151
|
Langford BJ, So M, Simeonova M, Leung V, Lo J, Kan T, Raybardhan S, Sapin ME, Mponponsuo K, Farrell A, Leung E, Soucy JPR, Cassini A, MacFadden D, Daneman N, Bertagnolio S. Antimicrobial resistance in patients with COVID-19: a systematic review and meta-analysis. THE LANCET. MICROBE 2023; 4:e179-e191. [PMID: 36736332 PMCID: PMC9889096 DOI: 10.1016/s2666-5247(22)00355-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 10/08/2022] [Accepted: 11/24/2022] [Indexed: 02/03/2023]
Abstract
BACKGROUND Frequent use of antibiotics in patients with COVID-19 threatens to exacerbate antimicrobial resistance. We aimed to establish the prevalence and predictors of bacterial infections and antimicrobial resistance in patients with COVID-19. METHODS We did a systematic review and meta-analysis of studies of bacterial co-infections (identified within ≤48 h of presentation) and secondary infections (>48 h after presentation) in outpatients or hospitalised patients with COVID-19. We searched the WHO COVID-19 Research Database to identify cohort studies, case series, case-control trials, and randomised controlled trials with populations of at least 50 patients published in any language between Jan 1, 2019, and Dec 1, 2021. Reviews, editorials, letters, pre-prints, and conference proceedings were excluded, as were studies in which bacterial infection was not microbiologically confirmed (or confirmed via nasopharyngeal swab only). We screened titles and abstracts of papers identified by our search, and then assessed the full text of potentially relevant articles. We reported the pooled prevalence of bacterial infections and antimicrobial resistance by doing a random-effects meta-analysis and meta-regression. Our primary outcomes were the prevalence of bacterial co-infection and secondary infection, and the prevalence of antibiotic-resistant pathogens among patients with laboratory-confirmed COVID-19 and bacterial infections. The study protocol was registered with PROSPERO (CRD42021297344). FINDINGS We included 148 studies of 362 976 patients, which were done between December, 2019, and May, 2021. The prevalence of bacterial co-infection was 5·3% (95% CI 3·8-7·4), whereas the prevalence of secondary bacterial infection was 18·4% (14·0-23·7). 42 (28%) studies included comprehensive data for the prevalence of antimicrobial resistance among bacterial infections. Among people with bacterial infections, the proportion of infections that were resistant to antimicrobials was 60·8% (95% CI 38·6-79·3), and the proportion of isolates that were resistant was 37·5% (26·9-49·5). Heterogeneity in the reported prevalence of antimicrobial resistance in organisms was substantial (I2=95%). INTERPRETATION Although infrequently assessed, antimicrobial resistance is highly prevalent in patients with COVID-19 and bacterial infections. Future research and surveillance assessing the effect of COVID-19 on antimicrobial resistance at the patient and population level are urgently needed. FUNDING WHO.
Collapse
Affiliation(s)
- Bradley J Langford
- Public Health Ontario, Toronto, ON, Canada; Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada.
| | - Miranda So
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada; University Health Network, Toronto, ON, Canada
| | | | - Valerie Leung
- Public Health Ontario, Toronto, ON, Canada; Toronto East Health Network, Toronto, ON, Canada
| | - Jennifer Lo
- Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Tiffany Kan
- North York General Hospital, Toronto, ON, Canada
| | | | - Mia E Sapin
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON, Canada
| | - Kwadwo Mponponsuo
- University of Calgary, Calgary, AB, Canada; Alberta Health Services, Calgary, AB, Canada
| | | | - Elizabeth Leung
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada; Unity Health Toronto, Toronto, ON, UK
| | - Jean-Paul R Soucy
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | | | - Derek MacFadden
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON, Canada; Ottawa Hospital, Ottawa, ON, Canada
| | - Nick Daneman
- Public Health Ontario, Toronto, ON, Canada; Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | | |
Collapse
|
152
|
Friedel DM, Cappell MS. Diarrhea and Coronavirus Disease 2019 Infection. Gastroenterol Clin North Am 2023; 52:59-75. [PMID: 36813431 PMCID: PMC9659511 DOI: 10.1016/j.gtc.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The global coronavirus disease-2019 (COVID-19) pandemic has caused significant morbidity and mortality, thoroughly affected daily living, and caused severe economic disruption throughout the world. Pulmonary symptoms predominate and account for most of the associated morbidity and mortality. However, extrapulmonary manifestations are common in COVID-19 infections, including gastrointestinal (GI) symptoms, such as diarrhea. Diarrhea affects approximately 10% to 20% of COVID-19 patients. Diarrhea can occasionally be the presenting and only COVID-19 symptom. Diarrhea in COVID-19 subjects is usually acute but is occasionally chronic. It is typically mild-to-moderate and nonbloody. It is usually much less clinically important than pulmonary or potential thrombotic disorders. Occasionally the diarrhea can be profuse and life-threatening. The entry receptor for COVID-19, angiotensin converting enzyme-2, is found throughout the GI tract, especially in the stomach and small intestine, which provides a pathophysiologic basis for local GI infection. COVID-19 virus has been documented in feces and in GI mucosa. Treatment of COVID-19 infection, especially antibiotic therapy, is a common culprit of the diarrhea, but secondary infections including bacteria, especially Clostridioides difficile, are sometimes implicated. Workup for diarrhea in hospitalized patients usually includes routine chemistries; basic metabolic panel; and a complete hemogram; sometimes stool studies, possibly including calprotectin or lactoferrin; and occasionally abdominal CT scan or colonoscopy. Treatment for the diarrhea is intravenous fluid infusion and electrolyte supplementation as necessary, and symptomatic antidiarrheal therapy, including Loperamide, kaolin-pectin, or possible alternatives. Superinfection with C difficile should be treated expeditiously. Diarrhea is prominent in post-COVID-19 (long COVID-19), and is occasionally noted after COVID-19 vaccination. The spectrum of diarrhea in COVID-19 patients is presently reviewed including the pathophysiology, clinical presentation, evaluation, and treatment.
Collapse
Affiliation(s)
- David M. Friedel
- Division of Therapeutic Endoscopy, Division of Gastroenterology, Department of Medicine, New York University Hospital, 259 First Street, Mineola 11501, NY, USA
| | - Mitchell S. Cappell
- Department of Medicine, Gastroenterology Service, Aleda E. Lutz Veterans Administration Hospital at Saginaw, Building 1, Room 3212, 1500 Weiss Street, Saginaw, MI 48602, USA,Corresponding author
| |
Collapse
|
153
|
A 66-Year-Old Man with Persistent Altered Mental Status and New Rash. Ann Am Thorac Soc 2023; 20:466-469. [PMID: 36856715 DOI: 10.1513/annalsats.202202-156cc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023] Open
|
154
|
Aldardeer NF, Shukairi ANAL, Nasser ME, Al Musawa M, Kalkatawi BS, Alsahli RM, Ramdan AME, Qushmaq I, Aldhaeefi M. Continuation Versus De-escalation of Broad-Spectrum Antibiotic Therapy in Critically Ill COVID-19 Patients. DR. SULAIMAN AL HABIB MEDICAL JOURNAL 2023. [PMCID: PMC9972303 DOI: 10.1007/s44229-023-00027-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Abstract
Background Antibiotic de-escalation (ADE) is a stewardship initiative that aims to reduce exposure to antimicrobials, thus limiting their unwanted effect, including antimicrobial resistance. Our study aims to describe the impact of ADE compared with the continuation of therapy on the outcome of critically ill coronavirus disease 2019 (COVID-19) patients. Material and Methods A single-center retrospective study included critically ill COVID-19 adult patients admitted between January 1, 2019 and August 31, 2021, and started on broad-spectrum antibiotics. The primary outcome was intensive care unit (ICU) mortality. In addition, other clinical outcomes were evaluated, including ICU readmissions, length of stay, and superinfection. Results The study included 73 patients with a mean age of 61.0 ± 19.4, and ADE was performed in 10 (13.6%) of these. In the ADE group, 8/10 (80%) cultures were positive. ICU mortality was not statistically different between ADE and continuation of therapy groups (60 vs. 41.3%, respectively, P = 0.317). Superinfection occurred in 4 (5.4%) patients. Hospital mortality, length of stay, and ICU readmission rates did not differ significantly between groups. Conclusion De-escalation of broad-spectrum antibiotics in critically ill covid-19 patients was not associated with higher mortality. A larger cohort is needed to confirm these findings. Supplementary Information The online version contains supplementary material available at 10.1007/s44229-023-00027-0.
Collapse
Affiliation(s)
| | - Abeer Nizar A. L. Shukairi
- Department of Medicine, King Faisal Specialist Hospital and Research Centre, Jeddah, Saudi Arabia ,College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Mohannad E. Nasser
- King Faisal Specialist Hospital and Research Centre, Jeddah, Saudi Arabia
| | - Mohammad Al Musawa
- Medication Safety/Clinical Support Pharmacy, King Faisal Specialist Hospital and Research Centre (Gen. Org.), Jeddah, Saudi Arabia
| | | | | | | | - Ismael Qushmaq
- Section of Critical Care Medicine, Department of Medicine, King Faisal Specialist Hospital and Research Center (Gen. Org.), Jeddah, Saudi Arabia
| | - Mohammed Aldhaeefi
- Department of Clinical and Administrative Pharmacy Sciences, College of Pharmacy, Howard University, Washington, DC, USA
| |
Collapse
|
155
|
Bogdan I, Gadela T, Bratosin F, Dumitru C, Popescu A, Horhat FG, Negrean RA, Horhat RM, Mot IC, Bota AV, Stoica CN, Feciche B, Csep AN, Fericean RM, Chicin GN, Marincu I. The Assessment of Multiplex PCR in Identifying Bacterial Infections in Patients Hospitalized with SARS-CoV-2 Infection: A Systematic Review. Antibiotics (Basel) 2023; 12:antibiotics12030465. [PMID: 36978332 PMCID: PMC10044563 DOI: 10.3390/antibiotics12030465] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/10/2023] [Accepted: 02/24/2023] [Indexed: 03/03/2023] Open
Abstract
Bacterial infection can occur in patients hospitalized with SARS-CoV-2 in various conditions, resulting in poorer outcomes, such as a higher death rate. This current systematic review was conducted in order to assess the efficiency of multiplex PCR in detecting bacterial infections in hospitalized COVID-19 patients, as well as to analyze the most common bacterial pathogens and other factors that interfere with this diagnosis. The research was conducted using four electronic databases (PubMed, Taylor&Francis, Web of Science, and Wiley Online Library). Out of 290 studies, nine were included in the systematic review. The results supported the use of multiplex PCR in detecting bacteria, considering its high sensitivity and specificity rates. The most common bacterial pathogens found were Klebsiella pneumoniae, Staphylococcus aureus, Pseudomonas aeruginosa, Streptococcus pneumoniae, and Haemophilus influenzae. The median age at admission was 61.5 years, and the majority of patients were men (70.3%), out of a total of 1553 patients. The proportion of ICU admission was very high, with a pooled proportion of 52.6% over the analyzed studies, and an average duration of hospitalization of 13 days. The mortality rate was proportionally high, as was the rate of ICU admission, with a pooled mortality of 24.9%. It was discovered that 65.2% of all patients used antibiotics before admission, with or without medical prescription. Antibiotic treatment should be considered consciously, considering the high risks of developing antibiotic resistance.
Collapse
Affiliation(s)
- Iulia Bogdan
- Department XIII, Discipline of Infectious Diseases, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania
- Doctoral School, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania
- Methodological and Infectious Diseases Research Center, Department of Infectious Diseases, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square 2, 300041 Timisoara, Romania
| | - Tejaswi Gadela
- School of General Medicine, Bhaskar Medical College, Amdapur Road 156-162, Hyderabad 500075, India
| | - Felix Bratosin
- Doctoral School, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania
- Methodological and Infectious Diseases Research Center, Department of Infectious Diseases, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square 2, 300041 Timisoara, Romania
| | - Catalin Dumitru
- Department of Obstetrics and Gynecology, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania
- Correspondence: (C.D.); (B.F.); (G.N.C.)
| | - Alin Popescu
- Department of Obstetrics and Gynecology, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania
| | - Florin George Horhat
- Multidisciplinary Research Center on Antimicrobial Resistance (MULTI-REZ), Microbiology Department, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | | | - Razvan Mihai Horhat
- Department of Conservative Dentistry and Endodontics, Faculty of Dental Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania
| | - Ion Cristian Mot
- ENT Department, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2 Eftimie Murgu Sq, 300041 Timisoara, Romania
| | - Adrian Vasile Bota
- Methodological and Infectious Diseases Research Center, Department of Infectious Diseases, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square 2, 300041 Timisoara, Romania
| | - Carmen Nicoleta Stoica
- Oradea Emergency Clinical Hospital, Infectious Diseases Department, 410087 Oradea, Romania
| | - Bogdan Feciche
- Department of Urology, Satu-Mare County Emergency Hospital, Strada Ravensburg 2, 440192 Satu-Mare, Romania
- Correspondence: (C.D.); (B.F.); (G.N.C.)
| | - Andrei Nicolae Csep
- Department of Psycho-Neuroscience and Recovery, Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania
| | - Roxana Manuela Fericean
- Department XIII, Discipline of Infectious Diseases, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania
| | - Gratiana Nicoleta Chicin
- Faculty of General Medicine, “Vasile Goldis” Western University of Arad, Bulevardul Revolutiei 94, 310025 Arad, Romania
- National Institute of Public Health, Strada Doctor Leonte Anastasievici 1-3, 050463 Bucuresti, Romania
- Correspondence: (C.D.); (B.F.); (G.N.C.)
| | - Iosif Marincu
- Methodological and Infectious Diseases Research Center, Department of Infectious Diseases, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square 2, 300041 Timisoara, Romania
| |
Collapse
|
156
|
Wei XL, Zeng QL, Xie M, Bao Y. Pathogen Distribution, Drug Resistance Risk Factors, and Construction of Risk Prediction Model for Drug-Resistant Bacterial Infection in Hospitalized Patients at the Respiratory Department During the COVID-19 Pandemic. Infect Drug Resist 2023; 16:1107-1121. [PMID: 36855390 PMCID: PMC9968439 DOI: 10.2147/idr.s399622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/14/2023] [Indexed: 02/23/2023] Open
Abstract
Objective To investigate the distribution and drug resistance of pathogens among hospitalized patients in the respiratory unit during the COVID-19 pandemic, analyze the risk factors of drug resistance, construct a risk prediction model. Methods This study isolated 791 strains from 489 patients admitted to the Affiliated Hospital of Chengdu University, who were retrospectively enrolled between December 2019 and June 2021. The patients were divided into training and validation sets based on a random number table method (8:2). The baseline information, clinical characteristics, and culture results were collected using an electronic database and WHONET 5.6 software and compared between the two groups. A risk prediction model for drug-resistant bacteria was constructed using multi-factor logistic regression. Results K. pneumoniae (24.78%), P. aeruginosa (17.19%), A. baumannii (10.37%), and E. coli (10.37%) were the most abundant bacterial isolates. 174 isolates of drug-resistant bacteria were collected, ie, Carbapenem-resistant organism-strains, ESBL-producing strains, methicillin-resistant S. aureus, multi-drug resistance constituting 38.51%, 50.57%, 6.32%, 4.60%, respectively. The nosocomial infection prediction model of drug-resistant bacteria was developed based on the combined use of antimicrobials, pharmacological immunosuppression, PCT>0.5 ng/mL, CKD stage 4-5, indwelling catheter, and age > 60 years. The AUC under the ROC curve of the training and validation sets were 0.768 (95% CI: 0.624-0.817) and 0.753 (95% CI: 0.657-0.785), respectively. Our model revealed an acceptable prediction demonstrated by a non-significant Hosmer-Lemeshow test (training set, p=0.54; validation set, p=0.88). Conclusion K. pneumoniae, P. aeruginosa, A. baumannii, and E. coli were the most abundant bacterial isolates. Antimicrobial resistance among the common isolates was high for most routinely used antimicrobials and carbapenems. COVID-19 did not increase the drug resistance pressure of the main strains. The risk prediction model of drug-resistant bacterial infection is expected to improve the prevention and control of antibacterial-resistant bacterial infection in hospital settings.
Collapse
Affiliation(s)
- Xiao-Lin Wei
- Department of Respirology, Taikang Sichuan Hospital, Chengdu, People’s Republic of China
| | - Qiang-Lin Zeng
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Chengdu University School of Clinical Medicine, Chengdu University, Chengdu, People’s Republic of China
| | - Min Xie
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, People’s Republic of China
| | - Yong Bao
- Department of Respirology, Taikang Sichuan Hospital, Chengdu, People’s Republic of China,Correspondence: Yong Bao, Department of Respirology, Taikang Sichuan Hospital, No. 881, Xianghe 1st Street, Huayang Street, Tianfu New District, Sichuan, 610213, People’s Republic of China, Email
| |
Collapse
|
157
|
The Circulation of Common Respiratory Viruses and Their Co-infection with Severe Acute Respiratory Syndrome Coronavirus 2 Before and After Coronavirus Disease of 2019 Vaccination. Jundishapur J Microbiol 2023. [DOI: 10.5812/jjm-133326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023] Open
Abstract
Background: Respiratory viruses play important roles in respiratory tract infections; they are the major cause of diseases such as the common cold, bronchiolitis, pneumonia, etc., in humans that circulate more often in the cold seasons. During the COVID-19 pandemic, many strict public health measures, such as hand hygiene, the use of face masks, social distancing, and quarantines, were implemented worldwide to control the pandemic. Besides controlling the COVID-19 pandemic, these introduced measures might change the spread of other common respiratory viruses. Moreover, with COVID-19 vaccination and reducing public health protocols, the circulation of other respiratory viruses probably increases in the community. Objectives: This study aims to explore changes in the circulation pattern of common respiratory viruses during the COVID-19 pandemic. Methods: In the present study, we evaluated the circulation of seven common respiratory viruses (influenza viruses A and B, rhinovirus, and seasonal human Coronaviruses (229E, NL63, OC43, and HKU1) and their co-infection with SARS-CoV-2 in suspected cases of COVID-19 in two time periods before and after COVID-19 vaccination. Clinical nasopharyngeal swabs of 400 suspected cases of COVID-19 were tested for SARS-CoV-2 and seven common respiratory viruses by reverse transcription real-time polymerase chain reaction. Results: Our results showed common respiratory viruses were detected only in 10% and 8% of SARS-CoV-2-positive samples before and after vaccination, respectively, in which there were not any significant differences between them (P-value = 0.14). Moreover, common viral respiratory infections were found only in 12% and 32% of SARS-CoV-2-negative specimens before and after vaccination, respectively, in which there was a significant difference between them (P-value = 0.041). Conclusions: Our data showed a low rate of co-infection of other respiratory viruses with SARS-CoV-2 at both durations, before and after COVID-19 vaccination. Moreover, the circulation of common respiratory viruses before the COVID-19 vaccination was lower, probably due to non-pharmaceutical interventions (NPI), while virus activity (especially influenza virus A) was significantly increased after COVID-19 vaccination with reducing strict public health measures.
Collapse
|
158
|
Goncheva MI, Gibson RM, Shouldice AC, Dikeakos JD, Heinrichs DE. The Staphylococcus aureus protein IsdA increases SARS CoV-2 replication by modulating JAK-STAT signaling. iScience 2023; 26:105975. [PMID: 36687318 PMCID: PMC9838083 DOI: 10.1016/j.isci.2023.105975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/28/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
The Severe Acute Respiratory Syndrome Coronavirus 2 (CoV-2) pandemic has affected millions globally. A significant complication of CoV-2 infection is secondary bacterial co-infection, as seen in approximately 25% of severe cases. The most common organism isolated during co-infection is Staphylococcus aureus. Here, we describe the development of an in vitro co-infection model where both viral and bacterial replication kinetics may be examined. We demonstrate CoV-2 infection does not alter bacterial interactions with host epithelial cells. In contrast, S. aureus enhances CoV-2 replication by 10- to 15-fold. We identify this pro-viral activity is due to the S. aureus iron-regulated surface determinant A (IsdA) protein and demonstrate IsdA modifies host transcription. We find that IsdA alters Janus Kinase - Signal Transducer and Activator of Transcription (JAK-STAT) signaling, by affecting JAK2-STAT3 levels, ultimately leading to increased viral replication. These findings provide key insight into the molecular interactions between host cells, CoV-2 and S. aureus during co-infection.
Collapse
Affiliation(s)
- Mariya I. Goncheva
- Department of Microbiology and Immunology, University of Western Ontario, London, ON N6A 5C1, Canada,Corresponding author
| | - Richard M. Gibson
- ImPaKT Laboratory, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada
| | - Ainslie C. Shouldice
- Department of Microbiology and Immunology, University of Western Ontario, London, ON N6A 5C1, Canada
| | - Jimmy D. Dikeakos
- Department of Microbiology and Immunology, University of Western Ontario, London, ON N6A 5C1, Canada
| | - David E. Heinrichs
- Department of Microbiology and Immunology, University of Western Ontario, London, ON N6A 5C1, Canada,Corresponding author
| |
Collapse
|
159
|
Impact of Bacterial Infections on COVID-19 Patients: Is Timing Important? Antibiotics (Basel) 2023; 12:antibiotics12020379. [PMID: 36830290 PMCID: PMC9952118 DOI: 10.3390/antibiotics12020379] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/15/2023] Open
Abstract
BACKGROUND Along with important factors that worsen the clinical outcome of COVID-19, it has been described that bacterial infections among patients positive for a SARS-CoV-2 infection can play a dramatic role in the disease process. Co-infections or community-acquired infections are recognized within the first 48 h after the admission of patients. Superinfections occur at least 48 h after admission and are considered to contribute to a worse prognosis. Microbiologic parameters differentiate infections that happen after the fifth day of hospitalization from those appearing earlier. Specifically, after the fifth day, the detection of resistant bacteria increases and difficult microorganisms emerge. OBJECTIVES The aim of the study was to evaluate the impact of bacterial infections in patients with COVID-19 on the length of the hospital stay and mortality. METHODS A total of 177 patients hospitalized due to COVID-19 pneumonia were consecutively sampled during the third and fourth wave of the pandemic at a University Hospital in Greece. A confirmed bacterial infection was defined as positive blood, urinary, bronchoalveolar lavage (BAL) or any other infected body fluid. Patients with confirmed infections were further divided into subgroups according to the time from admission to the positive culture result. RESULTS When comparing the groups of patients, those with a confirmed infection had increased odds of death (odds ratio: 3.634; CI 95%: 1.795-7.358; p < 0.001) and a longer length of hospital stay (median 13 vs. 7 days). A late onset of infection was the most common finding in our cohort and was an independent risk factor for in-hospital death. Mortality and the length of hospital stay significantly differed between the subgroups. CONCLUSION In this case series, microbial infections were an independent risk factor for a worse outcome among patients with COVID-19. Further, a correlation between the onset of infection and a negative outcome in terms of non-infected, community-acquired, early hospital-acquired and late hospital-acquired infections was identified. Late hospital-acquired infections increased the mortality of COVID-19 patients whilst superinfections were responsible for an extended length of hospital stay.
Collapse
|
160
|
Badin RC, de Amorim RLO, Aguila A, Manaças LRA. Clinical and pharmacological factors associated with mortality in patients with COVID-19 in a high complexity hospital in Manaus: A retrospective study. PLoS One 2023; 18:e0280891. [PMID: 36763604 PMCID: PMC9916623 DOI: 10.1371/journal.pone.0280891] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 01/10/2023] [Indexed: 02/11/2023] Open
Abstract
COVID-19 is a contagious infection caused by the SARS-CoV-2 virus, responsible for more than 5 million deaths worldwide, and has been a significant challenge for healthcare systems worldwide. Characterized by multiple manifestations, the most common symptoms are fever, cough, anosmia, ageusia, and myalgia. However, several organs can be affected in more severe cases, causing encephalitis, myocarditis, respiratory distress, hypercoagulable state, pulmonary embolism, and stroke. Despite efforts to identify appropriate clinical protocols for its management, there are still no fully effective therapies to prevent patient death. The objective of this study was to describe the demographic, clinical, and pharmacotherapeutic management characteristics employed in patients hospitalized for diagnosis of COVID-19, in addition to identifying predictive factors for mortality. This is a single-center, retrospective cohort study carried out in a reference hospital belonging to the Brazilian public health system, in Manaus, from March 2020 to July 2021. Data were obtained from analyzing medical records, physical and electronic forms, medical prescriptions, and antimicrobial use authorization forms. During the study period, 530 patients were included, 51.70% male, with a mean age of 58.74 ± 15.91 years. The overall mortality rate was 23.58%. The variables age, number of comorbidities, admission to the ICU, length of stay, oxygen saturation, serum aspartate transaminase, and use of mechanical ventilation showed a positive correlation with the mortality rate. Regarding pharmacological management, 88.49% of patients used corticosteroids, 86.79% used antimicrobials, 94.15% used anticoagulant therapy, and 3.77% used immunotherapy. Interestingly, two specific classes of antibiotics showed a positive correlation with the mortality rate: penicillins and glycopeptides. After multivariate logistic regression analysis, age, number of comorbidities, need for mechanical ventilation, length of hospital stay, and penicillin or glycopeptide antibiotics use were associated with mortality (AUC = 0.958).
Collapse
Affiliation(s)
- Rebeka Caribé Badin
- Department of Neurosurgery, Getúlio Vargas University Hospital, Manaus, Amazonas, Brazil
- * E-mail:
| | | | - Alian Aguila
- Department of Cardiology, Memorial Hospital System, Hollywood, Florida, United States of America
| | - Liliane Rosa Alves Manaças
- Department of Pharmacology, Brazilian National Cancer Institute José Alencar Gomes da Silva (INCA)/ Hospital II, Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
161
|
Panahi Y, Gorabi AM, Talaei S, Beiraghdar F, Akbarzadeh A, Tarhriz V, Mellatyar H. An overview on the treatments and prevention against COVID-19. Virol J 2023; 20:23. [PMID: 36755327 PMCID: PMC9906607 DOI: 10.1186/s12985-023-01973-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 01/14/2023] [Indexed: 02/10/2023] Open
Abstract
BACKGROUND The coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to plague the world. While COVID-19 is asymptomatic in most individuals, it can cause symptoms like pneumonia, ARDS (acute respiratory distress syndrome), and death in others. Although humans are currently being vaccinated with several COVID-19 candidate vaccines in many countries, however, the world still is relying on hygiene measures, social distancing, and approved drugs. RESULT There are many potential therapeutic agents to pharmacologically fight COVID-19: antiviral molecules, recombinant soluble angiotensin-converting enzyme 2 (ACE2), monoclonal antibodies, vaccines, corticosteroids, interferon therapies, and herbal agents. By an understanding of the SARS-CoV-2 structure and its infection mechanisms, several vaccine candidates are under development and some are currently in various phases of clinical trials. CONCLUSION This review describes potential therapeutic agents, including antiviral agents, biologic agents, anti-inflammatory agents, and herbal agents in the treatment of COVID-19 patients. In addition to reviewing the vaccine candidates that entered phases 4, 3, and 2/3 clinical trials, this review also discusses the various platforms that are used to develop the vaccine COVID-19.
Collapse
Affiliation(s)
- Yunes Panahi
- Pharmacotherapy Department, Faculty of Pharmacy, Bagyattallah University of Medical Sciences, Tehran, Iran
| | - Armita Mahdavi Gorabi
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Sona Talaei
- Department of Basic Sciences, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Fatemeh Beiraghdar
- Nephrology and Urology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Abolfazl Akbarzadeh
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahideh Tarhriz
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hassan Mellatyar
- Pharmacotherapy Department, Faculty of Pharmacy, Bagyattallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
162
|
Ventilator-Associated Pneumonia in COVID-19 Patients Admitted in Intensive Care Units: Relapse, Therapeutic Failure and Attributable Mortality-A Multicentric Observational Study from the OutcomeRea Network. J Clin Med 2023; 12:jcm12041298. [PMID: 36835834 PMCID: PMC9961155 DOI: 10.3390/jcm12041298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/24/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023] Open
Abstract
Introduction: Ventilator-associated pneumonia (VAP) incidence is high among critically ill COVID-19 patients. Its attributable mortality remains underestimated, especially for unresolved episodes. Indeed, the impact of therapeutic failures and the determinants that potentially affect mortality are poorly evaluated. We assessed the prognosis of VAP in severe COVID-19 cases and the impact of relapse, superinfection, and treatment failure on 60-day mortality. Methods: We evaluated the incidence of VAP in a multicenter prospective cohort that included adult patients with severe COVID-19, who required mechanical ventilation for ≥48 h between March 2020 and June 2021. We investigated the risk factors for 30-day and 60-day mortality, and the factors associated with relapse, superinfection, and treatment failure. Results: Among 1424 patients admitted to eleven centers, 540 were invasively ventilated for 48 h or more, and 231 had VAP episodes, which were caused by Enterobacterales (49.8%), P. aeruginosa (24.8%), and S. aureus (22%). The VAP incidence rate was 45.6/1000 ventilator days, and the cumulative incidence at Day 30 was 60%. VAP increased the duration of mechanical ventilation without modifying the crude 60-day death rate (47.6% vs. 44.7% without VAP) and resulted in a 36% increase in death hazard. Late-onset pneumonia represented 179 episodes (78.2%) and was responsible for a 56% increase in death hazard. The cumulative incidence rates of relapse and superinfection were 45% and 39.5%, respectively, but did not impact death hazard. Superinfection was more frequently related to ECMO and first episode of VAP caused by non-fermenting bacteria. The risk factors for treatment failure were an absence of highly susceptible microorganisms and vasopressor need at VAP onset. Conclusions: The incidence of VAP, mainly late-onset episodes, is high in COVID-19 patients and associated with an increased risk of death, similar to that observed in other mechanically ventilated patients. The high rate of VAP due to difficult-to-treat microorganisms, pharmacokinetic alterations induced by renal replacement therapy, shock, and ECMO likely explains the high cumulative risk of relapse, superinfection, and treatment failure.
Collapse
|
163
|
Ahava MJ, Kortela E, Forsblom E, Pätäri-Sampo A, Friberg N, Meretoja A, Kivivuori SM, Lappalainen M, Kurkela S, Järvinen A, Jarva H. Low incidence of severe bacterial infections in hospitalised patients with COVID-19: A population-based registry study. Infect Dis (Lond) 2023; 55:132-141. [PMID: 36305894 DOI: 10.1080/23744235.2022.2138963] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Bacterial infections complicating COVID-19 are rare but present a challenging clinical entity. The aim of this study was to evaluate the incidence, aetiology and outcome of severe laboratory-verified bacterial infections in hospitalised patients with COVID-19. METHODS All laboratory-confirmed patients with COVID-19 admitted to specialised healthcare hospitals in the Capital Province of Finland during the first wave of COVID-19 between 27 February and 21 June 2020 were retrospectively studied. We gathered the blood and respiratory tract culture reports of these patients and analysed their association with 90-day case-fatality using multivariable regression analysis. RESULTS A severe bacterial infection was diagnosed in 40/585 (6.8%) patients with COVID-19. The range of bacteria was diverse, and the most common bacterial findings in respiratory samples were gram-negative, and in blood cultures gram-positive bacteria. Patients with severe bacterial infection had longer hospital stay (mean 31; SD 20 days) compared to patients without (mean 9; SD 9 days; p < 0.001). Case-fatality was higher with bacterial infection (15% vs 11%), but the difference was not statistically significant (OR 1.38 CI95% 0.56-3.41). CONCLUSIONS Severe bacterial infection complicating COVID-19 was a rare occurrence in our cohort. Our results are in line with the current understanding that antibiotic treatment for hospitalised COVID-19 patients should only be reserved for situations where a bacterial infection is strongly suspected. The ever-evolving landscape of the pandemic and recent advances in immunomodulatory treatment of COVID-19 patients underline the need for continuous vigilance concerning the possibility and frequency of nosocomial bacterial infections.
Collapse
Affiliation(s)
- M J Ahava
- HUS Diagnostic Center, HUSLAB, Clinical Microbiology Department, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - E Kortela
- Division of Infectious Diseases, Inflammation Center, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - E Forsblom
- Division of Infectious Diseases, Inflammation Center, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - A Pätäri-Sampo
- HUS Diagnostic Center, HUSLAB, Clinical Microbiology Department, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - N Friberg
- HUS Diagnostic Center, HUSLAB, Clinical Microbiology Department, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - A Meretoja
- General Administration, Helsinki University Hospital, Helsinki, Finland
| | - S-M Kivivuori
- Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - M Lappalainen
- HUS Diagnostic Center, HUSLAB, Clinical Microbiology Department, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - S Kurkela
- HUS Diagnostic Center, HUSLAB, Clinical Microbiology Department, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - A Järvinen
- Division of Infectious Diseases, Inflammation Center, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - H Jarva
- HUS Diagnostic Center, HUSLAB, Clinical Microbiology Department, Helsinki University Hospital, University of Helsinki, Helsinki, Finland.,Translational Immunology Research Program, Department of Bacteriology and Immunology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
164
|
Fabre I, Tardieu L, Ouissa R, Mounsamy L, Chahim B, Roger PM. Severe COVID-19 Pneumonia in Elderly Patients: Success Rate of Compassioned Use of High Flow Nasal Cannula Therapy. Aging Dis 2023; 14:1-5. [PMID: 36818557 PMCID: PMC9937705 DOI: 10.14336/ad.2022.0619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 06/19/2022] [Indexed: 11/18/2022] Open
Affiliation(s)
- Isabelle Fabre
- Infectiologie, Centre Hospitalier Universitaire de Guadeloupe, Guadeloupe, France.
| | - Laurène Tardieu
- Infectiologie, Centre Hospitalier Universitaire de Guadeloupe, Guadeloupe, France.
| | - Rachida Ouissa
- Infectiologie, Centre Hospitalier Universitaire de Guadeloupe, Guadeloupe, France.
| | - Ludwig Mounsamy
- Gérontologie, Centre Hospitalier Universitaire de Guadeloupe, Guadeloupe, France.
| | - Bassel Chahim
- Service Post-urgence, Centre Hospitalier Universitaire de Guadeloupe, Guadeloupe, France
| | - Pierre-Marie Roger
- Infectiologie, Centre Hospitalier Universitaire de Guadeloupe, Guadeloupe, France.,Faculté de Médecine, Université des Antilles, Guadeloupe, France.,Correspondence should be addressed to: Pr. Pierre-Marie Roger, Infectiologie, Centre Hospitalier Universitaire de Guadeloupe, Pointe-à-Pitre, 97110, Guadeloupe, France.
| |
Collapse
|
165
|
Dorneles GP, Teixeira PC, Peres A, Rodrigues Júnior LC, da Fonseca SG, Monteiro MC, Eller S, Oliveira TF, Wendland EM, Romão PRT. Endotoxin tolerance and low activation of TLR-4/NF-κB axis in monocytes of COVID-19 patients. J Mol Med (Berl) 2023; 101:183-195. [PMID: 36790534 PMCID: PMC9930695 DOI: 10.1007/s00109-023-02283-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 12/20/2022] [Accepted: 01/03/2023] [Indexed: 02/16/2023]
Abstract
Higher endotoxin in the circulation may indicate a compromised state of host immune response against coinfections in severe COVID-19 patients. We evaluated the inflammatory response of monocytes from COVID-19 patients after lipopolysaccharide (LPS) challenge. Whole blood samples of healthy controls, patients with mild COVID-19, and patients with severe COVID-19 were incubated with LPS for 2 h. Severe COVID-19 patients presented higher LPS and sCD14 levels in the plasma than healthy controls and mild COVID-19 patients. In non-stimulated in vitro condition, severe COVID-19 patients presented higher inflammatory cytokines and PGE-2 levels and CD14 + HLA-DRlow monocytes frequency than controls. Moreover, severe COVID-19 patients presented higher NF-κB p65 phosphorylation in CD14 + HLA-DRlow, as well as higher expression of TLR-4 and NF-κB p65 phosphorylation in CD14 + HLA-DRhigh compared to controls. The stimulation of LPS in whole blood of severe COVID-19 patients leads to lower cytokine production but higher PGE-2 levels compared to controls. Endotoxin challenge with both concentrations reduced the frequency of CD14 + HLA-DRlow in severe COVID-19 patients, but the increases in TLR-4 expression and NF-κB p65 phosphorylation were more pronounced in both CD14 + monocytes of healthy controls and mild COVID-19 patients compared to severe COVID-19 group. We conclude that acute SARS-CoV-2 infection is associated with diminished endotoxin response in monocytes. KEY MESSAGES: Severe COVID-19 patients had higher levels of LPS and systemic IL-6 and TNF-α. Severe COVID-19 patients presented higher CD14+HLA-DRlow monocytes. Increased TLR-4/NF-κB axis was identified in monocytes of severe COVID-19. Blunted production of cytokines after whole blood LPS stimulation in severe COVID-19. Lower TLR-4/NF-κB activation in monocytes after LPS stimulation in severe COVID-19.
Collapse
Affiliation(s)
- Gilson P Dorneles
- Laboratory of Cellular and Molecular Immunology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Rua Sarmento Leite, Porto Alegre, RS, 245, 90050-170, Brazil
- Graduate Program in Health Sciences, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Paula C Teixeira
- Laboratory of Cellular and Molecular Immunology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Rua Sarmento Leite, Porto Alegre, RS, 245, 90050-170, Brazil
- Graduate Program in Health Sciences, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Alessandra Peres
- Laboratory of Cellular and Molecular Immunology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Rua Sarmento Leite, Porto Alegre, RS, 245, 90050-170, Brazil
- Graduate Program in Biosciences, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Luiz Carlos Rodrigues Júnior
- Laboratory of Cellular and Molecular Immunology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Rua Sarmento Leite, Porto Alegre, RS, 245, 90050-170, Brazil
- Graduate Program in Biosciences, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | | | - Marta Chagas Monteiro
- Graduate Program in Pharmaceutical Science, Health Science Institute, Universidade Federal Do Pará, Belém, Pará, Brazil
| | - Sarah Eller
- Pharmacosciences Department, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Tiago F Oliveira
- Graduate Program in Health Sciences, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Eliana M Wendland
- Graduate Program in Health Sciences, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
- Graduate Program in Pediatrics, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Pedro R T Romão
- Laboratory of Cellular and Molecular Immunology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Rua Sarmento Leite, Porto Alegre, RS, 245, 90050-170, Brazil.
- Graduate Program in Health Sciences, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil.
- Graduate Program in Biosciences, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil.
| |
Collapse
|
166
|
Lee J, Chang E, Jung J, Kim MJ, Chong YP, Kim SH, Lee SO, Choi SH, Kim YS, Bae S. Bacterial Co-Infection and Empirical Antibacterial Therapy in Patients With COVID-19. J Korean Med Sci 2023; 38:e37. [PMID: 36718563 PMCID: PMC9886529 DOI: 10.3346/jkms.2023.38.e37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 11/08/2022] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND The rate and composition of bacterial co-infection in patients with coronavirus disease 2019 (COVID-19) were evaluated when microbiological testing was conducted on the majority of patients. We also evaluated whether the use of empirical antibacterials was associated with mortality. METHODS In this retrospective study, all of the adult patients with COVID-19 hospitalized in a single tertiary hospital in South Korea between February 2020 and December 2021 were included. Bacterial co-infection was assessed by sputum cultures, blood cultures, and molecular testing, including polymerase chain reaction sputum testing and urinary antigen tests. Mortality was compared between patients who received empirical antibacterials and those who did not. RESULTS Of the 367 adult patients admitted during the study period, 300 (81.7%) had sputum culture results and were included in the analysis. Of these 300 patients, 127 (42.3%) had a history of antibiotic exposure. The co-infection rate within 48 hours was 8.3% (25/300): 6.4% (11/173) of patients without prior antibiotic exposure and 11% (14/127) of patients with prior antibacterial exposure. The co-infected bacteria were different according to antibacterial exposure before admission, and multi-drug resistant pathogens were detected exclusively in the antibacterial exposed group. Among the patients without positive results for the microbiological tests, empirical antibacterials were used in 33.3% of cases (100/300). Empirical antibacterial therapy was not significantly related to the 30-day mortality or in-hospital mortality rates in the study cohort before or after the propensity score-matching. CONCLUSION In this study including only patients underwent microbiological testing, bacterial co-infection was not frequent, and the co-infected organisms varied depending on previous antibacterial exposures. Given the rarity of co-infection and the lack of potential benefits, empiric antibacterial use in COVID-19 should be an important target of antibiotic stewardship.
Collapse
Affiliation(s)
- Jiyoung Lee
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Euijin Chang
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jiwon Jung
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Min Jae Kim
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Yong Pil Chong
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Sung-Han Kim
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Sang-Oh Lee
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Sang-Ho Choi
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Yang Soo Kim
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Seongman Bae
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.
| |
Collapse
|
167
|
DeKerlegand A, Johnston E, Mellor B, Schrack MR, O’Neal C. Implementation of MRSA Nasal Swabs as an Antimicrobial Stewardship Intervention to Decrease Anti-MRSA Therapy in COVID-19 Infection. Antibiotics (Basel) 2023; 12:253. [PMID: 36830164 PMCID: PMC9952464 DOI: 10.3390/antibiotics12020253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/21/2023] [Accepted: 01/24/2023] [Indexed: 01/28/2023] Open
Abstract
In the early stages of treating patients with SARS-CoV-2, limited information was available to guide antimicrobial stewardship interventions. The COVID-19 Task Force and Antimicrobial Stewardship Committee, at a 988-bed academic medical center, implemented the use of methicillin-resistant Staphylococcus aureus (MRSA) nasal swab polymerase chain reaction (PCR) testing to assist with the de-escalation of anti-MRSA therapy in patients with suspected superimposed bacterial pneumonia in COVID-19. A retrospective study was conducted to evaluate the impact of MRSA nasal swab PCR testing on the rate of anti-MRSA therapy between 13 April 2020 and 26 July 2020. A total of 122 patients were included in the analysis. Of the patients included in the final analysis, 58 (47.5%) had anti-MRSA therapy discontinued and 41 (33.6%) avoided anti-MRSA therapy completely due to a negative swab result. With the implementation of MRSA nasal swab PCR testing in COVID-19 patients, anti-MRSA therapy was reduced in 81% of patients in this study. In patients who continued with anti-MRSA therapy, nasal swabs were either positive for MRSA or an alternative indication for anti-MRSA therapy was noted. Only three patients in the cohort had MRSA identified in a sputum culture, all of whom had anti-MRSA therapy continued. MRSA nasal swab PCR testing may serve as an effective antimicrobial stewardship tool in COVID-19 pneumonia.
Collapse
Affiliation(s)
- Alaina DeKerlegand
- Pharmacy Department, Methodist University Hospital, Memphis, TN 38104, USA
| | - Emily Johnston
- Pharmacy Department, Our Lady of the Lake Regional Medical Center, Baton Rouge, LA 70808, USA
| | - Britney Mellor
- Pharmacy Department, Our Lady of the Lake Regional Medical Center, Baton Rouge, LA 70808, USA
| | - Melanie Rae Schrack
- Pharmacy Department, Our Lady of the Lake Regional Medical Center, Baton Rouge, LA 70808, USA
| | - Catherine O’Neal
- Medical Staff Office, Our Lady of the Lake Regional Medical Center, Baton Rouge, LA 70808, USA
- Louisiana State University Health Sciences Center, Baton Rouge, LA 70808, USA
| |
Collapse
|
168
|
Patton MJ, Orihuela CJ, Harrod KS, Bhuiyan MAN, Dominic P, Kevil CG, Fort D, Liu VX, Farhat M, Koff JL, Lal CV, Gaggar A, Richter RP, Erdmann N, Might M, Gaggar A. COVID-19 bacteremic co-infection is a major risk factor for mortality, ICU admission, and mechanical ventilation. Crit Care 2023; 27:34. [PMID: 36691080 PMCID: PMC9868503 DOI: 10.1186/s13054-023-04312-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/08/2023] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Recent single-center reports have suggested that community-acquired bacteremic co-infection in the context of Coronavirus disease 2019 (COVID-19) may be an important driver of mortality; however, these reports have not been validated with a multicenter, demographically diverse, cohort study with data spanning the pandemic. METHODS In this multicenter, retrospective cohort study, inpatient encounters were assessed for COVID-19 with community-acquired bacteremic co-infection using 48-h post-admission blood cultures and grouped by: (1) confirmed co-infection [recovery of bacterial pathogen], (2) suspected co-infection [negative culture with ≥ 2 antimicrobials administered], and (3) no evidence of co-infection [no culture]. The primary outcomes were in-hospital mortality, ICU admission, and mechanical ventilation. COVID-19 bacterial co-infection risk factors and impact on primary outcomes were determined using multivariate logistic regressions and expressed as adjusted odds ratios with 95% confidence intervals (Cohort, OR 95% CI, Wald test p value). RESULTS The studied cohorts included 13,781 COVID-19 inpatient encounters from 2020 to 2022 in the University of Alabama at Birmingham (UAB, n = 4075) and Ochsner Louisiana State University Health-Shreveport (OLHS, n = 9706) cohorts with confirmed (2.5%), suspected (46%), or no community-acquired bacterial co-infection (51.5%) and a comparison cohort consisting of 99,170 inpatient encounters from 2010 to 2019 (UAB pre-COVID-19 pandemic cohort). Significantly increased likelihood of COVID-19 bacterial co-infection was observed in patients with elevated ≥ 15 neutrophil-to-lymphocyte ratio (UAB: 1.95 [1.21-3.07]; OLHS: 3.65 [2.66-5.05], p < 0.001 for both) within 48-h of hospital admission. Bacterial co-infection was found to confer the greatest increased risk for in-hospital mortality (UAB: 3.07 [2.42-5.46]; OLHS: 4.05 [2.29-6.97], p < 0.001 for both), ICU admission (UAB: 4.47 [2.87-7.09], OLHS: 2.65 [2.00-3.48], p < 0.001 for both), and mechanical ventilation (UAB: 3.84 [2.21-6.12]; OLHS: 2.75 [1.87-3.92], p < 0.001 for both) across both cohorts, as compared to other risk factors for severe disease. Observed mortality in COVID-19 bacterial co-infection (24%) dramatically exceeds the mortality rate associated with community-acquired bacteremia in pre-COVID-19 pandemic inpatients (5.9%) and was consistent across alpha, delta, and omicron SARS-CoV-2 variants. CONCLUSIONS Elevated neutrophil-to-lymphocyte ratio is a prognostic indicator of COVID-19 bacterial co-infection within 48-h of admission. Community-acquired bacterial co-infection, as defined by blood culture-positive results, confers greater increased risk of in-hospital mortality, ICU admission, and mechanical ventilation than previously described risk factors (advanced age, select comorbidities, male sex) for COVID-19 mortality, and is independent of SARS-CoV-2 variant.
Collapse
Affiliation(s)
- Michael John Patton
- Medical Scientist Training Program, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL USA
- Hugh Kaul Precision Medicine Institute, University of Alabama at Birmingham, Birmingham, AL USA
| | - Carlos J. Orihuela
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL USA
| | - Kevin S. Harrod
- Department of Anesthesiology and Perioperative Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL USA
| | - Mohammad A. N. Bhuiyan
- Department of Internal Medicine, Division of Clinical Informatics, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA USA
| | - Paari Dominic
- Department of Medicine, Division of Cardiovascular Sciences, University of Iowa, Iowa City, IA USA
| | - Christopher G. Kevil
- Departments of Pathology, Molecular and Cellular Physiology, and Cellular Biology and Anatomy, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA USA
| | | | | | - Maha Farhat
- Harvard University Medical School, Boston, MA USA
| | - Jonathan L. Koff
- Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, Yale University, New Haven, USA
| | - Charitharth V. Lal
- Department of Pediatrics, Neonatology Division, University of Alabama at Birmingham, Birmingham, AL USA
| | | | - Robert P. Richter
- Department of Pediatrics, Division of Pediatric Critical Care, University of Alabama at Birmingham, Birmingham, AL USA
| | - Nathaniel Erdmann
- Department of Medicine, Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, AL USA
| | - Matthew Might
- Hugh Kaul Precision Medicine Institute, University of Alabama at Birmingham, Birmingham, AL USA
| | - Amit Gaggar
- Department of Medicine, Pulmonary, Allergy, and Critical Care Medicine Division, University of Alabama at Birmingham, Birmingham, AL USA
- Birmingham VA Medical Center, Pulmonary Section, Birmingham, AL USA
| |
Collapse
|
169
|
Iacovelli A, Oliva A, Siccardi G, Tramontano A, Pellegrino D, Mastroianni CM, Venditti M, Palange P. Risk factors and effect on mortality of superinfections in a newly established COVID-19 respiratory sub-intensive care unit at University Hospital in Rome. BMC Pulm Med 2023; 23:30. [PMID: 36670381 PMCID: PMC9854038 DOI: 10.1186/s12890-023-02315-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 01/09/2023] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Little is known on the burden of co-infections and superinfections in a specific setting such as the respiratory COVID-19 sub-intensive care unit. This study aims to (i) assess the prevalence of concurrent and superinfections in a respiratory sub-intensive care unit, (ii) evaluate the risk factors for superinfections development and (iii) assess the impact of superinfections on in-hospital mortality. METHODS Single-center retrospective analysis of prospectively collected data including COVID-19 patients hospitalized in a newly established respiratory sub-intensive care unit managed by pneumologists which has been set up from September 2020 at a large (1200 beds) University Hospital in Rome. Inclusion criteria were: (i) COVID-19 respiratory failure and/or ARDS; (ii) hospitalization in respiratory sub-intensive care unit and (iii) age > 18 years. Survival was analyzed by Kaplan-Meier curves and the statistical significance of the differences between the two groups was assessed using the log-rank test. Multivariable logistic regression and Cox regression model were performed to tease out the independent predictors for superinfections' development and for mortality, respectively. RESULTS A total of 201 patients were included. The majority (106, 52%) presented severe COVID-19. Co-infections were 4 (1.9%), whereas 46 patients (22%) developed superinfections, mostly primary bloodstream infections and pneumonia. In 40.6% of cases, multi-drug resistant pathogens were detected, with carbapenem-resistant Acinetobacter baumannii (CR-Ab) isolated in 47%. Overall mortality rate was 30%. Prior (30-d) infection and exposure to antibiotic therapy were independent risk factors for superinfection development whereas the development of superinfections was an independent risk factors for in-hospital mortality. CR-Ab resulted independently associated with 14-d mortality. CONCLUSION In a COVID-19 respiratory sub-intensive care unit, superinfections were common and represented an independent predictor of mortality. CR-Ab infections occurred in almost half of patients and were associated with high mortality. Infection control rules and antimicrobial stewardship are crucial in this specific setting to limit the spread of multi-drug resistant organisms.
Collapse
Affiliation(s)
- Alessandra Iacovelli
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
- Pulmonology Respiratory and Critical Care Unit, Policlinico Umberto I Hospital Rome, Rome, Italy
| | - Alessandra Oliva
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy.
- Infective Diseases Unit, Policlinico Umberto I Hospital Rome, 00185, Rome, Lazio, Italy.
| | - Guido Siccardi
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
- Infective Diseases Unit, Policlinico Umberto I Hospital Rome, 00185, Rome, Lazio, Italy
| | - Angela Tramontano
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
- Pulmonology Respiratory and Critical Care Unit, Policlinico Umberto I Hospital Rome, Rome, Italy
| | - Daniela Pellegrino
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
- Pulmonology Respiratory and Critical Care Unit, Policlinico Umberto I Hospital Rome, Rome, Italy
| | - Claudio Maria Mastroianni
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
- Infective Diseases Unit, Policlinico Umberto I Hospital Rome, 00185, Rome, Lazio, Italy
| | - Mario Venditti
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
- Infective Diseases Unit, Policlinico Umberto I Hospital Rome, 00185, Rome, Lazio, Italy
| | - Paolo Palange
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
- Pulmonology Respiratory and Critical Care Unit, Policlinico Umberto I Hospital Rome, Rome, Italy
| |
Collapse
|
170
|
Gradisteanu Pircalabioru G, Grigore GA, Czobor Barbu I, Chifiriuc MC, Savu O. Impact of COVID-19 on the Microbiome and Inflammatory Status of Type 2 Diabetes Patients. Biomedicines 2023; 11:biomedicines11010179. [PMID: 36672688 PMCID: PMC9856008 DOI: 10.3390/biomedicines11010179] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/08/2023] [Accepted: 01/09/2023] [Indexed: 01/12/2023] Open
Abstract
The severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) pandemic has advanced our understanding of the host-microbiome-virus interplay. Several studies in various geographical regions report that SARS-CoV-2 infection disrupts the intestinal microbiota, allowing pathogenic bacteria such as Enterobacteriaceae to thrive, and triggering more severe disease outcomes. Here, we profile the microbiota of 30 individuals, 15 healthy controls and 15 type 2 diabetes (T2D) patients, before and after coronavirus disease 2019 (COVID-19). Despite similar viral loads in both patients and controls, SARS-CoV-2 infection led to exacerbated microbiome changes in T2D patients, characterized by higher levels of Enterobacteriaceae, loss of butyrate producers and an enrichment in fungi such as Candida spp. and Aspergillus spp. Several members of the microbiota were associated with more severe clinical and inflammatory (IL-8 and IL-17) parameters. Future studies to delineate the connection between cytokine release and microbiota disturbances will enhance our understanding of whether these microbial shifts directly impact the cytokine storm in COVID-19 patients or whether they are consecutive to the critical disease.
Collapse
Affiliation(s)
- Gratiela Gradisteanu Pircalabioru
- Research Institute of University of Bucharest (ICUB), 050095 Bucharest, Romania
- Academy of Romanian Scientists, 050045 Bucharest, Romania
- Correspondence:
| | - Georgiana Alexandra Grigore
- Academy of Romanian Scientists, 050045 Bucharest, Romania
- Faculty of Biology, University of Bucharest, 050095 Bucharesti, Romania
| | - Ilda Czobor Barbu
- Academy of Romanian Scientists, 050045 Bucharest, Romania
- Faculty of Biology, University of Bucharest, 050095 Bucharesti, Romania
| | - Mariana-Carmen Chifiriuc
- Research Institute of University of Bucharest (ICUB), 050095 Bucharest, Romania
- Academy of Romanian Scientists, 050045 Bucharest, Romania
- Faculty of Biology, University of Bucharest, 050095 Bucharesti, Romania
- Romanian Academy, 010071 Bucharest, Romania
| | - Octavian Savu
- “N.C. Paulescu” National Institute of Diabetes, Nutrition and Metabolic Diseases, 020042 Bucharest, Romania
- Department of Doctoral School, “Carol Davila” University of Medicine and Pharmacy, 5th District, 050474 Bucharest, Romania
| |
Collapse
|
171
|
Dos Santos F, Li JB, Juocys N, Mazor R, Beretta L, Coufal NG, Lam MTY, Odish MF, Irigoyen MC, O’Donoghue AJ, Aletti F, Kistler EB. Plasma enzymatic activity, proteomics and peptidomics in COVID-19-induced sepsis: A novel approach for the analysis of hemostasis. Front Mol Biosci 2023; 9:1051471. [PMID: 36710882 PMCID: PMC9874325 DOI: 10.3389/fmolb.2022.1051471] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/20/2022] [Indexed: 01/13/2023] Open
Abstract
Introduction: Infection by SARS-CoV-2 and subsequent COVID-19 can cause viral sepsis. We investigated plasma protease activity patterns in COVID-19-induced sepsis with bacterial superinfection, as well as plasma proteomics and peptidomics in order to assess the possible implications of enhanced proteolysis on major protein systems (e.g., coagulation). Methods: Patients (=4) admitted to the intensive care units (ICUs) at the University of California, San Diego (UCSD) Medical Center with confirmed positive test for COVID-19 by real-time reverse transcription polymerase chain reaction (RT-PCR) were enrolled in a study approved by the UCSD Institutional Review Board (IRB# 190699, Protocol #20-0006). Informed consent was obtained for the collection of blood samples and de-identified use of the data. Blood samples were collected at multiple time points and analyzed to quantify a) the circulating proteome and peptidome by mass spectrometry; b) the aminopeptidase activity in plasma; and c) the endopeptidase activity in plasma using fluorogenic substrates that are cleaved by trypsin-like endopeptidases, specific clotting factors and plasmin. The one patient who died was diagnosed with bacterial superinfection on day 7 after beginning of the study. Results: Spikes in protease activity (factor VII, trypsin-like activity), and corresponding increases in the intensity of peptides derived by hydrolysis of plasma proteins, especially of fibrinogen degradation products and downregulation of endogenous protease inhibitors were detected on day 7 for the patient who died. The activity of the analyzed proteases was stable in survivors. Discussion: The combination of multiomics and enzymatic activity quantification enabled to i) hypothesize that elevated proteolysis occurs in COVID-19-induced septic shock with bacterial superinfection, and ii) provide additional insight into malfunctioning protease-mediated systems, such as hemostasis.
Collapse
Affiliation(s)
- Fernando Dos Santos
- Department of Anesthesiology, School of Medicine, University of California, San Diego, CA, United States
| | - Joyce B. Li
- Department of Bioengineering, University of California, San Diego, CA, United States
| | - Nathalia Juocys
- Department of Anesthesiology, School of Medicine, University of California, San Diego, CA, United States
- Instituto do Coração, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (InCor-FMUSP), São Paulo, Brazil
| | - Rafi Mazor
- Department of Anesthesiology, School of Medicine, University of California, San Diego, CA, United States
| | - Laura Beretta
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, CA, United States
| | - Nicole G. Coufal
- Department of Pediatrics, School of Medicine, University of California, San Diego, CA, United States
| | - Michael T. Y. Lam
- Department of Medicine, School of Medicine, University of California, San Diego, CA, United States
| | - Mazen F. Odish
- Department of Medicine, School of Medicine, University of California, San Diego, CA, United States
| | - Maria Claudia Irigoyen
- Instituto do Coração, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (InCor-FMUSP), São Paulo, Brazil
| | - Anthony J. O’Donoghue
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, CA, United States
| | - Federico Aletti
- Instituto de Ciência e Tecnologia, Universidade Federal de São Paulo, São Josê dos Campos, Brazil
| | - Erik B. Kistler
- Department of Anesthesiology, School of Medicine, University of California, San Diego, CA, United States
- Department of Anesthesiology and Critical Care, VA San Diego Healthcare System, San Diego, CA, United States
| |
Collapse
|
172
|
Multidrug-Resistant Bacteria in a COVID-19 Hospital in Zagreb. Pathogens 2023; 12:pathogens12010117. [PMID: 36678465 PMCID: PMC9863123 DOI: 10.3390/pathogens12010117] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 01/13/2023] Open
Abstract
During November to December 2020, a high rate of COVID-19-associated pneumonia with bacterial superinfections due to multidrug-resistant (MDR) pathogens was recorded in a COVID-19 hospital in Zagreb. This study analyzed the causative agents of bacterial superinfections among patients with serious forms of COVID-19. In total, 118 patients were hospitalized in the intensive care unit (ICU) of the COVID-19 hospital. Forty-six out of 118 patients (39%) developed serious bacterial infection (VAP or BSI or both) during their stay in ICU. The total mortality rate was 83/118 (70%). The mortality rate due to bacterial infection or a combination of ARDS with bacterial superinfection was 33% (40/118). Six patients had MDR organisms and 34 had XDR (extensively drug-resistant). The dominant species was Acinetobacter baumannii with all isolates (34) being carbapenem-resistant (CRAB) and positive for carbapenem-hydrolyzing oxacillinases (CHDL). One Escherichia coli causing pneumonia harboured the blaCTX-M-15 gene. It appears that the dominant resistance determinants of causative agents depend on the local epidemiology in the particular COVID center. Acinetobacter baumannii seems to easily spread in overcrowded ICUs. Croatia belongs to the 15 countries in the world with the highest mortality rate among COVID-19 patients, which could be in part attributable to the high prevalence of bacterial infections in local ICUs.
Collapse
|
173
|
Li Q, Vijaykumar K, Phillips SE, Hussain SS, Huynh NV, Fernandez-Petty CM, Lever JEP, Foote JB, Ren J, Campos-Gómez J, Daya FA, Hubbs NW, Kim H, Onuoha E, Boitet ER, Fu L, Leung HM, Yu L, Detchemendy TW, Schaefers LT, Tipper JL, Edwards LJ, Leal SM, Harrod KS, Tearney GJ, Rowe SM. Mucociliary transport deficiency and disease progression in Syrian hamsters with SARS-CoV-2 infection. JCI Insight 2023; 8:e163962. [PMID: 36625345 PMCID: PMC9870055 DOI: 10.1172/jci.insight.163962] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 11/16/2022] [Indexed: 01/10/2023] Open
Abstract
Substantial clinical evidence supports the notion that ciliary function in the airways is important in COVID-19 pathogenesis. Although ciliary damage has been observed in both in vitro and in vivo models, the extent or nature of impairment of mucociliary transport (MCT) in in vivo models remains unknown. We hypothesize that SARS-CoV-2 infection results in MCT deficiency in the airways of golden Syrian hamsters that precedes pathological injury in lung parenchyma. Micro-optical coherence tomography was used to quantitate functional changes in the MCT apparatus. Both genomic and subgenomic viral RNA pathological and physiological changes were monitored in parallel. We show that SARS-CoV-2 infection caused a 67% decrease in MCT rate as early as 2 days postinfection (dpi) in hamsters, principally due to 79% diminished airway coverage of motile cilia. Correlating quantitation of physiological, virological, and pathological changes reveals steadily descending infection from the upper airways to lower airways to lung parenchyma within 7 dpi. Our results indicate that functional deficits of the MCT apparatus are a key aspect of COVID-19 pathogenesis, may extend viral retention, and could pose a risk factor for secondary infection. Clinically, monitoring abnormal ciliated cell function may indicate disease progression. Therapies directed toward the MCT apparatus deserve further investigation.
Collapse
Affiliation(s)
- Qian Li
- Department of Medicine
- Gregory Fleming James Cystic Fibrosis Research Center
| | | | - Scott E. Phillips
- Department of Medicine
- Gregory Fleming James Cystic Fibrosis Research Center
| | - Shah S. Hussain
- Department of Medicine
- Gregory Fleming James Cystic Fibrosis Research Center
| | | | | | | | | | | | | | - Farah Abou Daya
- Department of Medicine
- Gregory Fleming James Cystic Fibrosis Research Center
| | - Nathaniel W. Hubbs
- Department of Medicine
- Gregory Fleming James Cystic Fibrosis Research Center
| | - Harrison Kim
- Gregory Fleming James Cystic Fibrosis Research Center
- Department of Radiology, and
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Ezinwanne Onuoha
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Evan R. Boitet
- Department of Medicine
- Gregory Fleming James Cystic Fibrosis Research Center
| | - Lianwu Fu
- Department of Medicine
- Gregory Fleming James Cystic Fibrosis Research Center
| | - Hui Min Leung
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Linhui Yu
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Levi T. Schaefers
- Department of Microbiology
- Department of Anesthesiology and Perioperative Medicine
| | | | | | - Sixto M. Leal
- Department of Microbiology
- Department of Anesthesiology and Perioperative Medicine
| | | | - Guillermo J. Tearney
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Steven M. Rowe
- Department of Medicine
- Gregory Fleming James Cystic Fibrosis Research Center
- Department of Pediatrics
- Department of Cell Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
174
|
Zsichla L, Müller V. Risk Factors of Severe COVID-19: A Review of Host, Viral and Environmental Factors. Viruses 2023; 15:175. [PMID: 36680215 PMCID: PMC9863423 DOI: 10.3390/v15010175] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/04/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
The clinical course and outcome of COVID-19 are highly variable, ranging from asymptomatic infections to severe disease and death. Understanding the risk factors of severe COVID-19 is relevant both in the clinical setting and at the epidemiological level. Here, we provide an overview of host, viral and environmental factors that have been shown or (in some cases) hypothesized to be associated with severe clinical outcomes. The factors considered in detail include the age and frailty, genetic polymorphisms, biological sex (and pregnancy), co- and superinfections, non-communicable comorbidities, immunological history, microbiota, and lifestyle of the patient; viral genetic variation and infecting dose; socioeconomic factors; and air pollution. For each category, we compile (sometimes conflicting) evidence for the association of the factor with COVID-19 outcomes (including the strength of the effect) and outline possible action mechanisms. We also discuss the complex interactions between the various risk factors.
Collapse
Affiliation(s)
- Levente Zsichla
- Institute of Biology, Eötvös Loránd University, 1117 Budapest, Hungary
- National Laboratory for Health Security, Eötvös Loránd University, 1117 Budapest, Hungary
| | - Viktor Müller
- Institute of Biology, Eötvös Loránd University, 1117 Budapest, Hungary
- National Laboratory for Health Security, Eötvös Loránd University, 1117 Budapest, Hungary
| |
Collapse
|
175
|
Chan L, Gupta S, Sacco AJ, Kasule SN, Chaffin H, Feller FF, Mi L, Lim ES, Seville MT. Infections and antimicrobial prescribing in patients hospitalized with coronavirus disease 2019 (COVID-19) during the first pandemic wave. ANTIMICROBIAL STEWARDSHIP & HEALTHCARE EPIDEMIOLOGY : ASHE 2023; 3:e75. [PMID: 37113207 PMCID: PMC10127243 DOI: 10.1017/ash.2023.135] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 04/29/2023]
Abstract
Objective To evaluate the rate of coinfections and secondary infections seen in hospitalized patients with COVID-19 and antimicrobial prescribing patterns. Methods This single-center, retrospective study included all patients aged ≥18 years admitted with COVID-19 for at least 24 hours to a 280-bed, academic, tertiary-care hospital between March 1, 2020, and August 31, 2020. Coinfections, secondary infections, and antimicrobials prescribed for these patients were collected. Results In total, 331 patients with a confirmed diagnosis of COVID-19 were evaluated. No additional cases were identified in 281 (84.9%) patients, whereas 50 (15.1%) had at least 1 infection. In total, of 50 patients (15.1%) who were diagnosed with coinfection or secondary infection had bacteremia, pneumonia, and/or urinary tract infections. Patients who had positive cultures, who were admitted to the ICU, who required supplemental oxygen, or who were transferred from another hospital for higher level of care were more likely to have infections. The most commonly used antimicrobials were azithromycin (75.2%) and ceftriaxone (64.9%). Antimicrobials were prescribed appropriately for 55% of patients. Conclusions Coinfection and secondary infections are common in patients who are critically ill with COVID-19 at hospital admission. Clinicians should consider starting antimicrobial therapy in critically ill patients while limiting antimicrobial use in patients who are not critically ill.
Collapse
Affiliation(s)
- Lynn Chan
- Department of Pharmacy, Ronald Reagan UCLA Medical Center, Los Angeles, California
- Author for correspondence: Lynn Chan, Department of Pharmacy, Ronald Reagan UCLA Medical Center, 757 Westwood Plaza, Ste B140. Los Angeles, CA90095. E-mail:
| | - Simran Gupta
- Department of Internal Medicine, Mayo Clinic Hospital, Phoenix, Arizona
| | - Alicia J. Sacco
- Department of Pharmacy, Mayo Clinic Hospital, Phoenix, Arizona
| | - Sabirah N. Kasule
- Department of Quantitative Health Sciences, Division of Clinical Trials and Biostatistics, Mayo Clinic Arizona, Scottsdale, Arizona
| | - Hally Chaffin
- Department of Internal Medicine, Mayo Clinic Hospital, Phoenix, Arizona
| | - Fionna F. Feller
- Division of Infectious Diseases, Yale New Haven Hospital, New Haven, Connecticut
| | - Lanyu Mi
- Department of Quantitative Health Sciences, Division of Clinical Trials and Biostatistics, Mayo Clinic Arizona, Scottsdale, Arizona
| | - Elisabeth S. Lim
- Department of Quantitative Health Sciences, Division of Clinical Trials and Biostatistics, Mayo Clinic Arizona, Scottsdale, Arizona
| | | |
Collapse
|
176
|
Li J, Ghosh TS, McCann R, Mallon P, Hill C, Draper L, Schult D, Fanning LJ, Shannon R, Sadlier C, Horgan M, O’Mahony L, O’Toole PW. Robust cross-cohort gut microbiome associations with COVID-19 severity. Gut Microbes 2023; 15:2242615. [PMID: 37550964 PMCID: PMC10411309 DOI: 10.1080/19490976.2023.2242615] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 07/07/2023] [Accepted: 07/26/2023] [Indexed: 08/09/2023] Open
Abstract
Although many recent studies have examined associations between the gut microbiome and COVID-19 disease severity in individual patient cohorts, questions remain on the robustness across international cohorts of the biomarkers they reported. Here, we performed a meta-analysis of eight shotgun metagenomic studies of COVID-19 patients (comprising 1,023 stool samples) and 23 > 16S rRNA gene amplicon sequencing (16S) cohorts (2,415 total stool samples). We found that disease severity (as defined by the WHO clinical progression scale) was associated with taxonomic and functional microbiome differences. This alteration in gut microbiome configuration peaks at days 7-30 post diagnosis, after which the gut microbiome returns to a configuration that becomes more similar to that of healthy controls over time. Furthermore, we identified a core set of species that were consistently associated with disease severity across shotgun metagenomic and 16S cohorts, and whose abundance can accurately predict disease severity category of SARS-CoV-2 infected subjects, with Actinomyces oris abundance predicting population-level mortality rate of COVID-19. Additionally, we used relational diet-microbiome databases constructed from cohort studies to predict microbiota-targeted diet patterns that would modulate gut microbiota composition toward that of healthy controls. Finally, we demonstrated the association of disease severity with the composition of intestinal archaeal, fungal, viral, and parasitic communities. Collectively, this study has identified robust COVID-19 microbiome biomarkers, established accurate predictive models as a basis for clinical prognostic tests for disease severity, and proposed biomarker-targeted diets for managing COVID-19 infection.
Collapse
Affiliation(s)
- Junhui Li
- School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Tarini Shankar Ghosh
- School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Rachel McCann
- Centre for Experimental Pathogen Host Research, School of Medicine, University College Dublin, St Vincent’s University Hospital, Dublin, Ireland
| | - Patrick Mallon
- Centre for Experimental Pathogen Host Research, School of Medicine, University College Dublin, St Vincent’s University Hospital, Dublin, Ireland
| | - Colin Hill
- School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Lorraine Draper
- School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - David Schult
- Department of Internal Medicine II, Klinikum Rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
| | - Liam J. Fanning
- Department of Medicine, University College Cork, Cork, Ireland
| | - Robert Shannon
- Department of Infectious Diseases, Cork University Hospital, Cork, Ireland
| | - Corinna Sadlier
- Department of Medicine, University College Cork, Cork, Ireland
- Department of Infectious Diseases, Cork University Hospital, Cork, Ireland
| | - Mary Horgan
- Department of Medicine, University College Cork, Cork, Ireland
- Department of Infectious Diseases, Cork University Hospital, Cork, Ireland
| | - Liam O’Mahony
- School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Medicine, University College Cork, Cork, Ireland
| | - Paul W. O’Toole
- School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
177
|
Akrami S, Montazeri EA, Saki M, Neisi N, Khedri R, Dini SA, Motlagh AA, Ahmadi F. Bacterial profiles and their antibiotic resistance background in superinfections caused by multidrug-resistant bacteria among COVID-19 ICU patients from southwest Iran. J Med Virol 2023; 95:e28403. [PMID: 36515422 PMCID: PMC9877791 DOI: 10.1002/jmv.28403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/12/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022]
Abstract
This study investigated the bacterial causes of superinfections and their antibiotic resistance pattern in severe coronavirus disease 2019 (COVID-19) patients admitted to the intensive care unit (ICU) of Razi Hospital in Ahvaz, southwest Iran. In this cross-sectional study, endotracheal tube (ETT) secretion samples of 77 intubated COVID-19 patients, confirmed by reverse transcription-quantitative polymerase chain reaction, were investigated by standard microbiology test and analytical profile index kit. Antibiotic susceptibility testing was performed by disc diffusion. The presence of Haemophilus influenzae and Mycoplasma pneumoniae was investigated by the polymerase chain reaction (PCR). Using culture and PCR methods, 56 (72.7%) of the 77 COVID-19 patients (mean age of 55 years, 29 male and 27 female) had superinfections. Using culture, 67 isolates including 29 (43.2%) Gram-positive and 38 (56.7%) Gram-negative bacteria (GNB) were identified from 49 COVID-19 patients. The GNB were more predominant than the Gram-positive pathogens. Klebsiella pneumoniae (28.4%, n = 19/67) was the most common isolate followed by Staphylococcus aureus (22.4%, n = 15/67). Using PCR, 10.4% (8/77) and 11.7% (9/77) of ETT secretion specimens had H. influenzae and M. pneumoniae amplicons, respectively. Gram-positive and Gram-negative isolates showed high resistance rates (>70.0%) to majority of the tested antibiotics including fluoroquinolone, carbapenems, and cephalosporins and 68.7% (46/67) of isolates were multidrug-resistant (MDR). This study showed a high frequency rate of superinfections by MDR bacteria among COVID-19 patients in southwest Iran. The prevention of long-term consequences caused by COVID-19, demands continuous antibiotic surveillance particularly in management of bacterial superinfections.
Collapse
Affiliation(s)
- Sousan Akrami
- Infectious and Tropical Diseases Research Center, Health Research InstituteAhvaz Jundishapur University of Medical SciencesAhvazIran
- Department of Microbiology, School of MedicineTehran University of Medical SciencesTehranIran
- Students’ Scientific Research Center (SSRC)Tehran University of Medical SciencesTehranIran
| | - Effat Abbasi Montazeri
- Infectious and Tropical Diseases Research Center, Health Research InstituteAhvaz Jundishapur University of Medical SciencesAhvazIran
- Department of Microbiology, Faculty of MedicineAhvaz Jundishapur University of Medical SciencesAhvazIran
| | - Morteza Saki
- Infectious and Tropical Diseases Research Center, Health Research InstituteAhvaz Jundishapur University of Medical SciencesAhvazIran
- Department of Microbiology, Faculty of MedicineAhvaz Jundishapur University of Medical SciencesAhvazIran
| | - Niloofar Neisi
- Infectious and Tropical Diseases Research Center, Health Research InstituteAhvaz Jundishapur University of Medical SciencesAhvazIran
- Department of Medical Virology, School of MedicineAhvaz Jundishapur University of Medical SciencesAhvazIran
| | - Reza Khedri
- Student Research CommitteeAhvaz Jundishapur University of Medical SciencesAhvazIran
| | - Sahar Allah Dini
- Infectious and Tropical Diseases Research Center, Health Research InstituteAhvaz Jundishapur University of Medical SciencesAhvazIran
- Department of Infectious Diseases and Tropical Medicine, Razi Teaching Hospital, School of MedicineAhvaz Jundishapur University of Medical SciencesAhvazIran
| | - Atefeh Akbari Motlagh
- Infectious and Tropical Diseases Research Center, Health Research InstituteAhvaz Jundishapur University of Medical SciencesAhvazIran
- Department of Infectious Diseases and Tropical Medicine, Razi Teaching Hospital, School of MedicineAhvaz Jundishapur University of Medical SciencesAhvazIran
| | - Fatemeh Ahmadi
- Infectious and Tropical Diseases Research Center, Health Research InstituteAhvaz Jundishapur University of Medical SciencesAhvazIran
- Department of Infectious Diseases and Tropical Medicine, Razi Teaching Hospital, School of MedicineAhvaz Jundishapur University of Medical SciencesAhvazIran
| |
Collapse
|
178
|
Nokhodian Z, Rostami S, Zeraatei P, Rahimkhorasani M, Abbasi S, Sadeghi S. Bacterial Superinfection and Antibiotic Management in Patients with COVID-19 Admitted to Intensive Care Medicine in Central Iran: A Follow-Up Study. Adv Biomed Res 2023; 12:43. [PMID: 37057242 PMCID: PMC10086667 DOI: 10.4103/abr.abr_82_22] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 04/15/2023] Open
Abstract
Background Bacterial superinfections are one of the crucial challenges in patients with coronavirus disease 2019 (COVID-19) that are associated with a high mortality rate. The current study was designed to assess bacterial superinfections and antibiotic management in COVID-19 patients admitted to intensive care unit (ICU). Material and Methods Seventy-three adult intubated patients with COVID-19 were included in a cross-sectional study. The lung aspirate samples were collected in two stages and assessed for bacterial growth by standard methods. Antimicrobial susceptibility testing was performed using the Kirby-Bauer method as recommended by the Clinical Laboratory Standard Institute guideline (2021 edition). Also, demographic and clinical data were collected. The statistical analysis was done by chisquare test and Student's t-test, and a P value <0.05 was considered significant. Results Forty men and thirty-three women with a mean age of 64.78 ± 13.90 have included in our study. The mean length of hospitalization and stay in ICU were 18.77 ± 12.94 and 13.51 ± 9.83 days, respectively; 84.9% of cases died. Thirty-three patients had a bacterial superinfection mainly caused by Klebsiella spp and Acinetobacter spp; 21.2% of piperacillin/tazobactam consumers' patients survived that; the differences were significant (p = 0.034). A significant relationship was seen between superinfection and length of hospital stay until intubation (p = 0.033). Conclusion Bacterial superinfection and mortality rates were relatively high in COVID-19 patients admitted to ICU. According to the results, using beta-lactam/beta-lactamase inhibitors antibiotics in hospitalized patients in ICU can effectively control superinfection.
Collapse
Affiliation(s)
- Zary Nokhodian
- Infectious Diseases and Tropical Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Soodabeh Rostami
- Nosocomial Infection Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Address for correspondence: Dr. Soodabeh Rostami, Infectious Diseases and Tropical Medicine Research Center, Alzahra Hospital, Isfahan University of Medical Sciences, Isfahan, Iran. E-mail:
| | - Parisa Zeraatei
- Nosocomial Infection Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Marzieh Rahimkhorasani
- Infectious Diseases and Tropical Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Saeed Abbasi
- Anesthesiology and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Somayeh Sadeghi
- Acquired Immunodeficiency Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
179
|
Montrucchio G, Sales G, Balzani E, Lombardo D, Giaccone A, Cantù G, D'Antonio G, Rumbolo F, Corcione S, Simonetti U, Bonetto C, Zanierato M, Fanelli V, Filippini C, Mengozzi G, Brazzi L. Effectiveness of mid-regional pro-adrenomedullin, compared to other biomarkers (including lymphocyte subpopulations and immunoglobulins), as a prognostic biomarker in COVID-19 critically ill patients: New evidence from a 15-month observational prospective study. Front Med (Lausanne) 2023; 10:1122367. [PMID: 37035317 PMCID: PMC10080079 DOI: 10.3389/fmed.2023.1122367] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/20/2023] [Indexed: 04/11/2023] Open
Abstract
Background Mid-regional pro-adrenomedullin (MR-proADM), an endothelium-related peptide, is a predictor of death and multi-organ failure in respiratory infections and sepsis and seems to be effective in identifying COVID-19 severe forms. The study aims to evaluate the effectiveness of MR-proADM in comparison to routine inflammatory biomarkers, lymphocyte subpopulations, and immunoglobulin (Ig) at an intensive care unit (ICU) admission and over time in predicting mortality in patients with severe COVID-19. Methods All adult patients with COVID-19 pneumonia admitted between March 2020 and June 2021 in the ICUs of a university hospital in Italy were enrolled. MR-proADM, lymphocyte subpopulations, Ig, and routine laboratory tests were measured within 48 h and on days 3 and 7. The log-rank test was used to compare survival curves with MR-proADM cutoff value of >1.5 nmol/L. Predictive ability was compared using the area under the curve (AUC) and 95% confidence interval (CI) of different receiver-operating characteristic curves. Results A total of 209 patients, with high clinical severity [SOFA 7, IQR 4-9; SAPS II 52, IQR 41-59; median viral pneumonia mortality score (MuLBSTA)-11, IQR 9-13] were enrolled. ICU and overall mortality were 55.5 and 60.8%, respectively. Procalcitonin, lactate dehydrogenase, D-dimer, the N-terminal prohormone of brain natriuretic peptide, myoglobin, troponin, neutrophil count, lymphocyte count, and natural killer lymphocyte count were significantly different between survivors and non-survivors, while lymphocyte subpopulations and Ig were not different in the two groups. MR-proADM was significantly higher in non-survivors (1.17 ± 0.73 vs. 2.31 ± 2.63, p < 0.0001). A value of >1.5 nmol/L was an independent risk factor for mortality at day 28 [odds ratio of 1.9 (95% CI: 1.220-3.060)] after adjusting for age, lactate at admission, SOFA, MuLBSTA, superinfections, cardiovascular disease, and respiratory disease. On days 3 and 7 of the ICU stay, the MR-proADM trend evaluated within 48 h of admission maintained a correlation with mortality (p < 0.0001). Compared to all other biomarkers considered, the MR-proADM value within 48 h had the best accuracy in predicting mortality at day 28 [AUC = 0.695 (95% CI: 0.624-0.759)]. Conclusion MR-proADM seems to be the best biomarker for the stratification of mortality risk in critically ill patients with COVID-19. The Ig levels and lymphocyte subpopulations (except for natural killers) seem not to be correlated with mortality. Larger, multicentric studies are needed to confirm these findings.
Collapse
Affiliation(s)
- Giorgia Montrucchio
- Department of Surgical Sciences, University of Turin, Turin, Italy
- Department of Anesthesia, Critical Care and Emergency, “Città della Salute e della Scienza” Hospital, Turin, Italy
- *Correspondence: Giorgia Montrucchio
| | - Gabriele Sales
- Department of Surgical Sciences, University of Turin, Turin, Italy
- Department of Anesthesia, Critical Care and Emergency, “Città della Salute e della Scienza” Hospital, Turin, Italy
| | - Eleonora Balzani
- Department of Surgical Sciences, University of Turin, Turin, Italy
| | - Davide Lombardo
- Department of Surgical Sciences, University of Turin, Turin, Italy
| | - Alice Giaccone
- Department of Surgical Sciences, University of Turin, Turin, Italy
| | - Giulia Cantù
- Department of Surgical Sciences, University of Turin, Turin, Italy
| | - Giulia D'Antonio
- Department of Surgical Sciences, University of Turin, Turin, Italy
| | - Francesca Rumbolo
- Clinical Biochemistry Laboratory, Department of Laboratory Medicine, “Città della Salute e della Scienza” Hospital, Turin, Italy
| | - Silvia Corcione
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Umberto Simonetti
- Department of Anesthesia, Critical Care and Emergency, “Città della Salute e della Scienza” Hospital, Turin, Italy
| | - Chiara Bonetto
- Department of Anesthesia, Critical Care and Emergency, “Città della Salute e della Scienza” Hospital, Turin, Italy
| | - Marinella Zanierato
- Department of Anesthesia, Critical Care and Emergency, “Città della Salute e della Scienza” Hospital, Turin, Italy
| | - Vito Fanelli
- Department of Surgical Sciences, University of Turin, Turin, Italy
- Department of Anesthesia, Critical Care and Emergency, “Città della Salute e della Scienza” Hospital, Turin, Italy
| | | | - Giulio Mengozzi
- Clinical Biochemistry Laboratory, Department of Laboratory Medicine, “Città della Salute e della Scienza” Hospital, Turin, Italy
| | - Luca Brazzi
- Department of Surgical Sciences, University of Turin, Turin, Italy
- Department of Anesthesia, Critical Care and Emergency, “Città della Salute e della Scienza” Hospital, Turin, Italy
| |
Collapse
|
180
|
Akram F, Imtiaz M, Haq IU. Emergent crisis of antibiotic resistance: A silent pandemic threat to 21 st century. Microb Pathog 2023; 174:105923. [PMID: 36526035 DOI: 10.1016/j.micpath.2022.105923] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/25/2022] [Accepted: 11/29/2022] [Indexed: 12/15/2022]
Abstract
Antibiotic resistance has become an indispensably alarming menace to the global community. The primary factors are overuse and abuse of antibiotics, lack of novel medicines under development, the health care industry's focus on profit, and the absence of diagnostic testing prior to the prescription of antibiotics. Additionally, over the past few decades, the main factors contributing to the global spread of antibiotic resistance have been the overuse of antibiotics in livestock and other animals, drug efficacy, development of fewer new vaccines, environmental toxicity, transmission through travel, and lack of funding for healthcare research and development. These factors have accelerated resistance in microorganisms through structural and functional modifications in bacteria such as reduced drug permeability, increased efflux pumps, enzymatic antibiotic modification, and change in drug target, intracellular infection, and biofilm creation. There has been an increase in resistance during the pandemic and among cancer patients due to improper prescriptions. A number of modern therapeutic alternatives have been developed to curb widespread antibiotic resistance such as nanoparticle, bacteriophage, and antimicrobial biochemical approaches. It is high time to explore new alternatives to curtail enormous increase in resistant pathogens which could be an incurable global confrontation. This review highlights the complete insight on the global drivers of resistance along with the modes of action and impacts, finally discussing the latest therapeutic alternatives.
Collapse
Affiliation(s)
- Fatima Akram
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan.
| | - Memoona Imtiaz
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan
| | - Ikram Ul Haq
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan; Pakistan Academy of Sciences, Islamabad, Pakistan
| |
Collapse
|
181
|
Yoon SM, Lee J, Lee SM, Lee HY. Incidence and clinical outcomes of bacterial superinfections in critically ill patients with COVID-19. Front Med (Lausanne) 2023; 10:1079721. [PMID: 36936237 PMCID: PMC10017481 DOI: 10.3389/fmed.2023.1079721] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 02/13/2023] [Indexed: 03/06/2023] Open
Abstract
Background Bacterial superinfection is not uncommon in critically ill patients with coronavirus disease (COVID-19) pneumonia requiring intensive care unit (ICU) treatment. However, there is still a lack of evidence related to bacterial superinfection and their clinical significance in critically ill patients with COVID-19. Therefore, we assessed the incidence of bacterial superinfections and their effects on clinical outcomes in critically ill patients with COVID-19. Materials and methods This single-center retrospective cohort study analyzed critically ill patients with COVID-19 admitted to the ICU at a tertiary academic hospital between February 2020 and December 2021. We reviewed data including patient demographics, clinical and microbiological characteristics, and outcomes. Results During the study period, 106 patients (median [IQR] age, 67 [58-75] years) were included, of which 32 (30%) were diagnosed with bacterial superinfections. Of these, 12 cases (38%) were associated with multidrug-resistant pathogens. Klebsiella aerogenes (6 cases [19%]) and Klebsiella pneumoniae (6 cases [19%]) were the most common pathogens associated with superinfections. The median time to bacterial superinfection was 13 (IQR, 9-20) days after ICU admission. Patients with bacterial superinfections had significantly fewer ventilator-free days on day 28 (0 [IQR, 0-0] days) than those without bacterial superinfections (19 [IQR, 0-22] days) (p < 0.001). Patients with bacterial superinfections had a longer ICU length of stay (32 [IQR, 9-53] days) than those without bacterial superinfections (11 [IQR, 7-18] days) (p < 0.001). Additionally, they had a longer hospital length of stay after ICU admission (39 [IQR, 18-62] days) than those without bacterial superinfections (18 [IQR, 12-37] days) (p = 0.001). There were no differences in ICU mortality or in-hospital mortality between the two groups. In the multivariable analysis, higher SAPS II score (OR, 2.697; 95% CI, 1.086-6.695) and thrombocytopenia (OR, 3.318; 95% CI, 1.355-8.123) were identified as risk factors for development of bacterial superinfection. Conclusion In critically ill patients with COVID-19, bacterial superinfections were common, and more than one-third of the bacterial superinfection cases were caused by multidrug-resistant pathogens. As patients with bacterial superinfections had worse clinical outcomes, the development of bacterial superinfections should be actively monitored.
Collapse
Affiliation(s)
- Si Mong Yoon
- Department of Critical Care Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jinwoo Lee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Sang-Min Lee
- Department of Critical Care Medicine, Seoul National University Hospital, Seoul, Republic of Korea
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Hong Yeul Lee
- Department of Critical Care Medicine, Seoul National University Hospital, Seoul, Republic of Korea
- *Correspondence: Hong Yeul Lee,
| |
Collapse
|
182
|
Rachina S, Kiyakbaev G, Antonova E, Mescheryakov A, Kupryushina O, Hewathanthirige G, Palagin I, Kozhevnikova E, Sukhorukova M, Strelkova D. A Clinical Case of Nosocomial Pneumonia as a Complication of COVID-19: How to Balance Benefits and Risks of Immunosuppressive Therapy? Antibiotics (Basel) 2022; 12:53. [PMID: 36671254 PMCID: PMC9854487 DOI: 10.3390/antibiotics12010053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/20/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022] Open
Abstract
We report a Russian case of a 61-year-old male patient with confirmed COVID-19 infection who developed nosocomial pneumonia complicated by lung abscess associated with multi-drug-resistant isolates of Klebsiella pneumoniae and Acinetobacter baumannii, which could have been provoked due to the immunosuppressive therapy. We discuss the existing literature highlighting the issue of the prudent balance between benefits and risks when prescribing immunomodulators to hospitalized patients with COVID-19 due to the risk of difficult-to-treat nosocomial infections caused by MDR Gram-negative bacterial pathogens. Currently, there is evidence of a substantial positive effect of dexamethasone on the course of COVID-19 in patients requiring supplemental oxygen or anti-interleukin-6 drugs in individuals with prominent systemic inflammation. However, it seems that in real clinical practice, the proposed criteria for initiating treatment with immunomodulators are interpreted arbitrarily, and the doses of dexamethasone can significantly exceed those recommended.
Collapse
Affiliation(s)
- Svetlana Rachina
- Internal Medicine Department #2, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Gairat Kiyakbaev
- Internal Medicine Department #2, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Elena Antonova
- War Veterans Hospital #3 of Moscow, 129336 Moscow, Russia
| | | | - Olga Kupryushina
- Internal Medicine Department #2, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | | | - Ivan Palagin
- Institute of Antimicrobial Chemotherapy, Smolensk State Medical University, 214019 Smolensk, Russia
| | | | - Marina Sukhorukova
- N.N. Burdenko National Medical Research Center for Neurosurgery, 121087 Moscow, Russia
| | - Daria Strelkova
- Internal Medicine Department #2, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| |
Collapse
|
183
|
Witt LS, Howard-Anderson JR, Jacob JT, Gottlieb LB. The impact of COVID-19 on multidrug-resistant organisms causing healthcare-associated infections: a narrative review. JAC Antimicrob Resist 2022; 5:dlac130. [PMID: 36601548 PMCID: PMC9798082 DOI: 10.1093/jacamr/dlac130] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) changed healthcare across the world. With this change came an increase in healthcare-associated infections (HAIs) and a concerning concurrent proliferation of MDR organisms (MDROs). In this narrative review, we describe the impact of COVID-19 on HAIs and MDROs, describe potential causes of these changes, and discuss future directions to combat the observed rise in rates of HAIs and MDRO infections.
Collapse
Affiliation(s)
- Lucy S Witt
- Corresponding author. E-mail: ; @drwittID, @JessH_A, @jestjac
| | - Jessica R Howard-Anderson
- Division of Infection Diseases, Emory University School of Medicine, Atlanta, GA, USA,Emory Antibiotic Resistance Group, Emory University, Atlanta, GA, USA
| | - Jesse T Jacob
- Division of Infection Diseases, Emory University School of Medicine, Atlanta, GA, USA,Emory Antibiotic Resistance Group, Emory University, Atlanta, GA, USA
| | - Lindsey B Gottlieb
- Division of Infection Diseases, Emory University School of Medicine, Atlanta, GA, USA,Emory Antibiotic Resistance Group, Emory University, Atlanta, GA, USA
| |
Collapse
|
184
|
Rangel K, De-Simone SG. Acinetobacter baumannii during COVID-19: What Is the Real Pandemic? Pathogens 2022; 12:pathogens12010041. [PMID: 36678389 PMCID: PMC9863904 DOI: 10.3390/pathogens12010041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 12/26/2022] [Indexed: 12/29/2022] Open
Abstract
The novel Coronavirus Disease 2019 (COVID-19), caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) pandemic, has had a monumental impact on public health globally [...].
Collapse
Affiliation(s)
- Karyne Rangel
- Center for Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, Brazil
- Laboratory of Epidemiology and Molecular Systematics (LESM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, Brazil
- Correspondence: (K.R.); (S.G.D.-S.); Tel.: +55-21386581-82 (K.R. & S.G.D.-S.)
| | - Salvatore Giovanni De-Simone
- Center for Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, Brazil
- Laboratory of Epidemiology and Molecular Systematics (LESM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, Brazil
- Post-Graduation Program in Science and Biotechnology, Department of Molecular and Cellular Biology, Biology Institute, Federal Fluminense University (UFF), Niterói 22040-036, Brazil
- Correspondence: (K.R.); (S.G.D.-S.); Tel.: +55-21386581-82 (K.R. & S.G.D.-S.)
| |
Collapse
|
185
|
Guanche Garcell H, Al-Ajmi J, Villanueva Arias A, Abraham JC, Felipe Garmendia AM, Fernandez Hernandez TM. Impact of the COVID-19 pandemic on the incidence, etiology, and antimicrobial resistance of healthcare-associated infections in a critical care unit in Western Qatar. Qatar Med J 2022; 2023:2. [PMID: 36578436 PMCID: PMC9792289 DOI: 10.5339/qmj.2023.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/30/2022] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Healthcare-associated infections (HAIs) in critical patients affect the quality and safety of patient care and increase patient morbidity and mortality. During the COVID-19 pandemic, an increase in the incidence of HAIs, particularly device-associated infections (DAIs), was reported worldwide. In this study, we aimed to estimate the incidence of HAIs in an intensive care unit (ICU) during a 10-year period and compare HAI incidence during the preCOVID-19 and COVID-19 periods. METHODS A retrospective, observational study of HAIs in the medical-surgical ICU at The Cuban Hospital was conducted. DAIs included central line-associated bloodstream infections (CLABSI), catheter-associated urinary tract infections (CAUTI), and ventilator-associated pneumonia (VAP). Data included the annual incidence of HAIs, etiology, and antimicrobial resistance, using definitions provided by the Centers for Disease Control and Prevention, except for other respiratory tract infections (RTIs). RESULTS 155 patients with HAI infections were reported, from which 130 (85.5%) were identified during the COVID-19 period. The frequencies of DAIs and non-DAIs were higher during the COVID-19 period, except for Clostridium difficile infections. Species under Enterobacter, Klebsiella, and Pseudomonas dominated in both periods, and higher frequencies of Acinetobacter, Enterococcus, Candida, Escherichia coli, Serratia marcescens, and Stenotrophoma maltophila were noted during COVID-19 period. Device utilization ratio increased to 10.7% for central lines and 12.9% for ventilators, while a reduction of 15% in urinary catheter utilization ratio was observed. DAI incidence was higher during the COVID-19 pandemic, with risks for CLABSI, VAP, and CAUTI increased by 2.79 (95% confidence interval, 0.93-11.21; p < 0.0050), 15.31 (2.53-625.48), and 3.25 (0.68-31.08), respectively. CONCLUSION The incidence of DAIs increased during the pandemic period, with limited evidence of antimicrobial resistance observed. The infection control program should evaluate strategies to minimize the impact of the pandemic on HAIs.
Collapse
Affiliation(s)
- Humberto Guanche Garcell
- Infection Control Department, The Cuban Hospital. E-mail: ORCID: https://orcid.org/0000-0001-7279-0062,E-mail: ORCID: https://orcid.org/0000-0001-7279-0062
| | - Jameela Al-Ajmi
- Corporate Infection Control Department, Hamad Medical Corporation, Qatar
| | - Ariadna Villanueva Arias
- Infection Control Department, The Cuban Hospital. E-mail: ORCID: https://orcid.org/0000-0001-7279-0062
| | - Joji C Abraham
- Corporate Infection Control Department, Hamad Medical Corporation, Qatar
| | - Angel M Felipe Garmendia
- Infection Control Department, The Cuban Hospital. E-mail: ORCID: https://orcid.org/0000-0001-7279-0062
| | | |
Collapse
|
186
|
Batule S, Soldevila B, Figueredo C, Julián MT, Egea-Cortés L, Reyes-Ureña J, Casabona J, Mateu L, Paredes R, Clotet B, López R, Puig-Domingo M, Alonso N. Factors associated with critical care requirements in diabetic patients treated with dexamethasone for COVID-19 infection in the first wave of the pandemia. Front Endocrinol (Lausanne) 2022; 13:1009028. [PMID: 36619546 PMCID: PMC9815103 DOI: 10.3389/fendo.2022.1009028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/21/2022] [Indexed: 12/24/2022] Open
Abstract
Introduction Diabetes mellitus (DM) and hyperglycemia are important risk factors for poor outcomes in hospitalized patients with coronavirus disease 2019 (COVID-19). The aim of the present study was to analyze the factors associated with the composite outcome of the necessity of invasive mechanical ventilation (IMV) or admission to the intensive care unit (ICU) in subjects with severe COVID-19 infection treated with dexamethasone comparing patients with DM vs. patients without DM. Research design and methods An observational retrospective cohort study was performed, including hospitalized subjects with a diagnosis of SARS-CoV-2 pneumonia. Inclusion criteria were: age ≥18 years old with severe COVID-19 disease requiring daily intravenous 6 mg dexamethasone treatment for 10 days. Exclusion criteria were: <18 years old, non-severe illness and/or patients in charge of ICU. Variables related to clinical and analytical parameters, glycemic control, acquired-hospital superinfections, mortality, IMV requirement, ICU admission and length of stay were included. Results Two hundred and nine individuals with COVID-19 disease treated with dexamethasone were included. One hundred twenty-five out of these subjects (59.8%) were patients with DM. Overall, from the 209 subjects, 66 (31.6%) required IMV or were admitted to the ICU, with significant differences between patients with DM (n=50) vs. patients without DM (n=16) (76% vs. 24%, p=0.002). Among the group of subjects with DM (n=125), those who required IMV or were admitted to the ICU showed higher serum concentrations of C-reactive protein, interleukin-6, D-dimer, ferritin and pro-calcitonin and significantly lower serum concentrations of albumin compared to those who did not require IMV or were not admitted to the ICU. Besides, between these two groups of patients with DM, we observed no differences in glycemic parameters, including median capillary blood glucose values, glycosylated hemoglobin, coefficient of variability and hypoglycemic episodes. In the multinomial analysis, factors independently associated with the composite outcome of IMV or admission to the ICU in the insulin-treated group were the National Early Warning Score (NEWS) 2 score (OR 1.55 [1.17-2.17], p=0.005) and the presence of hospital-acquired superinfections (OR 35.21 [5.11-386.99], p=0.001). Conclusions In our study, parameters related to glycemic control were not associated with IMV requirement nor admission to the ICU in patients with DM and severe COVID-19 disease receiving daily 6 mg of dexamethasone for 10 days. However, hospital-acquired superinfections and disease severity at admission were independent factors associated with this composite outcome.
Collapse
Affiliation(s)
- Sol Batule
- Department of Endocrinology and Nutrition, Germans Trias i Pujol Research Institute and Hospital, Badalona, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Berta Soldevila
- Department of Endocrinology and Nutrition, Germans Trias i Pujol Research Institute and Hospital, Badalona, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Carme Figueredo
- Department of Endocrinology and Nutrition, Germans Trias i Pujol Research Institute and Hospital, Badalona, Spain
| | - María Teresa Julián
- Department of Endocrinology and Nutrition, Germans Trias i Pujol Research Institute and Hospital, Badalona, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Laia Egea-Cortés
- Centre d'Estudis Epidemiològics sobre les Infeccions de Transmissió Sexual i Sida de Catalunya (CEEISCAT), Badalona, Spain
| | - Juliana Reyes-Ureña
- Centre d'Estudis Epidemiològics sobre les Infeccions de Transmissió Sexual i Sida de Catalunya (CEEISCAT), Badalona, Spain
| | - Jordi Casabona
- Centre d'Estudis Epidemiològics sobre les Infeccions de Transmissió Sexual i Sida de Catalunya (CEEISCAT), Badalona, Spain
| | - Lourdes Mateu
- Infectious Disease Service, Germans Trias i Pujol Research Institute and Hospital, Badalona, Spain
| | - Roger Paredes
- Infectious Disease Service, Germans Trias i Pujol Research Institute and Hospital, Badalona, Spain
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, Badalona, Spain
| | - Bonaventura Clotet
- Infectious Disease Service, Germans Trias i Pujol Research Institute and Hospital, Badalona, Spain
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, Badalona, Spain
| | - Rosa López
- Direcció d'Organització i Sistemes Gerència Territorial Metropolitana Nord, Institut Català de la Salut, Badalona, Spain
| | - Manel Puig-Domingo
- Department of Endocrinology and Nutrition, Germans Trias i Pujol Research Institute and Hospital, Badalona, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Núria Alonso
- Department of Endocrinology and Nutrition, Germans Trias i Pujol Research Institute and Hospital, Badalona, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
187
|
Jaffal K, Bouchand F, Lawrence C, Mascitti H, Duran C, Annane D, Dinh A. Antibiotic Consumption and Bacterial Resistance Rates in Hospitalized COVID-19 Patients: A Retrospective Study During the 3 First Surges. Open Forum Infect Dis 2022; 10:ofac680. [PMID: 36628056 PMCID: PMC9825195 DOI: 10.1093/ofid/ofac680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
In our hospital, during COVID-19 pandemic, overall consumption of antibiotics increased during the three first surges, mainly due to ICU prescription However, antibiotic consumption decreased in the Infectious Diseases Department. Rates of ESBL Enterobacterales remained stable.
Collapse
Affiliation(s)
- Karim Jaffal
- Infectious Disease Department, University Hospital Raymond-Poincaré, Paris Saclay University, Assistance Publique–Hôpitaux de Paris, Garches, France
| | - Frédérique Bouchand
- Pharmacy, University Hospital Raymond-Poincaré, Paris Saclay University, Assistance Publique–Hôpitaux de Paris, Garches, France
| | - Christine Lawrence
- Microbiological Department, University Hospital Raymond-Poincaré, Paris Saclay University, Assistance Publique–Hôpitaux de Paris, Garches, France
| | - Hélène Mascitti
- Infectious Disease Department, University Hospital Raymond-Poincaré, Paris Saclay University, Assistance Publique–Hôpitaux de Paris, Garches, France
| | - Clara Duran
- Infectious Disease Department, University Hospital Raymond-Poincaré, Paris Saclay University, Assistance Publique–Hôpitaux de Paris, Garches, France
| | - Djillali Annane
- Intensive Care Unit, University Hospital Raymond-Poincaré, Paris Saclay University, Assistance Publique–Hôpitaux de Paris, Garches, France
| | - Aurélien Dinh
- Correspondence: Aurélien Dinh, MD, PhD, Infectious Disease Department, University Hospital Raymond-Poincaré, AP-HP Paris Saclay University, 104 Bd R. Poincaré, 92380 Garches, France ()
| |
Collapse
|
188
|
Evaluation and Clinical Impact of Biofire FilmArray Pneumonia Panel Plus in ICU-Hospitalized COVID-19 Patients. Diagnostics (Basel) 2022; 12:diagnostics12123134. [PMID: 36553141 PMCID: PMC9777407 DOI: 10.3390/diagnostics12123134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Microbiological diagnosis by using commercial multiplex quantitative PCR systems provides great advantages over the conventional culture. In this work, the Biofire FilmArray Pneumonia Panel Plus (FAPP+) was used to test 144 low respiratory tract samples from 105 COVID-19 patients admitted to an Intensive Care Unit (ICU), detecting 78 pathogens in 59 (41%) samples. The molecular panel was evaluated by using the conventional culture (CC) as comparator, which isolated 42 pathogens in 40 (27.7%) samples. The overall percentage of agreement was 82.6%. Values of sensitivity (93%), specificity (62%), positive predictive value (50%), and negative predictive value (96%) were obtained. The mean time elapsed from sample extraction to modification of antibiotic treatment was 7.6 h. A change in antimicrobial treatment after the FAPP+ results was performed in 27% of patients. The FAPP+ is a highly sensitive diagnostic method that can be used to significantly reduce diagnostic time and that allows an early optimization of antimicrobial treatment.
Collapse
|
189
|
Lee H, Chubachi S, Namkoong H, Asakura T, Tanaka H, Otake S, Nakagawara K, Morita A, Fukushima T, Watase M, Kusumoto T, Masaki K, Kamata H, Ishii M, Hasegawa N, Harada N, Ueda T, Ueda S, Ishiguro T, Arimura K, Saito F, Yoshiyama T, Nakano Y, Mutoh Y, Suzuki Y, Murakami K, Okada Y, Koike R, Kitagawa Y, Kimura A, Imoto S, Miyano S, Ogawa S, Kanai T, Fukunaga K. Characteristics of hospitalized patients with COVID-19 during the first to fifth waves of infection: a report from the Japan COVID-19 Task Force. BMC Infect Dis 2022; 22:935. [PMID: 36510172 PMCID: PMC9744033 DOI: 10.1186/s12879-022-07927-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 12/06/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND We aimed to elucidate differences in the characteristics of patients with coronavirus disease 2019 (COVID-19) requiring hospitalization in Japan, by COVID-19 waves, from conventional strains to the Delta variant. METHODS We used secondary data from a database and performed a retrospective cohort study that included 3261 patients aged ≥ 18 years enrolled from 78 hospitals that participated in the Japan COVID-19 Task Force between February 2020 and September 2021. RESULTS Patients hospitalized during the second (mean age, 53.2 years [standard deviation {SD}, ± 18.9]) and fifth (mean age, 50.7 years [SD ± 13.9]) COVID-19 waves had a lower mean age than those hospitalized during the other COVID-19 waves. Patients hospitalized during the first COVID-19 wave had a longer hospital stay (mean, 30.3 days [SD ± 21.5], p < 0.0001), and post-hospitalization complications, such as bacterial infections (21.3%, p < 0.0001), were also noticeable. In addition, there was an increase in the use of drugs such as remdesivir/baricitinib/tocilizumab/steroids during the latter COVID-19 waves. In the fifth COVID-19 wave, patients exhibited a greater number of presenting symptoms, and a higher percentage of patients required oxygen therapy at the time of admission. However, the percentage of patients requiring invasive mechanical ventilation was the highest in the first COVID-19 wave and the mortality rate was the highest in the third COVID-19 wave. CONCLUSIONS We identified differences in clinical characteristics of hospitalized patients with COVID-19 in each COVID-19 wave up to the fifth COVID-19 wave in Japan. The fifth COVID-19 wave was associated with greater disease severity on admission, the third COVID-19 wave had the highest mortality rate, and the first COVID-19 wave had the highest percentage of patients requiring mechanical ventilation.
Collapse
Affiliation(s)
- Ho Lee
- grid.26091.3c0000 0004 1936 9959Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582 Japan
| | - Shotaro Chubachi
- grid.26091.3c0000 0004 1936 9959Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582 Japan
| | - Ho Namkoong
- grid.26091.3c0000 0004 1936 9959Department of Infectious Diseases, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582 Japan
| | - Takanori Asakura
- grid.26091.3c0000 0004 1936 9959Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582 Japan
| | - Hiromu Tanaka
- grid.26091.3c0000 0004 1936 9959Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582 Japan
| | - Shiro Otake
- grid.26091.3c0000 0004 1936 9959Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582 Japan
| | - Kensuke Nakagawara
- grid.26091.3c0000 0004 1936 9959Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582 Japan
| | - Atsuho Morita
- grid.26091.3c0000 0004 1936 9959Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582 Japan
| | - Takahiro Fukushima
- grid.26091.3c0000 0004 1936 9959Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582 Japan
| | - Mayuko Watase
- grid.26091.3c0000 0004 1936 9959Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582 Japan
| | - Tatsuya Kusumoto
- grid.26091.3c0000 0004 1936 9959Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582 Japan
| | - Katsunori Masaki
- grid.26091.3c0000 0004 1936 9959Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582 Japan
| | - Hirofumi Kamata
- grid.26091.3c0000 0004 1936 9959Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582 Japan
| | - Makoto Ishii
- grid.26091.3c0000 0004 1936 9959Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582 Japan
| | - Naoki Hasegawa
- grid.26091.3c0000 0004 1936 9959Department of Infectious Diseases, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582 Japan
| | - Norihiro Harada
- grid.258269.20000 0004 1762 2738Department of Respiratory Medicine, Juntendo University Faculty of Medicine and Graduate School of Medicine, Tokyo, Japan
| | - Tetsuya Ueda
- grid.416618.c0000 0004 0471 596XDepartment of Respiratory Medicine, Osaka Saiseikai Nakatsu Hospital, Osaka, Japan
| | - Soichiro Ueda
- JCHO (Japan Community Health Care Organization) Saitama Medical Center, Internal Medicine, Saitama, Japan
| | - Takashi Ishiguro
- grid.419430.b0000 0004 0530 8813Department of Respiratory Medicine, Saitama Cardiovascular and Respiratory Center, Kumagaya, Japan
| | - Ken Arimura
- grid.410818.40000 0001 0720 6587Department of Respiratory Medicine, Tokyo Women’s Medical University, Tokyo, Japan
| | - Fukuki Saito
- grid.410783.90000 0001 2172 5041Department of Emergency and Critical Care Medicine, Kansai Medical University General Medical Center, Moriguchi, Japan
| | | | - Yasushi Nakano
- Department of Internal Medicine, Kawasaki Municipal Ida Hospital, Kawasaki, Japan
| | - Yoshikazu Mutoh
- grid.417192.80000 0004 1772 6756Department of Infectious Diseases, Tosei General Hospital, Seto, Japan
| | - Yusuke Suzuki
- grid.415395.f0000 0004 1758 5965Department of Respiratory Medicine, Kitasato University Kitasato Institute Hospital, Tokyo, Japan
| | - Koji Murakami
- grid.69566.3a0000 0001 2248 6943Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yukinori Okada
- grid.136593.b0000 0004 0373 3971Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan ,grid.509459.40000 0004 0472 0267Laboratory for Systems Genetics, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan ,grid.26999.3d0000 0001 2151 536XDepartment of Genome Informatics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ryuji Koike
- grid.265073.50000 0001 1014 9130Medical Innovation Promotion Center, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yuko Kitagawa
- grid.26091.3c0000 0004 1936 9959Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Akinori Kimura
- grid.265073.50000 0001 1014 9130Institute of Research, Tokyo Medical and Dental University, Tokyo, Japan
| | - Seiya Imoto
- grid.26999.3d0000 0001 2151 536XDivision of Health Medical Intelligence, Human Genome Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Satoru Miyano
- grid.265073.50000 0001 1014 9130M&D Data Science Center, Tokyo Medical and Dental University, Tokyo, Japan
| | - Seishi Ogawa
- grid.258799.80000 0004 0372 2033Department of Pathology and Tumor Biology, Kyoto University, Kyoto, Japan
| | - Takanori Kanai
- grid.26091.3c0000 0004 1936 9959Division of Gastroenterology and Hepatology, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Koichi Fukunaga
- grid.26091.3c0000 0004 1936 9959Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582 Japan
| |
Collapse
|
190
|
López-Farfán D, Yerbanga RS, Parres-Mercader M, Torres-Puente M, Gómez-Navarro I, Sanou DMS, Yao AF, Bosco Ouédraogo J, Comas I, Irigoyen N, Gómez-Díaz E. Prevalence of SARS-CoV-2 and co-infection with malaria during the first wave of the pandemic (the Burkina Faso case). Front Public Health 2022; 10:1048404. [PMID: 36579069 PMCID: PMC9791192 DOI: 10.3389/fpubh.2022.1048404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/24/2022] [Indexed: 12/14/2022] Open
Abstract
Africa accounts for 1.5% of the global coronavirus disease 2019 (COVID-19) cases and 2.7% of deaths, but this low incidence has been partly attributed to the limited testing capacity in most countries. In addition, the population in many African countries is at high risk of infection with endemic infectious diseases such as malaria. Our aim is to determine the prevalence and circulation of SARS-CoV-2 variants, and the frequency of co-infection with the malaria parasite. We conducted serological tests and microscopy examinations on 998 volunteers of different ages and sexes in a random and stratified population sample in Burkina-Faso. In addition, nasopharyngeal samples were taken for RT-qPCR of SARS-CoV-2 and for whole viral genome sequencing. Our results show a 3.2 and a 2.5% of SARS-CoV-2 seroprevalence and PCR positivity; and 22% of malaria incidence, over the sampling period, with marked differences linked to age. Importantly, we found 8 cases of confirmed co-infection and 11 cases of suspected co-infection mostly in children and teenagers. Finally, we report the genome sequences of 13 SARS-CoV-2 isolates circulating in Burkina Faso at the time of analysis, assigned to lineages A.19, A.21, B.1.1.404, B.1.1.118, B.1 and grouped into clades; 19B, 20A, and 20B. This is the first population-based study about SARS-CoV-2 and malaria in Burkina Faso during the first wave of the pandemic, providing a relevant estimation of the real prevalence of SARS-CoV-2 and variants circulating in this Western African country. Besides, it highlights the non-negligible frequency of co-infection with malaria in African communities.
Collapse
Affiliation(s)
- Diana López-Farfán
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas (IPBLN, CSIC), Granada, Spain
| | - R Serge Yerbanga
- Institut de Recherche en Sciences de la Santé (IRSS), Bobo-Dioulasso, Burkina Faso.,Institut des Sciences et Techniques (INSTech), Bobo-Dioulasso, Burkina Faso
| | - Marina Parres-Mercader
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas (IPBLN, CSIC), Granada, Spain
| | - Manuela Torres-Puente
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (IBV, CSIC), Valencia, Spain
| | - Inmaculada Gómez-Navarro
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (IBV, CSIC), Valencia, Spain
| | | | - Adama Franck Yao
- Institut de Recherche en Sciences de la Santé (IRSS), Bobo-Dioulasso, Burkina Faso
| | | | - Iñaki Comas
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (IBV, CSIC), Valencia, Spain.,Centro de Investigación Biomédica en Red en Epidemiología y Salud Pública (CIBER), Madrid, Spain
| | - Nerea Irigoyen
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Elena Gómez-Díaz
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas (IPBLN, CSIC), Granada, Spain
| |
Collapse
|
191
|
Antibiotics Use in COVID-19 Patients: A Systematic Literature Review. J Clin Med 2022; 11:jcm11237207. [PMID: 36498781 PMCID: PMC9739751 DOI: 10.3390/jcm11237207] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/06/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
The issue of bacterial infections in COVID-19 patients has received increasing attention among scientists. Antibiotics were widely prescribed during the early phase of the pandemic. We performed a literature review to assess the reasons, evidence and practices on the use of antibiotics in COVID-19 in- and outpatients. Published articles providing data on antibiotics use in COVID-19 patients were identified through computerized literature searches on the MEDLINE and SCOPUS databases. Searching the MEDLINE database, the following search terms were adopted: ((antibiotic) AND (COVID-19)). Searching the SCOPUS database, the following search terms were used: ((antibiotic treatment) AND (COVID-19)). The risk of bias in the included studies was not assessed. Both quantitative and qualitative information were summarized by means of textual descriptions. Five-hundred-ninety-three studies were identified, published from January 2020 to 30 October 2022. Thirty-six studies were included in this systematic review. Of the 36 included studies, 32 studies were on the use of antibiotics in COVID-19 inpatients and 4 on antibiotic use in COVID-19 outpatients. Apart from the studies identified and included in the review, the main recommendations on antibiotic treatment from 5 guidelines for the clinical management of COVID-19 were also summarized in a separate paragraph. Antibiotics should not be prescribed during COVID-19 unless there is a strong clinical suspicion of bacterial coinfection or superinfection.
Collapse
|
192
|
The impact of the secondary infections in ICU patients affected by COVID-19 during three different phases of the SARS-CoV-2 pandemic. Clin Exp Med 2022:10.1007/s10238-022-00959-1. [PMID: 36459278 PMCID: PMC9717567 DOI: 10.1007/s10238-022-00959-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/18/2022] [Indexed: 12/03/2022]
Abstract
Microbial secondary infections can contribute to an increase in the risk of mortality in COVID-19 patients, particularly in case of severe diseases. In this study, we collected and evaluated the clinical, laboratory and microbiological data of COVID-19 critical ill patients requiring intensive care (ICU) to evaluate the significance and the prognostic value of these parameters. One hundred seventy-eight ICU patients with severe COVID-19, hospitalized at the S. Francesco Hospital of Nuoro (Italy) in the period from March 2020 to May 2021, were enrolled in this study. Clinical data and microbiological results were collected. Blood chemistry parameters, relative to three different time points, were analyzed through multivariate and univariate statistical approaches. Seventy-four percent of the ICU COVID-19 patients had a negative outcome, while 26% had a favorable prognosis. A correlation between the laboratory parameters and days of hospitalization of the patients was observed with significant differences between the two groups. Moreover, Staphylococcus aureus, Enterococcus faecalis, Candida spp, Pseudomonas aeruginosa and Klebsiella pneumoniae were the most frequently isolated microorganisms from all clinical specimens. Secondary infections play an important role in the clinical outcome. The analysis of the blood chemistry tests was found useful in monitoring the progression of COVID-19.
Collapse
|
193
|
Floridia M, Giuliano M, Monaco M, Palmieri L, Lo Noce C, Palamara AT, Pantosti A, Brusaferro S, Onder G, Palmieri L, Agazio E, Barbariol P, Bella A, Benelli E, Bertinato L, Bocci M, Boros S, Bressi M, Calcagnini G, Canevelli M, Censi F, Ciervo A, Colaizzo E, Da Cas R, Del Manso M, Di Benedetto C, Donfrancesco C, Fabiani M, Facchiano F, Floridia M, Galati F, Giuliano M, Grisetti T, Guastadisegni C, Lega I, Lo Noce C, Maiozzi P, Manno V, Martini M, Massari M, Urdiales AM, Mattei E, Meduri C, Meli P, Menniti Ippolito F, Minelli G, Onder G, Petrone D, Pezzotti P, Pricci F, Punzo O, Quarata F, Raparelli V, Riccardo F, Rocchetto S, Sacco C, Salerno P, Sarti G, Serra D, Spila Alegiani S, Spuri M, Tallon M, Tamburo De Bella M, Tiple D, Toccaceli Blasi M, Trentin F, Unim B, Vaianella L, Vanacore N, Vescio MF, Villani ER, Weimer LE, Brusaferro S. Microbiologically confirmed infections and antibiotic-resistance in a national surveillance study of hospitalised patients who died with COVID-19, Italy 2020–2021. Antimicrob Resist Infect Control 2022; 11:74. [PMID: 35598032 PMCID: PMC9123740 DOI: 10.1186/s13756-022-01113-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 05/07/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Patients hospitalised for COVID-19 may present with or acquire bacterial or fungal infections that can affect the course of the disease. The aim of this study was to describe the microbiological characteristics of laboratory-confirmed infections in hospitalised patients with severe COVID-19.
Methods
We reviewed the hospital charts of a sample of patients deceased with COVID-19 from the Italian National COVID-19 Surveillance, who had laboratory-confirmed bacterial or fungal bloodstream infections (BSI) or lower respiratory tract infections (LRTI), evaluating the pathogens responsible for the infections and their antimicrobial susceptibility.
Results
Among 157 patients with infections hospitalised from February 2020 to April 2021, 28 (17.8%) had co-infections (≤ 48 h from admission) and 138 (87.9%) had secondary infections (> 48 h). Most infections were bacterial; LRTI were more frequent than BSI. The most common co-infection was pneumococcal LRTI. In secondary infections, Enterococci were the most frequently recovered pathogens in BSI (21.7% of patients), followed by Enterobacterales, mainly K. pneumoniae, while LRTI were mostly associated with Gram-negative bacteria, firstly Enterobacterales (27.4% of patients, K. pneumoniae 15.3%), followed by A. baumannii (19.1%). Fungal infections, both BSI and LRTI, were mostly due to C. albicans. Antibiotic resistance rates were extremely high in Gram-negative bacteria, with almost all A. baumannii isolates resistant to carbapenems (95.5%), and K. pneumoniae and P. aeruginosa showing carbapenem resistance rates of 59.5% and 34.6%, respectively.
Conclusions
In hospitalised patients with severe COVID-19, secondary infections are considerably more common than co-infections, and are mostly due to Gram-negative bacterial pathogens showing a very high rate of antibiotic resistance.
Collapse
|
194
|
SARS-CoV-2 and Legionella pneumophila coinfection. ENFERMEDADES INFECCIOSAS Y MICROBIOLOGIA CLINICA (ENGLISH ED.) 2022; 40:578-579. [PMID: 36464477 PMCID: PMC9712296 DOI: 10.1016/j.eimce.2021.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 08/26/2021] [Indexed: 12/03/2022]
|
195
|
Lakatos B, Szabó BG, Bobek I, Kiss-Dala N, Gáspár Z, Riczu A, Petrik B, Farkas BF, Sebestyén G, Gopcsa L, Bekő G, Sinkó J, Reményi P, Szlávik J, Mathiász D, Vályi-Nagy I. Baricitinib vs tocilizumab treatment for hospitalized adult patients with severe COVID-19 and associated cytokine storm: a prospective, investigational, real-world study. Int J Infect Dis 2022; 125:233-240. [PMID: 36328291 PMCID: PMC9621622 DOI: 10.1016/j.ijid.2022.10.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVES Our aim was to compare outcomes of hospitalized adults with severe COVID-19 and cytokine storm treated with tocilizumab or baricitinib. METHODS A prospective, investigational, real-world study was performed from April 2020 to April 2021 at our center. COVID-19 severity was classified by World Health Organization criteria, and cytokine storm was documented along predefined criteria. Eligible patients were enrolled at diagnosis if they fulfilled a priori inclusion criteria and received standard-of-care plus tocilizumab or baricitinib for >48 hours. Patients were followed per protocol for 28 days post-diagnosis. The primary outcome was all-cause mortality; secondary outcomes were invasive mechanical ventilation and major infectious complications. RESULTS Of 463 patients, 102/463 (22.1%) received tocilizumab, and 361/463 (77.9%) baricitinib. Baseline characteristics were balanced. At 28 days, there was no difference in all-cause mortality (22/102, 21.6% vs 64/361, 17.7%; P-value = 0.38). Requirement for invasive mechanical ventilation was more frequent after tocilizumab (52/102, 50.9% vs 96/361, 26.6%; P <0.01), rate of major infectious complications was similar (32/102, 31.4% vs 96/361, 26.6%; P-value = 0.34). In logistic regression, the immunomodulatory drug was not retained as a predictor of all-cause mortality. Kaplan-Meier analysis revealed statistically similar survival distributions. CONCLUSION All-cause mortality was similar between adults treated with baricitinib or tocilizumab for severe COVID-19 with cytokine storm.
Collapse
Affiliation(s)
- Botond Lakatos
- South Pest Central Hospital, National Institute of Hematology and Infectious Diseases, Budapest, Hungary; Semmelweis University, Department of Internal Medicine and Hematology, Division of Infectology, Budapest, Hungary.
| | - Bálint Gergely Szabó
- South Pest Central Hospital, National Institute of Hematology and Infectious Diseases, Budapest, Hungary; Semmelweis University, Department of Internal Medicine and Hematology, Division of Infectology, Budapest, Hungary
| | - Ilona Bobek
- South Pest Central Hospital, National Institute of Hematology and Infectious Diseases, Budapest, Hungary
| | - Noémi Kiss-Dala
- South Pest Central Hospital, National Institute of Hematology and Infectious Diseases, Budapest, Hungary; Semmelweis University, Doctoral School of Clinical Medicine, Budapest, Hungary
| | - Zsófia Gáspár
- South Pest Central Hospital, National Institute of Hematology and Infectious Diseases, Budapest, Hungary; Semmelweis University, Doctoral School of Clinical Medicine, Budapest, Hungary
| | - Alexandra Riczu
- South Pest Central Hospital, National Institute of Hematology and Infectious Diseases, Budapest, Hungary
| | - Borisz Petrik
- South Pest Central Hospital, National Institute of Hematology and Infectious Diseases, Budapest, Hungary
| | | | - Gabriella Sebestyén
- South Pest Central Hospital, National Institute of Hematology and Infectious Diseases, Budapest, Hungary
| | - László Gopcsa
- South Pest Central Hospital, National Institute of Hematology and Infectious Diseases, Budapest, Hungary
| | - Gabriella Bekő
- South Pest Central Hospital, National Institute of Hematology and Infectious Diseases, Budapest, Hungary
| | - János Sinkó
- South Pest Central Hospital, National Institute of Hematology and Infectious Diseases, Budapest, Hungary
| | - Péter Reményi
- South Pest Central Hospital, National Institute of Hematology and Infectious Diseases, Budapest, Hungary
| | - János Szlávik
- South Pest Central Hospital, National Institute of Hematology and Infectious Diseases, Budapest, Hungary
| | - Dóra Mathiász
- South Pest Central Hospital, National Institute of Hematology and Infectious Diseases, Budapest, Hungary
| | - István Vályi-Nagy
- South Pest Central Hospital, National Institute of Hematology and Infectious Diseases, Budapest, Hungary
| |
Collapse
|
196
|
Dubey R, Sen KK, Mohanty SS, Panda S, Goyal M, Menon SM. The rising burden of invasive fungal infections in COVID-19, can structured CT thorax change the game. THE EGYPTIAN JOURNAL OF RADIOLOGY AND NUCLEAR MEDICINE 2022. [PMCID: PMC8734534 DOI: 10.1186/s43055-022-00694-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Abstract
Background
The occurrence of invasive fungal infections in COVID-19 patients is on surge in countries like India. Several reports related to rhino-nasal-sinus mucormycosis in COVID patients have been published in recent times; however, very less has been reported about invasive pulmonary fungal infections caused mainly by mucor, aspergillus or invasive candida species. We aimed to present 6 sputum culture proved cases of invasive pulmonary fungal infection (four mucormycosis and two invasive candidiasis) in COVID patients, the clues for the diagnosis of fungal invasion as well as difficulties in diagnosing it due to superimposed COVID imaging features.
Case presentation
The HRCT imaging features of the all 6 patients showed signs of fungal invasion in the form of cavities formation in the pre-existing reverse halo lesions or development of new irregular margined soft tissue attenuating growth within the pre-existing or in newly formed cavities. Five out of six patients were diabetics. Cavities in cases 1, 2, 3 and 4 of mucormycosis were aggressive and relatively larger and showed relatively faster progression into cavities in comparison with cases 5 and 6 of invasive candidiasis.
Conclusion
In poorly managed diabetics or with other immunosuppressed conditions, invasive fungal infection (mucormycosis, invasive aspergillosis and invasive candidiasis) should be considered in the differential diagnosis of cavitary lung lesions.
Collapse
|
197
|
Strelkova D, Rachina S, Klimenko A, Yatsyshina S, Cheboksarov D, Cherkasova T, Ramazanov N, Ananicheva N. Co-Infection in COVID-19 Pneumonia: Discussion Continues. Infect Chemother 2022; 54:792-796. [PMID: 36596687 PMCID: PMC9840957 DOI: 10.3947/ic.2022.0110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/26/2022] [Indexed: 12/14/2022] Open
Abstract
Sixty-six patients with laboratory-confirmed severe acute respiratory syndrome coronavirus 2 and pneumonia on chest computer tomography were prospectively recruited. A combined respiratory swab for polymerase chain reaction (PCR), urine sample for pneumococcal and Legionella antigen, and sputum or endotracheal aspirate were collected. Urinary antigen and blood culture tests were negative in all cases as well as the PCR tests for other respiratory viruses and atypical bacterial pathogens. In total, 5 patients (7.5%) had co-infection. By PCR a high prevalence of colonization with bacterial pathogens was found. In conclusion, co-infection is rare in coronavirus disease 2019 patients, and additional examination to identify other pathogens should be performed only in selected cases.
Collapse
Affiliation(s)
- Daria Strelkova
- I.M. Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - Svetlana Rachina
- I.M. Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - Alexey Klimenko
- Pirogov Russian National Research Medical University, Moscow, Russian Federation
| | - Svetlana Yatsyshina
- Central Research Institute for Epidemiology of the Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing (CRIE), Moscow, Russian Federation
| | | | | | - Natig Ramazanov
- I.M. Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | | |
Collapse
|
198
|
Zheng Q, Lin R, Chen Y, Lv Q, Zhang J, Zhai J, Xu W, Wang W. SARS-CoV-2 induces "cytokine storm" hyperinflammatory responses in RA patients through pyroptosis. Front Immunol 2022; 13:1058884. [PMID: 36532040 PMCID: PMC9751040 DOI: 10.3389/fimmu.2022.1058884] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/15/2022] [Indexed: 12/04/2022] Open
Abstract
Background The coronavirus disease (COVID-19) is a pandemic disease that threatens worldwide public health, and rheumatoid arthritis (RA) is the most common autoimmune disease. COVID-19 and RA are each strong risk factors for the other, but their molecular mechanisms are unclear. This study aims to investigate the biomarkers between COVID-19 and RA from the mechanism of pyroptosis and find effective disease-targeting drugs. Methods We obtained the common gene shared by COVID-19, RA (GSE55235), and pyroptosis using bioinformatics analysis and then did the principal component analysis(PCA). The Co-genes were evaluated by Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and ClueGO for functional enrichment, the protein-protein interaction (PPI) network was built by STRING, and the k-means machine learning algorithm was employed for cluster analysis. Modular analysis utilizing Cytoscape to identify hub genes, functional enrichment analysis with Metascape and GeneMANIA, and NetworkAnalyst for gene-drug prediction. Network pharmacology analysis was performed to identify target drug-related genes intersecting with COVID-19, RA, and pyroptosis to acquire Co-hub genes and construct transcription factor (TF)-hub genes and miRNA-hub genes networks by NetworkAnalyst. The Co-hub genes were validated using GSE55457 and GSE93272 to acquire the Key gene, and their efficacy was assessed using receiver operating curves (ROC); SPEED2 was then used to determine the upstream pathway. Immune cell infiltration was analyzed using CIBERSORT and validated by the HPA database. Molecular docking, molecular dynamics simulation, and molecular mechanics-generalized born surface area (MM-GBSA) were used to explore and validate drug-gene relationships through computer-aided drug design. Results COVID-19, RA, and pyroptosis-related genes were enriched in pyroptosis and pro-inflammatory pathways(the NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome complex, death-inducing signaling complex, regulation of interleukin production), natural immune pathways (Network map of SARS-CoV-2 signaling pathway, activation of NLRP3 inflammasome by SARS-CoV-2) and COVID-19-and RA-related cytokine storm pathways (IL, nuclear factor-kappa B (NF-κB), TNF signaling pathway and regulation of cytokine-mediated signaling). Of these, CASP1 is the most involved pathway and is closely related to minocycline. YY1, hsa-mir-429, and hsa-mir-34a-5p play an important role in the expression of CASP1. Monocytes are high-caspase-1-expressing sentinel cells. Minocycline can generate a highly stable state for biochemical activity by docking closely with the active region of caspase-1. Conclusions Caspase-1 is a common biomarker for COVID-19, RA, and pyroptosis, and it may be an important mediator of the excessive inflammatory response induced by SARS-CoV-2 in RA patients through pyroptosis. Minocycline may counteract cytokine storm inflammation in patients with COVID-19 combined with RA by inhibiting caspase-1 expression.
Collapse
Affiliation(s)
- Qingcong Zheng
- Department of Orthopedics, 900th Hospital of Joint Logistics Support Force, Fuzhou, China
| | - Rongjie Lin
- Department of Orthopedics, 900th Hospital of Joint Logistics Support Force, Fuzhou, China
| | - Yuchao Chen
- Department of Paediatrics, Fujian Provincial Hospital South Branch, Fuzhou, China
| | - Qi Lv
- Department of Orthopedics, 900th Hospital of Joint Logistics Support Force, Fuzhou, China
| | - Jin Zhang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, United States
| | - Jingbo Zhai
- Key Laboratory of Zoonose Prevention and Control at Universities of Inner Mongolia Autonomous Region, Medical College, Inner Mongolia Minzu University, Tongliao, China
| | - Weihong Xu
- Department of Orthopedics, First Affiliated Hospital of Fujian Medical University, Fuzhou, China,*Correspondence: Weihong Xu, ; Wanming Wang,
| | - Wanming Wang
- Department of Orthopedics, 900th Hospital of Joint Logistics Support Force, Fuzhou, China,*Correspondence: Weihong Xu, ; Wanming Wang,
| |
Collapse
|
199
|
Dual Fungal Infection of Aspergillosis and Mucormycosis in a COVID-19 Patient: A Rare Case Report. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2022. [DOI: 10.22207/jpam.16.4.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) infections can be related to vast spectrum of co-existent bacterial and fungal infections. A 49-year-old diabetic male was admitted with a history of fever, cough and breathlessness since 5 days. He developed persistent headache with right sided purulent nasal discharge. Relevant histo-pathological, biochemical, microbiological and imaging studies were performed which proved it to be a dual infection of Aspergillosis and Mucormycosis. We present one such case in a COVID-19 patient to highlight its unusual clinical features along with the diagnostic and therapeutic challenges.
Collapse
|
200
|
Prevalence, incidence, and severity associated with viral respiratory tract infections in Colombian adults before the COVID-19 pandemic. J Infect Public Health 2022; 15:1381-1387. [DOI: 10.1016/j.jiph.2022.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 10/07/2022] [Accepted: 10/23/2022] [Indexed: 11/11/2022] Open
|