151
|
Neuroprotective Effect of SCM-198 through Stabilizing Endothelial Cell Function. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:7850154. [PMID: 31827699 PMCID: PMC6885260 DOI: 10.1155/2019/7850154] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/31/2019] [Accepted: 08/14/2019] [Indexed: 01/02/2023]
Abstract
Leonurine, also named SCM-198, which was extracted from Herba leonuri, displayed a protective effect on various cardiovascular and brain diseases, like ischemic stroke. Ischemic stroke which is the leading cause of morbidity and mortality, ultimately caused irreversible neuron damage. This study is aimed at exploring the possible therapeutic potential of SCM-198 in the protection against postischemic neuronal injury and possible underlying mechanisms. A transient middle cerebral artery occlusion (tMCAO) rat model was utilized to measure the protective effect of SCM-198 on neurons. TEM was used to determine neuron ultrastructural changes. The brain slices were stained with Nissl staining solution for Nissl bodies. Fluoro-Jade B (FJB) was used for staining the degenerating neurons. In the oxygen-glucose deprivation and re-oxygenation (OGD/R) model of bEnd.3 cells treated with SCM-198 (0.1, 1, 10 μM). Then, the bEnd.3 cells were cocultured with SH-SY5Y cells. Cell viability, MDA level, CAT activity, and apoptosis were examined to evaluate the cytotoxicity of these treatments. Western blot and immunofluorescent assays were used to examine the expression of protein related to the p-STAT3/NOX4/Bcl-2 signaling pathway. Coimmunoprecipitation was performed to determine the interaction between p-STAT3 and NOX4. In the transient middle cerebral artery occlusion (tMCAO) rat model, we found that treatment with SCM-198 could ameliorate neuron morphology and reduce the degenerating cell and neuron loss. In the in vitro model of bEnd.3 cell oxygen-glucose deprivation and reoxygenation (OGD/R), treatment with SCM-198 restored the activity of catalase (CAT), improved the expression of Cu-Zn superoxide dismutase (SOD1), and decreased the malondialdehyde (MDA) production. SCM-198 treatment prevented OGD/R-induced cell apoptosis as indicated by increased cell viability and decreased the number of TUNEL-positive cells, accompanied with upregulation of Bcl-2 and Bcl-xl protein and downregulation Bax protein. The results were consistent with SH-SY5Y cells which coculture with bEnd.3 cells. The forthcoming study revealed that SCM-198 activated the p-STAT3/NOX4/Bcl-2 signaling pathway. All the data indicated that SCM-198 protected against oxidative stress and neuronal damage in in vivo and in vitro injury models via the p-STAT3/NOX4/Bcl-2 signaling pathway. Our results suggested that SCM-198 could be the potential drug for neuroprotective effect through stabilizing endothelial cell function.
Collapse
|
152
|
Musiał-Wysocka A, Kot M, Sułkowski M, Majka M. Regenerative Potential of the Product "CardioCell" Derived from the Wharton's Jelly Mesenchymal Stem Cells for Treating Hindlimb Ischemia. Int J Mol Sci 2019; 20:E4632. [PMID: 31540534 PMCID: PMC6770009 DOI: 10.3390/ijms20184632] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/13/2019] [Accepted: 09/16/2019] [Indexed: 01/24/2023] Open
Abstract
In recent years, mesenchymal stem cells (MSCs) have emerged as a promising therapeutic modality in regenerative medicine. They hold great promise for treating civilization-wide diseases, including cardiovascular diseases, such as acute myocardial infarction and critical limb ischemia. MSCs isolated from Wharton's jelly (WJ-MSCs) may be utilized in both cell-based therapy and vascular graft engineering to restore vascular function, thereby providing therapeutic benefits for patients. The efficacy of WJ-MSCs lies in their multipotent differentiation ability toward vascular smooth muscle cells, endothelial cells and other cell types, as well as their capacity to secrete various trophic factors, which are potent in promoting angiogenesis, inhibiting apoptosis and modulating immunoreaction. Ischemic limb disease is caused by insufficient nutrient and oxygen supplies resulting from damaged peripheral arteries. The lack of nutrients and oxygen causes severe tissue damage in the limb, thereby resulting in severe morbidities and mortality. The therapeutic effects of the conventional treatments are still not sufficient. Cell transplantations in small animal model (mice) are vital for deciphering the mechanisms of MSCs' action in muscle regeneration. The stimulation of angiogenesis is a promising strategy for the treatment of ischemic limbs, restoring blood supply for the ischemic region. In the present study, we focus on the therapeutic properties of the human WJ-MSCs derived product, Cardio. We investigated the role of CardioCell in promoting angiogenesis and relieving hindlimb ischemia. Our results confirm the healing effect of CardioCell and strongly support the use of the WJ-MSCs in regenerative medicine.
Collapse
Affiliation(s)
- Aleksandra Musiał-Wysocka
- Department of Transplantation, Faculty of Medicine, Medical College, Jagiellonian University, Wielicka 265, 30-663 Kraków, Poland.
| | - Marta Kot
- Department of Transplantation, Faculty of Medicine, Medical College, Jagiellonian University, Wielicka 265, 30-663 Kraków, Poland.
| | - Maciej Sułkowski
- Department of Transplantation, Faculty of Medicine, Medical College, Jagiellonian University, Wielicka 265, 30-663 Kraków, Poland.
| | - Marcin Majka
- Department of Transplantation, Faculty of Medicine, Medical College, Jagiellonian University, Wielicka 265, 30-663 Kraków, Poland.
| |
Collapse
|
153
|
Predicting Reactive Astrogliosis Propagation by Bayesian Computational Modeling: the Repeater Stations Model. Mol Neurobiol 2019; 57:879-895. [PMID: 31522382 DOI: 10.1007/s12035-019-01749-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 08/26/2019] [Indexed: 10/26/2022]
Abstract
Reactive astrogliosis occurs upon focal brain injury and in neurodegenerative diseases. The mechanisms that propagate reactive astrogliosis to distal parts of the brain, in a rapid wave that activates astrocytes and other cell types along the way, are not completely understood. It is proposed that damage-associated molecular patterns (DAMP) released by necrotic cells from the injury core have a major role in the reactive astrogliosis initiation but whether they also participate in reactive astrogliosis propagation remains to be determined. We here developed a Bayesian computational model to define the most probable model for reactive astrogliosis propagation. Starting with experimental data from GFAP-immunostained reactive astrocytes, we defined five types of astrocytes based on morphometrical cues and registered the position of each reactive astrocyte cell type in the hemisphere ipsilateral to the injured site after 3 and 7 days post-ischemia. We developed equations for the changes in DAMP concentration (due to diffusion, binding to receptors or degradation), soluble mediators secretion, and for the evolution reactive astrogliosis. We tested four predefined models based on abovementioned previous hypothesis and modifications to it. Our results showed that DAMP diffusion alone has not justified the reactive astrogliosis propagation as previously assumed. Only two models succeeded in accurately reproducing the experimentally measured data and they highlighted the role of microglia and the glial secretion of soluble mediators to sustain the reactive signal and activating neighboring astrocytes. Thus, our in silico analysis proposes that glial cells behave as repeater stations of the injury signal in order to propagate reactive astrogliosis.
Collapse
|
154
|
Citicoline affects serum angiostatin and neurospecific protein levels in patients with atrial fibrillation and ischemic stroke. UKRAINIAN BIOCHEMICAL JOURNAL 2019. [DOI: 10.15407/ubj91.05.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
155
|
Bu F, Min JW, Munshi Y, Lai YJ, Qi L, Urayama A, McCullough LD, Li J. Activation of endothelial ras-related C3 botulinum toxin substrate 1 (Rac1) improves post-stroke recovery and angiogenesis via activating Pak1 in mice. Exp Neurol 2019; 322:113059. [PMID: 31499064 DOI: 10.1016/j.expneurol.2019.113059] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/04/2019] [Accepted: 09/05/2019] [Indexed: 02/04/2023]
Abstract
BACKGROUND AND PURPOSE Long-term disability after stroke is common yet the mechanisms of post-stroke recovery are far from clear. It has been suggested that Ras-related C3 botulinum toxin substrate 1 (Rac1) contributes to functional recovery after ischemic stroke in mice. As Rac1 activation plays diverse roles in multiple cell types after central nervous system (CNS) injury, we herein examined the functional role of endothelial Rac1 in post-stroke recovery and angiogenesis. METHODS Transient middle cerebral artery occlusion (MCAO) in mice and oxygen-glucose deprivation (OGD) in human brain endothelial cell line-5i (HEBC 5i) were performed to mimic ischemic stroke. Lentivirus vectors encoding Rac1 with GFP and endothelial promotor ENG were injected into the animal's brain after stroke to overexpress Rac1. After injection, stroke recovery was tested by multiple behavioral tests including novel object recognition, adhesive removal and single pellet reaching tests. Endothelial regeneration in the peri-infarct zone was detected by immunohistochemistry (IHC). In the vitro model, the effect of Rac1 and Pak1 inhibitors to cell proliferation and migration was examined by CCK-8 and wound healing assays after OGD. The cellular protein level of brain-derived neurotrophic factor (BDNF), phosphorylated cAMP response element-binding protein (CREB), extracellular signal-regulated kinase (ERK) 1/2 and mitogen-activated protein kinase kinase (MEK) 1/2 were detected by western blots. RESULTS Delayed overexpression of endothelial Rac1 after MCAO improved cognitive and sensorimotor recovery from day 14 to 21 after stroke, increased vascular density and the protein level of pericytes in the peri-infarct zone without altering tissue loss in mice. Consistently, inhibition of Rac1 prevented endothelial proliferation and migration after OGD. Pak1 inhibition exerted a similar effect on endothelial cells. However, co-incubation of Rac1 and Pak1 inhibitors with cells did not lead to additive effects when compared with either inhibitor alone. Moreover, individual inhibition of Rac1 or Pak1 suppressed OGD-induced activation of pro-regenerative molecules, including CREB, MEK1/2 and ERK1/2, as well as the production of BDNF in vitro. The level of these proteins did not further decrease if both Rac1 and Pak1 were simultaneously inhibited. CONCLUSIONS We conclude that activation of endothelial Rac1 improves functional recovery and angiogenesis after stroke, and this process is mediated by Pak1 signaling. This study provides novel insight for Rac1 in the mechanism of long-term stroke recovery.
Collapse
Affiliation(s)
- Fan Bu
- Department of Neurology, University of Texas Health Science Center, Houston, TX, USA
| | - Jia-Wei Min
- Department of Neurology, University of Texas Health Science Center, Houston, TX, USA
| | - Yashasvee Munshi
- Department of Neurology, University of Texas Health Science Center, Houston, TX, USA
| | - Yun-Ju Lai
- Department of Neurology, University of Texas Health Science Center, Houston, TX, USA
| | - Li Qi
- Department of Neurology, University of Texas Health Science Center, Houston, TX, USA
| | - Akihiko Urayama
- Department of Neurology, University of Texas Health Science Center, Houston, TX, USA
| | - Louise D McCullough
- Department of Neurology, University of Texas Health Science Center, Houston, TX, USA
| | - Jun Li
- Department of Neurology, University of Texas Health Science Center, Houston, TX, USA.
| |
Collapse
|
156
|
Asaduddin M, Do WJ, Kim EY, Park SH. Mapping cerebral perfusion from time-resolved contrast-enhanced MR angiographic data. Magn Reson Imaging 2019; 61:143-148. [DOI: 10.1016/j.mri.2019.05.040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/24/2019] [Accepted: 05/27/2019] [Indexed: 12/23/2022]
|
157
|
Zhu J, Cao D, Guo C, Liu M, Tao Y, Zhou J, Wang F, Zhao Y, Wei J, Zhang Y, Fang W, Li Y. Berberine Facilitates Angiogenesis Against Ischemic Stroke Through Modulating Microglial Polarization via AMPK Signaling. Cell Mol Neurobiol 2019; 39:751-768. [PMID: 31020571 PMCID: PMC11462843 DOI: 10.1007/s10571-019-00675-7] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 04/09/2019] [Indexed: 12/18/2022]
Abstract
Evidence suggests that microglia/macrophages can change their phenotype to M1 or M2 and participate in tissue damage or repair. Berberine (BBR) has shown promise in experimental stroke models, but its effects on microglial polarization and long-term recovery after stroke are elusive. Here, we investigated the effects of BBR on angiogenesis and microglial polarization through AMPK signaling after stroke. In the present study, C57BL/6 mice were subjected to transient middle cerebral artery occlusion (tMCAO), intragastrically administrated with BBR at 50 mg/kg/day. Neo-angiogenesis was observed by 68Ga-NODAGA-RGD micro-PET/CT and immunohistochemistry. Immunofluorescent staining further exhibited an increase of M2 microglia and a reduction of M1 microglia at 14 days after stroke. In vitro studies, the lipopolysaccharide (LPS)-induced BV2 microglial cells were used to confirm the AMPK activation effect of BBR. RT-PCR, Flow cytometry, and ELISA all demonstrated that BBR could inhibit M1 polarization and promote M2 polarization. Furthermore, treatment of human umbilical vein endothelial cells (HUVEC) with conditioned media collected from BBR-treated BV2 cells promoted angiogenesis. All effects stated above were reversed by AMPK inhibitor (Compound C) and AMPK siRNA. In conclusion, BBR treatment improves functional recovery and promotes angiogenesis following tMCAO via AMPK-dependent microglial M2 polarization.
Collapse
Affiliation(s)
- Junrong Zhu
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, People's Republic of China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Dingwen Cao
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, People's Republic of China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Chao Guo
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, 710000, People's Republic of China
| | - Manman Liu
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, People's Republic of China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Yifu Tao
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, People's Republic of China
| | - Junshan Zhou
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, People's Republic of China
| | - Feng Wang
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, People's Republic of China
| | - Yanli Zhao
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, People's Republic of China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Jing Wei
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, People's Republic of China
| | - Yingdong Zhang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China.
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, People's Republic of China.
| | - Weirong Fang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China.
| | - Yunman Li
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China.
| |
Collapse
|
158
|
Bogorad MI, DeStefano JG, Linville RM, Wong AD, Searson PC. Cerebrovascular plasticity: Processes that lead to changes in the architecture of brain microvessels. J Cereb Blood Flow Metab 2019; 39:1413-1432. [PMID: 31208241 PMCID: PMC6681538 DOI: 10.1177/0271678x19855875] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The metabolic demands of the brain are met by oxygen and glucose, supplied by a complex hierarchical network of microvessels (arterioles, capillaries, and venules). Transient changes in neural activity are accommodated by local dilation of arterioles or capillaries to increase cerebral blood flow and hence nutrient availability. Transport and communication between the circulation and the brain is regulated by the brain microvascular endothelial cells that form the blood-brain barrier. Under homeostatic conditions, there is very little turnover in brain microvascular endothelial cells, and the cerebrovascular architecture is largely static. However, changes in the brain microenvironment, due to environmental factors, disease, or trauma, can result in additive or subtractive changes in cerebrovascular architecture. Additions occur by angiogenesis or vasculogenesis, whereas subtractions occur by vascular pruning, injury, or endothelial cell death. Here we review the various processes that lead to changes in the cerebrovascular architecture, including sustained changes in the brain microenvironment, development and aging, and injury, disease, and repair.
Collapse
Affiliation(s)
- Max I Bogorad
- 1 Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA.,2 Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jackson G DeStefano
- 1 Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA.,2 Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Raleigh M Linville
- 1 Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA.,3 Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Andrew D Wong
- 1 Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA.,2 Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Peter C Searson
- 1 Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA.,2 Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA.,3 Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
159
|
Park GH, Shin HS, Choi ES, Yoon BS, Choi MH, Lee SJ, Lee KE, Lee JS, Hong JM. Cranial burr hole with erythropoietin administration induces reverse arteriogenesis from the enriched extracranium. Neurobiol Dis 2019; 132:104538. [PMID: 31344491 DOI: 10.1016/j.nbd.2019.104538] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/07/2019] [Accepted: 07/19/2019] [Indexed: 01/21/2023] Open
Abstract
It is challenging to revitalize ischemic penumbra after an acute stroke with intracranial perfusion insufficiency. To evaluate whether cranial burr hole and erythropoietin (EPO) generate effective revascularization, we investigated the efficacy of the augmentation method for reverse arteriogenesis from the healthy extracranial milieu. An intracranial perfusion insufficiency was created through bilateral internal carotid artery ligation (bICAL) in Sprague-Dawley rats. We administered recombinant human EPO (5000 U/kg) or saline intraperitoneally for 3 days after bICAL. Mechanical barrier disruption (MBD) was performed through a cranial burr hole with small dural cracks in the right hemisphere. The ipsilateral hemisphere with MBD grossly showed vascular networks between the extra- and intra-cranial spaces 2 weeks after the MBD procedure. It also showed significantly increased vessels in the intracranial vasculature adjacent to the MBD region (p = 0.0006). The levels of pro-angiogenic and inflammatory factors with prominent markers of vessel permeability were also significantly increased (MBD-only vs. control; Tnf-α, p = 0.0007; Vegf, p = 0.0206). In the EPO-administered group, such elevations in inflammation were significantly mitigated (combined vs. MBD-only; Tnf-α, p = 0.0008). The ipsilateral hemisphere with MBD-EPO (vs. MBD-only) showed significantly increased vessels (RECA-1, p = 0.0182) and their maturation (RECA-1/α-SMA, p = 0.0046), with upregulation of tumor growth factor-β1 (Tgf-β1, p = 0.037) and matrix metalloproteinase-2 (Mmp-2, p = 0.0488). These findings were completely blocked by minocycline (MIC) administration during in vivo (Tgf-β1, p = 0.0009; Mmp-2, p < 0.0001) and in vitro experiments (tube formation, p < 0.0001). Our data suggest that the MBD procedure (for angiogenic routes) and EPO administration (for an arteriogenic booster) are complimentary and can facilitate successfully "reverse arteriogenesis" in subjects with intracranial perfusion insufficiency.
Collapse
Affiliation(s)
- Geun Hwa Park
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, South Korea
| | - Hee Sun Shin
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, South Korea
| | - Eun Sil Choi
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, South Korea
| | - Bok Seon Yoon
- Department of Neurology, Ajou University School of Medicine, Ajou University Medical Center, Suwon, South Korea
| | - Mun Hee Choi
- Department of Neurology, Ajou University School of Medicine, Ajou University Medical Center, Suwon, South Korea
| | - Seong-Joon Lee
- Department of Neurology, Ajou University School of Medicine, Ajou University Medical Center, Suwon, South Korea
| | - Kyung-Eon Lee
- Department of Life and Nanopharmaceutical Sciences, Kyung Hee University School of Pharmacy, Seoul, South Korea
| | - Jin Soo Lee
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, South Korea; Department of Neurology, Ajou University School of Medicine, Ajou University Medical Center, Suwon, South Korea
| | - Ji Man Hong
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, South Korea; Department of Neurology, Ajou University School of Medicine, Ajou University Medical Center, Suwon, South Korea.
| |
Collapse
|
160
|
Wang J, Lin X, Mu Z, Shen F, Zhang L, Xie Q, Tang Y, Wang Y, Zhang Z, Yang GY. Rapamycin Increases Collateral Circulation in Rodent Brain after Focal Ischemia as detected by Multiple Modality Dynamic Imaging. Am J Cancer Res 2019; 9:4923-4934. [PMID: 31410191 PMCID: PMC6691378 DOI: 10.7150/thno.32676] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Accepted: 03/17/2019] [Indexed: 01/09/2023] Open
Abstract
Rationale: Brain collaterals contribute to improving ischemic stroke outcomes. However, dynamic and timely investigations of collateral blood flow and collateral restoration in whole brains of living animals have rarely been reported. Methods: Using multiple modalities of imaging, including synchrotron radiation angiography, laser speckle imaging, and micro-CT imaging, we dynamically explored collateral circulation throughout the whole brain in the rodent middle cerebral artery occlusion model. Results: We demonstrated that compared to control animals, 4 neocollaterals gradually formed between the intra- and extra-arteries in the skull base of model animals after occlusion (p<0.05). Two main collaterals were critical to the supply of blood from the posterior to the middle cerebral artery territory in the deep brain (p<0.05). Abundant small vessel and capillary anastomoses were detected on the surface of the cortex between the posterior and middle cerebral artery and between the anterior and middle cerebral artery (p<0.05). Collateral perfusion occurred immediately (≈15 min) and was maintained for up to 14 days after occlusion. Further study revealed that administration of rapamycin at 15 min after MCAO dilated the existing collateral vessels and promoted collateral perfusion. Principal conclusions: Our results provide evidence of collateral functional perfusion in the skull base, deep brain, and surface of the cortex. Rapamycin was capable of enlarging the diameter of collaterals, potentially extending the time window for ischemic stroke therapy.
Collapse
|
161
|
Zhan Y, Li MZ, Yang L, Feng XF, Zhang QX, Zhang N, Zhao YY, Zhao H. An MRI Study of Neurovascular Restorative After Combination Treatment With Xiaoshuan Enteric-Coated Capsule and Enriched Environment in Rats After Stroke. Front Neurosci 2019; 13:701. [PMID: 31354412 PMCID: PMC6630081 DOI: 10.3389/fnins.2019.00701] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 06/20/2019] [Indexed: 12/13/2022] Open
Abstract
Xiaoshuan enteric-coated capsule (XSEC) is a Chinese medicinal compound widely used for treatment of ischemic cerebrovascular diseases. Enriched environment (EE) is an effective rehabilitative protocol designed to enhance sensorimotor, cognitive and social stimulation. This study aimed to apply magnetic resonance imaging (MRI) to non-invasively assess whether EE could augment the therapeutic benefits of XSEC on post-ischemic neurovascular remodeling. Male Sprague–Dawley rats were subjected to permanent middle cerebral artery occlusion (MCAO) and treated with XSEC and EE alone or combination for 30 consecutive days. Beam walking test and Morris water maze (MWM) test were performed to evaluate motor and cognitive function, respectively. Multimodal MRI was applied to examine alterations to brain structures, intracranial vessels, and cerebral perfusion on the 31st day after MCAO. Double-immunofluorescent staining was used to evaluate neurogenesis and angiogenesis. Western blot and RT-PCR were used to detect the expressions of vascular endothelial growth factor (VEGF), angiopoietin-1 (Ang-1), angiopoietin-2 (Ang-2), and the axon guidance molecules. Combination therapy with XSEC and EE significantly reduced cystic volume compared with XSEC and EE monotherapies. In line with this, combination treated rats performed better in the beam walking test and exhibited improved spatial memory in the probe trial of the MWM. Moreover, XSEC and EE combination treatment improved cerebral blood flow (CBF), amplified angiogenesis and upregulated VEGF protein levels. This proangiogenic effect was consistent with the increased progenitor cell proliferation and neuronal differentiation in the peri-infarct cortex and striatum. Specifically, the combined therapy of XSEC and EE markedly increased the Netrin-1 and Robo-1 protein expression levels compared with vehicle group, while no difference was observed between XSEC or EE monotherapy and vehicle group. Together, these findings indicate that the combination of XSEC and EE benefits neurovascular reorganization. This correlates with restoration of CBF, promotion of neurogenesis and angiogenesis, and activation of the intrinsic axonal guidance molecules, thereby facilitating greater physical rehabilitation after ischemic stroke.
Collapse
Affiliation(s)
- Yu Zhan
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, China
| | - Man-Zhong Li
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, China
| | - Le Yang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, China
| | - Xue-Feng Feng
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, China
| | - Qiu-Xia Zhang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, China
| | - Nan Zhang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, China
| | - Yuan-Yuan Zhao
- Medical Imaging Laboratory of Core Facility Center, Capital Medical University, Beijing, China
| | - Hui Zhao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, China
| |
Collapse
|
162
|
Nighoghossian N, Cornut L, Amaz C, Eker O, Mewton N, Ameli R, Berner LP, Cho TH, Ovize M, Berthezene Y. Impact of Collateral Status on Neuroprotective Effect of Cyclosporine A in Acute Ischemic Stroke. Curr Neurovasc Res 2019; 16:173-177. [PMID: 31244424 DOI: 10.2174/1567202616666190618094014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 03/31/2019] [Accepted: 04/03/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Neuroprotection for acute ischemic stroke remains an elusive goal. Intracranial collaterals may favor neuroprotective drugs delivery at the acute stage of ischemic stroke. A recent phase 2 study showed that cyclosporine A (CsA) reduced ischemic damage in patients with a proximal occlusion who experienced effective recanalization. Collateral flow may improve this benefit. MATERIALS & METHODS Collateral supply was assessed using dynamic susceptibility contrast MRI in 47 patients among the 110 patients from the original study and were graded in two groups: good collaterals and poor collaterals. Patients with good collaterals had significantly smaller initial infarct in both CsA group (p = 0.003) and controls (p = 0.016). Similarly, the final lesion volume was significantly lower in patients with good collaterals in both groups. RESULTS In patients with either good or poor collaterals CsA showed no additional benefit on ischemic lesion progression and final infarct size at day 30. CONCLUSION We failed to demonstrate any significant additional benefit of CsA in patients with good collateral circulation.
Collapse
Affiliation(s)
- Norbert Nighoghossian
- Department of Stroke Medicine, University Lyon 1, Hospices Civils de Lyon, Lyon, France
| | - Lucie Cornut
- Department of Neuroradiology, University Lyon 1, CREATIS, CNRS-UMR5220 INSERM-U1044, Lyon, France
| | - Camille Amaz
- Department of Cardiology, Clinical Investigation Center, Universite Lyon 1, Lyon, France
| | - Omer Eker
- Department of Neuroradiology, University Lyon 1, CREATIS, CNRS-UMR5220 INSERM-U1044, Lyon, France
| | - Nathan Mewton
- Department of Cardiology, Clinical Investigation Center, Universite Lyon 1, Lyon, France
| | - Roxana Ameli
- Department of Neuroradiology, University Lyon 1, CREATIS, CNRS-UMR5220 INSERM-U1044, Lyon, France
| | - Lise Prune Berner
- Department of Neuroradiology, University Lyon 1, CREATIS, CNRS-UMR5220 INSERM-U1044, Lyon, France
| | - Tae Hee Cho
- Department of Stroke Medicine, University Lyon 1, Hospices Civils de Lyon, Lyon, France
| | - Michel Ovize
- Department of Cardiology, Clinical Investigation Center, Universite Lyon 1, Lyon, France
| | - Yves Berthezene
- Department of Neuroradiology, University Lyon 1, CREATIS, CNRS-UMR5220 INSERM-U1044, Lyon, France
| |
Collapse
|
163
|
Rajendran S, Shen X, Glawe J, Kolluru GK, Kevil CG. Nitric Oxide and Hydrogen Sulfide Regulation of Ischemic Vascular Growth and Remodeling. Compr Physiol 2019; 9:1213-1247. [PMID: 31187898 DOI: 10.1002/cphy.c180026] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ischemic vascular remodeling occurs in response to stenosis or arterial occlusion leading to a change in blood flow and tissue perfusion. Altered blood flow elicits a cascade of molecular and cellular physiological responses leading to vascular remodeling of the macro- and micro-circulation. Although cellular mechanisms of vascular remodeling such as arteriogenesis and angiogenesis have been studied, therapeutic approaches in these areas have had limited success due to the complexity and heterogeneous constellation of molecular signaling events regulating these processes. Understanding central molecular players of vascular remodeling should lead to a deeper understanding of this response and aid in the development of novel therapeutic strategies. Hydrogen sulfide (H2 S) and nitric oxide (NO) are gaseous signaling molecules that are critically involved in regulating fundamental biochemical and molecular responses necessary for vascular growth and remodeling. This review examines how NO and H2 S regulate pathophysiological mechanisms of angiogenesis and arteriogenesis, along with important chemical and experimental considerations revealed thus far. The importance of NO and H2 S bioavailability, their synthesis enzymes and cofactors, and genetic variations associated with cardiovascular risk factors suggest that they serve as pivotal regulators of vascular remodeling responses. © 2019 American Physiological Society. Compr Physiol 9:1213-1247, 2019.
Collapse
Affiliation(s)
| | - Xinggui Shen
- Departments of Pathology, LSU Health Sciences Center, Shreveport
| | - John Glawe
- Departments of Pathology, LSU Health Sciences Center, Shreveport
| | - Gopi K Kolluru
- Departments of Pathology, LSU Health Sciences Center, Shreveport
| | - Christopher G Kevil
- Departments of Pathology, LSU Health Sciences Center, Shreveport.,Departments of Cellular Biology and Anatomy, LSU Health Sciences Center, Shreveport.,Departments of Molecular and Cellular Physiology, LSU Health Sciences Center, Shreveport
| |
Collapse
|
164
|
Jiang W, Hu W, Ye L, Tian Y, Zhao R, Du J, Shen B, Wang K. Contribution of Apelin-17 to Collateral Circulation Following Cerebral Ischemic Stroke. Transl Stroke Res 2019; 10:298-307. [PMID: 29916125 DOI: 10.1007/s12975-018-0638-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 06/07/2018] [Accepted: 06/12/2018] [Indexed: 01/02/2023]
Abstract
Apelin, an essential mediator of homeostasis, is crucially involved in cardiovascular diseases, including ischemic stroke. However, the functional roles of apelin-17 in cerebral collateral circulation and ischemic stroke protection are unknown. Here, we investigated the association between plasma apelin-17 levels and collateral circulation in patients with ischemic stroke and examined the mechanism undergirding the effects of apelin-17 on cerebral artery contraction and ischemic stroke protection in an animal model. Plasma nitric oxide (NO), apelin-17, and apelin-36 levels were assessed by enzyme-linked immunosorbent assays in ischemic stroke patients with good or poor collateral circulation and in healthy participants. Additionally, the effects of apelin-17 on rat basilar artery contractions (in vitro) and cerebral ischemia (in vivo) were determined using vessel tension measurements and nuclear magnetic resonance, respectively. Patients with good collateral circulation had significantly higher plasma apelin-17 and apelin-36 levels than both patients with poor collateral circulation and healthy participants and plasma NO levels significantly higher than those in healthy participants. In vitro, apelin-17 pretreatment markedly attenuated U46619-induced rat basilar artery contractions in an endothelium-dependent manner. Additionally, NO production or guanylyl cyclase inhibitors abolished the apelin-17 effect on U46619-induced vascular contraction. Intravenous pretreatment of rats with apelin-17 markedly reduced cerebral infarct volume at 24 h after middle cerebral artery occlusion. Plasma apelin-17 levels in ischemic stroke patients were positively associated with enhanced collateral circulation, which our animal study data suggested may have resulted from an apelin-17-induced cerebral artery dilation mediated through the NO-cGMP pathway.
Collapse
Affiliation(s)
- Wan Jiang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, Anhui, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230032, Anhui, China
- Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental Health, Hefei, 230032, Anhui, China
| | - Wei Hu
- Department of Neurology, Affiliated Provincial Hospital of Anhui Medical University, Hefei, 230032, Anhui, China
| | - Li Ye
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, Anhui, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230032, Anhui, China
- Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental Health, Hefei, 230032, Anhui, China
| | - Yanghua Tian
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, Anhui, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230032, Anhui, China
- Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental Health, Hefei, 230032, Anhui, China
| | - Ren Zhao
- Department of Cardiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, Anhui, China
| | - Juan Du
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Bing Shen
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, China.
| | - Kai Wang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, Anhui, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230032, Anhui, China
- Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental Health, Hefei, 230032, Anhui, China
| |
Collapse
|
165
|
Ji Z, Fang Q, Yu L. [Collateral circulation and Toll-like receptor 4 levels in patients with acute cerebral infarction after intravenous thrombolysis]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2019; 39:621-626. [PMID: 31140430 DOI: 10.12122/j.issn.1673-4254.2019.05.20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To investigate the relationship between Toll-like receptor 4 (TLR4) and collateral circulation in patients with acute cerebral infarction (AIS) after thrombolytic therapy. METHODS This retrospective, observational cohort study was conducted among 65 patients with AIS receiving thrombolytic therapy, who were divided according to findings by computed tomographic angiography (CTA) into good collateral circulation (group A, n = 34) and poor collateral circulation (group B, n = 31). Serum samples were collected from all the patients and the levels of TLR4 were measured with ELISA. RESULTS The patients in group A had significantly better outcomes than those in group B. The NIHSS scores at 24 h and 30 days after thrombolytic therapy, mRS scores at 90 days and serum TLR4 levels were significantly lower in group A than in group B (P < 0.05); the percentages of patients with symptomatic intracerebral hemorrhage were comparable between the two groups. The serum levels of TLR4 were negatively correlated with the rMLC score (P < 0.05). Multivariate logistic regression analysis showed that a high level of TLR4 was associated with a poor collateral circulation after thrombolysis. CONCLUSIONS Good collateral circulation can increase the benefit of intravenous thrombolysis in patients with ACI, and the level of TLR4 is a predictive factor for the compensation of collateral circulation following ACI.
Collapse
Affiliation(s)
- Zhengxiang Ji
- Department of Neurology, First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Qi Fang
- Department of Neurology, First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Liqiang Yu
- Department of Neurology, First Affiliated Hospital of Soochow University, Suzhou 215006, China
| |
Collapse
|
166
|
Shen J, Zhao Z, Shang W, Liu C, Zhang B, Xu Z, Cai H. Fabrication and evaluation a transferrin receptor targeting nano-drug carrier for cerebral infarction treatment. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:192-200. [PMID: 30663409 DOI: 10.1080/21691401.2018.1548471] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
After cerebral infarction, the regeneration of microvascular played an important role in the recovery. Ginsenoside Rg1 (Rg1) had good effects on promoting angiogenesis and neuro-protection in cerebral infarction treatment. However, the blood-brain barrier (BBB) restricted Rg1 to enter into cerebral tissue. Transferrin receptor (TfR) was over-expressed in the BBB. In this study, we fabricated a TfR targeting nano-carrier (PATRC) to penetrate the BBB for treatment of cerebral infarction. A TfR targeted peptide was conjugated with the nano-carrier wrapped hydrophobic Rg1. The nanoscale size (132 ± 12 nm), polydispersity index (PDI =0.29) and the zeta potential (-38mv) were tested with dynamic light scattering optical system. Surface morphology (ellipse, mean diameter 122 ± 26 nm) was detected by transmission electron microscope (TEM). PATRC implement cell targeting ability on rat brain microvascular endothelial cells RBE4 in vitro detected by immunofluorescence and flow cytometry methods. Comparing with Rg1 threated group, the PATRC exhibited more prominent ability on the tube formation ability (p < .05) in vitro. Comparing with the Rg1 treated group, PATRC penetrated BBB in vivo detected by HPLC, decreased the brain infarction volume tested with TTC staining and promoted regeneration of microvascular in infarction zone detected by CD31 immunofluorescence. PATRC has great potentiality for wide application in clinic.
Collapse
Affiliation(s)
- Junyi Shen
- a Department of Integrated Traditional and Western Medicine, Jinling Hospital, School of Medicine , Nanjing University , Nanjing , China
| | - Zhiming Zhao
- a Department of Integrated Traditional and Western Medicine, Jinling Hospital, School of Medicine , Nanjing University , Nanjing , China
| | - Wei Shang
- a Department of Integrated Traditional and Western Medicine, Jinling Hospital, School of Medicine , Nanjing University , Nanjing , China
| | - Chunli Liu
- a Department of Integrated Traditional and Western Medicine, Jinling Hospital, School of Medicine , Nanjing University , Nanjing , China
| | - Beibei Zhang
- a Department of Integrated Traditional and Western Medicine, Jinling Hospital, School of Medicine , Nanjing University , Nanjing , China
| | - Zihan Xu
- a Department of Integrated Traditional and Western Medicine, Jinling Hospital, School of Medicine , Nanjing University , Nanjing , China
| | - Hui Cai
- a Department of Integrated Traditional and Western Medicine, Jinling Hospital, School of Medicine , Nanjing University , Nanjing , China
| |
Collapse
|
167
|
Roth M, Gaceb A, Enström A, Padel T, Genové G, Özen I, Paul G. Regulator of G-protein signaling 5 regulates the shift from perivascular to parenchymal pericytes in the chronic phase after stroke. FASEB J 2019; 33:8990-8998. [PMID: 31039042 PMCID: PMC6662981 DOI: 10.1096/fj.201900153r] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Poststroke recovery requires multiple repair mechanisms, including vascular remodeling and blood-brain barrier (BBB) restoration. Brain pericytes are essential for BBB repair and angiogenesis after stroke, but they also give rise to scar-forming platelet-derived growth factor receptor β (PDGFR-β)–expressing cells. However, many of the molecular mechanisms underlying this pericyte response after stroke still remain unknown. Regulator of G-protein signaling 5 (RGS5) has been associated with pericyte detachment from the vascular wall, but whether it regulates pericyte function and vascular stabilization in the chronic phase of stroke is not known. Using RGS5–knockout (KO) mice, we study how loss of RGS5 affects the pericyte response and vascular remodeling in a stroke model at 7 d after ischemia. Loss of RGS5 leads to a shift toward an increase in the number of perivascular pericytes and reduction in the density of parenchymal PDGFR-β–expressing cells associated with normalized PDGFR-β activation after stroke. The redistribution of pericytes resulted in higher pericyte coverage, increased vascular density, preservation of vessel lengths, and a significant reduction in vascular leakage in RGS5-KO mice compared with controls. Our study demonstrates RGS5 in pericytes as an important target to enhance vascular remodeling.—Roth, M., Gaceb, A., Enström, A., Padel, T., Genové, G., Özen, I., Paul, G. Regulator of G-protein signaling 5 regulates the shift from perivascular to parenchymal pericytes in the chronic phase after stroke.
Collapse
Affiliation(s)
- Michaela Roth
- Translational Neurology Group, Department of Clinical Science, Lund University, Lund, Sweden
| | - Abderahim Gaceb
- Translational Neurology Group, Department of Clinical Science, Lund University, Lund, Sweden
| | - Andreas Enström
- Translational Neurology Group, Department of Clinical Science, Lund University, Lund, Sweden
| | - Thomas Padel
- Translational Neurology Group, Department of Clinical Science, Lund University, Lund, Sweden
| | - Guillem Genové
- Department of Medicine, Integrated Cardio Metabolic Centre, Karolinska Institute, Huddinge, Sweden
| | - Ilknur Özen
- Translational Neurology Group, Department of Clinical Science, Lund University, Lund, Sweden
| | - Gesine Paul
- Translational Neurology Group, Department of Clinical Science, Lund University, Lund, Sweden.,Department of Neurology, Scania University Hospital, Lund, Sweden.,Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| |
Collapse
|
168
|
Peng L, Yin J, Ge M, Wang S, Xie L, Li Y, Si JQ, Ma K. Isoflurane Post-conditioning Ameliorates Cerebral Ischemia/Reperfusion Injury by Enhancing Angiogenesis Through Activating the Shh/Gli Signaling Pathway in Rats. Front Neurosci 2019; 13:321. [PMID: 31024240 PMCID: PMC6465767 DOI: 10.3389/fnins.2019.00321] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 03/20/2019] [Indexed: 11/18/2022] Open
Abstract
Background: Stroke is the second leading cause of death worldwide. Angiogenesis facilitates the formation of microvascular networks and promotes recovery after stroke. The Shh/Gli signaling pathway is implicated in angiogenesis and cerebral ischemia-reperfusion (I/R) injury. This study aimed at investigating the influence of isoflurane (ISO) post-conditioning on brain lesions and angiogenesis after I/R injury. Methods: Adult male Sprague-Dawley rats were subjected to middle cerebral artery occlusion (MCAO), 1.5 h occlusion and 24 h reperfusion (MCAO/R). The ISO post-conditioning group (ISO group) received 1 h ISO post-conditioning when reperfusion was initiated. Neurobehavioral tests, TTC staining, HE staining, Nissl staining, TUNEL staining, immunofluorescence (IF), immunohistochemistry (IH) and Western blot were performed to assess the effect of ISO after I/R injury. Results: ISO post-conditioning resulted in lower infarct volumes and neurologic deficit scores, higher rate of neurons survival, and less damaged and apoptotic cells after cerebral I/R injury in rats. Meanwhile, ISO post-conditioning significantly increased the expression levels of vascular endothelial growth factor (VEGF) and CD34 in the ischemic penumbra, relative to that in the Sham and I/R groups. However, cyclopamine, the specific inhibitor of the Sonic hedgehog (Shh) signaling pathway, decreased the expression levels of VEGF and CD34, and counteracted the protective effects of ISO post-conditioning against I/R injury in rats. Conclusions: ISO post-conditioning enhances angiogenesis in vivo partly via the Shh/Gli signaling pathway. Thus, Shh/Gli may represent new therapeutic targets for aiding recovery from stroke.
Collapse
Affiliation(s)
- Li Peng
- Department of Anesthesiology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Jiangwen Yin
- Department of Anesthesiology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Mingyue Ge
- Department of Anesthesiology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Sheng Wang
- Division of Life Sciences and Medicine, Department of Anesthesiology, First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| | - Liping Xie
- Department of Anesthesiology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Yan Li
- Department of Anesthesiology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Jun-Qiang Si
- Department of Physiology, School of Medicine, Shihezi University and The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi, China
| | - Ketao Ma
- Department of Physiology, School of Medicine, Shihezi University and The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi, China
| |
Collapse
|
169
|
Pro-angiogenic activity of isoliquiritin on HUVECs in vitro and zebrafish in vivo through Raf/MEK signaling pathway. Life Sci 2019; 223:128-136. [DOI: 10.1016/j.lfs.2019.03.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/05/2019] [Accepted: 03/10/2019] [Indexed: 12/21/2022]
|
170
|
Bernstock JD, Peruzzotti-Jametti L, Leonardi T, Vicario N, Ye D, Lee YJ, Maric D, Johnson KR, Mou Y, Van Den Bosch A, Winterbone M, Friedman GK, Franklin RJM, Hallenbeck JM, Pluchino S. SUMOylation promotes survival and integration of neural stem cell grafts in ischemic stroke. EBioMedicine 2019; 42:214-224. [PMID: 30905846 PMCID: PMC6491415 DOI: 10.1016/j.ebiom.2019.03.035] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/25/2019] [Accepted: 03/13/2019] [Indexed: 12/29/2022] Open
Abstract
Background Neural stem cell (NSC)-based therapies hold great promise for treating diseases of the central nervous system (CNS). However, several fundamental problems still need to be overcome to fully exploit the clinical potential of NSC therapeutics. Chief among them is the limited survival of NSC grafts within hostile microenvironments. Methods Herein, we sought to engineer NSCs in an effort to increase graft survival within ischemic brain lesions via upregulation of global SUMOylation, a post-translational modification critically involved in mediating tolerance to ischemia/reperfusion. Findings NSCs overexpressing the SUMO E2-conjugase Ubc9 displayed resistance to oxygen-glucose-deprivation/restoration of oxygen/glucose (OGD/ROG) and enhanced neuronal differentiation in vitro, as well as increased survival and neuronal differentiation when transplanted in mice with transient middle cerebral artery occlusion in vivo. Interpretation Our work highlights a critical role for SUMOylation in NSC biology and identifies a biological pathway that can be targeted to increase the effectiveness of exogenous stem cell medicines in ischemic stroke. Fund Intramural Research Program of the NINDS/NIH, the Italian Multiple Sclerosis Foundation (FISM), the Bascule Charitable Trust, NIH-IRTA-OxCam and Wellcome Trust Research Training Fellowships. Ubc9-overexpressing NSCs demonstrate enhanced neuronal differentiation. Upregulating SUMOylation in NSCs increases resistance to ischemia/reperfusion in vitro. Ubc9-overexpressing NSC grafts robustly integrate within the brain of mice post-stroke.
Collapse
Affiliation(s)
- Joshua D Bernstock
- Stroke Branch, National Institutes of Health (NINDS/NIH), National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA; Department of Clinical Neurosciences, University of Cambridge, UK.
| | - Luca Peruzzotti-Jametti
- Department of Clinical Neurosciences, University of Cambridge, UK; NIHR Biomedical Research Centre, University of Cambridge, UK.
| | - Tommaso Leonardi
- Department of Clinical Neurosciences, University of Cambridge, UK; NIHR Biomedical Research Centre, University of Cambridge, UK
| | - Nunzio Vicario
- Department of Clinical Neurosciences, University of Cambridge, UK; Department of Biomedical and Biotechnological Sciences, Physiology Section, University of Catania, Italy
| | - Daniel Ye
- Stroke Branch, National Institutes of Health (NINDS/NIH), National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Yang-Ja Lee
- Stroke Branch, National Institutes of Health (NINDS/NIH), National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Dragan Maric
- Flow and Imaging Cytometry Core Facility, National Institutes of Health (NINDS/NIH), National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Kory R Johnson
- Bioinformatics Section, Information Technology & Bioinformatics Program, Division of Intramural Research (DIR), (NINDS/NIH), Bethesda, MD, USA
| | - Yongshan Mou
- Stroke Branch, National Institutes of Health (NINDS/NIH), National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | | | - Mark Winterbone
- Department of Clinical Neurosciences, University of Cambridge, UK
| | - Gregory K Friedman
- Department of Pediatrics and Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Robin J M Franklin
- Department of Clinical Neurosciences, University of Cambridge, UK; Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, UK
| | - John M Hallenbeck
- Stroke Branch, National Institutes of Health (NINDS/NIH), National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA.
| | - Stefano Pluchino
- Department of Clinical Neurosciences, University of Cambridge, UK; NIHR Biomedical Research Centre, University of Cambridge, UK.
| |
Collapse
|
171
|
Tian Y, Di Y, Zhang J, Chen X, Feng T, Adu-Nti F, Shi M, Fan J, Zhang J, Zhang P, Liu Y. Angiogenic Gene Profiles in Laser-Microdissected Microvessels and Neurons from Ischemic Penumbra of Rat Brain. J Mol Neurosci 2019; 67:643-653. [PMID: 30840225 DOI: 10.1007/s12031-019-01270-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 01/22/2019] [Indexed: 11/30/2022]
Abstract
Angiogenesis is induced immediately after cerebral ischemia and plays a pivotal role in the strategy against ischemic injury. We hypothesized that the coordinated interaction between microvessels and neurons was altered immediately after stroke, and microvessels and neurons would show the temporal specificity of angiogenic gene profiles after cerebral ischemia. Microvessels and neurons were harvested in the ischemic penumbra of rat brain using the PixCell II laser capture microdissection (LCM) instrument. After RNA isolation, T7 and gene-specific primer RNA linear amplification were performed, and angiogenic functional grouping cDNA profiling was analyzed in LCM samples. cDNA microarray results showed there were 35 (36.46%) and 27 (28.13%) genes expression changes in the microvessels, while 25 (26.04%) and 31 (32.29%) genes were changed in the neurons at 2 h and 24 h after cerebral ischemia. Members of growth factors and receptors, cytokines and chemokines, adhesion molecules, matrix proteins, proteases, and inhibitors showed temporal and spatial differentiation in the microvessels and neurons after cerebral ischemia. This finding will help to understand the coordination and interaction between microvessels and neurons, and to elucidate the molecular mechanisms of angiogenesis after brain ischemic injury.
Collapse
Affiliation(s)
- Yingfang Tian
- Key Laboratory of Modern Teaching Technology, Ministry of Education, Xi'an, 710062, Shaanxi, China. .,College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China.
| | - Yuanyuan Di
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Jianshui Zhang
- Institute of Neurobiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Xinlin Chen
- Institute of Neurobiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Ting Feng
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Frank Adu-Nti
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Meimei Shi
- Key Laboratory of Modern Teaching Technology, Ministry of Education, Xi'an, 710062, Shaanxi, China
| | - Juan Fan
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Junfeng Zhang
- Department of Anatomy, Xi'an Medical University, Xi'an, 710021, Shaanxi, China
| | - Pengbo Zhang
- Department of Anesthesia of the Second Affiliated Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, 710004, Shaanxi, China
| | - Yong Liu
- Institute of Neurobiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
172
|
Oh B, George P. Conductive polymers to modulate the post-stroke neural environment. Brain Res Bull 2019; 148:10-17. [PMID: 30851354 DOI: 10.1016/j.brainresbull.2019.02.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/12/2019] [Accepted: 02/26/2019] [Indexed: 12/24/2022]
Abstract
Despite the prevalence of stroke, therapies to augment recovery remain limited. Here we focus on the use of conductive polymers for cell delivery, drug release, and electrical stimulation to optimize the post-stroke environment for neural recovery. Conductive polymers and their interactions with in vitro and in vivo neural systems are explored. The ability to continuously modify the neural environment utilizing conductive polymers provides applications in directing stem cell differentiation and increasing neural repair. This exciting class of polymers offers new approaches to optimizing the post-stroke brain to improve functional recovery.
Collapse
Affiliation(s)
- Byeongtaek Oh
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Paul George
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
173
|
Kadam AA, Gersch RP, Rosengart TK, Frame MD. Inflammatory monocyte response due to altered wall shear stress in an isolated femoral artery model. J Biol Methods 2019; 6:e109. [PMID: 31453258 PMCID: PMC6706128 DOI: 10.14440/jbm.2019.274] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 11/12/2018] [Accepted: 11/28/2018] [Indexed: 01/10/2023] Open
Abstract
Arteriogenesis (collateral formation) is accompanied by a pro-inflammatory state that may be related to the wall shear stress (WSS) within the neo-collateral vessels. Examining the pro-inflammatory component in situ or in vivo is complex. In an ex vivo mouse femoral artery perfusion model, we examined the effect of wall shear stress on pro-arteriogenic inflammatory markers and monocyte adhesion. In a femoral artery model with defined pulsatile flow, WSS was controlled (at physiological stress, 1.4×, and 2× physiological stress) during a 24 h perfusion before gene expression levels and monocyte adhesion were assessed. Significant upregulation of expression was found for the cytokine TNFα, adhesion molecule ICAM-1, growth factor TGFβ, and the transcription factor Egr-1 at varying levels of increased WSS compared to physiological control. Further, trends toward upregulation were found for FGF-2, the cytokine MCP-1 and adhesion molecules VCAM-1 and P-selectin with increased WSS. Finally, monocytes adhesion increased in response to increased WSS. We have developed a murine femoral artery model for studying changes in WSS ex vivo and show that the artery responds by upregulating inflammatory cytokines, adhesion molecules and growth factors consistent with previous in vivo findings.
Collapse
Affiliation(s)
- Aparna A Kadam
- Department of Biomedical Engineering, Physiology and Biophysics, Stony Brook University, Stony Brook, NY 11794-5281, USA
| | - Robert P Gersch
- Department of Surgery, Stony Brook University, Stony Brook, NY 11794-5281, USA
| | - Todd K Rosengart
- Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mary D Frame
- Department of Biomedical Engineering, Physiology and Biophysics, Stony Brook University, Stony Brook, NY 11794-5281, USA
| |
Collapse
|
174
|
Qu M, Pan J, Wang L, Zhou P, Song Y, Wang S, Jiang L, Geng J, Zhang Z, Wang Y, Tang Y, Yang GY. MicroRNA-126 Regulates Angiogenesis and Neurogenesis in a Mouse Model of Focal Cerebral Ischemia. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 16:15-25. [PMID: 30825669 PMCID: PMC6393705 DOI: 10.1016/j.omtn.2019.02.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 01/30/2019] [Accepted: 02/05/2019] [Indexed: 01/09/2023]
Abstract
Studies demonstrate that microRNA-126 plays a critical role in promoting angiogenesis. However, its effects on angiogenesis following ischemic stroke are unclear. Here, we explored the effect of microRNA-126-3p and microRNA-126-5p on angiogenesis and neurogenesis after brain ischemia. We demonstrated that both microRNA (miRNA)-126-3p and microRNA-126-5p increased the proliferation, migration, and tube formation of human umbilical vein endothelial cells (HUVECs) compared with the scrambled miRNA control (p < 0.05). Transferring microRNA-126 into a mouse middle cerebral artery occlusion model via lentivirus, we found that microRNA-126 overexpression increased the number of CD31+/BrdU+ (5-bromo-2'-deoxyuridine-positive) proliferating endothelial cells and DCX+/BrdU+ neuroblasts in the ischemic mouse brain, improved neurobehavioral outcomes (p < 0.05), and reduced brain atrophy volume (p < 0.05) compared with control mice. Western blot results showed that AKT and ERK signaling pathways were activated in the lentiviral-microRNA-126-treated group (p < 0.05). Both PCR and western blot results demonstrated that tyrosine-protein phosphatase non-receptor type 9 (PTPN9) was decreased in the lentiviral-microRNA-126-treated group (p < 0.05). Dual-luciferase gene reporter assay also showed that PTPN9 was the direct target of microRNA-126-3p and microRNA-126-5p in the ischemic brain. We demonstrated that microRNA-126-3p and microRNA-126-5p promoted angiogenesis and neurogenesis in ischemic mouse brain, and further improved neurobehavioral outcomes. Our mechanistic study further showed that microRNA-126 mediated angiogenesis through directly inhibiting its target PTPN9 and activating AKT and ERK signaling pathways.
Collapse
Affiliation(s)
- Meijie Qu
- Department of Neurology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Jiaji Pan
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Liping Wang
- Department of Neurology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Panting Zhou
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yaying Song
- Department of Neurology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Shuhong Wang
- Department of Geriatrics, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Lu Jiang
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Jieli Geng
- Department of Neurology, Shanghai Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Zhijun Zhang
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yongting Wang
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yaohui Tang
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China.
| | - Guo-Yuan Yang
- Department of Neurology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China; Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China.
| |
Collapse
|
175
|
Dynamic Detection of Thrombolysis in Embolic Stroke Rats by Synchrotron Radiation Angiography. Transl Stroke Res 2019; 10:695-704. [PMID: 30680639 DOI: 10.1007/s12975-019-0687-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 11/30/2018] [Accepted: 01/03/2019] [Indexed: 12/20/2022]
Abstract
A rodent model of embolic middle cerebral artery occlusion is used to mimic cerebral embolism in clinical patients. Thrombolytic therapy is the effective treatment for this ischemic injury. However, it is difficult to detect thrombolysis dynamically in living animals. Synchrotron radiation angiography may provide a novel approach to directly monitor the thrombolytic process and assess collateral circulation after embolic stroke. Thirty-six adult Sprague-Dawley rats underwent the embolic stroke model procedure and were then treated with tissue plasminogen activator. The angiographic images were obtained in vivo by synchrotron radiation angiography. Synchrotron radiation angiography confirmed the successful establishment of occlusion and detected the thrombolysis process after the thrombolytic treatment. The time of thrombolytic recanalization was unstable during embolic stroke. The infarct volume increased as the recanalization time was delayed from 2 to 6 h (p < 0.05). The collateral circulation of the internal carotid artery to the ophthalmic artery, the olfactory artery to the ophthalmic artery, and the posterior cerebral artery to the middle cerebral artery opened after embolic stroke and manifested different opening rates (59%, 24%, and 75%, respectively) in the rats. The opening of the collateral circulation from the posterior cerebral artery to the middle cerebral artery alleviated infarction in rats with successful thrombolysis (p < 0.05). The cerebral vessels of the circle of Willis narrowed after thrombolysis (p < 0.05). Synchrotron radiation angiography provided a unique tool to dynamically detect and assess the thrombolysis process and the collateral circulation during thrombolytic therapy.
Collapse
|
176
|
Giordano M, Ciarambino T, D'Amico M, Trotta MC, Di Sette AM, Marfella R, Malatino L, Paolisso G, Adinolfi LE. Circulating MiRNA-195-5p and -451a in Transient and Acute Ischemic Stroke Patients in an Emergency Department. J Clin Med 2019; 8:jcm8020130. [PMID: 30678250 PMCID: PMC6406765 DOI: 10.3390/jcm8020130] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/14/2019] [Accepted: 01/20/2019] [Indexed: 12/29/2022] Open
Abstract
We have evaluated circulating miRNAs (-195-5p and -451a) in subjects with acute ischemic stroke (AIS) and in patients with transient ischemic attack (TIA). In this study, 18 subjects with AIS and 18 patients with TIA were enrolled and examined at admission (T0) and at 24 h and 48 h after admission, and compared to 20 controls (C). At T0, circulating miRNA-195-5p and -451a were significantly upregulated in both AIS and TIA patients, compared to C. We also observed a progressive reduction of circulating miRNA levels at 24 h and 48 h in both AIS and TIA patients. Hypoxia inducible factor 1alpha (HIF-1α) serum level was significantly increased at T0, in both AIS and TIA patients, in comparison to C (both p < 0.01 vs. C) and it decreased in both AIS and TIA patients at 24 h and at 48 h, in comparison to T0 (both p < 0.01 vs. T0). Vascular endothelial growth factor (VEGF) serum level was significantly decreased at T0, in both AIS and TIA patients, if compared to C (both p < 0.01 vs. C) and increased, in both AIS and TIA patients, at 24 h and 48 h, if compared to T0 (both p < 0.01 vs. T0). The elevated expression of miRNA-195-5p and miRNA-451a significantly decreased over time at 24 h and 48 h, and it is associated with decreased HIF-α levels and increased VEGF serum levels. These data may suggest a role for this miRNAs as biomarker in the pathogenesis and prognosis of AIS patients and for the first time also in TIA patients.
Collapse
Affiliation(s)
- Mauro Giordano
- Department of Advanced Medical and Surgical Sciences, University of Campania "L. Vanvitelli", 80138 Naples, Italy.
| | - Tiziana Ciarambino
- Department of Advanced Medical and Surgical Sciences, University of Campania "L. Vanvitelli", 80138 Naples, Italy.
| | - Michele D'Amico
- Department of Experimental Medicine, Division of Pharmacology, University of Campania "L. Vanvitelli", 80138 Naples, Italy.
| | - Maria Consiglia Trotta
- Department of Experimental Medicine, Division of Pharmacology, University of Campania "L. Vanvitelli", 80138 Naples, Italy.
| | | | - Raffaele Marfella
- Department of Advanced Medical and Surgical Sciences, University of Campania "L. Vanvitelli", 80138 Naples, Italy.
| | - Lorenzo Malatino
- Department of Medicine, Section of Hypertension and Cardio-Renal Diseases, University of Catania, 95126 Catania, Italy.
| | - Giuseppe Paolisso
- Department of Advanced Medical and Surgical Sciences, University of Campania "L. Vanvitelli", 80138 Naples, Italy.
| | - Luigi Elio Adinolfi
- Department of Advanced Medical and Surgical Sciences, University of Campania "L. Vanvitelli", 80138 Naples, Italy.
| |
Collapse
|
177
|
Zhang Y, Ma L, Ren C, Liu K, Tian X, Wu D, Ding Y, Li J, Borlongan CV, Ji X. Immediate remote ischemic postconditioning reduces cerebral damage in ischemic stroke mice by enhancing leptomeningeal collateral circulation. J Cell Physiol 2018; 234:12637-12645. [PMID: 30536714 PMCID: PMC6590306 DOI: 10.1002/jcp.27858] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 11/15/2018] [Indexed: 12/22/2022]
Abstract
Remote ischemic postconditioning (RIPC) is a promising neuroprotective strategy for ischemic stroke. Here, we employed a focal ischemic stroke mouse model to test the hypothesis that poststroke collateral circulation as a potent mechanism of action underlying the therapeutic effects of immediate RIPC. During reperfusion of cerebral ischemia, the mice were randomly assigned to receive RIPC, granulocyte colony‐stimulating factor (G‐CSF) as a positive control, or no treatment. At 24 hr, we found RIPC and G‐CSF increased monocytes/macrophages in the dorsal brain surface and in the spleen, coupled with enhanced leptomeningeal collateral flow compared with nontreatment group. Blood monocytes depletion by 5‐fluorouracil (5‐FU) significantly limited the neuroprotection of RIPC or G‐CSF treatment. The protein expression of proangiogenic factors such as Ang‐2 was increased by ischemia, but treatment with either RIPC or G‐CSF showed no further upregulation. Thus, immediate RIPC confers neuroprotection, in part, by enhancing leptomeningeal collateral circulation in a mouse model of ischemic stroke.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Neurobiology, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Longhui Ma
- Department of Neurobiology, Capital Medical University, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Changhong Ren
- Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Kaiyin Liu
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, Michigan
| | - Xin Tian
- Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Di Wu
- Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, Michigan
| | - Junfa Li
- Department of Neurobiology, Capital Medical University, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Cesar V Borlongan
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, Florida
| | - Xunming Ji
- Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China.,Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
178
|
Yang L, Luo S. Clinical application of susceptibility-weighted imaging in the evaluation of leptomeningeal collateralization. Medicine (Baltimore) 2018; 97:e13345. [PMID: 30572437 PMCID: PMC6320133 DOI: 10.1097/md.0000000000013345] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The feasibility of using susceptibility-weighted imaging (SWI) in a clinical setting was assessed for quantifying leptomeningeal collateralization.Eighteen patients with stroke and acute infarction underwent diffusion-weighted imaging, SWI, perfusion-weighted imaging, and magnetic resonance angiography within 3 days after symptom onset. Lesions were evaluated by the Alberta Stroke Program Early CT score (ASPECTS), based on mean transit time, SWI, and cerebral blood volume (CBV).For evaluating ischemic penumbra and leptomeningeal collateralization, the SWI-ASPECTS significantly correlated, respectively, with mean transit time and CBV-ASPECTS (Spearman test, r = 0.793 and 0.682; P < .001, both).The SWI may be useful to quantify leptomeningeal collateralization in patients with acute cerebral infarction.
Collapse
Affiliation(s)
| | - Song Luo
- Department of Neurology, The first affiliated hospital of Bengbu Medical College, Bengbu, China
| |
Collapse
|
179
|
Rajkovic I, Wong R, Lemarchand E, Rivers-Auty J, Rajkovic O, Garlanda C, Allan SM, Pinteaux E. Pentraxin 3 promotes long-term cerebral blood flow recovery, angiogenesis, and neuronal survival after stroke. J Mol Med (Berl) 2018; 96:1319-1332. [PMID: 30315331 PMCID: PMC6245246 DOI: 10.1007/s00109-018-1698-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 09/24/2018] [Accepted: 09/25/2018] [Indexed: 01/08/2023]
Abstract
Restoration of cerebral blood flow (CBF) and upregulation of angiogenesis are crucial for brain repair and functional recovery after cerebral ischaemia. Pentraxin 3 (PTX3) is a key regulator of angiogenesis and is emerging as a promising target for cerebrovascular repair after stroke. Here, we investigated for the first time the role of PTX3 in long-term CBF, angiogenesis, and neuronal viability after ischaemic stroke induced by transient middle cerebral artery occlusion (MCAo). Lack of PTX3 had no effect on early brain damage, but significantly impaired restoration of CBF, 14 and 28 days after MCAo, compared to wild-type (WT) mice. Immunohistochemical analysis revealed that PTX3 KO mice have significantly greater neuronal loss, significantly decreased vessel diameter, vessel proliferation, vascular density, and reactive astrocytes and decreased expression of vascular endothelial growth factor receptor 2 (VEGR2), vascular extracellular matrix (ECM)-proteins (collagen IV, laminin), and integrin-β, in the ipsilateral (stroke) hemisphere compared to WT mice, 28 days after MCAo. Therefore, PTX3 promotes sustained long-term recovery of CBF, angiogenesis, and neuronal viability after cerebral ischaemia. Collectively, these findings demonstrate the potential and clinical relevance of PTX3 as a promising therapeutic target, providing sustained long-term post-stroke neurovascular repair and reducing the loss of neurons. KEY MESSAGES: Pentraxin 3 (PTX3) is a key regulator of angiogenesis and is emerging as a promising target for cerebrovascular repair after stroke. Restoration of cerebral blood flow (CBF) and angiogenesis are crucial for brain repair and functional recovery after cerebral ischaemia. PTX3 promotes sustained long-term recovery of CBF, angiogenesis, and neuronal viability after cerebral ischaemia.
Collapse
Affiliation(s)
- Ivana Rajkovic
- Faculty of Biology, Medicine and Health, AV Hill Building, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Raymond Wong
- Faculty of Biology, Medicine and Health, AV Hill Building, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Eloise Lemarchand
- Faculty of Biology, Medicine and Health, AV Hill Building, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Jack Rivers-Auty
- Faculty of Biology, Medicine and Health, AV Hill Building, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Olivera Rajkovic
- Faculty of Biology, Medicine and Health, AV Hill Building, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Cecilia Garlanda
- Department of Immunology and Inflammation, Humanitas Clinical and Research Center, 20089, Rozzano, MI, Italy
| | - Stuart M Allan
- Faculty of Biology, Medicine and Health, AV Hill Building, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Emmanuel Pinteaux
- Faculty of Biology, Medicine and Health, AV Hill Building, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| |
Collapse
|
180
|
Surugiu R, Glavan D, Popescu M, Margaritescu O, Eugen R, Popa-Wagner A. Vasculature Remodeling in a Rat Model of Cerebral Ischemia. The Fate of the BrdU-Labeled Cells Prior to Stroke. Front Neurol 2018; 9:1014. [PMID: 30542320 PMCID: PMC6277782 DOI: 10.3389/fneur.2018.01014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 11/09/2018] [Indexed: 12/27/2022] Open
Abstract
Despite the clinical significance of post-stroke angiogenesis, a detailed phenotypic analysis of pre-stroke vascular remodeling and post-stroke angiogenesis had not yet been done in a model of focal ischemia. In this study, using BrdU-labeling of proliferating cells and immunofluorescence of pre- and post-stroke rats, we found that, (i) BrdU administered before stroke was incorporated preferentially into the nuclei of endothelial cells lining the lumen of existing blood vessels and newly born neurons in the dentate gyrus but not in the subventricular zone or proliferating microglia, (ii) BrdU injection prior to stroke led to the patchy distribution of the newly incorporated endothelial cells into existing blood vessels of the adult rat brain, (iii) BrdU injection prior to stroke specifically labeled neuronal precursors cells in a region of soft tissue beyond the inhibitory scar, which seems to be permissive to regenerative events, (iv) BrdU injection after stroke led to labeling of endothelial cells crossing or detaching from the disintegrating blood vessels and their incorporation into new blood vessels in the stroke region, scar tissue and the region beyond, (v) BrdU injection after stroke led to specific incorporation of BrdU-positive nuclei into the "pinwheel" architecture of the ventricular epithelium, (vi) blood vessels in remote areas relative to the infarct core and in the contralateral non-lesioned cortex, showed co-labeled BrdU/RECA+ endothelial cells shortly after the BrdU injection, which strongly suggests a bone marrow origin of the endothelial cells. In the damaged cortex, a BrdU/prolyl 4-hydroxylase beta double labeling in the close proximity to collagen IV-labeled basement membrane, suggests that, in addition to bone marrow derived endothelial cells, the disintegrating vascular wall itself could also be a source of proliferating endothelial cells, (vii) By day 28 after stroke, new blood vessels were observed in the perilesional area and the scar tissue region, which is generally considered to be resistant to regenerative events. Finally, (viii) vigorous angiogenesis was also detected in a region of soft tissue, also called "islet of regeneration," located next to the inhibitory scar. Conclusion: BrdU administered prior to, and after stroke, allows to investigate brain vasculature remodeling in the adult brain.
Collapse
Affiliation(s)
- Roxana Surugiu
- Center of Clinical and Experimental Medicine, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Daniela Glavan
- Psychiatry Clinic Hospital, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Mircea Popescu
- Center of Clinical and Experimental Medicine, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Otilia Margaritescu
- Department of Neurosurgery, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Radu Eugen
- Molecular Biology and Pathology Research Lab, University Hospital Bucharest, Bucharest, Romania
| | - Aurel Popa-Wagner
- Center of Clinical and Experimental Medicine, University of Medicine and Pharmacy of Craiova, Craiova, Romania.,Griffith University School of Medicine, Southport, QLD, Australia
| |
Collapse
|
181
|
Polyunsaturated Fatty Acids and Their Potential Therapeutic Role in Cardiovascular System Disorders-A Review. Nutrients 2018; 10:nu10101561. [PMID: 30347877 PMCID: PMC6213446 DOI: 10.3390/nu10101561] [Citation(s) in RCA: 203] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/11/2018] [Accepted: 10/19/2018] [Indexed: 12/13/2022] Open
Abstract
Cardiovascular diseases are described as the leading cause of morbidity and mortality in modern societies. Therefore, the importance of cardiovascular diseases prevention is widely reflected in the increasing number of reports on the topic among the key scientific research efforts of the recent period. The importance of essential fatty acids (EFAs) has been recognized in the fields of cardiac science and cardiac medicine, with the significant effects of various fatty acids having been confirmed by experimental studies. Polyunsaturated fatty acids are considered to be important versatile mediators for improving and maintaining human health over the entire lifespan, however, only the cardiac effect has been extensively documented. Recently, it has been shown that omega-3 fatty acids may play a beneficial role in several human pathologies, such as obesity and diabetes mellitus type 2, and are also associated with a reduced incidence of stroke and atherosclerosis, and decreased incidence of cardiovascular diseases. A reasonable diet and wise supplementation of omega-3 EFAs are essential in the prevention and treatment of cardiovascular diseases prevention and treatment.
Collapse
|
182
|
Shi S, Tang M, Li H, Ding H, Lu Y, Gao L, Wu Q, Zhou L, Fu Y, Xiao B, Zhang M. X‐box binding protein l splicing attenuates brain microvascular endothelial cell damage induced by oxygen‐glucose deprivation through the activation of phosphoinositide 3‐kinase/protein kinase B, extracellular signal‐regulated kinases, and hypoxia‐inducible factor‐1α/vascular endothelial growth factor signaling pathways. J Cell Physiol 2018; 234:9316-9327. [PMID: 30317635 DOI: 10.1002/jcp.27614] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 09/24/2018] [Indexed: 12/26/2022]
Affiliation(s)
- Shupeng Shi
- Department of Neurology Xiangya Hospital, Central South University Changsha China
| | - Mimi Tang
- Department of Pharmacy Xiangya Hospital, Central South University Changsha China
- Institute of Hospital Pharmacy, Xiangya Hospital, Central South University Changsha China
| | - Honglei Li
- Department of Neurology Xiangya Hospital, Central South University Changsha China
| | - Hui Ding
- Department of Neurology Xiangya Hospital, Central South University Changsha China
| | - Yangfan Lu
- Department of Neurology Xiangya Hospital, Central South University Changsha China
| | - Lijuan Gao
- Department of Neurology Xiangya Hospital, Central South University Changsha China
| | - Qian Wu
- Department of Neurology First Affiliated Hospital, Kunming Medical University Kunming China
| | - Luo Zhou
- Department of Neurology Xiangya Hospital, Central South University Changsha China
| | - Yujiao Fu
- Department of Neurology Xiangya Hospital, Central South University Changsha China
| | - Bo Xiao
- Department of Neurology Xiangya Hospital, Central South University Changsha China
| | - Mengqi Zhang
- Department of Neurology Xiangya Hospital, Central South University Changsha China
| |
Collapse
|
183
|
Crisi G, Filice S, Scoditti U. Arterial Spin Labeling MRI to Measure Cerebral Blood Flow in Untreated Ischemic Stroke. J Neuroimaging 2018; 29:193-197. [PMID: 30302863 DOI: 10.1111/jon.12569] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 09/21/2018] [Accepted: 09/25/2018] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE This study aims to investigate the significance of regional hyperperfusion (RH) detected by arterial spin labeling (ASL) in a group of untreated stroke patients, within 24-36 hours after symptom onset. The relationship between RH volume and infarcted volume (DIV) as defined on diffusion weighted images (DWIs) was evaluated. METHODS Of the 346 consecutive acute stroke patients who attended our center, we retrospectively reviewed MRI studies of 47 patients who were ineligible for standard treatment with intravenous tissue plasminogen activator. The MRI study included ASL and DWI. The ASL-derived cerebral blood flow (CBF) maps were coregistered on the DWI images. RH volume and DIV were calculated and compared. Patient NIHSS scores were also evaluated at admission, discharge, and after 1 and 6-month follow-up. RESULTS Twenty-two patients showed RH with CBF twice than baseline. In all 22 patients, RH overlaps with DWI infarcted area. No significant difference (P = .94) between RH volume and DIV was found (7.2 ± 9.6 and 9.0 ± 11.9 cm3 ). The Pearson's correlation coefficient between RH and DIV was .93. On univariate analysis, a significant difference was found between patient's groups on NIHSS at any time points, after covariates adjustment NIHSS difference was significant only at admission. CONCLUSIONS The study showed that ASL perfusion could be an integral part of the MRI examination in the assessment of 24-36 hours not-treated stroke patients as sustained RH group had improved outcomes. More importantly, ASL perfusion may provide evidence of beneficial effects of reperfusion induced by recanalization treatment.
Collapse
Affiliation(s)
- Girolamo Crisi
- Neuroradiology Unit, Azienda Ospedaliero-Universitaria of Parma, Parma, Italy
| | - Silvano Filice
- Medical Physics Unit, Azienda Ospedaliero-Universitaria of Parma, Parma, Italy
| | - Umberto Scoditti
- Neurology Unit, Azienda Ospedaliero-Universitaria of Parma, Parma, Italy
| |
Collapse
|
184
|
Uryga A, Kasprowicz M, Burzyńska M, Calviello L, Kaczmarska K, Czosnyka M. Cerebral arterial time constant calculated from the middle and posterior cerebral arteries in healthy subjects. J Clin Monit Comput 2018; 33:605-613. [PMID: 30291539 DOI: 10.1007/s10877-018-0207-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 10/01/2018] [Indexed: 10/28/2022]
Abstract
The cerebral arterial blood volume changes (∆CaBV) during a single cardiac cycle can be estimated using transcranial Doppler ultrasonography (TCD) by assuming pulsatile blood inflow, constant, and pulsatile flow forward from large cerebral arteries to resistive arterioles [continuous flow forward (CFF) and pulsatile flow forward (PFF)]. In this way, two alternative methods of cerebral arterial compliance (Ca) estimation are possible. Recently, we proposed a TCD-derived index, named the time constant of the cerebral arterial bed (τ), which is a product of Ca and cerebrovascular resistance and is independent of the diameter of the insonated vessel. In this study, we aim to examine whether the τ estimated by either the CFF or the PFF model differs when calculated from the middle cerebral artery (MCA) and the posterior cerebral artery (PCA). The arterial blood pressure and TCD cerebral blood flow velocity (CBFVa) in the MCA and in the PCA were non-invasively measured in 32 young, healthy volunteers (median age: 24, minimum age: 18, maximum age: 31). The τ was calculated using both the PFF and CFF models from the MCA and the PCA and compared using a non-parametric Wilcoxon signed-rank test. Results are presented as medians (25th-75th percentiles). The cerebrovascular time constant estimated in both arteries using the PFF model was shorter than when using the CFF model (ms): [64.83 (41.22-104.93) vs. 178.60 (160.40-216.70), p < 0.001 in the MCA, and 44.04 (17.15-81.17) vs. 183.50 (153.65-204.10), p < 0.001 in the PCA, respectively]. The τ obtained using the PFF model was significantly longer from the MCA than from the PCA, p = 0.004. No difference was found in the τ when calculated using the CFF model. Longer τ from the MCA might be related to the higher Ca of the MCA than that of the PCA. Our results demonstrate MCA-PCA differences in the τ, but only when the PFF model was applied.
Collapse
Affiliation(s)
- Agnieszka Uryga
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370, Wrocław, Poland.
| | - Magdalena Kasprowicz
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370, Wrocław, Poland
| | - Małgorzata Burzyńska
- Department of Anesthesiology and Intensive Care, Wroclaw Medical University, Wrocław, Poland
| | - Leanne Calviello
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Katarzyna Kaczmarska
- Department of Neurosurgery, Mossakowski Medical Research Centre Polish Academy of Sciences, Warsaw, Poland.,Institute of Electronic Systems, Faculty of Electronics and Information Technology, Warsaw University of Technology, Warsaw, Poland
| | - Marek Czosnyka
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.,Institute of Electronic Systems, Faculty of Electronics and Information Technology, Warsaw University of Technology, Warsaw, Poland
| |
Collapse
|
185
|
Ren C, Li N, Li S, Han R, Huang Q, Hu J, Jin K, Ji X. Limb Ischemic Conditioning Improved Cognitive Deficits via eNOS-Dependent Augmentation of Angiogenesis after Chronic Cerebral Hypoperfusion in Rats. Aging Dis 2018; 9:869-879. [PMID: 30271664 PMCID: PMC6147592 DOI: 10.14336/ad.2017.1106] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 11/06/2017] [Indexed: 12/27/2022] Open
Abstract
Intracranial and extracranial arterial stenosis, the primary cause of chronic cerebral hypoperfusion (CCH), is a critical reason for the pathogenesis of vascular dementia and Alzheimer’s disease characterized by cognitive impairments. Our previous study demonstrated that limb remote ischemic conditioning (LRIC) improved cerebral perfusion in intracranial arterial stenosis patients. The current study aimed to test whether LRIC promotes angiogenesis and increases phosphorylated endothelial nitric oxide synthase (p-eNOS) activity in CCH rat model. Adult male Sprague-Dawley rats were randomly assigned to three different groups: sham group, bilateral carotid artery occlusion (2VO) group and 2VO+LRIC group. Cerebral Blood Flow (CBF) was measured with laser speckle contrast imager at 4 weeks. Cognitive testing was performed at four and six weeks after 2VO surgery. We demonstrated that LRIC treatment increased cerebral perfusion and improved the CCH induced spatial learning and memory impairment. Immunohistochemistry confirmed that LRIC prevented cell death in the CA1 region, and increased the number of vessels and angiogenesis in the hippocampus after 2VO. Western blot analysis shows that LRIC therapy significantly increased p-eNOS expression in the hippocampus when compared with 2VO rats. Moreover, eNOS inhibitor reduced the effect of LRIC on angiogenesis in the hippocampus and spatial learning and memory function. Our data suggested that LRIC promoted angiogenesis, which is mediated, in part, by eNOS/NO.
Collapse
Affiliation(s)
- Changhong Ren
- 1Institute of Hypoxia Medicine, Xuanwu Hospital, Capital Medical University, Beijing 100053, China.,2Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, TX Texas 76107, USA.,3Center of Stroke, Beijing Institute for Brain Disorder, Beijing 100069, China.,4Beijing Key Laboratory of Hypoxia Translational Medicine, Beijing 100053, China
| | - Ning Li
- 1Institute of Hypoxia Medicine, Xuanwu Hospital, Capital Medical University, Beijing 100053, China.,5Department of Neurobiology, Capital Medical University, Beijing 10069, China
| | - Sijie Li
- 1Institute of Hypoxia Medicine, Xuanwu Hospital, Capital Medical University, Beijing 100053, China.,4Beijing Key Laboratory of Hypoxia Translational Medicine, Beijing 100053, China
| | - Rongrong Han
- 1Institute of Hypoxia Medicine, Xuanwu Hospital, Capital Medical University, Beijing 100053, China.,4Beijing Key Laboratory of Hypoxia Translational Medicine, Beijing 100053, China
| | - Qingjian Huang
- 1Institute of Hypoxia Medicine, Xuanwu Hospital, Capital Medical University, Beijing 100053, China.,2Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, TX Texas 76107, USA.,4Beijing Key Laboratory of Hypoxia Translational Medicine, Beijing 100053, China
| | - Jiangnan Hu
- 2Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, TX Texas 76107, USA
| | - Kunlin Jin
- 2Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, TX Texas 76107, USA
| | - Xunming Ji
- 1Institute of Hypoxia Medicine, Xuanwu Hospital, Capital Medical University, Beijing 100053, China.,3Center of Stroke, Beijing Institute for Brain Disorder, Beijing 100069, China.,4Beijing Key Laboratory of Hypoxia Translational Medicine, Beijing 100053, China
| |
Collapse
|
186
|
Harrell C, Zainaldin C, McFarlane D, Hyer M, Stein D, Sayeed I, Neigh G. High-fructose diet during adolescent development increases neuroinflammation and depressive-like behavior without exacerbating outcomes after stroke. Brain Behav Immun 2018; 73:340-351. [PMID: 29787857 PMCID: PMC9280910 DOI: 10.1016/j.bbi.2018.05.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 05/01/2018] [Accepted: 05/18/2018] [Indexed: 12/20/2022] Open
Abstract
Diseases, disorders, and insults of aging are frequently studied in otherwise healthy animal models despite rampant co-morbidities and exposures among the human population. Stressor exposures can increase neuroinflammation and augment the inflammatory response following a challenge. The impact of dietary exposure on baseline neural function and behavior has gained attention; in particular, a diet high in fructose can increase activation of the hypothalamic-pituitary-adrenal axis and alter behavior. The current study considers the implications of a diet high in fructose for neuroinflammation and outcomes following the cerebrovascular challenge of stroke. Ischemic injury may come as a "second hit" to pre-existing metabolic pathology, exacerbating inflammatory and behavioral sequelae. This study assesses the neuroinflammatory consequences of a peri-adolescent high-fructose diet model and assesses the impact of diet-induced metabolic dysfunction on behavioral and neuropathological outcomes after middle cerebral artery occlusion. We demonstrate that consumption of a high-fructose diet initiated during adolescent development increases brain complement expression, elevates plasma TNFα and serum corticosterone, and promotes depressive-like behavior. Despite these adverse effects of diet exposure, peri-adolescent fructose consumption did not exacerbate neurological behaviors or lesion volume after middle cerebral artery occlusion.
Collapse
Affiliation(s)
- C.S. Harrell
- Department of Physiology, Emory University School of Medicine, United States
| | - C. Zainaldin
- Department of Physiology, Emory University School of Medicine, United States
| | - D. McFarlane
- Department of Physiology, Emory University School of Medicine, United States
| | - M.M. Hyer
- Department of Anatomy & Neurobiology, Virginia Commonwealth University, United States
| | - D. Stein
- Department of Emergency Medicine, Emory University School of Medicine, United States
| | - I. Sayeed
- Department of Emergency Medicine, Emory University School of Medicine, United States
| | - G.N. Neigh
- Department of Physiology, Emory University School of Medicine, United States,Department of Anatomy & Neurobiology, Virginia Commonwealth University, United States,Corresponding author at: Department of Anatomy & Neurobiology, Virginia Commonwealth University, 1101 East Marshall Street, Richmond, VA 23298, United States. (G.N. Neigh)
| |
Collapse
|
187
|
Xue L, Huang J, Zhang T, Wang X, Fu J, Geng Z, Zhao Y, Chen H. PTEN inhibition enhances angiogenesis in an in vitro model of ischemic injury by promoting Akt phosphorylation and subsequent hypoxia inducible factor-1α upregulation. Metab Brain Dis 2018; 33:1679-1688. [PMID: 29936638 DOI: 10.1007/s11011-018-0276-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 06/19/2018] [Indexed: 11/26/2022]
Abstract
Angiogenesis is an important pathophysiological response to cerebral ischemia. PTEN is a lipid phosphatase whose loss activates PI3K/Akt signaling, which is related to HIF-1α upregulation and enhanced angiogenesis in human cancer cells. However, the specific roles of PTEN in endothelial cell functions and angiogenesis after cerebral ischemia remain unknown. Therefore, we sought to examine the potential effects of PTEN inhibition on post-ischemic angiogenesis in human blood vessel cells and to determine the underlying mechanism. In this present study, human umbilical vein endothelial cells (HUVECs) were exposed to oxygen-glucose deprivation (OGD), cell proliferation, migration and apoptosis, in vitro tube formation and expression of PTEN/Akt pathway and angiogenic factors were examined in HUVECs after treatment with PTEN inhibitor bisperoxovanadium (bpV) at different doses. The results showed that bpV significantly increased the cell proliferation and reduced cell apoptosis indicating that the drug exerts a cytoprotective effect on HUVECs with OGD exposure. bpV also enhanced cell migration and tube formation in HUVECs following OGD, and upregulated HIF-1α and VEGF expressions, but attenuated endostatin expression. Additionally, western blotting analysis demonstrated that Akt phosphorylation in HUVECs was significantly increased after bpV treatment. These findings suggest that PTEN inhibition promotes post-ischemic angiogenesis in HUVECs after exposure to OGD and this enhancing effect might be achieved through activation of the Akt signal cascade.
Collapse
Affiliation(s)
- Lixia Xue
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jiankang Huang
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Ting Zhang
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xiuzhe Wang
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jianliang Fu
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Zhi Geng
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yuwu Zhao
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Hao Chen
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Xuhui District, Shanghai, 20033, China.
| |
Collapse
|
188
|
Chen X, Zhang X, Chen T, Jiang X, Wang X, Lei H, Wang Y. Inhibition of immunoproteasome promotes angiogenesis via enhancing hypoxia-inducible factor-1α abundance in rats following focal cerebral ischaemia. Brain Behav Immun 2018; 73:167-179. [PMID: 29679638 DOI: 10.1016/j.bbi.2018.04.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 04/08/2018] [Accepted: 04/16/2018] [Indexed: 01/19/2023] Open
Abstract
Angiogenesis after ischemic stroke contributes to the restoration of blood supply in the ischemic zone. Strategies to improve angiogenesis may facilitate the function recovery after stroke. Growing evidence shows that proteasome inhibitors enhance angioneurogenesis and induces a long-term neuroprotection after cerebral ischemia in rodents' models. We have previously reported that inhibition of the immunoproteasome subunit low molecular mass peptide 2 (LMP2) offers a strong neuroprotection in ischemic stroke rats. However, there are no data available to show the relationship between immunoproteasome and angiogenesis under ischemia stroke context. In this study, we identified that inhibition of immunoproteasome LMP2 was able to enhance angiogenesis and facilitate neurological functional recovery in rats after focal cerebral ischemia/reperfusion. In vitro, oxygen-glucose deprivation and reperfusion (OGD/R) significantly enhanced the expression of immunoproteasome LMP2 and proteasome activities in primary culture astrocytes, but these beneficial effects were abolished by knockdown of LMP2 with siRNA transfection. Along with this, protein abundance of HIF-1α was significantly increased by inhibition LMP2 in vivo and in vitro and was associated with angiogenesis and cell fates. However, these beneficial effects were partly abolished by HIF-1α inhibitor 2-methoxyestradiol (2ME). Taken together; this study highlights an important role for inhibition of LMP2 in promoting angiogenesis events in ischemic stroke, and point to HIF-1α as a key mediator of this response, suggesting that immunoproteasome inhibitors may be a promising strategy for stroke treatment.
Collapse
Affiliation(s)
- Xingyong Chen
- Department of Neurology, Fujian Provincial Hospital, Fujian Medical University Shengli Clinical College, Fuzhou 350001, PR China.
| | - Xu Zhang
- Department of Neurology, Fujian Provincial Hospital, Fujian Medical University Shengli Clinical College, Fuzhou 350001, PR China.
| | - Ting Chen
- Department of Neurology, Fujian Provincial Hospital, Fujian Medical University Shengli Clinical College, Fuzhou 350001, PR China.
| | - Xiulong Jiang
- Department of Neurology, Fujian Provincial Hospital, Fujian Medical University Shengli Clinical College, Fuzhou 350001, PR China.
| | - Xiaosong Wang
- Department of Neurology, Fujian Provincial Hospital, Fujian Medical University Shengli Clinical College, Fuzhou 350001, PR China.
| | - Huixin Lei
- Department of Neurology, Fujian Provincial Hospital, Fujian Medical University Shengli Clinical College, Fuzhou 350001, PR China.
| | - Yinzhou Wang
- Department of Neurology, Fujian Provincial Hospital, Fujian Medical University Shengli Clinical College, Fuzhou 350001, PR China.
| |
Collapse
|
189
|
Kim MS, Choi BR, Lee YW, Kim DH, Han YS, Jeon WK, Han JS. Chronic Cerebral Hypoperfusion Induces Alterations of Matrix Metalloproteinase-9 and Angiopoietin-2 Levels in the Rat Hippocampus. Exp Neurobiol 2018; 27:299-308. [PMID: 30181692 PMCID: PMC6120965 DOI: 10.5607/en.2018.27.4.299] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 08/03/2018] [Accepted: 08/03/2018] [Indexed: 12/23/2022] Open
Abstract
Angiogenic factors contribute to cerebral angiogenesis following cerebral hypoperfusion, and understanding these temporal changes is essential to developing effective treatments. The present study examined temporal alterations in angiogenesis-related matrix metalloproteinase-9 (MMP-9) and angiopoietin-2 (ANG-2) expression in the hippocampus following bilateral common carotid artery occlusion (BCCAo). Male Wistar rats (12 weeks of age) were randomly assigned to sham-operated control or experimental groups, and expression levels of MMP-9 and ANG-2 were assessed after BCCAo (1 week, 4 weeks, and 8 weeks), using western blotting. Protein expression increased 1 week after BCCAo and returned to control levels at 4 and 8 weeks. In addition, immunofluorescence staining demonstrated that the MMP-9- and ANG-2-positive signals were primarily observed in the NeuN-positive neurons with very little labeling in non-neuronal cells and no labeling in endothelial cells. In addition, these cellular locations of MMP-9- and ANG-2-positive signals were not altered over time following BCCAo. Other angiogenic factors such as vascular endothelial growth factor and hypoxia-inducible factor did not differ from controls at 1 week; however, expression of both factors increased at 4 and 8 weeks in the BCCAo group compared to the control group. Our findings increase understanding of alterations in angiogenic factors during the progression of cerebral angiogenesis and are relevant to developing effective temporally based therapeutic strategies for chronic cerebral hypoperfusion-associated neurological disorders such as vascular dementia.
Collapse
Affiliation(s)
- Min-Soo Kim
- Department of Biological Sciences, Konkuk University, Seoul 05029, Korea.,Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Korea.,Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology, Seoul 02792, Korea
| | - Bo-Ryoung Choi
- Department of Biological Sciences, Konkuk University, Seoul 05029, Korea
| | - Yong Woo Lee
- Department of Biomedical Sciences and Pathobiology, School of Biomedical Engineering and Sciences, Virginia Tech, Virginia 24061, USA
| | - Dong-Hee Kim
- Department of Biological Sciences, Konkuk University, Seoul 05029, Korea
| | - Ye Sun Han
- Department of Advanced Technology Fusion, Konkuk University, Seoul 05029, Korea
| | - Won Kyung Jeon
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Korea.,Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology, Seoul 02792, Korea
| | - Jung-Soo Han
- Department of Biological Sciences, Konkuk University, Seoul 05029, Korea
| |
Collapse
|
190
|
Wen TH, Binder DK, Ethell IM, Razak KA. The Perineuronal 'Safety' Net? Perineuronal Net Abnormalities in Neurological Disorders. Front Mol Neurosci 2018; 11:270. [PMID: 30123106 PMCID: PMC6085424 DOI: 10.3389/fnmol.2018.00270] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 07/17/2018] [Indexed: 12/22/2022] Open
Abstract
Perineuronal nets (PNN) are extracellular matrix (ECM) assemblies that preferentially ensheath parvalbumin (PV) expressing interneurons. Converging evidence indicates that PV cells and PNN are impaired in a variety of neurological disorders. PNN development and maintenance is necessary for a number of processes within the CNS, including regulation of GABAergic cell function, protection of neurons from oxidative stress, and closure of developmental critical period plasticity windows. Understanding PNN functions may be essential for characterizing the mechanisms of altered cortical excitability observed in neurodegenerative and neurodevelopmental disorders. Indeed, PNN abnormalities have been observed in post-mortem brain tissues of patients with schizophrenia and Alzheimer’s disease. There is impaired development of PNNs and enhanced activity of its key regulator matrix metalloproteinase-9 (MMP-9) in Fragile X Syndrome, a common genetic cause of autism. MMP-9, a protease that cleaves ECM, is differentially regulated in a number of these disorders. Despite this, few studies have addressed the interactions between PNN expression, MMP-9 activity and neuronal excitability. In this review, we highlight the current evidence for PNN abnormalities in CNS disorders associated with altered network function and MMP-9 levels, emphasizing the need for future work targeting PNNs in pathophysiology and therapeutic treatment of neurological disorders.
Collapse
Affiliation(s)
- Teresa H Wen
- Neuroscience Graduate Program, University of California, Riverside, Riverside, CA, United States
| | - Devin K Binder
- Neuroscience Graduate Program, University of California, Riverside, Riverside, CA, United States.,Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Iryna M Ethell
- Neuroscience Graduate Program, University of California, Riverside, Riverside, CA, United States.,Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Khaleel A Razak
- Neuroscience Graduate Program, University of California, Riverside, Riverside, CA, United States.,Psychology Graduate Program, Department of Psychology, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
191
|
Xiang J, Andjelkovic AV, Zhou N, Hua Y, Xi G, Wang MM, Keep RF. Is there a central role for the cerebral endothelium and the vasculature in the brain response to conditioning stimuli? CONDITIONING MEDICINE 2018; 1:220-232. [PMID: 30906928 PMCID: PMC6426135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A variety of conditioning stimuli (e.g. ischemia or hypoxia) can protect against stroke-induced brain injury. While most attention has focused on the effects of conditioning on parenchymal injury, there is considerable evidence that such stimuli also protect the cerebrovasculature, including the blood-brain barrier. This review summarizes the data on the cerebrovascular effects of ischemic/hypoxic pre-, per- and post-conditioning and the mechanisms involved in protection. It also addresses some important questions: Are the cerebrovascular effects of conditioning just secondary to reduced parenchymal injury? How central is endothelial conditioning to overall brain protection? For example, is endothelial conditioning sufficient or necessary for the induction of brain protection against stroke? Is the endothelium crucial as a sensor/transducer of conditioning stimuli?
Collapse
Affiliation(s)
- Jianming Xiang
- Department of Neurosurgery, Medical School, University of Michigan
| | - Anuska V. Andjelkovic
- Department of Neurosurgery, Medical School, University of Michigan
- Department of Pathology, Medical School, University of Michigan
| | - Ningna Zhou
- Department of Neurosurgery, Medical School, University of Michigan
- Department of Pharmacology, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Ya Hua
- Department of Neurosurgery, Medical School, University of Michigan
| | - Guohua Xi
- Department of Neurosurgery, Medical School, University of Michigan
| | - Michael M. Wang
- Department of Neurology, Medical School, University of Michigan
- VA Ann Arbor Healthcare System, Ann Arbor, Michigan, USA
| | - Richard F. Keep
- Department of Neurosurgery, Medical School, University of Michigan
| |
Collapse
|
192
|
Gower A, Tiberi M. The Intersection of Central Dopamine System and Stroke: Potential Avenues Aiming at Enhancement of Motor Recovery. Front Synaptic Neurosci 2018; 10:18. [PMID: 30034335 PMCID: PMC6043669 DOI: 10.3389/fnsyn.2018.00018] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 06/13/2018] [Indexed: 12/12/2022] Open
Abstract
Dopamine, a major neurotransmitter, plays a role in a wide range of brain sensorimotor functions. Parkinson's disease and schizophrenia are two major human neuropsychiatric disorders typically associated with dysfunctional dopamine activity levels, which can be alleviated through the druggability of the dopaminergic systems. Meanwhile, several studies suggest that optimal brain dopamine activity levels are also significantly impacted in other serious neurological conditions, notably stroke, but this has yet to be fully appreciated at both basic and clinical research levels. This is of utmost importance as there is a need for better treatments to improve recovery from stroke. Here, we discuss the state of knowledge regarding the modulation of dopaminergic systems following stroke, and the use of dopamine boosting therapies in animal stroke models to improve stroke recovery. Indeed, studies in animals and humans show stroke leads to changes in dopamine functioning. Moreover, evidence from animal stroke models suggests stimulation of dopamine receptors may be a promising therapeutic approach for enhancing motor recovery from stroke. With respect to the latter, we discuss the evidence for several possible receptor-linked mechanisms by which improved motor recovery may be mediated. One avenue of particular promise is the subtype-selective stimulation of dopamine receptors in conjunction with physical therapy. However, results from clinical trials so far have been more mixed due to a number of potential reasons including, targeting of the wrong patient populations and use of drugs which modulate a wide array of receptors. Notwithstanding these issues, it is hoped that future research endeavors will assist in the development of more refined dopaminergic therapeutic approaches to enhance stroke recovery.
Collapse
Affiliation(s)
- Annette Gower
- Ottawa Hospital Research Institute (Neuroscience Program), Ottawa, ON, Canada.,University of Ottawa Brain and Mind Institute, Ottawa, ON, Canada.,Departments of Medicine, Cellular and Molecular Medicine, and Psychiatry, University of Ottawa, Ottawa, ON, Canada
| | - Mario Tiberi
- Ottawa Hospital Research Institute (Neuroscience Program), Ottawa, ON, Canada.,University of Ottawa Brain and Mind Institute, Ottawa, ON, Canada.,Departments of Medicine, Cellular and Molecular Medicine, and Psychiatry, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
193
|
Li MZ, Zhang Y, Zou HY, Ouyang JY, Zhan Y, Yang L, Cheng BCY, Wang L, Zhang QX, Lei JF, Zhao YY, Zhao H. Investigation of Ginkgo biloba extract (EGb 761) promotes neurovascular restoration and axonal remodeling after embolic stroke in rat using magnetic resonance imaging and histopathological analysis. Biomed Pharmacother 2018; 103:989-1001. [DOI: 10.1016/j.biopha.2018.04.125] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 04/14/2018] [Accepted: 04/17/2018] [Indexed: 02/06/2023] Open
|
194
|
Zhou YF, Li PC, Wu JH, Haslam JA, Mao L, Xia YP, He QW, Wang XX, Lei H, Lan XL, Miao QR, Yue ZY, Li YN, Hu B. Sema3E/PlexinD1 inhibition is a therapeutic strategy for improving cerebral perfusion and restoring functional loss after stroke in aged rats. Neurobiol Aging 2018; 70:102-116. [PMID: 30007159 DOI: 10.1016/j.neurobiolaging.2018.06.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 05/21/2018] [Accepted: 06/04/2018] [Indexed: 01/19/2023]
Abstract
Brain tissue survival and functional recovery after ischemic stroke greatly depend on cerebral vessel perfusion and functional collateral circulation in the ischemic area. Semaphorin 3E (Sema3E), one of the class 3 secreted semaphorins, has been demonstrated to be a critical regulator in embryonic and postnatal vascular formation via binding to its receptor PlexinD1. However, whether Sema3E/PlexinD1 signaling is involved in poststroke neovascularization remains unknown. To determine the contribution of Sema3E/PlexinD1 signaling to poststroke recovery, aged rats (18 months) were subjected to a transient middle cerebral artery occlusion. We found that depletion of Sema3E/PlexinD1 signaling with lentivirus-mediated PlexinD1-specific-shRNA improves tissue survival and functional outcome. Sema3E/PlexinD1 inhibition not only increases cortical perfusion but also ameliorates blood-brain barrier damage, as determined by positron emission tomography and magnetic resonance imaging. Mechanistically, we demonstrated that Sema3E suppresses endothelial cell proliferation and angiogenic capacity. More importantly, Sema3E/PlexinD1 signaling inhibits recruitment of pericytes by decreasing production of platelet derived growth factor-BB in endothelial cells. Overall, our study revealed that inhibition of Sema3E/PlexinD1 signaling in the ischemic penumbra, which increases both endothelial angiogenic capacity and recruitment of pericytes, contributed to functional neovascularization and blood-brain barrier integrity in the aged rats. Our findings imply that Sema3E/PlexinD1 signaling is a novel therapeutic target for improving brain tissue survival and functional recovery after ischemic stroke.
Collapse
Affiliation(s)
- Yi-Fan Zhou
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng-Cheng Li
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jie-Hong Wu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - James Andrew Haslam
- Swansea College of Medicine, Swansea University, Singleton Park, Swansea, UK
| | - Ling Mao
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan-Peng Xia
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Quan-Wei He
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xu-Xia Wang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
| | - Hao Lei
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
| | - Xiao-Li Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qing Robert Miao
- Division of Pediatric Surgery, Department of Surgery, Children's Research Institute, Medical College of Wisconsin, Milwaukee, WI, USA; Divisions of Pediatric Pathology, Department of Pathology, Children's Research Institute, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Zhen-Yu Yue
- Department of Neurology, Department of Neuroscience, The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ya-Nan Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Bo Hu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
195
|
Chen M, Zou W, Chen M, Cao L, Ding J, Xiao W, Hu G. Ginkgolide K promotes angiogenesis in a middle cerebral artery occlusion mouse model via activating JAK2/STAT3 pathway. Eur J Pharmacol 2018; 833:221-229. [PMID: 29890157 DOI: 10.1016/j.ejphar.2018.06.012] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 06/07/2018] [Accepted: 06/07/2018] [Indexed: 11/26/2022]
Abstract
Ginkgolide K (GK) is a new compound extracted from the leaves of Ginkgo biloba, which has been recognized to exert anti-oxidative stress and neuroprotective effect on ischemic stroke. While whether it plays an enhanced effect on angiogenesis during ischemic stroke remains unknown. The aim of this study was to investigate the effect of ginkgolide K on promoting angiogenesis as well as the protective mechanism after cerebral ischemia-reperfusion. Using the transient middle cerebral artery occlusion (tMCAO) mouse model, we found that GK (3.5, 7.0, 14.0 mg/kg, i.p., bid., 2 weeks) attenuated neurological impairments, and promoted angiogenesis of injured ipsilateral cortex and striatum after 14 days of cerebral ischemia-reperfusion in mice. Further, GK (3.5 mg/kg in vivo, 10 μM in vitro) significantly up-regulated the expressions of HIF-1α and VEGF in tMCAO mouse brains and in b End3 cells after OGD/R, and GK-induced upregulation of HIF-1α and VEGF in b End3 cells could be abolished by JAK2/STAT3 inhibitor AG490. Our results demonstrate that GK promotes angiogenesis after ischemia stroke through increasing the expression of HIF-1α/VEGF via JAK2/STAT3 pathway, which provide an insight into the novel clinical application of GK and its analogs in ischemic stroke therapy in future.
Collapse
Affiliation(s)
- Meng Chen
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 101 Longmian Road, Nanjing, Jiangsu 211166, China
| | - Wenyan Zou
- Department of Pharmacology, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, Jiangsu 210023, China
| | - Miaomiao Chen
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 101 Longmian Road, Nanjing, Jiangsu 211166, China
| | - Liang Cao
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Parmaceutical CO. LTD., Lianyungang, Jiangsu 222001, China
| | - Jianhua Ding
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 101 Longmian Road, Nanjing, Jiangsu 211166, China
| | - Wei Xiao
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Parmaceutical CO. LTD., Lianyungang, Jiangsu 222001, China.
| | - Gang Hu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 101 Longmian Road, Nanjing, Jiangsu 211166, China; Department of Pharmacology, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, Jiangsu 210023, China.
| |
Collapse
|
196
|
Cerebral ischemia induces angiogenesis in the peri-infarct regions via Notch1 signaling activation. Exp Neurol 2018; 304:30-40. [DOI: 10.1016/j.expneurol.2018.02.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 02/13/2018] [Accepted: 02/21/2018] [Indexed: 12/11/2022]
|
197
|
He R, Moisan A, Detante O, Rémy C, Krainik A, Barbier EL, Lemasson B. Evaluation of Parametric Response Mapping to Assess Therapeutic Response to Human Mesenchymal Stem Cells after Experimental Stroke. Cell Transplant 2018; 26:1462-1471. [PMID: 28901185 PMCID: PMC5680978 DOI: 10.1177/0963689717721211] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Stroke is the leading cause of disability in adults. After the very narrow time frame during which treatment by thrombolysis and mechanical thrombectomy is possible, cell therapy has huge potential for enhancing stroke recovery. Accurate analysis of the response to new therapy using imaging biomarkers is needed to assess therapeutic efficacy. The aim of this study was to compare 2 analysis techniques: the parametric response map (PRM), a voxel-based technique, and the standard whole-lesion approach. These 2 analyses were performed on data collected at 4 time points in a transient middle cerebral artery occlusion (MCAo) model, which was treated with human mesenchymal stem cells (hMSCs). The apparent diffusion coefficient (ADC), cerebral blood volume (CBV), and vessel size index (VSI) were mapped using magnetic resonance imaging (MRI). Two groups of rats received an intravenous injection of either 1 mL phosphate-buffered saline (PBS)-glutamine (MCAo-PBS, n = 10) or 3 million hMSCs (MCAo-hMSC, n = 10). One sham group was given PBS-glutamine (sham, n = 12). Each MRI parameter was analyzed by both the PRM and the whole-lesion approach. At day 9, 1 d after grafting, PRM revealed that hMSCs had reduced the fraction of decreased ADC (PRMADC−: MCAo-PBS 6.7% ± 1.7% vs. MCAo-hMSC 3.3% ± 2.4%), abolished the fraction of increased CBV (PRMCBV+: MCAo-PBS 16.1% ± 3.7% vs. MCAo-hMSC 6.4% ± 2.6%), and delayed the fraction of increased VSI (PRMVSI+: MCAo-PBS 17.5% ± 6.3% vs. MCAo-hMSC 5.4% ± 2.6%). The whole-lesion approach was, however, insensitive to these early modifications. PRM thus appears to be a promising technique for the detection of early brain changes following treatments such as cell therapy.
Collapse
Affiliation(s)
- Rui He
- 1 Grenoble Institut des Neurosciences, GIN, Université Grenoble Alpes, Grenoble, France.,2 Inserm, U1216, Grenoble, France
| | - Anaïck Moisan
- 1 Grenoble Institut des Neurosciences, GIN, Université Grenoble Alpes, Grenoble, France.,2 Inserm, U1216, Grenoble, France.,3 Cell Therapy and Engineering Unit, French Blood Company/CHU Grenoble Alpes, Hôpital Michallon, Saint-Ismier, France
| | - Olivier Detante
- 1 Grenoble Institut des Neurosciences, GIN, Université Grenoble Alpes, Grenoble, France.,2 Inserm, U1216, Grenoble, France.,4 Department of Neurology, Stroke Unit, Hôpital Michallon, CHU Grenoble Alpes, Grenoble, France
| | - Chantal Rémy
- 1 Grenoble Institut des Neurosciences, GIN, Université Grenoble Alpes, Grenoble, France.,2 Inserm, U1216, Grenoble, France
| | - Alexandre Krainik
- 1 Grenoble Institut des Neurosciences, GIN, Université Grenoble Alpes, Grenoble, France.,2 Inserm, U1216, Grenoble, France.,5 Department of Neuroradiology and MRI, Hôpital Michallon, CHU Grenoble Alpes, Grenoble, France
| | - Emmanuel Luc Barbier
- 1 Grenoble Institut des Neurosciences, GIN, Université Grenoble Alpes, Grenoble, France.,2 Inserm, U1216, Grenoble, France
| | - Benjamin Lemasson
- 1 Grenoble Institut des Neurosciences, GIN, Université Grenoble Alpes, Grenoble, France.,2 Inserm, U1216, Grenoble, France
| |
Collapse
|
198
|
Xiong XY, Liu L, Yang QW. Refocusing Neuroprotection in Cerebral Reperfusion Era: New Challenges and Strategies. Front Neurol 2018; 9:249. [PMID: 29740385 PMCID: PMC5926527 DOI: 10.3389/fneur.2018.00249] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 03/28/2018] [Indexed: 12/27/2022] Open
Abstract
Pathophysiological processes of stroke have revealed that the damaged brain should be considered as an integral structure to be protected. However, promising neuroprotective drugs have failed when translated to clinical trials. In this review, we evaluated previous studies of neuroprotection and found that unsound patient selection and evaluation methods, single-target treatments, etc., without cerebral revascularization may be major reasons of failed neuroprotective strategies. Fortunately, this may be reversed by recent advances that provide increased revascularization with increased availability of endovascular procedures. However, the current improved effects of endovascular therapy are not able to match to the higher rate of revascularization, which may be ascribed to cerebral ischemia/reperfusion injury and lacking of neuroprotection. Accordingly, we suggest various research strategies to improve the lower therapeutic efficacy for ischemic stroke treatment: (1) multitarget neuroprotectant combinative therapy (cocktail therapy) should be investigated and performed based on revascularization; (2) and more efforts should be dedicated to shifting research emphasis to establish recirculation, increasing functional collateral circulation and elucidating brain–blood barrier damage mechanisms to reduce hemorrhagic transformation. Therefore, we propose that a comprehensive neuroprotective strategy before and after the endovascular treatment may speed progress toward improving neuroprotection after stroke to protect against brain injury.
Collapse
Affiliation(s)
- Xiao-Yi Xiong
- Department of Neurology, Xinqiao Hospital, The Army Medical University (Third Military Medical University), Chongqing, China
| | - Liang Liu
- Department of Neurology, Xinqiao Hospital, The Army Medical University (Third Military Medical University), Chongqing, China
| | - Qing-Wu Yang
- Department of Neurology, Xinqiao Hospital, The Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
199
|
Xueshuantong Injection (Lyophilized) Attenuates Cerebral Ischemia/Reperfusion Injury by the Activation of Nrf2–VEGF Pathway. Neurochem Res 2018; 43:1096-1103. [DOI: 10.1007/s11064-018-2523-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 02/27/2018] [Accepted: 04/04/2018] [Indexed: 12/26/2022]
|
200
|
Li G, Morris-Blanco KC, Lopez MS, Yang T, Zhao H, Vemuganti R, Luo Y. Impact of microRNAs on ischemic stroke: From pre- to post-disease. Prog Neurobiol 2018; 163-164:59-78. [PMID: 28842356 PMCID: PMC11884751 DOI: 10.1016/j.pneurobio.2017.08.002] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 06/12/2017] [Accepted: 08/16/2017] [Indexed: 12/21/2022]
Abstract
Stroke is the number one cause of neurological dysfunction in adults and has a heavy socioeconomic burden worldwide. The etiological origins of ischemic stroke and resulting pathological processes are mediated by a multifaceted cascade of molecular mechanisms that are in part modulated by posttranscriptional activity. Accumulating evidence has revealed a role for microRNAs (miRNAs) as essential mediators of posttranscriptional gene silencing in both the physiology of brain development and pathology of ischemic stroke. In this review, we compile miRNAs that have been reported to regulate various stroke risk factors and pre-disease mechanisms, including hypertension, atherosclerosis, and diabetes, followed by an in-depth analysis of miRNAs in ischemic stroke pathogenesis, such as excitotoxicity, oxidative stress, inflammation, apoptosis, angiogenesis and neurogenesis. Since promoting or suppressing expression of miRNAs by specific pharmaceutical and non-pharmaceutical therapies may be beneficial to post-stroke recovery, we also highlight the potential therapeutic value of miRNAs in clinical settings.
Collapse
Affiliation(s)
- Guangwen Li
- Cerebrovascular Diseases Research Institute and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing 10053, China
| | | | - Mary S Lopez
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA; Cellular and Molecular Pathology Graduate Program, University of Wisconsin, Madison, WI, USA
| | - Tuo Yang
- Department of Neurology, University of Pittsburgh School of Medicine, PA, USA
| | - Haiping Zhao
- Cerebrovascular Diseases Research Institute and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing 10053, China
| | - Raghu Vemuganti
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA; Cellular and Molecular Pathology Graduate Program, University of Wisconsin, Madison, WI, USA; William S. Middleton VA Hospital, Madison, WI, USA.
| | - Yumin Luo
- Cerebrovascular Diseases Research Institute and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing 10053, China; Beijing Institute for Brain Disorders and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing 10053, China.
| |
Collapse
|