151
|
Tao JC, Yu D, Shao W, Zhou DR, Wang Y, Hou SQ, Deng K, Lin N. Interactions between microglia and glioma in tumor microenvironment. Front Oncol 2023; 13:1236268. [PMID: 37700840 PMCID: PMC10493873 DOI: 10.3389/fonc.2023.1236268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/14/2023] [Indexed: 09/14/2023] Open
Abstract
Gliomas, the most prevalent primary tumors in the central nervous system, are marked by their immunosuppressive properties and consequent poor patient prognosis. Current evidence emphasizes the pivotal role of the tumor microenvironment in the progression of gliomas, largely attributed to tumor-associated macrophages (brain-resident microglia and bone marrow-derived macrophages) that create a tumor microenvironment conducive to the growth and invasion of tumor cells. Yet, distinguishing between these two cell subgroups remains a challenge. Thus, our review starts by analyzing the heterogeneity between these two cell subsets, then places emphasis on elucidating the complex interactions between microglia and glioma cells. Finally, we conclude with a summary of current attempts at immunotherapy that target microglia. However, given that independent research on microglia is still in its initial stages and has many shortcomings at the present time, we express our related concerns and hope that further research will be carried out to address these issues in the future.
Collapse
Affiliation(s)
- Jin-Cheng Tao
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Dong Yu
- Department of Neurosurgery, The Affiliated Chuzhou Hospital of Anhui Medical University, The First People’s Hospital of Chuzhou, Chuzhou, Anhui, China
| | - Wei Shao
- Department of Neurosurgery, The Affiliated Chuzhou Hospital of Anhui Medical University, The First People’s Hospital of Chuzhou, Chuzhou, Anhui, China
| | - Dong-Rui Zhou
- Department of Neurosurgery, The Affiliated Chuzhou Hospital of Anhui Medical University, The First People’s Hospital of Chuzhou, Chuzhou, Anhui, China
| | - Yu Wang
- Department of Neurosurgery, The Affiliated Chuzhou Hospital of Anhui Medical University, The First People’s Hospital of Chuzhou, Chuzhou, Anhui, China
| | - Shi-Qiang Hou
- Department of Neurosurgery, The Affiliated Chuzhou Hospital of Anhui Medical University, The First People’s Hospital of Chuzhou, Chuzhou, Anhui, China
| | - Ke Deng
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ning Lin
- Department of Neurosurgery, The Affiliated Chuzhou Hospital of Anhui Medical University, The First People’s Hospital of Chuzhou, Chuzhou, Anhui, China
| |
Collapse
|
152
|
Xiong W, Zhang X, Peng B, Zhu H, Huang L, He S. Pan-glioma analyses reveal species- and tumor-specific regulation of neuron-glioma synapse genes by lncRNAs. Front Genet 2023; 14:1218408. [PMID: 37693314 PMCID: PMC10484416 DOI: 10.3389/fgene.2023.1218408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 08/11/2023] [Indexed: 09/12/2023] Open
Abstract
Gliomas are highly heterogeneous and aggressive. Malignant cells in gliomas can contact normal neurons through a synapse-like structure (called neuron-to-glioma synapse, NGS) to promote their proliferation, but it is unclear whether NGS gene expression and regulation show species- and tumor-specificity. This question is important in that many anti-cancer drugs are developed upon mouse models. To address this question, we conducted a pan-glioma analysis using nine scRNA-seq datasets from humans and mice. We also experimentally validated the key element of our methods and verified a key result using TCGA datasets of the same glioma types. Our analyses revealed that NGS gene expression and regulation by lncRNAs are highly species- and tumor-specific. Importantly, simian-specific lncRNAs are more involved in NGS gene regulation than lncRNAs conserved in mammals, and transgenic mouse gliomas have little in common with PDX mouse models and human gliomas in terms of NGS gene regulation. The analyses suggest that simian-specific lncRNAs are a new and rich class of potential targets for tumor-specific glioma treatment, and provide pertinent data for further experimentally and clinically exmining the targets.
Collapse
Affiliation(s)
- Wei Xiong
- Bioinformatics Section, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xuecong Zhang
- Bioinformatics Section, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Bin Peng
- Bioinformatics Section, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Hao Zhu
- Bioinformatics Section, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Lijin Huang
- Neurosurgery Department, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Sha He
- Bioinformatics Section, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
153
|
Winkler F. The winner takes it all: Competition drives clonal selection in gliomagenesis. Cancer Cell 2023; 41:1394-1396. [PMID: 37541246 DOI: 10.1016/j.ccell.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 07/10/2023] [Accepted: 07/10/2023] [Indexed: 08/06/2023]
Abstract
The exact mechanisms that govern clonal dynamics and selection during early tumorigenesis remain largely elusive. Ceresa et al. provide experimental and mathematical evidence that MYC-dependent competition between individual clones is one driving force of brain tumor evolution, adding a winner/loser aspect to the picture that complements existing concepts.
Collapse
Affiliation(s)
- Frank Winkler
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany; Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
154
|
Ji H, Wang F, Liu Z, Li Y, Sun H, Xiao A, Zhang H, You C, Hu S, Liu Y. COVPRIG robustly predicts the overall survival of IDH wild-type glioblastoma and highlights METTL1 + neural-progenitor-like tumor cell in driving unfavorable outcome. J Transl Med 2023; 21:533. [PMID: 37553713 PMCID: PMC10408096 DOI: 10.1186/s12967-023-04382-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/22/2023] [Indexed: 08/10/2023] Open
Abstract
BACKGROUND Accurately predicting the outcome of isocitrate dehydrogenase (IDH) wild-type glioblastoma (GBM) remains hitherto challenging. This study aims to Construct and Validate a Robust Prognostic Model for IDH wild-type GBM (COVPRIG) for the prediction of overall survival using a novel metric, gene-gene (G × G) interaction, and explore molecular and cellular underpinnings. METHODS Univariate and multivariate Cox regression of four independent trans-ethnic cohorts containing a total of 800 samples. Prediction efficacy was comprehensively evaluated and compared with previous models by a systematic literature review. The molecular underpinnings of COVPRIG were elucidated by integrated analysis of bulk-tumor and single-cell based datasets. RESULTS Using a Cox-ph model-based method, six of the 93,961 G × G interactions were screened to form an optimal combination which, together with age, comprised the COVPRIG model. COVPRIG was designed for RNA-seq and microarray, respectively, and effectively identified patients at high risk of mortality. The predictive performance of COVPRIG was satisfactory, with area under the curve (AUC) ranging from 0.56 (CGGA693, RNA-seq, 6-month survival) to 0.79 (TCGA RNAseq, 18-month survival), which can be further validated by decision curves. Nomograms were constructed for individual risk prediction for RNA-seq and microarray-based cohorts, respectively. Besides, the prognostic significance of COVPRIG was also validated in GBM including the IDH mutant samples. Notably, COVPRIG was comprehensively evaluated and externally validated, and a systemic review disclosed that COVPRIG outperformed current validated models with an integrated discrimination improvement (IDI) of 6-16%. Moreover, integrative bioinformatics analysis predicted an essential role of METTL1+ neural-progenitor-like (NPC-like) malignant cell in driving unfavorable outcome. CONCLUSION This study provided a powerful tool for the outcome prediction for IDH wild-type GBM, and preliminary molecular underpinnings for future research.
Collapse
Affiliation(s)
- Hang Ji
- Department of Neurosurgery, West China Hospital Sichuan University, No. 37 Guoxue Lane, Chengdu, Sichuan, China
| | - Fang Wang
- Department of Neurosurgery, Zhejiang Provincial People's Hospital, No. 158 Shangtang Road, Hangzhou, Zhejiang, China
| | - Zhihui Liu
- Department of Neurosurgery, Zhejiang Provincial People's Hospital, No. 158 Shangtang Road, Hangzhou, Zhejiang, China
| | - Yue Li
- Department of Neurosurgery, West China Hospital Sichuan University, No. 37 Guoxue Lane, Chengdu, Sichuan, China
| | - Haogeng Sun
- Department of Neurosurgery, West China Hospital Sichuan University, No. 37 Guoxue Lane, Chengdu, Sichuan, China
| | - Anqi Xiao
- Department of Neurosurgery, West China Hospital Sichuan University, No. 37 Guoxue Lane, Chengdu, Sichuan, China
| | - Huanxin Zhang
- Department of Neurosurgery, West China Hospital Sichuan University, No. 37 Guoxue Lane, Chengdu, Sichuan, China
| | - Chao You
- Department of Neurosurgery, West China Hospital Sichuan University, No. 37 Guoxue Lane, Chengdu, Sichuan, China
| | - Shaoshan Hu
- Department of Neurosurgery, Zhejiang Provincial People's Hospital, No. 158 Shangtang Road, Hangzhou, Zhejiang, China.
| | - Yi Liu
- Department of Neurosurgery, West China Hospital Sichuan University, No. 37 Guoxue Lane, Chengdu, Sichuan, China.
| |
Collapse
|
155
|
Drexler R, Khatri R, Sauvigny T, Mohme M, Maire CL, Ryba A, Zghaibeh Y, Dührsen L, Salviano-Silva A, Lamszus K, Westphal M, Gempt J, Wefers AK, Neumann J, Bode H, Hausmann F, Huber TB, Bonn S, Jütten K, Delev D, Weber KJ, Harter PN, Onken J, Vajkoczy P, Capper D, Wiestler B, Weller M, Snijder B, Buck A, Weiss T, Keough MB, Ni L, Monje M, Silverbush D, Hovestadt V, Suvà ML, Krishna S, Hervey-Jumper SL, Schüller U, Heiland DH, Hänzelmann S, Ricklefs FL. Epigenetic neural glioblastoma enhances synaptic integration and predicts therapeutic vulnerability. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.04.552017. [PMID: 37609137 PMCID: PMC10441357 DOI: 10.1101/2023.08.04.552017] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Neural-tumor interactions drive glioma growth as evidenced in preclinical models, but clinical validation is nascent. We present an epigenetically defined neural signature of glioblastoma that independently affects patients' survival. We use reference signatures of neural cells to deconvolve tumor DNA and classify samples into low- or high-neural tumors. High-neural glioblastomas exhibit hypomethylated CpG sites and upregulation of genes associated with synaptic integration. Single-cell transcriptomic analysis reveals high abundance of stem cell-like malignant cells classified as oligodendrocyte precursor and neural precursor cell-like in high-neural glioblastoma. High-neural glioblastoma cells engender neuron-to-glioma synapse formation in vitro and in vivo and show an unfavorable survival after xenografting. In patients, a high-neural signature associates with decreased survival as well as increased functional connectivity and can be detected via DNA analytes and brain-derived neurotrophic factor in plasma. Our study presents an epigenetically defined malignant neural signature in high-grade gliomas that is prognostically relevant.
Collapse
Affiliation(s)
- Richard Drexler
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Neurology, Stanford University, Stanford, CA, 94305, USA
| | - Robin Khatri
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas Sauvigny
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Malte Mohme
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Cecile L. Maire
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alice Ryba
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Yahya Zghaibeh
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lasse Dührsen
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Amanda Salviano-Silva
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Katrin Lamszus
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Manfred Westphal
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jens Gempt
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Annika K. Wefers
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Julia Neumann
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Pediatric Hematology and Oncology, Research Institute Children’s Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children’s Cancer Center Hamburg, Hamburg, Germany
| | - Helena Bode
- Research Institute Children’s Cancer Center Hamburg, Hamburg, Germany
| | - Fabian Hausmann
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias B. Huber
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Bonn
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kerstin Jütten
- Department of Neurosurgery, University Hospital Aachen, Aachen, Germany
| | - Daniel Delev
- Department of Neurosurgery, University Hospital Aachen, Aachen, Germany
| | - Katharina J. Weber
- Neurological Institute (Edinger Institute), University Hospital Frankfurt, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany
- University Cancer Center (UCT) Frankfurt, Frankfurt am Main, Germany
| | - Patrick N. Harter
- Neurological Institute (Edinger Institute), University Hospital Frankfurt, Frankfurt am Main, Germany
- Institute of Neuropathology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Julia Onken
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Peter Vajkoczy
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - David Capper
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Benedikt Wiestler
- Department of Neuroradiology, Klinikum rechts der Isar, School of Medicine, Technical University Munich, Munich
| | - Michael Weller
- Department of Neurology, Clinical Neuroscience Center, University Hospital Zurich, Switzerland. Department of Neurology, University of Zürich, Switzerland
| | - Berend Snijder
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Alicia Buck
- Department of Neurology, Clinical Neuroscience Center, University Hospital Zurich, Switzerland. Department of Neurology, University of Zürich, Switzerland
| | - Tobias Weiss
- Department of Neurology, Clinical Neuroscience Center, University Hospital Zurich, Switzerland. Department of Neurology, University of Zürich, Switzerland
| | - Michael B. Keough
- Department of Neurology, Stanford University, Stanford, CA, 94305, USA
| | - Lijun Ni
- Department of Neurology, Stanford University, Stanford, CA, 94305, USA
| | - Michelle Monje
- Department of Neurology, Stanford University, Stanford, CA, 94305, USA
| | | | | | - Mario L. Suvà
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Saritha Krishna
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Shawn L. Hervey-Jumper
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Ulrich Schüller
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Pediatric Hematology and Oncology, Research Institute Children’s Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children’s Cancer Center Hamburg, Hamburg, Germany
| | - Dieter H. Heiland
- Department of Neurosurgery, Medical Center University of Freiburg, Freiburg, Germany
| | - Sonja Hänzelmann
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Franz L. Ricklefs
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
156
|
Nejo T, Krishna S, Jimenez C, Yamamichi A, Young JS, Lakshmanachetty S, Chen T, Phyu SSS, Ogino H, Watchmaker P, Diebold D, Choudhury A, Daniel AGS, Raleigh DR, Hervey-Jumper SL, Okada H. Glioma-neuronal circuit remodeling induces regional immunosuppression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.04.548295. [PMID: 37577659 PMCID: PMC10418167 DOI: 10.1101/2023.08.04.548295] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Neuronal activity-driven mechanisms impact glioblastoma cell proliferation and invasion 1-7 , and glioblastoma remodels neuronal circuits 8,9 . Distinct intratumoral regions maintain functional connectivity via a subpopulation of malignant cells that mediate tumor-intrinsic neuronal connectivity and synaptogenesis through their transcriptional programs 8 . However, the effects of tumor-intrinsic neuronal activity on other cells, such as immune cells, remain unknown. Here we show that regions within glioblastomas with elevated connectivity are characterized by regional immunosuppression. This was accompanied by different cell compositions and inflammatory status of tumor-associated macrophages (TAMs) in the tumor microenvironment. In preclinical intracerebral syngeneic glioblastoma models, CRISPR/Cas9 gene knockout of Thrombospondin-1 (TSP-1/ Thbs1 ), a synaptogenic factor critical for glioma-induced neuronal circuit remodeling, in glioblastoma cells suppressed synaptogenesis and glutamatergic neuronal hyperexcitability, while simultaneously restoring antigen-presentation and pro-inflammatory responses. Moreover, TSP-1 knockout prolonged survival of immunocompetent mice harboring intracerebral syngeneic glioblastoma, but not of immunocompromised mice, and promoted infiltrations of pro-inflammatory TAMs and CD8+ T-cells in the tumor microenvironment. Notably, pharmacological inhibition of glutamatergic excitatory signals redirected tumor-associated macrophages toward a less immunosuppressive phenotype, resulting in prolonged survival. Altogether, our results demonstrate previously unrecognized immunosuppression mechanisms resulting from glioma-neuronal circuit remodeling and suggest future strategies targeting glioma-neuron-immune crosstalk may open up new avenues for immunotherapy.
Collapse
|
157
|
Yan M, Liu Q. The nature of cancer. Front Med 2023; 17:796-803. [PMID: 36913173 DOI: 10.1007/s11684-022-0975-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 12/05/2022] [Indexed: 03/14/2023]
Affiliation(s)
- Min Yan
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Quentin Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China.
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, 116023, China.
| |
Collapse
|
158
|
de Ruiter Swain J, Michalopoulou E, Noch EK, Lukey MJ, Van Aelst L. Metabolic partitioning in the brain and its hijacking by glioblastoma. Genes Dev 2023; 37:681-702. [PMID: 37648371 PMCID: PMC10546978 DOI: 10.1101/gad.350693.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
The different cell types in the brain have highly specialized roles with unique metabolic requirements. Normal brain function requires the coordinated partitioning of metabolic pathways between these cells, such as in the neuron-astrocyte glutamate-glutamine cycle. An emerging theme in glioblastoma (GBM) biology is that malignant cells integrate into or "hijack" brain metabolism, co-opting neurons and glia for the supply of nutrients and recycling of waste products. Moreover, GBM cells communicate via signaling metabolites in the tumor microenvironment to promote tumor growth and induce immune suppression. Recent findings in this field point toward new therapeutic strategies to target the metabolic exchange processes that fuel tumorigenesis and suppress the anticancer immune response in GBM. Here, we provide an overview of the intercellular division of metabolic labor that occurs in both the normal brain and the GBM tumor microenvironment and then discuss the implications of these interactions for GBM therapy.
Collapse
Affiliation(s)
- Jed de Ruiter Swain
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
- Cold Spring Harbor Laboratory School of Biological Sciences, Cold Spring Harbor, New York 11724, USA
| | | | - Evan K Noch
- Department of Neurology, Division of Neuro-oncology, Weill Cornell Medicine, New York, New York 10021, USA
| | - Michael J Lukey
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA;
| | - Linda Van Aelst
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA;
| |
Collapse
|
159
|
García-Montaño LA, Licón-Muñoz Y, Martinez FJ, Keddari YR, Ziemke MK, Chohan MO, Piccirillo SG. Dissecting Intra-tumor Heterogeneity in the Glioblastoma Microenvironment Using Fluorescence-Guided Multiple Sampling. Mol Cancer Res 2023; 21:755-767. [PMID: 37255362 PMCID: PMC10390891 DOI: 10.1158/1541-7786.mcr-23-0048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/25/2023] [Accepted: 05/05/2023] [Indexed: 05/10/2023]
Abstract
The treatment of the most aggressive primary brain tumor in adults, glioblastoma (GBM), is challenging due to its heterogeneous nature, invasive potential, and poor response to chemo- and radiotherapy. As a result, GBM inevitably recurs and only a few patients survive 5 years post-diagnosis. GBM is characterized by extensive phenotypic and genetic heterogeneity, creating a diversified genetic landscape and a network of biological interactions between subclones, ultimately promoting tumor growth and therapeutic resistance. This includes spatial and temporal changes in the tumor microenvironment, which influence cellular and molecular programs in GBM and therapeutic responses. However, dissecting phenotypic and genetic heterogeneity at spatial and temporal levels is extremely challenging, and the dynamics of the GBM microenvironment cannot be captured by analysis of a single tumor sample. In this review, we discuss the current research on GBM heterogeneity, in particular, the utility and potential applications of fluorescence-guided multiple sampling to dissect phenotypic and genetic intra-tumor heterogeneity in the GBM microenvironment, identify tumor and non-tumor cell interactions and novel therapeutic targets in areas that are key for tumor growth and recurrence, and improve the molecular classification of GBM.
Collapse
Affiliation(s)
- Leopoldo A. García-Montaño
- The Brain Tumor Translational Laboratory, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
- University of New Mexico Comprehensive Cancer Center, Albuquerque, New Mexico
| | - Yamhilette Licón-Muñoz
- The Brain Tumor Translational Laboratory, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
- University of New Mexico Comprehensive Cancer Center, Albuquerque, New Mexico
| | - Frank J. Martinez
- The Brain Tumor Translational Laboratory, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
- University of New Mexico Comprehensive Cancer Center, Albuquerque, New Mexico
| | - Yasine R. Keddari
- The Brain Tumor Translational Laboratory, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
- University of California, Merced, California
| | - Michael K. Ziemke
- Department of Neurosurgery, University of Mississippi Medical Center, Jackson, Mississippi
| | - Muhammad O. Chohan
- Department of Neurosurgery, University of Mississippi Medical Center, Jackson, Mississippi
| | - Sara G.M. Piccirillo
- The Brain Tumor Translational Laboratory, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
- University of New Mexico Comprehensive Cancer Center, Albuquerque, New Mexico
| |
Collapse
|
160
|
Dreyer CA, VanderVorst K, Natwick D, Bell G, Sood P, Hernandez M, Angelastro JM, Collins SR, Carraway KL. A complex of Wnt/planar cell polarity signaling components Vangl1 and Fzd7 drives glioblastoma multiforme malignant properties. Cancer Lett 2023; 567:216280. [PMID: 37336284 PMCID: PMC10582999 DOI: 10.1016/j.canlet.2023.216280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 06/21/2023]
Abstract
Targeting common oncogenic drivers of glioblastoma multiforme (GBM) in patients has remained largely ineffective, raising the possibility that alternative pathways may contribute to tumor aggressiveness. Here we demonstrate that Vangl1 and Fzd7, components of the non-canonical Wnt planar cell polarity (Wnt/PCP) signaling pathway, promote GBM malignancy by driving cellular proliferation, migration, and invasiveness, and engage Rho GTPases to promote cytoskeletal rearrangements and actin dynamics in migrating GBM cells. Mechanistically, we uncover the existence of a novel Vangl1/Fzd7 complex at the leading edge of migrating GBM cells and propose that this complex is critical for the recruitment of downstream effectors to promote tumor progression. Moreover, we observe that depletion of FZD7 results in a striking suppression of tumor growth and latency and extends overall survival in an intracranial mouse xenograft model. Our observations support a novel mechanism by which Wnt/PCP components Vangl1 and Fzd7 form a complex at the leading edge of migratory GBM cells to engage downstream effectors that promote actin cytoskeletal rearrangements dynamics. Our findings suggest that interference with Wnt/PCP pathway function may offer a novel therapeutic strategy for patients diagnosed with GBM.
Collapse
Affiliation(s)
- Courtney A Dreyer
- Department of Biochemistry and Molecular Medicine and University of California Davis Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Kacey VanderVorst
- Department of Biochemistry and Molecular Medicine and University of California Davis Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Dean Natwick
- Department of Microbiology and Molecular Genetics, University of California Davis, Davis, CA, USA
| | - George Bell
- Department of Microbiology and Molecular Genetics, University of California Davis, Davis, CA, USA
| | - Prachi Sood
- Department of Biochemistry and Molecular Medicine and University of California Davis Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Maria Hernandez
- Department of Biochemistry and Molecular Medicine and University of California Davis Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, CA, USA
| | - James M Angelastro
- Department of Molecular Biosciences, University of California Davis School of Veterinary Medicine, Davis, CA, USA
| | - Sean R Collins
- Department of Microbiology and Molecular Genetics, University of California Davis, Davis, CA, USA
| | - Kermit L Carraway
- Department of Biochemistry and Molecular Medicine and University of California Davis Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, CA, USA.
| |
Collapse
|
161
|
Huang-Hobbs E, Cheng YT, Ko Y, Luna-Figueroa E, Lozzi B, Taylor KR, McDonald M, He P, Chen HC, Yang Y, Maleki E, Lee ZF, Murali S, Williamson MR, Choi D, Curry R, Bayley J, Woo J, Jalali A, Monje M, Noebels JL, Harmanci AS, Rao G, Deneen B. Remote neuronal activity drives glioma progression through SEMA4F. Nature 2023; 619:844-850. [PMID: 37380778 PMCID: PMC10840127 DOI: 10.1038/s41586-023-06267-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/26/2023] [Indexed: 06/30/2023]
Abstract
The tumour microenvironment plays an essential role in malignancy, and neurons have emerged as a key component of the tumour microenvironment that promotes tumourigenesis across a host of cancers1,2. Recent studies on glioblastoma (GBM) highlight bidirectional signalling between tumours and neurons that propagates a vicious cycle of proliferation, synaptic integration and brain hyperactivity3-8; however, the identity of neuronal subtypes and tumour subpopulations driving this phenomenon is incompletely understood. Here we show that callosal projection neurons located in the hemisphere contralateral to primary GBM tumours promote progression and widespread infiltration. Using this platform to examine GBM infiltration, we identified an activity-dependent infiltrating population present at the leading edge of mouse and human tumours that is enriched for axon guidance genes. High-throughput, in vivo screening of these genes identified SEMA4F as a key regulator of tumourigenesis and activity-dependent progression. Furthermore, SEMA4F promotes the activity-dependent infiltrating population and propagates bidirectional signalling with neurons by remodelling tumour-adjacent synapses towards brain network hyperactivity. Collectively our studies demonstrate that subsets of neurons in locations remote to primary GBM promote malignant progression, and also show new mechanisms of glioma progression that are regulated by neuronal activity.
Collapse
Affiliation(s)
- Emmet Huang-Hobbs
- The Integrative Molecular and Biomedical Sciences Graduate Program, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Yi-Ting Cheng
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA
| | - Yeunjung Ko
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Program in Immunology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Estefania Luna-Figueroa
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Brittney Lozzi
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
- Program in Genetics and Genomics, Baylor College of Medicine, Houston, TX, USA
| | - Kathryn R Taylor
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Malcolm McDonald
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Program in Development, Disease, Models and Therapeutics, Baylor College of Medicine, Houston, TX, USA
| | - Peihao He
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Program in Cancer Cell Biology, Baylor College of Medicine, Houston, TX, USA
| | - Hsiao-Chi Chen
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Program in Cancer Cell Biology, Baylor College of Medicine, Houston, TX, USA
| | - Yuhui Yang
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Ehson Maleki
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Zhung-Fu Lee
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Program in Development, Disease, Models and Therapeutics, Baylor College of Medicine, Houston, TX, USA
| | - Sanjana Murali
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Program in Cancer Cell Biology, Baylor College of Medicine, Houston, TX, USA
| | - Michael R Williamson
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Dongjoo Choi
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Rachel Curry
- The Integrative Molecular and Biomedical Sciences Graduate Program, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
| | - James Bayley
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Junsung Woo
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Ali Jalali
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Michelle Monje
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Jeffrey L Noebels
- Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX, USA
- Department of Neurology, Baylor College of Medicine, Houston, TX, USA
| | - Akdes Serin Harmanci
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Ganesh Rao
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Benjamin Deneen
- The Integrative Molecular and Biomedical Sciences Graduate Program, Baylor College of Medicine, Houston, TX, USA.
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA.
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX, USA.
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA.
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA.
- Program in Development, Disease, Models and Therapeutics, Baylor College of Medicine, Houston, TX, USA.
- Program in Cancer Cell Biology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
162
|
Zhang X, Jing F, Guo C, Li X, Li J, Liang G. Tumor-suppressive function and mechanism of miR-873-5p in glioblastoma: evidence based on bioinformatics analysis and experimental validation. Aging (Albany NY) 2023; 15:5412-5425. [PMID: 37382594 PMCID: PMC10333085 DOI: 10.18632/aging.204800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/16/2023] [Indexed: 06/30/2023]
Abstract
This study aims to clarify the mechanistic actions of microRNA-873-5p (miR-873-5p) on glioblastoma (GBM) progression. The most differentially expressed miRNAs were retrieved from the GEO database. It was established that miR-873-5p was downregulated in GBM tissues and cells. Based on in silico prediction and experimental data, HMOX1 was demonstrated to be a target gene of miR-873-5p. Further, miR-873-5p was then ectopically expressed in GBM cells to examine its effect on the malignant behaviors of GBM cells. Overexpression of miR-873-5p inhibited GBM cell proliferation and invasion by targeting HMOX1. HMOX1 promoted SPOP expression by increasing HIF1α expression, thus stimulating GBM cell malignant phenotypes. miR-873-5p suppressed the malignant phenotypes of GBM cells and tumorigenesis in vitro and in vivo by inhibiting the HMOX1/HIF1α/SPOP signaling axis. This study uncovers a novel miR-873-5p/HMOX1/HIF1α/SPOP axis in GBM, providing new insights into GBM progression and therapeutic targets for GBM treatment.
Collapse
Affiliation(s)
- Xiaobin Zhang
- Department of Neurosurgery, General Hospital of the Northern Theater Command of Chinese People’s Liberation Army, Shenyang 110000, China
| | - Fangkun Jing
- Department of Neurosurgery, Jinqiu Hospital of Liaoning Province, Shenyang 110000, China
| | - Chen Guo
- Department of Neurosurgery, General Hospital of the Northern Theater Command of Chinese People’s Liberation Army, Shenyang 110000, China
| | - Xinning Li
- Department of Neurosurgery, General Hospital of the Northern Theater Command of Chinese People’s Liberation Army, Shenyang 110000, China
| | - Jianan Li
- Department of Neurosurgery, General Hospital of the Northern Theater Command of Chinese People’s Liberation Army, Shenyang 110000, China
| | - Guobiao Liang
- Department of Neurosurgery, General Hospital of the Northern Theater Command of Chinese People’s Liberation Army, Shenyang 110000, China
| |
Collapse
|
163
|
Stoufflet J, Tielens S, Nguyen L. Shaping the cerebral cortex by cellular crosstalk. Cell 2023; 186:2733-2747. [PMID: 37352835 DOI: 10.1016/j.cell.2023.05.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/30/2023] [Accepted: 05/26/2023] [Indexed: 06/25/2023]
Abstract
The cerebral cortex is the brain's outermost layer. It is responsible for processing motor and sensory information that support high-level cognitive abilities and shape personality. Its development and functional organization strongly rely on cell communication that is established via an intricate system of diffusible signals and physical contacts during development. Interfering with this cellular crosstalk can cause neurodevelopmental disorders. Here, we review how crosstalk between migrating cells and their environment influences cerebral cortex development, ranging from neurogenesis to synaptogenesis and assembly of cortical circuits.
Collapse
Affiliation(s)
- Julie Stoufflet
- Laboratory of Molecular Regulation of Neurogenesis, GIGA-Stem Cells and GIGA-Neurosciences, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, CHU Sart Tilman, Liège 4000, Belgium
| | - Sylvia Tielens
- Laboratory of Molecular Regulation of Neurogenesis, GIGA-Stem Cells and GIGA-Neurosciences, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, CHU Sart Tilman, Liège 4000, Belgium
| | - Laurent Nguyen
- Laboratory of Molecular Regulation of Neurogenesis, GIGA-Stem Cells and GIGA-Neurosciences, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, CHU Sart Tilman, Liège 4000, Belgium; Walloon Excellence in Life Sciences and Biotechnology (WELBIO), Wavres, Belgium.
| |
Collapse
|
164
|
Soldozy S, Eichberg DG, Morell AA, Luther E, Lu VM, Higgins DMO, Patel NV, Shah AH, Hanft SJ, Komotar RJ, Ivan ME. Oncolytic Virotherapy for High-Grade Glioma and Current Evidence and Factors to Consider for Incorporation into Clinical Practice. Pathogens 2023; 12:861. [PMID: 37513708 PMCID: PMC10386040 DOI: 10.3390/pathogens12070861] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/16/2023] [Accepted: 06/16/2023] [Indexed: 07/30/2023] Open
Abstract
Brain tumor incidence is on the rise, and glioblastoma comprises the majority of primary tumors. Despite maximal safe resection and adjuvant chemoradiation, median survival for high-grade glioma remains poor. For this reason, it is important to develop and incorporate new treatment strategies. Oncolytic virotherapy has emerged as a viable new therapeutic entity to fill this gap. Preclinical research has shown oncolytic virotherapy to be a robust and effective treatment option for brain tumors, and clinical trials for both adult and pediatric high-grade glioma are underway. The unique and protected environment of the nervous system, in part due to the blood-brain barrier, prevents traditional systemic therapies from achieving adequate penetration. Brain tumors are also heterogenous in nature due to their diverse molecular profiles, further complicating systemic treatment efforts. Oncolytic viruses may serve to fill this gap in brain tumor treatment given their amenability to genetic modification and ability to target unique tumor epitopes. In addition, direct inoculation of the oncolytic virus agent to the tumor bed following surgical resection absolves risk of systemic side effects and ensures adequate delivery. As virotherapy transitions from bench to bedside, it is important to discuss factors to make this transition more seamless. In this article, we describe the current clinical evidence as it pertains to oncolytic virotherapy and the treatment of brain tumors as well as factors to consider for its incorporation into neurosurgical workflow.
Collapse
Affiliation(s)
- Sauson Soldozy
- Department of Neurosurgery, Westchester Medical Center, New York Medical College, 100 Woods Road, Valhalla, New York, NY 10595, USA
| | - Daniel G Eichberg
- Department of Neurological Surgery, University of Miami, 1295 NW 14th St, Miami, FL 33125, USA
| | - Alexis A Morell
- Department of Neurological Surgery, University of Miami, 1295 NW 14th St, Miami, FL 33125, USA
| | - Evan Luther
- Department of Neurological Surgery, University of Miami, 1295 NW 14th St, Miami, FL 33125, USA
| | - Victor M Lu
- Department of Neurological Surgery, University of Miami, 1295 NW 14th St, Miami, FL 33125, USA
| | - Dominique M O Higgins
- Department of Neurosurgery, University of North Carolina Medical Center, 101 Manning Dr, Chapel Hill, NC 27514, USA
| | - Nitesh V Patel
- Department of Neurosurgery, Hackensack Meridian School of Medicine, Hackensack Meridian Health-Jersey Shore University Medical Center, Nutley, NJ 07110, USA
| | - Ashish H Shah
- Department of Neurological Surgery, University of Miami, 1295 NW 14th St, Miami, FL 33125, USA
| | - Simon J Hanft
- Department of Neurosurgery, Westchester Medical Center, New York Medical College, 100 Woods Road, Valhalla, New York, NY 10595, USA
| | - Ricardo J Komotar
- Department of Neurological Surgery, University of Miami, 1295 NW 14th St, Miami, FL 33125, USA
| | - Michael E Ivan
- Department of Neurological Surgery, University of Miami, 1295 NW 14th St, Miami, FL 33125, USA
| |
Collapse
|
165
|
Niclou SP, Golebiewska A. How to move a "fried egg": membrane blebbing in oligodendrogliomas. Neuro Oncol 2023; 25:1044-1046. [PMID: 36782080 PMCID: PMC10237423 DOI: 10.1093/neuonc/noad039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Indexed: 02/15/2023] Open
Affiliation(s)
- Simone P Niclou
- NORLUX Neuro-Oncology Laboratory, Department of Cancer Research, Luxembourg Institute of Health, L-1210, Luxembourg, Luxembourg
| | - Anna Golebiewska
- NORLUX Neuro-Oncology Laboratory, Department of Cancer Research, Luxembourg Institute of Health, L-1210, Luxembourg, Luxembourg
| |
Collapse
|
166
|
Abstract
The nervous system regulates tissue stem and precursor populations throughout life. Parallel to roles in development, the nervous system is emerging as a critical regulator of cancer, from oncogenesis to malignant growth and metastatic spread. Various preclinical models in a range of malignancies have demonstrated that nervous system activity can control cancer initiation and powerfully influence cancer progression and metastasis. Just as the nervous system can regulate cancer progression, cancer also remodels and hijacks nervous system structure and function. Interactions between the nervous system and cancer occur both in the local tumour microenvironment and systemically. Neurons and glial cells communicate directly with malignant cells in the tumour microenvironment through paracrine factors and, in some cases, through neuron-to-cancer cell synapses. Additionally, indirect interactions occur at a distance through circulating signals and through influences on immune cell trafficking and function. Such cross-talk among the nervous system, immune system and cancer-both systemically and in the local tumour microenvironment-regulates pro-tumour inflammation and anti-cancer immunity. Elucidating the neuroscience of cancer, which calls for interdisciplinary collaboration among the fields of neuroscience, developmental biology, immunology and cancer biology, may advance effective therapies for many of the most difficult to treat malignancies.
Collapse
Affiliation(s)
- Rebecca Mancusi
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Michelle Monje
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
167
|
Hoffmann L, Coras R, Kobow K, López-Rivera JA, Lal D, Leu C, Najm I, Nürnberg P, Herms J, Harter PN, Bien CG, Kalbhenn T, Müller M, Pieper T, Hartlieb T, Kudernatsch M, Hamer H, Brandner S, Rössler K, Blümcke I, Jabari S. Ganglioglioma with adverse clinical outcome and atypical histopathological features were defined by alterations in PTPN11/KRAS/NF1 and other RAS-/MAP-Kinase pathway genes. Acta Neuropathol 2023; 145:815-827. [PMID: 36973520 PMCID: PMC10175344 DOI: 10.1007/s00401-023-02561-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/27/2023] [Accepted: 03/09/2023] [Indexed: 03/29/2023]
Abstract
Exome-wide sequencing studies recently described PTPN11 as a novel brain somatic epilepsy gene. In contrast, germline mutations of PTPN11 are known to cause Noonan syndrome, a multisystem disorder characterized by abnormal facial features, developmental delay, and sporadically, also brain tumors. Herein, we performed a deep phenotype-genotype analysis of a comprehensive series of ganglioglioma (GG) with brain somatic alterations of the PTPN11/KRAS/NF1 genes compared to GG with common MAP-Kinase signaling pathway alterations, i.e., BRAFV600E. Seventy-two GG were submitted to whole exome sequencing and genotyping and 84 low grade epilepsy associated tumors (LEAT) to DNA-methylation analysis. In 28 tumours, both analyses were available from the same sample. Clinical data were retrieved from hospital files including disease onset, age at surgery, brain localization, and seizure outcome. A comprehensive histopathology staining panel was available in all cases. We identified eight GG with PTPN11 alterations, copy number variant (CNV) gains of chromosome 12, and the commonality of additional CNV gains in NF1, KRAS, FGFR4 and RHEB, as well as BRAFV600E alterations. Histopathology revealed an atypical glio-neuronal phenotype with subarachnoidal tumor spread and large, pleomorphic, and multinuclear cellular features. Only three out of eight patients with GG and PTPN11/KRAS/NF1 alterations were free of disabling-seizures 2 years after surgery (38% had Engel I). This was remarkably different from our series of GG with only BRAFV600E mutations (85% had Engel I). Unsupervised cluster analysis of DNA methylation arrays separated these tumours from well-established LEAT categories. Our data point to a subgroup of GG with cellular atypia in glial and neuronal cell components, adverse postsurgical outcome, and genetically characterized by complex alterations in PTPN11 and other RAS-/MAP-Kinase and/or mTOR signaling pathways. These findings need prospective validation in clinical practice as they argue for an adaptation of the WHO grading system in developmental, glio-neuronal tumors associated with early onset focal epilepsy.
Collapse
Affiliation(s)
- Lucas Hoffmann
- Department of Neuropathology, Partner of the European Reference Network (ERN) EpiCARE, Universitätsklinikum Erlangen, FAU Erlangen-Nürnberg, Erlangen, 91054 Germany
| | - Roland Coras
- Department of Neuropathology, Partner of the European Reference Network (ERN) EpiCARE, Universitätsklinikum Erlangen, FAU Erlangen-Nürnberg, Erlangen, 91054 Germany
| | - Katja Kobow
- Department of Neuropathology, Partner of the European Reference Network (ERN) EpiCARE, Universitätsklinikum Erlangen, FAU Erlangen-Nürnberg, Erlangen, 91054 Germany
| | - Javier A. López-Rivera
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, USA
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195 USA
- Charles Shor Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, USA
| | - Dennis Lal
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195 USA
- Charles Shor Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, USA
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and M.I.T, Cambridge, MA 02142 USA
- Cologne Center for Genomics (CCG), Medical Faculty of the University of Cologne, University Hospital of Cologne, 50931 Cologne, Germany
| | - Costin Leu
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195 USA
- Charles Shor Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, USA
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and M.I.T, Cambridge, MA 02142 USA
- Cologne Center for Genomics (CCG), Medical Faculty of the University of Cologne, University Hospital of Cologne, 50931 Cologne, Germany
| | - Imad Najm
- Charles Shor Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, USA
| | - Peter Nürnberg
- Cologne Center for Genomics (CCG), Medical Faculty of the University of Cologne, University Hospital of Cologne, 50931 Cologne, Germany
| | - Jochen Herms
- Center for Neuropathology and Prion Research, LMU Munich, Munich, Germany
| | - Patrick N. Harter
- Center for Neuropathology and Prion Research, LMU Munich, Munich, Germany
| | - Christian G. Bien
- Department of Epileptology (Krankenhaus Mara), Medical School, Bielefeld University, Bielefeld, 33617 Germany
| | - Thilo Kalbhenn
- Department of Epileptology (Krankenhaus Mara), Medical School, Bielefeld University, Bielefeld, 33617 Germany
- Department of Neurosurgery (Evangelisches Klinikum Bethel), Medical School, Bielefeld University, Bielefeld, 33617 Germany
| | - Markus Müller
- Department of Epileptology (Krankenhaus Mara), Medical School, Bielefeld University, Bielefeld, 33617 Germany
| | - Tom Pieper
- Center for Pediatric Neurology, Neurorehabilitation, and Epileptology, Schoen-Clinic, Vogtareuth, 83569 Rosenheim, Germany
| | - Till Hartlieb
- Center for Pediatric Neurology, Neurorehabilitation, and Epileptology, Schoen-Clinic, Vogtareuth, 83569 Rosenheim, Germany
| | - Manfred Kudernatsch
- Center for Pediatric Neurology, Neurorehabilitation, and Epileptology, Schoen-Clinic, Vogtareuth, 83569 Rosenheim, Germany
| | - Hajo Hamer
- Epilepsy Center, EpiCARE Partner, Universitätsklinikum Erlangen, FAU Erlangen-Nürnberg, Erlangen, 91054 Germany
| | - Sebastian Brandner
- Department of Neurosurgery, EpiCARE Partner, Universitätsklinikum Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Karl Rössler
- Department of Neurosurgery, EpiCARE Partner, Universitätsklinikum Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
- Department of Neurosurgery, EpiCARE Partner, Medical University of Vienna, Vienna General Hospital, Vienna, Austria
| | - Ingmar Blümcke
- Department of Neuropathology, Partner of the European Reference Network (ERN) EpiCARE, Universitätsklinikum Erlangen, FAU Erlangen-Nürnberg, Erlangen, 91054 Germany
| | - Samir Jabari
- Department of Neuropathology, Partner of the European Reference Network (ERN) EpiCARE, Universitätsklinikum Erlangen, FAU Erlangen-Nürnberg, Erlangen, 91054 Germany
| |
Collapse
|
168
|
Valdebenito S, Ono A, Rong L, Eugenin EA. The role of tunneling nanotubes during early stages of HIV infection and reactivation: implications in HIV cure. NEUROIMMUNE PHARMACOLOGY AND THERAPEUTICS 2023; 2:169-186. [PMID: 37476291 PMCID: PMC10355284 DOI: 10.1515/nipt-2022-0015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 11/30/2022] [Indexed: 07/22/2023]
Abstract
Tunneling nanotubes (TNTs), also called cytonemes or tumor microtubes, correspond to cellular processes that enable long-range communication. TNTs are plasma membrane extensions that form tubular processes that connect the cytoplasm of two or more cells. TNTs are mostly expressed during the early stages of development and poorly expressed in adulthood. However, in disease conditions such as stroke, cancer, and viral infections such as HIV, TNTs proliferate, but their role is poorly understood. TNTs function has been associated with signaling coordination, organelle sharing, and the transfer of infectious agents such as HIV. Here, we describe the critical role and function of TNTs during HIV infection and reactivation, as well as the use of TNTs for cure strategies.
Collapse
Affiliation(s)
- Silvana Valdebenito
- Department of Neurobiology, University of Texas Medical Branch (UTMB), Galveston, TX, USA
| | - Akira Ono
- Department of Microbiology & Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Libin Rong
- Department of Mathematics, University of Florida, Gainesville, FL, USA
| | - Eliseo A. Eugenin
- Department of Neurobiology, University of Texas Medical Branch (UTMB), Galveston, TX, USA
| |
Collapse
|
169
|
Brisson L, Henrique Geraldo L, Bikfalvi A, Mathivet T. The strange Microenvironment of Glioblastoma. Rev Neurol (Paris) 2023; 179:490-501. [PMID: 36964121 PMCID: PMC11195635 DOI: 10.1016/j.neurol.2023.03.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/24/2023] [Accepted: 03/01/2023] [Indexed: 03/26/2023]
Abstract
Glioblastoma (GB) is the most common and aggressive primary brain tumor, with poor patient survival and lack of effective therapies. Late advances trying to decipher the composition of the GB tumor microenvironment (TME) emphasized its role in tumor progression and potentialized it as a therapeutic target. Many components participate critically to tumor development and expansion such as blood vessels, immune cells or components of the nervous system. Dysmorphic tumor vasculature brings challenges to optimal delivery of cytotoxic agents currently used in clinics. Also, massive infiltration of immunosuppressive myeloid cells and limited recruitment of T cells limits the success of conventional immunotherapies. Neuronal input seems also be required for tumor expansion. In this review, we provide a comprehensive report of vascular and immune component of the GB TME and their cross talk during GB progression.
Collapse
Affiliation(s)
- L Brisson
- BRIC Inserm U1312, Université de Bordeaux, 33615 Pessac, France
| | - L Henrique Geraldo
- Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - A Bikfalvi
- BRIC Inserm U1312, Université de Bordeaux, 33615 Pessac, France.
| | - T Mathivet
- BRIC Inserm U1312, Université de Bordeaux, 33615 Pessac, France
| |
Collapse
|
170
|
Lin X, Huang Z, Wang Y. Neuronal Mechanisms Govern Glioblastoma Cell Invasion. Neurosci Bull 2023; 39:1027-1030. [PMID: 36723779 PMCID: PMC10264303 DOI: 10.1007/s12264-023-01028-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 12/18/2022] [Indexed: 02/02/2023] Open
Affiliation(s)
- Xiaowu Lin
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, 311121, China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou, 311121, China
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, China
| | - Zhihui Huang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China.
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, 311121, China.
- Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou, 311121, China.
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, China.
| | - Yongjie Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China.
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, 311121, China.
- Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou, 311121, China.
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, China.
| |
Collapse
|
171
|
Li Z, Wang B, Wu J, Han L. Will EGFRvIII and neuronal-derived EGFR be targets for imipramine? Front Pharmacol 2023; 14:1156492. [PMID: 37324489 PMCID: PMC10266953 DOI: 10.3389/fphar.2023.1156492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/18/2023] [Indexed: 06/17/2023] Open
Abstract
Tricyclic antidepressant is an old and well-established therapeutic agent with a good safety profile, making them an excellent candidate for repurposing. In light of the growing understanding of the importance of nerves in the development and progression of cancer, attention is now being turned to using nerve-targeting drugs for the treatment of cancer, particularly TCAs. However, the specific mechanism by which antidepressants affect the tumor microenvironment of glioblastoma (GBM) is still unclear. Here, we combined bulk RNA sequencing, network pharmacology, single-cell sequencing, molecular docking and molecular dynamics simulation to explore the potential molecular mechanism of imipramine in the treatment of GBM. We first revealed that the imipramine treatment is presumed to target EGFRvIII and neuronal-derived EGFR, which may play a pivotal role in treating GBM by reducing the GABAergic synapse and vesicle-mediated release and other processes thereby modulating immune function. The novel pharmacological mechanisms might provide further research directions.
Collapse
Affiliation(s)
- Zesheng Li
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin, China
| | - Bo Wang
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin, China
| | - Jianjian Wu
- Department of Environment, College of Environment and Resources, Xiangtan University, Xiangtan, China
| | - Lei Han
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
172
|
Garcia-Diaz C, Pöysti A, Mereu E, Clements MP, Brooks LJ, Galvez-Cancino F, Castillo SP, Tang W, Beattie G, Courtot L, Ruiz S, Roncaroli F, Yuan Y, Marguerat S, Quezada SA, Heyn H, Parrinello S. Glioblastoma cell fate is differentially regulated by the microenvironments of the tumor bulk and infiltrative margin. Cell Rep 2023; 42:112472. [PMID: 37149862 DOI: 10.1016/j.celrep.2023.112472] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 03/14/2023] [Accepted: 04/19/2023] [Indexed: 05/09/2023] Open
Abstract
Glioblastoma (GBM) recurrence originates from invasive margin cells that escape surgical debulking, but to what extent these cells resemble their bulk counterparts remains unclear. Here, we generated three immunocompetent somatic GBM mouse models, driven by subtype-associated mutations, to compare matched bulk and margin cells. We find that, regardless of mutations, tumors converge on common sets of neural-like cellular states. However, bulk and margin have distinct biology. Injury-like programs associated with immune infiltration dominate in the bulk, leading to the generation of lowly proliferative injured neural progenitor-like cells (iNPCs). iNPCs account for a significant proportion of dormant GBM cells and are induced by interferon signaling within T cell niches. In contrast, developmental-like trajectories are favored within the immune-cold margin microenvironment resulting in differentiation toward invasive astrocyte-like cells. These findings suggest that the regional tumor microenvironment dominantly controls GBM cell fate and biological vulnerabilities identified in the bulk may not extend to the margin residuum.
Collapse
Affiliation(s)
- Claudia Garcia-Diaz
- Samantha Dickson Brain Cancer Unit, UCL Cancer Institute, London WC1E 6DD, UK
| | - Anni Pöysti
- Samantha Dickson Brain Cancer Unit, UCL Cancer Institute, London WC1E 6DD, UK
| | - Elisabetta Mereu
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, 08028 Barcelona, Spain; Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Catalonia, Spain
| | - Melanie P Clements
- Samantha Dickson Brain Cancer Unit, UCL Cancer Institute, London WC1E 6DD, UK
| | - Lucy J Brooks
- Samantha Dickson Brain Cancer Unit, UCL Cancer Institute, London WC1E 6DD, UK
| | - Felipe Galvez-Cancino
- Cancer Immunology Unit, Research Department of Haematology, UCL Cancer Institute, London WC1E 6DD, UK
| | - Simon P Castillo
- Division of Molecular Pathology & Centre for Evolution and Cancer, The Institute of Cancer Research, London SM2 5NG, UK
| | - Wenhao Tang
- Department of Mathematics, Imperial College London, London, UK
| | - Gordon Beattie
- CRUK City of London Centre Single Cell Genomics Facility, UCL Cancer Institute, University College London, London, UK; Genomics Translational Technology Platform, UCL Cancer Institute, University College London, London, UK
| | - Lilas Courtot
- Samantha Dickson Brain Cancer Unit, UCL Cancer Institute, London WC1E 6DD, UK
| | - Sara Ruiz
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Federico Roncaroli
- Geoffrey Jefferson Brain Research Centre, Division of Neuroscience, School of Biological Sciences, Faculty of Brain and Mental Health, University of Manchester, Manchester, UK
| | - Yinyin Yuan
- Division of Molecular Pathology & Centre for Evolution and Cancer, The Institute of Cancer Research, London SM2 5NG, UK
| | - Samuel Marguerat
- Genomics Translational Technology Platform, UCL Cancer Institute, University College London, London, UK
| | - Sergio A Quezada
- Cancer Immunology Unit, Research Department of Haematology, UCL Cancer Institute, London WC1E 6DD, UK
| | - Holger Heyn
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, 08028 Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain
| | - Simona Parrinello
- Samantha Dickson Brain Cancer Unit, UCL Cancer Institute, London WC1E 6DD, UK.
| |
Collapse
|
173
|
Nikolic A, Maule F, Bobyn A, Ellestad K, Paik S, Marhon SA, Mehdipour P, Lun X, Chen HM, Mallard C, Hay AJ, Johnston MJ, Gafuik CJ, Zemp FJ, Shen Y, Ninkovic N, Osz K, Labit E, Berger ND, Brownsey DK, Kelly JJ, Biernaskie J, Dirks PB, Derksen DJ, Jones SJM, Senger DL, Chan JA, Mahoney DJ, De Carvalho DD, Gallo M. macroH2A2 antagonizes epigenetic programs of stemness in glioblastoma. Nat Commun 2023; 14:3062. [PMID: 37244935 PMCID: PMC10224928 DOI: 10.1038/s41467-023-38919-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 05/22/2023] [Indexed: 05/29/2023] Open
Abstract
Self-renewal is a crucial property of glioblastoma cells that is enabled by the choreographed functions of chromatin regulators and transcription factors. Identifying targetable epigenetic mechanisms of self-renewal could therefore represent an important step toward developing effective treatments for this universally lethal cancer. Here we uncover an epigenetic axis of self-renewal mediated by the histone variant macroH2A2. With omics and functional assays deploying patient-derived in vitro and in vivo models, we show that macroH2A2 shapes chromatin accessibility at enhancer elements to antagonize transcriptional programs of self-renewal. macroH2A2 also sensitizes cells to small molecule-mediated cell death via activation of a viral mimicry response. Consistent with these results, our analyses of clinical cohorts indicate that high transcriptional levels of this histone variant are associated with better prognosis of high-grade glioma patients. Our results reveal a targetable epigenetic mechanism of self-renewal controlled by macroH2A2 and suggest additional treatment approaches for glioblastoma patients.
Collapse
Affiliation(s)
- Ana Nikolic
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Francesca Maule
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Anna Bobyn
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, AB, Canada
| | - Katrina Ellestad
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Seungil Paik
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | | | - Parinaz Mehdipour
- Princess Margaret Cancer Centre, Toronto, ON, Canada
- Ludwig Institute for Cancer Research, University of Oxford, Oxford, UK
| | - Xueqing Lun
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Huey-Miin Chen
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Claire Mallard
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Alexander J Hay
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Michael J Johnston
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Christopher J Gafuik
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Franz J Zemp
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Yaoqing Shen
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Nicoletta Ninkovic
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Katalin Osz
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Elodie Labit
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Compararive Biology and Experimental Medicine, Faculty of Veterinary Medicine, and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - N Daniel Berger
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Duncan K Brownsey
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Chemistry, Faculty of Science, University of Calgary, Calgary, AB, Canada
| | - John J Kelly
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Jeff Biernaskie
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Compararive Biology and Experimental Medicine, Faculty of Veterinary Medicine, and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Peter B Dirks
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Darren J Derksen
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Chemistry, Faculty of Science, University of Calgary, Calgary, AB, Canada
| | - Steven J M Jones
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Donna L Senger
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Jennifer A Chan
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Douglas J Mahoney
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Daniel D De Carvalho
- Princess Margaret Cancer Centre, Toronto, ON, Canada
- Department of Medical Biophysics, Faculty of Science, University of Toronto, Toronto, ON, Canada
| | - Marco Gallo
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
174
|
Yuile A, Wei JQ, Mohan AA, Hotchkiss KM, Khasraw M. Interdependencies of the Neuronal, Immune and Tumor Microenvironment in Gliomas. Cancers (Basel) 2023; 15:2856. [PMID: 37345193 PMCID: PMC10216320 DOI: 10.3390/cancers15102856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/15/2023] [Accepted: 05/15/2023] [Indexed: 06/23/2023] Open
Abstract
Gliomas are the most common primary brain malignancy and are universally fatal. Despite significant breakthrough in understanding tumor biology, treatment breakthroughs have been limited. There is a growing appreciation that major limitations on effective treatment are related to the unique and highly complex glioma tumor microenvironment (TME). The TME consists of multiple different cell types, broadly categorized into tumoral, immune and non-tumoral, non-immune cells. Each group provides significant influence on the others, generating a pro-tumor dynamic with significant immunosuppression. In addition, glioma cells are highly heterogenous with various molecular distinctions on the cellular level. These variations, in turn, lead to their own unique influence on the TME. To develop future treatments, an understanding of this complex TME interplay is needed. To this end, we describe the TME in adult gliomas through interactions between its various components and through various glioma molecular phenotypes.
Collapse
Affiliation(s)
- Alexander Yuile
- Department of Medical Oncology, Royal North Shore Hospital, Reserve Road, St Leonards, NSW 2065, Australia
- The Brain Cancer Group, North Shore Private Hospital, 3 Westbourne Street, St Leonards, NSW 2065, Australia
- Sydney Medical School, Faculty of Medicine and Health Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Joe Q. Wei
- Department of Medical Oncology, Royal North Shore Hospital, Reserve Road, St Leonards, NSW 2065, Australia
- Sydney Medical School, Faculty of Medicine and Health Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Aditya A. Mohan
- The Preston Robert Tisch Brain Tumor Center, Duke University, Durham, NC 27710, USA
| | - Kelly M. Hotchkiss
- The Preston Robert Tisch Brain Tumor Center, Duke University, Durham, NC 27710, USA
| | - Mustafa Khasraw
- The Preston Robert Tisch Brain Tumor Center, Duke University, Durham, NC 27710, USA
| |
Collapse
|
175
|
Hey G, Rao R, Carter A, Reddy A, Valle D, Patel A, Patel D, Lucke-Wold B, Pomeranz Krummel D, Sengupta S. Ligand-Gated Ion Channels: Prognostic and Therapeutic Implications for Gliomas. J Pers Med 2023; 13:jpm13050853. [PMID: 37241023 DOI: 10.3390/jpm13050853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/05/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Gliomas are common primary brain malignancies that remain difficult to treat due to their overall aggressiveness and heterogeneity. Although a variety of therapeutic strategies have been employed for the treatment of gliomas, there is increasing evidence that suggests ligand-gated ion channels (LGICs) can serve as a valuable biomarker and diagnostic tool in the pathogenesis of gliomas. Various LGICs, including P2X, SYT16, and PANX2, have the potential to become altered in the pathogenesis of glioma, which can disrupt the homeostatic activity of neurons, microglia, and astrocytes, further exacerbating the symptoms and progression of glioma. Consequently, LGICs, including purinoceptors, glutamate-gated receptors, and Cys-loop receptors, have been targeted in clinical trials for their potential therapeutic benefit in the diagnosis and treatment of gliomas. In this review, we discuss the role of LGICs in the pathogenesis of glioma, including genetic factors and the effect of altered LGIC activity on the biological functioning of neuronal cells. Additionally, we discuss current and emerging investigations regarding the use of LGICs as a clinical target and potential therapeutic for gliomas.
Collapse
Affiliation(s)
- Grace Hey
- College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Rohan Rao
- College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Ashley Carter
- Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Akshay Reddy
- College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Daisy Valle
- College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Anjali Patel
- College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Drashti Patel
- College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Brandon Lucke-Wold
- Department of Neurosurgery, University of Florida, Gainesville, FL 23608, USA
| | - Daniel Pomeranz Krummel
- Department of Neurology & Rehabilitation Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Soma Sengupta
- Department of Neurology & Rehabilitation Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| |
Collapse
|
176
|
Foss A, Pathania M. Pediatric Glioma Models Provide Insights into Tumor Development and Future Therapeutic Strategies. Dev Neurosci 2023; 46:22-43. [PMID: 37231843 DOI: 10.1159/000531040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 05/09/2023] [Indexed: 05/27/2023] Open
Abstract
In depth study of pediatric gliomas has been hampered due to difficulties in accessing patient tissue and a lack of clinically representative tumor models. Over the last decade, however, profiling of carefully curated cohorts of pediatric tumors has identified genetic drivers that molecularly segregate pediatric gliomas from adult gliomas. This information has inspired the development of a new set of powerful in vitro and in vivo tumor models that can aid in identifying pediatric-specific oncogenic mechanisms and tumor microenvironment interactions. Single-cell analyses of both human tumors and these newly developed models have revealed that pediatric gliomas arise from spatiotemporally discrete neural progenitor populations in which developmental programs have become dysregulated. Pediatric high-grade gliomas also harbor distinct sets of co-segregating genetic and epigenetic alterations, often accompanied by unique features within the tumor microenvironment. The development of these novel tools and data resources has led to insights into the biology and heterogeneity of these tumors, including identification of distinctive sets of driver mutations, developmentally restricted cells of origin, recognizable patterns of tumor progression, characteristic immune environments, and tumor hijacking of normal microenvironmental and neural programs. As concerted efforts have broadened our understanding of these tumors, new therapeutic vulnerabilities have been identified, and for the first time, promising new strategies are being evaluated in the preclinical and clinical settings. Even so, dedicated and sustained collaborative efforts are necessary to refine our knowledge and bring these new strategies into general clinical use. In this review, we will discuss the range of currently available glioma models, the way in which they have each contributed to recent developments in the field, their benefits and drawbacks for addressing specific research questions, and their future utility in advancing biological understanding and treatment of pediatric glioma.
Collapse
Affiliation(s)
- Amelia Foss
- Department of Oncology and the Milner Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
- CRUK Children's Brain Tumour Centre of Excellence, University of Cambridge, Cambridge, UK
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Manav Pathania
- Department of Oncology and the Milner Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
- CRUK Children's Brain Tumour Centre of Excellence, University of Cambridge, Cambridge, UK
| |
Collapse
|
177
|
Cao Y. Neural induction drives body axis formation during embryogenesis, but a neural induction-like process drives tumorigenesis in postnatal animals. Front Cell Dev Biol 2023; 11:1092667. [PMID: 37228646 PMCID: PMC10203556 DOI: 10.3389/fcell.2023.1092667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 04/17/2023] [Indexed: 05/27/2023] Open
Abstract
Characterization of cancer cells and neural stem cells indicates that tumorigenicity and pluripotency are coupled cell properties determined by neural stemness, and tumorigenesis represents a process of progressive loss of original cell identity and gain of neural stemness. This reminds of a most fundamental process required for the development of the nervous system and body axis during embryogenesis, i.e., embryonic neural induction. Neural induction is that, in response to extracellular signals that are secreted by the Spemann-Mangold organizer in amphibians or the node in mammals and inhibit epidermal fate in ectoderm, the ectodermal cells lose their epidermal fate and assume the neural default fate and consequently, turn into neuroectodermal cells. They further differentiate into the nervous system and also some non-neural cells via interaction with adjacent tissues. Failure in neural induction leads to failure of embryogenesis, and ectopic neural induction due to ectopic organizer or node activity or activation of embryonic neural genes causes a formation of secondary body axis or a conjoined twin. During tumorigenesis, cells progressively lose their original cell identity and gain of neural stemness, and consequently, gain of tumorigenicity and pluripotency, due to various intra-/extracellular insults in cells of a postnatal animal. Tumorigenic cells can be induced to differentiation into normal cells and integrate into normal embryonic development within an embryo. However, they form tumors and cannot integrate into animal tissues/organs in a postnatal animal because of lack of embryonic inducing signals. Combination of studies of developmental and cancer biology indicates that neural induction drives embryogenesis in gastrulating embryos but a similar process drives tumorigenesis in a postnatal animal. Tumorigenicity is by nature the manifestation of aberrant occurrence of pluripotent state in a postnatal animal. Pluripotency and tumorigenicity are both but different manifestations of neural stemness in pre- and postnatal stages of animal life, respectively. Based on these findings, I discuss about some confusion in cancer research, propose to distinguish the causality and associations and discriminate causal and supporting factors involved in tumorigenesis, and suggest revisiting the focus of cancer research.
Collapse
Affiliation(s)
- Ying Cao
- Shenzhen Research Institute of Nanjing University, Shenzhen, China
- MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center of Medical School, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine of Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
178
|
El Baba R, Pasquereau S, Haidar Ahmad S, Monnien F, Abad M, Bibeau F, Herbein G. EZH2-Myc driven glioblastoma elicited by cytomegalovirus infection of human astrocytes. Oncogene 2023:10.1038/s41388-023-02709-3. [PMID: 37147437 DOI: 10.1038/s41388-023-02709-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/07/2023]
Abstract
Mounting evidence is identifying human cytomegalovirus (HCMV) as a potential oncogenic virus. HCMV has been detected in malignant gliomas. EZH2 and Myc play a potential oncogenic role, correlating with the glioma grade. Herewith, we present the first experimental evidence for HCMV as a reprogramming vector, straight through the dedifferentiation of mature human astrocytes, and generation of CMV-Elicited Glioblastoma Cells (CEGBCs) possessing glioblastoma-like traits. HCMV counterparts the progression of the perceived cellular and molecular mechanisms succeeding the transformation and invasion processes with CEGBCs involved in spheroid formation and invasiveness. Glioblastoma multiforme (GBM) biopsies were characterized by an elevated EZH2 and Myc expression, possessing a strong positive correlation between the aforementioned markers in the presence of HCMV. From GBM tissues, we isolated HCMV clinical strains that transformed HAs toward CEGBCs exhibiting upregulated EZH2 and Myc. Spheroids generated from CEGBCs possessed invasion potential and were sensitive to EZH2 inhibitor, ganciclovir, and temozolomide triple therapy. HCMV clinical strains transform HAs and fit with an HCMV-induced glioblastoma model of oncogenesis, and supports the tumorigenic properties of Myc and EZH2 which might be highly pertinent in the pathophysiology of astrocytic brain tumors and thereby paving the way for new therapeutic strategies.
Collapse
Affiliation(s)
- Ranim El Baba
- Department of Pathogens & Inflammation-EPILAB Laboratory EA4266, University of Franche-Comté, Besançon, France
| | - Sébastien Pasquereau
- Department of Pathogens & Inflammation-EPILAB Laboratory EA4266, University of Franche-Comté, Besançon, France
| | - Sandy Haidar Ahmad
- Department of Pathogens & Inflammation-EPILAB Laboratory EA4266, University of Franche-Comté, Besançon, France
| | | | - Marine Abad
- Department of Pathology, CHU Besançon, Besançon, France
| | | | - Georges Herbein
- Department of Pathogens & Inflammation-EPILAB Laboratory EA4266, University of Franche-Comté, Besançon, France.
- Department of Virology, CHU Besançon, Besançon, France.
| |
Collapse
|
179
|
Drexler R, Göttsche J, Sauvigny T, Schüller U, Khatri R, Hausmann F, Hänzelmann S, Huber TB, Bonn S, Heiland DH, Delev D, Venkataramani V, Winkler F, Weller J, Zeyen T, Herrlinger U, Gempt J, Ricklefs FL, Dührsen L. Targeted anticonvulsive treatment of IDH-wildtype glioblastoma based on DNA methylation subclasses. Neuro Oncol 2023; 25:1006-1008. [PMID: 36860191 PMCID: PMC10158071 DOI: 10.1093/neuonc/noad014] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Affiliation(s)
- Richard Drexler
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jennifer Göttsche
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas Sauvigny
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ulrich Schüller
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Pediatric Hematology and Oncology, Research Institute Children’s Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children’s Cancer Center Hamburg, Hamburg, Germany
| | - Robin Khatri
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Fabian Hausmann
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sonja Hänzelmann
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias B Huber
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Bonn
- Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Dieter H Heiland
- Department of Neurosurgery, Medical Center University of Freiburg, Freiburg, Germany
| | - Daniel Delev
- Department of Neurosurgery, University Hospital Aachen, Aachen, Germany
| | - Varun Venkataramani
- Department of Neurology, University Hospital Heidelberg, Heidelberg, Germany
| | - Frank Winkler
- Department of Neurology, University Hospital Heidelberg, Heidelberg, Germany
| | - Johannes Weller
- Division of Clinical Neurooncology, Department of Neurology, University Hospital Bonn, Bonn, Germany
| | - Thomas Zeyen
- Division of Clinical Neurooncology, Department of Neurology, University Hospital Bonn, Bonn, Germany
| | - Ulrich Herrlinger
- Division of Clinical Neurooncology, Department of Neurology, University Hospital Bonn, Bonn, Germany
| | - Jens Gempt
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Franz L Ricklefs
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lasse Dührsen
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
180
|
Foglar M, Aumiller M, Bochmann K, Buchner A, El Fahim M, Quach S, Sroka R, Stepp H, Thon N, Forbrig R, Rühm A. Interstitial Photodynamic Therapy of Glioblastomas: A Long-Term Follow-up Analysis of Survival and Volumetric MRI Data. Cancers (Basel) 2023; 15:cancers15092603. [PMID: 37174068 PMCID: PMC10177153 DOI: 10.3390/cancers15092603] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/19/2023] [Accepted: 03/20/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND The treatment of glioblastomas, the most common primary malignant brain tumors, with a devastating survival perspective, remains a major challenge in medicine. Among the recently explored therapeutic approaches, 5-aminolevulinic acid (5-ALA)-mediated interstitial photodynamic therapy (iPDT) has shown promising results. METHODS A total of 16 patients suffering from de novo glioblastomas and undergoing iPDT as their primary treatment were retrospectively analyzed regarding survival and the characteristic tissue regions discernible in the MRI data before treatment and during follow-up. These regions were segmented at different stages and were analyzed, especially regarding their relation to survival. RESULTS In comparison to the reference cohorts treated with other therapies, the iPDT cohort showed a significantly prolonged progression-free survival (PFS) and overall survival (OS). A total of 10 of 16 patients experienced prolonged OS (≥ 24 months). The dominant prognosis-affecting factor was the MGMT promoter methylation status (methylated: median PFS of 35.7 months and median OS of 43.9 months) (unmethylated: median PFS of 8.3 months and median OS of 15.0 months) (combined: median PFS of 16.4 months and median OS of 28.0 months). Several parameters with a known prognostic relevance to survival after standard treatment were not found to be relevant to this iPDT cohort, such as the necrosis-tumor ratio, tumor volume, and posttreatment contrast enhancement. After iPDT, a characteristic structure (iPDT remnant) appeared in the MRI data in the former tumor area. CONCLUSIONS In this study, iPDT showed its potential as a treatment option for glioblastomas, with a large fraction of patients having prolonged OS. Parameters of prognostic relevance could be derived from the patient characteristics and MRI data, but they may partially need to be interpreted differently compared to the standard of care.
Collapse
Affiliation(s)
- Marco Foglar
- Laser-Forschungslabor, LIFE Center, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Maximilian Aumiller
- Laser-Forschungslabor, LIFE Center, University Hospital, LMU Munich, 81377 Munich, Germany
- Department of Urology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Katja Bochmann
- Max Planck Institute for Psychiatry, Max Planck Society, 80804 Munich, Germany
- Institute of Neuroradiology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Alexander Buchner
- Department of Urology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Mohamed El Fahim
- Laser-Forschungslabor, LIFE Center, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Stefanie Quach
- Department of Neurosurgery, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Ronald Sroka
- Laser-Forschungslabor, LIFE Center, University Hospital, LMU Munich, 81377 Munich, Germany
- Department of Urology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Herbert Stepp
- Laser-Forschungslabor, LIFE Center, University Hospital, LMU Munich, 81377 Munich, Germany
- Department of Urology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Niklas Thon
- Department of Neurosurgery, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Robert Forbrig
- Institute of Neuroradiology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Adrian Rühm
- Laser-Forschungslabor, LIFE Center, University Hospital, LMU Munich, 81377 Munich, Germany
- Department of Urology, University Hospital, LMU Munich, 81377 Munich, Germany
| |
Collapse
|
181
|
Krishna S, Choudhury A, Keough MB, Seo K, Ni L, Kakaizada S, Lee A, Aabedi A, Popova G, Lipkin B, Cao C, Nava Gonzales C, Sudharshan R, Egladyous A, Almeida N, Zhang Y, Molinaro AM, Venkatesh HS, Daniel AGS, Shamardani K, Hyer J, Chang EF, Findlay A, Phillips JJ, Nagarajan S, Raleigh DR, Brang D, Monje M, Hervey-Jumper SL. Glioblastoma remodelling of human neural circuits decreases survival. Nature 2023; 617:599-607. [PMID: 37138086 PMCID: PMC10191851 DOI: 10.1038/s41586-023-06036-1] [Citation(s) in RCA: 124] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 03/31/2023] [Indexed: 05/05/2023]
Abstract
Gliomas synaptically integrate into neural circuits1,2. Previous research has demonstrated bidirectional interactions between neurons and glioma cells, with neuronal activity driving glioma growth1-4 and gliomas increasing neuronal excitability2,5-8. Here we sought to determine how glioma-induced neuronal changes influence neural circuits underlying cognition and whether these interactions influence patient survival. Using intracranial brain recordings during lexical retrieval language tasks in awake humans together with site-specific tumour tissue biopsies and cell biology experiments, we find that gliomas remodel functional neural circuitry such that task-relevant neural responses activate tumour-infiltrated cortex well beyond the cortical regions that are normally recruited in the healthy brain. Site-directed biopsies from regions within the tumour that exhibit high functional connectivity between the tumour and the rest of the brain are enriched for a glioblastoma subpopulation that exhibits a distinct synaptogenic and neuronotrophic phenotype. Tumour cells from functionally connected regions secrete the synaptogenic factor thrombospondin-1, which contributes to the differential neuron-glioma interactions observed in functionally connected tumour regions compared with tumour regions with less functional connectivity. Pharmacological inhibition of thrombospondin-1 using the FDA-approved drug gabapentin decreases glioblastoma proliferation. The degree of functional connectivity between glioblastoma and the normal brain negatively affects both patient survival and performance in language tasks. These data demonstrate that high-grade gliomas functionally remodel neural circuits in the human brain, which both promotes tumour progression and impairs cognition.
Collapse
Affiliation(s)
- Saritha Krishna
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Abrar Choudhury
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | | | - Kyounghee Seo
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Lijun Ni
- Department of Neurology, Stanford University, Stanford, CA, USA
| | - Sofia Kakaizada
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Anthony Lee
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Alexander Aabedi
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Galina Popova
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Benjamin Lipkin
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| | - Caroline Cao
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Cesar Nava Gonzales
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Rasika Sudharshan
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Andrew Egladyous
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Nyle Almeida
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Yalan Zhang
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Annette M Molinaro
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | | | - Andy G S Daniel
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | | | - Jeanette Hyer
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Edward F Chang
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Anne Findlay
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Joanna J Phillips
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA
| | - Srikantan Nagarajan
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - David R Raleigh
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, USA
| | - David Brang
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| | - Michelle Monje
- Department of Neurology, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford, CA, USA
| | - Shawn L Hervey-Jumper
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA.
- Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
182
|
Watson DC, Bayik D, Storevik S, Moreino SS, Sprowls SA, Han J, Augustsson MT, Lauko A, Sravya P, Røsland GV, Troike K, Tronstad KJ, Wang S, Sarnow K, Kay K, Lunavat TR, Silver DJ, Dayal S, Joseph JV, Mulkearns-Hubert E, Ystaas LAR, Deshpande G, Guyon J, Zhou Y, Magaut CR, Seder J, Neises L, Williford SE, Meiser J, Scott AJ, Sajjakulnukit P, Mears JA, Bjerkvig R, Chakraborty A, Daubon T, Cheng F, Lyssiotis CA, Wahl DR, Hjelmeland AB, Hossain JA, Miletic H, Lathia JD. GAP43-dependent mitochondria transfer from astrocytes enhances glioblastoma tumorigenicity. NATURE CANCER 2023; 4:648-664. [PMID: 37169842 PMCID: PMC10212766 DOI: 10.1038/s43018-023-00556-5] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/06/2023] [Indexed: 05/13/2023]
Abstract
The transfer of intact mitochondria between heterogeneous cell types has been confirmed in various settings, including cancer. However, the functional implications of mitochondria transfer on tumor biology are poorly understood. Here we show that mitochondria transfer is a prevalent phenomenon in glioblastoma (GBM), the most frequent and malignant primary brain tumor. We identified horizontal mitochondria transfer from astrocytes as a mechanism that enhances tumorigenesis in GBM. This transfer is dependent on network-forming intercellular connections between GBM cells and astrocytes, which are facilitated by growth-associated protein 43 (GAP43), a protein involved in neuron axon regeneration and astrocyte reactivity. The acquisition of astrocyte mitochondria drives an increase in mitochondrial respiration and upregulation of metabolic pathways linked to proliferation and tumorigenicity. Functionally, uptake of astrocyte mitochondria promotes cell cycle progression to proliferative G2/M phases and enhances self-renewal and tumorigenicity of GBM. Collectively, our findings reveal a host-tumor interaction that drives proliferation and self-renewal of cancer cells, providing opportunities for therapeutic development.
Collapse
Affiliation(s)
- Dionysios C Watson
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Case Comprehensive Cancer Center, Cleveland, OH, USA
- University Hospitals Cleveland Medical Center, Cleveland, OH, USA
- School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Defne Bayik
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Case Comprehensive Cancer Center, Cleveland, OH, USA
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Simon Storevik
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | | | | | - Jianhua Han
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | | | - Adam Lauko
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Medical Scientist Training Program, Case Western Reserve University, Cleveland, OH, USA
| | - Palavalasa Sravya
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | | | - Katie Troike
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | | | - Sabrina Wang
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | | | - Kristen Kay
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Taral R Lunavat
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Department of Neurology, Molecular Neurogenetics Unit-West, Massachusetts General Hospital, Boston, MA, USA
| | - Daniel J Silver
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Sahil Dayal
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | | | - Erin Mulkearns-Hubert
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | | | | | - Joris Guyon
- University of Bordeaux, INSERM, BRIC, Pessac, France
| | - Yadi Zhou
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | | | - Juliana Seder
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Laura Neises
- Cancer Metabolism Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | | | - Johannes Meiser
- Cancer Metabolism Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Andrew J Scott
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | | | - Jason A Mears
- Case Comprehensive Cancer Center, Cleveland, OH, USA
- School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Rolf Bjerkvig
- Department of Biomedicine, University of Bergen, Bergen, Norway
- NorLux Neuro-Oncology Laboratory, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Abhishek Chakraborty
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Case Comprehensive Cancer Center, Cleveland, OH, USA
| | - Thomas Daubon
- University of Bordeaux, CNRS, IBGC, Bordeaux, France
| | - Feixiong Cheng
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Case Comprehensive Cancer Center, Cleveland, OH, USA
| | - Costas A Lyssiotis
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Michigan, Ann Arbor, MI, USA
| | - Daniel R Wahl
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | | | | | - Hrvoje Miletic
- Department of Biomedicine, University of Bergen, Bergen, Norway.
- Department of Pathology, Haukeland University Hospital, Bergen, Norway.
| | - Justin D Lathia
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
- Case Comprehensive Cancer Center, Cleveland, OH, USA.
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
183
|
Venkataramani V. IGSF3-mediated potassium dysregulation promotes neuronal hyperexcitability and glioma progression. Trends Cancer 2023; 9:457-458. [PMID: 37100731 DOI: 10.1016/j.trecan.2023.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 04/12/2023] [Indexed: 04/28/2023]
Abstract
Glioblastomas are incurable tumors often associated with epileptic seizures. In a recent study published in Neuron,Curry et al. demonstrated a novel function of the membrane protein IGSF3 that induces potassium dysregulation, neuronal hyperexcitability, and tumor progression. This work uncovers a novel layer of bidirectional neuron-tumor communication, further underlining the importance of comprehensively investigating neuron-tumor networks in glioblastoma.
Collapse
Affiliation(s)
- Varun Venkataramani
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany; Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany; Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.
| |
Collapse
|
184
|
Costas-Insua C, Seijo-Vila M, Blázquez C, Blasco-Benito S, Rodríguez-Baena FJ, Marsicano G, Pérez-Gómez E, Sánchez C, Sánchez-Laorden B, Guzmán M. Neuronal Cannabinoid CB 1 Receptors Suppress the Growth of Melanoma Brain Metastases by Inhibiting Glutamatergic Signalling. Cancers (Basel) 2023; 15:cancers15092439. [PMID: 37173906 PMCID: PMC10177062 DOI: 10.3390/cancers15092439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/19/2023] [Accepted: 04/22/2023] [Indexed: 05/15/2023] Open
Abstract
Melanoma is one of the deadliest forms of cancer. Most melanoma deaths are caused by distant metastases in several organs, especially the brain, the so-called melanoma brain metastases (MBMs). However, the precise mechanisms that sustain the growth of MBMs remain elusive. Recently, the excitatory neurotransmitter glutamate has been proposed as a brain-specific, pro-tumorigenic signal for various types of cancers, but how neuronal glutamate shuttling onto metastases is regulated remains unknown. Here, we show that the cannabinoid CB1 receptor (CB1R), a master regulator of glutamate output from nerve terminals, controls MBM proliferation. First, in silico transcriptomic analysis of cancer-genome atlases indicated an aberrant expression of glutamate receptors in human metastatic melanoma samples. Second, in vitro experiments conducted on three different melanoma cell lines showed that the selective blockade of glutamatergic NMDA receptors, but not AMPA or metabotropic receptors, reduces cell proliferation. Third, in vivo grafting of melanoma cells in the brain of mice selectively devoid of CB1Rs in glutamatergic neurons increased tumour cell proliferation in concert with NMDA receptor activation, whereas melanoma cell growth in other tissue locations was not affected. Taken together, our findings demonstrate an unprecedented regulatory role of neuronal CB1Rs in the MBM tumour microenvironment.
Collapse
Affiliation(s)
- Carlos Costas-Insua
- Department of Biochemistry and Molecular Biology, Instituto Universitario de Investigación Neuroquímica (IUIN), Complutense University of Madrid, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28040 Madrid, Spain
| | - Marta Seijo-Vila
- Department of Biochemistry and Molecular Biology, Instituto Universitario de Investigación Neuroquímica (IUIN), Complutense University of Madrid, Instituto de Investigación Hospital 12 de Octubre (i+12), 28040 Madrid, Spain
| | - Cristina Blázquez
- Department of Biochemistry and Molecular Biology, Instituto Universitario de Investigación Neuroquímica (IUIN), Complutense University of Madrid, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28040 Madrid, Spain
| | - Sandra Blasco-Benito
- Department of Biochemistry and Molecular Biology, Instituto Universitario de Investigación Neuroquímica (IUIN), Complutense University of Madrid, Instituto de Investigación Hospital 12 de Octubre (i+12), 28040 Madrid, Spain
| | - Francisco Javier Rodríguez-Baena
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas (CSIC) and Universidad Miguel Hernández (UMH), 03550 San Juan de Alicante, Spain
| | - Giovanni Marsicano
- Physiopathologie de la Plasticité Neuronale, NeuroCentre Magendie, U1215 Institut National de la Santé et de la Recherche Médicale (INSERM), Bordeaux Neurocampus, University of Bordeaux, 33077 Bordeaux, France
| | - Eduardo Pérez-Gómez
- Department of Biochemistry and Molecular Biology, Instituto Universitario de Investigación Neuroquímica (IUIN), Complutense University of Madrid, Instituto de Investigación Hospital 12 de Octubre (i+12), 28040 Madrid, Spain
| | - Cristina Sánchez
- Department of Biochemistry and Molecular Biology, Instituto Universitario de Investigación Neuroquímica (IUIN), Complutense University of Madrid, Instituto de Investigación Hospital 12 de Octubre (i+12), 28040 Madrid, Spain
| | - Berta Sánchez-Laorden
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas (CSIC) and Universidad Miguel Hernández (UMH), 03550 San Juan de Alicante, Spain
| | - Manuel Guzmán
- Department of Biochemistry and Molecular Biology, Instituto Universitario de Investigación Neuroquímica (IUIN), Complutense University of Madrid, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28040 Madrid, Spain
| |
Collapse
|
185
|
Winkler F, Venkatesh HS, Amit M, Batchelor T, Demir IE, Deneen B, Gutmann DH, Hervey-Jumper S, Kuner T, Mabbott D, Platten M, Rolls A, Sloan EK, Wang TC, Wick W, Venkataramani V, Monje M. Cancer neuroscience: State of the field, emerging directions. Cell 2023; 186:1689-1707. [PMID: 37059069 PMCID: PMC10107403 DOI: 10.1016/j.cell.2023.02.002] [Citation(s) in RCA: 112] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/01/2023] [Accepted: 02/01/2023] [Indexed: 04/16/2023]
Abstract
The nervous system governs both ontogeny and oncology. Regulating organogenesis during development, maintaining homeostasis, and promoting plasticity throughout life, the nervous system plays parallel roles in the regulation of cancers. Foundational discoveries have elucidated direct paracrine and electrochemical communication between neurons and cancer cells, as well as indirect interactions through neural effects on the immune system and stromal cells in the tumor microenvironment in a wide range of malignancies. Nervous system-cancer interactions can regulate oncogenesis, growth, invasion and metastatic spread, treatment resistance, stimulation of tumor-promoting inflammation, and impairment of anti-cancer immunity. Progress in cancer neuroscience may create an important new pillar of cancer therapy.
Collapse
Affiliation(s)
- Frank Winkler
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg and Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Humsa S Venkatesh
- Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Moran Amit
- Department of Head and Neck Surgery, MD Anderson Cancer Center and The University of Texas Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Tracy Batchelor
- Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Ihsan Ekin Demir
- Department of Surgery, Technical University of Munich, Munich, Germany
| | - Benjamin Deneen
- Center for Stem Cells and Regenerative Medicine, Baylor College of Medicine, Houston, TX, USA
| | - David H Gutmann
- Department of Neurology, Washington University, St Louis, MO, USA
| | - Shawn Hervey-Jumper
- Department of Neurosurgery, University of California, San Francisco, San Francisco, CA, USA
| | - Thomas Kuner
- Department of Functional Neuroanatomy, University of Heidelberg, Heidelberg, Germany
| | - Donald Mabbott
- Department of Psychology, University of Toronto and Neuroscience & Mental Health Program, Research Institute, The Hospital for Sick Children, Toronto, Canada
| | - Michael Platten
- Department of Neurology, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Asya Rolls
- Department of Immunology, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Erica K Sloan
- Monash Institute of Pharmaceutical Sciences, Drug Discovery Biology Theme, Monash University, Parkville, VIC, Australia
| | - Timothy C Wang
- Department of Medicine, Division of Digestive and Gastrointestinal Diseases, Columbia University, New York, NY, USA
| | - Wolfgang Wick
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg and Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Varun Venkataramani
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg and Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Functional Neuroanatomy, University of Heidelberg, Heidelberg, Germany.
| | - Michelle Monje
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
186
|
Hu C, Zeng X, Zhu Y, Huang Z, Liu J, Ji D, Zheng Z, Wang Q, Tan W. Regulation of ncRNAs involved with ferroptosis in various cancers. Front Genet 2023; 14:1136240. [PMID: 37065473 PMCID: PMC10090411 DOI: 10.3389/fgene.2023.1136240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 03/08/2023] [Indexed: 03/31/2023] Open
Abstract
As a special pattern of programmed cell death, ferroptosis is reported to participate in several processes of tumor progression, including regulating proliferation, suppressing apoptotic pathways, increasing metastasis, and acquiring drug resistance. The marked features of ferroptosis are an abnormal intracellular iron metabolism and lipid peroxidation that are pluralistically modulated by ferroptosis-related molecules and signals, such as iron metabolism, lipid peroxidation, system Xc−, GPX4, ROS production, and Nrf2 signals. Non-coding RNAs (ncRNAs) are a type of functional RNA molecules that are not translated into a protein. Increasing studies demonstrate that ncRNAs have a diversity of regulatory roles in ferroptosis, thus influencing the progression of cancers. In this study, we review the fundamental mechanisms and regulation network of ncRNAs on ferroptosis in various tumors, aiming to provide a systematic understanding of recently emerging non-coding RNAs and ferroptosis.
Collapse
Affiliation(s)
- Chenxi Hu
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiangbo Zeng
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yuanchao Zhu
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zehai Huang
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jiacheng Liu
- Department of Infectious Diseases, Peking University Hepatology Institute, Peking University People’s Hospital, Beijing, China
| | - Ding Ji
- Department of Otolaryngology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zaosong Zheng
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- *Correspondence: Zaosong Zheng, ; Qiong Wang, ; Wanlong Tan,
| | - Qiong Wang
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- *Correspondence: Zaosong Zheng, ; Qiong Wang, ; Wanlong Tan,
| | - Wanlong Tan
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- *Correspondence: Zaosong Zheng, ; Qiong Wang, ; Wanlong Tan,
| |
Collapse
|
187
|
Abed T, Ganser K, Eckert F, Stransky N, Huber SM. Ion channels as molecular targets of glioblastoma electrotherapy. Front Cell Neurosci 2023; 17:1133984. [PMID: 37006466 PMCID: PMC10064067 DOI: 10.3389/fncel.2023.1133984] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 02/10/2023] [Indexed: 03/19/2023] Open
Abstract
Therapies with weak, non-ionizing electromagnetic fields comprise FDA-approved treatments such as Tumor Treating Fields (TTFields) that are used for adjuvant therapy of glioblastoma. In vitro data and animal models suggest a variety of biological TTFields effects. In particular, effects ranging from direct tumoricidal, radio- or chemotherapy-sensitizing, metastatic spread-inhibiting, up to immunostimulation have been described. Diverse underlying molecular mechanisms, such as dielectrophoresis of cellular compounds during cytokinesis, disturbing the formation of the spindle apparatus during mitosis, and perforating the plasma membrane have been proposed. Little attention, however, has been paid to molecular structures that are predestinated to percept electromagnetic fields-the voltage sensors of voltage-gated ion channels. The present review article briefly summarizes the mode of action of voltage sensing by ion channels. Moreover, it introduces into the perception of ultra-weak electric fields by specific organs of fishes with voltage-gated ion channels as key functional units therein. Finally, this article provides an overview of the published data on modulation of ion channel function by diverse external electromagnetic field protocols. Combined, these data strongly point to a function of voltage-gated ion channels as transducers between electricity and biology and, hence, to voltage-gated ion channels as primary targets of electrotherapy.
Collapse
Affiliation(s)
- Tayeb Abed
- Department of Radiation Oncology, University of Tübingen, Tübingen, Germany
| | - Katrin Ganser
- Department of Radiation Oncology, University of Tübingen, Tübingen, Germany
| | - Franziska Eckert
- Department of Radiation Oncology, University of Tübingen, Tübingen, Germany
- Department of Radiation Oncology, Medical University Vienna, Vienna, Austria
| | - Nicolai Stransky
- Department of Radiation Oncology, University of Tübingen, Tübingen, Germany
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - Stephan M. Huber
- Department of Radiation Oncology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
188
|
Huang-Hobbs E, Cheng YT, Ko Y, Luna-Figueroa E, Lozzi B, Taylor KR, McDonald M, He P, Chen HC, Yang Y, Maleki E, Lee ZF, Murali S, Williamson M, Choi D, Curry R, Bayley J, Woo J, Jalali A, Monje M, Noebels JL, Harmanci AS, Rao G, Deneen B. Remote neuronal activity drives glioma infiltration via Sema4f. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.15.532832. [PMID: 36993539 PMCID: PMC10055154 DOI: 10.1101/2023.03.15.532832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The tumor microenvironment (TME) plays an essential role in malignancy and neurons have emerged as a key component of the TME that promotes tumorigenesis across a host of cancers. Recent studies on glioblastoma (GBM) highlight bi-directional signaling between tumors and neurons that propagates a vicious cycle of proliferation, synaptic integration, and brain hyperactivity; however, the identity of neuronal subtypes and tumor subpopulations driving this phenomenon are incompletely understood. Here we show that callosal projection neurons located in the hemisphere contralateral to primary GBM tumors promote progression and widespread infiltration. Using this platform to examine GBM infiltration, we identified an activity dependent infiltrating population present at the leading edge of mouse and human tumors that is enriched for axon guidance genes. High-throughput, in vivo screening of these genes identified Sema4F as a key regulator of tumorigenesis and activity-dependent infiltration. Furthermore, Sema4F promotes the activity-dependent infiltrating population and propagates bi-directional signaling with neurons by remodeling tumor adjacent synapses towards brain network hyperactivity. Collectively, our studies demonstrate that subsets of neurons in locations remote to primary GBM promote malignant progression, while revealing new mechanisms of tumor infiltration that are regulated by neuronal activity.
Collapse
Affiliation(s)
- Emmet Huang-Hobbs
- The Integrative Molecular and Biomedical Sciences Graduate Program (IMBS), Baylor College of Medicine, Houston TX 77030
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston TX 77030
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX 77030
| | - Yi-Ting Cheng
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston TX 77030
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX 77030
- Program in Developmental Biology, Baylor College of Medicine, Houston TX 77030
| | - Yeunjung Ko
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston TX 77030
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX 77030
- Program in Immunology and Microbiology, Baylor College of Medicine, Houston, TX 77030
- Department of Neurosurgery, Baylor College of Medicine, Houston TX 77030
| | - Estefania Luna-Figueroa
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston TX 77030
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX 77030
| | - Brittney Lozzi
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston TX 77030
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX 77030
- Department of Neurosurgery, Baylor College of Medicine, Houston TX 77030
- Program in Genetics and Genomics, Baylor College of Medicine, Houston TX 77030
| | - Kathryn R Taylor
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Malcolm McDonald
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston TX 77030
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX 77030
- Program in Development, Disease, Models and Therapeutics, Baylor College of Medicine, Houston TX 77030
| | - Peihao He
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston TX 77030
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX 77030
- Program in Cancer Cell Biology, Baylor College of Medicine, Houston TX 77030
| | - Hsiao-Chi Chen
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston TX 77030
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX 77030
- Program in Cancer Cell Biology, Baylor College of Medicine, Houston TX 77030
| | - Yuhui Yang
- Department of Neurosurgery, Baylor College of Medicine, Houston TX 77030
| | - Ehson Maleki
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston TX 77030
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX 77030
| | - Zhung-Fu Lee
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston TX 77030
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX 77030
- Program in Development, Disease, Models and Therapeutics, Baylor College of Medicine, Houston TX 77030
| | - Sanjana Murali
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston TX 77030
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX 77030
- Program in Cancer Cell Biology, Baylor College of Medicine, Houston TX 77030
| | - Michael Williamson
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston TX 77030
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX 77030
| | - Dongjoo Choi
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston TX 77030
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX 77030
| | - Rachel Curry
- The Integrative Molecular and Biomedical Sciences Graduate Program (IMBS), Baylor College of Medicine, Houston TX 77030
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston TX 77030
| | - James Bayley
- Department of Neurosurgery, Baylor College of Medicine, Houston TX 77030
| | - Junsung Woo
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston TX 77030
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX 77030
| | - Ali Jalali
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX 77030
- Department of Neurosurgery, Baylor College of Medicine, Houston TX 77030
| | - Michelle Monje
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Jeffrey L Noebels
- Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX, 77030
- Department of Neurology, Baylor College of Medicine, Houston, TX 77030
| | - Akdes Serin Harmanci
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX 77030
- Department of Neurosurgery, Baylor College of Medicine, Houston TX 77030
| | - Ganesh Rao
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX 77030
- Department of Neurosurgery, Baylor College of Medicine, Houston TX 77030
| | - Benjamin Deneen
- The Integrative Molecular and Biomedical Sciences Graduate Program (IMBS), Baylor College of Medicine, Houston TX 77030
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston TX 77030
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX 77030
- Program in Developmental Biology, Baylor College of Medicine, Houston TX 77030
- Department of Neurosurgery, Baylor College of Medicine, Houston TX 77030
- Program in Development, Disease, Models and Therapeutics, Baylor College of Medicine, Houston TX 77030
- Program in Cancer Cell Biology, Baylor College of Medicine, Houston TX 77030
| |
Collapse
|
189
|
Hanahan D, Monje M. Cancer hallmarks intersect with neuroscience in the tumor microenvironment. Cancer Cell 2023; 41:573-580. [PMID: 36917953 PMCID: PMC10202656 DOI: 10.1016/j.ccell.2023.02.012] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/10/2023] [Accepted: 02/10/2023] [Indexed: 03/14/2023]
Abstract
The mechanisms underlying the multistep process of tumorigenesis can be distilled into a logical framework involving the acquisition of functional capabilities, the so-called hallmarks of cancer, which are collectively envisaged to be necessary for malignancy. These capabilities, embodied both in transformed cancer cells as well as in the heterotypic accessory cells that together constitute the tumor microenvironment (TME), are conveyed by certain abnormal characteristics of the cancerous phenotype. This perspective discusses the link between the nervous system and the induction of hallmark capabilities, revealing neurons and neuronal projections (axons) as hallmark-inducing constituents of the TME. We also discuss the autocrine and paracrine neuronal regulatory circuits aberrantly activated in cancer cells that may constitute a distinctive "enabling" characteristic contributing to the manifestation of hallmark functions and consequent cancer pathogenesis.
Collapse
Affiliation(s)
- Douglas Hanahan
- Lausanne Branch, Ludwig Institute for Cancer Research, 1011 Lausanne, Switzerland; Agora Cancer Research Center, 1011 Lausanne, Switzerland; Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), 1015 Lausanne, Switzerland; Swiss Cancer Center, Leman (SCCL), 1011 Lausanne, Switzerland.
| | - Michelle Monje
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, Stanford, CA, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
190
|
Neuronal and tumourigenic boundaries of glioblastoma plasticity. Trends Cancer 2023; 9:223-236. [PMID: 36460606 DOI: 10.1016/j.trecan.2022.10.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 12/03/2022]
Abstract
Glioblastoma (GBM) remains the most lethal primary brain cancer largely due to recurrence of treatment-resistant disease. Current therapies are ultimately ineffective as GBM tumour cells adapt their identity to escape treatment. Recent advances in single-cell epigenetics and transcriptomics highlight heterogeneous cell populations in GBM tumours originating from unique cancerous genetic aberrations. However, they also suggest that tumour cells conserve molecular properties of parent neuronal cells, with their permissive epigenetic profiles enabling them to morph along a finite number of reprogramming routes to evade treatment. Here, we review the known tumourigenic, neurodevelopmental and brain-injury boundaries of GBM plasticity, and propose that effective treatment of GBM requires the addition of therapeutics that restrain GBM plasticity.
Collapse
|
191
|
Li C, Guan N, Liu F. T7 peptide-decorated exosome-based nanocarrier system for delivery of Galectin-9 siRNA to stimulate macrophage repolarization in glioblastoma. J Neurooncol 2023; 162:93-108. [PMID: 36854924 DOI: 10.1007/s11060-023-04257-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 01/30/2023] [Indexed: 03/02/2023]
Abstract
PURPOSE Exosomes are nano-vesicular carriers capable of delivering cargoes for intercellular communication, which holds potential as biocompatible and high efficiency systems for drug delivery. In this study, we evaluated the potential effect of T7 peptide-decorated exosome-loaded Galectin-9 siRNA (T7-Exo/siGalectin-9) in the M1 polarization of macrophages and immunosuppression of glioblastoma (GBM). METHODS Differentially expressed genes in GBM were in silico predicted and then experimentally verified. Galectin-9 was knocked down by siRNA to assess its role in tumor-bearing mice. T7 peptide-decorated exosomes (derived from human embryonic kidney [HEK]-293T cells) targeting GBM were prepared, and loaded with Galectin-9 siRNA by electroporation to prepare nanoformulations (T7-Exo/siGalectin-9). The role of T7-Exo/siGalectin-9 in CD8+ T cell cytotoxicity to target GBM cells and polarization of macrophages was evaluated after artificial modulation of Galectin-9 expression. Anti-tumor effects of T7-Exo/siGalectin-9 were elucidated in vitro and in vivo. RESULTS Galectin-9 was highly expressed in GBM tissues and cell lines. The siRNA-mediated knockdown of Galectin-9 repressed the growth of xenografts of GBM cells in C57BL/6 mice and activated immune response in the tumor microenvironment. T7-Exo/siGalectin-9 effectively delivered siGalectin-9 to GBM cells. T7-Exo/siGalectin-9 contributed to activation of the TLR7-IRF5 pathway, which polarized macrophages to M1 phenotype. By this mechanism, phagocytosis of GBM cells by macrophages was increased, the anti-tumor effect of CD8+ T cells was enhanced and the inflammatory responses were suppressed. CONCLUSION Overall, T7-Exo/siGalectin-9 promotes macrophage repolarization and restricts the immunosuppression of GBM, thus providing novel insights into and drug delivery system of immunotherapy for GBM.
Collapse
Affiliation(s)
- Chenguang Li
- Department of Neurosurgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121000, People's Republic of China
| | - Ning Guan
- Department of Neurosurgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121000, People's Republic of China
| | - Feifei Liu
- Department of Anesthesiology, The First Affiliated Hospital of Jinzhou Medical University, No. 2, Section 5, Renmin Street, Jinzhou, 121000, Liaoning, People's Republic of China.
| |
Collapse
|
192
|
Stephan G, Erdjument-Bromage H, Liu W, Frenster JD, Ravn-Boess N, Bready D, Cai J, Fenyo D, Neubert T, Placantonakis DG. Modulation of GPR133 (ADGRD1) Signaling by its Intracellular Interaction Partner Extended Synaptotagmin 1 (ESYT1). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.09.527921. [PMID: 36798364 PMCID: PMC9934660 DOI: 10.1101/2023.02.09.527921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
GPR133 (ADGRD1) is an adhesion G protein-coupled receptor that signals through Gαs and is required for growth of glioblastoma (GBM), an aggressive brain malignancy. The regulation of GPR133 signaling is incompletely understood. Here, we use proximity biotinylation proteomics to identify ESYT1, a Ca2+-dependent mediator of endoplasmic reticulum-plasma membrane bridge formation, as an intracellular interactor of GPR133. ESYT1 knockdown or knockout increases GPR133 signaling, while its overexpression has the opposite effect, without altering GPR133 levels in the plasma membrane. The GPR133-ESYT1 interaction requires the Ca2+-sensing C2C domain of ESYT1. Thapsigargin-mediated increases in cytosolic Ca2+ relieve signaling-suppressive effects of ESYT1 by promoting ESYT1-GPR133 dissociation. ESYT1 knockdown or knockout in GBM impairs tumor growth in vitro, suggesting functions of ESYT1 beyond the interaction with GPR133. Our findings suggest a novel mechanism for modulation of GPR133 signaling by increased cytosolic Ca2+, which reduces the signaling-suppressive interaction between GPR133 and ESYT1 to raise cAMP levels.
Collapse
Affiliation(s)
- Gabriele Stephan
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Hediye Erdjument-Bromage
- Department of Cell Biology and Kimmel Center for Biology and Medicine at the Skirball Institute, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Wenke Liu
- Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Joshua D. Frenster
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY 10016, USA
- Department of Health and Experimental Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Niklas Ravn-Boess
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Devin Bready
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Julia Cai
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - David Fenyo
- Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Thomas Neubert
- Department of Cell Biology and Kimmel Center for Biology and Medicine at the Skirball Institute, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Dimitris G. Placantonakis
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY 10016, USA
- Department of Cell Biology and Kimmel Center for Biology and Medicine at the Skirball Institute, NYU Grossman School of Medicine, New York, NY 10016, USA
- Department of Health and Experimental Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
- Kimmel Center for Stem Cell Biology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Brain and Spine Tumor Center, NYU Grossman School of Medicine, New York, NY 10016, USA
- Neuroscience Institute, NYU Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
193
|
Tumor Microenvironment in Gliomas: A Treatment Hurdle or an Opportunity to Grab? Cancers (Basel) 2023; 15:cancers15041042. [PMID: 36831383 PMCID: PMC9954692 DOI: 10.3390/cancers15041042] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/24/2023] [Accepted: 02/01/2023] [Indexed: 02/10/2023] Open
Abstract
Gliomas are the most frequent central nervous system (CNS) primary tumors. The prognosis and clinical outcomes of these malignancies strongly diverge according to their molecular alterations and range from a few months to decades. The tumor-associated microenvironment involves all cells and connective tissues surrounding tumor cells. The composition of the microenvironment as well as the interactions with associated neoplastic mass, are both variables assuming an increasing interest in these last years. This is mainly because the microenvironment can mediate progression, invasion, dedifferentiation, resistance to treatment, and relapse of primary gliomas. In particular, the tumor microenvironment strongly diverges from isocitrate dehydrogenase (IDH) mutated and wild-type (wt) tumors. Indeed, IDH mutated gliomas often show a lower infiltration of immune cells with reduced angiogenesis as compared to IDH wt gliomas. On the other hand, IDH wt tumors exhibit a strong immune infiltration mediated by several cytokines and chemokines, including CCL2, CCL7, GDNF, CSF-1, GM-CSF, etc. The presence of several factors, including Sox2, Oct4, PD-L1, FAS-L, and TGF β2, also mediate an immune switch toward a regulatory inhibited immune system. Other important interactions are described between IDH wt glioblastoma cells and astrocytes, neurons, and stem cells, while these interactions are less elucidated in IDH-mutated tumors. The possibility of targeting the microenvironment is an intriguing perspective in terms of therapeutic drug development. In this review, we summarized available evidence related to the glioma microenvironment, focusing on differences within different glioma subtypes and on possible therapeutic development.
Collapse
|
194
|
Ion Channels in Gliomas-From Molecular Basis to Treatment. Int J Mol Sci 2023; 24:ijms24032530. [PMID: 36768856 PMCID: PMC9916861 DOI: 10.3390/ijms24032530] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/11/2023] [Accepted: 01/17/2023] [Indexed: 01/31/2023] Open
Abstract
Ion channels provide the basis for the nervous system's intrinsic electrical activity. Neuronal excitability is a characteristic property of neurons and is critical for all functions of the nervous system. Glia cells fulfill essential supportive roles, but unlike neurons, they also retain the ability to divide. This can lead to uncontrolled growth and the formation of gliomas. Ion channels are involved in the unique biology of gliomas pertaining to peritumoral pathology and seizures, diffuse invasion, and treatment resistance. The emerging picture shows ion channels in the brain at the crossroads of neurophysiology and fundamental pathophysiological processes of specific cancer behaviors as reflected by uncontrolled proliferation, infiltration, resistance to apoptosis, metabolism, and angiogenesis. Ion channels are highly druggable, making them an enticing therapeutic target. Targeting ion channels in difficult-to-treat brain tumors such as gliomas requires an understanding of their extremely heterogenous tumor microenvironment and highly diverse molecular profiles, both representing major causes of recurrence and treatment resistance. In this review, we survey the current knowledge on ion channels with oncogenic behavior within the heterogeneous group of gliomas, review ion channel gene expression as genomic biomarkers for glioma prognosis and provide an update on therapeutic perspectives for repurposed and novel ion channel inhibitors and electrotherapy.
Collapse
|
195
|
Anastasaki C, Gao Y, Gutmann DH. Neurons as stromal drivers of nervous system cancer formation and progression. Dev Cell 2023; 58:81-93. [PMID: 36693322 PMCID: PMC9883043 DOI: 10.1016/j.devcel.2022.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/24/2022] [Accepted: 12/27/2022] [Indexed: 01/24/2023]
Abstract
Similar to their pivotal roles in nervous system development, neurons have emerged as critical regulators of cancer initiation, maintenance, and progression. Focusing on nervous system tumors, we describe the normal relationships between neurons and other cell types relevant to normal nerve function, and discuss how disruptions of these interactions promote tumor evolution, focusing on electrical (gap junctions) and chemical (synaptic) coupling, as well as the establishment of new paracrine relationships. We also review how neuron-tumor communication contributes to some of the complications of cancer, including neuropathy, chemobrain, seizures, and pain. Finally, we consider the implications of cancer neuroscience in establishing risk for tumor penetrance and in the design of future anti-tumoral treatments.
Collapse
Affiliation(s)
- Corina Anastasaki
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yunqing Gao
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - David H Gutmann
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
196
|
Savchuk S, Gentry K, Wang W, Carleton E, Yalçın B, Liu Y, Pavarino EC, LaBelle J, Toland AM, Woo PJ, Qu F, Filbin MG, Krasnow MA, Sabatini BL, Sage J, Monje M, Venkatesh HS. Neuronal-Activity Dependent Mechanisms of Small Cell Lung Cancer Progression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.19.524430. [PMID: 36711554 PMCID: PMC9882339 DOI: 10.1101/2023.01.19.524430] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Neural activity is increasingly recognized as a critical regulator of cancer growth. In the brain, neuronal activity robustly influences glioma growth both through paracrine mechanisms and through electrochemical integration of malignant cells into neural circuitry via neuron-to-glioma synapses, while perisynaptic neurotransmitter signaling drives breast cancer brain metastasis growth. Outside of the CNS, innervation of tumors such as prostate, breast, pancreatic and gastrointestinal cancers by peripheral nerves similarly regulates cancer progression. However, the extent to which the nervous system regulates lung cancer progression, either in the lung or when metastatic to brain, is largely unexplored. Small cell lung cancer (SCLC) is a lethal high-grade neuroendocrine tumor that exhibits a strong propensity to metastasize to the brain. Here we demonstrate that, similar to glioma, metastatic SCLC cells in the brain co-opt neuronal activity-regulated mechanisms to stimulate growth and progression. Optogenetic stimulation of cortical neuronal activity drives proliferation and invasion of SCLC brain metastases. In the brain, SCLC cells exhibit electrical currents and consequent calcium transients in response to neuronal activity, and direct SCLC cell membrane depolarization is sufficient to promote the growth of SCLC tumors. In the lung, vagus nerve transection markedly inhibits primary lung tumor formation, progression and metastasis, highlighting a critical role for innervation in overall SCLC initiation and progression. Taken together, these studies illustrate that neuronal activity plays a crucial role in dictating SCLC pathogenesis in both primary and metastatic sites.
Collapse
|
197
|
ProNGF Expression and Targeting in Glioblastoma Multiforme. Int J Mol Sci 2023; 24:ijms24021616. [PMID: 36675126 PMCID: PMC9863529 DOI: 10.3390/ijms24021616] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/03/2023] [Accepted: 01/06/2023] [Indexed: 01/14/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most lethal adult brain cancer. Temozolomide (TMZ), the standard chemotherapeutic drug used in GBM, has limited benefit and alternate therapies are needed to improve GBM treatment. Nerve growth factor (NGF) and its precursor proNGF are increasingly recognized as stimulators of human tumor progression. The expression and stimulatory effect of NGF on GBM cell growth has previously been reported, but the status of proNGF in GBM is unreported. In this study, we have investigated proNGF expression and biological activity in GBM. A clinical cohort of GBM (n = 72) and low-grade glioma (n = 20) was analyzed by immunohistochemistry for proNGF and digital quantification. ProNGF expression was significantly increased in GBM compared to low grade gliomas and proNGF was also detected in patient plasma samples. ProNGF was also detected in most GBM cell lines by Western blotting. Although anti-proNGF blocking antibodies inhibited cell growth in GBM cells with methylated MGMT gene promoter, targeting proNGF could not potentiate the efficacy of TMZ. In subcutaneous xenograft of human GBM cells, anti-proNGF antibodies slightly reduced tumor volume but had no impact on TMZ efficacy. In conclusion, this data reveals that proNGF is overexpressed in GBM and can stimulate cancer cell growth. The potential of proNGF as a clinical biomarker and therapeutic target warrants further investigations.
Collapse
|
198
|
Cowan JM, Juric M, Petrie RJ. Culturing and Imaging Glioma Stem Cells in 3D Collagen Matrices. Curr Protoc 2023; 3:e643. [PMID: 36598361 PMCID: PMC9830581 DOI: 10.1002/cpz1.643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Methods to maintain human glioma stem cells as neurosphere cultures and image their dynamic behavior in 3D collagen matrices are described. Additional approaches to monitor glioma stem cell differentiation into mesenchymal-type cells, along with example data are included. Together, these approaches enable glioma stem cell differentiation to be controlled while maintaining the cells in culture, as well as allowing cell dynamics to be captured and analyzed. These methods should be helpful for those seeking to understand the molecular mechanisms driving the invasion of glioma cells through three-dimensional environments. © 2023 Wiley Periodicals LLC. Basic Protocol 1: Culturing human glioma stem cells as neurospheres Basic Protocol 2: Inducing GSC adherence and monitoring their differentiation into mesenchymal cells Support Protocol 1: Preparing fibronectin-coated dishes for cell microscopy Basic Protocol 3: Embedding GSCs in a 3D collagen matrix to study their invasive behavior Support Protocol 2: Phase-contrast imaging with a tiled matrix to study cell migration in a 3D gel.
Collapse
Affiliation(s)
- James M. Cowan
- Department of Biology, Drexel University, Philadelphia, PA 19104
| | - Matey Juric
- Department of Biology, Drexel University, Philadelphia, PA 19104
| | - Ryan J. Petrie
- Department of Biology, Drexel University, Philadelphia, PA 19104
| |
Collapse
|
199
|
The Role of Hyperexcitability in Gliomagenesis. Int J Mol Sci 2023; 24:ijms24010749. [PMID: 36614191 PMCID: PMC9820922 DOI: 10.3390/ijms24010749] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/20/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
Glioblastoma is the most common malignant primary brain tumor. Recent studies have demonstrated that excitatory or activity-dependent signaling-both synaptic and non-synaptic-contribute to the progression of glioblastoma. Glutamatergic receptors may be stimulated via neuron-tumor synapses or release of glutamate by the tumor itself. Ion currents generated by these receptors directly alter the structure of membrane adhesion molecules and cytoskeletal proteins to promote migratory behavior. Additionally, the hyperexcitable milieu surrounding glioma increases the rate at which tumor cells proliferate and drive recurrent disease. Inhibition of excitatory signaling has shown to effectively reduce its pro-migratory and -proliferative effects.
Collapse
|
200
|
Hu R, Hameed UFS, Sun X, Moorthy BS, Zhang W, Jeffrey PD, Zhou L, Ma X, Chen F, Pei J, Giri PK, Mou Y, Swaminathan K, Yuan P. A NR2E1-interacting peptide of LSD1 inhibits the proliferation of brain tumour initiating cells. Cell Prolif 2023; 56:e13350. [PMID: 36321378 DOI: 10.1111/cpr.13350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/30/2022] [Accepted: 10/04/2022] [Indexed: 01/07/2023] Open
Abstract
OBJECTIVES Elimination of brain tumour initiating cells (BTICs) is important for the good prognosis of malignant brain tumour treatment. To develop a novel strategy targeting BTICs, we studied NR2E1(TLX) involved self-renewal mechanism of BTICs and explored the intervention means. MATERIALS AND METHODS NR2E1 and its interacting protein-LSD1 in BTICs were studied by gene interference combined with cell growth, tumour sphere formation, co-immunoprecipitation and chromatin immunoprecipitation assays. NR2E1 interacting peptide of LSD1 was identified by Amide Hydrogen/Deuterium Exchange and Mass Spectrometry (HDX-MS) and analysed by in vitro functional assays. The in vivo function of the peptide was examined with intracranial mouse model by transplanting patient-derived BTICs. RESULTS We found NR2E1 recruits LSD1, a lysine demethylase, to demethylate mono- and di-methylated histone 3 Lys4 (H3K4me/me2) at the Pten promoter and repress its expression, thereby promoting BTIC proliferation. Using Amide Hydrogen/Deuterium Exchange and Mass Spectrometry (HDX-MS) method, we identified four LSD1 peptides that may interact with NR2E1. One of the peptides, LSD1-197-211 that locates at the LSD1 SWIRM domain, strongly inhibited BTIC proliferation by promoting Pten expression through interfering NR2E1 and LSD1 function. Furthermore, overexpression of this peptide in human BTICs can inhibit intracranial tumour formation. CONCLUSION Peptide LSD1-197-211 can repress BTICs by interfering the synergistic function of NR2E1 and LSD1 and may be a promising lead peptide for brain tumour therapy in future.
Collapse
Affiliation(s)
- Rong Hu
- Guangdong Institute of Gastroenterology, Guangzhou, People's Republic of China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | | | - Xiang Sun
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Medical Informatics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | | | - Wen Zhang
- Guangdong Institute of Gastroenterology, Guangzhou, People's Republic of China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Philip D Jeffrey
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Li Zhou
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Xin Ma
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Fangjin Chen
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, People's Republic of China
| | - Jianfeng Pei
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, People's Republic of China
| | - Pankaj K Giri
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, India
| | - Yonggao Mou
- Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | | | - Ping Yuan
- Guangdong Institute of Gastroenterology, Guangzhou, People's Republic of China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|