotoxicity nanoparticles induce in vitro in human lung cells. To that purpose, five TiO2 nanoparticles differing in size, shape, agglomeration state and surface charge were incubated in cell culture media (DMEM or RPMI supplemented with 10% fetal bovine serum) and the amount and profile of adsorbed proteins on each type of nanoparticle were compared to their toxicological profile. While nanoparticle size and surface charge were found to be determinant factors for protein corona formation, no clear impact of the shape and agglomeration state was observed. Furthermore, no clear relationship was evidenced between the protein corona of the nanoparticles and the adverse effect they elicited.
Collapse
Affiliation(s)
- Ozge Kose
- Mines Saint-Etienne, Univ Lyon, Univ Jean Monnet, INSERM, U1059 Sainbiose Centre CIS F-42023 Saint-Etienne Cedex 2 France
| | - Marion Stalet
- Mines Saint-Etienne, Univ Lyon, Univ Jean Monnet, INSERM, U1059 Sainbiose Centre CIS F-42023 Saint-Etienne Cedex 2 France
| | - Lara Leclerc
- Mines Saint-Etienne, Univ Lyon, Univ Jean Monnet, INSERM, U1059 Sainbiose Centre CIS F-42023 Saint-Etienne Cedex 2 France
| | - Valérie Forest
- Mines Saint-Etienne, Univ Lyon, Univ Jean Monnet, INSERM, U1059 Sainbiose Centre CIS F-42023 Saint-Etienne Cedex 2 France
| |
Collapse
|
170
|
Abdelsattar AS, Dawoud A, Helal MA. Interaction of nanoparticles with biological macromolecules: a review of molecular docking studies. Nanotoxicology 2020; 15:66-95. [PMID: 33283572 DOI: 10.1080/17435390.2020.1842537] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The high frequency of using engineered nanoparticles in various medical applications entails a deep understanding of their interaction with biological macromolecules. Molecular docking simulation is now widely used to study the binding of different types of nanoparticles with proteins and nucleic acids. This helps not only in understanding the mechanism of their biological action but also in predicting any potential toxicity. In this review, the computational techniques used in studying the nanoparticles interaction with biological macromolecules are covered. Then, a comprehensive overview of the docking studies performed on various types of nanoparticles will be offered. The implication of these predicted interactions in the biological activity and/or toxicity is also discussed for each type of nanoparticles.
Collapse
Affiliation(s)
- Abdallah S Abdelsattar
- Center for X-Ray and Determination of Structure of Matter, Zewail City of Science and Technology, Giza, Egypt
| | - Alyaa Dawoud
- Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Mohamed A Helal
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt.,Medicinal Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
171
|
Verdon R, Gillies SL, Brown DM, Henry T, Tran L, Tyler CR, Rossi AG, Stone V, Johnston HJ. Neutrophil activation by nanomaterials in vitro: comparing strengths and limitations of primary human cells with those of an immortalized (HL-60) cell line. Nanotoxicology 2020; 15:1-20. [PMID: 33272088 DOI: 10.1080/17435390.2020.1834635] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Assessment of nanomaterial (NM) induced inflammatory responses has largely relied on rodent testing via measurement of leukocyte accumulation in target organs. Despite observations that NMs activate neutrophil driven inflammatory responses in vivo, a limited number of studies have investigated neutrophil responses to NMs in vitro. We compared responses between the human neutrophil-like HL-60 cell line and human primary neutrophils following exposure to silver (Ag), zinc oxide (ZnO), copper oxide (CuO) and titanium dioxide (TiO2) NMs. NM cytotoxicity and neutrophil activation were assessed by measuring cellular metabolic activity, cytokine production, respiratory burst, and release of neutrophil extracellular traps. We observed a similar pattern of response between HL-60 cells and primary neutrophils, however we report that some neutrophil functions are compromised in the cell line. Ag NMs were consistently observed to stimulate neutrophil activation, with CuO NMs inducing similar though weaker responses. TiO2 NMs did not induce a neutrophil response in either cell type. Interestingly, ZnO NMs readily induced activation of HL-60 cells but did not appear to activate primary cells. Our findings are relevant to the development of a tiered testing strategy for NM hazard assessment which promotes the use of non-rodent models. Whilst we acknowledge that HL-60 cells may not be a perfect substitute for primary cells and require further investigation regarding their ability to predict neutrophil activation, we recommend their use for initial screening of NM-induced inflammation. Primary human neutrophils can then be used for more focused assessments of neutrophil activation before progressing to in vivo models where necessary.
Collapse
Affiliation(s)
- Rachel Verdon
- Nano-Safety Research Group, Heriot-Watt University, Edinburgh, UK
| | | | - David M Brown
- Nano-Safety Research Group, Heriot-Watt University, Edinburgh, UK
| | - Theodore Henry
- Nano-Safety Research Group, Heriot-Watt University, Edinburgh, UK
| | - Lang Tran
- Statistics and Toxicology Section, Institute of Occupational Medicine, Edinburgh, UK
| | - Charles R Tyler
- College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Adriano G Rossi
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | - Vicki Stone
- Nano-Safety Research Group, Heriot-Watt University, Edinburgh, UK
| | | |
Collapse
|
172
|
Sirotkin AV, Bauer M, Kadasi A, Makovicky P, Scsukova S. The toxic influence of silver and titanium dioxide nanoparticles on cultured ovarian granulosa cells. Reprod Biol 2020; 21:100467. [PMID: 33278680 DOI: 10.1016/j.repbio.2020.100467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/09/2020] [Accepted: 11/15/2020] [Indexed: 10/22/2022]
Abstract
The application of metal nanoparticles in modern society is growing, but there is insufficient data concerning their influence on reproductive processes and comparison of their biological activity. The present experiments aimed to compare the effects of silver and titanium dioxide nanoparticles (AgNPs and TiO2NPs) on ovarian granulosa cell functions. AgNPs and TiO2NPs were added to culture of porcine granulosa cells at doses 0, 0.01, 0.1, 1 or 10 μg/mL. The mRNAs for proliferating cell nuclear antigen (PCNA), cyclin B1, bax and caspase 3 were quantified by RT-PCR; release of progesterone was analyzed by ELISA. It was shown that both AgNPs and TiO2NPs significantly reduced all the measured parameters. ED50 of the inhibitory influence of AgNPs on the main ovarian cell parameters was higher than ED50 of TiO2NPs. The ability of AgNPs and TiO2NPs to suppress ovarian granulosa cell functions should be taken into account by their application.
Collapse
Affiliation(s)
| | - Miroslav Bauer
- Constantine the Philosopher University, 949 74 Nitra, Slovak Republic; Research Institute for Animal Production in Nitra, 951 41 Lužianky, Slovak Republic
| | - Attila Kadasi
- Constantine the Philosopher University, 949 74 Nitra, Slovak Republic
| | | | - Sona Scsukova
- Biomedical Research Center, Institute of Experimental Endocrinology Slovak Academy of Sciences, 845 05 Bratislava 4, Slovak Republic
| |
Collapse
|
173
|
Vilas-Boas V, Vinken M. Hepatotoxicity induced by nanomaterials: mechanisms and in vitro models. Arch Toxicol 2020; 95:27-52. [PMID: 33155068 DOI: 10.1007/s00204-020-02940-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 10/20/2020] [Indexed: 12/14/2022]
Abstract
The unique physicochemical properties of materials at nanoscale have opened a plethora of opportunities for applications in the pharmaceutical and medical field, but also in consumer products from food and cosmetics industries. As a consequence, daily human exposure to nanomaterials through distinct routes is considerable and, therefore, may raise health concerns. Many nanomaterials have been described to accumulate and induce adversity in the liver. Among these, silica and some types of metallic nanoparticles are the most broadly used in consumer products and, therefore, the most studied and reported. The reviewed literature was collected from PubMed.gov during the month of March 2020 using the search words "nanomaterials induced hepatotoxicity", which yielded 181 papers. This present paper reviews the hepatotoxic effects of nanomaterials described in in vitro and in vivo studies, with emphasis on the underlying mechanisms. The induction of oxidative stress and inflammation are the manifestations of toxicity most frequently reported following exposure of cells or animal models to different nanomaterials. Furthermore, the available in vitro models for the evaluation of the hepatotoxic effects of nanomaterials are discussed, highlighting the continuous interest in the development of more advanced and reliable in vitro models for nanotoxicology.
Collapse
Affiliation(s)
- Vânia Vilas-Boas
- Department of In Vitro Toxicology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Mathieu Vinken
- Department of In Vitro Toxicology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium.
| |
Collapse
|
174
|
Ammendolia MG, De Berardis B, Maurizi L, Longhi C. Exposure to TiO 2 Nanoparticles Increases Listeria monocytogenes Infection of Intestinal Epithelial Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2196. [PMID: 33158026 PMCID: PMC7693858 DOI: 10.3390/nano10112196] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/29/2020] [Accepted: 11/02/2020] [Indexed: 12/18/2022]
Abstract
Titanium dioxide nanoparticles (TiO2 NPs) are widely used in a variety of consumer products. Cellular exposure to TiO2 NPs results in complex effects on cell physiology that could impact biological systems. We investigated the behavior of Listeria monocytogenes in intestinal epithelial cells pre-treated with either a low or high (1 and 20 µg/cm2) dose of TiO2 NPs. Our results indicate that the pre-treated cells with a low dose became more permissive to listeria infection; indeed, both adhesion and invasion were significantly increased compared to control. Increased invasion seems to be correlated to cytoskeletal alterations induced by nanoparticles, and higher bacterial survival might be due to the high levels of listeriolysin O that protects L. monocytogenes from reactive oxygen species (ROS). The potential risk of increased susceptibility to L. monocytogenes infection related to long-term intake of nanosized TiO2 at low doses should be considered.
Collapse
Affiliation(s)
- Maria Grazia Ammendolia
- National Center of Innovative Technologies in Public Health, Italian National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy;
| | - Barbara De Berardis
- National Center of Innovative Technologies in Public Health, Italian National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy;
| | - Linda Maurizi
- Department of Public Health and Infectious Diseases, “Sapienza” University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (L.M.); (C.L.)
| | - Catia Longhi
- Department of Public Health and Infectious Diseases, “Sapienza” University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (L.M.); (C.L.)
| |
Collapse
|
175
|
Salou S, Larivière D, Cirtiu CM, Fleury N. Quantification of titanium dioxide nanoparticles in human urine by single-particle ICP-MS. Anal Bioanal Chem 2020; 413:171-181. [PMID: 33123763 DOI: 10.1007/s00216-020-02989-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/12/2020] [Accepted: 10/05/2020] [Indexed: 10/23/2022]
Abstract
The increasing use of titanium dioxide nanoparticles in daily use consumer products such as cosmetics, personal care products, food additives, and even medicine has led to growing concerns regarding human safety. It would be ideal to track exposure to this emerging nanopollutant, for example through bioassays, however, so far nanoparticle assessment in biological matrices such as urine remains challenging. The lack of data is mainly due to the limitations of the current metrology, but also to the low expected concentration in human samples. In this study, a quantification method for titanium dioxide nanoparticles in urine has been developed and validated following the ISO/CEI 17025:2017 guidelines. The detection limit for titanium dioxide nanoparticle mass concentration by single-particle inductively coupled plasma mass spectrometry (SP-ICP-MS) was 0.05 ng mL-1. The particle size limit was determined using three different approaches, with the highest calculated limit value approaching 50 nm. Repeatability and reproducibility of 14% and 18% respectively were achieved for particle mass concentration, and 6% for both parameters for particle size determination. Method trueness and recovery were 98% and 84%, respectively.
Collapse
Affiliation(s)
- Samantha Salou
- Chemistry Department, Université Laval, 1045 Ave de la Médecine, Quebec, QC, G1V 0A6, Canada.,Institut National de Santé Publique du Québec, Centre de Toxicologie du Québec, 945 Avenue Wolfe, Québec, QC, G1V 5B3, Canada
| | - Dominic Larivière
- Chemistry Department, Université Laval, 1045 Ave de la Médecine, Quebec, QC, G1V 0A6, Canada.
| | - Ciprian-Mihai Cirtiu
- Institut National de Santé Publique du Québec, Centre de Toxicologie du Québec, 945 Avenue Wolfe, Québec, QC, G1V 5B3, Canada.
| | - Normand Fleury
- Institut National de Santé Publique du Québec, Centre de Toxicologie du Québec, 945 Avenue Wolfe, Québec, QC, G1V 5B3, Canada
| |
Collapse
|
176
|
Markowska-Szczupak A, Endo-Kimura M, Paszkiewicz O, Kowalska E. Are Titania Photocatalysts and Titanium Implants Safe? Review on the Toxicity of Titanium Compounds. NANOMATERIALS 2020; 10:nano10102065. [PMID: 33086609 PMCID: PMC7603142 DOI: 10.3390/nano10102065] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 12/11/2022]
Abstract
Titanium and its compounds are broadly used in both industrial and domestic products, including jet engines, missiles, prostheses, implants, pigments, cosmetics, food, and photocatalysts for environmental purification and solar energy conversion. Although titanium/titania-containing materials are usually safe for human, animals and environment, increasing concerns on their negative impacts have been postulated. Accordingly, this review covers current knowledge on the toxicity of titania and titanium, in which the behaviour, bioavailability, mechanisms of action, and environmental impacts have been discussed in detail, considering both light and dark conditions. Consequently, the following conclusions have been drawn: (i) titania photocatalysts rarely cause health and environmental problems; (ii) despite the lack of proof, the possible carcinogenicity of titania powders to humans is considered by some authorities; (iii) titanium alloys, commonly applied as implant materials, possess a relatively low health risk; (iv) titania microparticles are less toxic than nanoparticles, independent of the means of exposure; (v) excessive accumulation of titanium in the environment cannot be ignored; (vi) titanium/titania-containing products should be clearly marked with health warning labels, especially for pregnant women and young children; (vi) a key knowledge gap is the lack of comprehensive data about the environmental content and the influence of titania/titanium on biodiversity and the ecological functioning of terrestrial and aquatic ecosystems.
Collapse
Affiliation(s)
- Agata Markowska-Szczupak
- Department of Chemical and Process Engineering, West Pomeranian University of Technology in Szczecin, Al. Piastów 42, 71-065 Szczecin, Poland;
- Correspondence: (A.M.-S.); (E.K.)
| | - Maya Endo-Kimura
- Institute for Catalysis, Hokkaido University, N21, W10, Sapporo 001-0021, Japan;
| | - Oliwia Paszkiewicz
- Department of Chemical and Process Engineering, West Pomeranian University of Technology in Szczecin, Al. Piastów 42, 71-065 Szczecin, Poland;
| | - Ewa Kowalska
- Institute for Catalysis, Hokkaido University, N21, W10, Sapporo 001-0021, Japan;
- Correspondence: (A.M.-S.); (E.K.)
| |
Collapse
|
177
|
Medina-Reyes EI, Rodríguez-Ibarra C, Déciga-Alcaraz A, Díaz-Urbina D, Chirino YI, Pedraza-Chaverri J. Food additives containing nanoparticles induce gastrotoxicity, hepatotoxicity and alterations in animal behavior: The unknown role of oxidative stress. Food Chem Toxicol 2020; 146:111814. [PMID: 33068655 DOI: 10.1016/j.fct.2020.111814] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/22/2020] [Accepted: 10/10/2020] [Indexed: 02/07/2023]
Abstract
Food additives such as titanium dioxide (E171), iron oxides and hydroxides (E172), silver (E174), and gold (E175) are highly used as colorants while silicon dioxide (E551) is generally used as anticaking in ultra-processed foodstuff highly used in the Western diets. These additives contain nanosized particles (1-100 nm) and there is a rising concern since these nanoparticles could exert major adverse effects due to they are not metabolized but are accumulated in several organs. Here, we analyze the evidence of gastrotoxicity, hepatotoxicity and the impact of microbiota on gut-brain and gut-liver axis induced by E171, E172, E174, E175 and E551 and their non-food grade nanosized counterparts after oral consumption. Although, no studies using these food additives have been performed to evaluate neurotoxicity or alterations in animal behavior, their non-food grade nanosized counterparts have been associated with stress, depression, cognitive and eating disorders as signs of animal behavior alterations. We identified that these food additives induce gastrotoxicity, hepatotoxicity and alterations in gut microbiota and most evidence points out oxidative stress as the main mechanism of toxicity, however, the role of oxidative stress as the main mechanism needs to be explored further.
Collapse
Affiliation(s)
- Estefany I Medina-Reyes
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México. Ciudad Universitaria, Coyoacán, CP 04510, Ciudad de México, Mexico.
| | - Carolina Rodríguez-Ibarra
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México. Av. de Los Barrios No. 1, Tlalnepantla de Baz, CP 54090, Estado de México, Mexico
| | - Alejandro Déciga-Alcaraz
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México. Av. de Los Barrios No. 1, Tlalnepantla de Baz, CP 54090, Estado de México, Mexico
| | - Daniel Díaz-Urbina
- Laboratorio de Neurobiología de La Alimentación. Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México. Av. de Los Barrios No. 1, Tlalnepantla de Baz, CP 54090, Estado de México, Mexico
| | - Yolanda I Chirino
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México. Av. de Los Barrios No. 1, Tlalnepantla de Baz, CP 54090, Estado de México, Mexico
| | - José Pedraza-Chaverri
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México. Ciudad Universitaria, Coyoacán, CP 04510, Ciudad de México, Mexico
| |
Collapse
|
178
|
Hurbánková M, Romančíková D, Volkovová K, Wimmerová S, Moricová Š. Comparison of respiratory toxicity of TiO 2 and Fe 3O 4 nanoparticles after intravenous instillation: an experimental study. Cent Eur J Public Health 2020; 28:202-207. [PMID: 32997476 DOI: 10.21101/cejph.a5834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 04/15/2020] [Indexed: 11/15/2022]
Abstract
OBJECTIVE Nanomaterials consist of particles smaller than 100 nm - nanoparticles (NPs). Their nano dimensions allow them to penetrate through various membranes and enter into the bloodstream and disseminate into different body organs. Massive expansion of nanotechnologies together with production of new nanoparticles which have not yet been in contact with living organisms may pose a potential health problem. It is therefore necessary to investigate the health impact of NPs after experimental exposure. Comparison of the effect of TiO2 and NPs Fe3O4 in Wistar rats at time intervals 1, 7, 14 and 28 days was performed by studying the cytotoxic effect in the isolated inflammatory cells from bronchoalveolar lavage (BAL). METHODS Wistar rats were intravenously (i.v.) given a suspension of NPs TiO2 or Fe3O4 (coated by sodium oleate) via the tail vein. After time intervals of 1, 7, 14 and 28 days, we sacrificed the animals under anaesthesia, performed BAL and isolated the cells. The number of animals in the individual groups was 7-8. We examined the differential count of BAL cells (alveolar macrophages - AM, polymorphonuclear leukocytes - PMN, lymphocytes - Ly); viability and phagocytic activity of AM; the proportion of immature and polynuclear cells and enzymes - cathepsin D - CAT D, lactate dehydrogenase - LDH and acid phosphatase - ACP. RESULTS We found that TiO2 NPs are relatively inert - without induction of inflammatory and cytotoxic response. Exposure to nanoparticles Fe3O4 induced - under the same experimental conditions - in comparison with the control and TiO2 a more extensive inflammatory and cytotoxic response, albeit only at 1, 7 and 14 days after injection. CONCLUSIONS The results suggest that TiO2 and Fe3O4 nanoparticles used in our study were transferred from the bloodstream to the respiratory tract, but this effect was not observed at 28 days after i.v. injection, probably due to their removal from the respiratory tract.
Collapse
Affiliation(s)
- Marta Hurbánková
- Faculty of Public Health, Slovak Medical University, Bratislava, Slovak Republic
| | - Dominika Romančíková
- Faculty of Public Health, Slovak Medical University, Bratislava, Slovak Republic
| | | | - Soňa Wimmerová
- Faculty of Public Health, Slovak Medical University, Bratislava, Slovak Republic
| | - Štefánia Moricová
- Faculty of Public Health, Slovak Medical University, Bratislava, Slovak Republic
| |
Collapse
|
179
|
Efficient Method for the Concentration Determination of Fmoc Groups Incorporated in the Core-Shell Materials by Fmoc-Glycine. Molecules 2020; 25:molecules25173983. [PMID: 32882948 PMCID: PMC7504793 DOI: 10.3390/molecules25173983] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/22/2020] [Accepted: 08/31/2020] [Indexed: 12/11/2022] Open
Abstract
In this paper, we described the synthesis procedure of TiO2@SiO2 core-shell modified with 3-(aminopropyl)trimethoxysilane (APTMS). The chemical attachment of Fmoc-glycine (Fmoc-Gly-OH) at the surface of the core-shell structure was performed to determine the amount of active amino groups on the basis of the amount of Fmoc group calculation. We characterized nanostructures using various methods: transmission electron microscope (TEM), scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA) and X-ray photoelectron spectroscopy (XPS) to confirm the modification effectiveness. The ultraviolet-visible spectroscopy (UV-vis) measurement was adopted for the quantitative determination of amino groups present on the TiO2@SiO2 core-shell surface by determination of Fmoc substitution. The nanomaterials were functionalized by Fmoc-Gly-OH and then the fluorenylmethyloxycarbonyl (Fmoc) group was cleaved using 20% (v/v) solution of piperidine in DMF. This reaction led to the formation of a dibenzofulvene-piperidine adduct enabling the estimation of free Fmoc groups by measurement the maximum absorption at 289 and 301 nm using UV-vis spectroscopy. The calculations of Fmoc loading on core-shell materials was performed using different molar absorption coefficient: 5800 and 6089 dm3 × mol-1 × cm-1 for λ = 289 nm and both 7800 and 8021 dm3 × mol-1 × cm-1 for λ = 301 nm. The obtained results indicate that amount of Fmoc groups present on TiO2@SiO2-(CH2)3-NH2 was calculated at 6 to 9 µmol/g. Furthermore, all measurements were compared with Fmoc-Gly-OH used as the model sample.
Collapse
|
180
|
Smallcombe CC, Harford TJ, Linfield DT, Lechuga S, Bokun V, Piedimonte G, Rezaee F. Titanium dioxide nanoparticles exaggerate respiratory syncytial virus-induced airway epithelial barrier dysfunction. Am J Physiol Lung Cell Mol Physiol 2020; 319:L481-L496. [PMID: 32640839 PMCID: PMC7518063 DOI: 10.1152/ajplung.00104.2020] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/30/2020] [Accepted: 07/08/2020] [Indexed: 12/24/2022] Open
Abstract
Respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract infections in children worldwide. While most develop a mild, self-limiting illness, some develop severe acute lower respiratory infection and persistent airway disease. Exposure to ambient particulate matter has been linked to asthma, bronchitis, and viral infection in multiple epidemiological studies. We hypothesized that coexposure to nanoparticles worsens RSV-induced airway epithelial barrier dysfunction. Bronchial epithelial cells were incubated with titanium dioxide nanoparticles (TiO2-NP) or a combination of TiO2-NP and RSV. Structure and function of epithelial cell barrier were analyzed. Viral titer and the role of reactive oxygen species (ROS) generation were evaluated. In vivo, mice were intranasally incubated with TiO2-NP, RSV, or a combination. Lungs and bronchoalveolar lavage (BAL) fluid were harvested for analysis of airway inflammation and apical junctional complex (AJC) disruption. RSV-induced AJC disruption was amplified by TiO2-NP. Nanoparticle exposure increased viral infection in epithelial cells. TiO2-NP induced generation of ROS, and pretreatment with antioxidant, N-acetylcysteine, reversed said barrier dysfunction. In vivo, RSV-induced injury and AJC disruption were augmented in the lungs of mice given TiO2-NP. Airway inflammation was exacerbated, as evidenced by increased white blood cell infiltration into the BAL, along with exaggeration of peribronchial inflammation and AJC disruption. These data demonstrate that TiO2-NP exposure exacerbates RSV-induced AJC dysfunction and increases inflammation by mechanisms involving generation of ROS. Further studies are required to determine whether NP exposure plays a role in the health disparities of asthma and other lung diseases, and why some children experience more severe airway disease with RSV infection.
Collapse
Affiliation(s)
- Carrie C Smallcombe
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Terri J Harford
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Debra T Linfield
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio
| | - Susana Lechuga
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Vladimir Bokun
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | | | - Fariba Rezaee
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio
- Centre for Pediatric Pulmonary Medicine, Cleveland Clinic Children's, Cleveland, Ohio
| |
Collapse
|
181
|
Kose O, Tomatis M, Leclerc L, Belblidia NB, Hochepied JF, Turci F, Pourchez J, Forest V. Impact of the Physicochemical Features of TiO 2 Nanoparticles on Their In Vitro Toxicity. Chem Res Toxicol 2020; 33:2324-2337. [PMID: 32786542 DOI: 10.1021/acs.chemrestox.0c00106] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The concern about titanium dioxide nanoparticles (TiO2-NPs) toxicity and their possible harmful effects on human health has increased. Their biological impact is related to some key physicochemical properties, that is, particle size, charge, crystallinity, shape, and agglomeration state. However, the understanding of the influence of such features on TiO2-NP toxicity remains quite limited. In this study, cytotoxicity, proinflammatory response, and oxidative stress caused by five types of TiO2-NPs with different physicochemical properties were investigated on A549 cells used either as monoculture or in co-culture with macrophages differentiated from the human monocytic THP-1 cells. We tailored bulk and surface TiO2 physicochemical properties and differentiated NPs for size/specific surface area, shape, agglomeration state, and surface functionalization/charge (aminopropyltriethoxysilane). An impact on the cytotoxicity and to a lesser extent on the proinflammatory responses depending on cell type was observed, namely, smaller, large-agglomerated TiO2-NPs were shown to be less toxic than P25, whereas rod-shaped TiO2-NPs were found to be more toxic. Besides, the positively charged particle was slightly more toxic than the negatively charged one. Contrarily, TiO2-NPs, whatever their physicochemical properties, did not induce significant ROS production in both cell systems compared to nontreated control groups. These results may contribute to a better understanding of TiO2-NPs toxicity in relation with their physicochemical features.
Collapse
Affiliation(s)
- Ozge Kose
- Mines Saint-Etienne, Université Lyon, Université Jean Monnet, INSERM, U1059 Sainbiose, Centre CIS, F-42023 Saint-Etienne, France
| | - Maura Tomatis
- Dipartimento di Chimica and G. Scansetti Interdepartmental Center for Studies on Asbestos and other Toxic Particulates, Università degli Studi di Torino, 10125 Torino, Italy
| | - Lara Leclerc
- Mines Saint-Etienne, Université Lyon, Université Jean Monnet, INSERM, U1059 Sainbiose, Centre CIS, F-42023 Saint-Etienne, France
| | - Naila-Besma Belblidia
- Mines ParisTech, PSL Research University, MAT - Centre des matériaux, CNRS UMR 7633, BP 87, 91003 Evry, France.,ENSTA ParisTech UCP, Institut Polytechnique Paris, 828 bd des Maréchaux, 91762 Palaiseau cedex, France
| | - Jean-François Hochepied
- Mines ParisTech, PSL Research University, MAT - Centre des matériaux, CNRS UMR 7633, BP 87, 91003 Evry, France.,ENSTA ParisTech UCP, Institut Polytechnique Paris, 828 bd des Maréchaux, 91762 Palaiseau cedex, France
| | - Francesco Turci
- Dipartimento di Chimica and G. Scansetti Interdepartmental Center for Studies on Asbestos and other Toxic Particulates, Università degli Studi di Torino, 10125 Torino, Italy
| | - Jérémie Pourchez
- Mines Saint-Etienne, Université Lyon, Université Jean Monnet, INSERM, U1059 Sainbiose, Centre CIS, F-42023 Saint-Etienne, France
| | - Valérie Forest
- Mines Saint-Etienne, Université Lyon, Université Jean Monnet, INSERM, U1059 Sainbiose, Centre CIS, F-42023 Saint-Etienne, France
| |
Collapse
|
182
|
Coté JJ, Haggstrom J, Vivekanandan R, Coté KA, Real DL, Weber DP, Cheng A, Dubay NG, Farias-Eisner R. COVID-19 and a novel initiative to improve safety by 3D printing personal protective equipment parts from computed tomography. 3D Print Med 2020; 6:20. [PMID: 32785811 PMCID: PMC7422464 DOI: 10.1186/s41205-020-00073-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 07/30/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Powered air-purifying respirators are in short supply and can break down with extended use. Replacement parts can become hard to acquire. The aim of this study was to create an innovative quality improvement proof of concept using rapid prototyping. METHODS Here we report three cases of 3D printed powered air-purifying respirator parts. 3D printing was performed on all parts using fused deposition modeling with standard polylactic acid, in the same way that presurgical models would be created. Measurements using an electronic caliper as well as CT scans were used to compare an original part to its corresponding 3D printed parts for accuracy. RESULTS Electronic caliper and computed tomography measurements both showed accuracy consistant with current published norms. CONCLUSIONS Ultimately, there will be questions surrounding intellectual property, effectiveness and potential long-term safety for these types of 3D printed parts. Future research should look into the addition of specific nanoparticles from the position of cost, efficacy, safety and improved accuracy.
Collapse
Affiliation(s)
- John J Coté
- Department of Obstetrics and Gynecology CHI Health, Creighton University School of Medicine, Omaha, NE, USA.
| | - John Haggstrom
- Department of Radiology, Creighton University School of Medicine, Omaha, NE, USA
| | - Ranuga Vivekanandan
- Department of Medicine Division of Infectious Disease CHI Health, Creighton University School of Medicine, Omaha, NE, USA
| | | | | | | | - Anne Cheng
- Creighton University School of Medicine, Omaha, NE, USA
| | | | - Robin Farias-Eisner
- Department of Obstetrics and Gynecology CHI Health, Creighton University School of Medicine, Omaha, NE, USA.
| |
Collapse
|
183
|
Ferreira DDD, Galvão TD, Appoloni CR. Total Reflection X-ray Fluorescence spectrometry determination of titanium dioxide released from UV-protective textiles during wash. Appl Radiat Isot 2020; 165:109345. [PMID: 32777738 DOI: 10.1016/j.apradiso.2020.109345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 05/20/2020] [Accepted: 07/17/2020] [Indexed: 11/29/2022]
Abstract
The aim of this study is to determine the release of TiO2 from six sport garments into the wash water after 1, 2 and 10 washes. For such, Total Reflection X-ray Fluorescence (TXRF) spectrometry was employed for the study of the wash water and Scanning Electron Microscopy - Energy Dispersive Spectrometry (SEM-EDS) was used for the analysis of the textiles. Results showed that the six sport garments released between 0.106 mg/L and 0.352 mg/L after the first two washes and between 0.028 mg/L and 0.337 mg/L of Ti after ten washes. The values found for the Ti amount released in wash water, and consequently into the environment, is much less than other common sources. These results showed the potential of TXRF spectrometry in quantifying Ti in wash water, which is a hard task even for well-established methods. SEM images show that all six samples were weft knitted fabrics, with yarns of approximately 250 μm of width and fibers' width between 9 and 13 μm.
Collapse
Affiliation(s)
- Diego de Dio Ferreira
- Applied Nuclear Physics Laboratory, Department of Physics, Londrina State University, Rodovia Celso Garcia Cid km-380, Londrina, Paraná, Brazil.
| | - Tiago Dutra Galvão
- Applied Nuclear Physics Laboratory, Department of Physics, Londrina State University, Rodovia Celso Garcia Cid km-380, Londrina, Paraná, Brazil
| | - Carlos Roberto Appoloni
- Applied Nuclear Physics Laboratory, Department of Physics, Londrina State University, Rodovia Celso Garcia Cid km-380, Londrina, Paraná, Brazil
| |
Collapse
|
184
|
Arzaghi H, Adel B, Jafari H, Askarian-Amiri S, Shiralizadeh Dezfuli A, Akbarzadeh A, Pazoki-Toroudi H. Nanomaterial integration into the scaffolding materials for nerve tissue engineering: a review. Rev Neurosci 2020; 31:/j/revneuro.ahead-of-print/revneuro-2020-0008/revneuro-2020-0008.xml. [PMID: 32776904 DOI: 10.1515/revneuro-2020-0008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 05/21/2020] [Indexed: 12/12/2022]
Abstract
The nervous system, which consists of a complex network of millions of neurons, is one of the most highly intricate systems in the body. This complex network is responsible for the physiological and cognitive functions of the human body. Following injuries or degenerative diseases, damage to the nervous system is overwhelming because of its complexity and its limited regeneration capacity. However, neural tissue engineering currently has some capacities for repairing nerve deficits and promoting neural regeneration, with more developments in the future. Nevertheless, controlling the guidance of stem cell proliferation and differentiation is a challenging step towards this goal. Nanomaterials have the potential for the guidance of the stem cells towards the neural lineage which can overcome the pitfalls of the classical methods since they provide a unique microenvironment that facilitates cell-matrix and cell-cell interaction, and they can manipulate the cell signaling mechanisms to control stem cells' fate. In this article, the suitable cell sources and microenvironment cues for neuronal tissue engineering were examined. Afterward, the nanomaterials that impact stem cell proliferation and differentiation towards neuronal lineage were reviewed.
Collapse
Affiliation(s)
- Hamidreza Arzaghi
- Department of Medical Biotechnology, Faculty of Allied Medical Sciences, Iran University of Medical Sciences, Hemat Highway Next to Milad Tower, Tehran 1449614535, Islamic Republic of Iran
| | - Bashir Adel
- Department of Biology, Faculty of Sciences, The University of Guilan, Rasht 4199613776, Islamic Republic of Iran
| | - Hossein Jafari
- Institute for Research in Fundamental Sciences (IPM), Artesh Highway, Tehran 1956836681, Islamic Reitutionpublic of Iran
| | - Shaghayegh Askarian-Amiri
- Physiology Research Center, Faculty of Medicine, Iran University of Medical Sciences, Hemat Highway Next to Milad Tower, Tehran 1449614535, Islamic Republic of Iran
| | - Amin Shiralizadeh Dezfuli
- Physiology Research Center, Faculty of Medicine, Iran University of Medical Sciences, Hemat Highway Next to Milad Tower, Tehran 1449614535, Islamic Republic of Iran
| | - Abolfazl Akbarzadeh
- Tuberculosis and Lung Disease Research Center of Tabriz, Tabriz University of Medical Sciences, Tabriz 5165665811, Islamic Republic of Iran
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz 5165665811, Islamic Republic of Iran
- Iran Universal Scientific and Education Network (USERN), Tabriz 5165665811, Islamic Republic of Iran
| | - Hamidreza Pazoki-Toroudi
- Physiology Research Center, Faculty of Medicine, Iran University of Medical Sciences, Hemat Highway Next to Milad Tower, Tehran 1449614535, Islamic Republic of Iran
- Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Hemat Highway Next to Milad Tower, Tehran 1449614535, Islamic Republic of Iran
| |
Collapse
|
185
|
Han S, Chen ZJ, Zhou D, Zheng P, Zhang JH, Jia G. [Effects of titanium dioxide nanoparticles on fecal metabolome in rats after oral administration for 90 days]. JOURNAL OF PEKING UNIVERSITY. HEALTH SCIENCES 2020; 52:457-463. [PMID: 32541978 DOI: 10.19723/j.issn.1671-167x.2020.03.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
OBJECTIVE To explore the effects and related mechanisms of oral exposure titanium dioxide nanoparticles (TiO2 NPs) for 90 days on the intestinal and the gut microbiota of rats, through fecal metabolomics. METHODS Twelve 4-week-old clean-grade Sprague Dawley (SD) rats were randomly de-vided into 2 groups by body weight, treated with TiO2 NPs at dose of 0 or 50 mg/kg body weight everyday respectively for 90 days. The solution of each infection was freshly prepared and shocked fully by ultrasonic. Characterization of the particle size, crystal form, purity, and specific surface area of TiO2 NPs was conducted. And the fresh feces of the rats were collected on the 90th day. After lyophilized and hydrophilic phase extraction, ultra performance liquid chromatography-Q-exactive orbitrap-high-resolution mass spectrometry system (UPLC-QEMS) was utilized for non-targeted determination of fecal meta-bolites. The metabolites were identified and labeled through Compound Discoverer 3.0 software, and used for subsequent metabolomics analysis. Bioinformatics analysis was carried out including unsupervised principal component analysis and supervised orthogonal projection to latent structure discriminant analysis for the differential metabolites between the two groups. The differential metabolites were followed-up for Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. RESULTS Compared with the control group, the body weight of the rats was significantly reduced (P<0.05) in the treatment group. A total of 22 metabolites in fecal metabolomics showed significant changes. Among them, xanthine, 1-methyladenine, 3-hydroxypyridine, methionine sulfoxide, pyridoxine, 1,5-isoquinolinediol, N-acetylornithine, N-acetyl-D-galactosamine, L-citrulline, L-methionine, leucine, DL-tryptophan, L-ornithine, 4-methyl-5-thiazoleethanol, and L-glutamic acid totaled 15 metabolites increased significantly. N-acetylhistamine, D-pipecolinic acid, imidazolelactic acid, L-valine, 2,3,4,6-tetramethylpyrazine, caprolactam, and histamine totaled 7 metabolites decreased significantly. N-acetylhistamine, L-valine and methionine sulfoxide were changed more than 16 times. Analysis of KEGG pathway revealed that the two metabolic pathways arginine biosynthesis and aminoacyl-tRNA biosynthesis were significantly changed (false discover rate < 0.05, pathway impact > 0.1). CONCLUSION Oral exposure to TiO2 NPs for 90 days could disrupt the metabolism of the intestine and gut microbiota, causing significant changes in metabolites and metabolic pathways which were related to inflammatory response, oxidative stress, glucose homeostasis, blood system and amino acid homeostasis in rat feces. It is suggested that the toxic effect of TiO2 NPs on rats may be closely related to intestinal and gut microbiota metabolism.
Collapse
Affiliation(s)
- S Han
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing 100191, China
| | - Z J Chen
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing 100191, China
| | - D Zhou
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing 100191, China
| | - P Zheng
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing 100191, China
| | - J H Zhang
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing 100191, China
| | - G Jia
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing 100191, China
| |
Collapse
|
186
|
Belhaj Abdallah B, Andreu I, Chatti A, Landoulsi A, Gates BD. Size Fractionation of Titania Nanoparticles in Wild Dittrichia viscosa Grown in a Native Environment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:8649-8657. [PMID: 32539367 DOI: 10.1021/acs.est.9b07267] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We report a size fractionation of titania (TiO2) nanoparticles absorbed from the environment and found within wild Dittrichia viscosa plants. The nanoparticles were isolated by extraction and isolation from distinct plant organs, as well as from the corresponding rhizosphere of wild, adult plants. The collected nanoparticles were characterized by scanning transmission electron microscopy coupled with energy dispersive X-ray spectroscopy (STEM-EDS). More than 1200 TiO2 nanoparticles were analyzed by these techniques. The results indicated the presence of TiO2 nanoparticles with a wide range of sizes within the inspected plant organs and rhizospheres. Interestingly, a size selective process occurs during the internalization and translocation of these nanoparticles (e.g., foliar and root uptake), which favors the accumulation of mainly TiO2 nanoparticles with diameters <50 nm in the leaves, stems, and roots. In fact, our findings indicate that among the total number of TiO2 nanoparticles analyzed, the fraction of the particles with dimensions <50 nm were 52% of those within the rhizospheres, 88.5% of those within the roots, 90% of those within the stems, and 53% of those within the leaves. This significant difference observed in the size distribution of the TiO2 nanoparticles among the rhizosphere and the plant organs could have impacts on the food chain and further biologicals effects that are dependent on the size of the TiO2.
Collapse
Affiliation(s)
- Bouchra Belhaj Abdallah
- Biochemistry and Molecular Biology Unit, Faculty of Science of Bizerte, Carthage University, Jarzouna 7021, Tunisia
- Department of Chemistry and 4D LABS, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
| | - Irene Andreu
- Department of Chemistry and 4D LABS, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
| | - Abdelwaheb Chatti
- Biochemistry and Molecular Biology Unit, Faculty of Science of Bizerte, Carthage University, Jarzouna 7021, Tunisia
| | - Ahmed Landoulsi
- Biochemistry and Molecular Biology Unit, Faculty of Science of Bizerte, Carthage University, Jarzouna 7021, Tunisia
| | - Byron D Gates
- Department of Chemistry and 4D LABS, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
| |
Collapse
|
187
|
Vikrant K, Kim KH, Dong F, Giannakoudakis DA. Photocatalytic Platforms for Removal of Ammonia from Gaseous and Aqueous Matrixes: Status and Challenges. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02163] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Kumar Vikrant
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea
| | - Fan Dong
- Research Center for Environmental and Energy Catalysis, Institute of Fundamental and Frontier Sciences, School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu 611731, China
| | | |
Collapse
|
188
|
ÜNAL F, DEMIRTAŞ KORKMAZ F, SULUDERE Z, EROL Ö, YÜZBAŞIOĞLU D. Genotoxicity of Two Nanoparticles: Titanium Dioxide and Zinc Oxide. GAZI UNIVERSITY JOURNAL OF SCIENCE 2020. [DOI: 10.35378/gujs.826911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
189
|
Hofseth LJ, Hebert JR, Chanda A, Chen H, Love BL, Pena MM, Murphy EA, Sajish M, Sheth A, Buckhaults PJ, Berger FG. Early-onset colorectal cancer: initial clues and current views. Nat Rev Gastroenterol Hepatol 2020; 17:352-364. [PMID: 32086499 PMCID: PMC10711686 DOI: 10.1038/s41575-019-0253-4] [Citation(s) in RCA: 210] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/05/2019] [Indexed: 02/07/2023]
Abstract
Over the past several decades, the incidence of early-onset colorectal cancer (EOCRC; in patients <50 years old) has increased at an alarming rate. Although robust and scientifically rigorous epidemiological studies have sifted out environmental elements linked to EOCRC, our knowledge of the causes and mechanisms of this disease is far from complete. Here, we highlight potential risk factors and putative mechanisms that drive EOCRC and suggest likely areas for fruitful research. In addition, we identify inconsistencies in the evidence implicating a strong effect of increased adiposity and suggest that certain behaviours (such as diet and stress) might place nonobese and otherwise healthy people at risk of this disease. Key risk factors are reviewed, including the global westernization of diets (usually involving a high intake of red and processed meats, high-fructose corn syrup and unhealthy cooking methods), stress, antibiotics, synthetic food dyes, monosodium glutamate, titanium dioxide, and physical inactivity and/or sedentary behaviour. The gut microbiota is probably at the crossroads of these risk factors and EOCRC. The time course of the disease and the fact that relevant exposures probably occur in childhood raise important methodological issues that are also discussed.
Collapse
Affiliation(s)
- Lorne J Hofseth
- Center for Colon Cancer Research, University of South Carolina, Columbia, SC, USA.
- Cancer Prevention and Control Program, University of South Carolina, Columbia, SC, USA.
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, USA.
| | - James R Hebert
- Center for Colon Cancer Research, University of South Carolina, Columbia, SC, USA
- Cancer Prevention and Control Program, University of South Carolina, Columbia, SC, USA
- Department of Epidemiology & Biostatistics, University of South Carolina, Columbia, SC, USA
| | - Anindya Chanda
- Center for Colon Cancer Research, University of South Carolina, Columbia, SC, USA
- Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
| | - Hexin Chen
- Center for Colon Cancer Research, University of South Carolina, Columbia, SC, USA
- Department of Biology, College of Arts and Sciences, University of South Carolina, Columbia, SC, USA
| | - Bryan L Love
- Center for Colon Cancer Research, University of South Carolina, Columbia, SC, USA
- Department of Clinical Pharmacy and Outcomes Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - Maria M Pena
- Center for Colon Cancer Research, University of South Carolina, Columbia, SC, USA
- Department of Biology, College of Arts and Sciences, University of South Carolina, Columbia, SC, USA
| | - E Angela Murphy
- Center for Colon Cancer Research, University of South Carolina, Columbia, SC, USA
- Department of Pathology, Microbiology & Immunology, School of Medicine, University of South Carolina, Columbia, SC, USA
| | - Mathew Sajish
- Center for Colon Cancer Research, University of South Carolina, Columbia, SC, USA
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - Amit Sheth
- Center for Colon Cancer Research, University of South Carolina, Columbia, SC, USA
- Department of Computer Science and Engineering, College of Engineering, University of South Carolina, Columbia, SC, USA
| | - Phillip J Buckhaults
- Center for Colon Cancer Research, University of South Carolina, Columbia, SC, USA
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - Franklin G Berger
- Center for Colon Cancer Research, University of South Carolina, Columbia, SC, USA
- Department of Biology, College of Arts and Sciences, University of South Carolina, Columbia, SC, USA
| |
Collapse
|
190
|
Freire C, Vrhovnik P, Fiket Ž, Salcedo-Bellido I, Echeverría R, Martín-Olmedo P, Kniewald G, Fernández MF, Arrebola JP. Adipose tissue concentrations of arsenic, nickel, lead, tin, and titanium in adults from GraMo cohort in Southern Spain: An exploratory study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 719:137458. [PMID: 32112946 DOI: 10.1016/j.scitotenv.2020.137458] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/31/2020] [Accepted: 02/18/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Adipose tissue has been acknowledged as a potential target for obesogenic pollutants, including toxic metal(loid)s. However, the presence of these chemicals in the adipose tissue has been poorly characterized. OBJECTIVE To examine the distributions of adipose tissue concentrations of five toxic metal(loid)s (i.e., arsenic [As], nickel [Ni], lead [Pb], tin [Sn], and titanium [Ti]) in adults, and potential socio-demographic and lifestyle factors associated with metal(loid) concentrations. METHODS The study population consisted of a subsample of 228 subjects from GraMo cohort in Southern Spain (N = 387). Adipose tissue samples were intra-operatively collected from adults recruited in 2003-2004 in two public hospitals, and concentrations of metal(loid)s in adipose tissue were analyzed in 2015 by High-Resolution Inductively Coupled Plasma Mass Spectrometry. Data on socio-demographic and lifestyle factors were obtained by baseline questionnaire completion. Linear and multinomial regression was used to identify factors associated with metal(loid) levels. RESULTS Ni, Pb, Sn, and Ti were detected in all adipose tissue samples, and As in 51% of them. Ni was the metal showing the highest median concentration (0.56 μg/g), followed by Ti (0.31 μg/g), Pb (0.08 μg/g), Sn (0.06 μg/g), and As (0.003 μg/g). Predictors of As levels included area of residence, social class, and oily fish intake; for Ni: area of residence and consumption of cheese, meat, eggs, and canned food; for Pb: vegetables intake and industrial occupation; for Sn: age, body mass index, and consumption of lean fish, eggs, and milk; and cheese intake for Ti. Some of these predictors were sex-specific, particularly those regarding dietary intake. CONCLUSIONS This exploratory study provides the first evidence of the occurrence of Ni, Pb, Sn, Ti, and As in adipose tissue from adult population, and highlights the potential of this tissue as a biological matrix for studying exposure levels and chronic health effects of toxic metal(loid)s.
Collapse
Affiliation(s)
- Carmen Freire
- Instituto de Investigación Biosanitaria de Granada (ibs.Granada), Hospitales Universitarios de Granada, 18012 Granada, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain; Biomedical Research Centre, University of Granada, 18016 Granada, Spain.
| | - Petra Vrhovnik
- Slovenian National Building and Civil Engineering Institute (ZAG), SI-1000 Ljubljana, Slovenia.
| | - Željka Fiket
- Ruđer Bošković Institute, Division for Marine and Environmental Research, 10000 Zagreb, Croatia.
| | - Inmaculada Salcedo-Bellido
- Instituto de Investigación Biosanitaria de Granada (ibs.Granada), Hospitales Universitarios de Granada, 18012 Granada, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain; Department of Preventive Medicine and Public Health, University of Granada, 18016 Granada, Spain.
| | - Ruth Echeverría
- Department of Preventive Medicine and Public Health, University of Granada, 18016 Granada, Spain
| | - Piedad Martín-Olmedo
- Instituto de Investigación Biosanitaria de Granada (ibs.Granada), Hospitales Universitarios de Granada, 18012 Granada, Spain; Andalusian School of Public Health, 18011 Granada, Spain.
| | - Goran Kniewald
- Ruđer Bošković Institute, Division for Marine and Environmental Research, 10000 Zagreb, Croatia.
| | - Mariana F Fernández
- Instituto de Investigación Biosanitaria de Granada (ibs.Granada), Hospitales Universitarios de Granada, 18012 Granada, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain; Biomedical Research Centre, University of Granada, 18016 Granada, Spain; Department of Radiology and Physical Medicine, University of Granada, Granada 18016, Spain.
| | - Juan Pedro Arrebola
- Instituto de Investigación Biosanitaria de Granada (ibs.Granada), Hospitales Universitarios de Granada, 18012 Granada, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain; Department of Preventive Medicine and Public Health, University of Granada, 18016 Granada, Spain.
| |
Collapse
|
191
|
Montero N, Alhajj MJ, Sierra M, Oñate-Garzon J, Yarce CJ, Salamanca CH. Development of Polyelectrolyte Complex Nanoparticles-PECNs Loaded with Ampicillin by Means of Polyelectrolyte Complexation and Ultra-High Pressure Homogenization (UHPH). Polymers (Basel) 2020; 12:E1168. [PMID: 32443668 PMCID: PMC7285317 DOI: 10.3390/polym12051168] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/09/2020] [Accepted: 05/14/2020] [Indexed: 12/27/2022] Open
Abstract
This study was focused on synthesizing, characterizing and evaluating the biological potential of Polyelectrolyte Complex Nanoparticles (PECNs) loaded with the antibiotic ampicillin. For this, the PECNs were produced initially by polyelectrolytic complexation (bottom-up method) and subsequently subjected to ultra-high pressure homogenization-UHPH (top-down method). The synthetic polymeric materials corresponding to the sodium salt of poly(maleic acid-alt-octadecene) (PAM-18Na) and the chloride salt of Eudragit E-100 (EuCl) were used, where the order of polyelectrolyte complexation, the polyelectrolyte ratio and the UHPH conditions on the PECNs features were evaluated. Likewise, PECNs were physicochemically characterized through particle size, polydispersity index, zeta potential, pH and encapsulation efficiency, whereas the antimicrobial effect was evaluated by means of the broth microdilution method employing ampicillin sensitive and resistant S. aureus strains. The results showed that the classical method of polyelectrolyte complexation (bottom-up) led to obtain polymeric complexes with large particle size and high polydispersity, where the 1:1 ratio between the titrant and receptor polyelectrolyte was the most critical condition. In contrast, the UHPH technique (top-down method) proved high performance to produce uniform polymeric complexes on the nanometric scale (particle size < 200 nm and PDI < 0.3). Finally, it was found there was a moderate increase in antimicrobial activity when ampicillin was loaded into the PECNs.
Collapse
Affiliation(s)
- Nicolle Montero
- Laboratorio de Diseño y Formulación de Productos Químicos y Derivados, Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Naturales, Universidad ICESI, Calle 18 No. 122-135, Cali 760035, Colombia; (N.M.); (M.J.A.); (M.S.); (C.J.Y.)
| | - Maria J. Alhajj
- Laboratorio de Diseño y Formulación de Productos Químicos y Derivados, Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Naturales, Universidad ICESI, Calle 18 No. 122-135, Cali 760035, Colombia; (N.M.); (M.J.A.); (M.S.); (C.J.Y.)
| | - Mariana Sierra
- Laboratorio de Diseño y Formulación de Productos Químicos y Derivados, Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Naturales, Universidad ICESI, Calle 18 No. 122-135, Cali 760035, Colombia; (N.M.); (M.J.A.); (M.S.); (C.J.Y.)
| | - Jose Oñate-Garzon
- Grupo de Investigación en Química y Biotecnología (QUIBIO), Facultad de Ciencias Básicas, Universidad Santiago de Cali, calle 5 No. 62-00, Cali 760035, Colombia;
| | - Cristhian J. Yarce
- Laboratorio de Diseño y Formulación de Productos Químicos y Derivados, Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Naturales, Universidad ICESI, Calle 18 No. 122-135, Cali 760035, Colombia; (N.M.); (M.J.A.); (M.S.); (C.J.Y.)
| | - Constain H. Salamanca
- Laboratorio de Diseño y Formulación de Productos Químicos y Derivados, Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Naturales, Universidad ICESI, Calle 18 No. 122-135, Cali 760035, Colombia; (N.M.); (M.J.A.); (M.S.); (C.J.Y.)
| |
Collapse
|
192
|
MicroRNA Response and Toxicity of Potential Pathways in Human Colon Cancer Cells Exposed to Titanium Dioxide Nanoparticles. Cancers (Basel) 2020; 12:cancers12051236. [PMID: 32423014 PMCID: PMC7281448 DOI: 10.3390/cancers12051236] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/22/2020] [Accepted: 04/26/2020] [Indexed: 12/13/2022] Open
Abstract
Titanium dioxide nanoparticles (TiO2-NPs) are widely used for biomedical and food applications, the toxicity of TiO2-NPs in vivo and in vitro has been elucidated, but the underlying cytotoxicity of TiO2-NPs against microRNA remains largely unknown. The purpose of this study was to analyze microRNA profiling induced by TiO2-NPs against NCM460 and HCT116 cell lines. Comparative analysis identified 34 and 24 microRNAs were significantly altered in the TiO2-NPs treated cells at concentrations of 3 μg/mL and 30 μg/mL, respectively. Functional classification demonstrated that a large proportion of genes involved in metabolism, human disease, and environmental information process were significantly upregulated by TiO2-NPs. Bioinformatics analysis suggested that microRNA 378 might be an early indicator of cellular response to exogenous stimuli with apoptotic signals. Furthermore, TiO2-NPs significantly altered the expression of microRNA 378b and 378g in HCT116 and NCM460 cell lines at different concentrations from 3 to 6 μg/mL. These concentrations elicit high-sensitivity of stimuli response in colon cancer cells when exposed to the slight doses of TiO2-NPs. Our study indicated that microRNAs 378b and 378g may play an important role in TiO2-NPs-mediated colonic cytotoxicity, which may provide a valuable insight into the molecular mechanisms of potential risks in colitis and colon cancer.
Collapse
|
193
|
Danty PMP, Mazel A, Cormary B, De Marco ML, Allouche J, Flahaut D, Jimenez-Lamana J, Lacomme S, Delville MH, Drisko GL. Microwave-Assisted and Metal-Induced Crystallization: A Rapid and Low Temperature Combination. Inorg Chem 2020; 59:6232-6241. [DOI: 10.1021/acs.inorgchem.0c00358] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Paul M. P. Danty
- CNRS, Université de Bordeaux, Bordeaux INP, ICMCB, UMR 5026, 33600 Pessac, France
| | - Antoine Mazel
- CNRS, Université de Bordeaux, Bordeaux INP, ICMCB, UMR 5026, 33600 Pessac, France
| | - Benoit Cormary
- CNRS, Université de Bordeaux, Bordeaux INP, ICMCB, UMR 5026, 33600 Pessac, France
| | - Maria L. De Marco
- CNRS, Université de Bordeaux, Bordeaux INP, ICMCB, UMR 5026, 33600 Pessac, France
| | - Joachim Allouche
- CNRS, Université de Pau & Pays Adour, E2S UPPA, Institut des Sciences Analytiques et de Physicochimie pour l’Environnement et les Matériaux, UMR 5254, 64000 Pau, France
| | - Delphine Flahaut
- CNRS, Université de Pau & Pays Adour, E2S UPPA, Institut des Sciences Analytiques et de Physicochimie pour l’Environnement et les Matériaux, UMR 5254, 64000 Pau, France
| | - Javier Jimenez-Lamana
- CNRS, Université de Pau & Pays Adour, E2S UPPA, Institut des Sciences Analytiques et de Physicochimie pour l’Environnement et les Matériaux, UMR 5254, 64000 Pau, France
| | - Sabrina Lacomme
- Bordeaux Imaging Centre (UMS3420 CNRS—Université de Bordeaux/US4 INSERM), 146 rue Léo Saignat, 33000 Bordeaux, France
| | | | - Glenna L. Drisko
- CNRS, Université de Bordeaux, Bordeaux INP, ICMCB, UMR 5026, 33600 Pessac, France
| |
Collapse
|
194
|
Effects of Mixtures of Engineered Nanoparticles and Metallic Pollutants on Aquatic Organisms. ENVIRONMENTS 2020. [DOI: 10.3390/environments7040027] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In aquatic environment, engineered nanoparticles (ENPs) are present as complex mixtures with other pollutants, such as trace metals, which could result in synergism, additivity or antagonism of their combined effects. Despite the fact that the toxicity and environmental risk of the ENPs have received extensive attention in the recent years, the interactions of ENPs with other pollutants and the consequent effects on aquatic organisms represent an important challenge in (nano)ecotoxicology. The present review provides an overview of the state-of-the-art and critically discusses the existing knowledge on combined effects of mixtures of ENPs and metallic pollutants on aquatic organisms. The specific emphasis is on the adsorption of metallic pollutants on metal-containing ENPs, transformation and bioavailability of ENPs and metallic pollutants in mixtures. Antagonistic, additive and synergistic effects observed in aquatic organisms co-exposed to ENPs and metallic pollutants are discussed in the case of “particle-proof” and “particle-ingestive” organisms. This knowledge is important in developing efficient strategies for sound environmental impact assessment of mixture exposure in complex environments.
Collapse
|
195
|
Chen RJ, Chen YY, Liao MY, Lee YH, Chen ZY, Yan SJ, Yeh YL, Yang LX, Lee YL, Wu YH, Wang YJ. The Current Understanding of Autophagy in Nanomaterial Toxicity and Its Implementation in Safety Assessment-Related Alternative Testing Strategies. Int J Mol Sci 2020; 21:E2387. [PMID: 32235610 PMCID: PMC7177614 DOI: 10.3390/ijms21072387] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/16/2020] [Accepted: 03/28/2020] [Indexed: 12/15/2022] Open
Abstract
Nanotechnology has rapidly promoted the development of a new generation of industrial and commercial products; however, it has also raised some concerns about human health and safety. To evaluate the toxicity of the great diversity of nanomaterials (NMs) in the traditional manner, a tremendous number of safety assessments and a very large number of animals would be required. For this reason, it is necessary to consider the use of alternative testing strategies or methods that reduce, refine, or replace (3Rs) the use of animals for assessing the toxicity of NMs. Autophagy is considered an early indicator of NM interactions with cells and has been recently recognized as an important form of cell death in nanoparticle-induced toxicity. Impairment of autophagy is related to the accelerated pathogenesis of diseases. By using mechanism-based high-throughput screening in vitro, we can predict the NMs that may lead to the generation of disease outcomes in vivo. Thus, a tiered testing strategy is suggested that includes a set of standardized assays in relevant human cell lines followed by critical validation studies carried out in animals or whole organism models such as C. elegans (Caenorhabditis elegans), zebrafish (Danio rerio), and Drosophila (Drosophila melanogaster)for improved screening of NM safety. A thorough understanding of the mechanisms by which NMs perturb biological systems, including autophagy induction, is critical for a more comprehensive elucidation of nanotoxicity. A more profound understanding of toxicity mechanisms will also facilitate the development of prevention and intervention policies against adverse outcomes induced by NMs. The development of a tiered testing strategy for NM hazard assessment not only promotes a more widespread adoption of non-rodent or 3R principles but also makes nanotoxicology testing more ethical, relevant, and cost- and time-efficient.
Collapse
Affiliation(s)
- Rong-Jane Chen
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan;
| | - Yu-Ying Chen
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan; (Y.-Y.C.); (Z.-Y.C.); (Y.-L.Y.)
| | - Mei-Yi Liao
- Department of Applied Chemistry, National Pingtung University, Pingtung 900, Taiwan;
| | - Yu-Hsuan Lee
- Department of Cosmeceutics, China Medical University, Taichung 651, Taiwan;
| | - Zi-Yu Chen
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan; (Y.-Y.C.); (Z.-Y.C.); (Y.-L.Y.)
| | - Shian-Jang Yan
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan;
| | - Ya-Ling Yeh
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan; (Y.-Y.C.); (Z.-Y.C.); (Y.-L.Y.)
| | - Li-Xing Yang
- Institute of Oral Medicine and Department of Stomatology, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan 701, Taiwan;
| | - Yen-Ling Lee
- Department of Hematology/Oncology, Tainan Hospital of Health and Welfare, Tainan 700, Taiwan;
| | - Yuan-Hua Wu
- Department of Radiation Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Ying-Jan Wang
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan; (Y.-Y.C.); (Z.-Y.C.); (Y.-L.Y.)
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan
| |
Collapse
|
196
|
Rosário F, Bessa MJ, Brandão F, Costa C, Lopes CB, Estrada AC, Tavares DS, Teixeira JP, Reis AT. Unravelling the Potential Cytotoxic Effects of Metal Oxide Nanoparticles and Metal(Loid) Mixtures on A549 Human Cell Line. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E447. [PMID: 32131449 PMCID: PMC7153484 DOI: 10.3390/nano10030447] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/21/2020] [Accepted: 02/25/2020] [Indexed: 12/31/2022]
Abstract
Humans are typically exposed to environmental contaminants' mixtures that result in different toxicity than exposure to the individual counterparts. Yet, the toxicology of chemical mixtures has been overlooked. This work aims at assessing and comparing viability and cell cycle of A549 cells after exposure to single and binary mixtures of: titanium dioxide nanoparticles (TiO2NP) 0.75-75 mg/L; cerium oxide nanoparticles (CeO2NP) 0.0.75-10 μg/L; arsenic (As) 0.75-2.5 mg/L; and mercury (Hg) 5-100 mg/L. Viability was assessed through water-soluble tetrazolium (WST-1) and thiazolyl blue tetrazolium bromide (MTT) (24 h exposure) and clonogenic (seven-day exposure) assays. Cell cycle alterations were explored by flow cytometry. Viability was affected in a dose- and time-dependent manner. Prolonged exposure caused inhibition of cell proliferation even at low concentrations. Cell-cycle progression was affected by TiO2NP 75 mg/L, and As 0.75 and 2.5 μg/L, increasing the cell proportion at G0/G1 phase. Combined exposure of TiO2NP or CeO2NP mitigated As adverse effects, increasing the cell surviving factor, but cell cycle alterations were still observed. Only CeO2NP co-exposure reduced Hg toxicity, translated in a decrease of cells in Sub-G1. Toxicity was diminished for both NPs co-exposure compared to its toxicity alone, but a marked toxicity for the highest concentrations was observed for longer exposures. These findings prove that joint toxicity of contaminants must not be disregarded.
Collapse
Grants
- PTDC/SAU-PUB/29651/2017 COMPETE 2020, Portugal 2020 and European Union, through FEDER
- SFRH/BPD/122112/2016 (A.T.Reis) FCT - Fundação para a Ciência e a Tecnologia, I.P.
- contract foreseen in the numbers 4, 5 and 6 of the article 23, of the Decree-Law 57/2016, of August 29, changed by Law 57/2017, of July 19 (C.B. Lopes and A.C. Estrada) FCT - Fundação para a Ciência e a Tecnologia, I.P.
- SFRH/BD/101060/2014 (F. Brandão) FCT - Fundação para a Ciência e a Tecnologia, I.P.
- SFRH/BD/12046/2016 (M.J. Bessa) FCT - Fundação para a Ciência e a Tecnologia, I.P.
Collapse
Affiliation(s)
- Fernanda Rosário
- EPIUnit—Instituto de Saúde Pública, Universidade do Porto, Rua das Taipas, n° 135, 4050-600 Porto, Portugal; (F.R.); (M.J.B.); (F.B.); (C.C.); (J.P.T.)
- Department of Environmental Health, Portuguese National Institute of Health, Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal
| | - Maria João Bessa
- EPIUnit—Instituto de Saúde Pública, Universidade do Porto, Rua das Taipas, n° 135, 4050-600 Porto, Portugal; (F.R.); (M.J.B.); (F.B.); (C.C.); (J.P.T.)
- Department of Environmental Health, Portuguese National Institute of Health, Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal
- ICBAS—Institute of Biomedical Sciences Abel Salazar, U. Porto—University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Fátima Brandão
- EPIUnit—Instituto de Saúde Pública, Universidade do Porto, Rua das Taipas, n° 135, 4050-600 Porto, Portugal; (F.R.); (M.J.B.); (F.B.); (C.C.); (J.P.T.)
- Department of Environmental Health, Portuguese National Institute of Health, Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal
- ICBAS—Institute of Biomedical Sciences Abel Salazar, U. Porto—University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Carla Costa
- EPIUnit—Instituto de Saúde Pública, Universidade do Porto, Rua das Taipas, n° 135, 4050-600 Porto, Portugal; (F.R.); (M.J.B.); (F.B.); (C.C.); (J.P.T.)
- Department of Environmental Health, Portuguese National Institute of Health, Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal
| | - Cláudia B. Lopes
- Department of Chemistry and Aveiro Institute of Materials (CICECO), University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal; (C.B.L.); (A.C.E.); (D.S.T.)
| | - Ana C. Estrada
- Department of Chemistry and Aveiro Institute of Materials (CICECO), University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal; (C.B.L.); (A.C.E.); (D.S.T.)
| | - Daniela S. Tavares
- Department of Chemistry and Aveiro Institute of Materials (CICECO), University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal; (C.B.L.); (A.C.E.); (D.S.T.)
- Department of Chemistry and Center of Environmental and Marine Studies (CESAM), University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - João Paulo Teixeira
- EPIUnit—Instituto de Saúde Pública, Universidade do Porto, Rua das Taipas, n° 135, 4050-600 Porto, Portugal; (F.R.); (M.J.B.); (F.B.); (C.C.); (J.P.T.)
- Department of Environmental Health, Portuguese National Institute of Health, Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal
| | - Ana Teresa Reis
- EPIUnit—Instituto de Saúde Pública, Universidade do Porto, Rua das Taipas, n° 135, 4050-600 Porto, Portugal; (F.R.); (M.J.B.); (F.B.); (C.C.); (J.P.T.)
- Department of Environmental Health, Portuguese National Institute of Health, Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| |
Collapse
|
197
|
Lopes D, Daniel-da-Silva AL, Sarabando AR, Arias-Serrano BI, Rodríguez-Aguado E, Rodríguez-Castellón E, Trindade T, Frade JR, Kovalevsky AV. Design of Multifunctional Titania-Based Photocatalysts by Controlled Redox Reactions. MATERIALS 2020; 13:ma13030758. [PMID: 32046064 PMCID: PMC7040659 DOI: 10.3390/ma13030758] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 01/27/2020] [Accepted: 02/05/2020] [Indexed: 11/16/2022]
Abstract
This work aims at the preparation of multifunctional titania-based photocatalysts with inherent capabilities for thermal co-activation and stabilisation of anatase polymorph, by designing the phase composition and microstructure of rutile-silicon carbide mixture. The processing involved a conventional solid state route, including partial pre-reduction of rutile by SiC in inert Ar atmosphere, followed by post-oxidation in air. The impacts of processing conditions on the phase composition and photocatalytic activity were evaluated using Taguchi planning. The XRD studies confirmed the presence of rutile/anatase mixtures in the post-oxidised samples. The results emphasise that pre-reduction and post-oxidation temperatures are critical in defining the phase composition, while post-oxidation time is relevant for the photocatalytic performance. Microstructural studies revealed the formation of core-shell particles, which can suppress the photocatalytic activity. The highest apparent reaction rate of the photodegradation of methylene blue was observed for the sample pre-reduced in Ar at 1300 °C for 5 h and then calcined in air at 400 °C for 25 h. Though its performance was ~1.6-times lower than that for the same amount of nanostructured industrial P25 photocatalyst, it was achieved in the material possessing 2–3 times lower surface area and containing ~50 mol% of SiO2 and SiC, thus demonstrating excellent prospects for further improvements.
Collapse
Affiliation(s)
- Diogo Lopes
- CICECO–Aveiro Institute of Materials, Department of Materials and Ceramic Engineering, University of Aveiro, 3810-193 Aveiro, Portugal; (D.L.); (B.I.A.-S.); (J.R.F.)
| | - Ana Luísa Daniel-da-Silva
- CICECO–Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (A.L.D.-d.-S.); (T.T.)
| | - Artur R. Sarabando
- CICECO–Aveiro Institute of Materials, Department of Materials and Ceramic Engineering, University of Aveiro, 3810-193 Aveiro, Portugal; (D.L.); (B.I.A.-S.); (J.R.F.)
| | - Blanca I. Arias-Serrano
- CICECO–Aveiro Institute of Materials, Department of Materials and Ceramic Engineering, University of Aveiro, 3810-193 Aveiro, Portugal; (D.L.); (B.I.A.-S.); (J.R.F.)
| | - Elena Rodríguez-Aguado
- Departamento de Química Inorgánica, Cristalografía y Mineralogía (Unidad Asociada al ICP-CSIC), Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos, 29071 Málaga, Spain; (E.R.-A.); (E.R.-C.)
| | - Enrique Rodríguez-Castellón
- Departamento de Química Inorgánica, Cristalografía y Mineralogía (Unidad Asociada al ICP-CSIC), Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos, 29071 Málaga, Spain; (E.R.-A.); (E.R.-C.)
| | - Tito Trindade
- CICECO–Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (A.L.D.-d.-S.); (T.T.)
| | - Jorge R. Frade
- CICECO–Aveiro Institute of Materials, Department of Materials and Ceramic Engineering, University of Aveiro, 3810-193 Aveiro, Portugal; (D.L.); (B.I.A.-S.); (J.R.F.)
| | - Andrei V. Kovalevsky
- CICECO–Aveiro Institute of Materials, Department of Materials and Ceramic Engineering, University of Aveiro, 3810-193 Aveiro, Portugal; (D.L.); (B.I.A.-S.); (J.R.F.)
- Correspondence:
| |
Collapse
|
198
|
TiO 2 Nanomaterials Non-Controlled Contamination Could Be Hazardous for Normal Cells Located in the Field of Radiotherapy. Int J Mol Sci 2020; 21:ijms21030940. [PMID: 32023866 PMCID: PMC7037422 DOI: 10.3390/ijms21030940] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 01/24/2020] [Accepted: 01/27/2020] [Indexed: 01/14/2023] Open
Abstract
Among nanomaterials (NMs), titanium dioxide (TiO2) is one of the most manufactured NMs and can be found in many consumers' products such as skin care products, textiles and food (as E171 additive). Moreover, due to its most attractive property, a photoactivation upon non-ionizing UVA radiation, TiO2 NMs is widely used as a decontaminating agent. Uncontrolled contaminations by TiO2 NMs during their production (professional exposure) or by using products (consumer exposure) are rather frequent. So far, TiO2 NMs cytotoxicity is still a matter of controversy depending on biological models, types of TiO2 NMs, suspension preparation and biological endpoints. TiO2 NMs photoactivation has been widely described for UV light radiation exposure, it could lead to reactive oxygen species production, known to be both cyto- and genotoxic on human cells. After higher photon energy exposition, such as X-rays used for radiotherapy and for medical imaging, TiO2 NMs photoactivation still occurs. Importantly, the question of its hazard in the case of body contamination of persons receiving radiotherapy was never addressed, knowing that healthy tissues surrounding the tumor are indeed exposed. The present work focuses on the analysis of human normal bronchiolar cell response after co-exposition TiO2 NMs (with different coatings) and ionizing radiation. Our results show a clear synergistic effect, in terms of cell viability, cell death and oxidative stress, between TiO2 NMS and radiation.
Collapse
|
199
|
Carrouel F, Viennot S, Ottolenghi L, Gaillard C, Bourgeois D. Nanoparticles as Anti-Microbial, Anti-Inflammatory, and Remineralizing Agents in Oral Care Cosmetics: A Review of the Current Situation. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E140. [PMID: 31941021 PMCID: PMC7022934 DOI: 10.3390/nano10010140] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 12/22/2019] [Accepted: 01/10/2020] [Indexed: 12/29/2022]
Abstract
Many investigations have pointed out widespread use of medical nanosystems in various domains of dentistry such as prevention, prognosis, care, tissue regeneration, and restoration. The progress of oral medicine nanosystems for individual prophylaxis is significant for ensuring bacterial symbiosis and high-quality oral health. Nanomaterials in oral cosmetics are used in toothpaste and other mouthwash to improve oral healthcare performance. These processes cover nanoparticles and nanoparticle-based materials, especially domains of application related to biofilm management in cariology and periodontology. Likewise, nanoparticles have been integrated in diverse cosmetic produces for the care of enamel remineralization and dental hypersensitivity. This review summarizes the indications and applications of several widely employed nanoparticles in oral cosmetics, and describes the potential clinical implementation of nanoparticles as anti-microbial, anti-inflammatory, and remineralizing agents in the prevention of dental caries, hypersensitivity, and periodontitis.
Collapse
Affiliation(s)
- Florence Carrouel
- Laboratory “Systemic Health Care”, University of Lyon, University Claude Bernard Lyon 1, EA4129, 69008 Lyon, France; (S.V.); (D.B.)
| | - Stephane Viennot
- Laboratory “Systemic Health Care”, University of Lyon, University Claude Bernard Lyon 1, EA4129, 69008 Lyon, France; (S.V.); (D.B.)
| | - Livia Ottolenghi
- Department of Oral and Maxillo-facial Sciences, Sapienza University of Rome, 00185 Rome, Italy;
| | - Cedric Gaillard
- Institut national de Recherche en Agriculture, Alimentation et Environnement (INRAE), Unité de Recherche 1268 Biopolymères Interactions Assemblages (BIA), 44316 Nantes, France;
| | - Denis Bourgeois
- Laboratory “Systemic Health Care”, University of Lyon, University Claude Bernard Lyon 1, EA4129, 69008 Lyon, France; (S.V.); (D.B.)
| |
Collapse
|
200
|
Staroń A, Długosz O, Pulit-Prociak J, Banach M. Analysis of the Exposure of Organisms to the Action of Nanomaterials. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E349. [PMID: 31940903 PMCID: PMC7014467 DOI: 10.3390/ma13020349] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/03/2020] [Accepted: 01/09/2020] [Indexed: 12/25/2022]
Abstract
The rapid development of the production of materials containing metal nanoparticles and metal oxides is a potential risk to the environment. The degree of exposure of organisms to nanoparticles increases from year to year, and its effects are not fully known. This is due to the fact that the range of nanoparticle interactions on cells, tissues and the environment requires careful analysis. It is necessary to develop methods for testing the properties of nanomaterials and the mechanisms of their impact on individual cells as well as on entire organisms. The particular need to raise public awareness of the main sources of exposure to nanoparticles should also be highlighted. This paper presents the main sources and possible routes of exposure to metal nanoparticles and metal oxides. Key elements of research on the impact of nanoparticles on organisms, that is, in vitro tests, in vivo tests and methods of detection of nanoparticles in organisms, are presented.
Collapse
Affiliation(s)
| | | | | | - Marcin Banach
- Faculty of Chemical Engineering and Technology, Cracow University of Technology, 24 Warszawska St., 31-155 Cracow, Poland; (A.S.); (O.D.); (J.P.-P.)
| |
Collapse
|