151
|
Gray KM, Jung JW, Inglut CT, Huang HC, Stroka KM. Quantitatively relating brain endothelial cell-cell junction phenotype to global and local barrier properties under varied culture conditions via the Junction Analyzer Program. Fluids Barriers CNS 2020; 17:16. [PMID: 32046757 PMCID: PMC7014765 DOI: 10.1186/s12987-020-0177-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 01/31/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The endothelial cell-cell junctions of the blood-brain barrier (BBB) play a pivotal role in the barrier's function. Altered cell-cell junctions can lead to barrier dysfunction and have been implicated in several diseases. Despite this, the driving forces regulating junctional protein presentation remain relatively understudied, largely due to the lack of efficient techniques to quantify their presentation at sites of cell-cell adhesion. Here, we used our novel Junction Analyzer Program (JAnaP) to quantify junction phenotype (i.e., continuous, punctate, or perpendicular) in response to various substrate compositions, cell culture times, and cAMP treatments in human brain microvascular endothelial cells (HBMECs). We then quantitatively correlated junction presentation with barrier permeability on both a "global" and "local" scale. METHODS We cultured HBMECs on collagen I, fibronectin, collagen IV, laminin, fibronectin/collagen IV/laminin, or hyaluronic acid/gelatin for 2, 4, and 7 days with varying cAMP treatment schedules. Images of immunostained ZO-1, VE-cadherin, and claudin-5 were analyzed using the JAnaP to calculate the percent of the cell perimeter presenting continuous, punctate, or perpendicular junctions. Transwell permeability assays and resistance measurements were used to measure bulk ("global") barrier properties, and a "local" permeability assay was used to correlate junction presentation proximal to permeable monolayer regions. RESULTS Substrate composition was found to play little role in junction presentation, while cAMP supplements significantly increased the continuous junction architecture. Increased culture time required increased cAMP treatment time to reach similar ZO-1 and VE-cadherin coverage observed with shorter culture, though longer cultures were required for claudin-5 presentation. Prolonged cAMP treatment (6 days) disrupted junction integrity for all three junction proteins. Transwell permeability and TEER assays showed no correlation with junction phenotype, but a local permeability assay revealed a correlation between the number of discontinuous and no junction regions with barrier penetration. CONCLUSIONS These results suggest that cAMP signaling influences HBMEC junction architecture more than matrix composition. Our studies emphasized the need for local barrier measurement to mechanistically understand the role of junction phenotype and supported previous results that continuous junctions are indicative of a more mature/stable endothelial barrier. Understanding what conditions influence junction presentations, and how they, in turn, affect barrier integrity, could lead to the development of therapeutics for diseases associated with BBB dysfunction.
Collapse
Affiliation(s)
- Kelsey M Gray
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive, 3110 A. James Clark Hall, College Park, MD, 20742, USA
| | - Jae W Jung
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive, 3110 A. James Clark Hall, College Park, MD, 20742, USA
| | - Collin T Inglut
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive, 3110 A. James Clark Hall, College Park, MD, 20742, USA
| | - Huang-Chiao Huang
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive, 3110 A. James Clark Hall, College Park, MD, 20742, USA
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland-Baltimore, Baltimore, MD, 21201, USA
| | - Kimberly M Stroka
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive, 3110 A. James Clark Hall, College Park, MD, 20742, USA.
- Biophysics Program, University of Maryland, College Park, MD, 20742, USA.
- Center for Stem Cell Biology and Regenerative Medicine, University of Maryland-Baltimore, Baltimore, MD, 21201, USA.
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland-Baltimore, Baltimore, MD, 21201, USA.
| |
Collapse
|
152
|
P-Cresylsulfate, the Protein-Bound Uremic Toxin, Increased Endothelial Permeability Partly Mediated by Src-Induced Phosphorylation of VE-Cadherin. Toxins (Basel) 2020; 12:toxins12020062. [PMID: 31973024 PMCID: PMC7076797 DOI: 10.3390/toxins12020062] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/12/2020] [Accepted: 01/19/2020] [Indexed: 12/23/2022] Open
Abstract
The goal of our study was to investigate the impact of p-cresylsulfate (PCS) on the barrier integrity in human umbilical vein endothelial cell (HUVEC) monolayers and the renal artery of chronic kidney disease (CKD) patients. We measured changes in the transendothelial electrical resistance (TEER) of HUVEC monolayers treated with PCS (0.1–0.2 mM) similar to serum levels of CKD patients. A PCS dose (0.2 mM) significantly decreased TEER over a 48-h period. Both PCS doses (0.1 and 0.2 mM) significantly decreased TEER over a 72-h period. Inter-endothelial gaps were observed in HUVECs following 48 h of PCS treatment by immunofluorescence microscopy. We also determined whether PCS induced the phosphorylation of VE-cadherin at tyrosine 658 (Y658) mediated by the phosphorylation of Src. Phosphorylated VE-cadherin (Y658) and phosphorylated Src levels were significantly higher when the cells were treated with 0.1 and 0.2 mM PCS, respectively, compared to the controls. The endothelial barrier dysfunction in the arterial intima in CKD patients was evaluated by endothelial leakage of immunoglobulin G (IgG). Increased endothelial leakage of IgG was related to the declining kidney function in CKD patients. Increased endothelial permeability induced by uremic toxins, including PCS, suggests that uremic toxins induce endothelial barrier dysfunction in CKD patients and Src-mediated phosphorylation of VE-cadherin is involved in increased endothelial permeability induced by PCS exposure.
Collapse
|
153
|
Guo X, Ji J, Feng Z, Hou X, Luo Y, Mei Z. A network pharmacology approach to explore the potential targets underlying the effect of sinomenine on rheumatoid arthritis. Int Immunopharmacol 2020; 80:106201. [PMID: 31972421 DOI: 10.1016/j.intimp.2020.106201] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 12/15/2019] [Accepted: 01/06/2020] [Indexed: 12/30/2022]
Abstract
OBJECTIVE To explore the potential targets underlying the effect of sinomenine (SIN) on rheumatoid arthritis (RA) by utilizing a network pharmacology approach. METHODS SIN and its drug targets were identified using network analysis followed by experimental validation. First, the Pharmmapper, UniProt and GeneCards databases were mined for information relevant to the prediction of SIN targets and RA-related targets. Second, the SIN-target gene and SIN-RA target gene networks were created in Cytoscape software followed by the collection of the candidate targets of each component by R software. Eventually, the key targets and enriched pathways were examined by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. RESULTS Sixty-seven potential targets of SIN and 3797 related targets involved in RA were subjected to network analysis, and the 20 intersection targets indicated the principal pathways linked to RA. Additionally, 16 key targets, which were linked to more than three genes, were determined to be crucial genes. GO analysis showed that 14 biological processes, 5 cellular components and 2 molecular functions were identified, when corrected by a P value ≤ 0.01. Seven related signaling pathways were identified by KEGG analysis, when corrected according to a Bonferroni P value ≤ 0.05. CONCLUSION The present study explored the potential targets and signaling pathways of SIN during the treatment of RA, which may help to illustrate the mechanism (s) involved in the action of SIN and may provide a better understanding of its anti-rheumatoid arthritis effects in terms of inhibiting angiogenesis, synovial hyperplasia, and bone destruction.
Collapse
Affiliation(s)
- Xiang Guo
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang, Hubei 443002, China
| | - Jinyu Ji
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang, Hubei 443002, China
| | - Zhitao Feng
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang, Hubei 443002, China; Institute of Rheumatology, the First College of Clinical Medical Sciences, China Three Gorges University, Yichang, Hubei 443003, China.
| | - Xiaoqiang Hou
- Institute of Rheumatology, the First College of Clinical Medical Sciences, China Three Gorges University, Yichang, Hubei 443003, China
| | - Yanan Luo
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang, Hubei 443002, China
| | - Zhigang Mei
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang, Hubei 443002, China.
| |
Collapse
|
154
|
Dunne M, Regenold M, Allen C. Hyperthermia can alter tumor physiology and improve chemo- and radio-therapy efficacy. Adv Drug Deliv Rev 2020; 163-164:98-124. [PMID: 32681862 DOI: 10.1016/j.addr.2020.07.007] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/07/2020] [Accepted: 07/10/2020] [Indexed: 12/20/2022]
Abstract
Hyperthermia has demonstrated clinical success in improving the efficacy of both chemo- and radio-therapy in solid tumors. Pre-clinical and clinical research studies have demonstrated that targeted hyperthermia can increase tumor blood flow and increase the perfused fraction of the tumor in a temperature and time dependent manner. Changes in tumor blood circulation can produce significant physiological changes including enhanced vascular permeability, increased oxygenation, decreased interstitial fluid pressure, and reestablishment of normal physiological pH conditions. These alterations in tumor physiology can positively impact both small molecule and nanomedicine chemotherapy accumulation and distribution within the tumor, as well as the fraction of the tumor susceptible to radiation therapy. Hyperthermia can trigger drug release from thermosensitive formulations and further improve the accumulation, distribution, and efficacy of chemotherapy.
Collapse
|
155
|
Schaffenrath J, Keller A. New Insights in the Complexity and Functionality of the Neurovascular Unit. Handb Exp Pharmacol 2020; 273:33-57. [PMID: 33582883 DOI: 10.1007/164_2020_424] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The neurovascular unit (NVU) encompasses all brain cells and underlines that neurons, glia and brain vasculature are in intimate physical and functional association. Brain function is dependent on blood flow and local increases in blood flow in response to neural activity - functional hyperaemia takes place at the NVU. Although this is a vital function of the NVU, many studies have demonstrated that the NVU also performs other tasks. Blood vessels in the brain, which are composed of multiple cell types, are essential for correct brain development. They constitute the niche for brain stem cells, sense the environment and communicate changes to neural tissue, and control the immune quiescence of the CNS. In this brief chapter we will discuss new insights into the biology of NVU, which have further revealed the heterogeneity and complexity of the vascular tree and its neurovascular associations.
Collapse
Affiliation(s)
- Johanna Schaffenrath
- Department of Neurosurgery, Clinical Neuroscience Center, Zurich Neuroscience Center, Zurich University Hospital, Zurich University, Zurich, Switzerland
| | - Annika Keller
- Department of Neurosurgery, Clinical Neuroscience Center, Zurich Neuroscience Center, Zurich University Hospital, Zurich University, Zurich, Switzerland.
| |
Collapse
|
156
|
Yang Y, Dong X, Zheng S, Sun J, Ye J, Chen J, Fang Y, Zhao B, Yin Z, Cao P, Luo L. GSTpi regulates VE-cadherin stabilization through promoting S-glutathionylation of Src. Redox Biol 2019; 30:101416. [PMID: 31927409 PMCID: PMC6957793 DOI: 10.1016/j.redox.2019.101416] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/09/2019] [Accepted: 12/29/2019] [Indexed: 02/06/2023] Open
Abstract
GSTpi is a Phase II metabolic enzyme which is originally considered as an important facilitator of cellular detoxification. Here, we found that GSTpi stabilized VE-cadherin in endothelial cell membrane through inhibiting VE-cadherin phosphorylation and VE-cadherin/catenin complex dissociation, and consequently maintained endothelial barrier function. Our findings demonstrated a novel mechanism that GSTpi inhibited VE-cadherin phosphorylation through suppressing the activation of Src/VE-cadherin pathway. Mass spectrometry analysis and molecular docking showed that GSTpi enhanced Src S-glutathionylation at Cys185, Cys245, and Cys400 of Src. More important, we found that GSTpi promoted S-glutathionylation of Src was essential for GSTpi to inhibit Src phosphorylation and activation. Furthermore, in vivo experiments indicated that AAV-GSTpi exerted the protective effect on pulmonary vessel permeability in the animal model of acute lung injury. This study revealed a novel regulatory effect of GSTpi on vascular endothelial barrier function and the importance of S-glutathionylation of Src induced by GSTpi in the activation of Src/VE-cadherin pathway. GSTpi regulates endothelial barrier function in response to pro-inflammatory stress. GSTpi inhibits the destabilization of membrane VE-cadherin through suppressing the activation of Src/VE-cadherin pathway. GSTpi selectively inhibits Src phosphorylation by S-glutathionylating novel cysteines of Src. GSTpi exerts the protective effect on pulmonary vessel permeability in the animal model of acute lung injury.
Collapse
Affiliation(s)
- Yang Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210093, Jiangsu, China; Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu, China; Laboratory of Cellular and Molecular Biology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, Jiangsu, China
| | - Xiaoliang Dong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Shuangning Zheng
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Jinbing Sun
- Changshu No.1 People's Hospital Affiliated to Soochow University, Changshu, 215500, China
| | - Juan Ye
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu, China; Laboratory of Cellular and Molecular Biology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, Jiangsu, China
| | - Jiao Chen
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu, China; Laboratory of Cellular and Molecular Biology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, Jiangsu, China
| | - Yuan Fang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu, China; Laboratory of Cellular and Molecular Biology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, Jiangsu, China
| | - Bing Zhao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu, China; Laboratory of Cellular and Molecular Biology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, Jiangsu, China
| | - Zhimin Yin
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, Jiangsu, China.
| | - Peng Cao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu, China; Laboratory of Cellular and Molecular Biology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, Jiangsu, China; Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Lan Luo
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210093, Jiangsu, China.
| |
Collapse
|
157
|
Khalyfa A, Gozal D, Kheirandish-Gozal L. Plasma Extracellular Vesicles in Children with OSA Disrupt Blood-Brain Barrier Integrity and Endothelial Cell Wound Healing in Vitro. Int J Mol Sci 2019; 20:ijms20246233. [PMID: 31835632 PMCID: PMC6941040 DOI: 10.3390/ijms20246233] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 12/08/2019] [Accepted: 12/08/2019] [Indexed: 12/19/2022] Open
Abstract
Pediatric obstructive sleep apnea (P-OSA) is associated with neurocognitive deficits and endothelial dysfunction, suggesting the possibility that disruption of the blood-brain barrier (BBB) may underlie these morbidities. Extracellular vesicles (EVs), which include exosomes, are small particles involved in cell-cell communications via different mechanisms and could play a role in OSA-associated end-organ injury. To examine the roles of EVs in BBB dysfunction, we recruited three groups of children: (a) absence of OSA or cognitive deficits (CL, n = 6), (b) OSA but no evidence of cognitive deficits (OSA-NC(-), n = 12), and (c) OSA with evidence of neurocognitive deficits (OSA-NC(+), n = 12). All children were age-, gender-, ethnicity-, and BMI-z-score-matched, and those with OSA were also apnea-hypopnea index (AHI)-matched. Plasma EVs were characterized, quantified, and applied on multiple endothelial cell types (HCAEC, HIAEC, human HMVEC-D, HMVEC-C, HMVEC-L, and hCMEC/D3) while measuring monolayer barrier integrity and wound-healing responses. EVs from OSA children induced significant declines in hCMEC/D3 transendothelial impedance compared to CL (p < 0.001), and such changes were greater in NC(+) compared to NC(-) (p < 0.01). The effects of EVs from each group on wound healing for HCAEC, HIAEC, HMVED-d, and hCMEC/D3 cells were similar, but exhibited significant differences across the three groups, with evidence of disrupted wound healing in P-OSA. However, wound healing in HMVEC-C was only affected by NC(+) (p < 0.01 vs. NC(-) or controls (CO). Furthermore, no significant differences emerged in HMVEC-L cell wound healing across all three groups. We conclude that circulating plasma EVs in P-OSA disrupt the integrity of the BBB and exert adverse effects on endothelial wound healing, particularly among OSA-NC(+) children, while also exhibiting endothelial cell type selectivity. Thus, circulating EVs cargo may play important roles in the emergence of end-organ morbidity in pediatric OSA.
Collapse
|
158
|
Cen J, Feng L, Ke H, Bao L, Li LZ, Tanaka Y, Weng J, Su L. Exosomal Thrombospondin-1 Disrupts the Integrity of Endothelial Intercellular Junctions to Facilitate Breast Cancer Cell Metastasis. Cancers (Basel) 2019; 11:cancers11121946. [PMID: 31817450 PMCID: PMC6966578 DOI: 10.3390/cancers11121946] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/27/2019] [Accepted: 12/02/2019] [Indexed: 12/21/2022] Open
Abstract
Transendothelial migration of malignant cells plays an essential role in tumor progression and metastasis. The present study revealed that treating human umbilical vein endothelial cells (HUVECs) with exosomes derived from metastatic breast cancer cells increased the number of cancer cells migrating through the endothelial cell layer and impaired the tube formation of HUVECs. Furthermore, the expression of intercellular junction proteins, including vascular endothelial cadherin (VE-cadherin) and zona occluden-1 (ZO-1), was reduced significantly in HUVECs treated with carcinoma-derived exosomes. Proteomic analyses revealed that thrombospondin-1 (TSP1) was highly expressed in breast cancer cell MDA-MB-231-derived exosomes. Treating HUVECs with TSP1-enriched exosomes similarly promoted the transendothelial migration of malignant cells and decreased the expression of intercellular junction proteins. TSP1-down regulation abolished the effects of exosomes on HUVECs. The migration of breast cancer cells was markedly increased in a zebrafish in vivo model injected with TSP1-overexpressing breast cancer cells. Taken together, these results suggest that carcinoma-derived exosomal TSP1 facilitated the transendothelial migration of breast cancer cells via disrupting the intercellular integrity of endothelial cells.
Collapse
Affiliation(s)
- Junyu Cen
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (J.C.); (L.F.); (H.K.); (L.B.)
| | - Lingyun Feng
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (J.C.); (L.F.); (H.K.); (L.B.)
| | - Huichuan Ke
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (J.C.); (L.F.); (H.K.); (L.B.)
| | - Lifeng Bao
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (J.C.); (L.F.); (H.K.); (L.B.)
| | - Lin Z. Li
- Department of Radiology and Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Yoshimasa Tanaka
- Center for Medical Innovation, Nagasaki University, 1-7-1, Sakamoto, Nagasaki 852-8588, Japan;
| | - Jun Weng
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (J.C.); (L.F.); (H.K.); (L.B.)
- Correspondence: (J.W.); (L.S.); Tel.: +86-2787792072 (J.W. & L.S.)
| | - Li Su
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (J.C.); (L.F.); (H.K.); (L.B.)
- Research Institute of Huazhong University of Science and Technology in Shenzhen, Shenzhen 518063, China
- Correspondence: (J.W.); (L.S.); Tel.: +86-2787792072 (J.W. & L.S.)
| |
Collapse
|
159
|
Hiepen C, Jatzlau J, Hildebrandt S, Kampfrath B, Goktas M, Murgai A, Cuellar Camacho JL, Haag R, Ruppert C, Sengle G, Cavalcanti-Adam EA, Blank KG, Knaus P. BMPR2 acts as a gatekeeper to protect endothelial cells from increased TGFβ responses and altered cell mechanics. PLoS Biol 2019; 17:e3000557. [PMID: 31826007 PMCID: PMC6927666 DOI: 10.1371/journal.pbio.3000557] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 12/23/2019] [Accepted: 11/14/2019] [Indexed: 12/12/2022] Open
Abstract
Balanced transforming growth factor-beta (TGFβ)/bone morphogenetic protein (BMP)-signaling is essential for tissue formation and homeostasis. While gain in TGFβ signaling is often found in diseases, the underlying cellular mechanisms remain poorly defined. Here we show that the receptor BMP type 2 (BMPR2) serves as a central gatekeeper of this balance, highlighted by its deregulation in diseases such as pulmonary arterial hypertension (PAH). We show that BMPR2 deficiency in endothelial cells (ECs) does not abolish pan-BMP-SMAD1/5 responses but instead favors the formation of mixed-heteromeric receptor complexes comprising BMPR1/TGFβR1/TGFβR2 that enable enhanced cellular responses toward TGFβ. These include canonical TGFβ-SMAD2/3 and lateral TGFβ-SMAD1/5 signaling as well as formation of mixed SMAD complexes. Moreover, BMPR2-deficient cells express genes indicative of altered biophysical properties, including up-regulation of extracellular matrix (ECM) proteins such as fibrillin-1 (FBN1) and of integrins. As such, we identified accumulation of ectopic FBN1 fibers remodeled with fibronectin (FN) in junctions of BMPR2-deficient ECs. Ectopic FBN1 deposits were also found in proximity to contractile intimal cells in pulmonary artery lesions of BMPR2-deficient heritable PAH (HPAH) patients. In BMPR2-deficient cells, we show that ectopic FBN1 is accompanied by active β1-integrin highly abundant in integrin-linked kinase (ILK) mechano-complexes at cell junctions. Increased integrin-dependent adhesion, spreading, and actomyosin-dependent contractility facilitates the retrieval of active TGFβ from its latent fibrillin-bound depots. We propose that loss of BMPR2 favors endothelial-to-mesenchymal transition (EndMT) allowing cells of myo-fibroblastic character to create a vicious feed-forward process leading to hyperactivated TGFβ signaling. In summary, our findings highlight a crucial role for BMPR2 as a gatekeeper of endothelial homeostasis protecting cells from increased TGFβ responses and integrin-mediated mechano-transduction.
Collapse
Affiliation(s)
- Christian Hiepen
- Freie Universität Berlin, Institute for Chemistry and Biochemistry, Berlin, Germany
| | - Jerome Jatzlau
- Freie Universität Berlin, Institute for Chemistry and Biochemistry, Berlin, Germany
- Berlin-Brandenburg School for Regenerative Therapies, Charité Universitätsmedizin Berlin, Germany
| | - Susanne Hildebrandt
- Freie Universität Berlin, Institute for Chemistry and Biochemistry, Berlin, Germany
- Berlin-Brandenburg School for Regenerative Therapies, Charité Universitätsmedizin Berlin, Germany
| | - Branka Kampfrath
- Freie Universität Berlin, Institute for Chemistry and Biochemistry, Berlin, Germany
| | - Melis Goktas
- Max Planck Institute of Colloids and Interfaces, Mechano(bio)chemistry, Potsdam, Germany
| | - Arunima Murgai
- Freie Universität Berlin, Institute for Chemistry and Biochemistry, Berlin, Germany
- Berlin-Brandenburg School for Regenerative Therapies, Charité Universitätsmedizin Berlin, Germany
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | | | - Rainer Haag
- Freie Universität Berlin, Institute for Chemistry and Biochemistry, Berlin, Germany
| | - Clemens Ruppert
- Universities of Giessen and Marburg Lung Center (UGMLC), Medical Clinic II, Justus Liebig University, Giessen, Germany
| | - Gerhard Sengle
- University of Cologne, Center for Biochemistry, Medical Faculty, Center for Molecular Medicine Cologne (CMMC), Cologne, Germany
| | | | - Kerstin G. Blank
- Max Planck Institute of Colloids and Interfaces, Mechano(bio)chemistry, Potsdam, Germany
| | - Petra Knaus
- Freie Universität Berlin, Institute for Chemistry and Biochemistry, Berlin, Germany
| |
Collapse
|
160
|
Meningitic Escherichia coli Induction of ANGPTL4 in Brain Microvascular Endothelial Cells Contributes to Blood-Brain Barrier Disruption via ARHGAP5/RhoA/MYL5 Signaling Cascade. Pathogens 2019; 8:pathogens8040254. [PMID: 31766605 PMCID: PMC6963727 DOI: 10.3390/pathogens8040254] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 12/18/2022] Open
Abstract
Bacterial meningitis is currently recognized as one of the most important life-threatening infections of the central nervous system (CNS) with high morbidity and mortality, despite the advancements in antimicrobial treatment. The disruption of blood–brain barrier (BBB) induced by meningitis bacteria is crucial for the development of bacterial meningitis. However, the complete mechanisms involving in the BBB disruption remain to be elucidated. Here, we found meningitic Escherichia coli induction of angiopoietin-like 4 (ANGPTL4) in brain microvascular endothelial cells (BMECs) contributes to BBB disruption via ARHGAP5/RhoA/MYL5 signaling cascade, by the demonstration that ANGPTL4 was significantly upregulated in meningitis E. coli infection of BMECs as well as mice, and treatment of the recombinant ANGPTL4 protein led to an increased permeability of the BBB in vitro and in vivo. Moreover, we found that ANGPTL4 did not affect the expression of tight junction proteins involved in BBB disruption, but it increased the expression of MYL5, which was found to have a negative role on the regulation of barrier function during meningitic E. coli infection, through the activation of RhoA signaling pathway. To our knowledge, this is the first report demonstrating the disruption of BBB induced by ANGPTL4 through the ARHGAP5/RhoA/MYL5 pathway, which largely supports the involvement of ANGPTL4 during meningitic E. coli invasion and further expands the theoretical basis for the mechanism of bacterial meningitis.
Collapse
|
161
|
Adamts18 deficiency in zebrafish embryo causes defective trunk angiogenesis and caudal vein plexus formation. Biochem Biophys Res Commun 2019; 521:907-913. [PMID: 31711643 DOI: 10.1016/j.bbrc.2019.10.202] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 10/31/2019] [Indexed: 01/05/2023]
Abstract
ADAMTS (A Disintegrin and Metalloproteinase with Thrombospondin type I motifs) enzymes play an important role in various morphogenesis processes. To determine the functions of Adamts18 in the early stages of organogenesis, we created Adamts18 deficient zebrafish using morpholino antisense oligonucleotides (MO) to generate exon 3 skipped adamts18 mRNA transcripts. Results showed that Adamts18 deficiency in zebrafish embryos caused developmental defects, including expanded brain ventricle and hindbrain edema, eye defects, and accumulation of blood in the caudal vein. Adamts18 deficiency also led to impaired trunk angiogenesis and formation of the caudal vein plexus (CVP). Consequently, Adamts18 deficient zebrafish embryos exhibited incomplete formation of intersegment vessels (ISVs), disruption of the honeycomb structure of CVP, and reduced CVP area and loop number. Furthermore, Adamts18 deficiency resulted in impaired blood circulation in major trunk, caudal vein (CV), and common cardinal vein (CCV). These aberrant vascular phenotypes in mutant zebrafish embryos were shown to be associated with a decreased expression of multiple angiogenesis-related signaling genes, including slit/robo, dll4/Notch, cox2, and fgfr. These findings indicate the critical role of Adamts18 in the early stages of vascular network development.
Collapse
|
162
|
Abstract
The endothelium physically separates blood from surrounding tissue and yet allows for the regulated passage of nutrients, waste, and leukocytes into and out of the circulation. Trans-endothelium flux occurs across endothelial cells (transcellular) and between endothelial cells (paracellular). Paracellular endothelial barrier function depends on the regulation of cell-cell junctions. Interestingly, a functional relationship between cell-cell junctions and cell-matrix adhesions has long been appreciated but the molecular mechanisms underpinning this relationship are not fully understood. Here we review the evidence that supports the notion that cell-matrix interactions contribute to the regulation of cell-cell junctions, focusing primarily on the important adherens junction protein VE-cadherin. In particular, we will discuss recent insights gained into how integrin signaling impacts VE-cadherin stability in adherens junctions and endothelial barrier function.
Collapse
Affiliation(s)
- Fadi E Pulous
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center (FEP, BGP) and Cancer Biology Graduate Program (FEP), Emory University School of Medicine, Atlanta, GA, USA
| | - Brian G Petrich
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center (FEP, BGP) and Cancer Biology Graduate Program (FEP), Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
163
|
Kim D, Eom S, Park SM, Hong H, Kim DS. A collagen gel-coated, aligned nanofiber membrane for enhanced endothelial barrier function. Sci Rep 2019; 9:14915. [PMID: 31624315 PMCID: PMC6797789 DOI: 10.1038/s41598-019-51560-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 10/02/2019] [Indexed: 12/16/2022] Open
Abstract
Herein, a collagen gel-coated and aligned nanofiber membrane named Col-ANM is developed, which remarkably improves endothelial barrier function by providing biochemical and topographical cues simultaneously. Col-ANM is fabricated by collagen gel coating process on an aligned polycaprolactone (PCL) nanofiber membrane, which is obtained by a simple electrospinning process adopting a parallel electrode collector. Human umbilical vein endothelial cells (HUVECs) cultured on Col-ANM exhibit remarkably enhanced endothelial barrier function with high expression levels of intercellular junction proteins of ZO-1 and VE-cadherin, a high TEER, and a cellular permeability compared with the artificial porous membranes in commercial cell culture well inserts. The enhanced endothelial barrier function is conjectured to be attributed to the synergistic effects of topographical and biochemical cues provided by the aligned PCL nanofibers and collagen gel in the Col-ANM, respectively. Finally, the reactive oxygen species is applied to the HUVEC monolayer formed on the Col-ANM to destroy the tight junctions between HUVECs. The destruction of the tight junctions is demonstrated by the decreased TEER value over time. Results indicate the potential of Col-ANM in modeling endothelial barrier dysfunction-related diseases.
Collapse
Affiliation(s)
- Dohui Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Pohang, Gyeongbuk, 37673, South Korea
| | - Seongsu Eom
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Pohang, Gyeongbuk, 37673, South Korea
| | - Sang Min Park
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Pohang, Gyeongbuk, 37673, South Korea
- Department of Mechanical Engineering, Pusan National University, 2 Busandaehak-ro 63beon-gil, Busan, 46241, South Korea
| | - Hyeonjun Hong
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Pohang, Gyeongbuk, 37673, South Korea
| | - Dong Sung Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Pohang, Gyeongbuk, 37673, South Korea.
| |
Collapse
|
164
|
Force and Collective Epithelial Activities. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019. [PMID: 31612452 DOI: 10.1007/978-3-030-17593-1_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2023]
Abstract
Cells apply forces to their surroundings to perform basic biological activities, including division, adhesion, and migration. Similarly, cell populations in epithelial tissues coordinate forces in physiological processes of morphogenesis and repair. These activities are highly regulated to yield the correct development and function of the body. The modification of this order is at the onset of pathological events and malfunctions. Mechanical forces and their translation into biological signals are the focus of an emerging field of research, shaping as a central discipline in the study of life and gathering knowledge at the interface of engineering, physics, biology and medicine. Novel engineering methods are needed to complement the classic instruments developed by molecular biology, physics and medicine. These should enable the measurement of forces at the cellular and multicellular level, and at a temporal and spatial resolution which is fully compatible with the ranges experienced by cells in vivo.
Collapse
|
165
|
Lin CY, Kolliopoulos C, Huang CH, Tenhunen J, Heldin CH, Chen YH, Heldin P. High levels of serum hyaluronan is an early predictor of dengue warning signs and perturbs vascular integrity. EBioMedicine 2019; 48:425-441. [PMID: 31526718 PMCID: PMC6838418 DOI: 10.1016/j.ebiom.2019.09.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 08/30/2019] [Accepted: 09/06/2019] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND A main pathological feature of severe dengue virus infection is endothelial hyper-permeability. The dengue virus nonstructural protein 1 (NS1) has been implicated in the vascular leakage that characterizes severe dengue virus infection, however, the molecular mechanisms involved are not known. METHODS A cohort of 250 dengue patients has been followed from the onset of symptoms to the recovery phase. Serum hyaluronan levels and several other clinical parameters were recorded. The effect of NS1 treatment of cultured fibroblasts and endothelial cells on the expressions of hyaluronan synthetic and catabolic enzymes and the hyaluronan receptor CD44, were determined, as have the effects on the formation of hyaluronan-rich matrices and endothelial permeability. FINDINGS Elevated serum hyaluronan levels (≥70 ng/ml) during early infection was found to be an independent predictor for occurrence of warning signs, and thus severe dengue fever. High circulating levels of the viral protein NS1, indicative of disease severity, correlated with high concentrations of serum hyaluronan. NS1 exposure decreased the expression of CD44 in differentiating endothelial cells impairing the integrity of vessel-like structures, and promoted the synthesis of hyaluronan in dermal fibroblasts and endothelial cells in synergy with dengue-induced pro-inflammatory mediators. Deposited hyaluronan-rich matrices around cells cultured in vitro recruited CD44-expressing macrophage-like cells, suggesting a mechanism for enhancement of inflammation. In cultured endothelial cells, perturbed hyaluronan-CD44 interactions enhanced endothelial permeability through modulation of VE-cadherin and cytoskeleton re-organization, and exacerbated the NS1-induced disruption of endothelial integrity. INTERPRETATION Pharmacological targeting of hyaluronan biosynthesis and/or its CD44-mediated signaling may limit the life-threatening vascular leakiness during moderate-to-severe dengue virus infection. FUND: This work was supported in part by grants from the Swedish Cancer Society (2018/337; 2016/445), the Swedish Research Council (2015-02757), the Ludwig Institute for Cancer Research, Uppsala University, the Ministry of Science and Technology, Taiwan (106-2314-B-037-088- and 106-2915-I-037-501-), Kaohsiung Medical University Hospital (KMUH103-3 T05) and Academy of Finland. The funders played no role in the design, interpretation or writing of the manuscript.
Collapse
Affiliation(s)
- Chun-Yu Lin
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, SE-751 23 Uppsala, Sweden; Division of Infectious Diseases, Department of Internal Medicine, Infection Control Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; School of Medicine, Graduate Institute of Medicine, Sepsis Research Center, Center of Dengue Fever Control and Research, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Surgical Sciences, Uppsala University, Akademiska Hospital, 751 85 Uppsala, Sweden
| | - Constantinos Kolliopoulos
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, SE-751 23 Uppsala, Sweden
| | - Chung-Hao Huang
- Division of Infectious Diseases, Department of Internal Medicine, Infection Control Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; School of Medicine, Graduate Institute of Medicine, Sepsis Research Center, Center of Dengue Fever Control and Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jyrki Tenhunen
- Department of Surgical Sciences, Uppsala University, Akademiska Hospital, 751 85 Uppsala, Sweden; Critical Care Medicine Research Group, Department of Intensive Care, Tampere University Hospital, Tampere, Finland
| | - Carl-Henrik Heldin
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, SE-751 23 Uppsala, Sweden
| | - Yen-Hsu Chen
- School of Medicine, Graduate Institute of Medicine, Sepsis Research Center, Center of Dengue Fever Control and Research, Kaohsiung Medical University, Kaohsiung, Taiwan; Deparent of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan; Department of Biological Science and Technology, College of Biological Science and Technology, National Chiao Tung University, HsinChu, Taiwan.
| | - Paraskevi Heldin
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, SE-751 23 Uppsala, Sweden.
| |
Collapse
|
166
|
Abstract
Endothelial cells and mesenchymal cells are two different cell types with distinct morphologies, phenotypes, functions, and gene profiles. Accumulating evidence, notably from lineage-tracing studies, indicates that the two cell types convert into each other during cardiovascular development and pathogenesis. During heart development, endothelial cells transdifferentiate into mesenchymal cells in the endocardial cushion through endothelial-to-mesenchymal transition (EndoMT), a process that is critical for the formation of cardiac valves. Studies have also reported that EndoMT contributes to the development of various cardiovascular diseases, including myocardial infarction, cardiac fibrosis, valve calcification, endocardial elastofibrosis, atherosclerosis, and pulmonary arterial hypertension. Conversely, cardiac fibroblasts can transdifferentiate into endothelial cells and contribute to neovascularization after cardiac injury. However, progress in genetic lineage tracing has challenged the role of EndoMT, or its reversed programme, in the development of cardiovascular diseases. In this Review, we discuss the caveats of using genetic lineage-tracing technology to investigate cell-lineage conversion; we also reassess the role of EndoMT in cardiovascular development and diseases and elaborate on the molecular signals that orchestrate EndoMT in pathophysiological processes. Understanding the role and mechanisms of EndoMT in diseases will unravel the therapeutic potential of targeting this process and will provide a new paradigm for the development of regenerative medicine to treat cardiovascular diseases.
Collapse
|
167
|
Tran TT, Mahajan A, Chiang VL, Goldberg SB, Nguyen DX, Jilaveanu LB, Kluger HM. Perilesional edema in brain metastases: potential causes and implications for treatment with immune therapy. J Immunother Cancer 2019; 7:200. [PMID: 31362777 PMCID: PMC6668163 DOI: 10.1186/s40425-019-0684-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 07/18/2019] [Indexed: 02/07/2023] Open
Abstract
Background Little is known about tumor-associated vasogenic edema in brain metastasis, yet it causes significant morbidity and mortality. Our purpose was to characterize edema in patients treated with anti-PD-1 and to study potential causes of vessel leakage in humans and in pre-clinical models. Methods We analyzed tumor and edema volume in 18 non-small cell lung (NSCLC) and 18 melanoma patients with untreated brain metastases treated with pembrolizumab on a phase II clinical trial. Melanoma brain metastases were stained with anti-CD34 to assess vessel density and its association with edema. We employed an in vitro model of the blood-brain barrier using short-term cultures from melanoma brain and extracranial metastases to determine tight junction resistance as a measure of vessel leakiness. Results Edema volumes are similar in NSCLC and melanoma brain metastases. While larger tumors tended to have more edema, the correlation was weak (R2 = 0.30). Patients responding to pembrolizumab had concurrent shrinkage of edema volume and vice versa (R2 = 0.81). Vessel density was independent of the degree of edema (R2 = 0.037). Melanoma brain metastasis cells in culture caused loss of tight junction resistance in an in vitro blood-brain barrier model system in some cases, whereas extracerebral cell cultures did not. Conclusions Edema itself should not preclude using anti-PD-1 with caution, as sensitive tumors have resultant decreases in edema, and anti-PD-1 itself does not exacerbate edema in sensitive tumors. Additional factors aside from tumor mass effect and vessel density cause perilesional edema. Melanoma cells themselves can cause decline in tight junction resistance in a system void of immune cells, suggesting they secrete factors that cause leakiness, which might be harnessed for pharmacologic targeting in patients with significant perilesional edema. Electronic supplementary material The online version of this article (10.1186/s40425-019-0684-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Thuy T Tran
- Yale School of Medicine and Yale Cancer Center, Yale University, New Haven, CT, USA
| | - Amit Mahajan
- Yale School of Medicine and Yale Department of Radiology & Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Veronica L Chiang
- Yale School of Medicine and Yale Cancer Center, Yale University, New Haven, CT, USA.,Yale School of Medicine and Yale Department of Neurosurgery, Yale University, New Haven, CT, USA
| | - Sarah B Goldberg
- Yale School of Medicine and Yale Cancer Center, Yale University, New Haven, CT, USA
| | - Don X Nguyen
- Yale School of Medicine and Yale Department of Pathology, Yale University, New Haven, CT, USA
| | - Lucia B Jilaveanu
- Yale School of Medicine and Yale Cancer Center, Yale University, New Haven, CT, USA
| | - Harriet M Kluger
- Yale School of Medicine and Yale Cancer Center, Yale University, New Haven, CT, USA.
| |
Collapse
|
168
|
Akla N, Viallard C, Popovic N, Lora Gil C, Sapieha P, Larrivée B. BMP9 (Bone Morphogenetic Protein-9)/Alk1 (Activin-Like Kinase Receptor Type I) Signaling Prevents Hyperglycemia-Induced Vascular Permeability. Arterioscler Thromb Vasc Biol 2019; 38:1821-1836. [PMID: 29880487 DOI: 10.1161/atvbaha.118.310733] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Objective- Diabetic macular edema is a major cause of visual impairment. It is caused by blood-retinal barrier breakdown that leads to vascular hyperpermeability. Current therapeutic approaches consist of retinal photocoagulation or targeting VEGF (vascular endothelial growth factor) to limit vascular leakage. However, long-term intravitreal use of anti-VEGFs is associated with potential safety issues, and the identification of alternative regulators of vascular permeability may provide safer therapeutic options. The vascular specific BMP (bone morphogenetic protein) receptor ALK1 (activin-like kinase receptor type I) and its circulating ligand BMP9 have been shown to be potent vascular quiescence factors, but their role in the context of microvascular permeability associated with hyperglycemia has not been evaluated. Approach and Results- We investigated Alk1 signaling in hyperglycemic endothelial cells and assessed whether BMP9/Alk1 signaling could modulate vascular permeability. We show that high glucose concentrations impair Alk1 signaling, both in cultured endothelial cells and in a streptozotocin model of mouse diabetes mellitus. We observed that Alk1 signaling participates in the maintenance of vascular barrier function, as Alk1 haploinsufficiency worsens the vascular leakage observed in diabetic mice. Conversely, sustained delivery of BMP9 by adenoviral vectors significantly decreased the loss of retinal barrier function in diabetic mice. Mechanistically, we demonstrate that Alk1 signaling prevents VEGF-induced phosphorylation of VE-cadherin and induces the expression of occludin, thus strengthening vascular barrier functions. Conclusions- From these data, we suggest that by preventing retinal vascular permeability, BMP9 could serve as a novel therapeutic agent for diabetic macular edema.
Collapse
Affiliation(s)
- Naoufal Akla
- From the Department of Biochemistry (N.A., P.S.).,University of Montreal, Quebec, Canada; and Maisonneuve-Rosemont Hospital Research Center, Montreal, Quebec, Canada (N.A., C.V., N.P., C.L.G., P.S., B.L.)
| | - Claire Viallard
- Department of Molecular Biology (C.V., B.L.).,University of Montreal, Quebec, Canada; and Maisonneuve-Rosemont Hospital Research Center, Montreal, Quebec, Canada (N.A., C.V., N.P., C.L.G., P.S., B.L.)
| | - Natalija Popovic
- Department of Biomedical Sciences (N.P., C.L.G., B.L.).,University of Montreal, Quebec, Canada; and Maisonneuve-Rosemont Hospital Research Center, Montreal, Quebec, Canada (N.A., C.V., N.P., C.L.G., P.S., B.L.)
| | - Cindy Lora Gil
- Department of Biomedical Sciences (N.P., C.L.G., B.L.).,University of Montreal, Quebec, Canada; and Maisonneuve-Rosemont Hospital Research Center, Montreal, Quebec, Canada (N.A., C.V., N.P., C.L.G., P.S., B.L.)
| | - Przemyslaw Sapieha
- From the Department of Biochemistry (N.A., P.S.).,Department of Ophthalmology (P.S., B.L.).,University of Montreal, Quebec, Canada; and Maisonneuve-Rosemont Hospital Research Center, Montreal, Quebec, Canada (N.A., C.V., N.P., C.L.G., P.S., B.L.)
| | - Bruno Larrivée
- Department of Molecular Biology (C.V., B.L.).,Department of Biomedical Sciences (N.P., C.L.G., B.L.).,Department of Ophthalmology (P.S., B.L.).,University of Montreal, Quebec, Canada; and Maisonneuve-Rosemont Hospital Research Center, Montreal, Quebec, Canada (N.A., C.V., N.P., C.L.G., P.S., B.L.)
| |
Collapse
|
169
|
Harari E, Guo L, Smith SL, Paek KH, Fernandez R, Sakamoto A, Mori H, Kutyna MD, Habib A, Torii S, Cornelissen A, Jinnouchi H, Gupta A, Kolodgie FD, Virmani R, Finn AV. Direct Targeting of the mTOR (Mammalian Target of Rapamycin) Kinase Improves Endothelial Permeability in Drug-Eluting Stents-Brief Report. Arterioscler Thromb Vasc Biol 2019; 38:2217-2224. [PMID: 30026269 DOI: 10.1161/atvbaha.118.311321] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Objective- Drug-eluting stents eluting canonical mTOR (mammalian target of rapamycin) inhibitors are widely used to treat coronary artery disease but accelerate the development of atherosclerosis within the stent (neoatherosclerosis)-a leading cause of late stent failure. We recently showed that canonical mTOR inhibitors bind FKBP12.6 (12.6-kDa FK506-binding protein 12), displace it from calcium release channels, resulting in activation of PKCα (protein kinase Cα) and dissociation of p-120-catenin (p120) from VE-CAD (vascular endothelial cadherin; promoting endothelial barrier dysfunction [EBD]). However, the relevance of these findings to drug-eluting stents remains unknown. Newer generation direct mTOR kinase inhibitors do not bind FKBP12.6 and offer the potential of improving endothelial barrier function while maintaining antirestenotic efficacy, but their actual effects are unknown. We examined the effects of 2 different pharmacological targeting strategies-canonical mTOR inhibitor everolimus and mTOR kinase inhibitors Torin-2-on EBD after stenting. Approach and Results- Using the rabbit model of stenting and a combination of Evans blue dye, confocal and scanning electron microscopy studies, everolimus-eluting stents resulted in long-term EBD compared with bare metal stents. EBD was mitigated by using stents that eluted mTOR kinase inhibitors (Torin-2-eluting stent). At 60 days after stent placement, everolimus-eluting stents demonstrated large areas of Evans blue dye staining and evidence of p120 VE-CAD dissociation consistent with EBD. These findings were absent in bare metal stents and significantly attenuated in Torin-2-eluting stent. As proof of concept of the role of EBD in neoatherosclerosis, 100 days after stenting, animals were fed an enriched cholesterol diet for an additional 30 days. Everolimus-eluting stents demonstrated significantly more macrophage infiltration (consistent with neoatherosclerosis) compared with both bare metal stents and Torin-2-eluting stent. Conclusions- Our results pinpoint interactions between FKBP12.6 and canonical mTOR inhibitors as a major cause of vascular permeability and neoatherosclerosis, which can be overcome by using mTOR kinase inhibitors. Our study suggests further refinement of molecular targeting of the mTOR complex may be a promising strategy (Graphic Abstract).
Collapse
Affiliation(s)
- Emanuel Harari
- From the CVPath Institute, Gaithersburg, MD (E.H., L.G., S.L.S., K.H.P., R.F., A.S., H.M., M.D.K., S.T., A.C., H.J., F.D.K., R.V., A.V.F.).,Division of Cardiology, Rabin Medical Center, Petah-Tikva, Israel (E.H.).,Tel Aviv University, Israel (E.H.)
| | - Liang Guo
- From the CVPath Institute, Gaithersburg, MD (E.H., L.G., S.L.S., K.H.P., R.F., A.S., H.M., M.D.K., S.T., A.C., H.J., F.D.K., R.V., A.V.F.)
| | - Samantha L Smith
- From the CVPath Institute, Gaithersburg, MD (E.H., L.G., S.L.S., K.H.P., R.F., A.S., H.M., M.D.K., S.T., A.C., H.J., F.D.K., R.V., A.V.F.)
| | - Ka Hyun Paek
- From the CVPath Institute, Gaithersburg, MD (E.H., L.G., S.L.S., K.H.P., R.F., A.S., H.M., M.D.K., S.T., A.C., H.J., F.D.K., R.V., A.V.F.)
| | - Raquel Fernandez
- From the CVPath Institute, Gaithersburg, MD (E.H., L.G., S.L.S., K.H.P., R.F., A.S., H.M., M.D.K., S.T., A.C., H.J., F.D.K., R.V., A.V.F.)
| | - Atsushi Sakamoto
- From the CVPath Institute, Gaithersburg, MD (E.H., L.G., S.L.S., K.H.P., R.F., A.S., H.M., M.D.K., S.T., A.C., H.J., F.D.K., R.V., A.V.F.)
| | - Hiroyoshi Mori
- From the CVPath Institute, Gaithersburg, MD (E.H., L.G., S.L.S., K.H.P., R.F., A.S., H.M., M.D.K., S.T., A.C., H.J., F.D.K., R.V., A.V.F.)
| | - Matthew D Kutyna
- From the CVPath Institute, Gaithersburg, MD (E.H., L.G., S.L.S., K.H.P., R.F., A.S., H.M., M.D.K., S.T., A.C., H.J., F.D.K., R.V., A.V.F.)
| | - Anwer Habib
- Parkview Heart Institute, Fort Wayne, IN (A.H.)
| | - Sho Torii
- From the CVPath Institute, Gaithersburg, MD (E.H., L.G., S.L.S., K.H.P., R.F., A.S., H.M., M.D.K., S.T., A.C., H.J., F.D.K., R.V., A.V.F.)
| | - Anne Cornelissen
- From the CVPath Institute, Gaithersburg, MD (E.H., L.G., S.L.S., K.H.P., R.F., A.S., H.M., M.D.K., S.T., A.C., H.J., F.D.K., R.V., A.V.F.)
| | - Hiroyuki Jinnouchi
- From the CVPath Institute, Gaithersburg, MD (E.H., L.G., S.L.S., K.H.P., R.F., A.S., H.M., M.D.K., S.T., A.C., H.J., F.D.K., R.V., A.V.F.)
| | - Anuj Gupta
- Department of Medicine, University of Maryland School of Medicine, Baltimore (A.G., A.V.F.)
| | - Frank D Kolodgie
- From the CVPath Institute, Gaithersburg, MD (E.H., L.G., S.L.S., K.H.P., R.F., A.S., H.M., M.D.K., S.T., A.C., H.J., F.D.K., R.V., A.V.F.)
| | - Renu Virmani
- From the CVPath Institute, Gaithersburg, MD (E.H., L.G., S.L.S., K.H.P., R.F., A.S., H.M., M.D.K., S.T., A.C., H.J., F.D.K., R.V., A.V.F.)
| | - Aloke V Finn
- From the CVPath Institute, Gaithersburg, MD (E.H., L.G., S.L.S., K.H.P., R.F., A.S., H.M., M.D.K., S.T., A.C., H.J., F.D.K., R.V., A.V.F.).,Department of Medicine, University of Maryland School of Medicine, Baltimore (A.G., A.V.F.)
| |
Collapse
|
170
|
Ni J, Lin M, Jin Y, Li J, Guo Y, Zhou J, Hong G, Zhao G, Lu Z. Gas6 Attenuates Sepsis-Induced Tight Junction Injury and Vascular Endothelial Hyperpermeability via the Axl/NF-κB Signaling Pathway. Front Pharmacol 2019; 10:662. [PMID: 31263416 PMCID: PMC6585310 DOI: 10.3389/fphar.2019.00662] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 05/23/2019] [Indexed: 12/20/2022] Open
Abstract
Vascular endothelial functional dysregulation and barrier disruption are involved the initiation and development of sepsis. Growth arrest-specific protein 6 (Gas6), one of the endogenous ligands of TAM receptors (Tyro3, Axl, and Mertk), is confirmed to have beneficial functions in hemostasis, inflammation, and cancer growth. Here, we demonstrated the protective effects of Gas6 on multi-organ dysfunction syndrome (MODS) in sepsis and the underlying mechanisms. We investigated Gas6-ameliorated MODS by inhibiting vascular endothelial hyperpermeability in a mouse model of sepsis. Additionally, in vitro, under lipopolysaccharide (LPS) stimulation in vascular endothelial cells, Gas6 attenuated vascular endothelial hyperpermeability by reinforcing the tight junction proteins occludin, zonula occludens-1 (ZO-1), and claudin5. Furthermore, Gas6 substantially suppressed NF-κB p65 activation. In addition, blocking the Gas6 receptor, Axl, partially reduced the protective effect of Gas6 on the vascular endothelial barrier and diminished the inhibitive effect of Gas6 on NF-κB p65 activation. Taken together, this study suggests that Gas6 has a protective effect on MODS in sepsis by inhibiting the vascular endothelial hyperpermeability and alteration of tight junction and that the Axl/NF-κB signaling pathway underlies these effects.
Collapse
Affiliation(s)
- Jingjing Ni
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Miaotong Lin
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yangjie Jin
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jiajia Li
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yayong Guo
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jindong Zhou
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Guangliang Hong
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Guangju Zhao
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhongqiu Lu
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
171
|
Cho HJ, Lee JG, Kim JH, Kim SY, Huh YH, Kim HJ, Lee KS, Yu K, Lee JS. Vascular defects of DYRK1A knockouts are ameliorated by modulating calcium signaling in zebrafish. Dis Model Mech 2019; 12:dmm.037044. [PMID: 31043432 PMCID: PMC6550036 DOI: 10.1242/dmm.037044] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 04/11/2019] [Indexed: 01/05/2023] Open
Abstract
DYRK1A is a major causative gene in Down syndrome (DS). Reduced incidence of solid tumors such as neuroblastoma in DS patients and increased vascular anomalies in DS fetuses suggest a potential role of DYRK1A in angiogenic processes, but in vivo evidence is still scarce. Here, we used zebrafish dyrk1aa mutant embryos to understand DYRK1A function in cerebral vasculature formation. Zebrafish dyrk1aa mutants exhibited cerebral hemorrhage and defects in angiogenesis of central arteries in the developing hindbrain. Such phenotypes were rescued by wild-type dyrk1aa mRNA, but not by a kinase-dead form, indicating the importance of DYRK1A kinase activity. Chemical screening using a bioactive small molecule library identified a calcium chelator, EGTA, as one of the hits that most robustly rescued the hemorrhage. Vascular defects of mutants were also rescued by independent modulation of calcium signaling by FK506. Furthermore, the transcriptomic analyses supported the alterations of calcium signaling networks in dyrk1aa mutants. Together, our results suggest that DYRK1A plays an essential role in angiogenesis and in maintenance of the developing cerebral vasculature via regulation of calcium signaling, which may have therapeutic potential for DYRK1A-related vascular diseases. Summary: The roles of DYRK1A in angiogenesis and maintenance of the developing cerebral vasculature mediated by calcium signaling were revealed using zebrafish dyrk1aa knockout mutants.
Collapse
Affiliation(s)
- Hyun-Ju Cho
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.,KRIBB School, University of Science and Technology, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.,Dementia DTC R&D Convergence Program, Korea Institute of Science and Technology, Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Jae-Geun Lee
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.,KRIBB School, University of Science and Technology, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jong-Hwan Kim
- KRIBB School, University of Science and Technology, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.,Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Seon-Young Kim
- KRIBB School, University of Science and Technology, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.,Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Yang Hoon Huh
- Electron Microscopy Research Center, Korea Basic Science Institute, 162 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju-si, Chungcheongbuk-do, 28119, Republic of Korea
| | - Hyo-Jeong Kim
- Electron Microscopy Research Center, Korea Basic Science Institute, 162 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju-si, Chungcheongbuk-do, 28119, Republic of Korea
| | - Kyu-Sun Lee
- KRIBB School, University of Science and Technology, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.,Hazards Monitoring BNT Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Kweon Yu
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.,KRIBB School, University of Science and Technology, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.,Dementia DTC R&D Convergence Program, Korea Institute of Science and Technology, Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Jeong-Soo Lee
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea .,Dementia DTC R&D Convergence Program, Korea Institute of Science and Technology, Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea
| |
Collapse
|
172
|
Yang RC, Qu XY, Xiao SY, Li L, Xu BJ, Fu JY, Lv YJ, Amjad N, Tan C, Kim KS, Chen HC, Wang XR. Meningitic Escherichia coli-induced upregulation of PDGF-B and ICAM-1 aggravates blood-brain barrier disruption and neuroinflammatory response. J Neuroinflammation 2019; 16:101. [PMID: 31092253 PMCID: PMC6521501 DOI: 10.1186/s12974-019-1497-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 04/30/2019] [Indexed: 01/13/2023] Open
Abstract
Background Blood-brain barrier (BBB) disruption and neuroinflammation are considered key mechanisms of pathogenic Escherichia coli invasion of the brain. However, the specific molecules involved in meningitic E. coli-induced BBB breakdown and neuroinflammatory response remain unclear. Our previous RNA-sequencing data from human brain microvascular endothelial cells (hBMECs) revealed two important host factors: platelet-derived growth factor-B (PDGF-B) and intercellular adhesion molecule-1 (ICAM-1), which were significantly upregulated in hBMECs after meningitic E. coli infection. Whether and how PDGF-B and ICAM-1 contribute to the development of E. coli meningitis are still unclear. Methods The western blot, real-time PCR, enzyme-linked immunosorbent assay, immunohistochemistry, and immunofluorescence were applied to verify the significant induction of PDGF-B and ICAM-1 by meningitic E. coli in vivo and in vitro. Evan’s blue assay and electric cell-substrate impedance sensing assay were combined to identify the effects of PDGF-B on BBB permeability. The CRISPR/Cas9 technology, cell-cell adhesion assay, and electrochemiluminescence assay were used to investigate the role of ICAM-1 in neuroinflammation subversion. Results We verified the significant induction of PDGF-B and ICAM-1 by meningitic E. coli in mouse as well as monolayer hBMECs models. Functionally, we showed that the increase of PDGF-B may directly enhance the BBB permeability by decreasing the expression of tight junction proteins, and the upregulation of ICAM-1 contributed to neutrophils or monocytes recruitment as well as neuroinflammation subversion in response to meningitic E. coli infection. Conclusions Our findings demonstrated the roles of PDGF-B and ICAM-1 in mediating bacterial-induced BBB damage as well as neuroinflammation, providing new concepts and potential targets for future prevention and treatment of bacterial meningitis.
Collapse
Affiliation(s)
- Rui-Cheng Yang
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Xin-Yi Qu
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Si-Yu Xiao
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Liang Li
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Bo-Jie Xu
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Ji-Yang Fu
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Yu-Jin Lv
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, 450046, Henan, China
| | - Nouman Amjad
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Chen Tan
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Kwang Sik Kim
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Huan-Chun Chen
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Xiang-Ru Wang
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, Hubei, China. .,State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| |
Collapse
|
173
|
Wu MA, Tsvirkun D, Bureau L, Boccon-Gibod I, Inglebert M, Duperray A, Bouillet L, Misbah C, Cicardi M. Paroxysmal Permeability Disorders: Development of a Microfluidic Device to Assess Endothelial Barrier Function. Front Med (Lausanne) 2019; 6:89. [PMID: 31069229 PMCID: PMC6491734 DOI: 10.3389/fmed.2019.00089] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 04/09/2019] [Indexed: 11/28/2022] Open
Abstract
Background: Paroxysmal Permeability Disorders (PPDs) are pathological conditions caused by periodic short lasting increase of endothelial permeability, in the absence of inflammatory, degenerative, ischemic vascular injury. PPDs include primary angioedema, idiopathic systemic capillary leak syndrome and some rare forms of localized retroperitoneal-mediastinal edema. Aim: to validate a microfluidic device to study endothelial permeability in flow conditions. Materials and Methods: we designed a microchannel network (the smallest channel is 30μm square section). Human Umbilical Vein Endothelial Cells (HUVECs) were cultured under constant shear stress in the networks. Endothelial permeability assessment was based on interaction of biotinylated fibronectin used as a matrix for HUVECs and FITC-conjugated avidin. The increase in endothelial permeability was identified as changes in fluorescence intensity detected by confocal fluorescent microscopy. Results: The microchannels were constantly perfused with a steady flow of culture medium, ensuring a physiologically relevant level of shear stress at the wall of ~0.2 Pa. Our preliminary results demonstrated that circulation of culture medium or plasma from healthy volunteers was associated with low fluorescence of fibronectin matrix. When bradykinin diluted in culture medium was perfused, an increase in average fluorescence was detected. Conclusion: Our microvasculature model is suitable to study endothelial functions in physiological flow conditions and in the presence of factors like bradykinin known as mediator of several PPDs. Therefore, it can be a promising tool to better understand the mechanisms underlying disorders of endothelial permeability.
Collapse
Affiliation(s)
- Maddalena Alessandra Wu
- Department of Biomedical and Clinical Sciences, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital, University of Milan, Milan, Italy
| | - Daria Tsvirkun
- Univ. Grenoble Alpes, LIPHY, Grenoble, France.,CNRS, LIPHY, Grenoble, France.,Belozersky Institute of Physico-chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Lionel Bureau
- Univ. Grenoble Alpes, LIPHY, Grenoble, France.,CNRS, LIPHY, Grenoble, France
| | - Isabelle Boccon-Gibod
- Department of Internal Medicine, Centre Hospitalier Universitaire de Grenoble, Grenoble, France
| | | | - Alain Duperray
- Univ. Grenoble Alpes, IAB, Grenoble, France.,INSERM, IAB, Grenoble, France
| | - Laurence Bouillet
- Department of Internal Medicine, Centre Hospitalier Universitaire de Grenoble, Grenoble, France
| | - Chaouqi Misbah
- Univ. Grenoble Alpes, LIPHY, Grenoble, France.,CNRS, LIPHY, Grenoble, France
| | - Marco Cicardi
- IRCCS-Istituti Clinici Scientifici Maugeri, University of Milan, Milan, Italy
| |
Collapse
|
174
|
Hirose Y, Yamaguchi M, Goto K, Sumitomo T, Nakata M, Kawabata S. Competence-induced protein Ccs4 facilitates pneumococcal invasion into brain tissue and virulence in meningitis. Virulence 2019; 9:1576-1587. [PMID: 30251911 PMCID: PMC6177246 DOI: 10.1080/21505594.2018.1526530] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Streptococcus pneumoniae is a major pathogen that causes pneumonia, sepsis, and meningitis. The candidate combox site 4 (ccs4) gene has been reported to be a pneumococcal competence-induced gene. Such genes are involved in development of S. pneumoniae competence and virulence, though the functions of ccs4 remain unknown. In the present study, the role of Ccs4 in the pathogenesis of pneumococcal meningitis was examined. We initially constructed a ccs4 deletion mutant and complement strains, then examined their association with and invasion into human brain microvascular endothelial cells. Wild-type and Ccs4-complemented strains exhibited significantly higher rates of association and invasion as compared to the ccs4 mutant strain. Deletion of ccs4 did not change bacterial growth activity or expression of NanA and CbpA, known brain endothelial pneumococcal adhesins. Next, mice were infected either intravenously or intranasally with pneumococcal strains. In the intranasal infection model, survival rates were comparable between wild-type strain-infected and ccs4 mutant strain-infected mice, while the ccs4 mutant strain exhibited a lower level of virulence in the intravenous infection model. In addition, at 24 hours after intravenous infection, the bacterial burden in blood was comparable between the wild-type and ccs4 mutant strain-infected mice, whereas the wild-type strain-infected mice showed a significantly higher bacterial burden in the brain. These results suggest that Ccs4 contributes to pneumococcal invasion of host brain tissues and functions as a virulence factor.
Collapse
Affiliation(s)
- Yujiro Hirose
- a Department of Oral and Molecular Microbiology , Osaka University Graduate School of Dentistry , Suita , Osaka , Japan
| | - Masaya Yamaguchi
- a Department of Oral and Molecular Microbiology , Osaka University Graduate School of Dentistry , Suita , Osaka , Japan
| | - Kana Goto
- a Department of Oral and Molecular Microbiology , Osaka University Graduate School of Dentistry , Suita , Osaka , Japan
| | - Tomoko Sumitomo
- a Department of Oral and Molecular Microbiology , Osaka University Graduate School of Dentistry , Suita , Osaka , Japan
| | - Masanobu Nakata
- a Department of Oral and Molecular Microbiology , Osaka University Graduate School of Dentistry , Suita , Osaka , Japan
| | - Shigetada Kawabata
- a Department of Oral and Molecular Microbiology , Osaka University Graduate School of Dentistry , Suita , Osaka , Japan
| |
Collapse
|
175
|
Wang L, Chung J, Gill SE, Mehta S. Quantification of adherens junction disruption and contiguous paracellular protein leak in human lung endothelial cells under septic conditions. Microcirculation 2019; 26:e12528. [PMID: 30636088 DOI: 10.1111/micc.12528] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 12/12/2018] [Accepted: 01/04/2019] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Sepsis is associated with dysfunction of MVEC resulting in organ edema and inflammation. VE-cadherin, a component of MVEC adherens junctions, may be disrupted in sepsis. However, the direct connection between individual MVEC VE-cadherin disruption and increased paracellular permeability is uncertain. METHODS Human pulmonary MVEC were cultured on a biotin matrix and treated with cytomix, as a model of sepsis, vs PBS. MVEC permeability was assessed by trans-MVEC monolayer leak of Oregon green 488-conjugated avidin, which bound subcellular biotin to localize sites of paracellular leak. Leak was correlated with individual cell-specific MVEC surface VE-cadherin continuity by fluorescence microscopy. RESULTS Cytomix treatment reduced total MVEC VE-cadherin density, disrupted surface VE-cadherin continuity, was associated with intercellular gap formation, and enhanced paracellular avidin leak. Cytomix-induced MVEC paracellular avidin leak was strongly correlated temporally and was highly contiguous with focal MVEC surface VE-cadherin disruption. Total cellular VE-cadherin density was less strongly correlated with MVEC paracellular avidin leak and individual cell-specific focal surface VE-cadherin discontinuity. CONCLUSIONS These data support a mechanistic link between septic human lung MVEC VE-cadherin disruption and contiguous paracellular protein leak, and will permit more detailed assessment of individual cell-specific mechanisms of septic MVEC barrier dysfunction.
Collapse
Affiliation(s)
- Lefeng Wang
- Centre for Critical Illness Research, Lawson Health Research Institute, London, ON, Canada.,Division of Respirology, Western University, London, ON, Canada.,Department of Medicine, Western University, London, ON, Canada
| | - Justin Chung
- Department of Physiology and Pharmacology, Western University, London, ON, Canada
| | - Sean E Gill
- Centre for Critical Illness Research, Lawson Health Research Institute, London, ON, Canada.,Division of Respirology, Western University, London, ON, Canada.,Department of Medicine, Western University, London, ON, Canada.,Department of Physiology and Pharmacology, Western University, London, ON, Canada
| | - Sanjay Mehta
- Centre for Critical Illness Research, Lawson Health Research Institute, London, ON, Canada.,Division of Respirology, Western University, London, ON, Canada.,Department of Medicine, Western University, London, ON, Canada
| |
Collapse
|
176
|
Wang M, Wang Y, Xie T, Zhan P, Zou J, Nie X, Shao J, Zhuang M, Tan C, Tan J, Dai Y, Sun J, Li J, Li Y, Shi Q, Leng J, Wang X, Yao Y. Prostaglandin E 2/EP 2 receptor signalling pathway promotes diabetic retinopathy in a rat model of diabetes. Diabetologia 2019; 62:335-348. [PMID: 30411254 DOI: 10.1007/s00125-018-4755-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 09/20/2018] [Indexed: 12/14/2022]
Abstract
AIMS/HYPOTHESIS Diabetic retinopathy is a common microvascular complication of diabetes mellitus and is initiated by inflammation and apoptosis-associated retinal endothelial cell damage. Prostaglandin E2 (PGE2) has emerged as a critical regulator of these biological processes. We hypothesised that modulating PGE2 and its E-prostanoid receptor (EP2R) would prevent diabetes mellitus-induced inflammation and microvascular dysfunction. METHODS In a streptozotocin (STZ)-induced rat model of diabetes, rats received intravitreal injection of PGE2, butaprost (a PGE2/EP2R agonist) or AH6809 (an EP2R antagonist). Retinal histology, optical coherence tomography, ultrastructure of the retinal vascular and biochemical markers were assessed. RESULTS Intravitreal injection of PGE2 and butaprost significantly accelerated retinal vascular leakage, leucostasis and endothelial cell apoptosis in STZ-induced diabetic rats. This response was ameliorated in diabetic rats pre-treated with AH6809. In addition, pre-treatment of human retinal microvascular endothelial cells with AH6809 attenuated PGE2- and butaprost-induced activation of caspase 1, activation of the complex containing nucleotide-binding domain and leucine rich repeat containing family, pyrin domain containing 3 (NLRP3) and apoptosis-associated speck-like protein containing a C-terminal caspase-activation and recruitment domain (ASC), and activation of the EP2R-coupled cAMP/protein kinase A/cAMP response element-binding protein signalling pathway. CONCLUSIONS/INTERPRETATION The PGE2/EP2R signalling pathway is involved in STZ-induced diabetic retinopathy and could be considered as a potential target for diabetic retinopathy prevention and treatment.
Collapse
Affiliation(s)
- Man Wang
- Department of Ophthalmology, Wuxi People's Hospital Affiliated to Nanjing Medical University, 299 Qingyang Road, Wuxi, Jiangsu, People's Republic of China
| | - Yangningzhi Wang
- Department of Ophthalmology, Wuxi People's Hospital Affiliated to Nanjing Medical University, 299 Qingyang Road, Wuxi, Jiangsu, People's Republic of China
| | - Tianhua Xie
- Department of Ophthalmology, Wuxi People's Hospital Affiliated to Nanjing Medical University, 299 Qingyang Road, Wuxi, Jiangsu, People's Republic of China
| | - Pengfei Zhan
- Department of Ophthalmology, Wuxi People's Hospital Affiliated to Nanjing Medical University, 299 Qingyang Road, Wuxi, Jiangsu, People's Republic of China
| | - Jian Zou
- Center of Clinical Research, Wuxi People's Hospital Affiliated to Nanjing Medical University, 299 Qingyang Road, Wuxi, Jiangsu, People's Republic of China
| | - Xiaowei Nie
- Center of Clinical Research, Wuxi People's Hospital Affiliated to Nanjing Medical University, 299 Qingyang Road, Wuxi, Jiangsu, People's Republic of China
- Wuxi Institute of Translational Medicine, Wuxi, Jiangsu, People's Republic of China
| | - Jun Shao
- Department of Ophthalmology, Wuxi People's Hospital Affiliated to Nanjing Medical University, 299 Qingyang Road, Wuxi, Jiangsu, People's Republic of China
| | - Miao Zhuang
- Department of Ophthalmology, Wuxi People's Hospital Affiliated to Nanjing Medical University, 299 Qingyang Road, Wuxi, Jiangsu, People's Republic of China
| | - Chengye Tan
- Department of Ophthalmology, Wuxi People's Hospital Affiliated to Nanjing Medical University, 299 Qingyang Road, Wuxi, Jiangsu, People's Republic of China
| | - Jianxin Tan
- Center of Clinical Research, Wuxi People's Hospital Affiliated to Nanjing Medical University, 299 Qingyang Road, Wuxi, Jiangsu, People's Republic of China
| | - Youai Dai
- Center of Clinical Research, Wuxi People's Hospital Affiliated to Nanjing Medical University, 299 Qingyang Road, Wuxi, Jiangsu, People's Republic of China
| | - Jie Sun
- Center of Clinical Research, Wuxi People's Hospital Affiliated to Nanjing Medical University, 299 Qingyang Road, Wuxi, Jiangsu, People's Republic of China
| | - Jiantao Li
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Pathophysiology, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Yuehua Li
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Pathophysiology, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Qian Shi
- Yixing Eye Hospital, Wuxi, Jiangsu, People's Republic of China
| | - Jing Leng
- Cancer Center, Department of Pathology, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Xiaolu Wang
- Center of Clinical Research, Wuxi People's Hospital Affiliated to Nanjing Medical University, 299 Qingyang Road, Wuxi, Jiangsu, People's Republic of China.
- Wuxi Institute of Translational Medicine, Wuxi, Jiangsu, People's Republic of China.
| | - Yong Yao
- Department of Ophthalmology, Wuxi People's Hospital Affiliated to Nanjing Medical University, 299 Qingyang Road, Wuxi, Jiangsu, People's Republic of China.
| |
Collapse
|
177
|
Wu J, Yang J, Lu X, Jin C, Wu S, Zhang L, Hu X, Ma H, Cai Y. Lanthanum Chloride Impairs the Blood-Brain Barrier Integrity by Reduction of Junctional Proteins and Upregulation of MMP-9 in Rats. Biol Trace Elem Res 2019; 187:482-491. [PMID: 29876795 DOI: 10.1007/s12011-018-1402-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 05/29/2018] [Indexed: 12/30/2022]
Abstract
Lanthanum could cause cognitive impairment in children and rodent animals. The normal blood-brain barrier (BBB) integrity is essential for protecting the brain from systemic toxins and maintaining the homeostasis for proper neuronal function. BBB dysfunction has been implicated as a potential mechanism of heavy metal-induced neurotoxicity. The present study was aimed to investigate effects of lanthanum on BBB integrity and endothelial junctional complexes in the cerebral cortex of young rats. Animals were exposed to lanthanum chloride (LaCl3) through drinking water under 0, 0.25, 0.5, and 1.0% concentrations from postnatal day 0 until 30 days after weaning. LaCl3-exposure increased BBB permeability, caused ultrastructure changes in cerebral capillaries, and reduced protein expression of claudin-5, occludin, and VE-cadherin. Due to the critical role of matrix metalloproteinases (MMPs) in BBB integrity, we further examined alterations in MMPs activity and expression. Enhanced gelatinase activity and upregulated MMP-9 expression were observed after LaCl3-exposure, concurrently with decreased expression of endogenous inhibitor tissue inhibitors of metalloproteinase (TIMP)-1. Taken together, this study demonstrated that postnatal lanthanum exposure caused leakage of BBB in young rats, partially attributed to upregulation of MMP-9 and reduction of junctional proteins expression.
Collapse
Affiliation(s)
- Jie Wu
- Department of Toxicology, School of Public Health, China Medical University, #77 Puhe Road, Shenyang, 110122, People's Republic of China
- Department of Occupational and Environmental Health, School of Public Health, Jinzhou Medical University, #40 Section Three Songpo Road, Jinzhou, 121001, People's Republic of China
| | - Jinghua Yang
- Department of Toxicology, School of Public Health, China Medical University, #77 Puhe Road, Shenyang, 110122, People's Republic of China
| | - Xiaobo Lu
- Department of Toxicology, School of Public Health, China Medical University, #77 Puhe Road, Shenyang, 110122, People's Republic of China
| | - Cuihong Jin
- Department of Toxicology, School of Public Health, China Medical University, #77 Puhe Road, Shenyang, 110122, People's Republic of China
| | - Shengwen Wu
- Department of Toxicology, School of Public Health, China Medical University, #77 Puhe Road, Shenyang, 110122, People's Republic of China
| | - Lijin Zhang
- Department of Toxicology, School of Public Health, China Medical University, #77 Puhe Road, Shenyang, 110122, People's Republic of China
| | - Xiaoyu Hu
- Department of Toxicology, School of Public Health, China Medical University, #77 Puhe Road, Shenyang, 110122, People's Republic of China
| | - Honglin Ma
- Department of Occupational and Environmental Health, School of Public Health, Jinzhou Medical University, #40 Section Three Songpo Road, Jinzhou, 121001, People's Republic of China
| | - Yuan Cai
- Department of Toxicology, School of Public Health, China Medical University, #77 Puhe Road, Shenyang, 110122, People's Republic of China.
| |
Collapse
|
178
|
SENCR stabilizes vascular endothelial cell adherens junctions through interaction with CKAP4. Proc Natl Acad Sci U S A 2018; 116:546-555. [PMID: 30584103 DOI: 10.1073/pnas.1810729116] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
SENCR is a human-specific, vascular cell-enriched long-noncoding RNA (lncRNA) that regulates vascular smooth muscle cell and endothelial cell (EC) phenotypes. The underlying mechanisms of action of SENCR in these and other cell types is unknown. Here, levels of SENCR RNA are shown to be elevated in several differentiated human EC lineages subjected to laminar shear stress. Increases in SENCR RNA are also observed in the laminar shear stress region of the adult aorta of humanized SENCR-expressing mice, but not in disturbed shear stress regions. SENCR loss-of-function studies disclose perturbations in EC membrane integrity resulting in increased EC permeability. Biotinylated RNA pull-down and mass spectrometry establish an abundant SENCR-binding protein, cytoskeletal-associated protein 4 (CKAP4); this ribonucleoprotein complex was further confirmed in an RNA immunoprecipitation experiment using an antibody to CKAP4. Structure-function studies demonstrate a noncanonical RNA-binding domain in CKAP4 that binds SENCR Upon SENCR knockdown, increasing levels of CKAP4 protein are detected in the EC surface fraction. Furthermore, an interaction between CKAP4 and CDH5 is enhanced in SENCR-depleted EC. This heightened association appears to destabilize the CDH5/CTNND1 complex and augment CDH5 internalization, resulting in impaired adherens junctions. These findings support SENCR as a flow-responsive lncRNA that promotes EC adherens junction integrity through physical association with CKAP4, thereby stabilizing cell membrane-bound CDH5.
Collapse
|
179
|
Halasz K, Kelly SJ, Iqbal MT, Pathak Y, Sutariya V. Utilization of Apatinib-Loaded Nanoparticles for the Treatment of Ocular Neovascularization. Curr Drug Deliv 2018; 16:153-163. [DOI: 10.2174/1567201815666181017095708] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 10/03/2018] [Accepted: 10/09/2018] [Indexed: 12/12/2022]
Abstract
Background:
The current treatment of ocular neovascularization requires frequent intravitreal
injections of anti-vascular endothelial growth factor (VEGF) agents that cause severe side effects.
Objective:
The purpose of this study is to prepare and characterize a novel nanoscale delivery system of
apatinib for ocular neovascularization.
</P><P>
Methods: The optimized formulation showed a particle size of 135.04 nm, polydispersity index (PDI)
of 0.28 ± 0.07, encapsulation efficiency (EE) of 65.92%, zeta potential (ZP) of -23.70 ± 8.69 mV, and
pH of 6.49 ± 0.20. In vitro release was carried out to demonstrate a 3.13-fold increase in the
sustainability of apatinib-loaded nanoparticles versus free apatinib solution.
</P><P>
Result: Cell viability and VEGFA and VEGFR2 expression were analyzed in animal retinal pigment
epithelial (ARPE-19) cells.
The results confirmed the hypothesis that apatinib nanoparticles decreased toxicity (1.36 ±
0.74 fold) and efficient VEGF inhibition (3.51 ± 0.02 fold) via VEGFR2 mediation.
Collapse
Affiliation(s)
- Kathleen Halasz
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL 33612, United States
| | - Shannon J. Kelly
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL 33612, United States
| | - Muhammad Tajwar Iqbal
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL 33612, United States
| | - Yashwant Pathak
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL 33612, United States
| | - Vijaykumar Sutariya
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL 33612, United States
| |
Collapse
|
180
|
Hu S, Liu Y, You T, Zhu L. Semaphorin 7A Promotes VEGFA/VEGFR2-Mediated Angiogenesis and Intraplaque Neovascularization in ApoE-/- Mice. Front Physiol 2018; 9:1718. [PMID: 30555351 PMCID: PMC6284023 DOI: 10.3389/fphys.2018.01718] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 11/15/2018] [Indexed: 12/21/2022] Open
Abstract
Excessive neovascularization of atherosclerotic lesions increases plaque vulnerability and the susceptibility to rupture. Semaphorin 7A (Sema7A), a semaphorin family member, was recently reported to promote atherosclerotic plaque formation by mediating d-flow-induced endothelial phenotypic change and leukocyte adhesion. To extend our understanding of the proatherogenic role of Sema7A, we investigated the role of endothelial Sema7A in angiogenesis and atherosclerotic neovascularization. Sema7A overexpression in human umbilical vein endothelial cells (HUVECs) significantly upregulated VEGFA/VEGFR2 and promoted cell migration and angiogenesis. This enhancing effect was eliminated by the blockage of Sema7A receptor, β1 integrin. Inhibition of FAK or ERK1/2 downstream of β1 integrin signaling significantly inhibited cell migration and angiogenesis via ROCK (Rho-associated coiled forming protein kinase) and MYPT (myosin phosphatase targeting subunit), which are responsible for actin polymerization. Consistently, in vivo studies showed a remarkable reduction in VEGFA/VEGFR2 expression and neovascularization in the atherosclerotic plaques of Sema7A-/-ApoE-/- mice compared with Sema7A+/+ApoE-/- littermates. Supportively, Sema7A deficiency reduced the accumulation of T cells, macrophages, and dendritic cells, and enhanced plaque stability in ApoE-/- mice. Together, our findings show that Sema7A promotes VEGFA/VEGFR2-mediated neovascularization in a β1 integrin-dependent manner, supporting a crucial role of Sema7A in the progression of human atherosclerosis.
Collapse
Affiliation(s)
- Shuhong Hu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology of Jiangsu Province, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Yifei Liu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology of Jiangsu Province, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Tao You
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology of Jiangsu Province, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Li Zhu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology of Jiangsu Province, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| |
Collapse
|
181
|
Suttitheptumrong A, Rawarak N, Reamtong O, Boonnak K, Pattanakitsakul SN. Plectin is Required for Trans-Endothelial Permeability: A Model of Plectin Dysfunction in Human Endothelial Cells After TNF-α Treatment and Dengue Virus Infection. Proteomics 2018; 18:e1800215. [PMID: 30365215 DOI: 10.1002/pmic.201800215] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 10/15/2018] [Indexed: 12/11/2022]
Abstract
The clinical sign of dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS) in humans is increased vascular permeability. Virus-specific factors and host factors, including secreted cytokines and especially TNF-α, are suggested as having roles in the pathogenesis of these conditions. Proteomic analysis with MS is performed in membrane fraction isolated from human endothelial cells (EA.hy926) upon DENV infection and TNF-α treatment. In the 451 altered proteins that are identified, decreased plectin expression is revealed by Western blot analysis, while immunofluorescence staining (IFA) shows actin stress fiber rearrangement and decreased VE-cadherin in treated EA.hy926 cells. In vitro vascular permeability assay was used to determine transepithelial electrical resistance (TEER) in EA.hy926 cells seeded on collagen-coated Transwell inserts. The low level of TEER, the low expression of plectin and VE-cadherin, and the unusual organization of actin stress fiber are found to be correlated with increased membrane permeability in DENV2 and TNF-α-treated EA.hy926 cells. Similar results are observed when using siRNA knockdown plectin in mock EA.hy926 cells. This study provides better understanding of the role that disruption of cytoskeleton linker protein plays in increased vascular permeability, and suggests these factors as major contributors to vascular leakage in DHF/DSS patients.
Collapse
Affiliation(s)
- Aroonroong Suttitheptumrong
- Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Nantapon Rawarak
- Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Kobporn Boonnak
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Sa-Nga Pattanakitsakul
- Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
182
|
Li M, Qian M, Kyler K, Xu J. Endothelial-Vascular Smooth Muscle Cells Interactions in Atherosclerosis. Front Cardiovasc Med 2018; 5:151. [PMID: 30406116 PMCID: PMC6207093 DOI: 10.3389/fcvm.2018.00151] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 10/04/2018] [Indexed: 12/20/2022] Open
Abstract
Atherosclerosis is a chronic progressive inflammatory process that can eventually lead to cardiovascular disease (CVD). Despite available treatment, the prevalence of atherosclerotic CVD, which has become the leading cause of death worldwide, persists. Identification of new mechanisms of atherogenesis are highly needed in order to develop an effective therapeutic treatment. The blood vessels contain two primary major cell types: endothelial cells (EC) and vascular smooth muscle cells (VSMC). Each of these performs an essential function in sustaining vascular homeostasis. EC-VSMC communication is essential not only to development, but also to the homeostasis of mature blood vessels. Aberrant EC-VSMC interaction could promote atherogenesis. Identification of the mode of EC-VSMC crosstalk that regulates vascular functionality and sustains homeostasis may offer strategic insights for prevention and treatment of atherosclerotic CVD. Here we will review the molecular mechanisms underlying the interplay between EC and VSMC that could contribute to atherosclerosis. We also highlight open questions for future research directions.
Collapse
Affiliation(s)
- Manna Li
- Department of Medicine, Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma, OK, United States
| | - Ming Qian
- Department of Medicine, Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma, OK, United States
| | - Kathy Kyler
- Office of Research Administration, University of Oklahoma Health Sciences Center, Oklahoma, OK, United States
| | - Jian Xu
- Department of Medicine, Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma, OK, United States
| |
Collapse
|
183
|
Cornelissen A, Vogt FJ. The effects of stenting on coronary endothelium from a molecular biological view: Time for improvement? J Cell Mol Med 2018; 23:39-46. [PMID: 30353645 PMCID: PMC6307786 DOI: 10.1111/jcmm.13936] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 08/27/2018] [Indexed: 12/13/2022] Open
Abstract
Coronary artery stenting following balloon angioplasty represents the gold standard in revascularization of coronary artery stenoses. However, stent deployment as well as percutaneous transluminal coronary angioplasty (PTCA) alone causes severe injury of vascular endothelium. The damaged endothelium is intrinsically repaired by locally derived endothelial cells and by circulating endothelial progenitor cells from the blood, leading to re‐population of the denuded regions within several weeks to months. However, the process of re‐endothelialization is often incomplete or dysfunctional, promoting in‐stent thrombosis and restenosis. The molecular and biomechanical mechanisms that influence the process of re‐endothelialization in stented segments are incompletely understood. Once the endothelium is restored, endothelial function might still be impaired. Several strategies have been followed to improve endothelial function after coronary stenting. In this review, the effects of stenting on coronary endothelium are outlined and current and future strategies to improve endothelial function after stent deployment are discussed.
Collapse
Affiliation(s)
- Anne Cornelissen
- Department of Cardiology, Pneumology, Angiology, and Internal Intensive Medicine, University Hospital Aachen, Aachen, Germany
| | - Felix Jan Vogt
- Department of Cardiology, Pneumology, Angiology, and Internal Intensive Medicine, University Hospital Aachen, Aachen, Germany
| |
Collapse
|
184
|
Wang P, Liang J, Shi LZ, Wang Y, Zhang P, Ouyang M, Preece D, Peng Q, Shao L, Fan J, Sun J, Li SS, Berns MW, Zhao H, Wang Y. Visualizing Spatiotemporal Dynamics of Intercellular Mechanotransmission upon Wounding. ACS PHOTONICS 2018; 5:3565-3574. [PMID: 31069245 PMCID: PMC6502247 DOI: 10.1021/acsphotonics.8b00383] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
During cell-to-cell communications, the interplay between physical and biochemical cues is essential for informational exchange and functional coordination, especially in multicellular organisms. However, it remains a challenge to visualize intercellular signaling dynamics in single live cells. Here, we report a photonic approach, based on laser microscissors and Förster resonance energy transfer (FRET) microscopy, to study intercellular signaling transmission. First, using our high-throughput screening platform, we developed a highly sensitive FRET-based biosensor (SCAGE) for Src kinase, a key regulator of intercellular interactions and signaling cascades. Notably, SCAGE showed a more than 40-fold sensitivity enhancement than the original biosensor in live mammalian cells. Next, upon local severance of physical intercellular connections by femtosecond laser pulses, SCAGE enabled the visualization of a transient Src activation across neighboring cells. Lastly, we found that this observed transient Src activation following the loss of cell-cell contacts depends on the passive structural support of cytoskeleton but not on the active actomyosin contractility. Hence, by precisely introducing local physical perturbations and directly visualizing spatiotemporal transmission of ensuing signaling events, our integrated approach could be broadly applied to mimic and investigate the wounding process at single-cell resolutions. This integrated approach with highly sensitive FRET-based biosensors provides a unique system to advance our in-depth understanding of molecular mechanisms underlying the physical-biochemical basis of intercellular coupling and wounding processes.
Collapse
Affiliation(s)
- Pengzhi Wang
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, United States
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, California 92093, United States
| | - Jing Liang
- Department of Chemical and Biomolecular Engineering and Carl R. Woese Institute for Genomic Biology
| | - Linda Z. Shi
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, California 92093, United States
| | - Yi Wang
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Ping Zhang
- Institute of Mechanobiology and Biomedical Engineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mingxing Ouyang
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, United States
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, California 92093, United States
| | - Daryl Preece
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Qin Peng
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, United States
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, California 92093, United States
| | - Lunan Shao
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, United States
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, California 92093, United States
| | - Jason Fan
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, California 92093, United States
| | - Jie Sun
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Shawn S. Li
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario Canada N6A 5C1
- Children’s Health Research Institute, 800 Commissioners Road East, London, Ontario Canada N6C 2 V5
| | - Michael W. Berns
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, United States
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, California 92093, United States
- Beckman Laser Institute and Medical Clinic, University of California, Irvine, California 92612, United States
- Department of Developmental and Cell Biology, School of Biological Sciences, and Department of Biomedical Engineering, University of California, Irvine, Irvine, California 92617, United States
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering and Carl R. Woese Institute for Genomic Biology
| | - Yingxiao Wang
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, United States
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
185
|
Paatero I, Sauteur L, Lee M, Lagendijk AK, Heutschi D, Wiesner C, Guzmán C, Bieli D, Hogan BM, Affolter M, Belting HG. Junction-based lamellipodia drive endothelial cell rearrangements in vivo via a VE-cadherin-F-actin based oscillatory cell-cell interaction. Nat Commun 2018; 9:3545. [PMID: 30171187 PMCID: PMC6119192 DOI: 10.1038/s41467-018-05851-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 07/26/2018] [Indexed: 12/21/2022] Open
Abstract
Angiogenesis and vascular remodeling are driven by extensive endothelial cell movements. Here, we present in vivo evidence that endothelial cell movements are associated with oscillating lamellipodia-like structures, which emerge from cell junctions in the direction of cell movements. High-resolution time-lapse imaging of these junction-based lamellipodia (JBL) shows dynamic and distinct deployment of junctional proteins, such as F-actin, VE-cadherin and ZO1, during JBL oscillations. Upon initiation, F-actin and VE-cadherin are broadly distributed within JBL, whereas ZO1 remains at cell junctions. Subsequently, a new junction is formed at the front of the JBL, which then merges with the proximal junction. Rac1 inhibition interferes with JBL oscillations and disrupts cell elongation-similar to a truncation in ve-cadherin preventing VE-cad/F-actin interaction. Taken together, our observations suggest an oscillating ratchet-like mechanism, which is used by endothelial cells to move over each other and thus provides the physical means for cell rearrangements.
Collapse
Affiliation(s)
- Ilkka Paatero
- Department of Cell Biology, Biozentrum, University of Basel, Basel, 4056, Switzerland.,Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, 20520, Finland
| | - Loïc Sauteur
- Department of Cell Biology, Biozentrum, University of Basel, Basel, 4056, Switzerland
| | - Minkyoung Lee
- Department of Cell Biology, Biozentrum, University of Basel, Basel, 4056, Switzerland
| | - Anne K Lagendijk
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Daniel Heutschi
- Department of Cell Biology, Biozentrum, University of Basel, Basel, 4056, Switzerland
| | - Cora Wiesner
- Department of Cell Biology, Biozentrum, University of Basel, Basel, 4056, Switzerland
| | - Camilo Guzmán
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Dimitri Bieli
- Department of Cell Biology, Biozentrum, University of Basel, Basel, 4056, Switzerland
| | - Benjamin M Hogan
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Markus Affolter
- Department of Cell Biology, Biozentrum, University of Basel, Basel, 4056, Switzerland.
| | - Heinz-Georg Belting
- Department of Cell Biology, Biozentrum, University of Basel, Basel, 4056, Switzerland.
| |
Collapse
|
186
|
Wylie LA, Mouillesseaux KP, Chong DC, Bautch VL. Developmental SMAD6 loss leads to blood vessel hemorrhage and disrupted endothelial cell junctions. Dev Biol 2018; 442:199-209. [PMID: 30098998 DOI: 10.1016/j.ydbio.2018.07.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 07/13/2018] [Accepted: 07/31/2018] [Indexed: 01/10/2023]
Abstract
The BMP pathway regulates developmental processes including angiogenesis, yet its signaling outputs are complex and context-dependent. Recently, we showed that SMAD6, an intracellular BMP inhibitor expressed in endothelial cells, decreases vessel sprouting and branching both in vitro and in zebrafish. Genetic deletion of SMAD6 in mice results in poorly characterized cardiovascular defects and lethality. Here, we analyzed the effects of SMAD6 loss on vascular function during murine development. SMAD6 was expressed in a subset of blood vessels throughout development, primarily in arteries, while expression outside of the vasculature was largely confined to developing cardiac valves with no obvious embryonic phenotype. Mice deficient in SMAD6 died during late gestation and early stages of postnatal development, and this lethality was associated with vessel hemorrhage. Mice that survived past birth had increased branching and sprouting of developing postnatal retinal vessels and disorganized tight and adherens junctions. In vitro, knockdown of SMAD6 led to abnormal endothelial cell adherens junctions and increased VE-cadherin endocytosis, indicative of activated endothelium. Thus, SMAD6 is essential for proper blood vessel function during murine development, where it appears to stabilize endothelial junctions to prevent hemorrhage and aberrant angiogenesis.
Collapse
Affiliation(s)
- Lyndsay A Wylie
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | - Diana C Chong
- Dept. of Medicine, Duke University, Durham, NC 27710, USA
| | - Victoria L Bautch
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; McAllister Heart Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
187
|
Wang L, Mehta S, Ahmed Y, Wallace S, Pape MC, Gill SE. Differential Mechanisms of Septic Human Pulmonary Microvascular Endothelial Cell Barrier Dysfunction Depending on the Presence of Neutrophils. Front Immunol 2018; 9:1743. [PMID: 30116240 PMCID: PMC6082932 DOI: 10.3389/fimmu.2018.01743] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 07/16/2018] [Indexed: 01/06/2023] Open
Abstract
Sepsis is characterized by injury of pulmonary microvascular endothelial cells (PMVEC) leading to barrier dysfunction. Multiple mechanisms promote septic PMVEC barrier dysfunction, including interaction with circulating leukocytes and PMVEC apoptotic death. Our previous work demonstrated a strong correlation between septic neutrophil (PMN)-dependent PMVEC apoptosis and pulmonary microvascular albumin leak in septic mice in vivo; however, this remains uncertain in human PMVEC. Thus, we hypothesize that human PMVEC apoptosis is required for loss of PMVEC barrier function under septic conditions in vitro. To assess this hypothesis, human PMVECs cultured alone or in coculture with PMN were stimulated with PBS or cytomix (equimolar interferon γ, tumor necrosis factor α, and interleukin 1β) in the absence or presence of a pan-caspase inhibitor, Q-VD, or specific caspase inhibitors. PMVEC barrier function was assessed by transendothelial electrical resistance (TEER), as well as fluoroisothiocyanate-labeled dextran and Evans blue-labeled albumin flux across PMVEC monolayers. PMVEC apoptosis was identified by (1) loss of cell membrane polarity (Annexin V), (2) caspase activation (FLICA), and (3) DNA fragmentation [terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)]. Septic stimulation of human PMVECs cultured alone resulted in loss of barrier function (decreased TEER and increased macromolecular flux) associated with increased apoptosis (increased Annexin V, FLICA, and TUNEL staining). In addition, treatment of septic PMVEC cultured alone with Q-VD decreased PMVEC apoptosis and prevented septic PMVEC barrier dysfunction. In septic PMN-PMVEC cocultures, there was greater trans-PMVEC macromolecular flux (both dextran and albumin) vs. PMVEC cultured alone. PMN presence also augmented septic PMVEC caspase activation (FLICA staining) vs. PMVEC cultured alone but did not affect septic PMVEC apoptosis. Importantly, pan-caspase inhibition (Q-VD treatment) completely attenuated septic PMN-dependent PMVEC barrier dysfunction. Moreover, inhibition of caspase 3, 8, or 9 in PMN-PMVEC cocultures also reduced septic PMVEC barrier dysfunction whereas inhibition of caspase 1 had no effect. Our data demonstrate that human PMVEC barrier dysfunction under septic conditions in vitro (cytomix stimulation) is clearly caspase-dependent, but the mechanism differs depending on the presence of PMN. In isolated PMVEC, apoptosis contributes to septic barrier dysfunction, whereas PMN presence enhances caspase-dependent septic PMVEC barrier dysfunction independently of PMVEC apoptosis.
Collapse
Affiliation(s)
- Lefeng Wang
- Centre for Critical Illness Research, Lawson Health Research Institute, London, ON, Canada.,Department of Medicine, Western University, London, ON, Canada
| | - Sanjay Mehta
- Centre for Critical Illness Research, Lawson Health Research Institute, London, ON, Canada.,Department of Medicine, Western University, London, ON, Canada.,Division of Respirology, Western University, London, ON, Canada
| | - Yousuf Ahmed
- Centre for Critical Illness Research, Lawson Health Research Institute, London, ON, Canada.,Department of Medicine, Western University, London, ON, Canada
| | - Shelby Wallace
- Department of Physiology and Pharmacology, Western University, London, ON, Canada
| | - M Cynthia Pape
- Centre for Critical Illness Research, Lawson Health Research Institute, London, ON, Canada.,Department of Medicine, Western University, London, ON, Canada
| | - Sean E Gill
- Centre for Critical Illness Research, Lawson Health Research Institute, London, ON, Canada.,Department of Medicine, Western University, London, ON, Canada.,Division of Respirology, Western University, London, ON, Canada.,Department of Physiology and Pharmacology, Western University, London, ON, Canada
| |
Collapse
|
188
|
Mani AM, Chattopadhyay R, Singh NK, Rao GN. Cholesterol crystals increase vascular permeability by inactivating SHP2 and disrupting adherens junctions. Free Radic Biol Med 2018; 123:72-84. [PMID: 29782988 PMCID: PMC6333100 DOI: 10.1016/j.freeradbiomed.2018.05.068] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 05/16/2018] [Accepted: 05/17/2018] [Indexed: 12/27/2022]
Abstract
To understand the adverse effects of cholesterol crystals on vascular homeostasis, we have studied their effects on endothelial barrier function. Cholesterol crystals increased endothelial barrier permeability in a dose and time dependent manner. In addition, cholesterol crystals induced tyrosine phosphorylation of VE-cadherin and α-catenin, disrupting endothelial AJ and its barrier function and these effects required xanthine oxidase-mediated H2O2 production, SHP2 inactivation and Frk activation. Similarly, feeding C57BL/6 mice with cholesterol-rich diet increased xanthine oxidase expression, H2O2 production, SHP2 inactivation and Frk activation leading to enhanced tyrosine phosphorylation of VE-cadherin and α-catenin, thereby disrupting endothelial AJ and increasing vascular permeability. Resolvin D1, a specialized proresolving mediator, prevented all these adverse effects of cholesterol crystals and cholesterol-rich diet in endothelial cells and mice, respectively. Based on these observations, it is likely that cholesterol crystals via disrupting AJ increase vascular permeability, a critical event of endothelial dysfunction and specialized proresolving mediators such as Resolvin D1 exert protection against these effects.
Collapse
Affiliation(s)
- Arul M Mani
- Department of Physiology, University of Tennessee Health Science Center, 71 S. Manassas Street, Memphis, TN 38163, USA
| | - Rima Chattopadhyay
- Department of Physiology, University of Tennessee Health Science Center, 71 S. Manassas Street, Memphis, TN 38163, USA
| | - Nikhlesh K Singh
- Department of Physiology, University of Tennessee Health Science Center, 71 S. Manassas Street, Memphis, TN 38163, USA
| | - Gadiparthi N Rao
- Department of Physiology, University of Tennessee Health Science Center, 71 S. Manassas Street, Memphis, TN 38163, USA.
| |
Collapse
|
189
|
Yeon JH, Jeong HE, Seo H, Cho S, Kim K, Na D, Chung S, Park J, Choi N, Kang JY. Cancer-derived exosomes trigger endothelial to mesenchymal transition followed by the induction of cancer-associated fibroblasts. Acta Biomater 2018; 76:146-153. [PMID: 30078422 DOI: 10.1016/j.actbio.2018.07.001] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 07/01/2018] [Accepted: 07/02/2018] [Indexed: 01/10/2023]
Abstract
Cancer-associated fibroblasts (CAFs) play a pivotal role in tumor growth, but very little has been known about its characteristics and origin. Recently, cancer-derived exosome has been suggested to transdifferentiate CAFs, by a new mechanism of endothelial to mesenchymal transition (EndMT), initiating angiogenic processes and triggering metastatic evolution. However, an enabling tool in vitro is yet to be developed to investigate complicated procedures of the EndMT and the transdifferentiation under reconstituted tumor microenvironment. Here we proposed an in vitro microfluidic model which enables to monitor a synergetic effect of complex tumor microenvironment in situ, including extracellular matrix (ECM), interstitial flow and environmental exosomes. The number of CAFs differentiated from human umbilical vein endothelial cells (HUVECs) increased with melanoma-derived exosomes, presenting apparent morphological and molecular changes with pronounced motility. Mesenchymal stem cell (MSC)-derived exosomes were found to suppress EndMT, induce angiogenesis and maintain vascular homeostasis, while cancer-derived exosomes promoted EndMT. Capabilities of the new microfluidic model exist in precise regulation of the complex tumor microenvironment and therefore successful reconstitution of 3D microvasculature niches, enabling in situ investigation of EndMT procedure between various cell types. STATEMENT OF SIGNIFICANCE This study presents an in vitro 3D EndMT model to understand the progress of the CAF generation by recapitulating the 3D tumor microenvironment in a microfluidic device. Both cancer-derived exosomes and interstitial fluid flow synergetically played a pivotal role in the EndMT and consequent formation of CAFs through a collagen-based ECM. Our approach also enabled the demonstration of a homeostatic capability of MSC-derived exosomes, ultimately leading to the recovery of CAFs back to endothelial cells. The in vitro 3D EndMT model can serve as a powerful tool to validate exosomal components that could be further developed to anti-cancer drugs.
Collapse
|
190
|
Szymborska A, Gerhardt H. Hold Me, but Not Too Tight-Endothelial Cell-Cell Junctions in Angiogenesis. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a029223. [PMID: 28851748 DOI: 10.1101/cshperspect.a029223] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Endothelial cell-cell junctions must perform seemingly incompatible tasks during vascular development-providing stable connections that prevent leakage, while allowing dynamic cellular rearrangements during sprouting, anastomosis, lumen formation, and functional remodeling of the vascular network. This review aims to highlight recent insights into the molecular mechanisms governing endothelial cell-cell adhesion in the context of vascular development.
Collapse
Affiliation(s)
- Anna Szymborska
- Integrative Vascular Biology Laboratory, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin
| | - Holger Gerhardt
- Integrative Vascular Biology Laboratory, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125, Berlin, Germany.,Vascular Patterning Laboratory, Center for Cancer Biology, VIB, Department of Oncology, KU Leuven, 3000 Leuven, Belgium.,DZHK (German Centre for Cardiovascular Research), partner site Berlin.,Berlin Institute of Health (BIH), 10178 Berlin, Germany
| |
Collapse
|
191
|
Choi SJ, Piao S, Nagar H, Jung SB, Kim S, Lee I, Kim SM, Song HJ, Shin N, Kim DW, Irani K, Jeon BH, Park JW, Kim CS. Isocitrate dehydrogenase 2 deficiency induces endothelial inflammation via p66sh-mediated mitochondrial oxidative stress. Biochem Biophys Res Commun 2018; 503:1805-1811. [PMID: 30072100 DOI: 10.1016/j.bbrc.2018.07.117] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 07/23/2018] [Indexed: 01/01/2023]
Abstract
Isocitrate dehydrogenase 2 (IDH2) is an essential enzyme in the mitochondrial antioxidant system, which produces nicotinamide adenine dinucleotide phosphate, and thereby defends against oxidative stress. We have shown that IDH2 downregulation results in mitochondrial dysfunction and reactive oxygen species (ROS) generation in mouse endothelial cells. The redox enzyme p66shc is a key factor in regulating the level of ROS in endothelial cells. In this study, we hypothesized that IDH2 knockdown-induced mitochondrial dysfunction stimulates endothelial inflammation, which might be regulated by p66shc-mediated oxidative stress. Our results showed that IDH2 downregulation led to mitochondrial dysfunction by decreasing the expression of mitochondrial oxidative phosphorylation complexes I, II, and IV, reducing oxygen consumption, and depolarizing mitochondrial membrane potential in human umbilical vein endothelial cells (HUVECs). The dysfunction not only increased mitochondrial ROS levels but also activated p66shc expression in HUVECs and IDH2 knockout mice. IDH2 deficiency increased intercellular adhesion molecule (ICAM)-1 expression and mRNA levels of pro-inflammatory cytokines (tumor necrosis factor [TNF]-α, and interleukin [IL]-1β) in HUVECs. The mRNA expression of ICAM-1 in endothelial cells and plasma levels of TNF-α and IL-1β were also markedly elevated in IDH2 knockout mice. However, p66shc knockdown rescued IDH2 deficiency-induced mitochondrial ROS levels, monocyte adhesion, ICAM-1, TNF-α, and IL-1β expression in HUVECs. These findings suggest that IDH2 deficiency induced endothelial inflammation via p66shc-mediated mitochondrial oxidative stress.
Collapse
Affiliation(s)
- Su-Jeong Choi
- Department of Physiology & Medical Science, School of Medicine, Chungnam National University, Daejeon, 301-747, Republic of Korea
| | - Shuyu Piao
- Department of Physiology & Medical Science, School of Medicine, Chungnam National University, Daejeon, 301-747, Republic of Korea
| | - Harsha Nagar
- Department of Physiology & Medical Science, School of Medicine, Chungnam National University, Daejeon, 301-747, Republic of Korea
| | - Saet-Byel Jung
- Department of Endocrinology, School of Medicine, Chungnam National University, Daejeon, 301-721, Republic of Korea
| | - Seonhee Kim
- Department of Physiology & Medical Science, School of Medicine, Chungnam National University, Daejeon, 301-747, Republic of Korea
| | - Ikjun Lee
- Department of Physiology & Medical Science, School of Medicine, Chungnam National University, Daejeon, 301-747, Republic of Korea
| | - Sung-Min Kim
- Department of Physiology & Medical Science, School of Medicine, Chungnam National University, Daejeon, 301-747, Republic of Korea
| | - Hee-Jung Song
- Department of Neurology, Chungnam National University Hospital, Daejeon, 301-721, Republic of Korea
| | - Nara Shin
- Department of Anatomy & Medical Science, School of Medicine, Chungnam National University, Daejeon, 301-747, Republic of Korea
| | - Dong Woon Kim
- Department of Anatomy & Medical Science, School of Medicine, Chungnam National University, Daejeon, 301-747, Republic of Korea
| | - Kaikobad Irani
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Byeong Hwa Jeon
- Department of Physiology & Medical Science, School of Medicine, Chungnam National University, Daejeon, 301-747, Republic of Korea
| | - Jeen-Woo Park
- School of Life Sciences, College of Natural Science, Kyungpook National University, Taegu, 702-701, Republic of Korea.
| | - Cuk-Seong Kim
- Department of Physiology & Medical Science, School of Medicine, Chungnam National University, Daejeon, 301-747, Republic of Korea.
| |
Collapse
|
192
|
Honkura N, Richards M, Laviña B, Sáinz-Jaspeado M, Betsholtz C, Claesson-Welsh L. Intravital imaging-based analysis tools for vessel identification and assessment of concurrent dynamic vascular events. Nat Commun 2018; 9:2746. [PMID: 30013228 PMCID: PMC6048163 DOI: 10.1038/s41467-018-04929-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 05/16/2018] [Indexed: 12/21/2022] Open
Abstract
The vasculature undergoes changes in diameter, permeability and blood flow in response to specific stimuli. The dynamics and interdependence of these responses in different vessels are largely unknown. Here we report a non-invasive technique to study dynamic events in different vessel categories by multi-photon microscopy and an image analysis tool, RVDM (relative velocity, direction, and morphology) allowing the identification of vessel categories by their red blood cell (RBC) parameters. Moreover, Claudin5 promoter-driven green fluorescent protein (GFP) expression is used to distinguish capillary subtypes. Intradermal injection of vascular endothelial growth factor A (VEGFA) is shown to induce leakage of circulating dextran, with vessel-type-dependent kinetics, from capillaries and venules devoid of GFP expression. VEGFA-induced leakage in capillaries coincides with vessel dilation and reduced flow velocity. Thus, intravital imaging of non-invasive stimulation combined with RVDM analysis allows for recording and quantification of very rapid events in the vasculature. Different stimuli can induce dynamic changes in blood flow velocity, vessel diameter and permeability. Here the authors develop a multi-photon microscopy-based image analysis tool allowing the identification of vessels and the assessment of rapid changes in large vascular networks.
Collapse
Affiliation(s)
- Naoki Honkura
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Science for Life Laboratory, Uppsala University, Dag Hammarskjöldsv. 20, 751 85, Uppsala, Sweden.
| | - Mark Richards
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Science for Life Laboratory, Uppsala University, Dag Hammarskjöldsv. 20, 751 85, Uppsala, Sweden
| | - Bàrbara Laviña
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Science for Life Laboratory, Uppsala University, Dag Hammarskjöldsv. 20, 751 85, Uppsala, Sweden
| | - Miguel Sáinz-Jaspeado
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Science for Life Laboratory, Uppsala University, Dag Hammarskjöldsv. 20, 751 85, Uppsala, Sweden
| | - Christer Betsholtz
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Science for Life Laboratory, Uppsala University, Dag Hammarskjöldsv. 20, 751 85, Uppsala, Sweden
| | - Lena Claesson-Welsh
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Science for Life Laboratory, Uppsala University, Dag Hammarskjöldsv. 20, 751 85, Uppsala, Sweden
| |
Collapse
|
193
|
Astone M, Lai JKH, Dupont S, Stainier DYR, Argenton F, Vettori A. Zebrafish mutants and TEAD reporters reveal essential functions for Yap and Taz in posterior cardinal vein development. Sci Rep 2018; 8:10189. [PMID: 29976931 PMCID: PMC6033906 DOI: 10.1038/s41598-018-27657-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 06/05/2018] [Indexed: 01/07/2023] Open
Abstract
As effectors of the Hippo signaling cascade, YAP1 and TAZ are transcriptional regulators playing important roles in development, tissue homeostasis and cancer. A number of different cues, including mechanotransduction of extracellular stimuli, adhesion molecules, oncogenic signaling and metabolism modulate YAP1/TAZ nucleo-cytoplasmic shuttling. In the nucleus, YAP1/TAZ tether with the DNA binding proteins TEADs, to activate the expression of target genes that regulate proliferation, migration, cell plasticity, and cell fate. Based on responsive elements present in the human and zebrafish promoters of the YAP1/TAZ target gene CTGF, we established zebrafish fluorescent transgenic reporter lines of Yap1/Taz activity. These reporter lines provide an in vivo view of Yap1/Taz activity during development and adulthood at the whole organism level. Transgene expression was detected in many larval tissues including the otic vesicles, heart, pharyngeal arches, muscles and brain and is prominent in endothelial cells. Analysis of vascular development in yap1/taz zebrafish mutants revealed specific defects in posterior cardinal vein (PCV) formation, with altered expression of arterial/venous markers. The overactivation of Yap1/Taz in endothelial cells was sufficient to promote an aberrant vessel sprouting phenotype. Our findings confirm and extend the emerging role of Yap1/Taz in vascular development including angiogenesis.
Collapse
MESH Headings
- Animals
- Animals, Genetically Modified
- Connective Tissue Growth Factor/genetics
- Embryo, Nonmammalian
- Endothelial Cells/metabolism
- Endothelium, Vascular/cytology
- Endothelium, Vascular/metabolism
- Gene Expression Regulation, Developmental
- Genes, Reporter/genetics
- Intracellular Signaling Peptides and Proteins/genetics
- Intracellular Signaling Peptides and Proteins/metabolism
- Luciferases/chemistry
- Luciferases/genetics
- Microscopy, Confocal
- Microscopy, Fluorescence
- Mutation
- Neovascularization, Physiologic/genetics
- Promoter Regions, Genetic/genetics
- Trans-Activators/genetics
- Trans-Activators/metabolism
- Transcriptional Coactivator with PDZ-Binding Motif Proteins
- Transgenes/genetics
- Veins/cytology
- Veins/growth & development
- YAP-Signaling Proteins
- Zebrafish
- Zebrafish Proteins/genetics
- Zebrafish Proteins/metabolism
Collapse
Affiliation(s)
- Matteo Astone
- University of Padova, Department of Biology, Padova, Italy
| | | | - Sirio Dupont
- University of Padova, Department of Molecular Medicine, Padova, Italy
| | | | | | - Andrea Vettori
- University of Padova, Department of Biology, Padova, Italy.
| |
Collapse
|
194
|
Cicardi M, Zuraw BL. Angioedema Due to Bradykinin Dysregulation. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2018; 6:1132-1141. [DOI: 10.1016/j.jaip.2018.04.022] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 04/25/2018] [Accepted: 04/25/2018] [Indexed: 01/08/2023]
|
195
|
Hajal C, Campisi M, Mattu C, Chiono V, Kamm RD. In vitro models of molecular and nano-particle transport across the blood-brain barrier. BIOMICROFLUIDICS 2018; 12:042213. [PMID: 29887937 PMCID: PMC5980570 DOI: 10.1063/1.5027118] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 05/09/2018] [Indexed: 05/11/2023]
Abstract
The blood-brain barrier (BBB) is the tightest endothelial barrier in humans. Characterized by the presence of tight endothelial junctions and adherens junctions, the primary function of the BBB is to maintain brain homeostasis through the control of solute transit across the barrier. The specific features of this barrier make for unique modes of transport of solutes, nanoparticles, and cells across the BBB. Understanding the different routes of traffic adopted by each of these is therefore critical in the development of targeted therapies. In an attempt to move towards controlled experimental assays, multiple groups are now opting for the use of microfluidic systems. A comprehensive understanding of bio-transport processes across the BBB in microfluidic devices is therefore necessary to develop targeted and efficient therapies for a host of diseases ranging from neurological disorders to the spread of metastases in the brain.
Collapse
Affiliation(s)
- Cynthia Hajal
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 500 Technology Square, MIT Building, Room NE47-321, Cambridge, Massachusetts 02139, USA
| | | | - Clara Mattu
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Valeria Chiono
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Roger D. Kamm
- Author to whom correspondence should be addressed: and
| |
Collapse
|
196
|
Kucukal E, Ilich A, Key NS, Little JA, Gurkan UA. Red Blood Cell Adhesion to Heme-Activated Endothelial Cells Reflects Clinical Phenotype in Sickle Cell Disease. Am J Hematol 2018; 93:10.1002/ajh.25159. [PMID: 29905377 PMCID: PMC6295270 DOI: 10.1002/ajh.25159] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 05/28/2018] [Accepted: 05/29/2018] [Indexed: 12/19/2022]
Abstract
In sickle cell disease (SCD), 'disease severity' associates with increased RBC adhesion to quiescent endothelium, but the impact on activated endothelium is not known. Increased concentrations of free heme result from intravascular hemolysis in SCD. Heme is essential for aerobic metabolism, and plays an important role in numerous biological processes. Excess free heme induces reactive oxygen species generation and endothelial activation, which are associated with cardiovascular disorders including atherosclerosis, hypertension, and thrombosis. Here, we utilized an endothelialized microfluidic platform (Endothelium-on-a-chip) to assess adhesion of sickle hemoglobin-containing red blood cells (HbS RBCs), from adults with homozygous SCD, to heme-activated human endothelial cells (EC) in vitro. Confluent EC monolayers in microchannels were treated with pathophysiologically relevant levels of heme in order to simulate the highly hemolytic intravascular milieu seen in SCD. RBC adhesion to heme-activated ECs varied from subject to subject, and was associated with plasma markers of hemolysis (LDH) and reticulocytosis, thereby linking those RBCs that are most likely to adhere with those that are most likely to hemolyze. These results re-emphasize the critical contribution made by heterogeneous adhesive HbS RBCs to the pathophysiology of SCD. We found that adhesion of HbS RBCs to heme-activated ECs varied amongst individuals in the study population, and associated with biomarkers of hemolysis and inflammation, age, and a recent history of transfusion. Importantly, the microfluidic approach described herein holds promise as a clinically feasible Endothelium-on-a-chip platform with which to study complex heterocellular adhesive interactions in SCD. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Erdem Kucukal
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Anton Ilich
- Division of Hematology/Oncology, Department of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Nigel S. Key
- Division of Hematology/Oncology, Department of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Jane A. Little
- Division of Hematology/Oncology, Case Western Reserve University, University Hospitals Seidman Cancer Center, Cleveland, OH, USA
| | - Umut A. Gurkan
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH, USA
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
197
|
Atorvastatin enhances endothelial adherens junctions through promoting VE-PTP gene transcription and reducing VE-cadherin-Y731 phosphorylation. Vascul Pharmacol 2018; 117:7-14. [PMID: 29894844 DOI: 10.1016/j.vph.2018.06.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 06/03/2018] [Accepted: 06/03/2018] [Indexed: 12/17/2022]
Abstract
Vascular endothelial protein tyrosine phosphatase (VE-PTP) is essential for endothelial cells (ECs) adherens junction and vascular homeostasis; however, the regulatory mechanism of VE-PTP transcription is unknown, and a drug able to promote VE-PTP expression in ECs has not yet been reported in the literature. In this study, we used human ECs as a model to explore small molecule compounds able to promote VE-PTP expression, and found that atorvastatin, a HMG-CoA reductase inhibitor widely used in the clinic to treat hypercholesterolemia-related cardiovascular diseases, strongly promoted VE-PTP transcription in ECs through activating the VE-PTP promoter and upregulating the expression of the transcription factor, specificity protein 1 (SP1). Additionally, atorvastatin markedly reduced VE-cadherin-Y731 phosphorylation induced by cigarette smoke extract and significantly enhanced stability of endothelial adherens junctions. Together, our findings reveal that atorvastatin up-regulates VE-PTP expression, increases VE-cadherin protein levels, and decreases VE-cadherin-Y731 phosphorylation to strengthen EC adherens junctions and maintain vascular cell monolayer integrity, offering a new mechanism of atorvastatin against CSE-induced disruption of vascular integrity and relevant cardio-cerebrovascular disease.
Collapse
|
198
|
Li QX, Shen YX, Ahmad A, Shen YJ, Zhang YQ, Xu PK, Chen WW, Yu YQ. Mesencephalic Astrocyte-Derived Neurotrophic Factor Prevents Traumatic Brain Injury in Rats by Inhibiting Inflammatory Activation and Protecting the Blood-Brain Barrier. World Neurosurg 2018; 117:e117-e129. [PMID: 29883817 DOI: 10.1016/j.wneu.2018.05.202] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 05/26/2018] [Accepted: 05/28/2018] [Indexed: 10/14/2022]
Abstract
BACKGROUND Our previous studies have shown that mesencephalic astrocyte-derived neurotrophic factor (MANF) provides a neuroprotective effect against ischemia/reperfusion injury and is also involved in inflammatory disease models. This study investigates the potential role and mechanism of MANF in acute brain damage after traumatic brain injury (TBI). METHODS The model of TBI was induced by Feeney free falling methods with male Sprague-Dawley rats. The expression of MANF, 24 hours after TBI, was detected by the immunohistochemistry, immunofluorescence, Western blot, and reverse transcription polymerase chain reaction techniques. After treatment with recombinant human MANF after TBI, assessment was conducted 24 hours later for brain water content, cerebral edema volume in magnetic resonance imaging, neurobehavioral testing, and Evans blue extravasation. Moreover, by the techniques of Western blot and reverse transcription polymerase chain reaction, the expression of inflammatory cytokines (interleukin 1β and tumor necrosis factor α) and P65 was also analyzed to explore the underlying protective mechanism of MANF. RESULTS At 24 hours after TBI, we found that endogenous MANF was widely expressed in the rat's brain tissues and different types of cells. Treatment with a high dose of recombinant human MANF (20 μg/20 μL) significantly increased the modified Garcia score, and reduced brain water content as well as cerebral edema volume on magnetic resonance imaging. Furthermore, MANF alleviated not only the permeability of the blood-brain barrier (BBB) but also the expressions of interleukin 1β and tumor necrosis factor α messenger RNA and protein. Besides, the activation of P65 was also inhibited. CONCLUSIONS These results suggest that MANF provides a neuroprotective effect against acute brain injury after TBI, via attenuating blood-brain barrier disruption and intracranial neuroinflammation; the inhibition of the NF-κB signaling pathway might be a potential mechanism.
Collapse
Affiliation(s)
- Qing-Xin Li
- The First Affiliated Hospital, Anhui Medical University, Hefei, People's Republic of China
| | - Yu-Xian Shen
- School of Basic Medical Sciences, Anhui Medical University, Hefei, People's Republic of China; Biopharmaceutical Institute, Anhui Medical University, Hefei, People's Republic of China
| | - Akhlaq Ahmad
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Yu-Jun Shen
- School of Basic Medical Sciences, Anhui Medical University, Hefei, People's Republic of China; Biopharmaceutical Institute, Anhui Medical University, Hefei, People's Republic of China
| | - Yi-Quan Zhang
- The First Affiliated Hospital, Anhui Medical University, Hefei, People's Republic of China
| | - Pei-Kun Xu
- The First Affiliated Hospital, Anhui Medical University, Hefei, People's Republic of China
| | - Wei-Wei Chen
- The First Affiliated Hospital, Anhui Medical University, Hefei, People's Republic of China
| | - Yong-Qiang Yu
- The First Affiliated Hospital, Anhui Medical University, Hefei, People's Republic of China.
| |
Collapse
|
199
|
Kishimoto M, Akashi M, Kakei Y, Kusumoto J, Sakakibara A, Hasegawa T, Furudoi S, Sasaki R, Komori T. Ionizing Radiation Enhances Paracellular Permeability Through Alteration of Intercellular Junctions in Cultured Human Lymphatic Endothelial Cells. Lymphat Res Biol 2018; 16:390-396. [PMID: 29862914 DOI: 10.1089/lrb.2017.0072] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND A problematic complication after radiation therapy is lymphedema. Development of lymphedema is associated with an increase in lymphatic paracellular permeability. The current study investigated the effects of radiation on intercellular junctions and paracellular permeability in cultured human dermal lymphatic endothelial cells (HDLECs). METHODS AND RESULTS Double immunofluorescence staining with vascular endothelial (VE)-cadherin and actin immediately after X-ray irradiation (5 or 20 Gy) was performed. Morphological changes induced by irradiation were assessed. Cell viability and paracellular permeability after irradiation were also evaluated. Broad junctions in which VE-cadherin was accumulated at cell-cell contacts and almost colocalized with actin were significantly decreased in a dose-dependent manner in confluent and sparse irradiated HDLECs. Irradiation shortened the width of VE-cadherin-positive areas at the cell-cell contacts. Actin filaments did not colocalize with VE-cadherin after 20 Gy irradiation. Although cell viability was not affected by irradiation, paracellular permeability significantly increased in a dose-dependent manner. CONCLUSIONS A dose of 5 or 20 Gy irradiation in HDLECs does not affect cell viability, but changes VE-cadherin mediated intercellular junctions and actin structure, resulting in an increase of paracellular permeability. Further investigations on the regulatory proteins involved in radiation-induced changes, which were observed in the current study, may contribute to development of lymphedema therapy.
Collapse
Affiliation(s)
- Megumi Kishimoto
- 1 Department of Oral and Maxillofacial Surgery, Kobe University Graduate School of Medicine , Kobe, Japan
| | - Masaya Akashi
- 1 Department of Oral and Maxillofacial Surgery, Kobe University Graduate School of Medicine , Kobe, Japan
| | - Yasumasa Kakei
- 1 Department of Oral and Maxillofacial Surgery, Kobe University Graduate School of Medicine , Kobe, Japan
| | - Junya Kusumoto
- 1 Department of Oral and Maxillofacial Surgery, Kobe University Graduate School of Medicine , Kobe, Japan
| | - Akiko Sakakibara
- 1 Department of Oral and Maxillofacial Surgery, Kobe University Graduate School of Medicine , Kobe, Japan
| | - Takumi Hasegawa
- 1 Department of Oral and Maxillofacial Surgery, Kobe University Graduate School of Medicine , Kobe, Japan
| | - Shungo Furudoi
- 1 Department of Oral and Maxillofacial Surgery, Kobe University Graduate School of Medicine , Kobe, Japan
| | - Ryohei Sasaki
- 2 Department of Radiation Oncology, Kobe University Graduate School of Medicine , Kobe, Japan
| | - Takahide Komori
- 1 Department of Oral and Maxillofacial Surgery, Kobe University Graduate School of Medicine , Kobe, Japan
| |
Collapse
|
200
|
Chong G, Jun W, Jia W, Xiaoyu Z, Changle Z, Shengya G, Chong W, Qiuyue F, Jianuo Z, Bo X, Xinyi C. Effect of spleen-invigorating, Qi-replenishing and blood-arresting formula on zebrafish models with simvastatin-induced hemorrhage caused by spleen failing to control blood, in terms of theory of Traditional Chinese Medicine. J TRADIT CHIN MED 2018. [DOI: 10.1016/s0254-6272(18)30630-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|