151
|
Cystine/Glutamate Antiporter in Schizophrenia: From Molecular Mechanism to Novel Biomarker and Treatment. Int J Mol Sci 2021; 22:ijms22189718. [PMID: 34575878 PMCID: PMC8466274 DOI: 10.3390/ijms22189718] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/06/2021] [Accepted: 09/06/2021] [Indexed: 01/04/2023] Open
Abstract
Glutamate, a crucial excitatory neurotransmitter, plays a major role in the modulation of schizophrenia’s pathogenesis. New drug developments for schizophrenia have been prompted by the hypoglutamatergic hypothesis of schizophrenia. The cystine/glutamate antiporter system xc− is related to glutamate-release regulation. Patients with schizophrenia were recently discovered to exhibit downregulation of xc− subunits—the solute carrier (SLC) family 3 member 2 and the SLC family 7 member 11. We searched for relevant studies from 1980, when Bannai and Kitamura first identified the protein subunit system xc− in lung fibroblasts, with the aim of compiling the biological, functional, and pharmacological characteristics of antiporter xc−, which consists of several subunits. Some of them can significantly stimulate the human brain through the glutamate pathway. Initially, extracellular cysteine activates neuronal xc−, causing glutamate efflux. Next, excitatory amino acid transporters enhance the unidirectional transportation of glutamate and sodium. These two biochemical pathways are also crucial to the production of glutathione, a protective agent for neural and glial cells and astrocytes. Investigation of the expression of system xc− genes in the peripheral white blood cells of patients with schizophrenia can facilitate better understanding of the mental disorder and future development of novel biomarkers and treatments for schizophrenia. In addition, the findings further support the hypoglutamatergic hypothesis of schizophrenia.
Collapse
|
152
|
Ranku MN, Uwaya GE, Fayemi OE. Electrochemical Detection of Dopamine at Fe 3O 4/SPEEK Modified Electrode. Molecules 2021; 26:molecules26175357. [PMID: 34500789 PMCID: PMC8434613 DOI: 10.3390/molecules26175357] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/26/2021] [Accepted: 08/26/2021] [Indexed: 11/26/2022] Open
Abstract
Reported here is the design of an electrochemical sensor for dopamine (DA) based on a screen print carbon electrode modified with a sulphonated polyether ether ketone-iron (III) oxide composite (SPCE-Fe3O4/SPEEK). L. serica leaf extract was used in the synthesis of iron (III) oxide nanoparticles (Fe3O4NPs). Successful synthesis of Fe3O4NP was confirmed through characterization using Fourier transform infrared (FTIR), ultraviolet–visible light (UV–VIS), X-ray diffractometer (XRD), and scanning electron microscopy (SEM). Cyclic voltammetry (CV) was used to investigate the electrochemical behaviour of Fe3O4/SPEEK in 0.1 M of phosphate buffer solution (PBS) containing 5 mM of potassium ferricyanide (III) solution (K3[Fe(CN)6]). An increase in peak current was observed at the nanocomposite modified electrode SPCE-Fe3O4/SPEEK) but not SPCE and SPCE-Fe3O4, which could be ascribed to the presence of SPEEK. CV and square wave voltammetry (SWV) were employed in the electroxidation of dopamine (0.1 mM DA). The detection limit (LoD) of 7.1 μM and 0.005 μA/μM sensitivity was obtained for DA at the SPCE-Fe3O4/SPEEK electrode with concentrations ranging from 5–50 μM. LOD competes well with other electrodes reported in the literature. The developed sensor demonstrated good practical applicability for DA in a DA injection with good resultant recovery percentages and RSDs values.
Collapse
Affiliation(s)
- Mogomotsi N. Ranku
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, North-West University (Mafikeng Campus), Private Bag X2046, Mmabatho 2735, South Africa; (M.N.R.); (G.E.U.)
- Material Science Innovation and Modelling (MaSIM) Research Focus Area, Faculty of Natural and Agricultural Sciences, North-West University (Mafikeng Campus), Private Bag X2046, Mmabatho 2735, South Africa
| | - Gloria E. Uwaya
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, North-West University (Mafikeng Campus), Private Bag X2046, Mmabatho 2735, South Africa; (M.N.R.); (G.E.U.)
- Material Science Innovation and Modelling (MaSIM) Research Focus Area, Faculty of Natural and Agricultural Sciences, North-West University (Mafikeng Campus), Private Bag X2046, Mmabatho 2735, South Africa
| | - Omolola E. Fayemi
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, North-West University (Mafikeng Campus), Private Bag X2046, Mmabatho 2735, South Africa; (M.N.R.); (G.E.U.)
- Material Science Innovation and Modelling (MaSIM) Research Focus Area, Faculty of Natural and Agricultural Sciences, North-West University (Mafikeng Campus), Private Bag X2046, Mmabatho 2735, South Africa
- Correspondence:
| |
Collapse
|
153
|
Baumeister D, Pillinger T, Howes O, Peters E. Psychophysiological stress-reactivity in clinical and non-clinical voice-hearers. Schizophr Res 2021; 235:52-59. [PMID: 34315061 PMCID: PMC8429638 DOI: 10.1016/j.schres.2021.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/09/2020] [Accepted: 07/07/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Psychosis is associated with dysregulation of psychophysiological stress-reactivity, including in subjective, autonomic nervous system (ANS) and hypothalamic-pituitary-adrenal (HPA) parameters. AIMS This study investigated whether dysregulated psychophysiological stress-reactivity is specifically associated with auditory verbal hallucinations (AVHs) or psychosis more generally by comparing voice-hearers with and without a need for care. METHOD Clinical (n = 20) and non-clinical voice-hearers (n = 23), as well as a healthy control group with no voices (n = 23), were compared on HPA and ANS responses, and subjective reactivity, to a psychophysiological stress paradigm, the socially evaluative cold pressor test. RESULTS Measures of HPA function in both clinical and non-clinical voice-hearers diverged from non-voice-hearing controls. Clinical participants showed a blunted peak response compared to both non-clinical groups (p = 0.02), whilst non-clinical voice-hearers showed, at trend-level, reduced cortisol levels during stress exposure compared to both clinical voice-hearers (p = 0.07) and healthy controls (p = 0.07), who unexpectedly did not differ from each other (p = 0.97). Clinical participants showed greater subjective stress levels than both non-clinical groups (p < 0.001), as well as greater anticipatory stress (p = 0.001) and less recovery. There were no differences between groups on parameters of the ANS (all p > 0.05). CONCLUSIONS Dysregulated psychophysiological stress-function is present in clinical voice-hearers, and partially discriminates them from non-clinical voice-hearers. Overall, the present findings identified specific potential psychophysiological markers of risk and resilience in auditory verbal hallucinations and need for care.
Collapse
Affiliation(s)
- David Baumeister
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, Department of Psychology, London, UK; Department of General Internal Medicine and Psychosomatics, University Hospital Heidelberg, Germany.
| | - Toby Pillinger
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, Department of Psychosis Studies, London, UK
| | - Oliver Howes
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, Department of Psychosis Studies, London, UK
| | - Emmanuelle Peters
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, Department of Psychology, London, UK; South London and Maudsley NHS Foundation Trust, London, UK
| |
Collapse
|
154
|
Kverno K. Genetic and Environmental Contributions to Mental Illness With Implications for Evaluation and Treatment. J Psychosoc Nurs Ment Health Serv 2021; 59:9-13. [PMID: 33382435 DOI: 10.3928/02793695-20201210-03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
From the outside looking in, it may appear that nurse practitioner practice in mental health care is relatively easy compared to other nurse practitioner population care. The current article presents a brief overview of recent theories on the etiology of mental disorders, specifically major depressive disorder, bipolar disorder, and schizophrenia, with implications for practice. Pharmacological treatments targeting important stress response and immune and inflammatory targets lag behind the science. A practical framework for psychiatric evaluation, formulation, and treatment planning that combines four distinctive ways of viewing patients' concerns is presented as a useful method for providing person-centered mental health care. [Journal of Psychosocial Nursing and Mental Health Services, 59(1), 9-13.].
Collapse
|
155
|
Al Abed AS, Reynolds NJ, Dehorter N. A Second Wave for the Neurokinin Tac2 Pathway in Brain Research. Biol Psychiatry 2021; 90:156-164. [PMID: 33867115 DOI: 10.1016/j.biopsych.2021.02.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 12/19/2022]
Abstract
Despite promising advances in basic research of the neurokinin B/Tac2 pathway in both animals and humans, clinical applications are yet to be implemented. This is likely because of our limited understanding of the action of the pathway in the brain. While this system controls neuronal activity in multiple regions, the precise impact of Tac2-induced cellular responses on behavior remains unclear. Recently, elegant studies revealed a key contribution to stress-related behaviors and memory. Here, we discuss the crucial importance of bridging the gap between the Tac2 pathway's involvement in cell physiology and cognition to comprehend its role in health and disease. We propose that a better understanding of the Tac2 pathway in the brain could provide an essential perspective for basic investigations, which in turn will feed clinical research.
Collapse
Affiliation(s)
- A Shaam Al Abed
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Nathan J Reynolds
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Nathalie Dehorter
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australia.
| |
Collapse
|
156
|
Baumeister D, Ward T, Garety P, Jackson M, Morgan C, Charalambides M, Chadwick P, Howes O, Peters E. Need for care, adversity exposure and perceived stress in clinical and healthy voice-hearers. Psychol Med 2021; 51:1944-1950. [PMID: 32686627 PMCID: PMC8381238 DOI: 10.1017/s0033291720002433] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 06/16/2020] [Accepted: 06/24/2020] [Indexed: 11/17/2022]
Abstract
OBJECTIVES Psychosis, and in particular auditory verbal hallucinations (AVHs), are associated with adversity exposure. However, AVHs also occur in populations with no need for care or distress. AIMS This study investigated whether adversity exposure would differentiate clinical and healthy voice-hearers within the context of a 'three-hit' model of vulnerability and stress exposure. METHODS Samples of 57 clinical and 45 healthy voice-hearers were compared on the three 'hits': familial risk; adversity exposure in childhood and in adolescence/adulthood. RESULTS Clinical voice-hearers showed greater familial risk than healthy voice-hearers, with more family members with a history of psychosis, but not with other mental disorders. The two groups did not differ in their exposure to adversity in childhood [sexual and non-sexual, victimisation; discrimination and socio-economic status (SES)]. Contrary to expectations, clinical voice-hearers did not differ from healthy voice-hearers in their exposure to victimisation (sexual/non-sexual) and discrimination in adolescence/adulthood, but reported more cannabis and substance misuse, and lower SES. CONCLUSIONS The current study found no evidence that clinical and healthy voice-hearers differ in lifetime victimisation exposure, suggesting victimisation may be linked to the emergence of AVHs generally, rather than need-for-care. Familial risk, substance misuse and lower SES may be additional risk factors involved in the emergence of need-for-care and distress.
Collapse
Affiliation(s)
- David Baumeister
- Department of Psychology, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Department of General Internal Medicine and Psychosomatics, University Hospital Heidelberg, Heidelberg, Germany
| | - Thomas Ward
- Department of Psychology, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- South London and Maudsley NHS Foundation Trust, Bethlem Royal Hospital, Monks Orchard Road, Beckenham, Kent BR3 3BX, UK
| | - Philippa Garety
- Department of Psychology, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- South London and Maudsley NHS Foundation Trust, Bethlem Royal Hospital, Monks Orchard Road, Beckenham, Kent BR3 3BX, UK
| | - Mike Jackson
- Bangor University, School of Psychology, Bangor, North Wales, UK
- Betsi Cadwaladr University Health Board, Bangor, North Wales, UK
| | - Craig Morgan
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, Health Service & Population Research, London, UK
| | - Monica Charalambides
- Department of Psychology, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Paul Chadwick
- Department of Psychology, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Oliver Howes
- South London and Maudsley NHS Foundation Trust, Bethlem Royal Hospital, Monks Orchard Road, Beckenham, Kent BR3 3BX, UK
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Emmanuelle Peters
- Department of Psychology, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- South London and Maudsley NHS Foundation Trust, Bethlem Royal Hospital, Monks Orchard Road, Beckenham, Kent BR3 3BX, UK
| |
Collapse
|
157
|
Zhao W, Zhang Q, Chen X, Li Y, Li X, Du B, Deng X, Ji F, Wang C, Xiang YT, Dong Q, Chen C, Li J. The VNTR of the AS3MT gene is associated with brain activations during a memory span task and their training-induced plasticity. Psychol Med 2021; 51:1927-1932. [PMID: 32308175 PMCID: PMC8381288 DOI: 10.1017/s0033291720000720] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 01/10/2020] [Accepted: 03/11/2020] [Indexed: 02/02/2023]
Abstract
BACKGROUND The Arsenic (+3 oxidation state) methyltransferase (AS3MT) gene has been identified as a top risk gene for schizophrenia in several large-scale genome-wide association studies. A variable number tandem repeat (VNTR) of this gene is the most significant expression quantitative trait locus, but its role in brain activity in vivo is still unknown. METHODS We first performed a functional magnetic resonance imaging (fMRI) scan of 101 healthy subjects during a memory span task, trained all subjects on an adaptive memory span task for 1 month, and finally performed another fMRI scan after the training. After excluding subjects with excessive head movements for one or more scanning sessions, data from 93 subjects were included in the final analyses. RESULTS The VNTR was significantly associated with both baseline brain activation and training-induced changes in multiple regions including the prefrontal cortex and the anterior and posterior cingulate cortex. Additionally, it was associated with baseline brain activation in the striatum and the parietal cortex. All these results were corrected based on the family-wise error rate method across the whole brain at the peak level. CONCLUSIONS This study sheds light on the role of AS3MT gene variants in neural plasticity related to memory span training.
Collapse
Affiliation(s)
- Wan Zhao
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, P.R. China
| | - Qiumei Zhang
- School of Public Health, Jining Medical University, 45# Jianshe South Road, Jining272013, Shandong Province, P.R. China
| | - Xiongying Chen
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders & the Advanced Innovation Center for Human Brain Protection, Beijing Anding Hospital, School of Mental Health, Capital Medical University, Beijing100088, China
| | - Yang Li
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, P.R. China
| | - Xiaohong Li
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders & the Advanced Innovation Center for Human Brain Protection, Beijing Anding Hospital, School of Mental Health, Capital Medical University, Beijing100088, China
| | - Boqi Du
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, P.R. China
| | - Xiaoxiang Deng
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, P.R. China
| | - Feng Ji
- School of Mental Health, Jining Medical University, 45# Jianshe South Road, Jining272013, Shandong Province, P.R. China
| | - Chuanyue Wang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders & the Advanced Innovation Center for Human Brain Protection, Beijing Anding Hospital, School of Mental Health, Capital Medical University, Beijing100088, China
| | - Yu-Tao Xiang
- Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau
| | - Qi Dong
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, P.R. China
| | - Chuansheng Chen
- Department of Psychology and Social Behavior, University of California, Irvine, CA92697, USA
| | - Jun Li
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, P.R. China
| |
Collapse
|
158
|
Kelly JR, Minuto C, Cryan JF, Clarke G, Dinan TG. The role of the gut microbiome in the development of schizophrenia. Schizophr Res 2021; 234:4-23. [PMID: 32336581 DOI: 10.1016/j.schres.2020.02.010] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 02/22/2020] [Accepted: 02/25/2020] [Indexed: 02/07/2023]
Abstract
Schizophrenia is a heterogeneous neurodevelopmental disorder involving the convergence of a complex and dynamic bidirectional interaction of genetic expression and the accumulation of prenatal and postnatal environmental risk factors. The development of the neural circuitry underlying social, cognitive and emotional domains requires precise regulation from molecular signalling pathways, especially during critical periods or "windows", when the brain is particularly sensitive to the influence of environmental input signalling. Many of the brain regions involved, and the molecular substrates sub-serving these domains are responsive to life-long microbiota-gut-brain (MGB) axis signalling. This intricate microbial signalling system communicates with the brain via the vagus nerve, immune system, enteric nervous system, enteroendocrine signalling and production of microbial metabolites, such as short-chain fatty acids. Preclinical data has demonstrated that MGB axis signalling influences neurotransmission, neurogenesis, myelination, dendrite formation and blood brain barrier development, and modulates cognitive function and behaviour patterns, such as, social interaction, stress management and locomotor activity. Furthermore, preliminary clinical studies suggest altered gut microbiota profiles in schizophrenia. Unravelling MGB axis signalling in the context of an evolving dimensional framework in schizophrenia may provide a more complete understanding of the neurobiological architecture of this complex condition and offers the possibility of translational interventions.
Collapse
Affiliation(s)
- John R Kelly
- Department of Psychiatry, Trinity College Dublin, Ireland
| | - Chiara Minuto
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Ireland
| | - Gerard Clarke
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Ireland; APC Microbiome Ireland, University College Cork, Ireland
| | - Timothy G Dinan
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Ireland; APC Microbiome Ireland, University College Cork, Ireland.
| |
Collapse
|
159
|
The Imbalanced Plasticity Hypothesis of Schizophrenia-Related Psychosis: A Predictive Perspective. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2021; 21:679-697. [PMID: 34050524 DOI: 10.3758/s13415-021-00911-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/28/2021] [Indexed: 02/06/2023]
Abstract
A considerable number of studies have attempted to account for the psychotic aspects of schizophrenia in terms of the influential predictive coding (PC) hypothesis. We argue that the prediction-oriented perspective on schizophrenia-related psychosis may benefit from a mechanistic model that: 1) gives due weight to the extent to which alterations in short- and long-term synaptic plasticity determine the degree and the direction of the functional disruption that occurs in psychosis; and 2) addresses the distinction between the two central syndromes of psychosis in schizophrenia: disorganization and reality-distortion. To accomplish these goals, we propose the Imbalanced Plasticity Hypothesis - IPH, and demonstrate that it: 1) accounts for commonalities and differences between disorganization and reality distortion in terms of excessive (hyper) or insufficient (hypo) neuroplasticity, respectively; 2) provides distinct predictions in the cognitive and electrophysiological domains; and 3) is able to reconcile conflicting PC-oriented accounts of psychosis.
Collapse
|
160
|
Neuroepigenetics of psychiatric disorders: Focus on lncRNA. Neurochem Int 2021; 149:105140. [PMID: 34298078 DOI: 10.1016/j.neuint.2021.105140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/16/2021] [Accepted: 07/18/2021] [Indexed: 01/01/2023]
Abstract
Understanding the pathology of psychiatric disorders is challenging due to their complexity and multifactorial origin. However, development of high-throughput technologies has allowed for better insight into their molecular signatures. Advancement of sequencing methodologies have made it possible to study not only the protein-coding but also the noncoding genome. It is now clear that besides the genetic component, different epigenetic mechanisms play major roles in the onset and development of psychiatric disorders. Among them, examining the role of long noncoding RNAs (lncRNAs) is a relatively new field. Here, we present an overview of what is currently known about the involvement of lncRNAs in schizophrenia, major depressive and bipolar disorders, as well as suicide. The diagnosis of psychiatric disorders mainly relies on clinical evaluation without using measurable biomarkers. In this regard, lncRNA may open new opportunities for development of molecular tests. However, so far only a small set of known lncRNAs have been characterized at molecular level, which means they have a long way to go before clinical implementation. Understanding how changes in lncRNAs affect the appearance and development of psychiatric disorders may lead to a more classified and objective diagnostic system, but also open up new therapeutic targets for these patients.
Collapse
|
161
|
Ren X, Zhang Q, Yang J, Zhang X, Zhang X, Zhang Y, Huang L, Xu C, Ge Y, Chen H, Liu X, Wang Y. Dopamine Imaging in Living Cells and Retina by Surface-Enhanced Raman Scattering Based on Functionalized Gold Nanoparticles. Anal Chem 2021; 93:10841-10849. [PMID: 34284572 DOI: 10.1021/acs.analchem.1c01108] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Retinal dopamine is believed to be involved in the development of myopia, which is projected to affect almost half of the world population's visual health by 2050. Direct visualization of dopamine in the retina with high spatial precision is essential for understanding the biochemical mechanism during the development of myopia. However, there are very few approaches for the direct detection of dopamine in the visual system, particularly in the retina. Here, we report surface-enhanced Raman scattering (SERS)-based dopamine imaging in cells and retinal tissues with high spatial precision. The surface of gold nanoparticles is modified with N-butylboronic acid-2-mercaptoethylamine and 3,3'-dithiodipropionic acid di(N-hydroxysuccinimide ester), which shows excellent specific reaction with dopamine. The existence of dopamine triggers the aggregation of gold nanoparticles that subsequently form plasmonic hot spots to dramatically increase the Raman signal of dopamine. The as-synthesized SERS nanoprobes have been evaluated and applied for dopamine imaging in living cells and retinal tissues in form-deprivation (FD) myopia guinea pigs, followed by further investigation on localized dopamine levels in the FD-treated mice. The results suggest a declined dopamine level in mice retina after 2-week FD treatment, which is associated with the development of myopia. Our approach will greatly contribute to better understanding the localized dopamine level associated with myopia and its possible treatments. Furthermore, the imaging platform can be utilized to sensing other important small molecules within the biological samples.
Collapse
Affiliation(s)
- Xueqian Ren
- School of Biomedical Engineering, School of Ophthalmology & Optometry, Wenzhou Medical University, Xueyuan Road 270, Wenzhou 325027, China.,Wenzhou Institute, University of Chinese Academy of Sciences, Jinlian Road 1, Wenzhou 325001, China
| | - Qingwen Zhang
- School of Biomedical Engineering, School of Ophthalmology & Optometry, Wenzhou Medical University, Xueyuan Road 270, Wenzhou 325027, China.,Wenzhou Institute, University of Chinese Academy of Sciences, Jinlian Road 1, Wenzhou 325001, China
| | - Jinglei Yang
- School of Biomedical Engineering, School of Ophthalmology & Optometry, Wenzhou Medical University, Xueyuan Road 270, Wenzhou 325027, China
| | - Xinjuan Zhang
- Wenzhou Institute, University of Chinese Academy of Sciences, Jinlian Road 1, Wenzhou 325001, China
| | - Xueming Zhang
- Wenzhou Institute, University of Chinese Academy of Sciences, Jinlian Road 1, Wenzhou 325001, China
| | - Yating Zhang
- Department of Electronic Engineering, Tsinghua University, Shuangqing Road 30, Beijing 100084, China
| | - Liping Huang
- School of Biomedical Engineering, School of Ophthalmology & Optometry, Wenzhou Medical University, Xueyuan Road 270, Wenzhou 325027, China.,Wenzhou Institute, University of Chinese Academy of Sciences, Jinlian Road 1, Wenzhou 325001, China
| | - Changshun Xu
- School of Biomedical Engineering, School of Ophthalmology & Optometry, Wenzhou Medical University, Xueyuan Road 270, Wenzhou 325027, China.,Wenzhou Institute, University of Chinese Academy of Sciences, Jinlian Road 1, Wenzhou 325001, China
| | - Yuancai Ge
- School of Biomedical Engineering, School of Ophthalmology & Optometry, Wenzhou Medical University, Xueyuan Road 270, Wenzhou 325027, China.,Wenzhou Institute, University of Chinese Academy of Sciences, Jinlian Road 1, Wenzhou 325001, China
| | - Hao Chen
- School of Biomedical Engineering, School of Ophthalmology & Optometry, Wenzhou Medical University, Xueyuan Road 270, Wenzhou 325027, China
| | - Xiaohu Liu
- School of Biomedical Engineering, School of Ophthalmology & Optometry, Wenzhou Medical University, Xueyuan Road 270, Wenzhou 325027, China.,Wenzhou Institute, University of Chinese Academy of Sciences, Jinlian Road 1, Wenzhou 325001, China
| | - Yi Wang
- School of Biomedical Engineering, School of Ophthalmology & Optometry, Wenzhou Medical University, Xueyuan Road 270, Wenzhou 325027, China.,Wenzhou Institute, University of Chinese Academy of Sciences, Jinlian Road 1, Wenzhou 325001, China
| |
Collapse
|
162
|
Ľupták M, Michaličková D, Fišar Z, Kitzlerová E, Hroudová J. Novel approaches in schizophrenia-from risk factors and hypotheses to novel drug targets. World J Psychiatry 2021; 11:277-296. [PMID: 34327122 PMCID: PMC8311514 DOI: 10.5498/wjp.v11.i7.277] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/06/2021] [Accepted: 06/18/2021] [Indexed: 02/06/2023] Open
Abstract
Schizophrenia is a severe psychiatric disorder characterized by emotional, behavioral and cognitive disturbances, and the treatment of schizophrenia is often complicated by noncompliance and pharmacoresistance. The search for the pathophysiological mechanisms underlying schizophrenia has resulted in the proposal of several hypotheses to explain the impacts of environmental, genetic, neurodevelopmental, immune and inflammatory factors on disease onset and progression. This review discusses the newest insights into the pathophysiology of and risk factors for schizophrenia and notes novel approaches in antipsychotic treatment and potential diagnostic and theranostic biomarkers. The current hypotheses focusing on neuromediators (dopamine, glutamate, and serotonin), neuroinflammation, the cannabinoid hypothesis, the gut-brain axis model, and oxidative stress are summarized. Key genetic features, including small nucleotide polymorphisms, copy number variations, microdeletions, mutations and epigenetic changes, are highlighted. Current pharmacotherapy of schizophrenia relies mostly on dopaminergic and serotonergic antagonists/partial agonists, but new findings in the pathophysiology of schizophrenia have allowed the expansion of novel approaches in pharmacotherapy and the establishment of more reliable biomarkers. Substances with promising results in preclinical and clinical studies include lumateperone, pimavanserin, xanomeline, roluperidone, agonists of trace amine-associated receptor 1, inhibitors of glycine transporters, AMPA allosteric modulators, mGLUR2-3 agonists, D-amino acid oxidase inhibitors and cannabidiol. The use of anti-inflammatory agents as an add-on therapy is mentioned.
Collapse
Affiliation(s)
- Matej Ľupták
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague 12800, Czech Republic
| | - Danica Michaličková
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague 12800, Czech Republic
| | - Zdeněk Fišar
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague 12000, Czech Republic
| | - Eva Kitzlerová
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague 12000, Czech Republic
| | - Jana Hroudová
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague 12800, Czech Republic
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague 12000, Czech Republic
| |
Collapse
|
163
|
Kim S, Shin SH, Santangelo B, Veronese M, Kang SK, Lee JS, Cheon GJ, Lee W, Kwon JS, Howes OD, Kim E. Dopamine dysregulation in psychotic relapse after antipsychotic discontinuation: an [ 18F]DOPA and [ 11C]raclopride PET study in first-episode psychosis. Mol Psychiatry 2021; 26:3476-3488. [PMID: 32929214 DOI: 10.1038/s41380-020-00879-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 08/24/2020] [Accepted: 09/03/2020] [Indexed: 01/09/2023]
Abstract
Although antipsychotic drugs are effective for relieving the psychotic symptoms of first-episode psychosis (FEP), psychotic relapse is common during the course of the illness. While some FEPs remain remitted even without medication, antipsychotic discontinuation is regarded as the most common risk factor for the relapse. Considering the actions of antipsychotic drugs on presynaptic and postsynaptic dopamine dysregulation, this study evaluated possible mechanisms underlying relapse after antipsychotic discontinuation. Twenty five FEPs who were clinically stable and 14 matched healthy controls were enrolled. Striatal dopamine activity was assessed as Kicer value using [18F]DOPA PET before and 6 weeks after antipsychotic discontinuation. The D2/3 receptor availability was measured as BPND using [11C]raclopride PET after antipsychotic discontinuation. Healthy controls also underwent PET scans according to the corresponding schedule of the patients. Patients were monitored for psychotic relapse during 12 weeks after antipsychotic discontinuation. 40% of the patients showed psychotic relapse after antipsychotic discontinuation. The change in Kicer value over time significantly differed between relapsed, non-relapsed patients and healthy controls (Week*Group: F = 4.827, df = 2,253.193, p = 0.009). In relapsed patients, a significant correlation was found between baseline striatal Kicer values and time to relapse after antipsychotic discontinuation (R2 = 0.518, p = 0.018). BPND were not significantly different between relapsed, non-relapsed patients and healthy controls (F = 1.402, df = 2,32.000, p = 0.261). These results suggest that dysfunctional dopamine autoregulation might precipitate psychotic relapse after antipsychotic discontinuation in FEP. This finding could be used for developing a strategy for the prevention of psychotic relapse related to antipsychotic discontinuation.
Collapse
Affiliation(s)
- Seoyoung Kim
- Department of Psychiatry, Seoul National University Bundang Hospital, Gyeonggi-do, Republic of Korea
| | - Sang Ho Shin
- Department of Psychiatry, Seoul National University Bundang Hospital, Gyeonggi-do, Republic of Korea
| | - Barbara Santangelo
- Centre for Neuroimaging Science, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Mattia Veronese
- Centre for Neuroimaging Science, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Seung Kwan Kang
- Department of Nuclear Medicine, College of Medicine, Seoul National University, Seoul, Republic of Korea.,Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Jae Sung Lee
- Department of Nuclear Medicine, College of Medicine, Seoul National University, Seoul, Republic of Korea.,Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Gi Jeong Cheon
- Department of Nuclear Medicine, College of Medicine, Seoul National University, Seoul, Republic of Korea.,Institute of Radiation Medicine, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Woojoo Lee
- Department of Public Health Science, Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Jun Soo Kwon
- Department of Psychiatry, College of Medicine, Seoul National University, Seoul, Republic of Korea.,Department of Brain & Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| | - Oliver D Howes
- Department of Psychosis studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,Psychiatric Imaging, Medical Research Council Clinical Sciences Centre, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Euitae Kim
- Department of Psychiatry, Seoul National University Bundang Hospital, Gyeonggi-do, Republic of Korea. .,Department of Psychiatry, College of Medicine, Seoul National University, Seoul, Republic of Korea. .,Department of Brain & Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
164
|
Rauschenberg C, Reininghaus U, ten Have M, de Graaf R, van Dorsselaer S, Simons CJP, Gunther N, Henquet C, Pries LK, Guloksuz S, Bak M, van Os J. The jumping to conclusions reasoning bias as a cognitive factor contributing to psychosis progression and persistence: findings from NEMESIS-2. Psychol Med 2021; 51:1696-1703. [PMID: 32174291 PMCID: PMC8327623 DOI: 10.1017/s0033291720000446] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 02/12/2020] [Accepted: 02/16/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Contemporary models of psychosis implicate the importance of affective dysregulation and cognitive factors (e.g. biases and schemas) in the development and maintenance of psychotic symptoms, but studies testing proposed mechanisms remain limited. This study, uniquely using a prospective design, investigated whether the jumping to conclusions (JTC) reasoning bias contributes to psychosis progression and persistence. METHODS Data were derived from the second Netherlands Mental Health Survey and Incidence Study (NEMESIS-2). The Composite International Diagnostic Interview and an add-on instrument were used to assess affective dysregulation (i.e. depression, anxiety and mania) and psychotic experiences (PEs), respectively. The beads task was used to assess JTC bias. Time series analyses were conducted using data from T1 and T2 (N = 8666), excluding individuals who reported high psychosis levels at T0. RESULTS Although the prospective design resulted in low statistical power, the findings suggest that, compared to those without symptoms, individuals with lifetime affective dysregulation were more likely to progress from low/moderate psychosis levels (state of 'aberrant salience', one or two PEs) at T1 to high psychosis levels ('frank psychosis', three or more PEs or psychosis-related help-seeking behaviour) at T2 if the JTC bias was present [adj. relative risk ratio (RRR): 3.8, 95% confidence interval (CI) 0.8-18.6, p = 0.101]. Similarly, the JTC bias contributed to the persistence of high psychosis levels (adj. RRR: 12.7, 95% CI 0.7-239.6, p = 0.091). CONCLUSIONS We found some evidence that the JTC bias may contribute to psychosis progression and persistence in individuals with affective dysregulation. However, well-powered prospective studies are needed to replicate these findings.
Collapse
Affiliation(s)
- Christian Rauschenberg
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
- Department of Public Mental Health, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Ulrich Reininghaus
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
- Department of Public Mental Health, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
- Health Service and Population Research Department, Centre for Epidemiology and Public Health, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Margreet ten Have
- Department of Epidemiology, Netherlands Institute of Mental Health and Addiction, Utrecht, The Netherlands
| | - Ron de Graaf
- Department of Epidemiology, Netherlands Institute of Mental Health and Addiction, Utrecht, The Netherlands
| | - Saskia van Dorsselaer
- Department of Epidemiology, Netherlands Institute of Mental Health and Addiction, Utrecht, The Netherlands
| | - Claudia J. P. Simons
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
- GGzE, Institute for Mental Health Care Eindhoven and De Kempen, Eindhoven, The Netherlands
| | - Nicole Gunther
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
- School of Psychology, Open University, Heerlen, The Netherlands
| | - Cécile Henquet
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Lotta-Katrin Pries
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Sinan Guloksuz
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Maarten Bak
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Jim van Os
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
- Department of Psychiatry, Brain Centre Rudolf Magnus, University Medical Centre Utrecht, Utrecht, The Netherlands
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| |
Collapse
|
165
|
Global hypomyelination of the brain white and gray matter in schizophrenia: quantitative imaging using macromolecular proton fraction. Transl Psychiatry 2021; 11:365. [PMID: 34226491 PMCID: PMC8257619 DOI: 10.1038/s41398-021-01475-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 05/08/2021] [Accepted: 05/17/2021] [Indexed: 02/06/2023] Open
Abstract
Myelin deficiency is commonly recognized as an important pathological feature of brain tissues in schizophrenia (SZ). In this pilot study, global myelin content abnormalities in white matter (WM) and gray matter (GM) of SZ patients were non-invasively investigated using a novel clinically-targeted quantitative myelin imaging technique, fast macromolecular proton fraction (MPF) mapping. MPF maps were obtained from 23 healthy subjects and 31 SZ patients using a clinical 1.5T magnetic resonance imaging (MRI) scanner. Mean MPF in WM and GM was compared between the healthy control subjects and SZ patients with positive and negative leading symptoms using the multivariate analysis of covariance. The SZ patients had significantly reduced MPF in GM (p < 0.001) and WM (p = 0.02) with the corresponding relative decrease of 5% and 3%, respectively. The effect sizes for the myelin content loss in SZ relative to the control group were 1.0 and 1.5 for WM and GM, respectively. The SZ patients with leading negative symptoms had significantly lower MPF in GM (p < 0.001) and WM (p = 0.003) as compared to the controls and showed a significant MPF decrease in WM (p = 0.03) relative to the patients with leading positive symptoms. MPF in WM significantly negatively correlated with the disease duration in SZ patients (Pearson's r = -0.51; p = 0.004). This study demonstrates that chronic SZ is characterized by global microscopic brain hypomyelination of both WM and GM, which is associated with the disease duration and negative symptoms. Myelin deficiency in SZ can be detected and quantified by the fast MPF mapping method.
Collapse
|
166
|
Oishi K, Niitsu T, Kanahara N, Sato Y, Iwayama Y, Toyota T, Hashimoto T, Sasaki T, Takase M, Shiina A, Yoshikawa T, Iyo M. Genetic risks of schizophrenia identified in a matched case-control study. Eur Arch Psychiatry Clin Neurosci 2021; 271:775-781. [PMID: 32623490 DOI: 10.1007/s00406-020-01158-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 06/24/2020] [Indexed: 11/25/2022]
Abstract
It has been suggested that dopaminergic neurotransmission plays important roles for the psychotic symptoms and probably etiology of schizophrenia. In our recent preliminary study, we demonstrated that the specific allele combinations of dopamine-related functional single nucleotide polymorphisms (SNPs), rs10770141, rs4680, and rs1800497 could indicate risks for schizophrenia. The present validation study involved a total of 2542 individuals who were age- and sex-matched in a propensity score matching analysis, and the results supported the statistical significances of the proposed genetic risks described in our previous reports. The estimated odds ratios were 1.24 (95% CI 1.06-1.45, p < 0.001) for rs4680, 1.73 (95% CI 1.47-2.02, p < 0.0001) for rs1800497, and 1.79 (95% CI 1.35-2.36, p < 0.0001) for rs10770141. A significant relationship was also revealed among these three polymorphisms and schizophrenia, with corresponding coefficients (p < 0.0001). In this study, we also present a new scoring model for the identification of individuals with the disease risks. Using the cut-off value of 2, our model exhibited sensitivity for almost two-thirds of all of the schizophrenia patients: odds ratio 1.87, 95% CI 1.59-2.19, p < 0.0001. In conclusion, we identified significant associations of dopamine-related genetic combinations with schizophrenia. These findings suggest that some types of dopaminergic neurotransmission play important roles for development of schizophrenia, and this type of approach may also be applicable for other multifactorial diseases, providing a potent new risk predictor.
Collapse
Affiliation(s)
- Kengo Oishi
- Department of Psychiatry, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuou-ku, Chiba, Chiba, 260-8670, Japan.
| | - Tomihisa Niitsu
- Department of Psychiatry, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuou-ku, Chiba, Chiba, 260-8670, Japan
| | - Nobuhisa Kanahara
- Division of Medical Treatment and Rehabilitation, Chiba University Center for Forensic Mental Health, 1-8-1 Inohana, Chuou-ku, Chiba, Chiba, 260-8670, Japan
| | - Yasunori Sato
- Department of Preventive Medicine and Public Health, Keio University School of Medicine, 35 Shinanomachi Shinjuku-ku, Tokyo, 160-0016, Japan
| | - Yoshimi Iwayama
- Laboratory for Molecular Psychiatry, RIKEN Center for Brain Science, Wako, Saitama, 351-0198, Japan
- Support Unit for Bio-Material Analysis, Research Resources Division, RIKEN Center for Brain Science, Wako, Saitama, 351-0198, Japan
| | - Tomoko Toyota
- Laboratory for Molecular Psychiatry, RIKEN Center for Brain Science, Wako, Saitama, 351-0198, Japan
| | - Tasuku Hashimoto
- Department of Psychiatry, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuou-ku, Chiba, Chiba, 260-8670, Japan
| | - Tsuyoshi Sasaki
- Department of Psychiatry, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuou-ku, Chiba, Chiba, 260-8670, Japan
- Department of Child Psychiatry, Chiba University Hospital, 1-8-1 Inohana, Chuou-ku, Chiba, Chiba, 260-8670, Japan
| | - Masayuki Takase
- Department of Psychiatry, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuou-ku, Chiba, Chiba, 260-8670, Japan
| | - Akihiro Shiina
- Division of Medical Treatment and Rehabilitation, Chiba University Center for Forensic Mental Health, 1-8-1 Inohana, Chuou-ku, Chiba, Chiba, 260-8670, Japan
| | - Takeo Yoshikawa
- Laboratory for Molecular Psychiatry, RIKEN Center for Brain Science, Wako, Saitama, 351-0198, Japan
| | - Masaomi Iyo
- Department of Psychiatry, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuou-ku, Chiba, Chiba, 260-8670, Japan
- Division of Medical Treatment and Rehabilitation, Chiba University Center for Forensic Mental Health, 1-8-1 Inohana, Chuou-ku, Chiba, Chiba, 260-8670, Japan
| |
Collapse
|
167
|
Kokkinou M, Irvine EE, Bonsall DR, Natesan S, Wells LA, Smith M, Glegola J, Paul EJ, Tossell K, Veronese M, Khadayate S, Dedic N, Hopkins SC, Ungless MA, Withers DJ, Howes OD. Reproducing the dopamine pathophysiology of schizophrenia and approaches to ameliorate it: a translational imaging study with ketamine. Mol Psychiatry 2021; 26:2562-2576. [PMID: 32382134 PMCID: PMC8440182 DOI: 10.1038/s41380-020-0740-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 04/06/2020] [Accepted: 04/17/2020] [Indexed: 12/14/2022]
Abstract
Patients with schizophrenia show increased striatal dopamine synthesis capacity in imaging studies. The mechanism underlying this is unclear but may be due to N-methyl-D-aspartate receptor (NMDAR) hypofunction and parvalbumin (PV) neuronal dysfunction leading to disinhibition of mesostriatal dopamine neurons. Here, we develop a translational mouse model of the dopamine pathophysiology seen in schizophrenia and test approaches to reverse the dopamine changes. Mice were treated with sub-chronic ketamine (30 mg/kg) or saline and then received in vivo positron emission tomography of striatal dopamine synthesis capacity, analogous to measures used in patients. Locomotor activity was measured using the open-field test. In vivo cell-type-specific chemogenetic approaches and pharmacological interventions were used to manipulate neuronal excitability. Immunohistochemistry and RNA sequencing were used to investigate molecular mechanisms. Sub-chronic ketamine increased striatal dopamine synthesis capacity (Cohen's d = 2.5) and locomotor activity. These effects were countered by inhibition of midbrain dopamine neurons, and by activation of PV interneurons in pre-limbic cortex and ventral subiculum of the hippocampus. Sub-chronic ketamine reduced PV expression in these cortical and hippocampal regions. Pharmacological intervention with SEP-363856, a novel psychotropic agent with agonism at trace amine receptor 1 (TAAR1) and 5-HT1A receptors but no appreciable action at dopamine D2 receptors, significantly reduced the ketamine-induced increase in dopamine synthesis capacity. These results show that sub-chronic ketamine treatment in mice mimics the dopaminergic alterations in patients with psychosis, that this requires activation of midbrain dopamine neurons, and can be ameliorated by activating PV interneurons and by a TAAR1/5-HT1A agonist. This identifies novel therapeutic approaches for targeting presynaptic dopamine dysfunction in patients with schizophrenia and effects of ketamine relevant to its therapeutic use for treating major depression.
Collapse
Affiliation(s)
- Michelle Kokkinou
- MRC London Institute of Medical Sciences (LMS), London, W12 0NN, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, W12 0NN, UK
| | - Elaine E Irvine
- MRC London Institute of Medical Sciences (LMS), London, W12 0NN, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, W12 0NN, UK
| | - David R Bonsall
- Invicro, Burlington Danes, Hammersmith Hospital, London, W12 0NN, UK
| | - Sridhar Natesan
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, UK
| | - Lisa A Wells
- Invicro, Burlington Danes, Hammersmith Hospital, London, W12 0NN, UK
| | - Mark Smith
- MRC London Institute of Medical Sciences (LMS), London, W12 0NN, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, W12 0NN, UK
| | - Justyna Glegola
- MRC London Institute of Medical Sciences (LMS), London, W12 0NN, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, W12 0NN, UK
| | - Eleanor J Paul
- MRC London Institute of Medical Sciences (LMS), London, W12 0NN, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, W12 0NN, UK
| | - Kyoko Tossell
- MRC London Institute of Medical Sciences (LMS), London, W12 0NN, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, W12 0NN, UK
| | - Mattia Veronese
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, UK
| | - Sanjay Khadayate
- MRC London Institute of Medical Sciences (LMS), London, W12 0NN, UK
| | - Nina Dedic
- Sunovion Pharmaceuticals, 84 Waterford Drive, Marlborough, MA, 01752, USA
| | - Seth C Hopkins
- Sunovion Pharmaceuticals, 84 Waterford Drive, Marlborough, MA, 01752, USA
| | - Mark A Ungless
- MRC London Institute of Medical Sciences (LMS), London, W12 0NN, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, W12 0NN, UK
| | - Dominic J Withers
- MRC London Institute of Medical Sciences (LMS), London, W12 0NN, UK.
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, W12 0NN, UK.
| | - Oliver D Howes
- MRC London Institute of Medical Sciences (LMS), London, W12 0NN, UK.
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, W12 0NN, UK.
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, UK.
| |
Collapse
|
168
|
Nkire N, Scully PJ, Browne DJ, Baldwin PA, Kingston T, Owoeye O, Kinsella A, O'Callaghan E, Russell V, Waddington JL. Systematic comparison of duration of untreated illness versus duration of untreated psychosis in relation to psychopathology and dysfunction in the Cavan-Monaghan first episode psychosis study (CAMFEPS). Eur Neuropsychopharmacol 2021; 47:20-30. [PMID: 33823369 DOI: 10.1016/j.euroneuro.2021.03.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 02/25/2021] [Accepted: 03/01/2021] [Indexed: 01/22/2023]
Abstract
This study systematically compared duration of untreated illness (DUI) with duration of untreated psychosis (DUP) in prediction of impairment at first-episode psychosis and investigated the extent to which these relationships are influenced by premorbid features. The Cavan-Monaghan First Episode Psychosis Study ascertained cases of first-episode psychosis in rural Ireland via all routes to care with limited variations in socioeconomic milieu. Cases were evaluated for DUI and DUP and assessed clinically for psychopathology, neuropsychology, neurology, insight and quality of life, together with premorbid features. Analyses then determined prediction of clinical assessments by DUI versus DUP. The study population consisted of 163 cases of first episode psychosis, among which 74 had a schizophrenia spectrum disorder. Shorter DUI but not DUP predicted less severe positive and general symptoms, while shorter DUP and particularly DUI predicted less severe negative symptoms; neither shorter DUP nor shorter DUI predicted less severe cognitive impairment or fewer neurological soft signs; shorter DUP and DUI predicted increased quality of life; shorter DUI but not DUP predicted greater insight. Only prediction of quality of life was weakened by consideration of premorbid features. Results were generally similar across the two diagnostic groupings. The present findings systematically delineate associations with DUI versus DUP across domains of impairment in first episode psychosis. They suggest that DUI may reflect a more insidious process than DUP and that reduction in DUI may be associated with more consistent and broader diminutions in impairment than for DUP.
Collapse
Affiliation(s)
- Nnamdi Nkire
- Cavan-Monaghan Mental Health Service, St. Davnet's Hospital, Monaghan, and Cavan General Hospital, Cavan, Ireland; School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Paul J Scully
- Cavan-Monaghan Mental Health Service, St. Davnet's Hospital, Monaghan, and Cavan General Hospital, Cavan, Ireland; School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - David J Browne
- Cavan-Monaghan Mental Health Service, St. Davnet's Hospital, Monaghan, and Cavan General Hospital, Cavan, Ireland; School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Patrizia A Baldwin
- Cavan-Monaghan Mental Health Service, St. Davnet's Hospital, Monaghan, and Cavan General Hospital, Cavan, Ireland; School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Tara Kingston
- Cavan-Monaghan Mental Health Service, St. Davnet's Hospital, Monaghan, and Cavan General Hospital, Cavan, Ireland; School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Olabisi Owoeye
- Cavan-Monaghan Mental Health Service, St. Davnet's Hospital, Monaghan, and Cavan General Hospital, Cavan, Ireland; School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Anthony Kinsella
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | | | - Vincent Russell
- Cavan-Monaghan Mental Health Service, St. Davnet's Hospital, Monaghan, and Cavan General Hospital, Cavan, Ireland; Department of Psychiatry, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - John L Waddington
- Cavan-Monaghan Mental Health Service, St. Davnet's Hospital, Monaghan, and Cavan General Hospital, Cavan, Ireland; School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland; Jiangsu Key Laboratory of Translational Research & Therapy for Neuro-Psychiatric-Disorders and Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China.
| |
Collapse
|
169
|
Hidalgo S, Campusano JM, Hodge JJL. Assessing olfactory, memory, social and circadian phenotypes associated with schizophrenia in a genetic model based on Rim. Transl Psychiatry 2021; 11:292. [PMID: 34001859 PMCID: PMC8128896 DOI: 10.1038/s41398-021-01418-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 04/22/2021] [Accepted: 04/30/2021] [Indexed: 02/04/2023] Open
Abstract
Schizophrenia shows high heritability and several of the genes associated with this disorder are involved in calcium (Ca2+) signalling and synaptic function. One of these is the Rab-3 interacting molecule-1 (RIM1), which has recently been associated with schizophrenia by Genome Wide Association Studies (GWAS). However, its contribution to the pathophysiology of this disorder remains unexplored. In this work, we use Drosophila mutants of the orthologue of RIM1, Rim, to model some aspects of the classical and non-classical symptoms of schizophrenia. Rim mutants showed several behavioural features relevant to schizophrenia including social distancing and altered olfactory processing. These defects were accompanied by reduced evoked Ca2+ influx and structural changes in the presynaptic terminals sent by the primary olfactory neurons to higher processing centres. In contrast, expression of Rim-RNAi in the mushroom bodies (MBs), the main memory centre in flies, spared learning and memory suggesting a differential role of Rim in different synapses. Circadian deficits have been reported in schizophrenia. We observed circadian locomotor activity deficits in Rim mutants, revealing a role of Rim in the pacemaker ventral lateral clock neurons (LNvs). These changes were accompanied by impaired day/night remodelling of dorsal terminal synapses from a subpopulation of LNvs and impaired day/night release of the circadian neuropeptide pigment dispersing factor (PDF) from these terminals. Lastly, treatment with the commonly used antipsychotic haloperidol rescued Rim locomotor deficits to wildtype. This work characterises the role of Rim in synaptic functions underlying behaviours disrupted in schizophrenia.
Collapse
Affiliation(s)
- Sergio Hidalgo
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- School of Physiology, Pharmacology and Neuroscience, Faculty of Life Science, University of Bristol, Bristol, UK
| | - Jorge M Campusano
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - James J L Hodge
- School of Physiology, Pharmacology and Neuroscience, Faculty of Life Science, University of Bristol, Bristol, UK.
| |
Collapse
|
170
|
Klune CB, Jin B, DeNardo LA. Linking mPFC circuit maturation to the developmental regulation of emotional memory and cognitive flexibility. eLife 2021; 10:e64567. [PMID: 33949949 PMCID: PMC8099425 DOI: 10.7554/elife.64567] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 03/28/2021] [Indexed: 12/12/2022] Open
Abstract
The medial prefrontal cortex (mPFC) and its abundant connections with other brain regions play key roles in memory, cognition, decision making, social behaviors, and mood. Dysfunction in mPFC is implicated in psychiatric disorders in which these behaviors go awry. The prolonged maturation of mPFC likely enables complex behaviors to emerge, but also increases their vulnerability to disruption. Many foundational studies have characterized either mPFC synaptic or behavioral development without establishing connections between them. Here, we review this rich body of literature, aligning major events in mPFC development with the maturation of complex behaviors. We focus on emotional memory and cognitive flexibility, and highlight new work linking mPFC circuit disruption to alterations of these behaviors in disease models. We advance new hypotheses about the causal connections between mPFC synaptic development and behavioral maturation and propose research strategies to establish an integrated understanding of neural architecture and behavioral repertoires.
Collapse
Affiliation(s)
- Cassandra B Klune
- Physiology Department, David Geffen School of Medicine, UCLALos AngelesUnited States
- Neuroscience Interdepartmental Graduate Program, UCLALos AngelesUnited States
| | - Benita Jin
- Physiology Department, David Geffen School of Medicine, UCLALos AngelesUnited States
- Molecular, Cellular and Integrative Physiology Graduate Program, UCLALos AngelesUnited States
| | - Laura A DeNardo
- Physiology Department, David Geffen School of Medicine, UCLALos AngelesUnited States
| |
Collapse
|
171
|
Izuo N, Nitta A. New Insights Regarding Diagnosis and Medication for Schizophrenia Based on Neuronal Synapse-Microglia Interaction. J Pers Med 2021; 11:jpm11050371. [PMID: 34063598 PMCID: PMC8147599 DOI: 10.3390/jpm11050371] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 01/01/2023] Open
Abstract
Schizophrenia is a common psychiatric disorder that usually develops during adolescence and young adulthood. Since genetic and environmental factors are involved in the disease, the molecular status of the pathology of schizophrenia differs across patients. Recent genetic studies have focused on the association between schizophrenia and the immune system, especially microglia–synapse interactions. Microglia physiologically eliminate unnecessary synapses during the developmental period. The overactivation of synaptic pruning by microglia is involved in the pathology of brain disease. This paper focuses on the synaptic pruning function and its molecular machinery and introduces the hypothesis that excessive synaptic pruning plays a role in the development of schizophrenia. Finally, we suggest a strategy for diagnosis and medication based on modulation of the interaction between microglia and synapses. This review provides updated information on the involvement of the immune system in schizophrenia and proposes novel insights regarding diagnostic and therapeutic strategies for this disease.
Collapse
Affiliation(s)
| | - Atsumi Nitta
- Correspondence: ; Tel.: +81-76-415-8822 (ext. 8823); Fax: +81-76-415-8826
| |
Collapse
|
172
|
Tortelli A, Simon P, Lehouelleur S, Skurnik N, Richard JR, Baudin G, Ferchiou A, Leboyer M, Schürhoff F, Szöke A. Characteristics associated with the risk of psychosis among immigrants and their descendants in France. Brain Behav 2021; 11:e02096. [PMID: 33835727 PMCID: PMC8119809 DOI: 10.1002/brb3.2096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 01/11/2021] [Accepted: 02/15/2021] [Indexed: 01/29/2023] Open
Abstract
OBJECTIVE To explore the sociodemographic characteristics that might explain the increased incidence of psychosis among immigrants and their descendants in France. METHODS Data were collected for all subjects with first contact for psychosis aged between 18 and 64 years, in two catchment areas in the Paris region. Incidence rates (IR) and incidence rate ratios (IRR) were adjusted for gender and age. RESULTS During 805,396 persons-year at risk, we identified 321 cases of first-episode psychosis, of which 129 were immigrants and 78 descendants of immigrants. We found that the geographic origin was associated with the risk of psychosis although generation has little impact. Sub-Saharan African immigrants and their descendants showed the highest risk (IRR = 3.1 and IRR = 2.9, respectively). We observed that living in deprived areas increased the incidence of psychosis (IRR = 1.3, 95CI%: 1.0-1.6), particularly among immigrants (IRR = 1.6; 95% CI: 1.1-2.5). Finally, our study showed that subjects having unstable housing (a proxy for "hard to count population") could inflate the incidence rates among immigrants. CONCLUSION The current study shows that the increased risk of psychosis in groups with an immigration background in France is associated with their origin and highlights the importance of socioeconomic factors in modulating this risk.
Collapse
Affiliation(s)
- Andrea Tortelli
- INSERM U955 Translational Neuropsychiatry, Créteil, France.,Pôle GHU Psychiatrie Précarité, Groupe Hospitalier Universitaire Paris Psychiatrie & Neurosciences, Paris, France.,Institut Convergences Migrations, Aubervilliers, France
| | - Patrick Simon
- Institut Convergences Migrations, Aubervilliers, France.,Institut National d'Etudes Démographiques, Aubervilliers, France
| | | | - Norbert Skurnik
- Groupe Hospitalier Universitaire Paris Psychiatrie & Neurosciences, Paris, France
| | | | - Grégoire Baudin
- Laboratoire de Psychopathologie et Processus de Santé, Université de Paris, EA 4057, Boulogne-Billancourt, France
| | - Aziz Ferchiou
- INSERM U955 Translational Neuropsychiatry, Créteil, France.,AP-HP, DMU IMPACT, Hôpitaux Universitaires Henri-Mondor, Créteil, France
| | - Marion Leboyer
- INSERM U955 Translational Neuropsychiatry, Créteil, France.,AP-HP, DMU IMPACT, Hôpitaux Universitaires Henri-Mondor, Créteil, France.,Fondation FondaMental, Créteil, France.,UPEC, University Paris-Est, Créteil, France
| | - Franck Schürhoff
- INSERM U955 Translational Neuropsychiatry, Créteil, France.,AP-HP, DMU IMPACT, Hôpitaux Universitaires Henri-Mondor, Créteil, France.,Fondation FondaMental, Créteil, France.,UPEC, University Paris-Est, Créteil, France
| | - Andrei Szöke
- INSERM U955 Translational Neuropsychiatry, Créteil, France.,AP-HP, DMU IMPACT, Hôpitaux Universitaires Henri-Mondor, Créteil, France.,Fondation FondaMental, Créteil, France
| |
Collapse
|
173
|
A potential biomarker for treatment stratification in psychosis: evaluation of an [ 18F] FDOPA PET imaging approach. Neuropsychopharmacology 2021; 46:1122-1132. [PMID: 32961543 PMCID: PMC8115068 DOI: 10.1038/s41386-020-00866-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/27/2020] [Accepted: 08/19/2020] [Indexed: 12/25/2022]
Abstract
[18F]FDOPA PET imaging has shown dopaminergic function indexed as Kicer differs between antipsychotic treatment responders and non-responders. However, the theragnostic potential of this biomarker to identify non-responders has yet to be evaluated. In view of this, we aimed to evaluate this as a theragnostic test using linear and non-linear machine-learning (i.e., Bernoulli, support vector, random forest and Gaussian processes) analyses and to develop and evaluate a simplified approach, standardised uptake value ratio (SUVRc). Both [18F]FDOPA PET approaches had good test-rest reproducibility across striatal regions (Kicer ICC: 0.68-0.94, SUVRc ICC: 0.76-0.91). Both our linear and non-linear classification models showed good predictive power to distinguish responders from non-responders (receiver operating curve area under the curve for region-of-interest approach: Kicer = 0.80, SUVRc = 0.79; for voxel-wise approach using a linear support vector machine: 0.88) and similar sensitivity for identifying treatment non-responders with 100% specificity (Kicer: ~50%, SUVRc: 40-60%). Although the findings were replicated in two independent datasets, given the total sample size (n = 84) and single setting, they warrant testing in other samples and settings. Preliminary economic analysis of [18F]FDOPA PET to fast-track treatment-resistant patients with schizophrenia to clozapine indicated a potential healthcare cost saving of ~£3400 (equivalent to $4232 USD) per patient. These findings indicate [18F]FDOPA PET dopamine imaging has potential as biomarker to guide treatment choice.
Collapse
|
174
|
Ziabska K, Ziemka-Nalecz M, Pawelec P, Sypecka J, Zalewska T. Aberrant Complement System Activation in Neurological Disorders. Int J Mol Sci 2021; 22:4675. [PMID: 33925147 PMCID: PMC8125564 DOI: 10.3390/ijms22094675] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 12/13/2022] Open
Abstract
The complement system is an assembly of proteins that collectively participate in the functions of the healthy and diseased brain. The complement system plays an important role in the maintenance of uninjured (healthy) brain homeostasis, contributing to the clearance of invading pathogens and apoptotic cells, and limiting the inflammatory immune response. However, overactivation or underregulation of the entire complement cascade within the brain may lead to neuronal damage and disturbances in brain function. During the last decade, there has been a growing interest in the role that this cascading pathway plays in the neuropathology of a diverse array of brain disorders (e.g., acute neurotraumatic insult, chronic neurodegenerative diseases, and psychiatric disturbances) in which interruption of neuronal homeostasis triggers complement activation. Dysfunction of the complement promotes a disease-specific response that may have either beneficial or detrimental effects. Despite recent advances, the explicit link between complement component regulation and brain disorders remains unclear. Therefore, a comprehensible understanding of such relationships at different stages of diseases could provide new insight into potential therapeutic targets to ameliorate or slow progression of currently intractable disorders in the nervous system. Hence, the aim of this review is to provide a summary of the literature on the emerging role of the complement system in certain brain disorders.
Collapse
Affiliation(s)
| | | | | | | | - Teresa Zalewska
- Mossakowski Medical Research Centre, NeuroRepair Department, Polish Academy of Sciences, 5 Pawinskiego Street, 02-106 Warsaw, Poland; (K.Z.); (M.Z.-N.); (P.P.); (J.S.)
| |
Collapse
|
175
|
Smigielski L, Wotruba D, Treyer V, Rössler J, Papiol S, Falkai P, Grünblatt E, Walitza S, Rössler W. The Interplay Between Postsynaptic Striatal D2/3 Receptor Availability, Adversity Exposure and Odd Beliefs: A [11C]-Raclopride PET Study. Schizophr Bull 2021; 47:1495-1508. [PMID: 33876249 PMCID: PMC8379534 DOI: 10.1093/schbul/sbab034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Between unaffected mental health and diagnosable psychiatric disorders, there is a vast continuum of functioning. The hypothesized link between striatal dopamine signaling and psychosis has guided a prolific body of research. However, it has been understudied in the context of multiple interacting factors, subclinical phenotypes, and pre-postsynaptic dynamics. METHOD This work investigated psychotic-like experiences and D2/3 dopamine postsynaptic receptor availability in the dorsal striatum, quantified by in vivo [11C]-raclopride positron emission tomography, in a sample of 24 healthy male individuals. Additional mediation and moderation effects with childhood trauma and key dopamine-regulating genes were examined. RESULTS An inverse relationship between nondisplaceable binding potential and subclinical symptoms was identified. D2/3 receptor availability in the left putamen fully mediated the association between traumatic childhood experiences and odd beliefs, that is, inclinations to see meaning in randomness and unfounded interpretations. Moreover, the effect of early adversity was moderated by a DRD2 functional variant (rs1076560). The results link environmental and neurobiological influences in the striatum to the origination of psychosis spectrum symptomology, consistent with the social defeat and diathesis-stress models. CONCLUSIONS Adversity exposure may affect the dopamine system as in association with biases in probabilistic reasoning, attributional style, and salience processing. The inverse relationship between D2/3 availability and symptomology may be explained by endogenous dopamine occupying the receptor, postsynaptic compensatory mechanisms, and/or altered receptor sensitivity. This may also reflect a cognitively stabilizing mechanism in non-help-seeking individuals. Future research should comprehensively characterize molecular parameters of dopamine neurotransmission along the psychosis spectrum and according to subtype profiling.
Collapse
Affiliation(s)
- Lukasz Smigielski
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, Zurich Program for Sustainable Development of Mental Health Services (ZInEP), University of Zurich, Zurich, Switzerland,Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland,To whom correspondence should be addressed; Psychiatric University Hospital Zurich, Militärstrasse 8, 8004 Zurich, Switzerland; tel: +044-296-73-94, fax: +044-296-74-69, e-mail:
| | - Diana Wotruba
- Collegium Helveticum, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Valerie Treyer
- Department of Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland,Institute for Regenerative Medicine, University of Zurich, Schlieren, Switzerland
| | - Julian Rössler
- Institute of Anesthesiology, University Hospital Zurich, Zurich, Switzerland
| | - Sergi Papiol
- Institute of Psychiatric Phenomics and Genomics, University Hospital, Ludwig Maximilian University, Munich, Germany,Department of Psychiatry and Psychotherapy, University Hospital, Ludwig Maximilian University, Munich, Germany
| | - Peter Falkai
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig Maximilian University, Munich, Germany
| | - Edna Grünblatt
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland,Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland,Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Susanne Walitza
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland,Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland,Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Wulf Rössler
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, Zurich Program for Sustainable Development of Mental Health Services (ZInEP), University of Zurich, Zurich, Switzerland,Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin, Campus Charité Mitte, Berlin, Germany,Laboratory of Neuroscience (LIM 27), Institute of Psychiatry, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
176
|
Magistrelli L, Ferrari M, Furgiuele A, Milner AV, Contaldi E, Comi C, Cosentino M, Marino F. Polymorphisms of Dopamine Receptor Genes and Parkinson's Disease: Clinical Relevance and Future Perspectives. Int J Mol Sci 2021; 22:ijms22073781. [PMID: 33917417 PMCID: PMC8038729 DOI: 10.3390/ijms22073781] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/26/2021] [Accepted: 04/01/2021] [Indexed: 12/20/2022] Open
Abstract
Parkinson’s disease (PD) is a neurodegenerative disease caused by loss of dopaminergic neurons in the midbrain. PD is clinically characterized by a variety of motor and nonmotor symptoms, and treatment relies on dopaminergic replacement. Beyond a common pathological hallmark, PD patients may present differences in both clinical progression and response to drug therapy that are partly affected by genetic factors. Despite extensive knowledge on genetic variability of dopaminergic receptors (DR), few studies have addressed their relevance as possible influencers of clinical heterogeneity in PD patients. In this review, we summarized available evidence regarding the role of genetic polymorphisms in DR as possible determinants of PD development, progression and treatment response. Moreover, we examined the role of DR in the modulation of peripheral immunity, in light of the emerging role of the peripheral immune system in PD pathophysiology. A better understanding of all these aspects represents an important step towards the development of precise and personalized disease-modifying therapies for PD.
Collapse
Affiliation(s)
- Luca Magistrelli
- PhD Program in Clinical and Experimental Medicine and Medical Humanities, University of Insubria, 21100 Varese, Italy; (L.M.); (A.F.)
- Movement Disorders Centre, Neurology Unit, Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy; (A.V.M.); (E.C.)
| | - Marco Ferrari
- Centre of Research in Medical Pharmacology, University of Insubria, 21100 Varese, Italy; (M.F.); (M.C.); (F.M.)
| | - Alessia Furgiuele
- PhD Program in Clinical and Experimental Medicine and Medical Humanities, University of Insubria, 21100 Varese, Italy; (L.M.); (A.F.)
- Centre of Research in Medical Pharmacology, University of Insubria, 21100 Varese, Italy; (M.F.); (M.C.); (F.M.)
| | - Anna Vera Milner
- Movement Disorders Centre, Neurology Unit, Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy; (A.V.M.); (E.C.)
| | - Elena Contaldi
- Movement Disorders Centre, Neurology Unit, Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy; (A.V.M.); (E.C.)
- PhD Program in Medical Sciences and Biotechnology, University of Piemonte Orientale, 28100 Novara, Italy
| | - Cristoforo Comi
- Movement Disorders Centre, Neurology Unit, Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy; (A.V.M.); (E.C.)
- Centre of Research in Medical Pharmacology, University of Insubria, 21100 Varese, Italy; (M.F.); (M.C.); (F.M.)
- Correspondence:
| | - Marco Cosentino
- Centre of Research in Medical Pharmacology, University of Insubria, 21100 Varese, Italy; (M.F.); (M.C.); (F.M.)
- Center of Research in Neuroscience, University of Insubria, 21100 Varese, Italy
| | - Franca Marino
- Centre of Research in Medical Pharmacology, University of Insubria, 21100 Varese, Italy; (M.F.); (M.C.); (F.M.)
- Center of Research in Neuroscience, University of Insubria, 21100 Varese, Italy
| |
Collapse
|
177
|
Kotowicz K, Frydecka D, Gawęda Ł, Prochwicz K, Kłosowska J, Rymaszewska J, Samochowiec A, Samochowiec J, Szczygieł K, Pawlak-Adamska E, Szmida E, Cechnicki A, Misiak B. Effects of traumatic life events, cognitive biases and variation in dopaminergic genes on psychosis proneness. Early Interv Psychiatry 2021; 15:248-255. [PMID: 31889426 DOI: 10.1111/eip.12925] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/22/2019] [Accepted: 12/16/2019] [Indexed: 01/08/2023]
Abstract
AIMS Recent studies have provided evidence that interactions between variation in dopaminergic genes and stressful experiences might impact risk of psychosis. However, it remains unknown whether these interactions impact the development of subclinical symptoms, including psychotic-like experiences (PLEs). In this study, we aimed to test the effects of interactions between variation in dopaminergic genes and traumatic life events (TLEs) on a severity of PLEs. METHODS We assessed TLEs, cognitive biases, PLEs as well as the catechol-O-methyltransferase (COMT) rs4680 and the dopamine D2 receptor (DRD2) rs6277 gene polymorphisms in 445 university students at three urban areas. RESULTS There was a significant effect of the interaction between the COMT rs4680 and a history of any type of TLEs on a severity of PLEs. Among the COMT rs4680 Met allele carriers, a severity of PLEs was higher in individuals with a history of any type of TLEs. Further stratification of the sample revealed that this effect appears only in the group of participants with a high level of cognitive biases. The DRD2 rs6277 C allele was independently associated with a higher level of PLEs. CONCLUSIONS Our results indicate that decreased dopamine catabolism related to the COMT gene polymorphism might increase psychosis proneness in individuals with a history of TLEs and high levels of cognitive biases. Variation in the DRD2 gene might exert independent effects on psychosis proneness. These findings imply that there are various levels of complexity in the models of interactions between genetic and environmental factors explaining the mechanisms underlying psychosis proneness.
Collapse
Affiliation(s)
- Kamila Kotowicz
- Department of Psychiatry, Wroclaw Medical University, Wroclaw, Poland
| | - Dorota Frydecka
- Department of Psychiatry, Wroclaw Medical University, Wroclaw, Poland
| | - Łukasz Gawęda
- Experimental Psychopathology Lab, Institute of Psychology, Polish Academy of Sciences, Warsaw, Poland
| | | | - Joanna Kłosowska
- Institute of Psychology, Jagiellonian University, Krakow, Poland
| | | | - Agnieszka Samochowiec
- Institute of Psychology, Department of Clinical Psychology, University of Szczecin, Szczecin, Poland
| | - Jerzy Samochowiec
- Department of Psychiatry, Pomeranian Medical University, Szczecin, Poland
| | | | - Edyta Pawlak-Adamska
- Department of Experimental Therapy, Laboratory of Immunopathology, Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Elżbieta Szmida
- Department of Genetics, Wroclaw Medical University, Wroclaw, Poland
| | - Andrzej Cechnicki
- Department of Community Psychiatry, Jagiellonian University Medical College, Cracow, Poland
| | - Błażej Misiak
- Department of Genetics, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
178
|
Corbeil O, Corbeil S, Dorval M, Carmichael PH, Giroux I, Jacques C, Demers MF, Roy MA. Problem Gambling Associated with Aripiprazole: A Nested Case-Control Study in a First-Episode Psychosis Program. CNS Drugs 2021; 35:461-468. [PMID: 33713298 DOI: 10.1007/s40263-021-00801-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/28/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND Aripiprazole has been linked to cases of problem gambling (PBG), but evidence supporting this association remains preliminary. Additionally, data specific to PBG in individuals with first-episode psychosis (FEP) receiving aripiprazole are limited to a few case reports, even though aripiprazole is widely used among this population that might be especially vulnerable to PBG. METHODS To examine this association, a nested case-control study was conducted in a cohort of 219 patients followed at a FEP program located in the Quebec City, Quebec, Canada, metropolitan area. Fourteen cases meeting the PBG criteria according to the Problem Gambling Severity Index were identified and matched for gender and index date to 56 control subjects. RESULTS In the univariable conditional logistic regression analysis, the use of aripiprazole was associated with an increased risk of PBG (odds ratio [OR] 15.2; 95% confidence interval [CI] 2.1-670.5). Cases were more likely to have a prior gambling history (either recreational or problematic) than controls at admittance in the program; they were also more frequently in a relationship and employed. After adjustment for age, relationship status, employment and Cluster B personality disorders, the use of aripiprazole remained associated with an increased risk of PBG (OR 8.6 [95% CI 1.5-227.2]). CONCLUSIONS Findings from this study suggest that FEP patients with a gambling history, problematic or not, may be at increased risk of developing PBG when receiving aripiprazole. They also highlight the importance of systematically screening for PBG all individuals with psychotic disorders, as this comorbidity hinders recovery. While the results also add credence to a causal association between aripiprazole and PBG, further prospective studies are needed to address some of the limitations of this present study.
Collapse
Affiliation(s)
- Olivier Corbeil
- Faculté de pharmacie, Université Laval, 1050, avenue de la Médecine, Québec, QC, G1V 0A6, Canada. .,Clinique Notre-Dame des Victoires, Institut universitaire en santé mentale de Québec, 2601, chemin de la Canardière, Québec, QC, G1J 2G3, Canada.
| | - Stéphanie Corbeil
- Faculté de pharmacie, Université Laval, 1050, avenue de la Médecine, Québec, QC, G1V 0A6, Canada.,Centre hospitalier universitaire de Sherbrooke, 375, rue Argyll, Sherbrooke, QC, J1J 3H5, Canada
| | - Michel Dorval
- Faculté de pharmacie, Université Laval, 1050, avenue de la Médecine, Québec, QC, G1V 0A6, Canada.,Centre de recherche du CHU de Québec-Université Laval, 1050, chemin Ste-Foy, Québec, QC, G1S 4L8, Canada.,Centre de recherche du CISSS Chaudière-Appalaches, 143, rue Wolfe, Lévis, QC, G6V 3Z1, Canada
| | - Pierre-Hugues Carmichael
- Centre d'excellence sur le vieillissement de Québec, 1050, chemin Sainte-Foy, Québec, QC, G1S 4L8, Canada
| | - Isabelle Giroux
- École de psychologie, Université Laval, 2325, rue des Bibliothèques, Québec, QC, G1V 0A6, Canada.,Centre québécois d'excellence pour la prévention et le traitement du jeu, 2325, rue des Bibliothèques, Québec, QC, G1V 0A6, Canada
| | - Christian Jacques
- École de psychologie, Université Laval, 2325, rue des Bibliothèques, Québec, QC, G1V 0A6, Canada.,Centre québécois d'excellence pour la prévention et le traitement du jeu, 2325, rue des Bibliothèques, Québec, QC, G1V 0A6, Canada
| | - Marie-France Demers
- Faculté de pharmacie, Université Laval, 1050, avenue de la Médecine, Québec, QC, G1V 0A6, Canada.,Clinique Notre-Dame des Victoires, Institut universitaire en santé mentale de Québec, 2601, chemin de la Canardière, Québec, QC, G1J 2G3, Canada.,Centre de recherche CERVO, 2601, chemin de la Canardière, Québec, QC, G1J 2G3, Canada
| | - Marc-André Roy
- Clinique Notre-Dame des Victoires, Institut universitaire en santé mentale de Québec, 2601, chemin de la Canardière, Québec, QC, G1J 2G3, Canada.,Centre de recherche CERVO, 2601, chemin de la Canardière, Québec, QC, G1J 2G3, Canada.,Département de psychiatrie et neurosciences, Faculté de médecine, Université Laval, 1050, avenue de la Médecine, Québec, QC, G1V 0A6, Canada
| |
Collapse
|
179
|
Born RT, Bencomo GM. Illusions, Delusions, and Your Backwards Bayesian Brain: A Biased Visual Perspective. BRAIN, BEHAVIOR AND EVOLUTION 2021; 95:272-285. [PMID: 33784667 PMCID: PMC8238803 DOI: 10.1159/000514859] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 01/27/2021] [Indexed: 12/29/2022]
Abstract
The retinal image is insufficient for determining what is "out there," because many different real-world geometries could produce any given retinal image. Thus, the visual system must infer which external cause is most likely, given both the sensory data and prior knowledge that is either innate or learned via interactions with the environment. We will describe a general framework of "hierarchical Bayesian inference" that we and others have used to explore the role of cortico-cortical feedback in the visual system, and we will further argue that this approach to "seeing" makes our visual systems prone to perceptual errors in a variety of different ways. In this deliberately provocative and biased perspective, we argue that the neuromodulator, dopamine, may be a crucial link between neural circuits performing Bayesian inference and the perceptual idiosyncrasies of people with schizophrenia.
Collapse
Affiliation(s)
- Richard T Born
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Gianluca M Bencomo
- Department of Computer Science, Whittier College, Whittier, California, USA
| |
Collapse
|
180
|
O'Rourke T, Martins PT, Asano R, Tachibana RO, Okanoya K, Boeckx C. Capturing the Effects of Domestication on Vocal Learning Complexity. Trends Cogn Sci 2021; 25:462-474. [PMID: 33810982 DOI: 10.1016/j.tics.2021.03.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 03/08/2021] [Accepted: 03/08/2021] [Indexed: 11/28/2022]
Abstract
Domesticated and vocal learning species can serve as informative model organisms for the reduction of reactive aggression and emergence of speech in our lineage. Amidst mounting evidence that domestication modifies vocal repertoires across different species, we focus on the domesticated Bengalese finch, which has a more complex song than the wild-type white-rumped munia. Our explanation for this effect revolves around the glutamate neurotransmitter system. Glutamate signaling (i) is implicated in birdsong learning, (ii) controls dopamine activity in neural circuits crucial for vocal learning, (iii) is disproportionately targeted in the evolution of domesticates, and (iv) regulates stress responses and aggressive behaviors attenuated under domestication. We propose that attenuated excitation of stress-related neural circuits potentiates vocal learning via altered dopaminergic signaling.
Collapse
Affiliation(s)
- Thomas O'Rourke
- Section of General Linguistics, University of Barcelona, 08007 Barcelona, Spain; University of Barcelona Institute for Complex Systems (UBICS), 08028 Barcelona, Spain
| | - Pedro Tiago Martins
- Section of General Linguistics, University of Barcelona, 08007 Barcelona, Spain; University of Barcelona Institute for Complex Systems (UBICS), 08028 Barcelona, Spain
| | - Rie Asano
- Department of Systematic Musicology, University of Cologne, 50923 Cologne, Germany
| | - Ryosuke O Tachibana
- Center for Evolutionary Cognitive Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 153-8902 Tokyo, Japan
| | - Kazuo Okanoya
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 153-8902 Tokyo, Japan
| | - Cedric Boeckx
- Section of General Linguistics, University of Barcelona, 08007 Barcelona, Spain; University of Barcelona Institute for Complex Systems (UBICS), 08028 Barcelona, Spain; Catalan Institute for Advanced Studies and Research (ICREA), 08010 Barcelona, Spain.
| |
Collapse
|
181
|
Zolkipli-Cunningham Z, Naviaux JC, Nakayama T, Hirsch CM, Monk JM, Li K, Wang L, Le TP, Meinardi S, Blake DR, Naviaux RK. Metabolic and behavioral features of acute hyperpurinergia and the maternal immune activation mouse model of autism spectrum disorder. PLoS One 2021; 16:e0248771. [PMID: 33735311 PMCID: PMC7971557 DOI: 10.1371/journal.pone.0248771] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/05/2021] [Indexed: 12/11/2022] Open
Abstract
Since 2012, studies in mice, rats, and humans have suggested that abnormalities in purinergic signaling may be a final common pathway for many genetic and environmental causes of autism spectrum disorder (ASD). The current study in mice was conducted to characterize the bioenergetic, metabolomic, breathomic, and behavioral features of acute hyperpurinergia triggered by systemic injection of the purinergic agonist and danger signal, extracellular ATP (eATP). Responses were studied in C57BL/6J mice in the maternal immune activation (MIA) model and controls. Basal metabolic rates and locomotor activity were measured in CLAMS cages. Plasma metabolomics measured 401 metabolites. Breathomics measured 98 volatile organic compounds. Intraperitoneal eATP dropped basal metabolic rate measured by whole body oxygen consumption by 74% ± 6% (mean ± SEM) and rectal temperature by 6.2˚ ± 0.3˚C in 30 minutes. Over 200 metabolites from 37 different biochemical pathways where changed. Breathomics showed an increase in exhaled carbon monoxide, dimethylsulfide, and isoprene. Metabolomics revealed an acute increase in lactate, citrate, purines, urea, dopamine, eicosanoids, microbiome metabolites, oxidized glutathione, thiamine, niacinamide, and pyridoxic acid, and decreased folate-methylation-1-carbon intermediates, amino acids, short and medium chain acyl-carnitines, phospholipids, ceramides, sphingomyelins, cholesterol, bile acids, and vitamin D similar to some children with ASD. MIA animals were hypersensitive to postnatal exposure to eATP or poly(IC), which produced a rebound increase in body temperature that lasted several weeks before returning to baseline. Acute hyperpurinergia produced metabolic and behavioral changes in mice. The behaviors and metabolic changes produced by ATP injection were associated with mitochondrial functional changes that were profound but reversible.
Collapse
Affiliation(s)
- Zarazuela Zolkipli-Cunningham
- The Mitochondrial and Metabolic Disease Center, University of California, San Diego School of Medicine, San Diego, CA, United States of America
- Department of Neurosciences, University of California, San Diego School of Medicine, San Diego, CA, United States of America
| | - Jane C. Naviaux
- The Mitochondrial and Metabolic Disease Center, University of California, San Diego School of Medicine, San Diego, CA, United States of America
- Department of Neurosciences, University of California, San Diego School of Medicine, San Diego, CA, United States of America
| | - Tomohiro Nakayama
- The Mitochondrial and Metabolic Disease Center, University of California, San Diego School of Medicine, San Diego, CA, United States of America
- Department of Neurosciences, University of California, San Diego School of Medicine, San Diego, CA, United States of America
| | - Charlotte M. Hirsch
- Department of Chemistry, University of California, Irvine (UCI), Irvine, CA, United States of America
| | - Jonathan M. Monk
- The Mitochondrial and Metabolic Disease Center, University of California, San Diego School of Medicine, San Diego, CA, United States of America
- Department of Medicine, University of California, San Diego School of Medicine, San Diego, CA, United States of America
| | - Kefeng Li
- The Mitochondrial and Metabolic Disease Center, University of California, San Diego School of Medicine, San Diego, CA, United States of America
- Department of Medicine, University of California, San Diego School of Medicine, San Diego, CA, United States of America
| | - Lin Wang
- The Mitochondrial and Metabolic Disease Center, University of California, San Diego School of Medicine, San Diego, CA, United States of America
- Department of Medicine, University of California, San Diego School of Medicine, San Diego, CA, United States of America
| | - Thuy P. Le
- The Mitochondrial and Metabolic Disease Center, University of California, San Diego School of Medicine, San Diego, CA, United States of America
- Department of Neurosciences, University of California, San Diego School of Medicine, San Diego, CA, United States of America
| | - Simone Meinardi
- Department of Chemistry, University of California, Irvine (UCI), Irvine, CA, United States of America
| | - Donald R. Blake
- Department of Chemistry, University of California, Irvine (UCI), Irvine, CA, United States of America
| | - Robert K. Naviaux
- The Mitochondrial and Metabolic Disease Center, University of California, San Diego School of Medicine, San Diego, CA, United States of America
- Department of Medicine, University of California, San Diego School of Medicine, San Diego, CA, United States of America
- Department of Pediatrics, University of California, San Diego School of Medicine, San Diego, CA, United States of America
- Department of Pathology, University of California, San Diego School of Medicine, San Diego, CA, United States of America
| |
Collapse
|
182
|
Egerton A, Murphy A, Donocik J, Anton A, Barker GJ, Collier T, Deakin B, Drake R, Eliasson E, Emsley R, Gregory CJ, Griffiths K, Kapur S, Kassoumeri L, Knight L, Lambe EJB, Lawrie SM, Lees J, Lewis S, Lythgoe DJ, Matthews J, McGuire P, McNamee L, Semple S, Shaw AD, Singh KD, Stockton-Powdrell C, Talbot PS, Veronese M, Wagner E, Walters JTR, Williams SR, MacCabe JH, Howes OD. Dopamine and Glutamate in Antipsychotic-Responsive Compared With Antipsychotic-Nonresponsive Psychosis: A Multicenter Positron Emission Tomography and Magnetic Resonance Spectroscopy Study (STRATA). Schizophr Bull 2021; 47:505-516. [PMID: 32910150 PMCID: PMC7965076 DOI: 10.1093/schbul/sbaa128] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The variability in the response to antipsychotic medication in schizophrenia may reflect between-patient differences in neurobiology. Recent cross-sectional neuroimaging studies suggest that a poorer therapeutic response is associated with relatively normal striatal dopamine synthesis capacity but elevated anterior cingulate cortex (ACC) glutamate levels. We sought to test whether these measures can differentiate patients with psychosis who are antipsychotic responsive from those who are antipsychotic nonresponsive in a multicenter cross-sectional study. 1H-magnetic resonance spectroscopy (1H-MRS) was used to measure glutamate levels (Glucorr) in the ACC and in the right striatum in 92 patients across 4 sites (48 responders [R] and 44 nonresponders [NR]). In 54 patients at 2 sites (25 R and 29 NR), we additionally acquired 3,4-dihydroxy-6-[18F]fluoro-l-phenylalanine (18F-DOPA) positron emission tomography (PET) to index striatal dopamine function (Kicer, min-1). The mean ACC Glucorr was higher in the NR than the R group after adjustment for age and sex (F1,80 = 4.27; P = .04). This was associated with an area under the curve for the group discrimination of 0.59. There were no group differences in striatal dopamine function or striatal Glucorr. The results provide partial further support for a role of ACC glutamate, but not striatal dopamine synthesis, in determining the nature of the response to antipsychotic medication. The low discriminative accuracy might be improved in groups with greater clinical separation or increased in future studies that focus on the antipsychotic response at an earlier stage of the disorder and integrate other candidate predictive biomarkers. Greater harmonization of multicenter PET and 1H-MRS may also improve sensitivity.
Collapse
Affiliation(s)
- Alice Egerton
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
- NIHR Biomedical Research Centre at South London and Maudsley NHS Foundation Trust, London, UK
| | - Anna Murphy
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Jacek Donocik
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Adriana Anton
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Academic Unit of Radiology, Medical School, Faculty of Medicine, Dentistry & Health, University of Sheffield, Sheffield, UK
| | - Gareth J Barker
- NIHR Biomedical Research Centre at South London and Maudsley NHS Foundation Trust, London, UK
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Tracy Collier
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
- NIHR Biomedical Research Centre at South London and Maudsley NHS Foundation Trust, London, UK
| | - Bill Deakin
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Richard Drake
- Division of Psychology and Mental Health, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Emma Eliasson
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK
| | - Richard Emsley
- NIHR Biomedical Research Centre at South London and Maudsley NHS Foundation Trust, London, UK
- Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Catherine J Gregory
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Kira Griffiths
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Shitij Kapur
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
- NIHR Biomedical Research Centre at South London and Maudsley NHS Foundation Trust, London, UK
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Laura Kassoumeri
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
- NIHR Biomedical Research Centre at South London and Maudsley NHS Foundation Trust, London, UK
| | - Laura Knight
- CUBRIC, School of Psychology, College of Biomedical and Life Sciences, Cardiff University, Cardiff, UK
| | - Emily J B Lambe
- CUBRIC, School of Psychology, College of Biomedical and Life Sciences, Cardiff University, Cardiff, UK
| | | | - Jane Lees
- Division of Psychology and Mental Health, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Shôn Lewis
- Division of Psychology and Mental Health, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - David J Lythgoe
- NIHR Biomedical Research Centre at South London and Maudsley NHS Foundation Trust, London, UK
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Julian Matthews
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Philip McGuire
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
- NIHR Biomedical Research Centre at South London and Maudsley NHS Foundation Trust, London, UK
| | - Lily McNamee
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK
| | - Scott Semple
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Alexander D Shaw
- CUBRIC, School of Psychology, College of Biomedical and Life Sciences, Cardiff University, Cardiff, UK
| | - Krish D Singh
- CUBRIC, School of Psychology, College of Biomedical and Life Sciences, Cardiff University, Cardiff, UK
| | - Charlotte Stockton-Powdrell
- Division of Psychology and Mental Health, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Peter S Talbot
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Mattia Veronese
- NIHR Biomedical Research Centre at South London and Maudsley NHS Foundation Trust, London, UK
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Ernest Wagner
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK
| | - James T R Walters
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Stephen R Williams
- Division of Informatics, Imaging and Data Sciences, University of Manchester, Manchester, UK
| | - James H MacCabe
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
- NIHR Biomedical Research Centre at South London and Maudsley NHS Foundation Trust, London, UK
| | - Oliver D Howes
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
- NIHR Biomedical Research Centre at South London and Maudsley NHS Foundation Trust, London, UK
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Hammersmith Hospital, London, UK
| |
Collapse
|
183
|
Sagheddu C, Traccis F, Serra V, Congiu M, Frau R, Cheer JF, Melis M. Mesolimbic dopamine dysregulation as a signature of information processing deficits imposed by prenatal THC exposure. Prog Neuropsychopharmacol Biol Psychiatry 2021; 105:110128. [PMID: 33031862 DOI: 10.1016/j.pnpbp.2020.110128] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 10/02/2020] [Accepted: 10/03/2020] [Indexed: 11/17/2022]
Abstract
Cannabis is the illicit drug most widely used by pregnant women worldwide. Its growing acceptance and legalization have markedly increased the risks of child psychopathology, including psychotic-like experiences, which lowers the age of onset for a first psychotic episode. As the majority of patients with schizophrenia go through a premorbid condition long before this occurs, understanding neurobiological underpinnings of the prodromal stage of the disease is critical to improving illness trajectories and therapeutic outcomes. We have previously shown that male rat offspring prenatally exposed to Δ9-tetrahydrocannabinol (THC), a rat model of prenatal cannabinoid exposure (PCE), exhibit extensive molecular and synaptic changes in dopaminergic neurons of the ventral tegmental area (VTA), converging on a hyperdopaminergic state. This leads to a silent psychotic-like endophenotype that is unmasked by a single exposure to THC. Here, we further characterized the VTA dopamine neuron and sensorimotor gating functions of PCE rats exposed to acute stress or a challenge of the D2 receptor agonist apomorphine, by using in vivo single-unit extracellular recordings and Prepulse Inhibition (PPI) analyses. At pre-puberty, PCE male rat offspring display a reduced population activity of VTA dopamine neurons in vivo, the majority of which are tonically active. PCE male progeny also exhibit enhanced sensitivity to dopamine D2 (DAD2) receptor activation and a vulnerability to acute stress, which is associated with compromised sensorimotor gating functions. This data extends our knowledge of the multifaceted sequelae imposed by PCE in the mesolimbic dopamine system of male pre-adolescent rats, which renders a neural substrate highly susceptible to subsequent challenges that may trigger psychotic-like outcomes.
Collapse
Affiliation(s)
- Claudia Sagheddu
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Monserrato, Italy
| | - Francesco Traccis
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Monserrato, Italy
| | - Valeria Serra
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Monserrato, Italy
| | - Mauro Congiu
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Monserrato, Italy
| | - Roberto Frau
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Monserrato, Italy
| | - Joseph F Cheer
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Miriam Melis
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Monserrato, Italy.
| |
Collapse
|
184
|
Ney LJ, Akhurst J, Bruno R, Laing PAF, Matthews A, Felmingham KL. Dopamine, endocannabinoids and their interaction in fear extinction and negative affect in PTSD. Prog Neuropsychopharmacol Biol Psychiatry 2021; 105:110118. [PMID: 32991952 DOI: 10.1016/j.pnpbp.2020.110118] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 09/03/2020] [Accepted: 09/22/2020] [Indexed: 12/13/2022]
Abstract
There currently exist few frameworks for common neurobiology between reexperiencing and negative cognitions and mood symptoms of PTSD. Adopting a dopaminergic framework for PTSD unites many aspects of unique symptom clusters, and this approach also links PTSD symptomology to common comorbidities with a common neurobiological deficiency. Here we review the dopamine literature and incorporate it with a growing field of research that describes both the contribution of endocannabinoids to fear extinction and PTSD, as well as the interactions between dopaminergic and endocannabinoid systems underlying this disorder. Based on current evidence, we outline an early, preliminary model that links re-experiencing and negative cognitions and mood in PTSD by invoking the interaction between endocannabinoid and dopaminergic signalling in the brain. These interactions between PTSD, dopamine and endocannabinoids may have implications for future therapies for treatment-resistant and comorbid PTSD patients.
Collapse
Affiliation(s)
- Luke J Ney
- School of Psychology, University of Tasmania, Australia.
| | - Jane Akhurst
- School of Psychology, University of Tasmania, Australia
| | | | - Patrick A F Laing
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne & Melbourne Health, Australia
| | | | - Kim L Felmingham
- School of Psychological Sciences, University of Melbourne, Australia
| |
Collapse
|
185
|
Shelton HW, Gabbita SP, Gill WD, Burgess KC, Whicker WS, Brown RW. The effects of a novel inhibitor of tumor necrosis factor (TNF) alpha on prepulse inhibition and microglial activation in two distinct rodent models of schizophrenia. Behav Brain Res 2021; 406:113229. [PMID: 33684425 DOI: 10.1016/j.bbr.2021.113229] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/14/2021] [Accepted: 03/02/2021] [Indexed: 12/17/2022]
Abstract
Increased neuroinflammation has been shown in individuals diagnosed with schizophrenia (SCHZ). This study evaluated a novel immune modulator (PD2024) that targets the pro-inflammatory cytokine tumor necrosis factor-alpha (TNFα) to alleviate sensorimotor gating deficits and microglial activation employing two different rodent models of SCHZ. In Experiment 1, rats were neonatally treated with saline or the dopamine D2-like agonist quinpirole (NQ; 1 mg/kg) from postnatal day (P) 1-21 which produces increases of dopamine D2 receptor sensitivity throughout the animal's lifetime. In Experiment 2, rats were neonatally treated with saline or the immune system stimulant polyinosinic:polycytidylic acid (Poly I:C) from P5-7. Neonatal Poly I:C treatment mimics immune system activation associated with SCHZ. In both experiments, rats were raised to P30 and administered a control diet or a novel TNFα inhibitor PD2024 (10 mg/kg) in the diet from P30 until P67. At P45-46 and from P60-67, animals were behaviorally tested on auditory sensorimotor gating as measured through prepulse inhibition (PPI). NQ or Poly I:C treatment resulted in PPI deficits, and PD2024 treatment alleviated PPI deficits in both models. Results also revealed that increased hippocampal and prefrontal cortex microglial activation produced by neonatal Poly I:C was significantly reduced to control levels by PD2024. In addition, a separate group of animals neonatally treated with saline or Poly I:C from P5-7 demonstrated increased TNFα protein levels in the hippocampus but not prefrontal cortex, verifying increased TNFα in the brain produced by Poly I:C. Results from this study suggests that that brain TNFα is a viable pharmacological target to treat the neuroinflammation known to be associated with SCHZ.
Collapse
Affiliation(s)
- Heath W Shelton
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, United States
| | | | - W Drew Gill
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, United States
| | - Katherine C Burgess
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, United States
| | - Wyatt S Whicker
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, United States
| | - Russell W Brown
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, United States.
| |
Collapse
|
186
|
Adiponectin receptor2 and HCLS1 associated proteinX-1 levels are altered in postmortem schizophrenic brain. Meta Gene 2021. [DOI: 10.1016/j.mgene.2020.100834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
187
|
Sotiropoulos MG, Poulogiannopoulou E, Delis F, Dalla C, Antoniou K, Kokras N. Innovative screening models for the discovery of new schizophrenia drug therapies: an integrated approach. Expert Opin Drug Discov 2021; 16:791-806. [PMID: 33467920 DOI: 10.1080/17460441.2021.1877657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Introduction: Schizophrenia is a severe psychiatric disorder affecting millions worldwide. However, available treatment options do not fully address the disease. Whereas current antipsychotics may control psychotic symptoms, they seem notoriously ineffective in improving negative and cognitive symptoms or in preventing functional decline. As the etiology of schizophrenia eludes us, the development of valid animal models for screening new drug targets appears to be a strenuous task.Areas covered: In this review, the authors present the key concepts that validate animal models of schizophrenia, as well as the different screening approaches for novel schizophrenia treatments. The models covered are either based on major neurotransmitter systems or neurodevelopmental, immune, and genetic approaches.Expert opinion: Sadly, due to inertia, research focuses on developing 'anti-psychotics', instead of 'anti-schizophrenia' drugs that would tackle the entire syndrome of schizophrenia. Whereas no perfect model may ever exist, combining different experimental designs may enhance validity, as the over-reliance on a single model is inappropriate. Multi-model approaches incorporating vulnerability, the 'two-hit' hypothesis, and endophenotypes offer a promise for developing new strategies for schizophrenia treatment. Forward and reverse translation between preclinical and clinical research will increase the probability of success and limit failures in drug development.
Collapse
Affiliation(s)
- Marinos G Sotiropoulos
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Eleni Poulogiannopoulou
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Foteini Delis
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Christina Dalla
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Katerina Antoniou
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Nikolaos Kokras
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece.,First Department of Psychiatry, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
188
|
Yu J, Liao X, Zhong Y, Wu Y, Lai X, Jiao H, Yan M, Zhang Y, Ma C, Wang S. The Candidate Schizophrenia Risk Gene Tmem108 Regulates Glucose Metabolism Homeostasis. Front Endocrinol (Lausanne) 2021; 12:770145. [PMID: 34690937 PMCID: PMC8531597 DOI: 10.3389/fendo.2021.770145] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 09/23/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Schizophrenia (SCZ) is a severe psychiatric disease affected by genetic factors and environmental contributors, and premorbid abnormality of glucose metabolism is one of the SCZ characteristics supposed to contribute to the disease's pathological process. Transmembrane protein 108 (Tmem108) is a susceptible gene associated with multiple psychiatric diseases, including SCZ. Moreover, Tmem108 mutant mice exhibit SCZ-like behaviors in the measurement of sensorimotor gating. However, it is unknown whether Tmem108 regulates glucose metabolism homeostasis while it involves SCZ pathophysiological process. RESULTS In this research, we found that Tmem108 mutant mice exhibited glucose intolerance, insulin resistance, and disturbed metabolic homeostasis. Food and oxygen consumption decreased, and urine production increased, accompanied by weak fatigue resistance in the mutant mice. Simultaneously, the glucose metabolic pathway was enhanced, and lipid metabolism decreased in the mutant mice, consistent with the elevated respiratory exchange ratio (RER). Furthermore, metformin attenuated plasma glucose levels and improved sensorimotor gating in Tmem108 mutant mice. CONCLUSIONS Hyperglycemia occurs more often in SCZ patients than in control, implying that these two diseases share common biological mechanisms, here we demonstrate that the Tmem108 mutant may represent such a comorbid mechanism.
Collapse
Affiliation(s)
- Jianbo Yu
- Laboratory of Synaptic Development and Plasticity, Institute of Life Science & School of Life Sciences, Nanchang University, Nanchang, China
| | - Xufeng Liao
- Laboratory of Synaptic Development and Plasticity, Institute of Life Science & School of Life Sciences, Nanchang University, Nanchang, China
| | - Yanzi Zhong
- Laboratory of Synaptic Development and Plasticity, Institute of Life Science & School of Life Sciences, Nanchang University, Nanchang, China
- Department of Biology, Senior Middle School of Yongfeng, Ji’an, China
| | - Yongqiang Wu
- Laboratory of Synaptic Development and Plasticity, Institute of Life Science & School of Life Sciences, Nanchang University, Nanchang, China
| | - Xinsheng Lai
- Laboratory of Synaptic Development and Plasticity, Institute of Life Science & School of Life Sciences, Nanchang University, Nanchang, China
- School of Basic Medical Sciences, Nanchang University, Nanchang, China
| | - Huifeng Jiao
- School of Basic Medical Sciences, Nanchang University, Nanchang, China
| | - Min Yan
- School of Basic Medical Sciences, Nanchang University, Nanchang, China
| | - Yu Zhang
- Laboratory of Synaptic Development and Plasticity, Institute of Life Science & School of Life Sciences, Nanchang University, Nanchang, China
| | - Chaolin Ma
- Laboratory of Synaptic Development and Plasticity, Institute of Life Science & School of Life Sciences, Nanchang University, Nanchang, China
- School of Basic Medical Sciences, Nanchang University, Nanchang, China
- *Correspondence: Chaolin Ma, ; Shunqi Wang,
| | - Shunqi Wang
- Laboratory of Synaptic Development and Plasticity, Institute of Life Science & School of Life Sciences, Nanchang University, Nanchang, China
- School of Basic Medical Sciences, Nanchang University, Nanchang, China
- *Correspondence: Chaolin Ma, ; Shunqi Wang,
| |
Collapse
|
189
|
Rauschenberg C, van Os J, Goedhart M, Schieveld JNM, Reininghaus U. Bullying victimization and stress sensitivity in help-seeking youth: findings from an experience sampling study. Eur Child Adolesc Psychiatry 2021; 30:591-605. [PMID: 32405792 PMCID: PMC8041697 DOI: 10.1007/s00787-020-01540-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 04/23/2020] [Indexed: 02/07/2023]
Abstract
Bullying victimization confers the risk for developing various mental disorders, but studies investigating candidate mechanisms remain scarce, especially in the realm of youth mental health. Elevated stress sensitivity may constitute a mechanism linking bullying victimization and mental health problems. In the current study, we aimed to investigate whether exposure to bullying victimization amplifies stress sensitivity in youth's daily life. The Experience Sampling Method (ESM) was used to measure stress sensitivity [i.e. the association of momentary stress with (i) negative affect and (ii) psychotic experiences] in 42 help-seeking youths (service users), 17 siblings, and 40 comparison subjects (mean age 15 years). Before ESM assessments, bullying victimization at school as well as various psychopathological domains (i.e. depression, anxiety, psychosis) were assessed. Service users exposed to high levels of overall (primary hypotheses) as well as specific types (secondary hypotheses; physical and indirect, but not verbal) of bullying victimization experienced more intense negative affect and psychotic experiences in response to stress compared to those with low exposure levels (all p < 0.05), whereas, in contrast, controls showed either less intense negative affect or no marked differences in stress sensitivity by exposure levels. In siblings, a less consistent pattern of findings was observed. Findings suggest that stress sensitivity may constitute a potential risk and resilience mechanism linking bullying victimization and youth mental health. Interventions that directly target individuals' reactivity to stress by providing treatment components in real-life using mHealth tools may be a promising novel therapeutic approach.
Collapse
Affiliation(s)
- Christian Rauschenberg
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands. .,Department of Public Mental Health, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.
| | - Jim van Os
- grid.7692.a0000000090126352Department of Psychiatry, Brain Centre Rudolf Magnus, University Medical Centre Utrecht, Utrecht, The Netherlands ,grid.13097.3c0000 0001 2322 6764Psychosis Studies Department, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Matthieu Goedhart
- grid.12295.3d0000 0001 0943 3265Tilburg School of Humanities, Tilburg University, Tilburg, The Netherlands ,Mutsaers Foundation and Educational Institute Wijnberg, Venlo, The Netherlands
| | - Jan N. M. Schieveld
- grid.412966.e0000 0004 0480 1382Department of Psychiatry and Psychology, Division of Child and Adolescent Psychiatry, Maastricht University Medical Center (MUMC+), Maastricht, The Netherlands
| | - Ulrich Reininghaus
- grid.5012.60000 0001 0481 6099Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands ,grid.7700.00000 0001 2190 4373Department of Public Mental Health, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany ,grid.13097.3c0000 0001 2322 6764Health Service and Population Research Department, Centre for Epidemiology and Public Health, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| |
Collapse
|
190
|
Baj J, Forma A, Sitarz E, Karakuła K, Flieger W, Sitarz M, Grochowski C, Maciejewski R, Karakula-Juchnowicz H. Beyond the Mind-Serum Trace Element Levels in Schizophrenic Patients: A Systematic Review. Int J Mol Sci 2020; 21:E9566. [PMID: 33334078 PMCID: PMC7765526 DOI: 10.3390/ijms21249566] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/06/2020] [Accepted: 12/12/2020] [Indexed: 12/19/2022] Open
Abstract
The alterations in serum trace element levels are common phenomena observed in patients with different psychiatric conditions such as schizophrenia, autism spectrum disorder, or major depressive disorder. The fluctuations in the trace element concentrations might act as potential diagnostic and prognostic biomarkers of many psychiatric and neurological disorders. This paper aimed to assess the alterations in serum trace element concentrations in patients with a diagnosed schizophrenia. The authors made a systematic review, extracting papers from the PubMed, Web of Science, and Scopus databases according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Among 5009 articles identified through database searching, 59 of them were assessed for eligibility. Ultimately, 33 articles were included in the qualitative synthesis. This review includes the analysis of serum levels of the following trace elements: iron, nickel, molybdenum, phosphorus, lead, chromium, antimony, uranium, magnesium, aluminum, zinc, copper, selenium, calcium, and manganese. Currently, there is no consistency regarding serum trace element levels in schizophrenic patients. Thus, it cannot be considered as a reliable prognostic or diagnostic marker of schizophrenia. However, it can be assumed that altered concentrations of those elements are crucial regarding the onset and exaggeration of either psychotic or negative symptoms or cognitive dysfunctions.
Collapse
Affiliation(s)
- Jacek Baj
- Department of Human Anatomy, Medical University of Lublin, 20-400 Lublin, Poland;
| | - Alicja Forma
- Chair and Department of Forensic Medicine, Medical University of Lublin, 20-090 Lublin, Poland;
| | - Elżbieta Sitarz
- Chair and 1st Department of Psychiatry, Psychotherapy and Early Intervention, Medical University of Lublin, Gluska Street 1, 20-439 Lublin, Poland; (E.S.); (K.K.); (H.K.-J.)
| | - Kaja Karakuła
- Chair and 1st Department of Psychiatry, Psychotherapy and Early Intervention, Medical University of Lublin, Gluska Street 1, 20-439 Lublin, Poland; (E.S.); (K.K.); (H.K.-J.)
| | - Wojciech Flieger
- Faculty of Medicine, Medical University of Lublin, Aleje Racławickie 1, 20-059 Lublin, Poland;
| | - Monika Sitarz
- Department of Conservative Dentistry with Endodontics, Medical University of Lublin, 20-090 Lublin, Poland;
| | - Cezary Grochowski
- Laboratory of Virtual Man, Chair of Anatomy, Medical University of Lublin, 20-400 Lublin, Poland;
| | - Ryszard Maciejewski
- Department of Human Anatomy, Medical University of Lublin, 20-400 Lublin, Poland;
| | - Hanna Karakula-Juchnowicz
- Chair and 1st Department of Psychiatry, Psychotherapy and Early Intervention, Medical University of Lublin, Gluska Street 1, 20-439 Lublin, Poland; (E.S.); (K.K.); (H.K.-J.)
- Department of Clinical Neuropsychiatry, Medical University of Lublin, Gluska Street 1, 20-439 Lublin, Poland
| |
Collapse
|
191
|
Cai Y, Xing L, Yang T, Chai R, Wang J, Bao J, Shen W, Ding S, Chen G. The neurodevelopmental role of dopaminergic signaling in neurological disorders. Neurosci Lett 2020; 741:135540. [PMID: 33278505 DOI: 10.1016/j.neulet.2020.135540] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/10/2020] [Accepted: 11/27/2020] [Indexed: 12/11/2022]
Abstract
Dopamine (DA), a critical neurotransmitter of both the central and peripheral nerve system, plays important roles in a series of biological processes. Dysfunction of dopaminergic signalling may lead to a series of developmental disorders, including attention deficit/hyperactivity disorder, autism and schizophrenia. However, the exact roles of dopaminergic signalling in these diseases are far from fully understood. We analyse the roles of dopaminergic signalling in multiple physiological and pathological processes, focusing on brain development and related disorders. By summarizing current research in this area, we provide guidance for future studies. This review seeks to deepen our understanding of dopaminergic signalling in developmental disorders, which may offer clues for developing more effective therapeutic drugs.
Collapse
Affiliation(s)
- Yunyun Cai
- Department of Physiology, School of Medicine, Nantong University, Nantong, Jiangsu Province, 226001, China
| | - Lingyan Xing
- Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, 226001, China
| | - Tuo Yang
- Department of Hand Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, 130033, China
| | - Rui Chai
- Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, 226001, China
| | - Jiaqi Wang
- Department of Physiology, School of Medicine, Nantong University, Nantong, Jiangsu Province, 226001, China
| | - Jingyin Bao
- Basic Medical Research Centre, Medical College of Nantong University, Nantong, Jiangsu Province, 226001, China
| | - Weixing Shen
- Department of Physiology, School of Medicine, Nantong University, Nantong, Jiangsu Province, 226001, China.
| | - Sujun Ding
- Department of Ultrasound, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, 226001, China.
| | - Gang Chen
- Department of Tissue and Embryology, Medical School of Nantong University, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, 226001, China; Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, 226001, China.
| |
Collapse
|
192
|
Xiu MH, Li Z, Chen DC, Chen S, Curbo ME, Wu HE, Tong YS, Tan SP, Zhang XY. Interrelationships Between BDNF, Superoxide Dismutase, and Cognitive Impairment in Drug-Naive First-Episode Patients With Schizophrenia. Schizophr Bull 2020; 46:1498-1510. [PMID: 32390043 PMCID: PMC7707068 DOI: 10.1093/schbul/sbaa062] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The pathogenesis and etiology of schizophrenia (SCZ) remains unclear. Accumulating studies showed that complex interrelationships between brain-derived neurotrophic factor (BDNF) and an imbalanced redox system has a crucial role in the psychopathology of SCZ. However, the influence of the interrelationships of BDNF and superoxide dismutase (SOD) on cognitive impairment and clinical symptomatology in drug-naive first-episode (DNFE) SCZ patients has not been studied thoroughly. Serum BDNF levels, plasma total SOD, manganese-SOD (Mn-SOD), copper/zinc-containing SOD (CuZn-SOD) activities, and malondialdehyde (MDA) levels were measured in 327 DNFE patients with SCZ and 391 healthy controls. Cognitive functions were measured using the Repeatable Battery for the Assessment of Neuropsychological status (RBANS) and clinical symptoms were evaluated by the Positive and Negative Syndrome Scale (PANSS). Compared with the controls, the DNFE patients had increased activities of total SOD and CuZn-SOD, and reduced levels of BDNF and MDA. BDNF levels were positively correlated with CuZn-SOD activity in patients. In addition, we found that elevated Mn-SOD and CuZn-SOD activities were related to PANSS depression factor. Moreover, an interactive effect of BDNF levels and Mn-SOD activity was associated with attentional index score in the patients. Therefore, our findings suggested that interrelationships between BDNF and antioxidant mechanisms might underlie the pathological mechanisms of cognitive impairments and symptomatology in the DNFE patients with SCZ.
Collapse
Affiliation(s)
- Mei Hong Xiu
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, P. R. China
| | - Zezhi Li
- Department of Neurology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Da Chun Chen
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, P. R. China
| | - Song Chen
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, P. R. China
| | - Maile E Curbo
- Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX
| | - Hanjing Emily Wu
- Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX
| | - Yong Sheng Tong
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, P. R. China
| | - Shu Ping Tan
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, P. R. China
| | - Xiang Yang Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
193
|
Nishan U, Gul R, Muhammad N, Asad M, Rahim A, Shah M, Iqbal J, Uddin J, Ali Shah AUH, Shujah S. Colorimetric based sensing of dopamine using ionic liquid functionalized drug mediated silver nanostructures. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105382] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
194
|
Electrochemical and electrical response of bismuth-aniline complex under the exposure of organic and inorganic environment. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-03802-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
195
|
Frydecka D, Kotowicz K, Gawęda Ł, Prochwicz K, Kłosowska J, Rymaszewska J, Samochowiec A, Samochowiec J, Podwalski P, Pawlak-Adamska E, Szmida E, Cechnicki A, Misiak B. Effects of interactions between variation in dopaminergic genes, traumatic life events, and anomalous self-experiences on psychosis proneness: Results from a cross-sectional study in a nonclinical sample. Eur Psychiatry 2020; 63:e104. [PMID: 33213551 PMCID: PMC8057383 DOI: 10.1192/j.eurpsy.2020.103] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background There is a growing number of studies showing interactions between genetic polymorphisms associated with dopaminergic neurotransmission and traumatic life events (TLEs) on a risk of psychotic-like experiences (PLEs). Anomalous self-experiences (ASEs) have been associated both with TLEs as well as with PLEs. However, it remains unknown what is the role of ASEs in the complexity of gene–environment interactions on the emergence of PLEs. Patients and methods We included 445 young adults—university students from three big cities in Poland. We used the Traumatic Events Checklist to assess TLEs, the Inventory of Psychotic-Like anomalous self-experiences in order to measure ASEs, and the Prodromal Questionnaire (PQ16) to record the level of PLEs. The following gene polymorphisms, related to dopaminergic neurotransmission, were determined: the catechol-O-methyltransferase (COMT) rs4680 polymorphism, the dopamine D2 receptor (DRD2) rs6277 polymorphism, and the dopamine transporter 1 (DAT1) rs28363170 polymorphism. Results There was a significant effect of the interaction between the DAT1 polymorphism, a severity of ASEs, and a history of TLEs on the level of PLEs. Among the DAT1 10R/10R homozygotes with low level of ASEs, a severity of PLEs was significantly higher in individuals with a history of any TLEs. Higher scores of the PQ16 were associated with a greater severity of ASEs both in the DAT1 9R allele carriers and the DAT1 10R/10R homozygotes. Conclusion Our findings imply that genetic liability related to aberrant dopamine transport might impact the association between TLEs and PLEs in subjects with high levels of ASEs.
Collapse
Affiliation(s)
- Dorota Frydecka
- Department of Psychiatry, Wroclaw Medical University, 50-367Wroclaw, Poland
| | - Kamila Kotowicz
- Department of Psychiatry, Wroclaw Medical University, 50-367Wroclaw, Poland
| | - Łukasz Gawęda
- Experimental Psychopathology Lab, Institute of Psychology, Polish Academy of Sciences, Warsaw, Poland
| | | | - Joanna Kłosowska
- Institute of Psychology, Jagiellonian University, 30-060Krakow, Poland
| | - Joanna Rymaszewska
- Department of Psychiatry, Wroclaw Medical University, 50-367Wroclaw, Poland
| | - Agnieszka Samochowiec
- Institute of Psychology, Department of Clinical Psychology, University of Szczecin, 71-017Szczecin, Poland
| | - Jerzy Samochowiec
- Department of Psychiatry, Pomeranian Medical University, 71-460Szczecin, Poland
| | - Piotr Podwalski
- Department of Psychiatry, Pomeranian Medical University, 71-460Szczecin, Poland
| | - Edyta Pawlak-Adamska
- Department of Experimental Therapy, Laboratory of Immunopathology, Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 51-114Wroclaw, Poland
| | - Elżbieta Szmida
- Department of Genetics, Wroclaw Medical University, 50-368Wroclaw, Poland
| | - Andrzej Cechnicki
- Department of Community Psychiatry, Chair of Psychiatry, Medical College Jagiellonian University, Krakow, Poland
| | - Błażej Misiak
- Department of Genetics, Wroclaw Medical University, 50-368Wroclaw, Poland
| |
Collapse
|
196
|
Hanif F, Amir QUA, Washdev W, Bilwani F, Simjee SU, Haque Z. A Novel Variant in Dopamine Receptor Type 2 Gene is Associated with Schizophrenia. Arch Med Res 2020; 52:348-353. [PMID: 33187731 DOI: 10.1016/j.arcmed.2020.10.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 10/10/2020] [Accepted: 10/29/2020] [Indexed: 01/05/2023]
Abstract
BACKGROUND Being the primary target of antipsychotic therapy, dopamine receptor type 2 (DRD2) remains a point of interest in schizophrenia pathology. Polymorphisms in DRD2 have been shown to alter patients' response to antipsychotics. DRD2 SNP rs6275 (C>T) have found to be associated with schizophrenia in different populations; however, data remains inconsistent. AIM OF THE STUDY Keeping in view the genetic diversity the present study was aimed to explore association of rs6275 with schizophrenia in population from Pakistan. METHOD Using Diagnostic and statistical Manual 5 (DSM 5) criteria, 100 schizophrenia cases and 100 controls (individuals without any psychiatric illness) were enrolled in the study. Severity of illness was determined using PANSS score. Genotyping was done via Sanger sequencing. MEGA-X was used to align the sequences, Expasy translate tool was used to translate nucleotide sequences. Difference in genotype and allele frequencies between cases and controls was determined using χ2 test. RESULT No significant difference in genotype or allele frequencies of rs6275 (p >0.0.5) was found between cases and controls. Interestingly, a novel SNP (C>A, Pro297Thr) was spotted during electropherogram analysis at position chr11:113412805. Significant difference was found in genotype and allele frequency of this novel SNP among schizophrenia cases and controls (p = 0.003). CONCLUSION No association of rs6275 was observed with schizophrenia in Pakistani population. However, the study found significant association of a novel missense SNP of DRD2 at chr11:113412805 (C>T) with schizophrenia in Pakistani population. A large-scale multicenter study will be required to confirm the association of this novel SNP with schizophrenia.
Collapse
Affiliation(s)
- Farina Hanif
- Institute of Biomedical Sciences, Dow University of Health Sciences, OJHA Campus, SUPARCO Road, Karachi, Pakistan.
| | - Qurat-Ul-Ain Amir
- Institute of Biomedical Sciences, Dow University of Health Sciences, OJHA Campus, SUPARCO Road, Karachi, Pakistan
| | - Washdev Washdev
- Institute of Behavioral Sciences, Dow University of Health Sciences, OJHA Campus SUPARCO Road, Karachi, Pakistan
| | - Fareena Bilwani
- Department of Biological and Biomedical Sciences, Aga Khan University, Stadium Road, Karachi, Pakistan
| | - Shabana Usman Simjee
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Zeba Haque
- Institute of Biomedical Sciences, Dow University of Health Sciences, OJHA Campus, SUPARCO Road, Karachi, Pakistan
| |
Collapse
|
197
|
Hou J, Schmitt S, Meller T, Falkenberg I, Chen J, Wang J, Zhao X, Shi J, Nenadić I. Cortical Complexity in People at Ultra-High-Risk for Psychosis Moderated by Childhood Trauma. Front Psychiatry 2020; 11:594466. [PMID: 33244301 PMCID: PMC7685197 DOI: 10.3389/fpsyt.2020.594466] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 10/19/2020] [Indexed: 11/13/2022] Open
Abstract
Subjects with ultra-high risk (UHR) states for psychosis show brain structural volume changes similar to first-episode psychosis and also elevated incidence of environmental risk factors like childhood trauma. It is unclear, however, whether early neurodevelopmental trajectories are altered in UHR. We screened a total of 12,779 first-year Chinese students to enroll 36 UHR subjects (based on clinical interviews) and 59 non-UHR healthy controls for a case-control study of markers of early neurodevelopment. Subjects underwent 3T MRI scanning and clinical characterization, including the childhood trauma questionnaire (CTQ). We then used the CAT12 toolbox to analyse structural brain scans for cortical surface complexity, a spherical harmonics-based marker of early neurodevelopmental changes. While we did not find statistically significant differences between the groups, a trend level finding for reduced cortical complexity (CC) in UHR vs. non-UHR subjects emerged in the left superior temporal cortex (and adjacent insular and transverse temporal cortices), and this trend level association was significantly moderated by childhood trauma (CTQ score). Our findings indicate that UHR subjects tend to show abnormal cortical surface morphometry, in line with recent research; more importantly, however, this association seems to be considerably modulated by early environmental impacts. Hence, our results provide an indication of environmental or gene × environment interactions on early neurodevelopment leading up to elevated psychosis risk.
Collapse
Affiliation(s)
- Jiaojiao Hou
- Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg and Marburg University Hospital, Marburg, Germany
| | - Simon Schmitt
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg and Marburg University Hospital, Marburg, Germany
- Center for Mind, Brain, and Behavior, Philipps-Universität Marburg, Marburg, Germany
| | - Tina Meller
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg and Marburg University Hospital, Marburg, Germany
- Center for Mind, Brain, and Behavior, Philipps-Universität Marburg, Marburg, Germany
| | - Irina Falkenberg
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg and Marburg University Hospital, Marburg, Germany
- Center for Mind, Brain, and Behavior, Philipps-Universität Marburg, Marburg, Germany
| | - Jianxing Chen
- Tongji University School of Medicine, Shanghai, China
| | - Jiayi Wang
- Tongji University School of Medicine, Shanghai, China
| | - Xudong Zhao
- Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Shanghai Pudong New Area Mental Health Center, Tongji University School of Medicine, Shanghai, China
| | - Jingyu Shi
- Shanghai Pudong New Area Mental Health Center, Tongji University School of Medicine, Shanghai, China
- Division of Medical Humanities & Behavioral Sciences, Tongji University School of Medicine, Shanghai, China
| | - Igor Nenadić
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg and Marburg University Hospital, Marburg, Germany
- Center for Mind, Brain, and Behavior, Philipps-Universität Marburg, Marburg, Germany
| |
Collapse
|
198
|
Social isolation in rats: Effects on animal welfare and molecular markers for neuroplasticity. PLoS One 2020; 15:e0240439. [PMID: 33108362 PMCID: PMC7591026 DOI: 10.1371/journal.pone.0240439] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 09/27/2020] [Indexed: 12/18/2022] Open
Abstract
Early life stress compromises brain development and can contribute to the development of mental illnesses. A common animal model used to study different facets of psychiatric disorders is social isolation from early life on. In rats, this isolation can induce long-lasting alterations in molecular expression and in behavior. Since social isolation models severe psychiatric symptoms, it is to be expected that it affects the overall wellbeing of the animals. As also promoted by the 3Rs principle, though, it is pivotal to decrease the burden of laboratory animals by limiting the number of subjects (reduce, replace) and by improving the animals’ wellbeing (refine). The aim of this study was therefore to test possible refinement strategies such as resocialization and mere adult social isolation. We examined whether the alternatives still triggered the necessary phenotype while minimizing the stress load on the animals. Interestingly, we did not find reduced wellbeing-associated burrowing performance in isolated rats. The hyperactive phenotype seen in socially isolated animals was observed for rats undergoing the adult-only isolation, but resocializing ameliorated the locomotor abnormality. Isolation strongly affected markers of neuroplasticity in the prefrontal cortex independent of timing: mRNA levels of Arc, Bdnf and the pool of Bdnf transcripts with the 3’ long UTR were reduced in all groups. Bdnf splice variant IV expression was reduced in lifelong-isolated animals. Some of these deficits normalized after resocialization; likewise, exon VI Bdnf mRNA levels were reduced only in animals persistently isolated. Conversely, social deprivation did not affect the expression of Gad67 and Pvb, two GABAergic markers, whereas changes occurred in the expression of dopamine d1 and d2 receptors. As adult isolation was sufficient to trigger the hyperactive phenotype and impaired neuroplasticity in the prefrontal cortex, it could be a candidate for a refinement strategy for certain research questions. To fully grade the severity of post-weaning social isolation and the alternatives, adult isolation and resocialization, a more profound and multimodal assessment approach is necessary.
Collapse
|
199
|
Meller T, Ettinger U, Grant P, Nenadić I. The association of striatal volume and positive schizotypy in healthy subjects: intelligence as a moderating factor. Psychol Med 2020; 50:2355-2363. [PMID: 31530329 DOI: 10.1017/s0033291719002459] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND Schizotypy, a putative schizophrenia endophenotype, has been associated with brain-structural variations partly overlapping with those in psychotic disorders. Variations in precuneus structure have been repeatedly reported, whereas the involvement of fronto-striatal networks - as in schizophrenia - is less clear. While shared genetic architecture is thought to increase vulnerability to environmental insults, beneficial factors like general intelligence might buffer their effect. METHODS To further investigate the role of fronto-striatal networks in schizotypy, we examined the relationship of voxel- and surface-based brain morphometry and a measure of schizotypal traits (Schizotypal Personality Questionnaire, with subscores Cognitive-Perceptual, Interpersonal, Disorganised) in 115 healthy participants [54 female, mean age (s.d.) = 27.57(8.02)]. We tested intelligence (MWT-B) as a potential moderator. RESULTS We found a positive association of SPQ Cognitive-Perceptual with putamen volume (p = 0.040, FWE peak level-corrected), moderated by intelligence: with increasing IQ, the correlation of SPQ Cognitive-Perceptual and striatal volume decreased (p = 0.022). SPQ Disorganised was positively correlated with precentral volume (p = 0.013, FWE peak level-corrected). In an exploratory analysis (p < 0.001, uncorrected), SPQ total score was positively associated with gyrification in the precuneus and postcentral gyrus, and SPQ Disorganised was negatively associated with gyrification in the inferior frontal gyrus. CONCLUSIONS Our findings support the role of fronto-striatal networks for schizotypal features in healthy individuals, and suggest that these are influenced by buffering factors like intelligence. We conclude that protective factors, like general cognitive capacity, might attenuate the psychosis risk associated with schizotypy. These results endorse the idea of a continuous nature of schizotypy, mirroring similar findings in schizophrenia.
Collapse
Affiliation(s)
- Tina Meller
- Cognitive Neuropsychiatry lab, Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Rudolf-Bultmann-Str. 8, 35039Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Hans-Meerwein-Str. 6, 35032Marburg, Germany
| | - Ulrich Ettinger
- Department of Psychology, University of Bonn, Kaiser-Karl-Ring 9, 53111Bonn, Germany
| | - Phillip Grant
- Psychology School, Fresenius University of Applied Sciences, Marienburgstr. 6, 60528Frankfurt am Main, Germany
- Faculty of Life Science Engineering, Technische Hochschule Mittelhessen University of Applied Sciences, Giessen, Germany
| | - Igor Nenadić
- Cognitive Neuropsychiatry lab, Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Rudolf-Bultmann-Str. 8, 35039Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Hans-Meerwein-Str. 6, 35032Marburg, Germany
- Marburg University Hospital - UKGM, Rudolf-Bultmann-Str. 8, 35039Marburg, Germany
| |
Collapse
|
200
|
Zhou M, Derakhshanian S, Rath A, Bertrand S, DeGraw C, Barlow R, Menard A, Kaye AM, Hasoon J, Cornett EM, Kaye AD, Viswanath O, Urits I. Asenapine Transdermal Patch for the Management of Schizophrenia. PSYCHOPHARMACOLOGY BULLETIN 2020; 50:60-82. [PMID: 33012873 PMCID: PMC7511145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Purpose of Review This is a comprehensive review of the literature regarding the use of asenapine for the treatment of schizophrenia (SZ) in adults. It covers an introduction, epidemiology, risk factors, pathophysiology, and current treatment modalities regarding SZ, provides a background on the mechanism of action of asenapine, and then reviews the existing evidence for use of asenapine in both its sublingual and transdermal formulation in the treatment of SZ. Recent Findings SZ is a complex and multifactorial mental disorder which is thought to combine several genetic, epigenetic, and environmental factors causing abnormalities in the dopaminergic system. Symptoms are categorized in delusions, hallucinations, disorganization, and negative presentations like affective flattening and apathy. Current treatment focuses on antipsychotic medications by means of oral administration or long-acting injection. Asenapine is a second-generation antipsychotic with 5HT-2A antagonist and 5HT-1A/1B partial agonist properties, which provides a favorable profile in targeting schizophrenic symptoms, while reducing motor side effects and improving mood and cognition. Asenapine in its sublingual formulation was FDA approved for treatment of SZ and bipolar I disorder in adults in August of 2009 and has been proven to be both effective and safe. Transdermal patch of asenapine (Secuado) was FDA approved in October of 2019, the first and only FDA approved patch for SZ in adults, which offers another strategy for treatment to improve compliance and ease of administration. Summary SZ is a chronic and debilitating disease which is still not well understood and comes at great cost with regards to the quality of life for patients. Medication side-effects and compliance are enormous issues which take a toll on health care systems in industrialized nations and keep patients from achieving stability with their disease. Transdermal asenapine is a new first-in-class dosage form and provides a novel modality of administration. It has been shown to be effective in reducing positive, as well as negative symptoms, while still maintaining a favorable side-effect profile.
Collapse
Affiliation(s)
- Maxine Zhou
- Zhou, MD, Derakhshanian, MD, Rath, MD, Menard, MD, Louisiana State University Health Science Center Shreveport, Department of Psychiatry, and Behavioral Medicine. Bertrand, BS, DeGraw, BS, Barlow, BS, Louisiana State University Shreveport School of Medicine. Kaye, Pharm D, Thomas J. Long School of Pharmacy and Health Sciences, University of the Pacific, Department of Pharmacy Practice, Stockton, CA. Hasoon, MD, Beth Israel Deaconess Medical Center, Department of Anesthesiology, Critical Care, and Pain Medicine, Harvard Medical School, Boston, MA. Cornett, PhD, Kaye, MD, PhD, Louisiana State University Shreveport, Department of Anesthesiology, Shreveport, LA. Viswanath, MD, Louisiana State University Shreveport, Department of Anesthesiology, Shreveport, LA, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, Creighton University School of Medicine, Department of Anesthesiology, Omaha, NE, Valley Anesthesiology and Pain Consultants - Envision Physician Services, Phoenix, AZ. Urits, MD, Beth Israel Deaconess Medical Center, Department of Anesthesiology, Critical Care, and Pain Medicine, Harvard Medical School, Boston, MA, Louisiana State University Shreveport, Department of Anesthesiology, Shreveport, LA
| | - Sahar Derakhshanian
- Zhou, MD, Derakhshanian, MD, Rath, MD, Menard, MD, Louisiana State University Health Science Center Shreveport, Department of Psychiatry, and Behavioral Medicine. Bertrand, BS, DeGraw, BS, Barlow, BS, Louisiana State University Shreveport School of Medicine. Kaye, Pharm D, Thomas J. Long School of Pharmacy and Health Sciences, University of the Pacific, Department of Pharmacy Practice, Stockton, CA. Hasoon, MD, Beth Israel Deaconess Medical Center, Department of Anesthesiology, Critical Care, and Pain Medicine, Harvard Medical School, Boston, MA. Cornett, PhD, Kaye, MD, PhD, Louisiana State University Shreveport, Department of Anesthesiology, Shreveport, LA. Viswanath, MD, Louisiana State University Shreveport, Department of Anesthesiology, Shreveport, LA, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, Creighton University School of Medicine, Department of Anesthesiology, Omaha, NE, Valley Anesthesiology and Pain Consultants - Envision Physician Services, Phoenix, AZ. Urits, MD, Beth Israel Deaconess Medical Center, Department of Anesthesiology, Critical Care, and Pain Medicine, Harvard Medical School, Boston, MA, Louisiana State University Shreveport, Department of Anesthesiology, Shreveport, LA
| | - Alexander Rath
- Zhou, MD, Derakhshanian, MD, Rath, MD, Menard, MD, Louisiana State University Health Science Center Shreveport, Department of Psychiatry, and Behavioral Medicine. Bertrand, BS, DeGraw, BS, Barlow, BS, Louisiana State University Shreveport School of Medicine. Kaye, Pharm D, Thomas J. Long School of Pharmacy and Health Sciences, University of the Pacific, Department of Pharmacy Practice, Stockton, CA. Hasoon, MD, Beth Israel Deaconess Medical Center, Department of Anesthesiology, Critical Care, and Pain Medicine, Harvard Medical School, Boston, MA. Cornett, PhD, Kaye, MD, PhD, Louisiana State University Shreveport, Department of Anesthesiology, Shreveport, LA. Viswanath, MD, Louisiana State University Shreveport, Department of Anesthesiology, Shreveport, LA, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, Creighton University School of Medicine, Department of Anesthesiology, Omaha, NE, Valley Anesthesiology and Pain Consultants - Envision Physician Services, Phoenix, AZ. Urits, MD, Beth Israel Deaconess Medical Center, Department of Anesthesiology, Critical Care, and Pain Medicine, Harvard Medical School, Boston, MA, Louisiana State University Shreveport, Department of Anesthesiology, Shreveport, LA
| | - Sarah Bertrand
- Zhou, MD, Derakhshanian, MD, Rath, MD, Menard, MD, Louisiana State University Health Science Center Shreveport, Department of Psychiatry, and Behavioral Medicine. Bertrand, BS, DeGraw, BS, Barlow, BS, Louisiana State University Shreveport School of Medicine. Kaye, Pharm D, Thomas J. Long School of Pharmacy and Health Sciences, University of the Pacific, Department of Pharmacy Practice, Stockton, CA. Hasoon, MD, Beth Israel Deaconess Medical Center, Department of Anesthesiology, Critical Care, and Pain Medicine, Harvard Medical School, Boston, MA. Cornett, PhD, Kaye, MD, PhD, Louisiana State University Shreveport, Department of Anesthesiology, Shreveport, LA. Viswanath, MD, Louisiana State University Shreveport, Department of Anesthesiology, Shreveport, LA, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, Creighton University School of Medicine, Department of Anesthesiology, Omaha, NE, Valley Anesthesiology and Pain Consultants - Envision Physician Services, Phoenix, AZ. Urits, MD, Beth Israel Deaconess Medical Center, Department of Anesthesiology, Critical Care, and Pain Medicine, Harvard Medical School, Boston, MA, Louisiana State University Shreveport, Department of Anesthesiology, Shreveport, LA
| | - Caroline DeGraw
- Zhou, MD, Derakhshanian, MD, Rath, MD, Menard, MD, Louisiana State University Health Science Center Shreveport, Department of Psychiatry, and Behavioral Medicine. Bertrand, BS, DeGraw, BS, Barlow, BS, Louisiana State University Shreveport School of Medicine. Kaye, Pharm D, Thomas J. Long School of Pharmacy and Health Sciences, University of the Pacific, Department of Pharmacy Practice, Stockton, CA. Hasoon, MD, Beth Israel Deaconess Medical Center, Department of Anesthesiology, Critical Care, and Pain Medicine, Harvard Medical School, Boston, MA. Cornett, PhD, Kaye, MD, PhD, Louisiana State University Shreveport, Department of Anesthesiology, Shreveport, LA. Viswanath, MD, Louisiana State University Shreveport, Department of Anesthesiology, Shreveport, LA, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, Creighton University School of Medicine, Department of Anesthesiology, Omaha, NE, Valley Anesthesiology and Pain Consultants - Envision Physician Services, Phoenix, AZ. Urits, MD, Beth Israel Deaconess Medical Center, Department of Anesthesiology, Critical Care, and Pain Medicine, Harvard Medical School, Boston, MA, Louisiana State University Shreveport, Department of Anesthesiology, Shreveport, LA
| | - Rachel Barlow
- Zhou, MD, Derakhshanian, MD, Rath, MD, Menard, MD, Louisiana State University Health Science Center Shreveport, Department of Psychiatry, and Behavioral Medicine. Bertrand, BS, DeGraw, BS, Barlow, BS, Louisiana State University Shreveport School of Medicine. Kaye, Pharm D, Thomas J. Long School of Pharmacy and Health Sciences, University of the Pacific, Department of Pharmacy Practice, Stockton, CA. Hasoon, MD, Beth Israel Deaconess Medical Center, Department of Anesthesiology, Critical Care, and Pain Medicine, Harvard Medical School, Boston, MA. Cornett, PhD, Kaye, MD, PhD, Louisiana State University Shreveport, Department of Anesthesiology, Shreveport, LA. Viswanath, MD, Louisiana State University Shreveport, Department of Anesthesiology, Shreveport, LA, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, Creighton University School of Medicine, Department of Anesthesiology, Omaha, NE, Valley Anesthesiology and Pain Consultants - Envision Physician Services, Phoenix, AZ. Urits, MD, Beth Israel Deaconess Medical Center, Department of Anesthesiology, Critical Care, and Pain Medicine, Harvard Medical School, Boston, MA, Louisiana State University Shreveport, Department of Anesthesiology, Shreveport, LA
| | - Aja Menard
- Zhou, MD, Derakhshanian, MD, Rath, MD, Menard, MD, Louisiana State University Health Science Center Shreveport, Department of Psychiatry, and Behavioral Medicine. Bertrand, BS, DeGraw, BS, Barlow, BS, Louisiana State University Shreveport School of Medicine. Kaye, Pharm D, Thomas J. Long School of Pharmacy and Health Sciences, University of the Pacific, Department of Pharmacy Practice, Stockton, CA. Hasoon, MD, Beth Israel Deaconess Medical Center, Department of Anesthesiology, Critical Care, and Pain Medicine, Harvard Medical School, Boston, MA. Cornett, PhD, Kaye, MD, PhD, Louisiana State University Shreveport, Department of Anesthesiology, Shreveport, LA. Viswanath, MD, Louisiana State University Shreveport, Department of Anesthesiology, Shreveport, LA, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, Creighton University School of Medicine, Department of Anesthesiology, Omaha, NE, Valley Anesthesiology and Pain Consultants - Envision Physician Services, Phoenix, AZ. Urits, MD, Beth Israel Deaconess Medical Center, Department of Anesthesiology, Critical Care, and Pain Medicine, Harvard Medical School, Boston, MA, Louisiana State University Shreveport, Department of Anesthesiology, Shreveport, LA
| | - Adam M Kaye
- Zhou, MD, Derakhshanian, MD, Rath, MD, Menard, MD, Louisiana State University Health Science Center Shreveport, Department of Psychiatry, and Behavioral Medicine. Bertrand, BS, DeGraw, BS, Barlow, BS, Louisiana State University Shreveport School of Medicine. Kaye, Pharm D, Thomas J. Long School of Pharmacy and Health Sciences, University of the Pacific, Department of Pharmacy Practice, Stockton, CA. Hasoon, MD, Beth Israel Deaconess Medical Center, Department of Anesthesiology, Critical Care, and Pain Medicine, Harvard Medical School, Boston, MA. Cornett, PhD, Kaye, MD, PhD, Louisiana State University Shreveport, Department of Anesthesiology, Shreveport, LA. Viswanath, MD, Louisiana State University Shreveport, Department of Anesthesiology, Shreveport, LA, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, Creighton University School of Medicine, Department of Anesthesiology, Omaha, NE, Valley Anesthesiology and Pain Consultants - Envision Physician Services, Phoenix, AZ. Urits, MD, Beth Israel Deaconess Medical Center, Department of Anesthesiology, Critical Care, and Pain Medicine, Harvard Medical School, Boston, MA, Louisiana State University Shreveport, Department of Anesthesiology, Shreveport, LA
| | - Jamal Hasoon
- Zhou, MD, Derakhshanian, MD, Rath, MD, Menard, MD, Louisiana State University Health Science Center Shreveport, Department of Psychiatry, and Behavioral Medicine. Bertrand, BS, DeGraw, BS, Barlow, BS, Louisiana State University Shreveport School of Medicine. Kaye, Pharm D, Thomas J. Long School of Pharmacy and Health Sciences, University of the Pacific, Department of Pharmacy Practice, Stockton, CA. Hasoon, MD, Beth Israel Deaconess Medical Center, Department of Anesthesiology, Critical Care, and Pain Medicine, Harvard Medical School, Boston, MA. Cornett, PhD, Kaye, MD, PhD, Louisiana State University Shreveport, Department of Anesthesiology, Shreveport, LA. Viswanath, MD, Louisiana State University Shreveport, Department of Anesthesiology, Shreveport, LA, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, Creighton University School of Medicine, Department of Anesthesiology, Omaha, NE, Valley Anesthesiology and Pain Consultants - Envision Physician Services, Phoenix, AZ. Urits, MD, Beth Israel Deaconess Medical Center, Department of Anesthesiology, Critical Care, and Pain Medicine, Harvard Medical School, Boston, MA, Louisiana State University Shreveport, Department of Anesthesiology, Shreveport, LA
| | - Elyse M Cornett
- Zhou, MD, Derakhshanian, MD, Rath, MD, Menard, MD, Louisiana State University Health Science Center Shreveport, Department of Psychiatry, and Behavioral Medicine. Bertrand, BS, DeGraw, BS, Barlow, BS, Louisiana State University Shreveport School of Medicine. Kaye, Pharm D, Thomas J. Long School of Pharmacy and Health Sciences, University of the Pacific, Department of Pharmacy Practice, Stockton, CA. Hasoon, MD, Beth Israel Deaconess Medical Center, Department of Anesthesiology, Critical Care, and Pain Medicine, Harvard Medical School, Boston, MA. Cornett, PhD, Kaye, MD, PhD, Louisiana State University Shreveport, Department of Anesthesiology, Shreveport, LA. Viswanath, MD, Louisiana State University Shreveport, Department of Anesthesiology, Shreveport, LA, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, Creighton University School of Medicine, Department of Anesthesiology, Omaha, NE, Valley Anesthesiology and Pain Consultants - Envision Physician Services, Phoenix, AZ. Urits, MD, Beth Israel Deaconess Medical Center, Department of Anesthesiology, Critical Care, and Pain Medicine, Harvard Medical School, Boston, MA, Louisiana State University Shreveport, Department of Anesthesiology, Shreveport, LA
| | - Alan D Kaye
- Zhou, MD, Derakhshanian, MD, Rath, MD, Menard, MD, Louisiana State University Health Science Center Shreveport, Department of Psychiatry, and Behavioral Medicine. Bertrand, BS, DeGraw, BS, Barlow, BS, Louisiana State University Shreveport School of Medicine. Kaye, Pharm D, Thomas J. Long School of Pharmacy and Health Sciences, University of the Pacific, Department of Pharmacy Practice, Stockton, CA. Hasoon, MD, Beth Israel Deaconess Medical Center, Department of Anesthesiology, Critical Care, and Pain Medicine, Harvard Medical School, Boston, MA. Cornett, PhD, Kaye, MD, PhD, Louisiana State University Shreveport, Department of Anesthesiology, Shreveport, LA. Viswanath, MD, Louisiana State University Shreveport, Department of Anesthesiology, Shreveport, LA, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, Creighton University School of Medicine, Department of Anesthesiology, Omaha, NE, Valley Anesthesiology and Pain Consultants - Envision Physician Services, Phoenix, AZ. Urits, MD, Beth Israel Deaconess Medical Center, Department of Anesthesiology, Critical Care, and Pain Medicine, Harvard Medical School, Boston, MA, Louisiana State University Shreveport, Department of Anesthesiology, Shreveport, LA
| | - Omar Viswanath
- Zhou, MD, Derakhshanian, MD, Rath, MD, Menard, MD, Louisiana State University Health Science Center Shreveport, Department of Psychiatry, and Behavioral Medicine. Bertrand, BS, DeGraw, BS, Barlow, BS, Louisiana State University Shreveport School of Medicine. Kaye, Pharm D, Thomas J. Long School of Pharmacy and Health Sciences, University of the Pacific, Department of Pharmacy Practice, Stockton, CA. Hasoon, MD, Beth Israel Deaconess Medical Center, Department of Anesthesiology, Critical Care, and Pain Medicine, Harvard Medical School, Boston, MA. Cornett, PhD, Kaye, MD, PhD, Louisiana State University Shreveport, Department of Anesthesiology, Shreveport, LA. Viswanath, MD, Louisiana State University Shreveport, Department of Anesthesiology, Shreveport, LA, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, Creighton University School of Medicine, Department of Anesthesiology, Omaha, NE, Valley Anesthesiology and Pain Consultants - Envision Physician Services, Phoenix, AZ. Urits, MD, Beth Israel Deaconess Medical Center, Department of Anesthesiology, Critical Care, and Pain Medicine, Harvard Medical School, Boston, MA, Louisiana State University Shreveport, Department of Anesthesiology, Shreveport, LA
| | - Ivan Urits
- Zhou, MD, Derakhshanian, MD, Rath, MD, Menard, MD, Louisiana State University Health Science Center Shreveport, Department of Psychiatry, and Behavioral Medicine. Bertrand, BS, DeGraw, BS, Barlow, BS, Louisiana State University Shreveport School of Medicine. Kaye, Pharm D, Thomas J. Long School of Pharmacy and Health Sciences, University of the Pacific, Department of Pharmacy Practice, Stockton, CA. Hasoon, MD, Beth Israel Deaconess Medical Center, Department of Anesthesiology, Critical Care, and Pain Medicine, Harvard Medical School, Boston, MA. Cornett, PhD, Kaye, MD, PhD, Louisiana State University Shreveport, Department of Anesthesiology, Shreveport, LA. Viswanath, MD, Louisiana State University Shreveport, Department of Anesthesiology, Shreveport, LA, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, Creighton University School of Medicine, Department of Anesthesiology, Omaha, NE, Valley Anesthesiology and Pain Consultants - Envision Physician Services, Phoenix, AZ. Urits, MD, Beth Israel Deaconess Medical Center, Department of Anesthesiology, Critical Care, and Pain Medicine, Harvard Medical School, Boston, MA, Louisiana State University Shreveport, Department of Anesthesiology, Shreveport, LA
| |
Collapse
|