151
|
Ribosomal S6K1 in POMC and AgRP Neurons Regulates Glucose Homeostasis but Not Feeding Behavior in Mice. Cell Rep 2015; 11:335-43. [PMID: 25865886 PMCID: PMC4410943 DOI: 10.1016/j.celrep.2015.03.029] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 02/11/2015] [Accepted: 03/11/2015] [Indexed: 11/23/2022] Open
Abstract
Hypothalamic ribosomal S6K1 has been suggested as a point of convergence for hormonal and nutrient signals in the regulation of feeding behavior, bodyweight, and glucose metabolism. However, the long-term effects of manipulating hypothalamic S6K1 signaling on energy homeostasis and the cellular mechanisms underlying these roles are unclear. We therefore inactivated S6K1 in pro-opiomelanocortin (POMC) and agouti-related protein (AgRP) neurons, key regulators of energy homeostasis, but in contrast to the current view, we found no evidence that S6K1 regulates food intake and bodyweight. In contrast, S6K1 signaling in POMC neurons regulated hepatic glucose production and peripheral lipid metabolism and modulated neuronal excitability. S6K1 signaling in AgRP neurons regulated skeletal muscle insulin sensitivity and was required for glucose sensing by these neurons. Our findings suggest that S6K1 signaling is not a general integrator of energy homeostasis in the mediobasal hypothalamus but has distinct roles in the regulation of glucose homeostasis by POMC and AgRP neurons.
Collapse
|
152
|
Moullé VS, Picard A, Cansell C, Luquet S, Magnan C. [Role of brain lipid sensing in nervous regulation of energy balance]. Med Sci (Paris) 2015; 31:397-403. [PMID: 25958758 DOI: 10.1051/medsci/20153104014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025] Open
Abstract
Fatty acid sensitive neurons located in hypothalamus, hippocampus or striatum are able to detect daily variations of plasma fatty acid levels. Thus, these neurons play a role to regulate energy balance by controling food intake, insulin secretion or hepatic glucose production. Molecular mechanisms that mediate fatty acid effects include receptor FAT (fatty acid transporter)/CD36. Deregulation of this brain lipid sensing may be an early event leading to further dysfunction of energy balance leading to obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Valentine S Moullé
- CNRS UMR 8251, biologie fonctionnelle et adaptative, Paris, France - Université Paris Diderot, 4, rue Marie-Andrée Lagroua Weill-Halle, 75205 Paris Cedex 13, France
| | - Alexandre Picard
- CNRS UMR 8251, biologie fonctionnelle et adaptative, Paris, France - Université Paris Diderot, 4, rue Marie-Andrée Lagroua Weill-Halle, 75205 Paris Cedex 13, France
| | - Céline Cansell
- CNRS UMR 8251, biologie fonctionnelle et adaptative, Paris, France - Université Paris Diderot, 4, rue Marie-Andrée Lagroua Weill-Halle, 75205 Paris Cedex 13, France
| | - Serge Luquet
- CNRS UMR 8251, biologie fonctionnelle et adaptative, Paris, France - Université Paris Diderot, 4, rue Marie-Andrée Lagroua Weill-Halle, 75205 Paris Cedex 13, France
| | - Christophe Magnan
- CNRS UMR 8251, biologie fonctionnelle et adaptative, Paris, France - Université Paris Diderot, 4, rue Marie-Andrée Lagroua Weill-Halle, 75205 Paris Cedex 13, France
| |
Collapse
|
153
|
Zhang J, Zhou Y, Chen C, Yu F, Wang Y, Gu J, Ma L, Ho G. ERK1/2 mediates glucose-regulated POMC gene expression in hypothalamic neurons. J Mol Endocrinol 2015; 54:125-35. [PMID: 25624461 DOI: 10.1530/jme-14-0330] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Hypothalamic glucose-sensing neurons regulate the expression of genes encoding feeding-related neuropetides POMC, AgRP, and NPY - the key components governing metabolic homeostasis. AMP-activated protein kinase (AMPK) is postulated to be the molecular mediator relaying glucose signals to regulate the expression of these neuropeptides. Whether other signaling mediator(s) plays a role is not clear. In this study, we investigated the role of ERK1/2 using primary hypothalamic neurons as the model system. The primary neurons were differentiated from hypothalamic progenitor cells. The differentiated neurons possessed the characteristic neuronal cell morphology and expressed neuronal post-mitotic markers as well as leptin-regulated orexigenic POMC and anorexigenic AgRP/NPY genes. Treatment of cells with glucose dose-dependently increased POMC and decreased AgRP/NPY expression with a concurrent suppression of AMPK phosphorylation. In addition, glucose treatment dose-dependently increased the ERK1/2 phosphorylation. Blockade of ERK1/2 activity with its specific inhibitor PD98059 partially (approximately 50%) abolished glucose-induced POMC expression, but had little effect on AgRP/NPY expression. Conversely, blockade of AMPK activity with its specific inhibitor produced a partial (approximately 50%) reversion of low-glucose-suppressed POMC expression, but almost completely blunted the low-glucose-induced AgRP/NPY expression. The results indicate that ERK1/2 mediated POMC but not AgRP/NPY expression. Confirming the in vitro findings, i.c.v. administration of PD98059 in rats similarly attenuated glucose-induced POMC expression in the hypothalamus, but again had little effect on AgRP/NPY expression. The results are indicative of a novel role of ERK1/2 in glucose-regulated POMC expression and offer new mechanistic insights into hypothalamic glucose sensing.
Collapse
Affiliation(s)
- Juan Zhang
- Department of PediatricsThe Second Affiliated Hospital of Shantou University Medical College, Shantou 515041, ChinaDepartment of Molecular PathologyShantou University Medical College, Shantou 515041, China
| | - Yunting Zhou
- Department of PediatricsThe Second Affiliated Hospital of Shantou University Medical College, Shantou 515041, ChinaDepartment of Molecular PathologyShantou University Medical College, Shantou 515041, China
| | - Cheng Chen
- Department of PediatricsThe Second Affiliated Hospital of Shantou University Medical College, Shantou 515041, ChinaDepartment of Molecular PathologyShantou University Medical College, Shantou 515041, China
| | - Feiyuan Yu
- Department of PediatricsThe Second Affiliated Hospital of Shantou University Medical College, Shantou 515041, ChinaDepartment of Molecular PathologyShantou University Medical College, Shantou 515041, China
| | - Yun Wang
- Department of PediatricsThe Second Affiliated Hospital of Shantou University Medical College, Shantou 515041, ChinaDepartment of Molecular PathologyShantou University Medical College, Shantou 515041, China
| | - Jiang Gu
- Department of PediatricsThe Second Affiliated Hospital of Shantou University Medical College, Shantou 515041, ChinaDepartment of Molecular PathologyShantou University Medical College, Shantou 515041, China
| | - Lian Ma
- Department of PediatricsThe Second Affiliated Hospital of Shantou University Medical College, Shantou 515041, ChinaDepartment of Molecular PathologyShantou University Medical College, Shantou 515041, China
| | - Guyu Ho
- Department of PediatricsThe Second Affiliated Hospital of Shantou University Medical College, Shantou 515041, ChinaDepartment of Molecular PathologyShantou University Medical College, Shantou 515041, China
| |
Collapse
|
154
|
Patrono E, Di Segni M, Patella L, Andolina D, Valzania A, Latagliata EC, Felsani A, Pompili A, Gasbarri A, Puglisi-Allegra S, Ventura R. When chocolate seeking becomes compulsion: gene-environment interplay. PLoS One 2015; 10:e0120191. [PMID: 25781028 PMCID: PMC4363151 DOI: 10.1371/journal.pone.0120191] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 02/04/2015] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Eating disorders appear to be caused by a complex interaction between environmental and genetic factors, and compulsive eating in response to adverse circumstances characterizes many eating disorders. MATERIALS AND METHODS We compared compulsion-like eating in the form of conditioned suppression of palatable food-seeking in adverse situations in stressed C57BL/6J and DBA/2J mice, two well-characterized inbred strains, to determine the influence of gene-environment interplay on this behavioral phenotype. Moreover, we tested the hypothesis that low accumbal D2 receptor (R) availability is a genetic risk factor of food compulsion-like behavior and that environmental conditions that induce compulsive eating alter D2R expression in the striatum. To this end, we measured D1R and D2R expression in the striatum and D1R, D2R and α1R levels in the medial prefrontal cortex, respectively, by western blot. RESULTS Exposure to environmental conditions induces compulsion-like eating behavior, depending on genetic background. This behavioral pattern is linked to decreased availability of accumbal D2R. Moreover, exposure to certain environmental conditions upregulates D2R and downregulates α1R in the striatum and medial prefrontal cortex, respectively, of compulsive animals. These findings confirm the function of gene-environment interplay in the manifestation of compulsive eating and support the hypothesis that low accumbal D2R availability is a "constitutive" genetic risk factor for compulsion-like eating behavior. Finally, D2R upregulation and α1R downregulation in the striatum and medial prefrontal cortex, respectively, are potential neuroadaptive responses that parallel the shift from motivated to compulsive eating.
Collapse
Affiliation(s)
- Enrico Patrono
- Department of Applied Clinical Science and Biotechnology, University of L'Aquila, Coppito, Italy
| | - Matteo Di Segni
- Santa Lucia Foundation, Rome, Italy
- Department of Psychology and Center “Daniel Bovet,” Sapienza University, Rome, Italy
| | - Loris Patella
- Department of Applied Clinical Science and Biotechnology, University of L'Aquila, Coppito, Italy
| | - Diego Andolina
- Santa Lucia Foundation, Rome, Italy
- Department of Applied Clinical Science and Biotechnology, University of L'Aquila, Coppito, Italy
| | - Alessandro Valzania
- Santa Lucia Foundation, Rome, Italy
- Department of Psychology and Center “Daniel Bovet,” Sapienza University, Rome, Italy
| | - Emanuele Claudio Latagliata
- Santa Lucia Foundation, Rome, Italy
- Department of Psychology and Center “Daniel Bovet,” Sapienza University, Rome, Italy
| | - Armando Felsani
- CNR, Institute of Cellular Biology and Neurobiology, Rome, Italy
| | - Assunta Pompili
- Department of Applied Clinical Science and Biotechnology, University of L'Aquila, Coppito, Italy
| | - Antonella Gasbarri
- Department of Applied Clinical Science and Biotechnology, University of L'Aquila, Coppito, Italy
| | - Stefano Puglisi-Allegra
- Santa Lucia Foundation, Rome, Italy
- Department of Psychology and Center “Daniel Bovet,” Sapienza University, Rome, Italy
| | - Rossella Ventura
- Santa Lucia Foundation, Rome, Italy
- Department of Psychology and Center “Daniel Bovet,” Sapienza University, Rome, Italy
- * E-mail:
| |
Collapse
|
155
|
Chen Y, Lin YC, Kuo TW, Knight ZA. Sensory detection of food rapidly modulates arcuate feeding circuits. Cell 2015; 160:829-841. [PMID: 25703096 DOI: 10.1016/j.cell.2015.01.033] [Citation(s) in RCA: 478] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 12/31/2014] [Accepted: 01/16/2015] [Indexed: 02/06/2023]
Abstract
Hunger is controlled by specialized neural circuits that translate homeostatic needs into motivated behaviors. These circuits are under chronic control by circulating signals of nutritional state, but their rapid dynamics on the timescale of behavior remain unknown. Here, we report optical recording of the natural activity of two key cell types that control food intake, AgRP and POMC neurons, in awake behaving mice. We find unexpectedly that the sensory detection of food is sufficient to rapidly reverse the activation state of these neurons induced by energy deficit. This rapid regulation is cell-type specific, modulated by food palatability and nutritional state, and occurs before any food is consumed. These data reveal that AgRP and POMC neurons receive real-time information about the availability of food in the external world, suggesting a primary role for these neurons in controlling appetitive behaviors such as foraging that promote the discovery of food.
Collapse
Affiliation(s)
- Yiming Chen
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Yen-Chu Lin
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Tzu-Wei Kuo
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Zachary A Knight
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
156
|
Librán-Pérez M, Velasco C, Otero-Rodiño C, López-Patiño MA, Míguez JM, Soengas JL. Metabolic response in liver and Brockmann bodies of rainbow trout to inhibition of lipolysis; possible involvement of the hypothalamus-pituitary-interrenal (HPI) axis. J Comp Physiol B 2015; 185:413-23. [PMID: 25666862 DOI: 10.1007/s00360-015-0894-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 01/14/2015] [Accepted: 01/22/2015] [Indexed: 01/15/2023]
Abstract
We previously demonstrated in rainbow trout that the decrease in circulating levels of fatty acid (FA) induced by treating fish with SDZ WAG 994 (SDZ) induced a counter-regulatory response in which the activation of the hypothalamus-pituitary-interrenal (HPI, equivalent to mammalian hypothalamus-pituitary-adrenal) axis was likely involved. This activation, probably not related to the control of food intake through FA sensor systems but to the modulation of lipolysis in peripheral tissues, liver and Brockmann bodies (BB, the main site of pancreatic endocrine cells in fish), would target the restoration of FA levels in plasma. To assess this hypothesis, we lowered circulating FA levels by treating fish with SDZ alone, or SDZ in the presence of metyrapone (an inhibitor of cortisol synthesis). In liver, the changes observed were not compatible with a direct FA-sensing response but with a stress response, which allows us to suggest that the detection of a FA decrease in the hypothalamus elicits a counter-regulatory response in liver, resulting in an activation of lipolysis to restore FA levels in plasma. The activation of these metabolic changes in liver could be attributable to the activation of the HPI axis and/or to the action of sympathetic pathways. In contrast, in BB, changes in circulating FA levels induce changes in several parameters compatible with the function of FA-sensing systems informing about the decrease in circulating FA levels.
Collapse
Affiliation(s)
- Marta Librán-Pérez
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Edificio de Ciencias Experimentais, Universidade de Vigo, 36310, Vigo, Spain
| | | | | | | | | | | |
Collapse
|
157
|
High on food: the interaction between the neural circuits for feeding and for reward. ACTA ACUST UNITED AC 2015; 10:165-176. [PMID: 29750082 DOI: 10.1007/s11515-015-1348-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Hunger, mostly initiated by a deficiency in energy, induces food seeking and intake. However, the drive toward food is not only regulated by physiological needs, but is motivated by the pleasure derived from ingestion of food, in particular palatable foods. Therefore, feeding is viewed as an adaptive motivated behavior that involves integrated communication between homeostatic feeding circuits and reward circuits. The initiation and termination of a feeding episode are instructed by a variety of neuronal signals, and maladaptive plasticity in almost any component of the network may lead to the development of pathological eating disorders. In this review we will summarize the latest understanding of how the feeding circuits and reward circuits in the brain interact. We will emphasize communication between the hypothalamus and the mesolimbic dopamine system and highlight complexities, discrepancies, open questions and future directions for the field.
Collapse
|
158
|
Stabler D, Paoli PP, Nicolson SW, Wright GA. Nutrient balancing of the adult worker bumblebee (Bombus terrestris) depends on the dietary source of essential amino acids. ACTA ACUST UNITED AC 2015; 218:793-802. [PMID: 25617453 PMCID: PMC4376193 DOI: 10.1242/jeb.114249] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Animals carefully regulate the amount of protein that they consume. The quantity of individual essential amino acids (EAAs) obtained from dietary protein depends on the protein source, but how the proportion of EAAs in the diet affects nutrient balancing has rarely been studied. Recent research using the Geometric Framework for Nutrition has revealed that forager honeybees who receive much of their dietary EAAs from floral nectar and not from solid protein have relatively low requirements for dietary EAAs. Here, we examined the nutritional requirements for protein and carbohydrates of foragers of the buff-tailed bumblebee Bombus terrestris. By using protein (sodium caseinate) or an equimolar mixture of the 10 EAAs, we found that the intake target (nutritional optimum) of adult workers depended on the source and proportion of dietary EAAs. When bees consumed caseinate-containing diets in a range of ratios between 1:250 and 1:25 (protein to carbohydrate), they achieved an intake target (IT) of 1:149 (w/w). In contrast to those fed protein, bees fed the EAA diets had an IT more biased towards carbohydrates (1:560 w/w) but also had a greater risk of death than those fed caseinate. We also tested how the dietary source of EAAs affected free AAs in bee haemolymph. Bees fed diets near their IT had similar haemolymph AA profiles, whereas bees fed diets high in caseinate had elevated levels of leucine, threonine, valine and alanine in the haemolymph. We found that like honeybees, bumblebee workers prioritize carbohydrate intake and have a relatively low requirement for protein. The dietary source of EAAs influenced both the ratio of protein/EAA to carbohydrate and the overall amount of carbohydrate eaten. Our data support the idea that EAAs and carbohydrates in haemolymph are important determinants of nutritional state in insects. Summary: The essential amino acid profile of the bumblebee diet influences regulation of the amount of both protein and carbohydrate consumed.
Collapse
Affiliation(s)
- Daniel Stabler
- Centre for Behaviour and Evolution, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Pier P Paoli
- Centre for Behaviour and Evolution, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Susan W Nicolson
- Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa
| | - Geraldine A Wright
- Centre for Behaviour and Evolution, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| |
Collapse
|
159
|
Magnan C, Luquet S. [Role of fatty acids in the nervous control of energy balance]. Biol Aujourdhui 2015; 209:309-15. [PMID: 27021049 DOI: 10.1051/jbio/2016002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Indexed: 11/14/2022]
Abstract
Fatty acid (FA)-sensitive neurons are present in the brain, especially the hypothalamus, and play a key role in the neural control of energy and glucose homeostasis including feeding behavior, insulin secretion and action. Subpopulations of neurons in the ventromedial and arcuate hypothalamic nuclei are selectively either inhibited or activated by FA. Molecular effectors of these FA effects include ion channels such as chloride, potassium or calcium. In addition at least half of the FA responses in ventromedial hypothalamic neurons are mediated by interaction with FAT/CD36, a FA translocator/receptor that does not require intracellular metabolism to activate downstream signaling. Recently, an important role of lipoprotein lipase in FA sensing has also been demonstrated not only in hypothalamus, but also in the hippocampus and striatum. Finally, FA overload might impair neural control of energy homeostasis through enhanced ceramide synthesis and may contribute to obesity and/or type 2 diabetes pathogenesis in predisposed subjects.
Collapse
Affiliation(s)
- Christophe Magnan
- UniversitéParis Diderot, Sorbonne Paris Cité, CNRS UMR 8251, 75205 Paris, France - Université Paris Diderot, case courrier 7126, Bâtiment Buffon, 5e étage, 4 rue Marie-Andrée Lagroua Weill-Hallé, 75205 Paris Cedex 13, France
| | - Serge Luquet
- UniversitéParis Diderot, Sorbonne Paris Cité, CNRS UMR 8251, 75205 Paris, France - Université Paris Diderot, case courrier 7126, Bâtiment Buffon, 5e étage, 4 rue Marie-Andrée Lagroua Weill-Hallé, 75205 Paris Cedex 13, France
| |
Collapse
|
160
|
Bouret S, Levin BE, Ozanne SE. Gene-environment interactions controlling energy and glucose homeostasis and the developmental origins of obesity. Physiol Rev 2015; 95:47-82. [PMID: 25540138 PMCID: PMC4281588 DOI: 10.1152/physrev.00007.2014] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Obesity and type 2 diabetes mellitus (T2DM) often occur together and affect a growing number of individuals in both the developed and developing worlds. Both are associated with a number of other serious illnesses that lead to increased rates of mortality. There is likely a polygenic mode of inheritance underlying both disorders, but it has become increasingly clear that the pre- and postnatal environments play critical roles in pushing predisposed individuals over the edge into a disease state. This review focuses on the many genetic and environmental variables that interact to cause predisposed individuals to become obese and diabetic. The brain and its interactions with the external and internal environment are a major focus given the prominent role these interactions play in the regulation of energy and glucose homeostasis in health and disease.
Collapse
Affiliation(s)
- Sebastien Bouret
- The Saban Research Institute, Neuroscience Program, Childrens Hospital Los Angeles, University of Southern California, Los Angeles, California; Inserm U837, Jean-Pierre Aubert Research Center, University Lille 2, Lille, France; Neurology Service, Veterans Administration Medical Center, East Orange, New Jersey; Department of Neurology and Neurosciences, Rutgers, New Jersey Medical School, Newark, New Jersey; and University of Cambridge Institute of Metabolic Science and MRC Metabolic Diseases Unit, Cambridge, United Kingdom
| | - Barry E Levin
- The Saban Research Institute, Neuroscience Program, Childrens Hospital Los Angeles, University of Southern California, Los Angeles, California; Inserm U837, Jean-Pierre Aubert Research Center, University Lille 2, Lille, France; Neurology Service, Veterans Administration Medical Center, East Orange, New Jersey; Department of Neurology and Neurosciences, Rutgers, New Jersey Medical School, Newark, New Jersey; and University of Cambridge Institute of Metabolic Science and MRC Metabolic Diseases Unit, Cambridge, United Kingdom
| | - Susan E Ozanne
- The Saban Research Institute, Neuroscience Program, Childrens Hospital Los Angeles, University of Southern California, Los Angeles, California; Inserm U837, Jean-Pierre Aubert Research Center, University Lille 2, Lille, France; Neurology Service, Veterans Administration Medical Center, East Orange, New Jersey; Department of Neurology and Neurosciences, Rutgers, New Jersey Medical School, Newark, New Jersey; and University of Cambridge Institute of Metabolic Science and MRC Metabolic Diseases Unit, Cambridge, United Kingdom
| |
Collapse
|
161
|
Nuzzaci D, Laderrière A, Lemoine A, Nédélec E, Pénicaud L, Rigault C, Benani A. Plasticity of the Melanocortin System: Determinants and Possible Consequences on Food Intake. Front Endocrinol (Lausanne) 2015; 6:143. [PMID: 26441833 PMCID: PMC4568417 DOI: 10.3389/fendo.2015.00143] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 08/31/2015] [Indexed: 02/06/2023] Open
Abstract
The melanocortin system is one of the most important neuronal pathways involved in the regulation of food intake and is probably the best characterized. Agouti-related peptide (AgRP) and proopiomelanocortin (POMC) expressing neurons located in the arcuate nucleus of the hypothalamus are the key elements of this system. These two neuronal populations are sensitive to circulating molecules and receive many excitatory and inhibitory inputs from various brain areas. According to sensory and metabolic information they integrate, these neurons control different aspects of feeding behavior and orchestrate autonomic responses aimed at maintaining energy homeostasis. Interestingly, composition and abundance of pre-synaptic inputs onto arcuate AgRP and POMC neurons vary in the adult hypothalamus in response to changes in the metabolic state, a phenomenon that can be recapitulated by treatment with hormones, such as leptin or ghrelin. As described in other neuroendrocrine systems, glia might be determinant to shift the synaptic configuration of AgRP and POMC neurons. Here, we discuss the physiological outcome of the synaptic plasticity of the melanocortin system, and more particularly its contribution to the control of energy balance. The discovery of this attribute has changed how we view obesity and related disorders, and opens new perspectives for their management.
Collapse
Affiliation(s)
- Danaé Nuzzaci
- Center for Taste and Feeding Behaviour, CNRS (UMR6265), INRA (UMR1324), Université de Bourgogne-Franche Comté, Dijon, France
| | - Amélie Laderrière
- Center for Taste and Feeding Behaviour, CNRS (UMR6265), INRA (UMR1324), Université de Bourgogne-Franche Comté, Dijon, France
| | - Aleth Lemoine
- Center for Taste and Feeding Behaviour, CNRS (UMR6265), INRA (UMR1324), Université de Bourgogne-Franche Comté, Dijon, France
| | - Emmanuelle Nédélec
- Center for Taste and Feeding Behaviour, CNRS (UMR6265), INRA (UMR1324), Université de Bourgogne-Franche Comté, Dijon, France
| | - Luc Pénicaud
- Center for Taste and Feeding Behaviour, CNRS (UMR6265), INRA (UMR1324), Université de Bourgogne-Franche Comté, Dijon, France
| | - Caroline Rigault
- Center for Taste and Feeding Behaviour, CNRS (UMR6265), INRA (UMR1324), Université de Bourgogne-Franche Comté, Dijon, France
| | - Alexandre Benani
- Center for Taste and Feeding Behaviour, CNRS (UMR6265), INRA (UMR1324), Université de Bourgogne-Franche Comté, Dijon, France
- *Correspondence: Alexandre Benani, Centre des Sciences du Goût et de l’Alimentation (CSGA), CNRS (UMR6265), INRA (UMR1324), Université de Bourgogne-Franche Comté, 9E Boulevard Jeanne d’Arc, Dijon 21000, France,
| |
Collapse
|
162
|
Alenazi FSH, Ibrahim BA, Briski KP. Estradiol regulates effects of hindbrain activator 5-aminoimidazole-4-carboxamide-riboside administration on hypothalamic adenosine 5'-monophosphate-activated protein kinase activity and metabolic neurotransmitter mRNA and protein expression. J Neurosci Res 2014; 93:651-9. [PMID: 25476093 DOI: 10.1002/jnr.23520] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 10/14/2014] [Accepted: 10/17/2014] [Indexed: 01/12/2023]
Abstract
Hindbrain adenosine 5'-monophosphate-activated protein kinase (AMPK) activation alters hypothalamic neuronal genomic activity in an estradiol (E)-dependent manner. This study examines the premise that E regulates metabolic effector neuron reactivity to hindbrain AMPK. Paraventricular (PVH), arcuate (ARH), and ventromedial (VMH) nuclei were micropunched from brains of E- or oil (O)-implanted ovariectomized female rats that had been injected, into the fourth ventricle, with the AMPK activator 5-aminoimidazole-4-carboxamide-riboside (AICAR; A) or saline (S) and analyzed by quantitative polymerase chain reaction and Western blotting for neurotransmitter mRNA and protein expression. PVH corticotrophin-releasing hormone gene and protein profiles were decreased in O/A and E/A animals. ARH pro-opiomelanocortin (POMC) mRNA and protein were both elevated in O/A but were diminished or unchanged, respectively, in E/A animals; ARH neuropeptide Y (NPY) transcription was inhibited in O/A and E/A animals, but neuropeptide content was augmented in E/A only. VMH SF-1 mRNA and protein were reduced in O and E animals. AICAR did not alter AMPK protein in any structure but elevated PVH (↑E), did not alter ARH, and decreased VMH (↓O,↓E) pAMPK. Results demonstrate hypothalamic metabolic neurotransmitter and AMPK reactivity to hindbrain AMPK activation, including E-dependent adjustments in POMC and NPY transcription and protein expression. Dissimilar POMC (↑O vs. ↔E) and NPY (↓O vs. ↑E) neuropeptide responses to caudal fourth ventricle AICAR indicate E regulation of hindbrain AMPK signaling and/or target receptivity, implying that ARH-controlled metabolic responses may differ in the presence vs. absence of E. Evidence for variable changes in hypothalamic AMPK activity resulting from hindbrain sensor manipulation suggests that individual (or region-based groups of) AMPK-expressing neuron populations are uniquely impacted by hindbrain AMPK.
Collapse
Affiliation(s)
- Fahaad S H Alenazi
- Department of Basic Pharmaceutical Sciences, College of Pharmacy, The University of Louisiana at Monroe, Monroe, Louisiana
| | | | | |
Collapse
|
163
|
Exploiting the therapeutic potential of leptin signaling in cachexia. Curr Opin Support Palliat Care 2014; 8:352-7. [DOI: 10.1097/spc.0000000000000092] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
164
|
Librán-Pérez M, Velasco C, López-Patiño MA, Míguez JM, Soengas JL. Counter-regulatory response to a fall in circulating fatty acid levels in rainbow trout. Possible involvement of the hypothalamus-pituitary-interrenal axis. PLoS One 2014; 9:e113291. [PMID: 25405879 PMCID: PMC4236162 DOI: 10.1371/journal.pone.0113291] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 10/22/2014] [Indexed: 12/31/2022] Open
Abstract
We hypothesize that a decrease in circulating levels of fatty acid (FA) in rainbow trout Oncorhynchus mykiss would result in the inhibition of putative hypothalamic FA sensing systems with concomitant changes in the expression of orexigenic and anorexigenic factors ultimately leading to a stimulation of food intake. To assess this hypothesis, we lowered circulating FA levels treating fish with SDZ WAG 994 (SDZ), a selective A1 adenosine receptor agonist that inhibits lipolysis. In additional groups, we also evaluated if the presence of intralipid was able to counteract changes induced by SDZ treatment, and the possible involvement of the hypothalamus-pituitary-interrenal (HPI) axis by treating fish with SDZ in the presence of metyrapone, which decreases cortisol synthesis in fish. The decrease in circulating levels of FA in rainbow trout induced a clear increase in food intake that was associated with the decrease of the anorexigenic potential in hypothalamus (decreased POMC-A1 and CART mRNA abundance), and with changes in several parameters related to putative FA-sensing mechanisms in hypothalamus. Intralipid treatment counteracted these changes. SDZ treatment also induced increased cortisol levels and the activation of different components of the HPI axis whereas these changes disappeared in the presence of intralipid or metyrapone. These results suggest that the HPI axis is involved in a counter-regulatory response in rainbow trout to restore FA levels in plasma.
Collapse
Affiliation(s)
- Marta Librán-Pérez
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, Vigo, Spain
| | - Cristina Velasco
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, Vigo, Spain
| | - Marcos A López-Patiño
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, Vigo, Spain
| | - Jesús M Míguez
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, Vigo, Spain
| | - José L Soengas
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, Vigo, Spain
| |
Collapse
|
165
|
Yasoshima Y, Shimura T. A mouse model for binge-like sucrose overconsumption: Contribution of enhanced motivation for sweetener consumption. Physiol Behav 2014; 138:154-64. [PMID: 25446199 DOI: 10.1016/j.physbeh.2014.10.035] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 10/27/2014] [Accepted: 10/29/2014] [Indexed: 01/25/2023]
Abstract
Behavioral and neural features of binge-like sugar overconsumption have been studied using rat models. However, few mouse models are available to examine the interaction between neural and genetic underpinnings of bingeing. In the present study, we first aim to establish a simple mouse model of binge-like sucrose overconsumption using daytime limited access training in food-restricted male mice. Trained mice received 4-h limited access to both 0.5M sucrose solution and chow for 10 days. Three control groups received (1) 4-h sucrose and 20-h chow access, (2) 20-h sucrose and 4-h, or (3) 20-h chow access, respectively. Only the trained group showed progressively increased sucrose consumption during brief periods of time and developed binge-like excessive behavior. Next, we examined whether the present mouse model mimicked a human feature of binge eating known as "eating when not physically hungry." Trained mice consumed significantly more sucrose or non-caloric sweetener (saccharin) during post-training days even after they nocturnally consumed substantial chow prior to daytime sweetener access. In other trained groups, both a systemic administration of glucose and substantial chow consumption prior to the daytime limited sucrose access failed to reduce binge-like sucrose overconsumption. Our results suggest that even when caloric consumption is not necessarily required, limited access training shapes and triggers binge-like overconsumption of sweetened solution in trained mice. The binge-like behavior in trained mice may be mainly due to enhanced hedonic motivation for the sweetener's taste. The present study suggests that our mouse model for binge-like sugar overconsumption may mimic some human features of binge eating and can be used to investigate the roles of neural and genetic mechanisms in binge-like overconsumption of sweetened substances in the absence of physical hunger.
Collapse
Affiliation(s)
- Yasunobu Yasoshima
- Division of Behavioral Physiology, Department of Behavioral Sciences, Graduate School of Human Science, Osaka University, 1-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Tsuyoshi Shimura
- Division of Behavioral Physiology, Department of Behavioral Sciences, Graduate School of Human Science, Osaka University, 1-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
166
|
Verschure PFMJ, Pennartz CMA, Pezzulo G. The why, what, where, when and how of goal-directed choice: neuronal and computational principles. Philos Trans R Soc Lond B Biol Sci 2014; 369:20130483. [PMID: 25267825 PMCID: PMC4186236 DOI: 10.1098/rstb.2013.0483] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The central problems that goal-directed animals must solve are: 'What do I need and Why, Where and When can this be obtained, and How do I get it?' or the H4W problem. Here, we elucidate the principles underlying the neuronal solutions to H4W using a combination of neurobiological and neurorobotic approaches. First, we analyse H4W from a system-level perspective by mapping its objectives onto the Distributed Adaptive Control embodied cognitive architecture which sees the generation of adaptive action in the real world as the primary task of the brain rather than optimally solving abstract problems. We next map this functional decomposition to the architecture of the rodent brain to test its consistency. Following this approach, we propose that the mammalian brain solves the H4W problem on the basis of multiple kinds of outcome predictions, integrating central representations of needs and drives (e.g. hypothalamus), valence (e.g. amygdala), world, self and task state spaces (e.g. neocortex, hippocampus and prefrontal cortex, respectively) combined with multi-modal selection (e.g. basal ganglia). In our analysis, goal-directed behaviour results from a well-structured architecture in which goals are bootstrapped on the basis of predefined needs, valence and multiple learning, memory and planning mechanisms rather than being generated by a singular computation.
Collapse
Affiliation(s)
- Paul F M J Verschure
- Laboratory of Synthetic, Perceptive, Emotive and Cognitive Systems (SPECS), Center of Autonomous Systems and Neurorobotics, Universitat Pompeu Fabra (UPF), Barcelona, Spain Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | | | - Giovanni Pezzulo
- Institute of Cognitive Sciences and Technologies, National Research Council, Rome, Italy
| |
Collapse
|
167
|
Cansell C, Castel J, Denis RGP, Rouch C, Delbes AS, Martinez S, Mestivier D, Finan B, Maldonado-Aviles JG, Rijnsburger M, Tschöp MH, DiLeone RJ, Eckel RH, la Fleur SE, Magnan C, Hnasko TS, Luquet S. Dietary triglycerides act on mesolimbic structures to regulate the rewarding and motivational aspects of feeding. Mol Psychiatry 2014; 19:1095-105. [PMID: 24732670 PMCID: PMC4303340 DOI: 10.1038/mp.2014.31] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 02/25/2014] [Accepted: 02/26/2014] [Indexed: 12/17/2022]
Abstract
Circulating triglycerides (TGs) normally increase after a meal but are altered in pathophysiological conditions, such as obesity. Although TG metabolism in the brain remains poorly understood, several brain structures express enzymes that process TG-enriched particles, including mesolimbic structures. For this reason, and because consumption of high-fat diet alters dopamine signaling, we tested the hypothesis that TG might directly target mesolimbic reward circuits to control reward-seeking behaviors. We found that the delivery of small amounts of TG to the brain through the carotid artery rapidly reduced both spontaneous and amphetamine-induced locomotion, abolished preference for palatable food and reduced the motivation to engage in food-seeking behavior. Conversely, targeted disruption of the TG-hydrolyzing enzyme lipoprotein lipase specifically in the nucleus accumbens increased palatable food preference and food-seeking behavior. Finally, prolonged TG perfusion resulted in a return to normal palatable food preference despite continued locomotor suppression, suggesting that adaptive mechanisms occur. These findings reveal new mechanisms by which dietary fat may alter mesolimbic circuit function and reward seeking.
Collapse
Affiliation(s)
- Céline Cansell
- Univ Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, F-75205 Paris, France
| | - Julien Castel
- Univ Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, F-75205 Paris, France
| | - Raphaël G. P. Denis
- Univ Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, F-75205 Paris, France
| | - Claude Rouch
- Univ Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, F-75205 Paris, France
| | - Anne-Sophie Delbes
- Univ Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, F-75205 Paris, France
| | - Sarah Martinez
- Univ Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, F-75205 Paris, France
| | - Denis Mestivier
- Université Paris Diderot, Sorbonne Paris Cité, Institut Jacques Monod, Paris, France
| | - Brian Finan
- Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health, München/Neuherberg, Germany
| | | | - Merel Rijnsburger
- Department of Endocrinology and Metabolism, University of Amsterdam, Amsterdam, The Netherlands
| | - Matthias H. Tschöp
- Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health, München/Neuherberg, Germany,Div. of Metabolic Diseases, Dept. of Medicine, Technische Universität München, Germany
| | - Ralph J. DiLeone
- Department of Psychiatry, Yale University School of Medicine New Haven, CT, USA
| | - Robert H. Eckel
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora CO, USA
| | - Susanne E. la Fleur
- Department of Endocrinology and Metabolism, University of Amsterdam, Amsterdam, The Netherlands
| | - Christophe Magnan
- Univ Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, F-75205 Paris, France
| | - Thomas S. Hnasko
- Department of Neurosciences, University of California, San Diego, La Jolla CA, USA
| | - Serge Luquet
- Univ Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, F-75205 Paris, France
| |
Collapse
|
168
|
Soengas JL. Contribution of glucose- and fatty acid sensing systems to the regulation of food intake in fish. A review. Gen Comp Endocrinol 2014; 205:36-48. [PMID: 24530522 DOI: 10.1016/j.ygcen.2014.01.015] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 01/13/2014] [Accepted: 01/28/2014] [Indexed: 01/01/2023]
Abstract
Food intake in fish is a complex process regulated through many different factors including abundance of energy and nutrients. In recent years, evidence have been obtained in several fishes, mainly in rainbow trout, regarding the presence and functioning in brain areas of metabolic sensors informing about changes in the levels of nutrients like glucose and fatty acids. The activity of these sensors relate to the control of food intake through changes in the expression of anorexigenic and orexigenic neuropeptides. The present review will provide a picture of the main results obtained to date in these studies, as well as perspectives for future research in the field.
Collapse
Affiliation(s)
- José L Soengas
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, Spain.
| |
Collapse
|
169
|
Picard A, Moullé VS, Le Foll C, Cansell C, Véret J, Coant N, Le Stunff H, Migrenne S, Luquet S, Cruciani-Guglielmacci C, Levin BE, Magnan C. Physiological and pathophysiological implications of lipid sensing in the brain. Diabetes Obes Metab 2014; 16 Suppl 1:49-55. [PMID: 25200296 DOI: 10.1111/dom.12335] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 05/06/2014] [Indexed: 12/17/2022]
Abstract
Fatty acid (FA)-sensitive neurons are present in the brain, especially the hypothalamus, and play a key role in the neural control of energy homeostasis. Through neuronal output, FA may modulate feeding behaviour as well as insulin secretion and action. Subpopulations of neurons in the ventromedial and arcuate hypothalamic nuclei are selectively either inhibited or activated by FA. Molecular effectors of these FA effects probably include chloride or potassium ion channels. While intracellular metabolism and activation of the ATP-sensitive K⁺ channel appear to be necessary for some of the signalling effects of FA, at least half of the FA responses in ventromedial hypothalamic neurons are mediated by interaction with FAT/CD36, an FA transporter/receptor that does not require intracellular metabolism to activate downstream signalling. Thus, FA or their metabolites can modulate neuronal activity as a means of directly monitoring ongoing fuel availability by brain nutrient-sensing neurons involved in the regulation of energy and glucose homeostasis. Recently, the role of lipoprotein lipase in FA sensing has also been shown in animal models not only in hypothalamus, but also in hippocampus and striatum. Finally, FA overload might impair neural control of energy homeostasis through enhanced ceramide synthesis and may contribute to obesity and/or type 2 diabetes pathogenesis in predisposed subjects.
Collapse
Affiliation(s)
- A Picard
- CNRS UMR 8251, Unit of Functional and Adaptive Biology, Paris, France; Department of Physiology, Université Paris Diderot, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
170
|
Seu E, Groman SM, Arnold AP, Jentsch JD. Sex chromosome complement influences operant responding for a palatable food in mice. GENES BRAIN AND BEHAVIOR 2014; 13:527-534. [PMID: 24861924 DOI: 10.1111/gbb.12143] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Revised: 04/21/2014] [Accepted: 05/21/2014] [Indexed: 01/04/2023]
Abstract
The procurement and consumption of palatable, calorie-dense foods is influenced by the nutritional and hedonic value of foods. Although many factors can influence the control over behavior by foods rich in sugar and fat, emerging evidence indicates that biological sex may play a particularly crucial role in the types of foods individuals seek out, as well as the level of motivation individuals will exert to obtain those foods. However, a systematic investigation of food-seeking and consumption that disentangles the effects of the major sex-biasing factors, including sex chromosome complement and organizational and activational effects of sex hormones, has yet to be conducted. Using the four core genotypes mouse model system, we separated and quantified the effects of sex chromosome complement and gonadal sex on consumption of and motivation to obtain a highly palatable solution [sweetened condensed milk (SCM)]. Gonadectomized mice with an XY sex chromosome complement, compared with those with two X chromosomes, independent of gonadal sex, appeared to be more sensitive to the reward value of the SCM solution and were more motivated to expend effort to obtain it, as evidenced by their dramatically greater expended effort in an instrumental task with progressively larger response-to-reward ratios. Gonadal sex independently affected free consumption of the solution but not motivation to obtain it. These data indicate that gonadal and chromosomal sex effects independently influence reward-related behaviors, contributing to sexually dimorphic patterns of behavior related to the pursuit and consumption of rewards.
Collapse
Affiliation(s)
- Emanuele Seu
- Department of Psychology, University of California, Los Angeles
| | - Stephanie M Groman
- Department of Psychology, University of California, Los Angeles.,Department of Psychiatry, Yale University
| | - Arthur P Arnold
- Department of Integrative Biology and Physiology, University of California, Los Angeles.,The Brain Research Institute, University of California, Los Angeles
| | - J David Jentsch
- Department of Psychology, University of California, Los Angeles.,Department of Psychiatry & Biobehavioral Sciences, University of California, Los Angeles.,The Brain Research Institute, University of California, Los Angeles
| |
Collapse
|
171
|
Stimulation of dopamine D4 receptors in the paraventricular nucleus of the hypothalamus of male rats induces hyperphagia: Involvement of glutamate. Physiol Behav 2014; 133:272-81. [DOI: 10.1016/j.physbeh.2014.04.040] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Accepted: 04/29/2014] [Indexed: 11/18/2022]
|
172
|
Heinrich G, Meece K, Wardlaw SL, Accili D. Preserved energy balance in mice lacking FoxO1 in neurons of Nkx2.1 lineage reveals functional heterogeneity of FoxO1 signaling within the hypothalamus. Diabetes 2014; 63:1572-82. [PMID: 24487022 PMCID: PMC3994959 DOI: 10.2337/db13-0651] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Transcription factor forkhead box O1 (FoxO1) regulates energy expenditure (EE), food intake, and hepatic glucose production. These activities have been mapped to specific hypothalamic neuronal populations using cell type-specific knockout experiments in mice. To parse out the integrated output of FoxO1-dependent transcription from different neuronal populations and multiple hypothalamic regions, we used transgenic mice expressing Cre recombinase from the Nkx2.1 promoter to ablate loxP-flanked Foxo1 alleles from a majority of hypothalamic neurons (Foxo1KO(Nkx2.1) mice). This strategy resulted in the expected inhibition of FoxO1 expression, but only produced a transient reduction of body weight as well as a decreased body length. The transient decrease of body weight in male mice was accompanied by decreased fat mass. Male Foxo1KO(Nkx2.1) mice show food intake similar to that in wild-type controls, and, although female knockout mice eat less, they do so in proportion to a reduced body size. EE is unaffected in Foxo1KO(Nkx2.1) mice, although small increases in body temperature are present. Unlike other neuron-specific Foxo1 knockout mice, Foxo1KO(Nkx2.1) mice are not protected from diet-induced obesity. These studies indicate that, unlike the metabolic effects of highly restricted neuronal subsets (proopiomelanocortin, neuropeptide Y/agouti-related peptide, and steroidogenic factor 1), those of neurons derived from the Nkx2.1 lineage either occur in a FoxO1-independent fashion or are compensated for through developmental plasticity.
Collapse
Affiliation(s)
- Garrett Heinrich
- Berrie Diabetes Center, Department of Medicine, College of Physicians & Surgeons, Columbia University, New York, NY
| | | | | | | |
Collapse
|
173
|
Bjordal M, Arquier N, Kniazeff J, Pin JP, Léopold P. Sensing of amino acids in a dopaminergic circuitry promotes rejection of an incomplete diet in Drosophila. Cell 2014; 156:510-21. [PMID: 24485457 DOI: 10.1016/j.cell.2013.12.024] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 08/07/2013] [Accepted: 11/15/2013] [Indexed: 01/18/2023]
Abstract
The brain is the central organizer of food intake, matching the quality and quantity of the food sources with organismal needs. To ensure appropriate amino acid balance, many species reject a diet lacking one or several essential amino acids (EAAs) and seek out a better food source. Here, we show that, in Drosophila larvae, this behavior relies on innate sensing of amino acids in dopaminergic (DA) neurons of the brain. We demonstrate that the amino acid sensor GCN2 acts upstream of GABA signaling in DA neurons to promote avoidance of the EAA-deficient diet. Using real-time calcium imaging in larval brains, we show that amino acid imbalance induces a rapid and reversible activation of three DA neurons that are necessary and sufficient for food rejection. Taken together, these data identify a central amino-acid-sensing mechanism operating in specific DA neurons and controlling food intake.
Collapse
Affiliation(s)
- Marianne Bjordal
- University of Nice-Sophia Antipolis, Institute of Biology Valrose, Parc Valrose, 06108 Nice, France; CNRS, Institute of Biology Valrose, Parc Valrose, 06108 Nice, France; INSERM, Institute of Biology Valrose, Parc Valrose, 06108 Nice, France
| | - Nathalie Arquier
- University of Nice-Sophia Antipolis, Institute of Biology Valrose, Parc Valrose, 06108 Nice, France; CNRS, Institute of Biology Valrose, Parc Valrose, 06108 Nice, France; INSERM, Institute of Biology Valrose, Parc Valrose, 06108 Nice, France
| | - Julie Kniazeff
- Institut de Génomique Fonctionnelle, CNRS UMR5203, INSERM U661, Université Montpellier 1 & 2, 34094 Montpellier, France
| | - Jean Philippe Pin
- Institut de Génomique Fonctionnelle, CNRS UMR5203, INSERM U661, Université Montpellier 1 & 2, 34094 Montpellier, France
| | - Pierre Léopold
- University of Nice-Sophia Antipolis, Institute of Biology Valrose, Parc Valrose, 06108 Nice, France; CNRS, Institute of Biology Valrose, Parc Valrose, 06108 Nice, France; INSERM, Institute of Biology Valrose, Parc Valrose, 06108 Nice, France.
| |
Collapse
|
174
|
Xia T, Zhang Q, Xiao Y, Wang C, Yu J, Liu H, Liu B, Zhang Y, Chen S, Liu Y, Chen Y, Guo F. CREB/TRH pathway in the central nervous system regulates energy expenditure in response to deprivation of an essential amino acid. Int J Obes (Lond) 2014; 39:105-13. [PMID: 24732144 DOI: 10.1038/ijo.2014.65] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 03/18/2014] [Accepted: 04/06/2014] [Indexed: 01/17/2023]
Abstract
BACKGROUND In the central nervous system (CNS), thyrotropin-releasing hormone (TRH) has an important role in regulating energy balance. We previously showed that dietary deprivation of leucine in mice increases energy expenditure through CNS-dependent regulation. However, the involvement of central TRH in this regulation has not been reported. METHODS Male C57J/B6 mice were maintained on a control or leucine-deficient diet for 7 days. Leucine-deprived mice were either third intracerebroventricular (i.c.v.) injected with a TRH antibody followed by intraperitoneal (i.p.) injection of triiodothyronine (T3) or i.c.v. administrated with an adenovirus of shCREB (cAMP-response element binding protein) followed by i.c.v. injection of TRH. Food intake and body weight were monitored daily. Oxygen consumption, physical activity and rectal temperature were assessed after the treatment. After being killed, the hypothalamus and the brown adipose tissue were collected and the expression of related genes and proteins related was analyzed. In other experiments, control or leucine-deficient medium incubated primary cultured neurons were either infected with adenovirus-mediated short hairpin RNA targeting extracellular signal-regulated kinases 1 and 2 (Ad-shERK1/2) or transfected with plasmid-overexpressing protein phosphatase 1 regulatory subunit 3C (PPP1R3C). RESULTS I.c.v. administration of anti-TRH antibodies significantly reduced leucine deprivation-stimulated energy expenditure. Furthermore, the effects of i.c.v. TRH antibodies were reversed by i.p. injection of T3 during leucine deprivation. Moreover, i.c.v. injection of Ad-shCREB (adenovirus-mediated short hairpin RNA targeting CREB) significantly suppressed leucine deprivation-stimulated energy expenditure via modulation of TRH expression. Lastly, TRH expression was regulated by CREB, which was phosphorylated by ERK1/2 and dephosphorylated by PPP1R3C-containing protein Ser/Thr phosphatase type 1 (PP1) under leucine deprivation in vitro. CONCLUSIONS Our data indicate a novel role for TRH in regulating energy expenditure via T3 during leucine deprivation. Furthermore, our findings reveal that TRH expression is activated by CREB, which is phosphorylated by ERK1/2 and dephosphorylated by PPP1R3C-containing PP1. Collectively, our studies provide novel insights into the regulation of energy homeostasis by the CNS in response to an essential amino-acid deprivation.
Collapse
Affiliation(s)
- T Xia
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, The Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Q Zhang
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, The Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Y Xiao
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, The Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - C Wang
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, The Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - J Yu
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, The Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - H Liu
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, The Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - B Liu
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, The Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Y Zhang
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, The Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - S Chen
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, The Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Y Liu
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, The Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Y Chen
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, The Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - F Guo
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, The Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
175
|
Librán-Pérez M, Otero-Rodiño C, López-Patiño MA, Míguez JM, Soengas JL. Central administration of oleate or octanoate activates hypothalamic fatty acid sensing and inhibits food intake in rainbow trout. Physiol Behav 2014; 129:272-9. [PMID: 24631300 DOI: 10.1016/j.physbeh.2014.02.061] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 02/05/2014] [Accepted: 02/20/2014] [Indexed: 01/23/2023]
Abstract
If levels of fatty acids like oleate and octanoate are directly sensed through different fatty acid (FA) sensing systems in hypothalamus of rainbow trout, intracerebroventricular (ICV) administration of FA should elicit effects similar to those previously observed after intraperitoneal (IP) treatment. Accordingly, we observed after ICV treatment with oleate or octanoate decreased food intake accompanied in hypothalamus by reduced potential of lipogenesis and FA oxidation, and decreased potential of ATP-dependent inward rectifier potassium channel (K(+)ATP). Those changes support direct FA sensing through mechanisms related to FA metabolism and mitochondrial activity. The FA sensing through binding to FAT/CD36 and subsequent expression of transcription factors appears to be also direct but an interaction with peripheral hormones cannot be rejected. Moreover, decreased expression of NPY and increased expression of POMC were observed in parallel with the activation of FA sensing systems and decreased food intake. These results allow us to suggest the involvement of at least these peptides in controlling the decreased food intake noted after oleate and octanoate treatment in rainbow trout.
Collapse
Affiliation(s)
- Marta Librán-Pérez
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, 36310 Vigo, Spain
| | - Cristina Otero-Rodiño
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, 36310 Vigo, Spain
| | - Marcos A López-Patiño
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, 36310 Vigo, Spain
| | - Jesús M Míguez
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, 36310 Vigo, Spain
| | - José L Soengas
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, 36310 Vigo, Spain.
| |
Collapse
|
176
|
Hypothalamic astroglial connexins are required for brain glucose sensing-induced insulin secretion. J Cereb Blood Flow Metab 2014; 34:339-46. [PMID: 24301293 PMCID: PMC3915215 DOI: 10.1038/jcbfm.2013.206] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 10/12/2013] [Accepted: 10/30/2013] [Indexed: 01/03/2023]
Abstract
Hypothalamic glucose detection participates in maintaining glycemic balance, food intake, and thermogenesis. Although hypothalamic neurons are the executive cells involved in these responses, there is increasing evidence that astrocytes participate in glucose sensing (GS); however, it is unknown whether astroglial networking is required for glucose sensitivity. Astroglial connexins 30 and 43 (Cx30 and Cx43) form hexameric channels, which are apposed in gap junctions, allowing for the intercellular transfer of small molecules such as glucose throughout the astroglial networks. Here, we hypothesized that hypothalamic glucose sensitivity requires these connexins. First, we showed that both Cxs are enriched in the rat hypothalamus, with highly concentrated Cx43 expression around blood vessels of the mediobasal hypothalamus (MBH). Both fasting and high glycemic levels rapidly altered the protein levels of MBH astroglial connexins, suggesting cross talk within the MBH between glycemic status and the connexins' ability to dispatch glucose. Finally, the inhibition of MBH Cx43 (by transient RNA interference) attenuated hypothalamic glucose sensitivity in rats, which was demonstrated by a pronounced decreased insulin secretion in response to a brain glucose challenge. These results illustrate that astroglial connexins contribute to hypothalamic GS.
Collapse
|
177
|
Moullé VS, Picard A, Le Foll C, Levin BE, Magnan C. Lipid sensing in the brain and regulation of energy balance. DIABETES & METABOLISM 2014; 40:29-33. [DOI: 10.1016/j.diabet.2013.10.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 09/30/2013] [Accepted: 10/01/2013] [Indexed: 10/26/2022]
|
178
|
Hypothalamic eIF2α signaling regulates food intake. Cell Rep 2014; 6:438-44. [PMID: 24485657 DOI: 10.1016/j.celrep.2014.01.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 11/28/2013] [Accepted: 01/06/2014] [Indexed: 01/13/2023] Open
Abstract
The reversible phosphorylation of the α subunit of eukaryotic initiation factor 2 (eIF2α) is a highly conserved signal implicated in the cellular adaptation to numerous stresses such as the one caused by amino acid limitation. In response to dietary amino acid deficiency, the brain-specific activation of the eIF2α kinase GCN2 leads to food intake inhibition. We report here that GCN2 is rapidly activated in the mediobasal hypothalamus (MBH) after consumption of a leucine-deficient diet. Furthermore, knockdown of GCN2 in this particular area shows that MBH GCN2 activity controls the onset of the aversive response. Importantly, pharmacological experiments demonstrate that the sole phosphorylation of eIF2α in the MBH is sufficient to regulate food intake. eIF2α signaling being at the crossroad of stress pathways activated in several pathological states, our study indicates that hypothalamic eIF2α phosphorylation could play a critical role in the onset of anorexia associated with certain diseases.
Collapse
|
179
|
Rodríguez A. Novel molecular aspects of ghrelin and leptin in the control of adipobiology and the cardiovascular system. Obes Facts 2014; 7:82-95. [PMID: 24685565 PMCID: PMC5644879 DOI: 10.1159/000360837] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 11/15/2013] [Indexed: 01/27/2023] Open
Abstract
Ghrelin and leptin show opposite effects on energy balance. Ghrelin constitutes a gut hormone that is secreted to the bloodstream in two major forms, acylated and desacyl ghrelin. The isoforms of ghrelin not only promote adiposity by the activation of hypothalamic orexigenic neurons but also directly stimulate the expression of several fat storage-related proteins in adipocytes, including ACC, FAS, LPL and perilipin, thereby stimulating intracytoplasmic lipid accumulation. Moreover, both acylated and desacyl ghrelin reduce TNF-α-induced apoptosis and autophagy in adipocytes, suggesting an anti-inflammatory role of ghrelin in human adipose tissue. On the other hand, leptin is an adipokine with lipolytic effects. In this sense, leptin modulates via PI3K/Akt/mTOR the expression of aquaglyceroporins such as AQP3 and AQP7 that facilitate glycerol efflux from adipocytes in response to the lipolytic stimuli via its translocation from the cytosolic fraction (AQP3) or lipid droplets (AQP7) to the plasma membrane. Ghrelin and leptin also participate in the homeostasis of the cardiovascular system. Ghrelin operates as a cardioprotective factor with increased circulating acylated ghrelin concentrations in patients with left ventricular hypertrophy (LVH) causally related to LV remodeling during the progression to LVH. Additionally, leptin induces vasodilation by inducible NO synthase expression (iNOS) in the vascular wall. In this sense, leptin inhibits the angiotensin II-induced Ca(2+) increase, contraction and proliferation of VSMC through NO-dependent mechanisms. Together, dysregulation of circulating ghrelin isoforms and leptin resistance associated to obesity, type 2 diabetes, or the metabolic syndrome contribute to cardiometabolic derangements observed in these pathologies.
Collapse
Affiliation(s)
- Amaia Rodríguez
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Spain
- *Amaia Rodrèguez, PhD, Metabolic Research Laboratory, Clínica Universidad de Navarra, Irunlarrea 1, 31008 Pamplona (Spain),
| |
Collapse
|
180
|
Báez-Ruiz A, Luna-Moreno D, Carmona-Castro A, Cárdenas-Vázquez R, Díaz-Muñoz M, Carmona-Alcocer V, Fuentes-Granados C, Manuel MA. Hypothalamic expression of anorexigenic and orexigenic hormone receptors in obese femalesNeotomodon alstoni:Effect of fasting. Nutr Neurosci 2013; 17:31-6. [DOI: 10.1179/1476830513y.0000000063] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
181
|
Picard A, Rouch C, Kassis N, Moullé VS, Croizier S, Denis RG, Castel J, Coant N, Davis K, Clegg DJ, Benoit SC, Prévot V, Bouret S, Luquet S, Le Stunff H, Cruciani-Guglielmacci C, Magnan C. Hippocampal lipoprotein lipase regulates energy balance in rodents. Mol Metab 2013; 3:167-76. [PMID: 24634821 DOI: 10.1016/j.molmet.2013.11.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 11/07/2013] [Accepted: 11/13/2013] [Indexed: 01/22/2023] Open
Abstract
Brain lipid sensing is necessary to regulate energy balance. Lipoprotein lipase (LPL) may play a role in this process. We tested if hippocampal LPL regulated energy homeostasis in rodents by specifically attenuating LPL activity in the hippocampus of rats and mice, either by infusing a pharmacological inhibitor (tyloxapol), or using a genetic approach (adeno-associated virus expressing Cre-GFP injected into Lpl (lox/lox) mice). Decreased LPL activity by either method led to increased body weight gain due to decreased locomotor activity and energy expenditure, concomitant with increased parasympathetic tone (unchanged food intake). Decreased LPL activity in both models was associated with increased de novo ceramide synthesis and neurogenesis in the hippocampus, while intrahippocampal infusion of de novo ceramide synthesis inhibitor myriocin completely prevented body weight gain. We conclude that hippocampal lipid sensing might represent a core mechanism for energy homeostasis regulation through de novo ceramide synthesis.
Collapse
Key Words
- AAV, adeno-associated virus
- ANS, autonomic nervous system
- CERS, ceramide synthase
- CNS, central nervous system
- Ceramides
- Energy expenditure
- GFP, green fluorescent protein
- LPL, lipoprotein lipase
- Lipid sensing
- Obesity
- Parasympathetic nervous system
- RQ, respiratory quotient
- SMPD1, acid sphingomyelin phosphodiesterase 1
- SPHK1, sphingosine kinase 1
- SPT, serine palmitoyltransferase
- TG, triglycerides
Collapse
Affiliation(s)
- Alexandre Picard
- Université Paris Diderot, Sorbonne Paris Cité, BFA, EAC 4413 CNRS, Case courrier 7126, 4, rue Marie Andrée Lagroua Weill-Hallé, F-75205 Paris Cedex 13, France
| | - Claude Rouch
- Université Paris Diderot, Sorbonne Paris Cité, BFA, EAC 4413 CNRS, Case courrier 7126, 4, rue Marie Andrée Lagroua Weill-Hallé, F-75205 Paris Cedex 13, France ; Centre National de la Recherche Scientifique-CNRS EAC 4413, F-75205 Paris, France
| | - Nadim Kassis
- Université Paris Diderot, Sorbonne Paris Cité, BFA, EAC 4413 CNRS, Case courrier 7126, 4, rue Marie Andrée Lagroua Weill-Hallé, F-75205 Paris Cedex 13, France ; Centre National de la Recherche Scientifique-CNRS EAC 4413, F-75205 Paris, France
| | - Valentine S Moullé
- Université Paris Diderot, Sorbonne Paris Cité, BFA, EAC 4413 CNRS, Case courrier 7126, 4, rue Marie Andrée Lagroua Weill-Hallé, F-75205 Paris Cedex 13, France
| | - Sophie Croizier
- Jean-Pierre Aubert Research Center, Development and Plasticity of the Postnatal Brain, INSERM U837, 59045 Lille Cedex, France
| | - Raphaël G Denis
- Jean-Pierre Aubert Research Center, Development and Plasticity of the Postnatal Brain, INSERM U837, 59045 Lille Cedex, France
| | - Julien Castel
- Université Paris Diderot, Sorbonne Paris Cité, BFA, EAC 4413 CNRS, Case courrier 7126, 4, rue Marie Andrée Lagroua Weill-Hallé, F-75205 Paris Cedex 13, France ; Centre National de la Recherche Scientifique-CNRS EAC 4413, F-75205 Paris, France
| | - Nicolas Coant
- Université Paris Diderot, Sorbonne Paris Cité, BFA, EAC 4413 CNRS, Case courrier 7126, 4, rue Marie Andrée Lagroua Weill-Hallé, F-75205 Paris Cedex 13, France
| | - Kathryn Davis
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Deborah J Clegg
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Stephen C Benoit
- Department of Psychiatry, University of Cincinnati, Cincinnati, OH, USA
| | - Vincent Prévot
- Jean-Pierre Aubert Research Center, Development and Plasticity of the Postnatal Brain, INSERM U837, 59045 Lille Cedex, France
| | - Sébastien Bouret
- Jean-Pierre Aubert Research Center, Development and Plasticity of the Postnatal Brain, INSERM U837, 59045 Lille Cedex, France ; The Saban Research Institute, Neuroscience Program, Children's Hospital Los Angeles, University of Southern California, Los Angeles, USA
| | - Serge Luquet
- Université Paris Diderot, Sorbonne Paris Cité, BFA, EAC 4413 CNRS, Case courrier 7126, 4, rue Marie Andrée Lagroua Weill-Hallé, F-75205 Paris Cedex 13, France ; Centre National de la Recherche Scientifique-CNRS EAC 4413, F-75205 Paris, France
| | - Hervé Le Stunff
- Université Paris Diderot, Sorbonne Paris Cité, BFA, EAC 4413 CNRS, Case courrier 7126, 4, rue Marie Andrée Lagroua Weill-Hallé, F-75205 Paris Cedex 13, France
| | - Céline Cruciani-Guglielmacci
- Université Paris Diderot, Sorbonne Paris Cité, BFA, EAC 4413 CNRS, Case courrier 7126, 4, rue Marie Andrée Lagroua Weill-Hallé, F-75205 Paris Cedex 13, France
| | - Christophe Magnan
- Université Paris Diderot, Sorbonne Paris Cité, BFA, EAC 4413 CNRS, Case courrier 7126, 4, rue Marie Andrée Lagroua Weill-Hallé, F-75205 Paris Cedex 13, France
| |
Collapse
|
182
|
Purkayastha S, Cai D. Neuroinflammatory basis of metabolic syndrome. Mol Metab 2013; 2:356-63. [PMID: 24327952 DOI: 10.1016/j.molmet.2013.09.005] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Revised: 09/23/2013] [Accepted: 09/25/2013] [Indexed: 01/07/2023] Open
Abstract
Inflammatory reaction is a fundamental defense mechanism against threat towards normal integrity and physiology. On the other hand, chronic diseases such as obesity, type 2 diabetes, hypertension and atherosclerosis, have been causally linked to chronic, low-grade inflammation in various metabolic tissues. Recent cross-disciplinary research has led to identification of hypothalamic inflammatory changes that are triggered by overnutrition, orchestrated by hypothalamic immune system, and sustained through metabolic syndrome-associated pathophysiology. While continuing research is actively trying to underpin the identity and mechanisms of these inflammatory stimuli and actions involved in metabolic syndrome disorders and related diseases, proinflammatory IκB kinase-β (IKKβ), the downstream nuclear transcription factor NF-κB and some related molecules in the hypothalamus were discovered to be pathogenically significant. This article is to summarize recent progresses in the field of neuroendocrine research addressing the central integrative role of neuroinflammation in metabolic syndrome components ranging from obesity, glucose intolerance to cardiovascular dysfunctions.
Collapse
Affiliation(s)
- Sudarshana Purkayastha
- Department of Molecular Pharmacology, Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | |
Collapse
|
183
|
Schwenk RW, Vogel H, Schürmann A. Genetic and epigenetic control of metabolic health. Mol Metab 2013; 2:337-47. [PMID: 24327950 PMCID: PMC3854991 DOI: 10.1016/j.molmet.2013.09.002] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 09/09/2013] [Accepted: 09/13/2013] [Indexed: 02/06/2023] Open
Abstract
Obesity is characterized as an excess accumulation of body fat resulting from a positive energy balance. It is the major risk factor for type 2 diabetes (T2D). The evidence for familial aggregation of obesity and its associated metabolic diseases is substantial. To date, about 150 genetic loci identified in genome-wide association studies (GWAS) are linked with obesity and T2D, each accounting for only a small proportion of the predicted heritability. However, the percentage of overall trait variance explained by these associated loci is modest (~5-10% for T2D, ~2% for BMI). The lack of powerful genetic associations suggests that heritability is not entirely attributable to gene variations. Some of the familial aggregation as well as many of the effects of environmental exposures, may reflect epigenetic processes. This review summarizes our current knowledge on the genetic basis to individual risk of obesity and T2D, and explores the potential role of epigenetic contribution.
Collapse
Key Words
- ADCY3, adenylate cyclase 3
- AQP9, aquaporin 9
- BDNF, brain-derived neurotrophic factor
- CDKAL1, CDK5 regulatory subunit associated protein 1-like 1
- CPEB4, cytoplasmic polyadenylation element binding protein 4
- DUSP22, dual specificity phosphatase 22
- DUSP8, dual specificity phosphatase 8
- Epigenetics
- GALNT10, UDP-N-acetyl-alpha-d-galactosamine:polypeptide N-acetylgalactosaminyltransferase 10 (GalNAc-T10)
- GIPR, gastric inhibitory polypeptide receptor
- GNPDA2, glucosamine-6-phosphate deaminase 2
- GP2, glycoprotein 2 (zymogen granule membrane)
- GWAS
- HIPK3, homeodomain interacting protein kinase 3
- IFI16, interferon, gamma-inducible protein 16
- KCNQ1, potassium voltage-gated channel, KQT-like subfamily, member 1
- KLHL32, kelch-like family member 32
- LEPR, leptin receptor
- MAP2K4, mitogen-activated protein kinase kinase 4
- MAP2K5, mitogen-activated protein kinase kinase 5
- MIR148A, microRNA 148a
- MMP9, matrix metallopeptidase 9 (gelatinase B, 92 kDa gelatinase, 92 kDa type IV collagenase)
- MNDA, myeloid cell nuclear differentiation antigen
- NFE2L3, nuclear factor, erythroid 2-like 3
- Obesity
- PACS1, phosphofurin acidic cluster sorting protein 1
- PAX6, paired box gene 6
- PCSK1, proprotein convertase subtilisin/kexin type 1
- PGC1α, peroxisome proliferative activated receptor, gamma, coactivator 1 alpha, PM2OD1
- PRKCH, protein kinase C, eta
- PRKD1, protein kinase D1
- PRKG1, protein kinase, cGMP-dependent, type I
- Positional cloning
- QPCTL, glutaminyl-peptide cyclotransferase-like
- RBJ, DnaJ (Hsp40) homolog, subfamily C, member 27
- RFC5, replication factor C (activator 1) 5
- RMST, rhabdomyosarcoma 2 associated transcript (non-protein coding)
- SEC16B, SEC16 homolog B
- TFAP2B, transcription factor AP-2 beta (activating enhancer binding protein 2 beta)
- TNNI3, troponin I type 3 (cardiac)
- TNNT1, troponin T type 1 (skeletal, slow)
- Type 2 diabetes
Collapse
Affiliation(s)
| | | | - Annette Schürmann
- Corresponding author. Tel.: +49 33200 882368; fax: +49 33200 882334.
| |
Collapse
|
184
|
Tellez LA, Ren X, Han W, Medina S, Ferreira JG, Yeckel CW, de Araujo IE. Glucose utilization rates regulate intake levels of artificial sweeteners. J Physiol 2013; 591:5727-44. [PMID: 24060992 DOI: 10.1113/jphysiol.2013.263103] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
It is well established that animals including humans attribute greater reinforcing value to glucose-containing sugars compared to their non-caloric counterparts, generally termed 'artificial sweeteners'. However, much remains to be determined regarding the physiological signals and brain systems mediating the attribution of greater reinforcing value to sweet solutions that contain glucose. Here we show that disruption of glucose utilization in mice produces an enduring inhibitory effect on artificial sweetener intake, an effect that did not depend on sweetness perception or aversion. Indeed, such an effect was not observed in mice presented with a less palatable, yet caloric, glucose solution. Consistently, hungry mice shifted their preferences away from artificial sweeteners and in favour of glucose after experiencing glucose in a hungry state. Glucose intake was found to produce significantly greater levels of dopamine efflux compared to artificial sweetener in dorsal striatum, whereas disrupting glucose oxidation suppressed dorsal striatum dopamine efflux. Conversely, inhibiting striatal dopamine receptor signalling during glucose intake in sweet-naïve animals resulted in reduced, artificial sweetener-like intake of glucose during subsequent gluco-deprivation. Our results demonstrate that glucose oxidation controls intake levels of sweet tastants by modulating extracellular dopamine levels in dorsal striatum, and suggest that glucose utilization is one critical physiological signal involved in the control of goal-directed sweetener intake.
Collapse
Affiliation(s)
- Luis A Tellez
- I. E de Araujo: The John B. Pierce Laboratory & Yale University School of Medicine, 290 Congress Avenue, New Haven, CT 06519, USA. or
| | | | | | | | | | | | | |
Collapse
|
185
|
Fatty acid transporter CD36 mediates hypothalamic effect of fatty acids on food intake in rats. PLoS One 2013; 8:e74021. [PMID: 24040150 PMCID: PMC3765350 DOI: 10.1371/journal.pone.0074021] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 07/26/2013] [Indexed: 12/05/2022] Open
Abstract
Variations in plasma fatty acid (FA) concentrations are detected by FA sensing neurons in specific brain areas such as the hypothalamus. These neurons play a physiological role in the control of food intake and the regulation of hepatic glucose production. Le Foll et al. previously showed in vitro that at least 50% of the FA sensing in ventromedial hypothalamic (VMH) neurons is attributable to the interaction of long chain FA with FA translocase/CD36 (CD36). The present work assessed whether in vivo effects of hypothalamic FA sensing might be partly mediated by CD36 or intracellular events such as acylCoA synthesis or β-oxidation. To that end, a catheter was implanted in the carotid artery toward the brain in male Wistar rats. After 1 wk recovery, animals were food-deprived for 5 h, then 10 min infusions of triglyceride emulsion, Intralipid +/− heparin (IL, ILH, respectively) or saline/heparin (SH) were carried out and food intake was assessed over the next 5 h. Experimental groups included: 1) Rats previously injected in ventromedian nucleus (VMN) with shRNA against CD36 or scrambled RNA; 2) Etomoxir (CPT1 inhibitor) or saline co-infused with ILH/SH; and 3) Triacsin C (acylCoA synthase inhibitor) or saline co-infused with ILH/SH. ILH significantly lowered food intake during refeeding compared to SH (p<0.001). Five hours after refeeding, etomoxir did not affect this inhibitory effect of ILH on food intake while VMN CD36 depletion totally prevented it. Triacsin C also prevented ILH effects on food intake. In conclusion, the effect of FA to inhibit food intake is dependent on VMN CD36 and acylCoA synthesis but does not required FA oxidation.
Collapse
|
186
|
Svidnicki PV, de Carvalho Leite N, Venturelli AC, Camargo RL, Vicari MR, de Almeida MC, Artoni RF, Nogaroto V, Grassiolli S. Swim training restores glucagon-like peptide-1 insulinotropic action in pancreatic islets from monosodium glutamate-obese rats. Acta Physiol (Oxf) 2013; 209:34-44. [PMID: 23746147 DOI: 10.1111/apha.12128] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 04/30/2013] [Accepted: 06/03/2013] [Indexed: 12/12/2022]
Abstract
AIMS Glucagon-like peptide-1 (GLP-1) is an important modulator of insulin secretion by endocrine pancreas. In the present study, we investigated the effect of swim training on GLP-1 insulinotropic action in pancreatic islets from monosodium glutamate (MSG)-obese rats. METHODS Obesity was induced by neonatal MSG administration. MSG-obese and control (CON) exercised rats swam for 30 min (3 times week(-1) ) for 10 weeks. Pancreatic islets were isolated by colagenase technique and incubated with low (5.6 mM) or high (16.7 mM) glucose concentrations in the presence or absence of GLP-1 (10 nM). In addition, GLP-1 gene expression in ileum was quantified in fasting and glucose conditions. RESULTS Exercise reduced obesity and hyperinsulinemia in MSG-obese rats. Swim training also inhibited glucose-induced insulin secretion in islets from both groups. Islets from MSG-obese rats maintained GLP-1 insulinotropic response in low glucose concentration. In contrast, in the presence of high glucose concentration, GLP-1 insulinotropic action was absent in islets from MSG-obese rats. Islets from MSG-exercised rats showed reduced GLP-1 insulinotropic action in the presence of low glucose. However, in high glucose concentration swim training restored GLP-1 insulinotropic response in islets from MSG-obese rats. In all groups, glucose intake increased GLP-1 immunoreactivity and gene expression in ileum cells in relation to fasting conditions. Swim training reduced these parameters only in ileum cells from CON-exercised rats. Neither MSG treatment nor exercise affected GLP-1 expression in the ileum. CONCLUSIONS Exercise avoids insulin hypersecretion restoring GLP-1's insulinotropic action in pancreatic islets from MSG-obese rats.
Collapse
Affiliation(s)
- P. V. Svidnicki
- Department of Structural Biology; Molecular and Genetic; State University of Ponta Grossa; Ponta Grossa; PR; Brazil
| | - N. de Carvalho Leite
- Department of General Biology; State University of Ponta Grossa; Ponta Grossa; PR; Brazil
| | - A. C. Venturelli
- Department of General Biology; State University of Ponta Grossa; Ponta Grossa; PR; Brazil
| | - R. L. Camargo
- Department of Anatomy, Cell Biology, Physiology and Biophysics; University of Campinas; Campinas; SP; Brazil
| | - M. R. Vicari
- Department of Structural Biology; Molecular and Genetic; State University of Ponta Grossa; Ponta Grossa; PR; Brazil
| | - M. C. de Almeida
- Department of Structural Biology; Molecular and Genetic; State University of Ponta Grossa; Ponta Grossa; PR; Brazil
| | - R. F. Artoni
- Department of Structural Biology; Molecular and Genetic; State University of Ponta Grossa; Ponta Grossa; PR; Brazil
| | - V. Nogaroto
- Department of Structural Biology; Molecular and Genetic; State University of Ponta Grossa; Ponta Grossa; PR; Brazil
| | - S. Grassiolli
- Department of General Biology; State University of Ponta Grossa; Ponta Grossa; PR; Brazil
| |
Collapse
|
187
|
Mimee A, Smith PM, Ferguson AV. Circumventricular organs: Targets for integration of circulating fluid and energy balance signals? Physiol Behav 2013; 121:96-102. [DOI: 10.1016/j.physbeh.2013.02.012] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 01/26/2013] [Accepted: 02/14/2013] [Indexed: 01/22/2023]
|
188
|
Ibrahim BA, Tamrakar P, Gujar AD, Cherian AK, Briski KP. Caudal fourth ventricular administration of the AMPK activator 5-aminoimidazole-4-carboxamide-riboside regulates glucose and counterregulatory hormone profiles, dorsal vagal complex metabolosensory neuron function, and hypothalamic Fos expression. J Neurosci Res 2013; 91:1226-38. [PMID: 23825033 DOI: 10.1002/jnr.23230] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 03/17/2013] [Accepted: 03/18/2013] [Indexed: 01/02/2023]
Abstract
This study investigated the hypothesis that estrogen controls hindbrain AMP-activated protein kinase (AMPK) activity and regulation of blood glucose, counterregulatory hormone secretion, and hypothalamic nerve cell transcriptional status. Dorsal vagal complex A2 noradrenergic neurons were laser microdissected from estradiol benzoate (E)- or oil (O)-implanted ovariectomized female rats after caudal fourth ventricular (CV4) delivery of the AMPK activator 5-aminoimidazole-4-carboxamide-riboside (AICAR), for Western blot analysis. E advanced AICAR-induced increases in A2 phospho-AMPK (pAMPK) expression and in blood glucose levels and was required for augmentation of Fos, estrogen receptor-α (ERα), monocarboxylate transporter-2, and glucose transporter-3 protein in A2 neurons and enhancement of corticosterone secretion by this treatment paradigm. CV4 AICAR also resulted in site-specific modifications in Fos immunolabeling of hypothalamic metabolic structures, including the paraventricular, ventromedial, and arcuate nuclei. The current studies demonstrate that estrogen regulates AMPK activation in caudal hindbrain A2 noradrenergic neurons during pharmacological replication of energy shortage in this area of the brain, and that this sensor is involved in neural regulation of glucostasis, in part, through control of corticosterone secretion. The data provide unique evidence that A2 neurons express both ERα and -β proteins and that AMPK upregulates cellular sensitivity to ERα-mediated signaling during simulated energy insufficiency. The results also imply that estrogen promotes glucose and lactate uptake by these cells under those conditions. Evidence for correlation between hindbrain AMPK and hypothalamic nerve cell genomic activation provides novel proof for functional connectivity between this hindbrain sensor and higher order metabolic brain loci while demonstrating a modulatory role for estrogen in this interaction.
Collapse
Affiliation(s)
- Baher A Ibrahim
- Department of Basic Pharmaceutical Sciences, College of Pharmacy, The University of Louisiana at Monroe, Monroe, Louisiana, USA
| | | | | | | | | |
Collapse
|
189
|
Zhou J, Keenan MJ, Fernandez-Kim SO, Pistell PJ, Ingram DK, Li B, Raggio AM, Shen L, Zhang H, McCutcheon KL, Tulley RT, Blackman MR, Keller JN, Martin RJ. Dietary resistant starch improves selected brain and behavioral functions in adult and aged rodents. Mol Nutr Food Res 2013; 57:2071-4. [PMID: 23818307 DOI: 10.1002/mnfr.201300135] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 04/09/2013] [Accepted: 04/10/2013] [Indexed: 11/12/2022]
Abstract
Resistant starch (RS) is a dietary fiber that exerts multiple beneficial effects. The current study explored the effects of dietary RS on selected brain and behavioral functions in adult and aged rodents. Because glucokinase (GK) expression in hypothalamic arcuate nucleus and area postrema of the brainstem is important for brain glucose sensing, GK mRNA was measured by brain nuclei microdissection and PCR. Adult RS-fed rats had a higher GK mRNA than controls in both brain nuclei, an indicator of improved brain glucose sensing. Next, we tested whether dietary RS improve selected behaviors in aged mice. RS-fed aged mice exhibited (i) an increased eating responses to fasting, a behavioral indicator of improvement in aged brain glucose sensing; (ii) a longer latency to fall from an accelerating rotarod, a behavioral indicator of improved motor coordination; and (iii) a higher serum active glucagon-like peptide-1 (GLP-1). Then, GLP-1 receptor null (GLP-1RKO) mice were used to test the role of GLP-1 in brain glucose sensing, and they exhibited impaired eating responses to fasting. We conclude that in rodents (i) dietary RS improves two important indicators of brain function: glucose sensing and motor coordination, and (ii) GLP-1 is important in the optimal feeding response to a fast.
Collapse
Affiliation(s)
- June Zhou
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, USA; Research Service, Veterans Affairs Medical Center, Washington, DC, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
190
|
Tsuneki H, Tokai E, Sugawara C, Wada T, Sakurai T, Sasaoka T. Hypothalamic orexin prevents hepatic insulin resistance induced by social defeat stress in mice. Neuropeptides 2013; 47:213-9. [PMID: 23510906 DOI: 10.1016/j.npep.2013.02.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 01/28/2013] [Accepted: 02/20/2013] [Indexed: 12/28/2022]
Abstract
Depression is associated with insulin resistance and type 2 diabetes, although the molecular mechanism behind the pathological link remains unclear. Orexin, a hypothalamic neuropeptide regulating energy and glucose homeostasis, has been implicated in the endogenous antidepressant mechanism. To clarify whether orexin is involved in the coordination between mental and metabolic functions, we investigated the influence of orexin deficiency on social interaction behavior and glucose metabolism in mice subjected to chronic social defeat stress. Chronic stress-induced glucose intolerance and systemic insulin resistance as well as social avoidance were ameliorated by calorie restriction in an orexin-dependent manner. Moreover, orexin-deficient mice maintained under ad libitum-fed conditions after defeat stress exhibited hyperinsulinemia and elevated HOMA-IR (homeostasis model assessment for insulin resistance), despite normal fasting blood glucose levels. In a pyruvate tolerance test to evaluate hepatic insulin sensitivity, chronic stress-induced abnormal glucose elevation was observed in orexin-deficient but not wild-type mice, although both types of mice were susceptible to chronic stress. In addition, insulin-induced phosphorylation of Akt in the liver was impaired in orexin-deficient but not wild-type mice after chronic stress. These results demonstrate that the central physiological actions of orexin under ad libitum-fed conditions are required for the adaptive response to chronic defeat stress, which can prevent the development of hepatic insulin resistance but not social avoidance behavior. Moreover, calorie restriction, a paradigm to strongly activate orexin neurons, appears to prevent the persistence of depression-like behavior per se, leading to the amelioration of impaired glucose metabolism after chronic stress; therefore, we suggest that hypothalamic orexin system is the key for inhibiting the exacerbating link between depression and type 2 diabetes.
Collapse
Affiliation(s)
- Hiroshi Tsuneki
- Department of Clinical Pharmacology, University of Toyama, 2630 Sugitani, Toyama, Japan.
| | | | | | | | | | | |
Collapse
|
191
|
Fgf10-expressing tanycytes add new neurons to the appetite/energy-balance regulating centers of the postnatal and adult hypothalamus. J Neurosci 2013; 33:6170-80. [PMID: 23554498 DOI: 10.1523/jneurosci.2437-12.2013] [Citation(s) in RCA: 176] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Increasing evidence suggests that neurogenesis occurs in the postnatal and adult mammalian hypothalamus. However, the identity and location of the putative progenitor cells is under much debate, and little is known about the dynamics of neurogenesis in unchallenged brain. Previously, we postulated that Fibroblast growth factor 10-expressing (Fgf10(+)) tanycytes constitute a population of progenitor cells in the mouse hypothalamus. Here, we show that Fgf10(+) tanycytes express markers of neural stem/progenitor cells, divide late into postnatal life, and can generate both neurons and astrocytes in vivo. Stage-specific lineage-tracing of Fgf10(+) tanycytes using Fgf10-creERT2 mice, reveals robust neurogenesis at postnatal day 28 (P28), lasting as late as P60. Furthermore, we present evidence for amplification of Fgf10-lineage traced neural cells within the hypothalamic parenchyma itself. The neuronal descendants of Fgf10(+) tanycytes predominantly populate the arcuate nucleus, a subset of which express the orexigenic neuronal marker, Neuropeptide-Y, and respond to fasting and leptin-induced signaling. These studies provide direct evidence in support of hypothalamic neurogenesis during late postnatal and adult life, and identify Fgf10(+) tanycytes as a source of parenchymal neurons with putative roles in appetite and energy balance.
Collapse
|
192
|
Davidenko O, Darcel N, Fromentin G, Tomé D. Control of protein and energy intake - brain mechanisms. Eur J Clin Nutr 2013; 67:455-61. [DOI: 10.1038/ejcn.2013.73] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
193
|
Cortes-Campos C, Elizondo R, Carril C, Martínez F, Boric K, Nualart F, Garcia-Robles MA. MCT2 expression and lactate influx in anorexigenic and orexigenic neurons of the arcuate nucleus. PLoS One 2013; 8:e62532. [PMID: 23638108 PMCID: PMC3637215 DOI: 10.1371/journal.pone.0062532] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 03/21/2013] [Indexed: 12/22/2022] Open
Abstract
Hypothalamic neurons of the arcuate nucleus control food intake, releasing orexigenic and anorexigenic neuropeptides in response to changes in glucose concentration. Several studies have suggested that the glucosensing mechanism is governed by a metabolic interaction between neurons and glial cells via lactate flux through monocarboxylate transporters (MCTs). Hypothalamic glial cells (tanycytes) release lactate through MCT1 and MCT4; however, similar analyses in neuroendocrine neurons have yet to be undertaken. Using primary rat hypothalamic cell cultures and fluorimetric assays, lactate incorporation was detected. Furthermore, the expression and function of MCT2 was demonstrated in the hypothalamic neuronal cell line, GT1-7, using kinetic and inhibition assays. Moreover, MCT2 expression and localization in the Sprague Dawley rat hypothalamus was analyzed using RT-PCR, in situ hybridization and Western blot analyses. Confocal immunohistochemistry analyses revealed MCT2 localization in neuronal but not glial cells. Moreover, MCT2 was localized to ∼90% of orexigenic and ~60% of anorexigenic neurons as determined by immunolocalization analysis of AgRP and POMC with MCT2-positives neurons. Thus, MCT2 distribution coupled with lactate uptake by hypothalamic neurons suggests that hypothalamic neurons control food intake using lactate to reflect changes in glucose levels.
Collapse
Affiliation(s)
- Christian Cortes-Campos
- Laboratorio de Biología Celular, Departamento de Biología Celular, Universidad de Concepción, Concepción, Chile
| | - Roberto Elizondo
- Laboratorio de Biología Celular, Departamento de Biología Celular, Universidad de Concepción, Concepción, Chile
| | - Claudio Carril
- Laboratorio de Biología Celular, Departamento de Biología Celular, Universidad de Concepción, Concepción, Chile
| | - Fernando Martínez
- Laboratorio de Biología Celular, Departamento de Biología Celular, Universidad de Concepción, Concepción, Chile
| | - Katica Boric
- Laboratorio de Biología Celular, Departamento de Biología Celular, Universidad de Concepción, Concepción, Chile
| | - Francisco Nualart
- Laboratorio de Neurobiología y Células Madre, Centro de Microscopía Avanzada CMA BIO BIO, Universidad de Concepción, Concepción, Chile
- * E-mail: (FN); (MAG)
| | - Maria Angeles Garcia-Robles
- Laboratorio de Biología Celular, Departamento de Biología Celular, Universidad de Concepción, Concepción, Chile
- * E-mail: (FN); (MAG)
| |
Collapse
|
194
|
Librán-Pérez M, López-Patiño MA, Míguez JM, Soengas JL. In vitro response of putative fatty acid-sensing systems in rainbow trout liver to increased levels of oleate or octanoate. Comp Biochem Physiol A Mol Integr Physiol 2013; 165:288-94. [PMID: 23542747 DOI: 10.1016/j.cbpa.2013.03.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 03/20/2013] [Accepted: 03/21/2013] [Indexed: 12/25/2022]
Abstract
In a previous study we provided evidence for the presence in liver of rainbow trout of fatty acid (FA) sensing systems responding to changes in levels of oleate (long-chain FA) or octanoate (medium-chain FA). Since those effects could be attributed to an indirect effect, we have evaluated in the present study in vitro (in the absence of extrahepatic regulatory mechanisms) whether or not liver responds to changes in FA concentration in a way similar to that previously observed in vivo. Accordingly, liver slices were exposed to increased oleate or octanoate concentrations to evaluate changes in parameters related to FA metabolism, FA transport, nuclear receptors and transcription factors, ROS effectors, and glucose metabolism. The responses observed in vitro in liver were in general not coincident with those previously observed in vivo allowing us to suggest that FA sensing capacity of liver in vivo is of indirect nature and could be related among other reasons to an interaction with other endocrine systems and/or to FA sensing in hypothalamus.
Collapse
Affiliation(s)
- Marta Librán-Pérez
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, E-36310 Vigo, Spain
| | | | | | | |
Collapse
|
195
|
Librán-Pérez M, López-Patiño MA, Míguez JM, Soengas JL. Oleic acid and octanoic acid sensing capacity in rainbow trout Oncorhynchus mykiss is direct in hypothalamus and Brockmann bodies. PLoS One 2013; 8:e59507. [PMID: 23533628 PMCID: PMC3606115 DOI: 10.1371/journal.pone.0059507] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 02/15/2013] [Indexed: 12/12/2022] Open
Abstract
In a previous study, we provided evidence for the presence in hypothalamus and Brockmann bodies (BB) of rainbow trout Oncorhynchus mykiss of sensing systems responding to changes in levels of oleic acid (long-chain fatty acid, LCFA) or octanoic acid (medium-chain fatty acid, MCFA). Since those effects could be attributed to an indirect effect, in the present study, we evaluated in vitro if hypothalamus and BB respond to changes in FA in a way similar to that observed in vivo. In a first set of experiments, we evaluated in hypothalamus and BB exposed to increased oleic acic or octanoic acid concentrations changes in parameters related to FA metabolism, FA transport, nuclear receptors and transcription factors, reactive oxygen species (ROS) effectors, components of the KATP channel, and (in hypothalamus) neuropeptides related to food intake. In a second set of experiments, we evaluated in hypothalamus the response of those parameters to oleic acid or octanoic acid in the presence of inhibitors of fatty acid sensing components. The responses observed in vitro in hypothalamus are comparable to those previously observed in vivo and specific inhibitors counteracted in many cases the effects of FA. These results support the capacity of rainbow trout hypothalamus to directly sense changes in MCFA or LCFA levels. In BB increased concentrations of oleic acid or octanoic acid induced changes that in general were comparable to those observed in hypothalamus supporting direct FA sensing in this tissue. However, those changes were not coincident with those observed in vivo allowing us to suggest that the FA sensing capacity of BB previously characterized in vivo is influenced by other neuroendocrine systems.
Collapse
Affiliation(s)
- Marta Librán-Pérez
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, Vigo, Spain
| | - Marcos A. López-Patiño
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, Vigo, Spain
| | - Jesús M. Míguez
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, Vigo, Spain
| | - José L. Soengas
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, Vigo, Spain
- * E-mail:
| |
Collapse
|
196
|
Lanfray D, Arthaud S, Ouellet J, Compère V, Do Rego JL, Leprince J, Lefranc B, Castel H, Bouchard C, Monge-Roffarello B, Richard D, Pelletier G, Vaudry H, Tonon MC, Morin F. Gliotransmission and brain glucose sensing: critical role of endozepines. Diabetes 2013; 62:801-10. [PMID: 23160530 PMCID: PMC3581199 DOI: 10.2337/db11-0785] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Hypothalamic glucose sensing is involved in the control of feeding behavior and peripheral glucose homeostasis, and glial cells are suggested to play an important role in this process. Diazepam-binding inhibitor (DBI) and its processing product the octadecaneuropeptide (ODN), collectively named endozepines, are secreted by astroglia, and ODN is a potent anorexigenic factor. Therefore, we investigated the involvement of endozepines in brain glucose sensing. First, we showed that intracerebroventricular administration of glucose in rats increases DBI expression in hypothalamic glial-like tanycytes. We then demonstrated that glucose stimulates endozepine secretion from hypothalamic explants. Feeding experiments indicate that the anorexigenic effect of central administration of glucose was blunted by coinjection of an ODN antagonist. Conversely, the hyperphagic response elicited by central glucoprivation was suppressed by an ODN agonist. The anorexigenic effects of centrally injected glucose or ODN agonist were suppressed by blockade of the melanocortin-3/4 receptors, suggesting that glucose sensing involves endozepinergic control of the melanocortin pathway. Finally, we found that brain endozepines modulate blood glucose levels, suggesting their involvement in a feedback loop controlling whole-body glucose homeostasis. Collectively, these data indicate that endozepines are a critical relay in brain glucose sensing and potentially new targets in treatment of metabolic disorders.
Collapse
Affiliation(s)
- Damien Lanfray
- INSERM U982, DC2N Laboratory of Neuronal and Neuroendocrine Cell Differentiation and Communication, Mont-Saint-Aignan, France
- Institute for Biomedical Research and Innovation, Regional Platform for Cell Imaging (PRIMACEN), Rouen, France
- University of Rouen, Mont-Saint-Aignan, France
| | - Sébastien Arthaud
- Institute for Biomedical Research and Innovation, Regional Platform for Cell Imaging (PRIMACEN), Rouen, France
- University of Rouen, Mont-Saint-Aignan, France
- Centre National de la Recherche Scientifique Unité Mixte de Recherche 5167, University Claude Bernard Lyon 1, Lyon, France
| | - Johanne Ouellet
- Research Center in Molecular Endocrinology, Oncology and Human Genomics, Laval University, Quebec, Quebec, Canada
| | - Vincent Compère
- INSERM U982, DC2N Laboratory of Neuronal and Neuroendocrine Cell Differentiation and Communication, Mont-Saint-Aignan, France
- Institute for Biomedical Research and Innovation, Regional Platform for Cell Imaging (PRIMACEN), Rouen, France
- University of Rouen, Mont-Saint-Aignan, France
- Department of Anaesthesiology and Critical Care, Rouen University Hospital, Rouen, France
| | - Jean-Luc Do Rego
- INSERM U982, DC2N Laboratory of Neuronal and Neuroendocrine Cell Differentiation and Communication, Mont-Saint-Aignan, France
- Institute for Biomedical Research and Innovation, Regional Platform for Cell Imaging (PRIMACEN), Rouen, France
- University of Rouen, Mont-Saint-Aignan, France
| | - Jérôme Leprince
- INSERM U982, DC2N Laboratory of Neuronal and Neuroendocrine Cell Differentiation and Communication, Mont-Saint-Aignan, France
- Institute for Biomedical Research and Innovation, Regional Platform for Cell Imaging (PRIMACEN), Rouen, France
- University of Rouen, Mont-Saint-Aignan, France
| | - Benjamin Lefranc
- Institute for Biomedical Research and Innovation, Regional Platform for Cell Imaging (PRIMACEN), Rouen, France
- University of Rouen, Mont-Saint-Aignan, France
| | - Hélène Castel
- INSERM U982, DC2N Laboratory of Neuronal and Neuroendocrine Cell Differentiation and Communication, Mont-Saint-Aignan, France
- Institute for Biomedical Research and Innovation, Regional Platform for Cell Imaging (PRIMACEN), Rouen, France
- University of Rouen, Mont-Saint-Aignan, France
| | - Cynthia Bouchard
- Centre de Recherche de l’Institut Universitaire de Cardiologie et Pneumologie de Québec, Laval University, Quebec, Quebec, Canada
| | - Boris Monge-Roffarello
- Centre de Recherche de l’Institut Universitaire de Cardiologie et Pneumologie de Québec, Laval University, Quebec, Quebec, Canada
| | - Denis Richard
- Centre de Recherche de l’Institut Universitaire de Cardiologie et Pneumologie de Québec, Laval University, Quebec, Quebec, Canada
| | - Georges Pelletier
- Research Center in Molecular Endocrinology, Oncology and Human Genomics, Laval University, Quebec, Quebec, Canada
| | - Hubert Vaudry
- INSERM U982, DC2N Laboratory of Neuronal and Neuroendocrine Cell Differentiation and Communication, Mont-Saint-Aignan, France
- Institute for Biomedical Research and Innovation, Regional Platform for Cell Imaging (PRIMACEN), Rouen, France
- University of Rouen, Mont-Saint-Aignan, France
- Research Center in Molecular Endocrinology, Oncology and Human Genomics, Laval University, Quebec, Quebec, Canada
| | - Marie-Christine Tonon
- INSERM U982, DC2N Laboratory of Neuronal and Neuroendocrine Cell Differentiation and Communication, Mont-Saint-Aignan, France
- Institute for Biomedical Research and Innovation, Regional Platform for Cell Imaging (PRIMACEN), Rouen, France
- University of Rouen, Mont-Saint-Aignan, France
- Corresponding author: Marie-Christine Tonon, , or Fabrice Morin,
| | - Fabrice Morin
- INSERM U982, DC2N Laboratory of Neuronal and Neuroendocrine Cell Differentiation and Communication, Mont-Saint-Aignan, France
- Institute for Biomedical Research and Innovation, Regional Platform for Cell Imaging (PRIMACEN), Rouen, France
- University of Rouen, Mont-Saint-Aignan, France
- Corresponding author: Marie-Christine Tonon, , or Fabrice Morin,
| |
Collapse
|
197
|
Nakagawa S, Sugiura M, Akitsuki Y, Hosseini SMH, Kotozaki Y, Miyauchi CM, Yomogida Y, Yokoyama R, Takeuchi H, Kawashima R. Compensatory effort parallels midbrain deactivation during mental fatigue: an fMRI study. PLoS One 2013; 8:e56606. [PMID: 23457592 PMCID: PMC3573002 DOI: 10.1371/journal.pone.0056606] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 01/15/2013] [Indexed: 11/18/2022] Open
Abstract
Fatigue reflects the functioning of our physiological negative feedback system, which prevents us from overworking. When fatigued, however, we often try to suppress this system in an effort to compensate for the resulting deterioration in performance. Previous studies have suggested that the effect of fatigue on neurovascular demand may be influenced by this compensatory effort. The primary goal of the present study was to isolate the effect of compensatory effort on neurovascular demand. Healthy male volunteers participated in a series of visual and auditory divided attention tasks that steadily increased fatigue levels for 2 hours. Functional magnetic resonance imaging scans were performed during the first and last quarter of the study (Pre and Post sessions, respectively). Tasks with low and high attentional load (Low and High conditions, respectively) were administrated in alternating blocks. We assumed that compensatory effort would be greater under the High-attentional-load condition compared with the Low-load condition. The difference was assessed during the two sessions. The effect of compensatory effort on neurovascular demand was evaluated by examining the interaction between load (High vs. Low) and time (Pre vs. Post). Significant fatigue-induced deactivation (i.e., Pre>Post) was observed in the frontal, temporal, occipital, and parietal cortices, in the cerebellum, and in the midbrain in both the High and Low conditions. The interaction was significantly greater in the High than in the Low condition in the midbrain. Neither significant fatigue-induced activation (i.e., Pre<Post), nor its interaction with factor Load, was identified. The observed midbrain deactivation ([PreH - PostH]>[PreE- PostE]) may reflect suppression of the negative feedback system that normally triggers recuperative rest to maintain homeostasis.
Collapse
Affiliation(s)
- Seishu Nakagawa
- Department of Functional Brain Imaging, Institute of Development, Aging and Cancer, (IDAC), Tohoku University, Sendai, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
198
|
Le Stunff H, Coant N, Migrenne S, Magnan C. Targeting lipid sensing in the central nervous system: new therapy against the development of obesity and type 2 diabetes. Expert Opin Ther Targets 2013; 17:545-55. [PMID: 23379938 DOI: 10.1517/14728222.2013.768233] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION The hypothalamus plays a major role in the control of energy balance, by sensing circulating lipids. Several studies conducted over the past decade suggest that disruption of lipid sensing can lead to hypothalamic lipotoxicity, thereby contributing to the development of various diseases, such as obesity and type 2 diabetes. AREAS COVERED The physiological role of 'lipid sensing' as a regulator of neuronal activity involved in the regulation of energy homeostasis will be reviewed. Next, the emerging evidence that alterations of hypothalamic systems that regulate energy balance during overnutrition can lead to the development of obesity and associated pathologies such as type 2 diabetes will be described. EXPERT OPINION Several studies have highlighted the role of malonyl-CoA and PKCθ and also autophagy within the hypothalamus as signals of nutrient abundance by critical neurons regulating food intake. Besides the physiological role of hypothalamic lipid sensing, it has been shown that overnutrition can also induce hypothalamic lipotoxicity through an inflammatory process. In conclusion, lipid toxicity could be the starting point of perturbations of the central control of energy balance which will favor the appearance of obesity and type 2 diabetes. Lipid sensing in the hypothalamus could be considered as a potential target for anti-obesity/diabetic strategies.
Collapse
Affiliation(s)
- Hervé Le Stunff
- Unité Biologie Fonctionnelle et Adaptative - EAC CNRS 4413, Équipe Homéostasie Energétique et RéGulation nerveuse et Endocrine (HERGE), Université PARIS DIDEROT (7) , Bâtiment BUFFON - 5ème étage - pièce 504A, 4, rue Marie-Andrée Lagroua Weill-Halle, 75205 Paris Cedex 13 , France.
| | | | | | | |
Collapse
|
199
|
|
200
|
Harada S, Yamazaki Y, Tokuyama S. Orexin-A suppresses postischemic glucose intolerance and neuronal damage through hypothalamic brain-derived neurotrophic factor. J Pharmacol Exp Ther 2013; 344:276-85. [PMID: 23117790 DOI: 10.1124/jpet.112.199604] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2025] Open
Abstract
Orexin-A (a glucose-sensing neuropeptide in the hypothalamus) and brain-derived neurotrophic factor (BDNF; a member of the neurotrophin family) play roles in many physiologic functions, including regulation of glucose metabolism. We previously showed that the development of postischemic glucose intolerance is one of the triggers of ischemic neuronal damage. The aim of this study was to determine whether there was an interaction between orexin-A and BDNF functions in the hypothalamus after cerebral ischemic stress. Male ddY mice were subjected to 2 hours of middle cerebral artery occlusion (MCAO). Neuronal damage was estimated by histologic and behavioral analyses. Expression of protein levels was analyzed by Western blot. Small interfering RNA directed BDNF, orexin-A, and SB334867 [N-(2-methyl-6-benzoxazolyl)-N'-1,5-naphthyridin-4-yl urea; a specific orexin-1 receptor antagonist] were administered directly into the hypothalamus. The level of hypothalamic orexin-A, detected by immunohistochemistry, was decreased on day 1 after MCAO. Intrahypothalamic administration of orexin-A (1 or 5 pmol/mouse) significantly and dose-dependently suppressed the development of postischemic glucose intolerance on day 1 and development of neuronal damage on day 3. The MCAO-induced decrease in insulin receptor levels in the liver and skeletal muscle on day 1 was recovered to control levels by orexin-A, and this effect of orexin-A was reversed by the administration of SB334867 as well as by hypothalamic BDNF knockdown. These results suggest that suppression of postischemic glucose intolerance by orexin-A assists in the prevention of cerebral ischemic neuronal damage. In addition, hypothalamic BDNF may play an important role in this effect of orexin-A.
Collapse
Affiliation(s)
- Shinichi Harada
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe 650-8586, Japan
| | | | | |
Collapse
|