151
|
Tuncay Söylemez, Mustafa Yamaç. Screening of Macrofungi Isolates for Aflatoxin B1 and Ochratoxin A Degradation. BIOL BULL+ 2021. [DOI: 10.1134/s1062359021020126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
152
|
Deng LZ, Sutar PP, Mujumdar AS, Tao Y, Pan Z, Liu YH, Xiao HW. Thermal Decontamination Technologies for Microorganisms and Mycotoxins in Low-Moisture Foods. Annu Rev Food Sci Technol 2021; 12:287-305. [PMID: 33317321 DOI: 10.1146/annurev-food-062220-112934] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The contamination risks of microorganisms and mycotoxins in low-moisture foods have heightened public concern. Developing novel decontamination technologies to improve the safety of low-moisture foods is of great interest in both economics and public health. This review summarizes the working principles and applications of novel thermal decontamination technologies such as superheated steam, infrared, microwave, and radio-frequency heating as well as extrusion cooking. These methods of decontamination can effectively reduce the microbial load on products andmoderately destruct the mycotoxins. Meanwhile, several integrated technologies have been developed that take advantage of synergistic effects to achieve the maximum destruction of contaminants and minimize the deterioration of products.
Collapse
Affiliation(s)
- Li-Zhen Deng
- College of Engineering, China Agricultural University, 100083 Beijing, China; .,State Key Laboratory of Food Science and Technology, Nanchang University, 330047 Nanchang, China
| | - Parag Prakash Sutar
- Department of Food Process Engineering, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Arun S Mujumdar
- Department of Bioresource Engineering, McGill University, Ste. Anne de Bellevue, Quebec H9X 3V9, Canada
| | - Yang Tao
- College of Food Science and Technology, Nanjing Agricultural University, 210095 Nanjing, China
| | - Zhongli Pan
- Department of Biological and Agricultural Engineering, University of California, Davis, California 95616, USA
| | - Yan-Hong Liu
- College of Engineering, China Agricultural University, 100083 Beijing, China;
| | - Hong-Wei Xiao
- College of Engineering, China Agricultural University, 100083 Beijing, China;
| |
Collapse
|
153
|
Mirón-Mérida VA, Gong YY, Goycoolea FM. Aptamer-based detection of fumonisin B1: A critical review. Anal Chim Acta 2021; 1160:338395. [PMID: 33894965 DOI: 10.1016/j.aca.2021.338395] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/02/2021] [Accepted: 03/05/2021] [Indexed: 01/07/2023]
Abstract
Mycotoxin contamination is a current issue affecting several crops and processed products worldwide. Among the diverse mycotoxin group, fumonisin B1 (FB1) has become a relevant compound because of its adverse effects in the food chain. Conventional analytical methods previously proposed to quantify FB1 comprise LC-MS, HPLC-FLD and ELISA, while novel approaches integrate different sensing platforms and fluorescently labelled agents in combination with antibodies. Nevertheless, such methods could be expensive, time-consuming and require experience. Aptamers (ssDNA) are promising alternatives to overcome some of the drawbacks of conventional analytical methods, their high affinity through specific aptamer-target binding has been exploited in various designs attaining favorable limits of detection (LOD). So far, two aptamers specific to FB1 have been reported, and their modified and shortened sequences have been explored for a successful target quantification. In this critical review spanning the last eight years, we have conducted a systematic comparison based on principal component analysis of the aptamer-based techniques for FB1, compared with chromatographic, immunological and other analytical methods. We have also conducted an in-silico prediction of the folded structure of both aptamers under their reported conditions. The potential of aptasensors for the future development of highly sensitive FB1 testing methods is emphasized.
Collapse
Affiliation(s)
| | - Yun Yun Gong
- School of Food Science and Nutrition, University of Leeds, Leeds, LS2 9JT, United Kingdom.
| | - Francisco M Goycoolea
- School of Food Science and Nutrition, University of Leeds, Leeds, LS2 9JT, United Kingdom.
| |
Collapse
|
154
|
Pickova D, Ostry V, Malir F. A Recent Overview of Producers and Important Dietary Sources of Aflatoxins. Toxins (Basel) 2021; 13:186. [PMID: 33802572 PMCID: PMC7998637 DOI: 10.3390/toxins13030186] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/22/2021] [Accepted: 02/26/2021] [Indexed: 02/06/2023] Open
Abstract
Aflatoxins (AFs) are some of the most agriculturally important and harmful mycotoxins. At least 20 AFs have been identified to this date. Aflatoxin B1 (AFB1), the most potent fungal toxin, can cause toxicity in many species, including humans. AFs are produced by 22 species of Aspergillus section Flavi, 4 species of A. section Nidulantes, and 2 species of A. section Ochraceorosei. The most important and well-known AF-producing species of section Flavi are Aspergillus flavus, A. parasiticus, and A. nomius. AFs contaminate a wide range of crops (mainly groundnuts, pistachio nuts, dried figs, hazelnuts, spices, almonds, rice, melon seeds, Brazil nuts, and maize). Foods of animal origin (milk and animal tissues) are less likely contributors to human AF exposure. Despite the efforts to mitigate the AF concentrations in foods, and thus enhance food safety, AFs continue to be present, even at high levels. AFs thus remain a current and continuously pressing problem in the world.
Collapse
Affiliation(s)
- Darina Pickova
- Department of Biology, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, CZ-50003 Hradec Kralove, Czech Republic; (V.O.); (F.M.)
| | - Vladimir Ostry
- Department of Biology, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, CZ-50003 Hradec Kralove, Czech Republic; (V.O.); (F.M.)
- Center for Health, Nutrition and Food in Brno, National Institute of Public Health in Prague, Palackeho 3a, CZ-61242 Brno, Czech Republic
| | - Frantisek Malir
- Department of Biology, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, CZ-50003 Hradec Kralove, Czech Republic; (V.O.); (F.M.)
| |
Collapse
|
155
|
Ragoubi C, Quintieri L, Greco D, Mehrez A, Maatouk I, D’Ascanio V, Landoulsi A, Avantaggiato G. Mycotoxin Removal by Lactobacillus spp. and Their Application in Animal Liquid Feed. Toxins (Basel) 2021; 13:toxins13030185. [PMID: 33801544 PMCID: PMC8000088 DOI: 10.3390/toxins13030185] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 11/16/2022] Open
Abstract
The removal of mycotoxins from contaminated feed using lactic acid bacteria (LAB) has been proposed as an inexpensive, safe, and promising mycotoxin decontamination strategy. In this study, viable and heat-inactivated L. acidophilus CIP 76.13T and L. delbrueckii subsp. bulgaricus CIP 101027T cells were investigated for their ability to remove aflatoxin B1 (AFB1), ochratoxin A (OTA), zearalenone (ZEA), and deoxynivalenol (DON) from MRS medium and PBS buffer over a 24 h period at 37 °C. LAB decontamination activity was also assessed in a ZEA-contaminated liquid feed (LF). Residual mycotoxin concentrations were determined by UHPLC-FLD/DAD analysis. In PBS, viable L. acidophilus CIP 76.13T and L. delbrueckii subsp. bulgaricus CIP 101027T cells removed up to 57% and 30% of ZEA and DON, respectively, while AFB1 and OTA reductions were lower than 15%. In MRS, 28% and 33% of ZEA and AFB1 were removed, respectively; OTA and DON reductions were small (≤15%). Regardless of the medium, heat-inactivated cells produced significantly lower mycotoxin reductions than those obtained with viable cells. An adsorption mechanism was suggested to explain the reductions in AFB1 and OTA, while biodegradation could be responsible for the removal of ZEA and DON. Both viable LAB strains reduced ZEA by 23% in contaminated LF after 48 h of incubation. These findings suggest that LAB strains of L. acidophilus CIP 76.13T and L. delbrueckii subsp. bulgaricus CIP 101027T may be applied in the feed industry to reduce mycotoxin contamination.
Collapse
Affiliation(s)
- Chaima Ragoubi
- Risques liés aux Stress Environnement aux, Lute et Prévention, Faculté des Sciences de Bizerte, Université de Carthage, Zarzouna 7021, Tunisia; (C.R.); (A.M.); (I.M.); (A.L.)
| | - Laura Quintieri
- Institute of Sciences of Food Production, National Research Council of Italy, 70126 Bari, Italy; (L.Q.); (D.G.); (V.D.)
| | - Donato Greco
- Institute of Sciences of Food Production, National Research Council of Italy, 70126 Bari, Italy; (L.Q.); (D.G.); (V.D.)
| | - Amel Mehrez
- Risques liés aux Stress Environnement aux, Lute et Prévention, Faculté des Sciences de Bizerte, Université de Carthage, Zarzouna 7021, Tunisia; (C.R.); (A.M.); (I.M.); (A.L.)
| | - Imed Maatouk
- Risques liés aux Stress Environnement aux, Lute et Prévention, Faculté des Sciences de Bizerte, Université de Carthage, Zarzouna 7021, Tunisia; (C.R.); (A.M.); (I.M.); (A.L.)
| | - Vito D’Ascanio
- Institute of Sciences of Food Production, National Research Council of Italy, 70126 Bari, Italy; (L.Q.); (D.G.); (V.D.)
| | - Ahmed Landoulsi
- Risques liés aux Stress Environnement aux, Lute et Prévention, Faculté des Sciences de Bizerte, Université de Carthage, Zarzouna 7021, Tunisia; (C.R.); (A.M.); (I.M.); (A.L.)
| | - Giuseppina Avantaggiato
- Institute of Sciences of Food Production, National Research Council of Italy, 70126 Bari, Italy; (L.Q.); (D.G.); (V.D.)
- Correspondence:
| |
Collapse
|
156
|
Blocking and degradation of aflatoxins by cold plasma treatments: Applications and mechanisms. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.01.053] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
157
|
Ademola O, Saha Turna N, Liverpool-Tasie LSO, Obadina A, Wu F. Mycotoxin reduction through lactic acid fermentation: Evidence from commercial ogi processors in southwest Nigeria. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107620] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
158
|
Massarolo KC, Mendoza JR, Verma T, Kupski L, Badiale-Furlong E, Bianchini A. Fate of aflatoxins in cornmeal during single-screw extrusion: A bioaccessibility approach. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110734] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
159
|
Chibuzor-Onyema IE, Ezeokoli OT, Sulyok M, Notununu I, Petchkongkaew A, Elliott CT, Adeleke RA, Krska R, Ezekiel CN. Metataxonomic analysis of bacterial communities and mycotoxin reduction during processing of three millet varieties into ogi, a fermented cereal beverage. Food Res Int 2021; 143:110241. [PMID: 33992353 DOI: 10.1016/j.foodres.2021.110241] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 02/08/2021] [Accepted: 02/14/2021] [Indexed: 12/16/2022]
Abstract
Ogi is a fermented cereal beverage, made primarily from maize (Zea mays) and rarely from millets. Unlike maize-based ogi, little is known about the bacterial community and mycotoxin profile during the production of millet-based ogi. Therefore, the bacterial community dynamics and mycotoxin reduction during ogi processing from three millet varieties were investigated using next-generation sequencing of the 16S rRNA gene and liquid chromatography-tandem mass spectrometry, respectively. A total of 1163 amplicon sequence variants (ASVs) were obtained, with ASV diversity across time intervals influenced by processing stage and millet variety. ASV distribution among samples suggested that the souring stage was more influenced by millet variety than the steeping stage, and that souring may be crucial for the quality attributes of the ogi. Furthermore, bacterial community structure during steeping and souring was significantly differentiated (PERMANOVA, P < 0.05) between varieties, with close associations observed for closely-related millet varieties. Taxonomically, Firmicutes, followed by Actinobacteria, Bacteroidetes, Cyanobacteria and Proteobacteria phyla were relatively abundant (>1%). Lactic acid bacteria, such as Burkholderia-Caballeronia-Paraburkholderia, Lactobacillus, Lactococcus and Pediococcus, dominated most fermentation stages, suggesting their roles as key fermentative and functional bacteria in relation to mycotoxin reduction. About 52-100%, 58-100% and 100% reductions in mycotoxin (aflatoxins, beauvericin, citrinin, moniliformin, sterigmatocystin and zearalenone) concentrations were recorded after processing of white fonio, brown fonio and finger millet, respectively, into ogi. This study provides new knowledge of the dominant bacterial genera vital for the improvement of millet-based ogi through starter culture development and as well, elucidates the role of processing in reducing mycotoxins in millet ogi.
Collapse
Affiliation(s)
| | - Obinna T Ezeokoli
- Pathogenic Yeast Research Group, Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein, South Africa
| | - Michael Sulyok
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences Vienna (BOKU), Konrad Lorenz-Str. 20, A-3430 Tulln, Austria
| | - Iviwe Notununu
- Microbiology and Environmental Biotechnology Research Group, Agricultural Research Council-Institute for Soil, Climate and Water, Pretoria, South Africa; Department of Biochemistry, Genetics and Microbiology, University of Pretoria, South Africa
| | - Awanwee Petchkongkaew
- School of Food Science and Technology, Faculty of Science and Technology, Thammasat University (Rangsit Campus), Pathumthani, Thailand; Institute for Global Food Security, School of Biological Sciences, Queens University Belfast, Belfast BT9 5BN, Northern Ireland, United Kingdom
| | - Christopher T Elliott
- Institute for Global Food Security, School of Biological Sciences, Queens University Belfast, Belfast BT9 5BN, Northern Ireland, United Kingdom
| | - Rasheed A Adeleke
- Unit for Environmental Science and Management, North-West University (Potchefstroom Campus), Potchefstroom, South Africa
| | - Rudolf Krska
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences Vienna (BOKU), Konrad Lorenz-Str. 20, A-3430 Tulln, Austria; Institute for Global Food Security, School of Biological Sciences, Queens University Belfast, Belfast BT9 5BN, Northern Ireland, United Kingdom
| | - Chibundu N Ezekiel
- Department of Microbiology, Babcock University, Ilishan Remo, Ogun State, Nigeria; Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences Vienna (BOKU), Konrad Lorenz-Str. 20, A-3430 Tulln, Austria.
| |
Collapse
|
160
|
Yang Y, Yin Y, Wang S, Dong Y. Simultaneous determination of zearalenone and ochratoxin A based on microscale thermophoresis assay with a bifunctional aptamer. Anal Chim Acta 2021; 1155:338345. [PMID: 33766318 DOI: 10.1016/j.aca.2021.338345] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/14/2021] [Accepted: 02/17/2021] [Indexed: 11/29/2022]
Abstract
Nowadays, contamination of various mycotoxins in crops and their products exposes increasing risks to human health. Efficient determination methods are urgently needed. Herein, a bifunctional aptamer and a simple aptasensor based on microscale thermophoresis assay (MST) were constructed for the first time for simultaneous determination of two mycotoxins, i.e. zearalenone (ZEN) and ochratoxin A (OTA). The bifunctional aptamer was engineered by splicing a ZEN aptamer and an OTA aptamer with a linker according to the structure analysis of aptamers. The binding mechanism of the bifunctional aptamer to ZEN and OTA were revealed basing on the molecular docking studies. The MST assay proved that the bifunctional aptamer showed high affinity and specificity towards ZEN and OTA. Furthermore, a bifunctional aptamer-based MST-aptasensor was developed for simultaneous detection of ZEN and OTA in corn oil sample. The MST-aptasensor provided a limit of detection (LOD) of 0.12 nM, with satisfactory recoveries of 93.31-104.19% and excellent selectivity, indicating that the bifunctional aptamer and MST-aptasensor had great potential in practical applications.
Collapse
Affiliation(s)
- Yan Yang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Yingai Yin
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Sai Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, PR China.
| | - Yiyang Dong
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China.
| |
Collapse
|
161
|
Kaale L, Kimanya M, Macha I, Mlalila N. Aflatoxin contamination and recommendations to improve its control: a review. WORLD MYCOTOXIN J 2021. [DOI: 10.3920/wmj2020.2599] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Aflatoxin producing fungi cause contamination of food and feed resulting in health hazards and economic loss. It is imperative to develop workable control measures throughout the food chain to prevent and reduce aflatoxin contamination. This is a critical review of contemporary published papers in the field. It is a review of reports from the original aflatoxin researches conducted on foods, from 2015-2020. Most of the reports show high aflatoxin contaminations in food at levels that exceed a regulatory limit of 20 μg/kg and 4 μg/kg set for foods for human consumption in the USA and European Union, respectively. The highest aflatoxin concentration (3,760 μg/kg) was observed in maize. Some of the strategies being deployed in aflatoxin control include application of biocontrol agents, specifically of Aflasafe™, development of resistant crop varieties, and application of other good agricultural practices. We recommend the adoption of emerging technologies such as combined methods technology (CMT) or hurdle technology, one health concept (OHC), improved regulations, on-line monitoring of aflatoxins, and creative art intervention (CAI) to prevent or restrict the growth of target aflatoxin causative fungi.
Collapse
Affiliation(s)
- L.D. Kaale
- University of Dar es Salaam (UDSM), Department of Food Science and Technology, P.O. Box 35134, Dar es Salaam, Tanzania
| | - M.E. Kimanya
- School of Life Sciences and Bioengineering, Nelson Mandela African Institution of Science and Technology, P.O. Box 447, Arusha, Tanzania
| | - I.J. Macha
- University of Dar es Salaam (UDSM), Department of Mechanical and Industrial Engineering, P.O. Box 35131, Dar es Salaam, Tanzania
| | - N. Mlalila
- University of Dar es Salaam (UDSM), Department of Food Science and Technology, P.O. Box 35134, Dar es Salaam, Tanzania
- Ministry of Livestock and Fisheries, P.O. Box 2847, Dodoma, Tanzania
| |
Collapse
|
162
|
Abstract
Several food commodities can be infected by filamentous fungi, both in the field and during storage. Some of these fungi, under appropriate conditions, are capable of producing a wide range of secondary metabolites, including mycotoxins, which may resist food processing and arise in the final feed and food products. Contamination of these products with mycotoxins still occurs very often and that is why research in this area is valuable and still evolving. The best way to avoid contamination is prevention; however, when it is not possible, remediation is the solution. Enzymatic biodegradation of mycotoxins is a green solution for removal of these compounds that has attracted growing interest over recent years. Due to their ability to detoxify a wide variety of recalcitrant pollutants, laccases have received a lot of attention. Laccases are multi-copper proteins that use molecular oxygen to oxidise various aromatic and non-aromatic compounds, by a radical-catalysed reaction mechanism. Being non-specific, they are capable of degrading a wide range of compounds and the radical species formed can evolve towards both synthetic and degradative processes. The present review provides an overview of structural features, biological functions and catalytic mechanisms of laccases. The utilisation of laccases for mycotoxin degradation is reviewed, as well as shortcomings and future needs related with the use of laccases for mycotoxin decontamination from food and feed.
Collapse
Affiliation(s)
- A.C. Cabral Silva
- CEB – Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - A. Venâncio
- CEB – Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| |
Collapse
|
163
|
Mavrommatis A, Giamouri E, Tavrizelou S, Zacharioudaki M, Danezis G, Simitzis PE, Zoidis E, Tsiplakou E, Pappas AC, Georgiou CA, Feggeros K. Impact of Mycotoxins on Animals' Oxidative Status. Antioxidants (Basel) 2021; 10:214. [PMID: 33535708 PMCID: PMC7912820 DOI: 10.3390/antiox10020214] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/20/2021] [Accepted: 01/26/2021] [Indexed: 02/06/2023] Open
Abstract
Mycotoxins appear to be the "Achilles' heel" of the agriculture sector inducing enormous economic losses and representing a severe risk to the health of humans and animals. Although novel determination protocols have been developed and legislation has been implemented within Europe, the side effects of mycotoxins on the homeostatic mechanisms of the animals have not been extensively considered. Feed mycotoxin contamination and the effects on the antioxidant status of livestock (poultry, swine, and ruminants) are presented. The findings support the idea that the antioxidant systems in both monogastrics and ruminants are challenged under the detrimental effect of mycotoxins by increasing the toxic lipid peroxidation by-product malondialdehyde (MDA) and inhibiting the activity of antioxidant defense mechanisms. The degree of oxidative stress is related to the duration of contamination, co-contamination, the synergetic effects, toxin levels, animal age, species, and productive stage. Since the damaging effects of MDA and other by-products derived by lipid peroxidation as well as reactive oxygen species have been extensively studied on human health, a more integrated monitoring mechanism (which will take into account the oxidative stability) is urgently required to be implemented in animal products.
Collapse
Affiliation(s)
- Alexandros Mavrommatis
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, Agricultural University of Athens, 11855 Athens, Greece; (A.M.); (E.G.); (S.T.); (M.Z.); (E.Z.); (E.T.); (K.F.)
| | - Elisavet Giamouri
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, Agricultural University of Athens, 11855 Athens, Greece; (A.M.); (E.G.); (S.T.); (M.Z.); (E.Z.); (E.T.); (K.F.)
| | - Savvina Tavrizelou
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, Agricultural University of Athens, 11855 Athens, Greece; (A.M.); (E.G.); (S.T.); (M.Z.); (E.Z.); (E.T.); (K.F.)
| | - Maria Zacharioudaki
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, Agricultural University of Athens, 11855 Athens, Greece; (A.M.); (E.G.); (S.T.); (M.Z.); (E.Z.); (E.T.); (K.F.)
| | - George Danezis
- Chemistry Laboratory, Department of Food Science and Human Nutrition, Agricultural University of Athens, 11855 Athens, Greece; (G.D.); (C.A.G.)
- FoodOmics GR Research Infrastructure, Agricultural University of Athens, 11855 Athens, Greece
| | - Panagiotis E. Simitzis
- Laboratory of Animal Breeding and Husbandry, Department of Animal Science, Agricultural University of Athens, 11855 Athens, Greece;
| | - Evangelos Zoidis
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, Agricultural University of Athens, 11855 Athens, Greece; (A.M.); (E.G.); (S.T.); (M.Z.); (E.Z.); (E.T.); (K.F.)
| | - Eleni Tsiplakou
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, Agricultural University of Athens, 11855 Athens, Greece; (A.M.); (E.G.); (S.T.); (M.Z.); (E.Z.); (E.T.); (K.F.)
| | - Athanasios C. Pappas
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, Agricultural University of Athens, 11855 Athens, Greece; (A.M.); (E.G.); (S.T.); (M.Z.); (E.Z.); (E.T.); (K.F.)
| | - Constantinos A. Georgiou
- Chemistry Laboratory, Department of Food Science and Human Nutrition, Agricultural University of Athens, 11855 Athens, Greece; (G.D.); (C.A.G.)
- FoodOmics GR Research Infrastructure, Agricultural University of Athens, 11855 Athens, Greece
| | - Kostas Feggeros
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, Agricultural University of Athens, 11855 Athens, Greece; (A.M.); (E.G.); (S.T.); (M.Z.); (E.Z.); (E.T.); (K.F.)
| |
Collapse
|
164
|
Shen MH, Singh RK. Effect of rotating peanuts on aflatoxin detoxification by ultraviolet C light and irradiation uniformity evaluated by AgCl-based dosimeter. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107533] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
165
|
Metabolism of Zearalenone in the Rumen of Dairy Cows with and without Application of a Zearalenone-Degrading Enzyme. Toxins (Basel) 2021; 13:toxins13020084. [PMID: 33499402 PMCID: PMC7911295 DOI: 10.3390/toxins13020084] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/14/2021] [Accepted: 01/20/2021] [Indexed: 02/07/2023] Open
Abstract
The mycotoxin zearalenone (ZEN) is a frequent contaminant of animal feed and is well known for its estrogenic effects in animals. Cattle are considered less sensitive to ZEN than pigs. However, ZEN has previously been shown to be converted to the highly estrogenic metabolite α-zearalenol (α-ZEL) in rumen fluid in vitro. Here, we investigate the metabolism of ZEN in the reticulorumen of dairy cows. To this end, rumen-fistulated non-lactating Holstein Friesian cows (n = 4) received a one-time oral dose of ZEN (5 mg ZEN in 500 g concentrate feed) and the concentrations of ZEN and ZEN metabolites were measured in free rumen liquid from three reticulorumen locations (reticulum, ventral sac and dorsal mat layer) during a 34-h period. In all three locations, α-ZEL was the predominant ZEN metabolite and β-zearalenol (β-ZEL) was detected in lower concentrations. ZEN, α-ZEL and β-ZEL were eliminated from the ventral sac and reticulum within 34 h, yet low concentrations of ZEN and α-ZEL were still detected in the dorsal mat 34 h after ZEN administration. In a second step, we investigated the efficacy of the enzyme zearalenone hydrolase ZenA (EC 3.1.1.-, commercial name ZENzyme®, BIOMIN Holding GmbH, Getzersdorf, Austria) to degrade ZEN to the non-estrogenic metabolite hydrolyzed zearalenone (HZEN) in the reticulorumen in vitro and in vivo. ZenA showed a high ZEN-degrading activity in rumen fluid in vitro. When ZenA was added to ZEN-contaminated concentrate fed to rumen-fistulated cows (n = 4), concentrations of ZEN, α-ZEL and β-ZEL were significantly reduced in all three reticulorumen compartments compared to administration of ZEN-contaminated concentrate without ZenA. Upon ZenA administration, degradation products HZEN and decarboxylated HZEN were detected in the reticulorumen. In conclusion, endogenous metabolization of ZEN in the reticulorumen increases its estrogenic potency due to the formation of α-ZEL. Our results suggest that application of zearalenone hydrolase ZenA as a feed additive may be a promising strategy to counteract estrogenic effects of ZEN in cattle.
Collapse
|
166
|
Gu K, Ryu D, Lee HJ. Ochratoxin A and its reaction products affected by sugars during heat processing. Food Chem 2021; 348:129038. [PMID: 33508597 DOI: 10.1016/j.foodchem.2021.129038] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 01/02/2021] [Accepted: 01/04/2021] [Indexed: 11/25/2022]
Abstract
Ochratoxin A (OTA) is a nephrotoxin produced by many species in two fungal genera of Aspergillus and Penicillium under virtually all agricultural environments. Hence, OTA occurs frequently in agricultural commodities and their downstream products worldwide. In this study, thermal stability of OTA in the presence of sugars commonly added to food products including glucose, fructose, and sucrose was investigated by analyzing their reaction products with HPLC-FLD and LC-MS/MS. Samples were heated at three different temperatures (100, 125, and 150 °C) in 10-min intervals for up to 60 min in the absence of food matrix. Analysis showed increased OTα and OTα-amide and decreased OTA isomer (14-R-OTA) formation when OTA was heated with sugars. Among the sugars tested, adding fructose resulted in significantly lower OTA levels than glucose, sucrose, or no sugar added control. Addition of fructose also shifted OTA degradation product profile to less toxic OTα-amide, instead of OTA isomer which has similar toxicity to OTA. These results suggest that added sugars influenced the levels of OTA and its degradation products formed during thermal processing, and may provide a means to reduce the toxicity of OTA in food.
Collapse
Affiliation(s)
- Kejia Gu
- School of Food Science, Washington State University, PO Box 646376, Pullman, WA 99164-6376, USA
| | - Dojin Ryu
- Department of Animal, Veterinary and Food Sciences, University of Idaho, 875 Perimeter Drive MS 2330, Moscow, ID 83844-2330, USA
| | - Hyun Jung Lee
- Department of Animal, Veterinary and Food Sciences, University of Idaho, 875 Perimeter Drive MS 2330, Moscow, ID 83844-2330, USA.
| |
Collapse
|
167
|
Guan Y, Chen J, Nepovimova E, Long M, Wu W, Kuca K. Aflatoxin Detoxification Using Microorganisms and Enzymes. Toxins (Basel) 2021; 13:toxins13010046. [PMID: 33435382 PMCID: PMC7827145 DOI: 10.3390/toxins13010046] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 12/12/2022] Open
Abstract
Mycotoxin contamination causes significant economic loss to food and feed industries and seriously threatens human health. Aflatoxins (AFs) are one of the most harmful mycotoxins, which are produced by Aspergillus flavus, Aspergillus parasiticus, and other fungi that are commonly found in the production and preservation of grain and feed. AFs can cause harm to animal and human health due to their toxic (carcinogenic, teratogenic, and mutagenic) effects. How to remove AF has become a major problem: biological methods cause no contamination, have high specificity, and work at high temperature, affording environmental protection. In the present research, microorganisms with detoxification effects researched in recent years are reviewed, the detoxification mechanism of microbes on AFs, the safety of degrading enzymes and reaction products formed in the degradation process, and the application of microorganisms as detoxification strategies for AFs were investigated. One of the main aims of the work is to provide a reliable reference strategy for biological detoxification of AFs.
Collapse
Affiliation(s)
- Yun Guan
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China; (Y.G.); (J.C.)
| | - Jia Chen
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China; (Y.G.); (J.C.)
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic;
| | - Miao Long
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China; (Y.G.); (J.C.)
- Correspondence: (M.L.); (W.W.); (K.K.)
| | - Wenda Wu
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic;
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Correspondence: (M.L.); (W.W.); (K.K.)
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic;
- Correspondence: (M.L.); (W.W.); (K.K.)
| |
Collapse
|
168
|
Lu Z, Deng J, Wang H, Zhao X, Luo Z, Yu C, Zhang Y. Multifunctional role of a fungal pathogen-secreted laccase 2 in evasion of insect immune defense. Environ Microbiol 2021; 23:1256-1274. [PMID: 33393158 DOI: 10.1111/1462-2920.15378] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/25/2020] [Accepted: 12/26/2020] [Indexed: 11/29/2022]
Abstract
Laccases are widely present in bacteria, fungi, plants and invertebrates and involved in a variety of physiological functions. Here, we report that Beauveria bassiana, an economic important entomopathogenic fungus, secretes a laccase 2 (BbLac2) during infection that detoxifies insect immune response-generated reactive oxygen species (ROS) and interferes with host immune phenoloxidase (PO) activation. BbLac2 is expressed in fungal cells during proliferation in the insect haemocoel and can be found to distribute on the surface of haemolymph-derived in vivo fungal hyphal bodies or be secreted. Targeted gene-knockout of BbLac2 increased fungal sensitivity to oxidative stress, decreased virulence to insect, and increased host PO activity. Strains overexpressing BbLac2 showed increased virulence, with reduced host PO activity and lowered ROS levels in infected insects. In vitro assays revealed that BbLac2 could eliminate ROS and oxidize PO substrates (phenols), verifying the enzymatic functioning of the protein in detoxification of cytotoxic ROS and interference with the PO cascade. Moreover, BbLac2 acted as a cell surface protein that masked pathogen associated molecular patterns (PAMPs), enabling the pathogen to evade immune recognition. Our data suggest a multifunctional role for fungal pathogen-secreted laccase 2 in evasion of insect immune defenses.
Collapse
Affiliation(s)
- Zhuoyue Lu
- Biotechnology Research Center, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing, 400715, P. R. China
| | - Juan Deng
- Biotechnology Research Center, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing, 400715, P. R. China
| | - Huifang Wang
- Biotechnology Research Center, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing, 400715, P. R. China
| | - Xin Zhao
- Biotechnology Research Center, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing, 400715, P. R. China
| | - Zhibing Luo
- Biotechnology Research Center, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing, 400715, P. R. China
| | - Chenxi Yu
- Biotechnology Research Center, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing, 400715, P. R. China
| | - Yongjun Zhang
- Biotechnology Research Center, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing, 400715, P. R. China
| |
Collapse
|
169
|
Effect of Selected Cooking Ingredients for Nixtamalization on the Reduction of Fusarium Mycotoxins in Maize and Sorghum. Toxins (Basel) 2021; 13:toxins13010027. [PMID: 33406676 PMCID: PMC7823315 DOI: 10.3390/toxins13010027] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/22/2020] [Accepted: 12/29/2020] [Indexed: 11/16/2022] Open
Abstract
Although previous studies have reported the use of nixtamalization for mycotoxins reduction in maize, the efficacy of calcium hydroxide and other nixtamalization cooking ingredients for mycotoxin reduction/decontamination in sorghum and other cereals still need to be determined. The current study investigated the effect of five nixtamalization cooking ingredients (wood ashes, calcium hydroxide, sodium hydroxide, potassium hydroxide, and calcium chloride) on the reduction of Fusarium mycotoxins in artificially contaminated maize and sorghum using liquid chromatography-tandem mass spectrometry. All tested cooking ingredients effectively reduced levels of mycotoxins in the contaminated samples with reduction initiated immediately after the washing step. Except for the calcium chloride nixtamal, levels of fumonisin B1, B2, and B3 in the processed sorghum nixtamal samples were below the limit of detection. Meanwhile, the lowest pH values were obtained from the maize (4.84; 4.99), as well as sorghum (4.83; 4.81) nejayote and nixtamal samples obtained via calcium chloride treatment. Overall, the results revealed that the tested cooking ingredients were effective in reducing the target mycotoxins. In addition, it pointed out the potential of calcium chloride, though with reduced effectiveness, as a possible greener alternative cooking ingredient (ecological nixtamalization) when there are environmental concerns caused by alkaline nejayote.
Collapse
|
170
|
Preventive Measures and Control of Mycotoxins. Fungal Biol 2021. [DOI: 10.1007/978-3-030-60659-6_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
171
|
Voidarou C, Antoniadou M, Rozos G, Tzora A, Skoufos I, Varzakas T, Lagiou A, Bezirtzoglou E. Fermentative Foods: Microbiology, Biochemistry, Potential Human Health Benefits and Public Health Issues. Foods 2020; 10:E69. [PMID: 33396397 PMCID: PMC7823516 DOI: 10.3390/foods10010069] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 12/26/2020] [Accepted: 12/27/2020] [Indexed: 02/06/2023] Open
Abstract
Fermented foods identify cultures and civilizations. History, climate and the particulars of local production of raw materials have urged humanity to exploit various pathways of fermentation to produce a wide variety of traditional edible products which represent adaptations to specific conditions. Nowadays, industrial-scale production has flooded the markets with ferments. According to recent estimates, the current size of the global market of fermented foods is in the vicinity of USD 30 billion, with increasing trends. Modern challenges include tailor-made fermented foods for people with special dietary needs, such as patients suffering from Crohn's disease or other ailments. Another major challenge concerns the safety of artisan fermented products, an issue that could be tackled with the aid of molecular biology and concerns not only the presence of pathogens but also the foodborne microbial resistance. The basis of all these is, of course, the microbiome, an aggregation of different species of bacteria and yeasts that thrives on the carbohydrates of the raw materials. In this review, the microbiology of fermented foods is discussed with a special reference to groups of products and to specific products indicative of the diversity that a fermentation process can take. Their impact is also discussed with emphasis on health and oral health status. From Hippocrates until modern approaches to disease therapy, diet was thought to be of the most important factors for health stability of the human natural microbiome. After all, to quote Pasteur, "Gentlemen, the microbes will have the last word for human health." In that sense, it is the microbiomes of fermented foods that will acquire a leading role in future nutrition and therapeutics.
Collapse
Affiliation(s)
- Chrysa Voidarou
- Laboratory of Animal Health, Food Hygiene and Quality, Department of Agriculture, School of Agriculture, University of Ioannina, 47132 Arta, Greece; (C.V.); (A.T.); (I.S.)
| | - Maria Antoniadou
- School of Dentistry, National and Kapodistrian University of Athens, 11521 Athens, Greece;
| | - Georgios Rozos
- Laboratory of Microbiology, Biotechnology & Hygiene, Department of Agricultural Development, Democritus University of Thrace, 68200 Orestiada, Greece;
| | - Athina Tzora
- Laboratory of Animal Health, Food Hygiene and Quality, Department of Agriculture, School of Agriculture, University of Ioannina, 47132 Arta, Greece; (C.V.); (A.T.); (I.S.)
| | - Ioannis Skoufos
- Laboratory of Animal Health, Food Hygiene and Quality, Department of Agriculture, School of Agriculture, University of Ioannina, 47132 Arta, Greece; (C.V.); (A.T.); (I.S.)
| | - Theodoros Varzakas
- Department of Food Science and Technology, University of the Peloponnese, 24100 Kalamata, Greece
| | - Areti Lagiou
- Department of Public and Community Health, University of West Attika, 11521 Athens, Greece;
| | - Eugenia Bezirtzoglou
- Laboratory of Hygiene and Environmental Protection, Medical School, Democritus University of Thrace, 68100 Alexandroupolis, Greece;
| |
Collapse
|
172
|
Topi D, Babič J, Pavšič-Vrtač K, Tavčar-Kalcher G, Jakovac-Strajn B. Incidence of Fusarium Mycotoxins in Wheat and Maize from Albania. Molecules 2020; 26:E172. [PMID: 33396539 PMCID: PMC7796429 DOI: 10.3390/molecules26010172] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/24/2020] [Accepted: 12/28/2020] [Indexed: 02/05/2023] Open
Abstract
In this study, ten Fusarium toxins were analysed in wheat and maize commodities from Albania. In total, 71 samples of wheat and 45 samples of maize were collected from different producing regions. The analytical procedure consisted of a simple one-step sample extraction followed by the determination of toxins using liquid chromatography coupled with tandem mass spectrometry. Fusarium toxins were found in 23% of the analysed wheat samples and in 78% of maize samples. In maize samples, most often fumonisins B1 (FB1) and B2 (FB2) were found. They were present in 76% of samples. They were detected in all positive samples except in one with concentrations ranging from 59.9 to 16,970 μg/kg. The sum of FB1 and FB2 exceeded the EU maximum permitted level (4000 μg/kg) in 31% of maize samples. In wheat samples, the only detected Fusarium mycotoxin was deoxynivalenol (DON), present in 23% of samples. In one sample with the concentration of 1916 μg/kg, the EU maximum permitted level (1250 μg/kg) was exceeded. This is the first report on the presence of Fusarium toxins in wheat and maize grains cultivated in Albania.
Collapse
Affiliation(s)
- Dritan Topi
- Institute of Food Safety, Feed and Environment, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia; (D.T.); (J.B.); (K.P.-V.); (B.J.-S.)
- Department of Chemistry, Faculty of Natural Sciences, University of Tirana, Boulevard Zogu 1, 25, 1016 Tirana, Albania
| | - Janja Babič
- Institute of Food Safety, Feed and Environment, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia; (D.T.); (J.B.); (K.P.-V.); (B.J.-S.)
| | - Katarina Pavšič-Vrtač
- Institute of Food Safety, Feed and Environment, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia; (D.T.); (J.B.); (K.P.-V.); (B.J.-S.)
| | - Gabrijela Tavčar-Kalcher
- Institute of Food Safety, Feed and Environment, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia; (D.T.); (J.B.); (K.P.-V.); (B.J.-S.)
| | - Breda Jakovac-Strajn
- Institute of Food Safety, Feed and Environment, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia; (D.T.); (J.B.); (K.P.-V.); (B.J.-S.)
| |
Collapse
|
173
|
Abdul NS, Chuturgoon AA. Fumonisin B 1 regulates LDL receptor and ABCA1 expression in an LXR dependent mechanism in liver (HepG2) cells. Toxicon 2020; 190:58-64. [PMID: 33338448 DOI: 10.1016/j.toxicon.2020.12.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/30/2020] [Accepted: 12/13/2020] [Indexed: 12/22/2022]
Abstract
The metabolic toxicity of Fumonisin B1 (FB1) converges at the accumulation of sphingoid bases and reduced ceramide levels. Several studies have alluded to a hypercholesterolemic endpoint after FB1 exposure, yet the molecular mechanisms remain elusive. Cell surface receptors are important regulators of cholesterol metabolism by regulating influx of lipids and efflux of cholesterol. Western blot analysis showed that FB1 elevates the expression of ABCA1 (a cholesterol efflux promoter) in an LXR dependent mechanism. We further highlight the potential role of PCSK9 in the degradation of LDL receptor. These data provide important evidence for the mechanism underlying hypercholesterolemia in FB1 treated models. The disruption of lipid homeostasis by FB1 is beginning to shift away from canonical ceramide synthase inhibition, and this changed perspective may shed light on diseases caused by dysregulated cholesterol metabolism such as cancer initiation and promotion.
Collapse
Affiliation(s)
- Naeem Sheik Abdul
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, 4041, South Africa; Applied Microbial and Health Biotechnology Institute, Cape Peninsula University of Technology, Cape Town, 7535, South Africa
| | - Anil A Chuturgoon
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, 4041, South Africa.
| |
Collapse
|
174
|
Nasiri M, Ahari H, Sharifan A, Anvar AA, Kakolaki S. Nanoemulsion production techniques upgrade bioactivity potential of nanoemulsified essential oils on Acipenser stellatus filet preserving. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2020. [DOI: 10.1080/10942912.2020.1844749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Mina Nasiri
- Department of Food Science and Technology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Hamed Ahari
- Department of Food Science and Technology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Anousheh Sharifan
- Department of Food Science and Technology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Amir Ali Anvar
- Department of Food Hygiene, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Shahpour Kakolaki
- Iranian Fisheries Sciences Research Institute, Agricultural Research, Education and Extension Org., Tehran, Iran
| |
Collapse
|
175
|
Costa J, Rodríguez R, Santos C, Soares C, Lima N, Santos C. Mycobiota in Chilean chilli Capsicum annuum L. used for production of Merkén. Int J Food Microbiol 2020; 334:108833. [PMID: 32911159 DOI: 10.1016/j.ijfoodmicro.2020.108833] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 08/10/2020] [Accepted: 08/16/2020] [Indexed: 11/25/2022]
Abstract
This work aims to provide the first study on the mycobiota present in Chilean pepper Capsicum annuum L. cv. "Cacho de Cabra" throughout the early production stages. Two hundred and forty berry fruits were sampled: 1) at the ripe fruits harvest day; 2) during drying; and 3) smoking processes. A total of 192 strains, encompassing 11 genera and 44 species, were identified through analysis of β-tubulin (benA) gene and internal transcribed spacer of ribosomal DNA (ITS) region. All collection points showed samples with high fungal contamination, but the mycobiota composition varied as a result of different environmental conditions. Alternaria spp. and Fusarium spp. were predominantly isolated from fresh fruits of C. annuum. Penicillium spp. was the most frequent genus in all analysed points. Penicillium brevicompactum and P. crustosum were the most abundant species. Among Aspergillus, A. niger and A. flavus were dominant after the drying phase. In our study, none of the analysed strains of Penicillium (113) and Aspergillus (35) produced Ochratoxin A at detectable levels. The broad characterization of the fungal community of C. annuum carried out in this study, could be a guideline for future mycotoxin analyses performed directly on the pod. Understanding the role and dynamics of mycobiota and its relationship with the toxins present in this substrate, will be useful to establish and improve control measures considering the specificities of each point in the C. annuum production chain.
Collapse
Affiliation(s)
- Jéssica Costa
- Department of Chemical Science and Natural Resources, BIOREN-UFRO, Universidad de La Frontera, 4811-230 Temuco, Chile.
| | - Rodrigo Rodríguez
- CEB-Centre of Biological Engineering, Micoteca da Universidade do Minho (MUM), University of Minho, Campus de Gualtar, Braga 4710-057, Portugal.
| | - Carla Santos
- CEB-Centre of Biological Engineering, Micoteca da Universidade do Minho (MUM), University of Minho, Campus de Gualtar, Braga 4710-057, Portugal.
| | - Célia Soares
- CEB-Centre of Biological Engineering, Micoteca da Universidade do Minho (MUM), University of Minho, Campus de Gualtar, Braga 4710-057, Portugal.
| | - Nelson Lima
- CEB-Centre of Biological Engineering, Micoteca da Universidade do Minho (MUM), University of Minho, Campus de Gualtar, Braga 4710-057, Portugal.
| | - Cledir Santos
- Department of Chemical Science and Natural Resources, BIOREN-UFRO, Universidad de La Frontera, 4811-230 Temuco, Chile.
| |
Collapse
|
176
|
Deng LZ, Tao Y, Mujumdar AS, Pan Z, Chen C, Yang XH, Liu ZL, Wang H, Xiao HW. Recent advances in non-thermal decontamination technologies for microorganisms and mycotoxins in low-moisture foods. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.10.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
177
|
Marshall H, Meneely JP, Quinn B, Zhao Y, Bourke P, Gilmore BF, Zhang G, Elliott CT. Novel decontamination approaches and their potential application for post-harvest aflatoxin control. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.11.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
178
|
Niaz K, Shah SZA, Khan F, Bule M. Ochratoxin A-induced genotoxic and epigenetic mechanisms lead to Alzheimer disease: its modulation with strategies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:44673-44700. [PMID: 32424756 DOI: 10.1007/s11356-020-08991-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 04/22/2020] [Indexed: 06/11/2023]
Abstract
Ochratoxin A (OTA) is a naturally occurring mycotoxin mostly found in food items including grains and coffee beans. It induces DNA single-strand breaks and has been considered to be carcinogenic. It is recognized as a serious threat to reproductive health both in males and females. OTA is highly nephrotoxic and carcinogenic, and its potency changes evidently between species and sexes. There is a close association between OTA, mutagenicity, carcinogenicity, and genotoxicity, but the underlying mechanisms are not clear. Reports regarding genotoxic effects in relation to OTA which leads to the induction of DNA adduct formation, protein synthesis inhibition, perturbation of cellular energy production, initiation of oxidative stress, induction of apoptosis, influences on mitosis, induction of cell cycle arrest, and interference with cytokine pathways. All these mechanisms are associated with nephrotoxicity, hepatotoxicity, teratotoxicity, immunological toxicity, and neurotoxicity. OTA administration activates various mechanisms such as p38 MAPK, JNKs, and ERKs dysfunctions, BDNF disruption, TH overexpression, caspase-3 and 9 activation, and ERK-1/2 phosphorylation which ultimately lead to Alzheimer disease (AD) progression. The current review will focus on OTA in terms of recent discoveries in the field of molecular biology. The main aim is to investigate the underlying mechanisms of OTA in regard to genotoxicity and epigenetic modulations that lead to AD. Also, we will highlight the strategies for the purpose of attenuating the hazards posed by OTA exposure.
Collapse
Affiliation(s)
- Kamal Niaz
- Department of Pharmacology and Toxicology, Faculty of Bio-Sciences, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, 63100, Pakistan.
| | - Syed Zahid Ali Shah
- Department of Pathology, Faculty of Veterinary Science, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, 63100, Pakistan
| | - Fazlullah Khan
- The Institute of Pharmaceutical Sciences (TIPS), School of Pharmacy, International Campus, Tehran University of Medical Sciences (IC-TUMS), Tehran, 1417614411, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Science, Tehran, 1417614411, Iran
| | - Mohammed Bule
- Department of Pharmacy, College of Medicine and Health Sciences, Ambo University, Ambo, Oromia, Ethiopia
| |
Collapse
|
179
|
Deoxynivalenol degradation in wheat kernels by exposition to ammonia vapours: A tentative strategy for detoxification. Food Control 2020. [DOI: 10.1016/j.foodcont.2020.107444] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
180
|
Guo Y, Zhao L, Ma Q, Ji C. Novel strategies for degradation of aflatoxins in food and feed: A review. Food Res Int 2020; 140:109878. [PMID: 33648196 DOI: 10.1016/j.foodres.2020.109878] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 10/31/2020] [Accepted: 11/01/2020] [Indexed: 02/06/2023]
Abstract
Aflatoxins are toxic secondary metabolites mainly produced by Aspergillus fungi, posing high carcinogenic potency in humans and animals. Dietary exposure to aflatoxins is a global problem in both developed and developing countries especially where there is poor regulation of their levels in food and feed. Thus, academics have been striving over the decades to develop effective strategies for degrading aflatoxins in food and feed. These strategies are technologically diverse and based on physical, chemical, or biological principles. This review summarizes the recent progress on novel aflatoxin degradation strategies including irradiation, cold plasma, ozone, electrolyzed oxidizing water, organic acids, natural plant extracts, microorganisms and enzymes. A clear understanding of the detoxification efficiency, mechanism of action, degradation products, application potential and current limitations of these methods is presented. In addition, the development and future perspective of nanozymes in aflatoxins degradation are introduced.
Collapse
Affiliation(s)
- Yongpeng Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China.
| | - Lihong Zhao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China.
| | - Qiugang Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China.
| | - Cheng Ji
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China.
| |
Collapse
|
181
|
Sadeghi E, Oskoei LB, Nejatian M, Mehr SS. Effect of microwave, deep frying and oven cooking on destruction of zearalenone in spiked maize oil. WORLD MYCOTOXIN J 2020. [DOI: 10.3920/wmj2019.2546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mycotoxins are one of the most common types of chemical hazards related to edible oils. Although the refining process can remove such contaminations, they may still be present in the final oils due to defects during the refining steps. In addition, most oils produced in local manufactories are not refined and as such may be contaminated with mycotoxins. However, the effect of various cooking methods on the stability of mycotoxins in edible oils has rarely been studied. Hence, this study evaluated the impact of microwave, deep frying and oven cooking on the degradation of spiked zearalenone (50, 100 and 200 μg/l) in maize oil. Measurements were done by high performance liquid chromatography-fluorescence detection. The results showed that the majority of treatments, including time-temperature combinations of frying (130-190 °C for 2.5 and 5 min), oven cooking (110-230 °C for 2.5 and 5 min) and exposure time of microwave (2.5, 5 and 10 min) reduced zearalenone levels. Microwave cooking of samples containing 200 μg/l of zearalenone for 10 min showed the highest degradation of the toxin (~ 38%) following first order kinetics. The extent of destruction achieved by frying and oven cooking was also dependent on the initial concentration of zearalenone. These findings can be helpful to evaluate the chemical safety of edible oils or foods prepared by them.
Collapse
Affiliation(s)
- E. Sadeghi
- Department of Food Science and Technology, School of Nutrition Science and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Research Center for Environmental Determinants of Health (RCEDH), Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - L. Bohlouli Oskoei
- Research Center for Environmental Determinants of Health (RCEDH), Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - M. Nejatian
- Department of Food Science and Technology, School of Nutrition Science and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Research Center of Oils and Fats, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - S. Solaimani Mehr
- Research Center of Oils and Fats, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
182
|
Hassan NH, Othman HIAA, Abdul Malek NR, Zulkurnain M, Saad B, Wong YF. Simultaneous Quantitative Assessment of Ochratoxin A, Patulin, 5-Hydroxymethylfurfural, and Bisphenol A in Fruit Drinks Using HPLC with Diode Array-Fluorimetric Detection. Foods 2020; 9:E1633. [PMID: 33182246 PMCID: PMC7695309 DOI: 10.3390/foods9111633] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/29/2020] [Accepted: 10/31/2020] [Indexed: 01/17/2023] Open
Abstract
The analysis of regulated contaminants in fruit drinks often requires suitable validated and rapid analytical methods for cost-effective food control, and is of considerable interest among the fruit beverage industry. This study demonstrated a rapid and sensitive high-performance liquid chromatography approach for the simultaneous determination of ochratoxin A (OTA), patulin (PAT), 5-hydroxymethylfurfural (HMF), and bisphenol A (BPA) in various fruit drinks. The separations were achieved using a C18 core-shell column with both photo-diode array and fluorimetric detections connected in series. A gradient system consisting of methanol and 0.1% formic acid at a flow rate of 1.2 mL min-1, thermostated at 35 °C, provided fast elution with run time <9 min. Sample pretreatment was optimised to enable extraction of all analytes from fruit drink matrices. The optimised method was validated. Correlation coefficients of R > 0.99 were achieved with detection limits of 0.5 ng mL-1 (OTA), 1.1 ng mL-1 (PAT), 7.9 ng mL-1 (HMF), and 1.0 ng mL-1 (BPA). Recoveries ranged from 82% to 99%. Good relative standard deviations for intraday retention times (≤3.54%) and peak area (≤3.5%) were achieved. The developed multi-contaminants analysis method was successfully applied to determine OTA, PAT, HMF, and BPA in various fruit drinks.
Collapse
Affiliation(s)
- Norfarizah Hanim Hassan
- School of Chemical Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia; (N.H.H.); (H.I.A.A.O.); (N.R.A.M.)
| | | | | | - Musfirah Zulkurnain
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia;
| | - Bahruddin Saad
- Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS, Seri Iskandar, Perak 32610, Malaysia;
| | - Yong Foo Wong
- School of Chemical Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia; (N.H.H.); (H.I.A.A.O.); (N.R.A.M.)
| |
Collapse
|
183
|
Makhuvele R, Naidu K, Gbashi S, Thipe VC, Adebo OA, Njobeh PB. The use of plant extracts and their phytochemicals for control of toxigenic fungi and mycotoxins. Heliyon 2020; 6:e05291. [PMID: 33134582 PMCID: PMC7586119 DOI: 10.1016/j.heliyon.2020.e05291] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/16/2020] [Accepted: 10/14/2020] [Indexed: 12/17/2022] Open
Abstract
Mycotoxins present a great concern to food safety and security due to their adverse health and socio-economic impacts. The necessity to formulate novel strategies that can mitigate the economic and health effects associated with mycotoxin contamination of food and feed commodities without any impact on public health, quality and nutritional value of food and feed, economy and trade industry become imperative. Various strategies have been adopted to mitigate mycotoxin contamination but often fall short of the required efficacy. One of the promising approaches is the use of bioactive plant components/metabolites synergistically with mycotoxin-absorbing components in order to limit exposure to these toxins and associated negative health effects. In particular, is the fabrication of β-cyclodextrin-based nanosponges encapsulated with bioactive compounds of plant origin to inhibit toxigenic fungi and decontaminate mycotoxins in food and feed without leaving any health and environmental hazard to the consumers. The present paper reviews the use of botanicals extracts and their phytochemicals coupled with β-cyclodextrin-based nanosponge technology to inhibit toxigenic fungal invasion and detoxify mycotoxins.
Collapse
Affiliation(s)
- Rhulani Makhuvele
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Doornfontein Campus, Gauteng, 2028, South Africa
| | - Kayleen Naidu
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Doornfontein Campus, Gauteng, 2028, South Africa
| | - Sefater Gbashi
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Doornfontein Campus, Gauteng, 2028, South Africa
| | - Velaphi C Thipe
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Doornfontein Campus, Gauteng, 2028, South Africa.,Laboratório de Ecotoxicologia - Centro de Química e Meio Ambiente - Instituto de Pesquisas Energéticas e Nucleares (IPEN) - Comissão Nacional de Energia Nuclear- IPEN/CNEN-SP, Av. Lineu Prestes, 2242 - Butantã, 05508-000, São Paulo, Brazil
| | - Oluwafemi A Adebo
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Doornfontein Campus, Gauteng, 2028, South Africa
| | - Patrick B Njobeh
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Doornfontein Campus, Gauteng, 2028, South Africa
| |
Collapse
|
184
|
Esan AO, Fapohunda SO, Ezekiel CN, Sulyok M, Krska R. Distribution of fungi and their toxic metabolites in melon and sesame seeds marketed in two major producing states in Nigeria. Mycotoxin Res 2020; 36:361-369. [PMID: 32666399 PMCID: PMC7536151 DOI: 10.1007/s12550-020-00400-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 06/17/2020] [Accepted: 07/07/2020] [Indexed: 11/07/2022]
Abstract
In this study, melon (n = 60) and sesame (n = 60) seeds purchased from markets within Benue and Nasarawa states, respectively, in Nigeria, during two seasons (dry and wet), were analysed for fungal and mycotoxin contamination in order to determine the safety of these foods for human consumption. Molecular analysis revealed the following seven fungal taxonomic groups in the foods: Aspergillus section Candidi, Aspergillus section Flavi, Aspergillus section Nigri, Cladosporium, Fusarium fujikuroi species group, Penicillium, and Pleosporales/Didymellaceae. A total of 78 microbial metabolites, including several mycotoxins, occurred in the foods. The most frequent mycotoxins in melon and sesame were aflatoxin B1 (occurrence: 76%) and alternariol monomethyl ether (occurrence: 59%), respectively. However, higher mean total aflatoxin levels occurred in sesame (17 μg kg-1) than in melon (11 μg kg-1). About 28 and 5% of melon and sesame, respectively, exceeded the 4 μg kg-1 total aflatoxin limit for oilseeds intended for direct human consumption in the European Union. Additionally, fumonisin B1 and moniliformin occurred only in sesame, whilst ochratoxins A and B occurred only in melon; ochratoxin B being reported for the first time in this food. Our data indicated seasonal variations in the fungal and mycotoxin contamination levels in both foods.
Collapse
Affiliation(s)
- Adetoun O Esan
- Department of Microbiology, Babcock University, Ilishan Remo, Ogun State, Nigeria
| | - Stephen O Fapohunda
- Department of Microbiology, Babcock University, Ilishan Remo, Ogun State, Nigeria
| | - Chibundu N Ezekiel
- Department of Microbiology, Babcock University, Ilishan Remo, Ogun State, Nigeria.
- Department of Agrobiotechnology (IFA-Tulln), Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences Vienna (BOKU), Konrad Lorenzstr. 20, A-3430, Tulln, Austria.
| | - Michael Sulyok
- Department of Agrobiotechnology (IFA-Tulln), Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences Vienna (BOKU), Konrad Lorenzstr. 20, A-3430, Tulln, Austria
| | - Rudolf Krska
- Department of Agrobiotechnology (IFA-Tulln), Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences Vienna (BOKU), Konrad Lorenzstr. 20, A-3430, Tulln, Austria
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, University Road, Belfast, Northern Ireland, BT7 1NN, UK
| |
Collapse
|
185
|
Noroozi R, Sadeghi E, Rouhi M, Safajoo S, Razmjoo F, Paimard G, Moradi L. Fates of aflatoxin B 1 from wheat flour to Iranian traditional cookies: Managing procedures to aflatoxin B 1 reduction during traditional processing. Food Sci Nutr 2020; 8:6014-6022. [PMID: 33282253 PMCID: PMC7684617 DOI: 10.1002/fsn3.1888] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/23/2020] [Accepted: 08/24/2020] [Indexed: 12/24/2022] Open
Abstract
Aflatoxin B1 (AFB1) incidence in cereal, especially in wheat products, is a serious worldwide challenge for human health. The objective of the current study was to survey the effect of various factors, including fermentation times, yeast levels, ingredients, and time/temperature combinations of the baking process on aflatoxin B1 (AFB1) reduction in order to modify parameters of the traditional cookie-making process. AFB1 levels were analyzed by an HPLC-fluorescence detector. The results revealed AFB1 levels significantly decreased during fermentation (%23.7), depending on an increase in the yeast level (2%) and fermentation time (90 min). Furthermore, there was a significant correlation between pH reduction and AFB1 decomposition. However, the formulation of the recipe did not show a significant effect on the detoxification of AFB1. The baking temperature increase in an admissible technological range (280°C for 15 min) more effectively reduced AFB1 content (%53.9). As a result, the exact control of the traditional process was able to significantly decreased AFB1 content as a serious health-threatening toxin in the final product (%75.9). However, AFB1 toxicity reduction should be considered seriously in the raw materials and such products.
Collapse
Affiliation(s)
- Razieh Noroozi
- Student Research CommitteeDepartment of Food Science and TechnologySchool of Nutrition Sciences and Food TechnologyKermanshah University of Medical ScienceKermanshahIran
| | - Ehsan Sadeghi
- Department of Food Science and TechnologySchool of Nutrition Sciences and Food TechnologyResearch Center for Environmental Determinants of Health (RCEDH)Health InstituteKermanshah University of Medical SciencesKermanshahIran
| | - Milad Rouhi
- Department of Food Science and TechnologySchool of Nutrition Sciences and Food TechnologyResearch Center for Environmental Determinants of Health (RCEDH)Health InstituteKermanshah University of Medical SciencesKermanshahIran
| | - Saeede Safajoo
- Student Research CommitteeDepartment of Food Science and TechnologySchool of Nutrition Sciences and Food TechnologyKermanshah University of Medical ScienceKermanshahIran
| | - Fatemeh Razmjoo
- Student Research CommitteeDepartment of Food Science and TechnologySchool of Nutrition Sciences and Food TechnologyKermanshah University of Medical ScienceKermanshahIran
| | - Giti Paimard
- Department of Food Science and TechnologySchool of Nutrition Sciences and Food TechnologyResearch Center for Environmental Determinants of Health (RCEDH)Health InstituteKermanshah University of Medical SciencesKermanshahIran
| | - Leila Moradi
- Student Research CommitteeDepartment of Food Science and TechnologySchool of Nutrition Sciences and Food TechnologyKermanshah University of Medical ScienceKermanshahIran
| |
Collapse
|
186
|
Adaku Chilaka C, Mally A. Mycotoxin Occurrence, Exposure and Health Implications in Infants and Young Children in Sub-Saharan Africa: A Review. Foods 2020; 9:E1585. [PMID: 33139646 PMCID: PMC7693847 DOI: 10.3390/foods9111585] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/22/2020] [Accepted: 10/29/2020] [Indexed: 02/07/2023] Open
Abstract
Infants and young children (IYC) remain the most vulnerable population group to environmental hazards worldwide, especially in economically developing regions such as sub-Saharan Africa (SSA). As a result, several governmental and non-governmental institutions including health, environmental and food safety networks and researchers have been proactive toward protecting this group. Mycotoxins, toxic secondary fungal metabolites, contribute largely to the health risks of this young population. In SSA, the scenario is worsened by socioeconomic status, poor agricultural and storage practices, and low level of awareness, as well as the non-establishment and lack of enforcement of regulatory limits in the region. Studies have revealed mycotoxin occurrence in breast milk and other weaning foods. Of concern is the early exposure of infants to mycotoxins through transplacental transfer and breast milk as a consequence of maternal exposure, which may result in adverse health effects. The current paper presents an overview of mycotoxin occurrence in foods intended for IYC in SSA. It discusses the imperative evidence of mycotoxin exposure of this population group in SSA, taking into account consumption data and the occurrence of mycotoxins in food, as well as biomonitoring approaches. Additionally, it discusses the health implications associated with IYC exposure to mycotoxins in SSA.
Collapse
Affiliation(s)
- Cynthia Adaku Chilaka
- Institute of Pharmacology and Toxicology, Julius Maximilian University of Würzburg, Versbacher Straβe 9, 97078 Würzburg, Germany;
| | | |
Collapse
|
187
|
Pulsed Electric Fields (PEF) to Mitigate Emerging Mycotoxins in Juices and Smoothies. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10196989] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The development of innovative food processing technologies has increased to answer the growing demand to supply of fresh-like products. The aim of the present study is to investigate the effect of pulsed electric fields (PEF) technology on reducing the emerging mycotoxins (enniatins (ENs) and beauvericin (BEA)) contents in juice and smoothie samples. The products of degradation obtained after PEF treatment were identified and their toxicological endpoint toxicities predicted by Pro Tox-II web. Mycotoxin reduction ranged from 43 to 70% in juices and smoothies, but in water the expected effect was lower. The acidified pH increased BEA reduction in water. The degradation products that were produced were the result of the loss of aminoacidic fragments of the original molecules, such as HyLv, Val, Ile, or Phe. Pro Tox-II server assigned a toxicity class I for enniatin B (ENB) degradation products with a predicted LD50 of 3 mg/Kgbw. The other degradation products were classified in toxicity class III and IV.
Collapse
|
188
|
York JL, Magnuson RH, Schug KA. On-line sample preparation for multiclass vitamin, hormone, and mycotoxin determination in chicken egg yolk using LC-MS/MS. Food Chem 2020; 326:126939. [DOI: 10.1016/j.foodchem.2020.126939] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 04/05/2020] [Accepted: 04/27/2020] [Indexed: 11/27/2022]
|
189
|
Mujahid C, Savoy MC, Baslé Q, Woo PM, Ee ECY, Mottier P, Bessaire T. Levels of Alternaria Toxins in Selected Food Commodities Including Green Coffee. Toxins (Basel) 2020; 12:E595. [PMID: 32942568 PMCID: PMC7551213 DOI: 10.3390/toxins12090595] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 08/27/2020] [Accepted: 09/10/2020] [Indexed: 02/07/2023] Open
Abstract
Alternaria toxins are emerging mycotoxins, candidates for regulation by European Authorities. Therefore, highly sensitive, confirmatory, and reliable analytical methodologies are required for their monitoring in food. In that context, an isotope dilution LC-MS/MS method was developed for the analysis of five Alternaria toxins (Altenuene, Alternariol, Alternariol monomethylether, Tentoxin, and Tenuazonic Acid) in a broad range of commodities including cereals and cereal-based products, tomato-based products, tree nuts, vegetable oils, dried fruits, cocoa, green coffee, spices, herbs, and tea. Validation data collected in two different laboratories demonstrated the robustness of the method. Underestimation of Tenuazonic Acid level in dry samples such as cereals was reported when inappropriate extraction solvent mixtures were used as currently done in several published methodologies. An investigation survey performed on 216 food items evidenced large variations of Alternaria toxins levels, in line with data reported in the last EFSA safety assessment. The analysis of 78 green coffee samples collected from 21 producing countries demonstrated that coffee is a negligible source of exposure to Alternaria toxins. Its wide scope of application, adequate sample throughput, and high sensitivity make this method fit for purpose for the regular monitoring of Alternaria toxins in foods.
Collapse
Affiliation(s)
- Claudia Mujahid
- Nestlé Research, Route du Jorat 57, Vers-chez-les-Blanc, 1000 Lausanne, Switzerland; (C.M.); (M.-C.S.); (P.M.)
| | - Marie-Claude Savoy
- Nestlé Research, Route du Jorat 57, Vers-chez-les-Blanc, 1000 Lausanne, Switzerland; (C.M.); (M.-C.S.); (P.M.)
| | - Quentin Baslé
- Nestlé Quality Assurance Center, 29 Quality Road, Singapore 618802, Singapore; (Q.B.); (P.M.W.); (E.C.Y.E.)
| | - Pei Mun Woo
- Nestlé Quality Assurance Center, 29 Quality Road, Singapore 618802, Singapore; (Q.B.); (P.M.W.); (E.C.Y.E.)
| | - Edith Chin Yean Ee
- Nestlé Quality Assurance Center, 29 Quality Road, Singapore 618802, Singapore; (Q.B.); (P.M.W.); (E.C.Y.E.)
| | - Pascal Mottier
- Nestlé Research, Route du Jorat 57, Vers-chez-les-Blanc, 1000 Lausanne, Switzerland; (C.M.); (M.-C.S.); (P.M.)
| | - Thomas Bessaire
- Nestlé Research, Route du Jorat 57, Vers-chez-les-Blanc, 1000 Lausanne, Switzerland; (C.M.); (M.-C.S.); (P.M.)
| |
Collapse
|
190
|
Cuevas-González PF, González-Córdova AF, Vallejo-Cordoba B, Aguilar-Toalá JE, Hall FG, Urbizo-Reyes UC, Liceaga AM, Hernandez-Mendoza A, García HS. Protective role of lactic acid bacteria and yeasts as dietary carcinogen-binding agents - a review. Crit Rev Food Sci Nutr 2020; 62:160-180. [PMID: 32901514 DOI: 10.1080/10408398.2020.1813685] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The importance of food contaminants in the link between diet and cancer has been widely demonstrated. Therefore, different physical and chemical strategies for the control of human exposure to such dietary carcinogens has been explored; however, most of these strategies are complex, costly, and have low efficiency which limited their applications. Hence, microbiological methods have been receiving more attention. Recent in vitro and in vivo studies have indicated that lactic acid bacteria (LAB) and yeast may act as dietary carcinogen-binding agents. This review describes the promising protective role of strains belonging mainly to the Lactobacillus, Bifidobacterium and Saccharomyces genera by acting as dietary carcinogen-binding agents. This property suggests that these microorganisms may have a protective role by reducing the bioaccessibility of dietary carcinogens, thereby decreasing their toxic effects. The mechanisms by which the binding process takes place have not been completely elucidated; thus, the possible underlying mechanisms and factors influencing carcinogens-binding will be addressed.
Collapse
Affiliation(s)
- P F Cuevas-González
- Laboratorio de Química y Biotecnología de Productos Lácteos, Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD), Carretera Gustavo Enrique Astiazarán Rosas, Hermosillo, Mexico
| | - A F González-Córdova
- Laboratorio de Química y Biotecnología de Productos Lácteos, Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD), Carretera Gustavo Enrique Astiazarán Rosas, Hermosillo, Mexico
| | - B Vallejo-Cordoba
- Laboratorio de Química y Biotecnología de Productos Lácteos, Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD), Carretera Gustavo Enrique Astiazarán Rosas, Hermosillo, Mexico
| | - J E Aguilar-Toalá
- Laboratorio de Química y Biotecnología de Productos Lácteos, Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD), Carretera Gustavo Enrique Astiazarán Rosas, Hermosillo, Mexico
| | - F G Hall
- Department of Food Science, Purdue University, West Lafayette, Indiana, United States
| | - U C Urbizo-Reyes
- Department of Food Science, Purdue University, West Lafayette, Indiana, United States
| | - A M Liceaga
- Department of Food Science, Purdue University, West Lafayette, Indiana, United States
| | - A Hernandez-Mendoza
- Laboratorio de Química y Biotecnología de Productos Lácteos, Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD), Carretera Gustavo Enrique Astiazarán Rosas, Hermosillo, Mexico
| | - H S García
- Tecnológico Nacional de México, Instituto Tecnológico de Veracruz, UNIDA, Veracruz, Mexico
| |
Collapse
|
191
|
Zhang K, Banerjee K. A Review: Sample Preparation and Chromatographic Technologies for Detection of Aflatoxins in Foods. Toxins (Basel) 2020; 12:E539. [PMID: 32825718 PMCID: PMC7551558 DOI: 10.3390/toxins12090539] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/14/2020] [Accepted: 08/19/2020] [Indexed: 02/07/2023] Open
Abstract
As a class of mycotoxins with regulatory and public health significance, aflatoxins (e.g., aflatoxin B1, B2, G1 and G2) have attracted unparalleled attention from government, academia and industry due to their chronic and acute toxicity. Aflatoxins are secondary metabolites of various Aspergillus species, which are ubiquitous in the environment and can grow on a variety of crops whereby accumulation is impacted by climate influences. Consumption of foods and feeds contaminated by aflatoxins are hazardous to human and animal health, hence the detection and quantification of aflatoxins in foods and feeds is a priority from the viewpoint of food safety. Since the first purification and identification of aflatoxins from feeds in the 1960s, there have been continuous efforts to develop sensitive and rapid methods for the determination of aflatoxins. This review aims to provide a comprehensive overview on advances in aflatoxins analysis and highlights the importance of sample pretreatments, homogenization and various cleanup strategies used in the determination of aflatoxins. The use of liquid-liquid extraction (LLE), supercritical fluid extraction (SFE), solid phase extraction (SPE) and immunoaffinity column clean-up (IAC) and dilute and shoot for enhancing extraction efficiency and clean-up are discussed. Furthermore, the analytical techniques such as gas chromatography (GC), liquid chromatography (LC), mass spectrometry (MS), capillary electrophoresis (CE) and thin-layer chromatography (TLC) are compared in terms of identification, quantitation and throughput. Lastly, with the emergence of new techniques, the review culminates with prospects of promising technologies for aflatoxin analysis in the foreseeable future.
Collapse
Affiliation(s)
- Kai Zhang
- US Food and Drug Administration/Center for Food Safety and Applied Nutrition, 5001 Campus Drive, College Park, MD 20740, USA
| | - Kaushik Banerjee
- National Reference Laboratory, ICAR-National Research Centre for Grapes, Pune 412307, India;
| |
Collapse
|
192
|
Adebo OA, Molelekoa T, Makhuvele R, Adebiyi JA, Oyedeji AB, Gbashi S, Adefisoye MA, Ogundele OM, Njobeh PB. A review on novel non‐thermal food processing techniques for mycotoxin reduction. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14734] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Oluwafemi Ayodeji Adebo
- Faculty of Science Department of Biotechnology and Food Technology University of Johannesburg P.O. Box 17011 Doornfontein Campus Gauteng South Africa
| | - Tumisi Molelekoa
- Faculty of Science Department of Biotechnology and Food Technology University of Johannesburg P.O. Box 17011 Doornfontein Campus Gauteng South Africa
| | - Rhulani Makhuvele
- Faculty of Science Department of Biotechnology and Food Technology University of Johannesburg P.O. Box 17011 Doornfontein Campus Gauteng South Africa
| | - Janet Adeyinka Adebiyi
- Faculty of Science Department of Biotechnology and Food Technology University of Johannesburg P.O. Box 17011 Doornfontein Campus Gauteng South Africa
| | - Ajibola Bamikole Oyedeji
- Faculty of Science Department of Biotechnology and Food Technology University of Johannesburg P.O. Box 17011 Doornfontein Campus Gauteng South Africa
| | - Sefater Gbashi
- Faculty of Science Department of Biotechnology and Food Technology University of Johannesburg P.O. Box 17011 Doornfontein Campus Gauteng South Africa
| | - Martins Ajibade Adefisoye
- Faculty of Science Department of Biotechnology and Food Technology University of Johannesburg P.O. Box 17011 Doornfontein Campus Gauteng South Africa
| | - Opeoluwa Mayowa Ogundele
- Faculty of Science Department of Biotechnology and Food Technology University of Johannesburg P.O. Box 17011 Doornfontein Campus Gauteng South Africa
| | - Patrick Berka Njobeh
- Faculty of Science Department of Biotechnology and Food Technology University of Johannesburg P.O. Box 17011 Doornfontein Campus Gauteng South Africa
| |
Collapse
|
193
|
Sun J, Xia Y, Ming D. Whole-Genome Sequencing and Bioinformatics Analysis of Apiotrichum mycotoxinivorans: Predicting Putative Zearalenone-Degradation Enzymes. Front Microbiol 2020; 11:1866. [PMID: 32849454 PMCID: PMC7416605 DOI: 10.3389/fmicb.2020.01866] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/15/2020] [Indexed: 12/22/2022] Open
Abstract
Biological detoxification techniques have been developed by using microorganisms such as bacteria, yeast, and fungi to eliminate mycotoxin contamination. However, due to the lack of molecular details of related enzymes, the underlying mechanism of detoxification of many mycotoxins remain unclear. On the other hand, the next generation sequencing technology provides a large number of genomic data of microorganisms that can degrade mycotoxins, which makes it possible to use bioinformatics technology to study the molecular details of relevant enzymes. In this paper, we report the whole-genome sequencing of Apiotrichum mycotoxinivorans (Trichosporon mycotoxinivorans in old taxonomy) and the putative Baeyer-Villiger monooxygenases (BVMOs) and carboxylester hydrolases for zearalenone (ZEA) degradation through bioinformatic analysis. In particular, we developed a working pipeline for genome-scaled prediction of substrate-specific enzyme (GPSE, available at https://github.com/JinyuanSun/GPSE), which ultimately builds homologous structural and molecular docking models to demonstrate how the relevant degrading enzymes work. We expect that the enzyme-prediction woroflow process GPSE developed in this study might help accelerate the discovery of new detoxification enzymes.
Collapse
Affiliation(s)
- Jinyuan Sun
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Yan Xia
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Dengming Ming
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| |
Collapse
|
194
|
Massarolo KC, Ferreira CF, Collazzo CC, Bianchini A, Kupski L, Badiale-Furlong E. Resistant starch and hydrothermal treatment of cornmeal: Factors in aflatoxins and fumonisin B1 reduction and bioaccessibility. Food Control 2020. [DOI: 10.1016/j.foodcont.2020.107274] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
195
|
Pascari X, Maul R, Kemmlein S, Marin S, Sanchis V. The fate of several trichothecenes and zearalenone during roasting and enzymatic treatment of cereal flour applied in cereal-based infant food production. Food Control 2020. [DOI: 10.1016/j.foodcont.2020.107245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
196
|
Roohi R, Hashemi SMB, Mousavi Khaneghah A. Kinetics and thermodynamic modelling of the aflatoxins decontamination: a review. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14689] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Reza Roohi
- Faculty of Engineering, Department of Mechanical Engineering Fasa University Fasa Iran
| | | | - Amin Mousavi Khaneghah
- Faculty of Food Engineering, Department of Food Science University of Campinas (UNICAMP) Campinas Sao Paulo Brazil
| |
Collapse
|
197
|
Rodríguez-Aguilar M, Solís-Mercado J, Flores-Ramírez R, Díaz-Barriga F, Zuki-Orozco A, Cilia-López V. Aflatoxins and the traditional process of nixtamalisation in indigenous communities from the Huasteca Potosina region. WORLD MYCOTOXIN J 2020. [DOI: 10.3920/wmj2019.2538] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Aflatoxins represent one of the biggest public health problems in food safety, due to their toxic potential for humans and animals. They can lead to serious threats, such as hepatotoxicity, teratogenicity and immunotoxicity. Maize is the most important cereal consumed in Mexico, with which tortillas, tamales, flours, toasts and other products are elaborated. The elaboration of tortillas begins with nixtamalisation, which is an ancient maize process, developed and applied by indigenous Mesoamerican population. Some studies have shown the effect of nixtamalisation in the inactivation of aflatoxins. The purpose of this research was to record the traditional nixtamalisation process (TNP) and to register the presence of the aflatoxin B1 (AFB1) in tortillas and the exposure to AFB1 in indigenous communities living in the Huasteca Potosina, in central México. To register the nixtamalisation technique, a questionnaire was given to women, to illustrate the process step by step. Digestion, extraction, purification, and identification of the adduct AFB1-lysine (AFB1-Lys) in serum were performed. The TNP was analysed by 51 surveys, 4% of the tortillas was above the maximum permissible levels, according to Mexican guidelines; however, all blood samples showed presence of AFB1. TNP done in indigenous communities in the Huasteca Potosina region is not efficient enough to eliminate aflatoxins present in contaminated maize. It is necessary to improve conditions of places in which the grain is stored and knowledge about the risk of exposure to aflatoxins in rural communities, as key steps for preventing exposure to this type of mycotoxins.
Collapse
Affiliation(s)
- M. Rodríguez-Aguilar
- Centro de Investigación Aplicada en Ambiente y Salud, CIACYT, Facultad de Medicina, Universidad Autónoma de San Luis Potosí. Av. Venustiano Carranza 2405, CP 78210, San Luis Potosí, México
| | - J. Solís-Mercado
- Centro de Investigación Aplicada en Ambiente y Salud, CIACYT, Facultad de Medicina, Universidad Autónoma de San Luis Potosí. Av. Venustiano Carranza 2405, CP 78210, San Luis Potosí, México
| | - R. Flores-Ramírez
- CONACYT, Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí, Avenida Sierra Leona No. 550, CP 78210, Colonia Lomas Segunda Sección, San Luis Potosí, México
| | - F. Díaz-Barriga
- Centro de Investigación Aplicada en Ambiente y Salud, CIACYT, Facultad de Medicina, Universidad Autónoma de San Luis Potosí. Av. Venustiano Carranza 2405, CP 78210, San Luis Potosí, México
| | - A. Zuki-Orozco
- Centro de Investigación Aplicada en Ambiente y Salud, CIACYT, Facultad de Medicina, Universidad Autónoma de San Luis Potosí. Av. Venustiano Carranza 2405, CP 78210, San Luis Potosí, México
| | - V.G. Cilia-López
- Centro de Investigación Aplicada en Ambiente y Salud, CIACYT, Facultad de Medicina, Universidad Autónoma de San Luis Potosí. Av. Venustiano Carranza 2405, CP 78210, San Luis Potosí, México
| |
Collapse
|
198
|
Loi M, Renaud JB, Rosini E, Pollegioni L, Vignali E, Haidukowski M, Sumarah MW, Logrieco AF, Mulè G. Enzymatic transformation of aflatoxin B 1 by Rh_DypB peroxidase and characterization of the reaction products. CHEMOSPHERE 2020; 250:126296. [PMID: 32135437 DOI: 10.1016/j.chemosphere.2020.126296] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 02/17/2020] [Accepted: 02/20/2020] [Indexed: 06/10/2023]
Abstract
In some environments, a number of crops, notably maize and nuts can be contaminated by aflatoxin B1 and related compounds resulting from the growth of aflatoxin-producing Aspergilli. Fungal peroxidases have been shown to degrade a number of mycotoxins, including aflatoxin B1 (AFB1). Therefore, the purpose of this study was to investigate the in vitro enzymatic degradation AFB1 by a recombinant type B dye decolorizing peroxidase (Rh_DypB). Analysis of the reaction products by HPLC-MS analysis showed that under optimized conditions AFB1 was efficiently transformed by Rh_DypB, reaching a maximum of 96% conversion after 4 days of reaction at 25 °C. Based on high resolution mass spectrometry analysis, AFB1 was demonstrated to be quantitatively converted to AFQ1, a compound with a significantly lower toxicity. A number of low molecular mass compounds were also present in the final reaction mixture in small quantities. The results presented in this study are promising for a possible application of the enzyme Rh_DypB for aflatoxin reduction in feed.
Collapse
Affiliation(s)
- Martina Loi
- Institute of Sciences of Food Production, National Research Council of Italy (ISPA-CNR), Via G. Amendola 122/O, 70126 Bari, Italy.
| | - Justin B Renaud
- London Research and Development Centre, Agriculture and Agri-Food Canada, 1391 Sandford Street London, Ontario, Canada, N5V4T3.
| | - Elena Rosini
- Department of Biotechnology and Life Sciences, University of Insubria, via Dunant 3, 21100 Varese, Italy.
| | - Loredano Pollegioni
- Department of Biotechnology and Life Sciences, University of Insubria, via Dunant 3, 21100 Varese, Italy.
| | - Elisa Vignali
- Department of Biotechnology and Life Sciences, University of Insubria, via Dunant 3, 21100 Varese, Italy.
| | - Miriam Haidukowski
- Institute of Sciences of Food Production, National Research Council of Italy (ISPA-CNR), Via G. Amendola 122/O, 70126 Bari, Italy.
| | - Mark W Sumarah
- London Research and Development Centre, Agriculture and Agri-Food Canada, 1391 Sandford Street London, Ontario, Canada, N5V4T3.
| | - Antonio F Logrieco
- Institute of Sciences of Food Production, National Research Council of Italy (ISPA-CNR), Via G. Amendola 122/O, 70126 Bari, Italy.
| | - Giuseppina Mulè
- Institute of Sciences of Food Production, National Research Council of Italy (ISPA-CNR), Via G. Amendola 122/O, 70126 Bari, Italy.
| |
Collapse
|
199
|
Yu J, Smith IN, Mikiashvili N. Reducing Ochratoxin A Content in Grape Pomace by Different Methods. Toxins (Basel) 2020; 12:E424. [PMID: 32605033 PMCID: PMC7404766 DOI: 10.3390/toxins12070424] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 02/07/2023] Open
Abstract
Grape pomace (GP) is the residue of grapes after wine making and is a valuable source of dietary polyphenol and fiber for health promotion. However, studies found the presence of ochratoxin A (OTA) in GP at very high concentrations, which raises a safety issue in the value-added utilization of GP. This study evaluated the effects of thermal pressure, baking, acid and enzymatic treatments on OTA content in GP. Thermal pressure treatment was conducted with wet GP at 121 °C for 10-30 min in an autoclave; acid treatments were conducted with hydrochloric acid, acetic acid, citric acid, and lactic acid, respectively, at 50 °C for 24 h. Baking was conducted using a cookie model. For enzymatic treatment, purified OTA solution was treated with carboxypeptidase A, alcalase, flavourzyme, pepsin, and lipase, respectively, and the effective enzymes were selected to treat GP. Results show that autoclaving for 10-30 min reduced 19-80% of OTA, varying with treatment time and GP variety. The effectiveness of acid treatment was similar to that of autoclaving and varied with acid type and GP variety. Baking increased the detectable OTA. Among all tested enzymes, carboxypeptidase A was the most effective in reducing OTA, followed by lipase and flavourzyme, but their effects were significantly lower in GP samples.
Collapse
Affiliation(s)
- Jianmei Yu
- Department of Family and Consumer Sciences, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA; (I.N.S.); (N.M.)
| | | | | |
Collapse
|
200
|
Muhialdin BJ, Saari N, Meor Hussin AS. Review on the Biological Detoxification of Mycotoxins Using Lactic Acid Bacteria to Enhance the Sustainability of Foods Supply. Molecules 2020; 25:E2655. [PMID: 32517380 PMCID: PMC7321335 DOI: 10.3390/molecules25112655] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 03/30/2020] [Accepted: 04/02/2020] [Indexed: 12/19/2022] Open
Abstract
The challenges to fulfill the demand for a safe food supply are dramatically increasing. Mycotoxins produced by certain fungi cause great economic loss and negative impact on the sustainability of food supplies. Moreover, the occurrence of mycotoxins at high levels in foods poses a high health threat for the consumers. Biological detoxification has exhibited a high potential to detoxify foodstuffs on a cost-effective and large scale. Lactic acid bacteria showed a good potential as an alternative strategy for the elimination of mycotoxins. The current review describes the health and economic impacts associated with mycotoxin contamination in foodstuffs. Moreover, this review highlights the biological detoxification of common food mycotoxins by lactic acid bacteria.
Collapse
Affiliation(s)
- Belal J. Muhialdin
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia;
- Halal Products Research Institute, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia;
| | - Nazamid Saari
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia;
| | - Anis Shobirin Meor Hussin
- Halal Products Research Institute, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia;
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| |
Collapse
|