151
|
Malvis A, Hodaifa G, Halioui M, Seyedsalehi M, Sánchez S. Integrated process for olive oil mill wastewater treatment and its revalorization through the generation of high added value algal biomass. WATER RESEARCH 2019; 151:332-342. [PMID: 30616045 DOI: 10.1016/j.watres.2018.12.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 12/03/2018] [Accepted: 12/17/2018] [Indexed: 06/09/2023]
Abstract
The two-phase continuous centrifugation process for olive oil extraction generates high amounts of olive oil mill wastewater (OMW), characterized by containing large concentrations of numerous contaminant compounds for the environment. An integral process based on physico-chemical (flocculation, photolysis and microfiltration) and microalgal growth stages was proposed for its treatment. Chemical oxygen demand (COD) removal percentages were 57.5%, 88.8% and 20.5% for flocculation, photolysis and microfiltration, respectively. The global removal percentages of organic load in the primary treatment were 96.2% for COD, 80.3% for total organic carbon (TOC) and 96.6% for total phenolic compounds (TPCs). In secondary treatment, different experiments using the microalgae Chlorella pyrenoidosa were performed on a laboratory scale in stirred batch tank reactors. The OMW concentrations in each culture medium were: 5%, 10%, 25%, 50%, 75% and 100% (v/v). The common experimental conditions were: pH = 7, temperature = 25 °C, agitation speed = 200 rpm, aeration rate = 0.5 (v/v) and illumination intensity = 359 μE m-2 s-1. The highest maximum specific growth rate (0.07 h-1) and volumetric biomass production (1.25 mg/(L h)) values were achieved in the culture with 50% of OMW (v/v). The final biomass obtained had a high percentage of carbohydrates, whose content ranged from 30.3% to 89.2% and the highest lipid content (34.2%) was determined in the culture with 25% of OMW (v/v). The final treated water is suitable for its use in irrigation, discharge to receiving waters or for being reused in the same process.
Collapse
Affiliation(s)
- Ana Malvis
- Molecular Biology and Biochemical Engineering Department, Chemical Engineering Area, University of Pablo de Olavide, ES-41013, Seville, Spain
| | - Gassan Hodaifa
- Molecular Biology and Biochemical Engineering Department, Chemical Engineering Area, University of Pablo de Olavide, ES-41013, Seville, Spain; Chemical, Environmental and Materials Department, University of Jaén, Centre of Advanced Studies in Olives and Olive-Oil, ES-23071, Jaén, Spain.
| | - Mansour Halioui
- Chemical, Environmental and Materials Department, University of Jaén, Centre of Advanced Studies in Olives and Olive-Oil, ES-23071, Jaén, Spain
| | | | - Sebastián Sánchez
- Chemical, Environmental and Materials Department, University of Jaén, Centre of Advanced Studies in Olives and Olive-Oil, ES-23071, Jaén, Spain
| |
Collapse
|
152
|
El Kassis E, Otazaghine B, El Hage R, Sonnier R. Assessment of olive pomace wastes as flame retardants. J Appl Polym Sci 2019. [DOI: 10.1002/app.47715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Elyssa El Kassis
- LCPM, Faculty of SciencesLebanese University Fanar Lebanon
- C2MA, IMT Mines Alés 6, Avenue de Clavières 30100 Alès France
| | | | - Roland El Hage
- LCPM, Faculty of SciencesLebanese University Fanar Lebanon
| | | |
Collapse
|
153
|
Bougarne L, Ben Abbou M, El Haji M, Bouka H. Consequences of surface water eutrophication: remedy and environmental interest. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.matpr.2019.04.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
154
|
Silvan JM, Pinto-Bustillos MA, Vásquez-Ponce P, Prodanov M, Martinez-Rodriguez AJ. Olive mill wastewater as a potential source of antibacterial and anti-inflammatory compounds against the food-borne pathogen Campylobacter. INNOV FOOD SCI EMERG 2019. [DOI: 10.1016/j.ifset.2018.05.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
155
|
Esteves BM, Rodrigues CSD, Madeira LM. Synthetic olive mill wastewater treatment by Fenton's process in batch and continuous reactors operation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:34826-34838. [PMID: 29101704 DOI: 10.1007/s11356-017-0532-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 10/19/2017] [Indexed: 06/07/2023]
Abstract
Degradation of total phenol (TPh) and organic matter, (expressed as total organic carbon TOC), of a simulated olive mill wastewater was evaluated by the Fenton oxidation process under batch and continuous mode conditions. A mixture of six phenolic acids usually found in these agro-industrial wastewaters was used for this purpose. The study focused on the optimization of key operational parameters of the Fenton process in a batch reactor, namely Fe2+ dosage, hydrogen peroxide concentration, pH, and reaction temperature. On the assessment of the process efficiency, > 99% of TPh and > 56% of TOC removal were attained when [Fe2+] = 100 ppm, [H2O2] = 2.0 g/L, T = 30 °C, and initial pH = 5.0, after 300 min of reaction. Under those operational conditions, experiments on a continuous stirred-tank reactor (CSTR) were performed for different space-time values (τ). TOC and TPh removals of 47.5 and 96.9%, respectively, were reached at steady-state (for τ = 120 min). High removal of COD (> 75%) and BOD5 (> 70%) was achieved for both batch and CSTR optimum conditions; analysis of the BOD5/COD ratio also revealed an increase in the effluent's biodegradability. Despite the high removal of lumped parameters, the treated effluent did not met the Portuguese legal limits for direct discharge of wastewaters into water bodies, which indicates that coupled chemical-biological process may be the best solution for real olive mill wastewater treatment.
Collapse
Affiliation(s)
- Bruno M Esteves
- LEPABE-Laboratório de Engenharia de Processos, Ambiente, Biotecnologia e Energia, Departamento de Engenharia Química, Faculdade de Engenharia, Universidade do Porto, R. Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Carmen S D Rodrigues
- LEPABE-Laboratório de Engenharia de Processos, Ambiente, Biotecnologia e Energia, Departamento de Engenharia Química, Faculdade de Engenharia, Universidade do Porto, R. Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Luís M Madeira
- LEPABE-Laboratório de Engenharia de Processos, Ambiente, Biotecnologia e Energia, Departamento de Engenharia Química, Faculdade de Engenharia, Universidade do Porto, R. Dr. Roberto Frias, 4200-465, Porto, Portugal.
| |
Collapse
|
156
|
β-Cyclodextrin Does not Alter the Bioaccessibility and the Uptake by Caco-2 Cells of Olive By-Product Phenolic Compounds. Nutrients 2018; 10:nu10111653. [PMID: 30400310 PMCID: PMC6266305 DOI: 10.3390/nu10111653] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 10/26/2018] [Accepted: 10/29/2018] [Indexed: 12/25/2022] Open
Abstract
Alperujo—a two-phase olive mill waste that is composed of olive vegetation water and solid skin, pulp, and seed fragments - is a highly valuable olive by-product due to its high content in phenolic compounds. In this study, we assessed whether β-cyclodextrin (β-CD), which is used to extract and protect alpejuro phenolic compounds (hydroxytyrosol-O-glucoside, tyrosol, caffeic, and p-coumaric acids) could impact on their bioaccessibility (i.e., the percentage of molecule found in the aqueous phase of the digesta) and uptake by intestinal cells, by using an in vitro digestion model and Caco-2 TC7 cells in culture, respectively. Our results showed that β-CD did not change the bioaccessibility of the selected phenols. Hydroxytyrosol-O-glucoside and caffeic did not cross Caco-2 cell monolayers. Conversely ferulic acid, identified as the main caffeic acid intestinal metabolite, was absorbed through intestinal cell monolayers (~20%). Interestingly, β-CD moderately but significantly improved the local absorption of tyrosol and p-coumaric acid (2.3 + 1.4% and 8.5 ± 4.2%, respectively, p < 0.05), even if their final bioavailability (expressed as bioaccessibility × absorption by Caco-2 cells) was not modified (16.2 ± 0.6% vs. 16.8 ± 0.5% for tyrosol and 32.0 ± 3.2% vs. 37.2 ± 3.2% for p-coumaric acid, from pure alperujo and alperujo complexed with β-CD, respectively). Overall, our results show that β-CD is an interesting extraction and storage agent for phenolic compounds that does not alter their in vitro bioavailability.
Collapse
|
157
|
Di Nunzio M, Picone G, Pasini F, Caboni MF, Gianotti A, Bordoni A, Capozzi F. Olive oil industry by-products. Effects of a polyphenol-rich extract on the metabolome and response to inflammation in cultured intestinal cell. Food Res Int 2018; 113:392-400. [DOI: 10.1016/j.foodres.2018.07.025] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/09/2018] [Accepted: 07/14/2018] [Indexed: 01/03/2023]
|
158
|
García-Ballesteros S, Grimalt J, Berto S, Minella M, Laurenti E, Vicente R, López-Pérez MF, Amat AM, Bianco Prevot A, Arques A. New Route for Valorization of Oil Mill Wastes: Isolation of Humic-Like Substances to be Employed in Solar-Driven Processes for Pollutants Removal. ACS OMEGA 2018; 3:13073-13080. [PMID: 31458028 PMCID: PMC6644490 DOI: 10.1021/acsomega.8b01816] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 09/26/2018] [Indexed: 05/27/2023]
Abstract
The valorization of olive oil mill solid wastes (OMW) has been addressed by considering it as a possible source of humic-like substances (HLSs), to be used as auxiliary substances for photo-Fenton, employing caffeine as a target pollutant to test the efficiency of this approach. The OMW-HLS isolation encompassed the OMW basic hydrolysis, followed by ultrafiltration and drying. OMW-HLS structural features have been investigated by means of laser light scattering, fluorescence, size exclusion chromatography, and thermogravimetric analysis; moreover, the capability of OMW-HLS to generate reactive species under irradiation has been investigated using spin-trap electronic paramagnetic resonance. The caffeine degradation by means of photo-Fenton process driven at pH = 5 was significantly increased by the addition of 10 mg/L of OMW-HLS. Under the mechanistic point of view, it could be hypothesized that singlet oxygen is not playing a relevant role, whereas other oxidants (mainly OH• radicals) can be considered as the key species in promoting caffeine degradation.
Collapse
Affiliation(s)
- Sara García-Ballesteros
- Grupo
de Procesos de Oxidación Avanzada, Departamento de Ingeniería
Textil y Papelera, and Departamento de Ingeniería Química
y Nuclear, Universitat Politècnica
de València, Plaza
Ferrándiz y Carbonell 1, 03801 Alcoy, Spain
| | - Jaume Grimalt
- Grupo
de Procesos de Oxidación Avanzada, Departamento de Ingeniería
Textil y Papelera, and Departamento de Ingeniería Química
y Nuclear, Universitat Politècnica
de València, Plaza
Ferrándiz y Carbonell 1, 03801 Alcoy, Spain
| | - Silvia Berto
- Dipartimento
di Chimica, Università di Torino, Via P. Giuria 7, 10125 Torino, Italy
| | - Marco Minella
- Dipartimento
di Chimica, Università di Torino, Via P. Giuria 7, 10125 Torino, Italy
| | - Enzo Laurenti
- Dipartimento
di Chimica, Università di Torino, Via P. Giuria 7, 10125 Torino, Italy
| | - Rafael Vicente
- Grupo
de Procesos de Oxidación Avanzada, Departamento de Ingeniería
Textil y Papelera, and Departamento de Ingeniería Química
y Nuclear, Universitat Politècnica
de València, Plaza
Ferrándiz y Carbonell 1, 03801 Alcoy, Spain
| | - Maria F. López-Pérez
- Grupo
de Procesos de Oxidación Avanzada, Departamento de Ingeniería
Textil y Papelera, and Departamento de Ingeniería Química
y Nuclear, Universitat Politècnica
de València, Plaza
Ferrándiz y Carbonell 1, 03801 Alcoy, Spain
| | - Ana M. Amat
- Grupo
de Procesos de Oxidación Avanzada, Departamento de Ingeniería
Textil y Papelera, and Departamento de Ingeniería Química
y Nuclear, Universitat Politècnica
de València, Plaza
Ferrándiz y Carbonell 1, 03801 Alcoy, Spain
| | | | - Antonio Arques
- Grupo
de Procesos de Oxidación Avanzada, Departamento de Ingeniería
Textil y Papelera, and Departamento de Ingeniería Química
y Nuclear, Universitat Politècnica
de València, Plaza
Ferrándiz y Carbonell 1, 03801 Alcoy, Spain
| |
Collapse
|
159
|
Establishing the Phenolic Composition of Olea europaea L. Leaves from Cultivars Grown in Morocco as a Crucial Step Towards Their Subsequent Exploitation. Molecules 2018; 23:molecules23102524. [PMID: 30279368 PMCID: PMC6222472 DOI: 10.3390/molecules23102524] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 09/25/2018] [Accepted: 09/27/2018] [Indexed: 11/29/2022] Open
Abstract
In Morocco, the recovery of olive agro-industrial by-products as potential sources of high-added value substances has been underestimated so far. A comprehensive quantitative characterization of olive leaves’ bioactive compounds is crucial for any attempt to change this situation and to implement the valorization concept in emerging countries. Thus, the phenolic fraction of olive leaves of 11 varieties (‘Arbequina’, ‘Hojiblanca’, ‘Frantoio’, ‘Koroneiki’, ‘Lechín’, ‘Lucque’, ‘Manzanilla’, ‘Picholine de Languedoc’, ‘Picholine Marocaine’, ‘Picual’ and ‘Verdal’), cultivated in the Moroccan Meknès region, was investigated. Thirty eight phenolic or related compounds (including 16 secoiridoids, nine flavonoids in their aglycone form, seven flavonoids in glycosylated form, four simple phenols, one phenolic acid and one lignan) were determined in a total of 55 samples by using ultrasonic-assisted extraction and liquid chromatography coupled to electrospray ionization-ion trap mass spectrometry (LC-ESI-IT MS). Very remarkable quantitative differences were observed among the profiles of the studied cultivars. ‘Picholine Marocaine’ variety exhibited the highest total phenolic content (around 44 g/kg dry weight (DW)), and logically showed the highest concentration in terms of various individual compounds. In addition, chemometrics (principal components analysis (PCA) and stepwise-linear discriminant analysis (s-LDA)) were applied to the quantitative phenolic compound data, allowing good discrimination of the selected samples according to their varietal origin.
Collapse
|
160
|
Volpe M, Wüst D, Merzari F, Lucian M, Andreottola G, Kruse A, Fiori L. One stage olive mill waste streams valorisation via hydrothermal carbonisation. WASTE MANAGEMENT (NEW YORK, N.Y.) 2018; 80:224-234. [PMID: 30455003 DOI: 10.1016/j.wasman.2018.09.021] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 08/24/2018] [Accepted: 09/12/2018] [Indexed: 05/22/2023]
Abstract
An olive waste stream mixture, coming from a three phase-continuous centrifugation olive oil mill industry, with a typical wet basis mass composition of olive pulp 39 wt%, kernels 5 wt% and olive mill waste water 56 wt%, was subjected to hydrothermal carbonisation (HTC) at 180, 220 and 250 °C for a 3-hour residence time in a 2-litre stainless steel electrically heated batch reactor. The raw feedstock and corresponding hydrochars were characterised in terms of proximate and ultimate analyses, higher heating values and energy properties. Results showed an increase in carbonisation of samples with increasing HTC severity and an energy densification ratio up to 142% (at 250 °C). Hydrochar obtained at 250 °C was successfully pelletised using a lab scale pelletiser without binders or expensive drying procedures. Energy characterisation (HHV, TGA), ATR-FTIR analysis, fouling index evaluation and pelletisation results suggested that olive mill waste hydrochars could be used as energy dense and mechanical stable bio-fuels. Characterisation of HTC residues in terms of mineral content via induced coupled plasma optical emission spectroscopy (ICP-OES) as well as Total and Dissolved Organic Carbon enabled to evaluate their potential use as soil improvers. Nutrients and polyphenolic compounds in HTC liquid fractions were evaluated for the estimation of their potential use as liquid fertilisers. Results showed that HTC could represent a viable route for the valorisation of olive mill industry waste streams.
Collapse
Affiliation(s)
- Maurizio Volpe
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, via Mesiano 77, 38123 Trento, Italy.
| | - Dominik Wüst
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, via Mesiano 77, 38123 Trento, Italy; University of Hohenheim, Institute of Agricultural Engineering, Department of Conversion Technologies and of Biobased Resources, Garbenstrasse 9, 70599 Stuttgart, Germany.
| | - Fabio Merzari
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, via Mesiano 77, 38123 Trento, Italy.
| | - Michela Lucian
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, via Mesiano 77, 38123 Trento, Italy.
| | - Gianni Andreottola
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, via Mesiano 77, 38123 Trento, Italy.
| | - Andrea Kruse
- University of Hohenheim, Institute of Agricultural Engineering, Department of Conversion Technologies and of Biobased Resources, Garbenstrasse 9, 70599 Stuttgart, Germany.
| | - Luca Fiori
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, via Mesiano 77, 38123 Trento, Italy.
| |
Collapse
|
161
|
Co-composting of Olive Mill Waste and Wine-Processing Waste: An Application of Compost as Soil Amendment. J CHEM-NY 2018. [DOI: 10.1155/2018/7918583] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In order to decrease the environmental harm produced by the agro industries’ wastes’, an investigation of the co-composting of olive mill waste (olive mill wastewater (OMW), olive mill sludge (OMS)) and wine by-products (grape marc and winery wastewater) was done. Three aerated windrows of variable compositions were performed; these windrows differ in terms of their initial composition and the liquid used for their humidification; OMW and wastewater winery were used for humidification to replace water for windrow moistening. Moreover, the main physicochemical parameters (temperature, pH, electrical conductivity, and C/N) were monitored to evaluate the co-composting process. The latter lasted around three months. The elaborated composts were characterized by low C/N ratio, and they were rich in fertilizing and nutriment elements and of low heavy metal contents. The humidification of the windrows with OMW showed effectiveness in improving the windrows temperature, reflected by the high temperatures monitored during the composting process in comparison with the windrow humidified with winery wastewater. Furthermore, a longer thermophilic phase was held in windrows carrying OMS. The valorization of the produced composts for soil amendment significantly improved the soil fertility. Indeed, field experiments showed an increase in radish yield by 10%, the composts were harmless and did not have any phytotoxic effect on radish growth.
Collapse
|
162
|
Unravelling the Distribution of Secondary Metabolites in Olea europaea L.: Exhaustive Characterization of Eight Olive-Tree Derived Matrices by Complementary Platforms (LC-ESI/APCI-MS and GC-APCI-MS). Molecules 2018; 23:molecules23102419. [PMID: 30241383 PMCID: PMC6222318 DOI: 10.3390/molecules23102419] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 09/12/2018] [Accepted: 09/19/2018] [Indexed: 12/31/2022] Open
Abstract
In order to understand the distribution of the main secondary metabolites found in Olea europaea L., eight different samples (olive leaf, stem, seed, fruit skin and pulp, as well as virgin olive oil, olive oil obtained from stoned and dehydrated fruits and olive seed oil) coming from a Picudo cv. olive tree were analyzed. All the experimental conditions were selected so as to assure the maximum coverage of the metabolome of the samples under study within a single run. The use of LC and GC with high resolution MS (through different ionization sources, ESI and APCI) and the annotation strategies within MetaboScape 3.0 software allowed the identification of around 150 compounds in the profiles, showing great complementarity between the evaluated methodologies. The identified metabolites belonged to different chemical classes: triterpenic acids and dialcohols, tocopherols, sterols, free fatty acids, and several sub-types of phenolic compounds. The suitability of each platform and polarity (negative and positive) to determine each family of metabolites was evaluated in-depth, finding, for instance, that LC-ESI-MS (+) was the most efficient choice to ionize phenolic acids, secoiridoids, flavonoids and lignans and LC-APCI-MS was very appropriate for pentacyclic triterpenic acids (MS (−)) and sterols and tocopherols (MS (+)). Afterwards, a semi-quantitative comparison of the selected matrices was carried out, establishing their typical features (e.g., fruit skin was pointed out as the matrix with the highest relative amounts of phenolic acids, triterpenic compounds and hydroxylated fatty acids, and seed oil was distinctive for its high relative levels of acetoxypinoresinol and tocopherols).
Collapse
|
163
|
Sabino M, Cappelli K, Capomaccio S, Pascucci L, Biasato I, Verini-Supplizi A, Valiani A, Trabalza-Marinucci M. Dietary supplementation with olive mill wastewaters induces modifications on chicken jejunum epithelial cell transcriptome and modulates jejunum morphology. BMC Genomics 2018; 19:576. [PMID: 30068314 PMCID: PMC6090849 DOI: 10.1186/s12864-018-4962-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 07/26/2018] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND The Mediterranean diet is considered one of the healthier food habits and olive oil is one of its key components. Olive oil polyphenols are known to induce beneficial effects in several pathological conditions, such as inflammatory bowel disease, and to contrast the proliferation of cancer cells or hypercholesterolemia. Polyphenols are also present in waste products derived from the olive industry: olive mill wastewaters (OMWW) are rich in polyphenols and there is an increasing interest in using OMWW in animal nutrition. OMWW are attributed with positive effects in promoting chicken performance and the quality of food-derived products. However, a tissue-specific transcriptome target analysis of chickens fed with OMWW has never been attempted. RESULTS We explored the effect of dietary OMWW on the intestinal function in broilers. A morphological analysis of the jejunum revealed that OMWW reduced crypt depth, whereas no significant modifications were observed for villus height and the villus height/crypt depth ratio. An RNA Sequencing analysis was performed on isolated, intestinal, epithelial cells and 280 differentially expressed genes were found using a count-based approach. An enrichment analysis revealed that the majority of up regulated genes in the OMWW group were over-represented by the regulation of viral genome replication-related GO-Terms, whereas down regulated genes were mainly involved in cholesterol and lipid metabolism. CONCLUSIONS Our study showed how an industrial waste product can be recycled as a feed additive with a positive relapse. OMWW dietary supplementation can be a nutritional strategy to improve chicken performance and health, prevent intestinal damage, enhance innate immunity and regulate cholesterol metabolism and fat deposition.
Collapse
Affiliation(s)
- Marcella Sabino
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy
| | - Katia Cappelli
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy
| | - Stefano Capomaccio
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy
| | - Luisa Pascucci
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy
| | - Ilaria Biasato
- Department of Veterinary Sciences, University of Torino, Largo Paolo Braccini 2, 10095 Grugliasco, Italy
| | - Andrea Verini-Supplizi
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy
| | - Andrea Valiani
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche, Via Gaetano Salvemini 1, 06126 Perugia, Italy
| | | |
Collapse
|
164
|
Valenti F, Zhong Y, Sun M, Porto SMC, Toscano A, Dale BE, Sibilla F, Liao W. Anaerobic co-digestion of multiple agricultural residues to enhance biogas production in southern Italy. WASTE MANAGEMENT (NEW YORK, N.Y.) 2018; 78:151-157. [PMID: 32559898 DOI: 10.1016/j.wasman.2018.05.037] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 05/18/2018] [Accepted: 05/20/2018] [Indexed: 06/11/2023]
Abstract
To valorize agricultural wastes and byproducts in southern Italy, anaerobic co-digestion of six feedstocks (citrus pulp, olive pomace, cattle manure, poultry litter, whey, and corn silage) was studied to produce biogas for renewable energy generation. Both batch and semi-continuous co-digestion approaches were adopted to carry out the investigation. The feedstocks were mixed at different percentages according to their availabilities in southern Italy. The batch anaerobic co-digestion demonstrated that six studied feedstock mixtures generated an average of 239 mL CH4/g VS loading without significant difference between each other, which concluded that the feedstock mixtures can be used for biogas production. Considering the feedstock availability of citrus pulp and olive pomace in Sicily, three feedstock mixtures with the highest volatile solids concentration of citrus pulp (42% citrus pulp, 17% corn silage, 4% cattle manure, 8% poultry litter, and 18% whey; 34% citrus pulp, 8% olive pomace, 17% corn silage, 4% cattle manure, 8% poultry litter, and 18% whey; and 25% citrus pulp, 16% olive pomace, 17% corn silage, 4% cattle manure, 8% poultry litter, and 18% whey, respectively) were selected to run the semi-continuous anaerobic digestion. Under the stabilized culture condition, the feed mixture with 42% citrus pulp, 17% corn silage, 4% cattle manure, 8% poultry litter, and 18% whey presented the best biogas production (231 L methane/kg VS loading/day). The corresponding mass and energy balance concluded that all three tested feedstock mixtures have positive net energy outputs (1.5, 0.9, and 1.2 kWh-e/kg dry feedstock mixture, respectively).
Collapse
Affiliation(s)
- Francesca Valenti
- Department of Agriculture, Food and Environment, University of Catania, Via Santa Sofia, Catania, Italy; Anaerobic Digestion Research and Education Center, Department of Biosystems and Agricultural Engineering, Michigan State University, East Lansing, MI, USA
| | - Yuan Zhong
- Anaerobic Digestion Research and Education Center, Department of Biosystems and Agricultural Engineering, Michigan State University, East Lansing, MI, USA
| | - Mingxuan Sun
- Anaerobic Digestion Research and Education Center, Department of Biosystems and Agricultural Engineering, Michigan State University, East Lansing, MI, USA
| | - Simona M C Porto
- Department of Agriculture, Food and Environment, University of Catania, Via Santa Sofia, Catania, Italy
| | - Attilio Toscano
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Bruce E Dale
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, USA
| | | | - Wei Liao
- Anaerobic Digestion Research and Education Center, Department of Biosystems and Agricultural Engineering, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
165
|
Yakhlef W, Arhab R, Romero C, Brenes M, de Castro A, Medina E. Phenolic composition and antimicrobial activity of Algerian olive products and by-products. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.03.044] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
166
|
Castro-Muñoz R, Conidi C, Cassano A. Membrane-based technologies for meeting the recovery of biologically active compounds from foods and their by-products. Crit Rev Food Sci Nutr 2018; 59:2927-2948. [PMID: 29787307 DOI: 10.1080/10408398.2018.1478796] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
To date, according to the latest literature inputs, membranes-based technologies (microfiltration, ultrafiltration and nanofiltration) have demonstrated to meet the recovery of biologically active compounds, mainly phenolic compounds and their derivatives, from agro-food products and by-products. The goal of this paper is to provide a critical overview of the on ongoing development works aimed at improving the separation, fractionation and concentration of phenolic compounds and their derivatives from their original sources. The literature data are analyzed and discussed in relation to separation processes, molecule properties, membrane characteristics and key factors affecting the performance of such technologies. Technological advances and improvements over conventional technologies, as well as critical aspects to be further investigated are highlighted and discussed. Finally, a critical outlook about the current status for a large-scale application and the role of these processes from an environmental viewpoint is provided.
Collapse
Affiliation(s)
- Roberto Castro-Muñoz
- Department of Inorganic Technology, University of Chemistry and Technology Prague , Technická 5, Prague 6 , Czech Republic.,Institute on Membrane Technology, ITM-CNR, c/o University of Calabria , Via P. Bucci 17/C, Rende ( CS ), Italy.,Nanoscience Institute of Aragon (INA), Universidad de Zaragoza , Zaragoza , Spain
| | - Carmela Conidi
- Institute on Membrane Technology, ITM-CNR, c/o University of Calabria , Via P. Bucci 17/C, Rende ( CS ), Italy
| | - Alfredo Cassano
- Institute on Membrane Technology, ITM-CNR, c/o University of Calabria , Via P. Bucci 17/C, Rende ( CS ), Italy
| |
Collapse
|
167
|
Flores N, Sharif F, Yasri N, Brillas E, Sirés I, Roberts EPL. Removal of tyrosol from water by adsorption on carbonaceous materials and electrochemical advanced oxidation processes. CHEMOSPHERE 2018; 201:807-815. [PMID: 29550575 DOI: 10.1016/j.chemosphere.2018.03.028] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 02/27/2018] [Accepted: 03/04/2018] [Indexed: 06/08/2023]
Abstract
This work compares the ability of physical and chemical treatments, namely adsorption and electrochemical advanced oxidation processes, to remove tyrosol from aqueous medium. Adsorption on graphene nanoplatelets (GNPs) performed much better than that with a graphite intercalation compound. Adsorption isotherms were found to follow the Freundlich model (R2 = 0.96), which is characteristic of a chemisorption process. Successful electrochemical regeneration enables 5 successive adsorption/regeneration cycles before corrosion of GNPs occurs. Other typical aromatic contaminants that may coexist with tyrosol can be also adsorbed on GNPs. Percentage of regeneration efficiency of GNPs showed a higher affinity towards Lewis acids group compounds and a lower one towards Lewis base. The treatment of 100 mL of 0.723 mM tyrosol solutions in non-chlorinated and chlorinated matrices at pH 3.0 was carried out by electrochemical oxidation with electrogenerated H2O2 (EO-H2O2), electro-Fenton (EF) and UVA photoelectro-Fenton (PEF). Trials were made with a BDD anode and an air-diffusion cathode at 10-30 mA cm-2. Hydroxyl radicals formed at the anode from water oxidation and/or in the bulk from Fenton's reaction between added Fe2+ and generated H2O2, along with active chlorine produced in chlorinated medium, were the main oxidants. Tyrosol concentration always decayed following a pseudo-first-order kinetics and its mineralization rose as EO-H2O2 < EF < PEF, more rapidly in the chlorinated matrix. The potent photolysis of intermediates under UVA radiation explained the almost total mineralization achieved by PEF in the latter medium. The effect of current density and tyrosol content on the performance of all processes was examined.
Collapse
Affiliation(s)
- Nelly Flores
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Farbod Sharif
- University of Calgary, Department of Chemical and Petroleum Engineering, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| | - Nael Yasri
- University of Calgary, Department of Chemical and Petroleum Engineering, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| | - Enric Brillas
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Ignasi Sirés
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain.
| | - Edward P L Roberts
- University of Calgary, Department of Chemical and Petroleum Engineering, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada.
| |
Collapse
|
168
|
Habibi H, Mohammadi A, Farhoodi M, Jazaeri S. Application and Optimization of Microwave-Assisted Extraction and Dispersive Liquid–Liquid Microextraction Followed by High-Performance Liquid Chromatography for the Determination of Oleuropein and Hydroxytyrosol in Olive Pomace. FOOD ANAL METHOD 2018. [DOI: 10.1007/s12161-018-1279-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
169
|
Malapert A, Tomao V, Dangles O, Reboul E. Effect of Foods and β-Cyclodextrin on the Bioaccessibility and the Uptake by Caco-2 Cells of Hydroxytyrosol from Either a Pure Standard or Alperujo. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:4614-4620. [PMID: 29663812 DOI: 10.1021/acs.jafc.8b00556] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Hydroxytyrosol bioaccessibility and absorption by the intestinal cells were studied using an in vitro digestion model and Caco-2 TC7 monolayers cells in culture in the presence and absence of β-cyclodextrin and foods. Hydroxytyrosol was either provided as a pure standard or in an alperujo powder. The presence of foods significantly decreased hydroxytyrosol bioaccessibility and absorption (-20 and -10%, respectively), while β-cyclodextrin had no effect. Moreover, the presence of other compounds from alperujo in the intestinal compartment reduced hydroxytyrosol absorption by Caco-2 cells compared to pure standard (-60%). The final bioavailability of hydroxytyrosol, defined as its quantity at the basolateral side of cultured cell monolayers compared to the initial amount in the test meal, was 6.9 ± 0.4, 31.1 ± 1.1, and 40.9 ± 1.5% when hydroxytyrosol was from alperujo or a standard administered with or without food, respectively. Our results show that conversely to foods, β-cyclodextrin does not alter hydroxytyrosol bioavailability.
Collapse
Affiliation(s)
- Aurélia Malapert
- University of Avignon, INRA , UMR408 SQPOV, 84000 Avignon , France
| | - Valérie Tomao
- University of Avignon, INRA , UMR408 SQPOV, 84000 Avignon , France
| | - Olivier Dangles
- University of Avignon, INRA , UMR408 SQPOV, 84000 Avignon , France
| | - Emmanuelle Reboul
- INRA, INSERM , Aix-Marseille University , C2VN, 13005 Marseille , France
| |
Collapse
|
170
|
Di Mauro MD, Tomasello B, Giardina RC, Dattilo S, Mazzei V, Sinatra F, Caruso M, D'Antona N, Renis M. Sugar and mineral enriched fraction from olive mill wastewater for promising cosmeceutical application: characterization, in vitro and in vivo studies. Food Funct 2018; 8:4713-4722. [PMID: 29165474 DOI: 10.1039/c7fo01363a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Nowadays, agro-food by-products represent a potential low-cost source of biologically active ingredients which have been paid significant attention as nutraceuticals, medicine, food and cosmetics. In a previous study we evaluated the total sugars, metals and polyphenols of olive mill wastewater (OMWW) from a Cerasuola olive cultivar. In the present work we selectively recovered a sugar and mineral enriched fraction (SMEF) from Cerasuola OMWW by a green adsorption/desorption process. The SMEF was mainly found to be composed of monosaccharides and potassium by HPLC-ELSD and ICP-MS. The in vitro cytotoxicity on human fibroblasts, at different concentrations of the fraction, was investigated by MTT and comet assays. In addition, intracellular reactive oxygen species (ROS) production, apoptosis and cell morphological changes were examined. The physical stability of a formulation containing the SMEF (1% w/w) and its in vivo skin effects were also assessed.Our results highlighted that the SMEF showed a toxic effect at higher concentrations (i.e. cell viability reduction, DNA fragmentation and morphological alterations) well correlated with high ROS levels. Conversely, at low concentrations (0.5% and 1% w/w), no significant changes were observed. For the first time, through stability studies and in vivo tests, we also demonstrated that the SMEF formulation is stable and safe for topical application, since skin hydration improvement without negative effects was observed after 7 days of its use. Therefore, the SMEF has great potential to be used for cosmeceutical applications.
Collapse
Affiliation(s)
- Maria Domenica Di Mauro
- Department of Drug Sciences, Biochemistry Section, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
171
|
Towards a high yield recovery of polyphenols from olive mill wastewater on activated carbon coated with milk proteins: Experimental design and antioxidant activity. Food Chem 2018; 262:102-109. [PMID: 29751896 DOI: 10.1016/j.foodchem.2018.04.091] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 03/26/2018] [Accepted: 04/22/2018] [Indexed: 11/21/2022]
Abstract
Activated carbon coated with milk proteins was used for the removal and recovery of phenolic compounds from actual olive mill wastewater (OMW). The extraction of polyphenols using the new adsorbent based on natural coating agent has significant potential compared with traditional extraction methods, as it significantly increases the extraction yield (80%) and overall efficiencies of the process for total phenols (75.4%) and hydroxytyrosol (90.6%) which is the most valuable compound. Complete discussions on the adsorption isotherms, kinetic and thermodynamic were performed and the optimum adsorption variables were investigated using the response surface methodology and the central composite experimental design. The extracted polyphenols exhibited a high antioxidant activity and a fast scavenging effect on DPPH free radical. The strategy devised in this work for polyphenol extraction using modified activated carbon with biological coating agent is of simple design, very effective and ensure the recovery of highly antioxidant extract.
Collapse
|
172
|
Flores N, Brillas E, Centellas F, Rodríguez RM, Cabot PL, Garrido JA, Sirés I. Treatment of olive oil mill wastewater by single electrocoagulation with different electrodes and sequential electrocoagulation/electrochemical Fenton-based processes. JOURNAL OF HAZARDOUS MATERIALS 2018; 347:58-66. [PMID: 29289766 DOI: 10.1016/j.jhazmat.2017.12.059] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 11/24/2017] [Accepted: 12/21/2017] [Indexed: 05/25/2023]
Abstract
The treatment of olive oil mill wastewater (OOMW) by novel sequential processes involving electrocoagulation (EC) followed by electro-Fenton (EF) or photoelectro-Fenton (PEF) under UVA irradiation has been studied using a boron-doped diamond anode and an air-diffusion cathode for H2O2 electrogeneration. Their performance was monitored from the removal of total organic carbon (TOC), chemical oxygen demand, turbidity, total solids and total nitrogen, as well as from the energy consumption. Preliminary EC assays were performed with one pair of electrodes made of Al, Fe, AISI 304 or AISI 316L. The Fe/Fe cell showed the best performance, yielding 40% TOC decay in 20 min. Subsequent EF or PEF at natural pH 7.2 performed similarly, whereas PEF became superior at pH 3.0 due to the action of UVA photons. Comparison between EC/PEF and single EF or PEF at pH 3.0 and 25 mA cm-2 with 0.50 mM Fe2+ revealed the positive outcome of the sequential process, attaining 97.1% TOC abatement after 600 min. GC-MS analysis of the raw wastewater allowed identifying 18 cyclic and 27 aliphatic compounds, most of which could not be removed by EC. The final solutions in EC/EF and EC/PEF contained a large plethora of persistent long-chain aliphatic acids and alkanes.
Collapse
Affiliation(s)
- Nelly Flores
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Enric Brillas
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain.
| | - Francesc Centellas
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Rosa María Rodríguez
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Pere Lluís Cabot
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - José Antonio Garrido
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Ignasi Sirés
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain.
| |
Collapse
|
173
|
Wang Z, Wang C. Preliminary Characterization of the Composition and Phenolic Fragmentation of Olive Byproducts by Gas Chromatography–Mass Spectrometry and High-Performance Liquid Chromatography–Tandem Mass Spectrometry. ANAL LETT 2018. [DOI: 10.1080/00032719.2017.1379086] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Zhihong Wang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry (CAF), Nanjing, China
- Key Laboratory of the Biomass Energy and Material, Chinese Academy of Forestry, Nanjing, China
| | - Chengzhang Wang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry (CAF), Nanjing, China
- Key Laboratory of the Biomass Energy and Material, Chinese Academy of Forestry, Nanjing, China
- Institute of New Technology of Forestry, CAF, Beijing, China
| |
Collapse
|
174
|
Nikolaou A, Kourkoutas Y. Exploitation of olive oil mill wastewaters and molasses for ethanol production using immobilized cells of Saccharomyces cerevisiae. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:7401-7408. [PMID: 29280099 DOI: 10.1007/s11356-017-1051-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 12/13/2017] [Indexed: 06/07/2023]
Abstract
An alcoholic fermentation process is described, involving molasses, the main by-product of the sugar industry, blended with crude olive oil mill wastewaters (OOMWs) and immobilized Saccharomyces cerevisiae cells on delignified cellulosic material (DCM). For comparison, fermentations with free cells were also carried out. Initially, the optimum blending mixture for molasses dilution was sought after, while at a second step repeated batch fermentations at a temperature range 5-30 °C were performed to monitor the operational stability of the system. A 1/1 ratio of OOMWs/tap water blending mixture and cell immobilization resulted in higher fermentation parameters. Ethanol concentration and daily productivity values recorded at temperatures ≥ 20 °C (up to 67.8 g L-1 and 67.6 g L-1 d-1, respectively) could be adopted by the industrial sector, although the decline in fermentation efficiency observed, probably due to the toxicity effects of OOMWs. Finally, the potential of OOMWs treatment for ethanol production is highlighted and assessed.
Collapse
Affiliation(s)
- Anastasios Nikolaou
- Laboratory of Applied Microbiology and Biotechnology, Department of Molecular Biology & Genetics, Democritus University of Thrace, 681 00, Alexandroupolis, Greece
| | - Yiannis Kourkoutas
- Laboratory of Applied Microbiology and Biotechnology, Department of Molecular Biology & Genetics, Democritus University of Thrace, 681 00, Alexandroupolis, Greece.
| |
Collapse
|
175
|
Aly AA, Alashgar KNS, Al-Farraj AS, Ibrahim HM. Contaminants and salinity removal of olive mill wastewater using zeolite nanoparticles. SEP SCI TECHNOL 2018. [DOI: 10.1080/01496395.2018.1425301] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Anwar A. Aly
- Soil Science Department, College of Food and Agriculture Science, King Saud University, Riyadh, Saudi Arabia
- Soil and Water Science Department, Faculty of Agriculture, Alexandria University, Alexandria, Egypt
| | - Khalid N. S. Alashgar
- Patent Specialist, Substantive department, Saudi Patent Office at KACST, Riyadh, Saudi Arabia
| | - Abdullah S. Al-Farraj
- Soil Science Department, College of Food and Agriculture Science, King Saud University, Riyadh, Saudi Arabia
| | - Hesham M. Ibrahim
- Soil Science Department, College of Food and Agriculture Science, King Saud University, Riyadh, Saudi Arabia
- Department of Soil and Water Sciences, Faculty of Agriculture, Suez Canal University, Ismailia Egypt
| |
Collapse
|
176
|
Dolcet M, Torres M, Canela-Garayoa R. Raw and waste plant materials as sources of fungi with epoxide hydrolase activity. Application to the kinetic resolution of aryl and alkyl glycidyl ethers. BIOCATAL BIOTRANSFOR 2018. [DOI: 10.1080/10242422.2017.1308496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Marta Dolcet
- Department of Food Technology, University of Lleida, Lleida, Spain
| | - Mercè Torres
- Department of Food Technology, University of Lleida, Lleida, Spain
| | | |
Collapse
|
177
|
Effect of Ca2+ concentration on Scenedesmus sp. growth in heterotrophic and photoautotrophic cultivation. N Biotechnol 2018; 40:228-235. [DOI: 10.1016/j.nbt.2017.09.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 09/13/2017] [Accepted: 09/13/2017] [Indexed: 11/21/2022]
|
178
|
Reina R, García-Sánchez M, Liers C, García-Romera I, Aranda E. An Overview of Fungal Applications in the Valorization of Lignocellulosic Agricultural By-Products: The Case of Two-Phase Olive Mill Wastes. Fungal Biol 2018. [DOI: 10.1007/978-3-319-77386-5_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
179
|
Cibelli F, Bevilacqua A, Raimondo ML, Campaniello D, Carlucci A, Ciccarone C, Sinigaglia M, Corbo MR. Evaluation of Fungal Growth on Olive-Mill Wastewaters Treated at High Temperature and by High-Pressure Homogenization. Front Microbiol 2017; 8:2515. [PMID: 29312216 PMCID: PMC5735108 DOI: 10.3389/fmicb.2017.02515] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 12/04/2017] [Indexed: 12/25/2022] Open
Abstract
Reuse of olive mill wastewaters (OMWWs) in agriculture represents a significant challenge for health and safety of our planet. Phytotoxic compounds in OMWW generally prohibit use of untreated OMWWs for agricultural irrigation or direct discharge into surface waters. However, pretreated OMWW can have positive effects on chemical and microbiological soil characteristics, to fight against fungal soil-borne pathogens. Low amounts of OMWW following thermal (TT-OMWW) and high-pressure homogenization (HPH-OMWW) pretreatments counteracted growth of some of 12 soil-borne and/or pathogenic fungi examined. With fungal growth measured as standardized change in time to half maximum colony diameter, Δτ, overall, HPH-OMWW showed increased bioactivity, as increased mean Δτ from 3.0 to 4.8 days. Principal component analysis highlighted two fungal groups: Colletotrichum gloeosporioides, Alternaria alternata, Sclerotium rolfsii, and Rosellinia necatrix, with growth strongly inhibited by the treated OMWWs; and Aspergillus ochraceus and Phaeoacremonium parasiticum, with stimulated growth by the treated OMWWs. As a non-thermal treatment, HPH-OMWW generally shows improved positive effects, which potentially arise from preservation of the phenols.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Maria R. Corbo
- Department of the Science of Agriculture, Food and Environment, University of Foggia, Foggia, Italy
| |
Collapse
|
180
|
|
181
|
Ying D, Hlaing MM, Lerisson J, Pitts K, Cheng L, Sanguansri L, Augustin MA. Physical properties and FTIR analysis of rice-oat flour and maize-oat flour based extruded food products containing olive pomace. Food Res Int 2017; 100:665-673. [DOI: 10.1016/j.foodres.2017.07.062] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 07/26/2017] [Accepted: 07/26/2017] [Indexed: 01/18/2023]
|
182
|
Pinho IA, Lopes DV, Martins RC, Quina MJ. Phytotoxicity assessment of olive mill solid wastes and the influence of phenolic compounds. CHEMOSPHERE 2017; 185:258-267. [PMID: 28697431 DOI: 10.1016/j.chemosphere.2017.07.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 06/06/2017] [Accepted: 07/01/2017] [Indexed: 06/07/2023]
Abstract
The main objective of this work is to evaluate the phytotoxicity of olive mill solid wastes (OMW) produced in two different centrifugation technologies and also the toxicity associated with specific phenolic compounds. Two samples of waste were collected in two-phase (2P-OMW) and three-phase (3P-OMW) centrifugation olive oil production processes, and cress bioassays with Lepidium sativum L. were employed to evaluate phytotoxicity. Although both OMW have similar total phenolic content (TPh), results confirmed that 2P-OMW is more phytotoxic than 3P-OMW. When extracts from 2P-OMW at liquid to solid ratio of 10 L kg-1 were applied none of the seeds germinated, i.e. germination index (GI) was 0%, while for 3P-OMW GI was 94.3%. Growth tests in soil and mixtures with OMW also led to more favorable results for 3P-OMW, whereas worse results than those obtained in the control experiments were observed. In order to discriminate the individual influence of eleven phenolic compounds, gallic acid, protocatechuic acid, cinnamic acid, syringic acid, 3,4,5-trimethoxybenzoic acid, 4-hydroxybenzoic acid, vanillic acid, p-coumaric acid, caffeic acid, veratric acid and phenol were tested in the concentration range of 5-500 mg L-1. Results showed that cinnamic acid is the most phytotoxic, with EC50 of 60 mg L-1, which is related with its hydrophobicity. Moreover, increasing -OH and -OCH3 groups in these molecules seem to reduce phytotoxicity. Tests with a mixture of six phenolic compounds demonstrated there are neither synergistic nor additive effects. The phytotoxicity appears to be determined by the presence of the most lipophilic phenolic molecule.
Collapse
Affiliation(s)
- Inês A Pinho
- CIEPQPF-Research Centre on Chemical Process Engineering and Forest Products, Department of Chemical Engineering, University of Coimbra, Portugal
| | - Daniela V Lopes
- CIEPQPF-Research Centre on Chemical Process Engineering and Forest Products, Department of Chemical Engineering, University of Coimbra, Portugal
| | - Rui C Martins
- CIEPQPF-Research Centre on Chemical Process Engineering and Forest Products, Department of Chemical Engineering, University of Coimbra, Portugal
| | - Margarida J Quina
- CIEPQPF-Research Centre on Chemical Process Engineering and Forest Products, Department of Chemical Engineering, University of Coimbra, Portugal.
| |
Collapse
|
183
|
Oxidative Status and Presence of Bioactive Compounds in Meat from Chickens Fed Polyphenols Extracted from Olive Oil Industry Waste. SUSTAINABILITY 2017. [DOI: 10.3390/su9091566] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
184
|
Processing, Valorization and Application of Bio-Waste Derived Compounds from Potato, Tomato, Olive and Cereals: A Review. SUSTAINABILITY 2017. [DOI: 10.3390/su9081492] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
185
|
An Economical Evaluation of Anaerobic Digestion Plants Fed with Organic Agro-Industrial Waste. ENERGIES 2017. [DOI: 10.3390/en10081165] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
186
|
Meneses DP, Gudiña EJ, Fernandes F, Gonçalves LRB, Rodrigues LR, Rodrigues S. The yeast-like fungus Aureobasidium thailandense LB01 produces a new biosurfactant using olive oil mill wastewater as an inducer. Microbiol Res 2017; 204:40-47. [PMID: 28870290 DOI: 10.1016/j.micres.2017.07.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 06/12/2017] [Accepted: 07/06/2017] [Indexed: 11/18/2022]
Abstract
In this study, the biosurfactant production by an Aureobasidium thailandense LB01 was reported for the first time. Different agro-industrial by-products (corn steep liquor, sugarcane molasses, and olive oil mill wastewater) were evaluated as alternative low-cost substrates. The composition of the culture medium was optimized through response surface methodology. The highest biosurfactant production (139±16mg/L) was achieved using a culture medium containing yeast extract (2g/L); olive oil mill wastewater (1.5%, w/w); glucose (6g/L) and KH2PO4 (1g/L) after 48h of fermentation. The partially purified biosurfactant exhibited a critical micelle concentration of 550mg/L, reducing the surface tension of water up to 31.2mN/m. Its molecular structure was found to be similar to a lauric acid ester. The biosurfactant exhibited a better performance than the chemical surfactant sodium dodecyl sulfate (SDS) in oil dispersion assays, thus suggesting its potential application in bioremediation.
Collapse
Affiliation(s)
- Dayana P Meneses
- Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici Bloco 709, 60440-900, Fortaleza, Brazil
| | - Eduardo J Gudiña
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Fabiano Fernandes
- Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici Bloco 709, 60440-900, Fortaleza, Brazil
| | - Luciana R B Gonçalves
- Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici Bloco 709, 60440-900, Fortaleza, Brazil
| | - Lígia R Rodrigues
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal.
| | - Sueli Rodrigues
- Departamento de Tecnologia de Alimentos, Universidade Federá do Ceará, Campus do PiciBloco 851, 60440-900, Fortaleza, Brazil
| |
Collapse
|
187
|
Koller M, Maršálek L, de Sousa Dias MM, Braunegg G. Producing microbial polyhydroxyalkanoate (PHA) biopolyesters in a sustainable manner. N Biotechnol 2017; 37:24-38. [DOI: 10.1016/j.nbt.2016.05.001] [Citation(s) in RCA: 311] [Impact Index Per Article: 44.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 04/11/2016] [Accepted: 05/03/2016] [Indexed: 11/30/2022]
|
188
|
Kerasioti E, Terzopoulou Z, Komini O, Kafantaris I, Makri S, Stagos D, Gerasopoulos K, Anisimov NY, Tsatsakis AM, Kouretas D. Tissue specific effects of feeds supplemented with grape pomace or olive oil mill wastewater on detoxification enzymes in sheep. Toxicol Rep 2017; 4:364-372. [PMID: 28959661 PMCID: PMC5615154 DOI: 10.1016/j.toxrep.2017.06.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 06/19/2017] [Accepted: 06/19/2017] [Indexed: 01/11/2023] Open
Abstract
The aim of the present study was to investigate the effects of livestock feed supplemented with grape pomace (GP) or olive oil mill wastewater (OMW) byproducts on the enzymatic activity and protein expression of antioxidants enzymes, in liver and spleen tissue of sheep. Thus, 36 male sheep of Chios breed were divided into 3 homogeneous groups, control group (n = 12), GP group (n = 12) and OMW group (n = 12), receiving standard or experimental feed. Liver and spleen tissues were collected at 42 and 70 days post-birth. The enzymatic activity of superoxide dismutase (SOD) and glutathione-s-transferase (GST) and also the protein expression of γ-synthase glutamyl custeine (γ-GCS) were determined in these tissues. The results showed GP group exhibited increased enzymatic activity of GST and protein expression of γ-GCS in liver compared to control group. In GP group's spleen, GST activity was increased compared to control but γ-GCS expression was not affected. In OMW group's liver, GST activity was increased and γ-GCS expression was reduced compared to control. In OMW group's spleen, GST activity was increased but GCS expression was not affected. SOD activity was not affected in both tissues either in GP or OMW group.
Collapse
Key Words
- AREs, antioxidant response elements
- CDNB, 1 chloro-2,4-dinitrobenzene
- DETAPAC, diethylenetriaminepentaacetic acid
- DTT, dithiothreitol
- GAPDH, glyceraldehyde 3-phosphatedehydrogenase
- GP, grape pomace
- GS, glutathione synthase
- GSH, glutathione
- GST, glutathione-s-transferase
- Glutathione-s-transferase (GST)
- Grape pomace (GP)
- HEPES, 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid
- KCl, potassium chloride
- KOH, potassium hydroxide
- Keap1, kelch-like ECH-associated protein 1
- MgCl2, magnesium chloride
- NBT, nitroblue tetrazolium
- NaCl, sodium chloride
- Nrf2, nuclear factor-like 2
- OMW, olive oil mill wastewater
- Olive oil mill wastewater (OMW)
- PVDF, polyvinylidene difluoride membranes
- ROS, reactive oxygen species
- SDS, sodium dodecyl sulfate
- SOD, superoxide dismutase
- Superoxide dismutase (SOD)
- XO, xanthine oxidase
- γ-GCS, γ-synthase glutamyl cysteine
- γ-synthase glutamyl custeine (γ-GCS)
Collapse
Affiliation(s)
- Efthalia Kerasioti
- Department of Biochemistry-Biotechnology, University of Thessaly, Larissa 41500, Greece
| | - Zoi Terzopoulou
- Department of Biochemistry-Biotechnology, University of Thessaly, Larissa 41500, Greece
| | - Ourania Komini
- Department of Biochemistry-Biotechnology, University of Thessaly, Larissa 41500, Greece
| | - Ioannis Kafantaris
- Department of Biochemistry-Biotechnology, University of Thessaly, Larissa 41500, Greece
| | - Sotiria Makri
- Department of Biochemistry-Biotechnology, University of Thessaly, Larissa 41500, Greece
| | - Dimitrios Stagos
- Department of Biochemistry-Biotechnology, University of Thessaly, Larissa 41500, Greece
| | | | | | - Aristides M Tsatsakis
- Department of Forensic Sciences and Toxicology, Medical School, University of Crete, Heraklion 71003, Greece
| | - Demetrios Kouretas
- Department of Biochemistry-Biotechnology, University of Thessaly, Larissa 41500, Greece
| |
Collapse
|
189
|
Kiritsakis K, Melliou E, Magiatis P, Gerasopoulos D. Enhancement of Bioactive Phenols and Quality Values of Olive Oil by Recycling Olive Mill Waste Water. J AM OIL CHEM SOC 2017. [DOI: 10.1007/s11746-017-3011-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Konstantinos Kiritsakis
- ; Laboratory of Food Processing and Engineering, Department of Food Science and Technology, School of Agriculture; Aristotle University of Thessaloniki; Panepistimiopolis Thessaloníki 54124 Greece
| | - Eleni Melliou
- ; Laboratory of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy; University of Athens; Panepistimiopolis Zografou Athens 15771 Greece
| | - Prokopios Magiatis
- ; Laboratory of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy; University of Athens; Panepistimiopolis Zografou Athens 15771 Greece
| | - Dimitrios Gerasopoulos
- ; Laboratory of Food Processing and Engineering, Department of Food Science and Technology, School of Agriculture; Aristotle University of Thessaloniki; Panepistimiopolis Thessaloníki 54124 Greece
| |
Collapse
|
190
|
Longo E, Morozova K, Scampicchio M. Effect of light irradiation on the antioxidant stability of oleuropein. Food Chem 2017; 237:91-97. [PMID: 28764085 DOI: 10.1016/j.foodchem.2017.05.099] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 05/11/2017] [Accepted: 05/17/2017] [Indexed: 11/18/2022]
Abstract
The stability of oleuropein, a natural antioxidant from Olea europaea, has been often studied in connection with thermal or enzymatic treatments, but very little is known about the effects of UV light. This work aimed at studying the UV-C effects on oleuropein standard solutions once dissolved in ethanol or water. During irradiation, aliquots were taken and analyzed by a flow injection system equipped with a multi-channel coulometric detector and a high-resolution mass spectrometer. The effects of irradiation were also studied by UV spectroscopy. The results show that oleuropein is relatively stable in water or ethanol, but that under UV-C light undergoes a series of fast decomposition reactions leading to hydroxytyrosol and elenolic acid. Overall, this study provides evidences that the degradation of oleuropein by UV-C light follows a mechanism dependent on the solvent used. Moreover, the solvent affects the resulting redox properties of the solution.
Collapse
Affiliation(s)
- Edoardo Longo
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università 5, 39100 Bozen-Bolzano, Italy.
| | - Ksenia Morozova
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università 5, 39100 Bozen-Bolzano, Italy.
| | - Matteo Scampicchio
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università 5, 39100 Bozen-Bolzano, Italy.
| |
Collapse
|
191
|
Flores N, Sirés I, Rodríguez RM, Centellas F, Cabot PL, Garrido JA, Brillas E. Removal of 4-hydroxyphenylacetic acid from aqueous medium by electrochemical oxidation with a BDD anode: Mineralization, kinetics and oxidation products. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2016.07.042] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
192
|
Di Mauro MD, Giardina RC, Fava G, Mirabella EF, Acquaviva R, Renis M, D’Antona N. Polyphenolic profile and antioxidant activity of olive mill wastewater from two Sicilian olive cultivars: Cerasuola and Nocellara etnea. Eur Food Res Technol 2017. [DOI: 10.1007/s00217-017-2893-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
193
|
An approach to turn olive mill wastewater into a valuable food by-product based on spray drying in dehumidified air using drying aids. POWDER TECHNOL 2017. [DOI: 10.1016/j.powtec.2017.02.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
194
|
Serrano A, Fermoso FG, Rodríguez-Gutierrez G, Fernandez-Bolaños J, Borja R. Biomethanization of olive mill solid waste after phenols recovery through low-temperature thermal pre-treatment. WASTE MANAGEMENT (NEW YORK, N.Y.) 2017; 61:229-235. [PMID: 28081993 DOI: 10.1016/j.wasman.2016.12.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 12/12/2016] [Accepted: 12/19/2016] [Indexed: 06/06/2023]
Abstract
Due to the high polluting potential of Olive Mill Solid Waste (OMSW), it is necessary to develop an economical and environmental-friendly sustainable management method. OMSW anaerobic digestion has been shown to be an interesting management alternative, although it should be optimized to improve its economic viability. In the present study, low-temperature thermal pre-treatment of OMSW is proposed to allow the extraction of high added-value compounds, such as phenols, and to enhance the subsequent biomethanization of the substrate. OMSW low-temperature thermal pre-treatment facilitated the separation of a solid phase, where most of organic compounds remained, and a liquid phase, where most of phenolic compounds were concentrated. Hydroxytyrosol presented the highest concentration of the measured individual phenols in the liquid phase, i.e. 1034±22mg/L. Anaerobic digestion of OMSW and the different pre-treated phases and mixtures operated under stable conditions, except the biomethanization of the liquid phase, which was mainly inhibited by the high phenols content. Low-temperature thermal pre-treatment allows obtaining an improvement on biodegradability and methane production up to 37% and 34%, respectively. The proposed economic assessment showed that the combination of low-temperature pre-treatment, phenols recovery and the subsequent biomethanization of the substrates was the most attractive treatment option. This management option could reach economic benefit of €0.845/kg OMSW, i.e. twenty times higher than only energy recovery.
Collapse
Affiliation(s)
- Antonio Serrano
- Instituto de la Grasa (C.S.I.C.), Edificio 46, Campus Universitario Pablo de Olavide, Ctra. de Utrera, Km. 1, 41013 Sevilla, Spain
| | - Fernando G Fermoso
- Instituto de la Grasa (C.S.I.C.), Edificio 46, Campus Universitario Pablo de Olavide, Ctra. de Utrera, Km. 1, 41013 Sevilla, Spain.
| | - Guillermo Rodríguez-Gutierrez
- Instituto de la Grasa (C.S.I.C.), Edificio 46, Campus Universitario Pablo de Olavide, Ctra. de Utrera, Km. 1, 41013 Sevilla, Spain
| | - Juan Fernandez-Bolaños
- Instituto de la Grasa (C.S.I.C.), Edificio 46, Campus Universitario Pablo de Olavide, Ctra. de Utrera, Km. 1, 41013 Sevilla, Spain
| | - Rafael Borja
- Instituto de la Grasa (C.S.I.C.), Edificio 46, Campus Universitario Pablo de Olavide, Ctra. de Utrera, Km. 1, 41013 Sevilla, Spain
| |
Collapse
|
195
|
Stoyanova E, Lundaa T, Bochmann G, Fuchs W. Overcoming the bottlenecks of anaerobic digestion of olive mill solid waste by two-stage fermentation. ENVIRONMENTAL TECHNOLOGY 2017; 38:394-405. [PMID: 27279450 DOI: 10.1080/09593330.2016.1196736] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Two-stage anaerobic digestion (AD) of two-phase olive mill solid waste (OMSW) was applied for reducing the inhibiting factors by optimizing the acidification stage. Single-stage AD and co-fermentation with chicken manure were conducted coinstantaneous for direct comparison. Degradation of the polyphenols up to 61% was observed during the methanogenic stage. Nevertheless the concentration of phenolic substances was still high; the two-stage fermentation remained stable at OLR 1.5 kgVS/m³day. The buffer capacity of the system was twice as high, compared to the one-stage fermentation, without additives. The two-stage AD was a combined process - thermophilic first stage and mesophilic second stage, which pointed out to be the most profitable for AD of OMSW for the reduced hydraulic retention time (HRT) from 230 to 150 days, and three times faster than the single-stage and the co-fermentation start-up of the fermentation. The optimal HRT and incubation temperature for the first stage were determined to four days and 55°C. The performance of the two-stage AD concerning the stability of the process was followed by the co-digestion of OMSW with chicken manure as a nitrogen-rich co-substrate, which makes them viable options for waste disposal with concomitant energy recovery.
Collapse
Affiliation(s)
| | - Tserennyam Lundaa
- b Department IFA - Tulln , Institute for Environmental Biotechnology, University of Natural Resources and Life Sciences, Vienna , Vienna , Austria
| | - Günther Bochmann
- b Department IFA - Tulln , Institute for Environmental Biotechnology, University of Natural Resources and Life Sciences, Vienna , Vienna , Austria
| | - Werner Fuchs
- b Department IFA - Tulln , Institute for Environmental Biotechnology, University of Natural Resources and Life Sciences, Vienna , Vienna , Austria
| |
Collapse
|
196
|
Flores N, Cabot PL, Centellas F, Garrido JA, Rodríguez RM, Brillas E, Sirés I. 4-Hydroxyphenylacetic acid oxidation in sulfate and real olive oil mill wastewater by electrochemical advanced processes with a boron-doped diamond anode. JOURNAL OF HAZARDOUS MATERIALS 2017; 321:566-575. [PMID: 27694020 DOI: 10.1016/j.jhazmat.2016.09.057] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 09/22/2016] [Accepted: 09/23/2016] [Indexed: 06/06/2023]
Abstract
The degradation of 4-hydroxyphenylacetic acid, a ubiquitous component of olive oil mill wastewater (OOMW), has been studied by anodic oxidation with electrogenerated H2O2 (AO-H2O2), electro-Fenton (EF) and photoelectro-Fenton (PEF). Experiments were performed in either a 0.050M Na2SO4 solution or a real OOMW at pH 3.0, using a cell with a boron-doped diamond (BDD) anode and an air-diffusion cathode for H2O2 generation. Hydroxyl radicals formed at the BDD surface from water oxidation in all processes and/or in the bulk from Fenton's reaction between added Fe2+ and generated H2O2 in EF and PEF were the main oxidants. In both matrices, the oxidation ability of the processes increased in the order AO-H2O2<EF<PEF. The superiority of PEF was due to the photolytic action of UVA radiation on photosensitive by-products, as deduced from the quick removal of Fe(III)-oxalate complexes. The effect of current density and organic content on the performance of all treatments was examined. 4-Hydroxyphenylacetic acid decay obeyed a pseudo-first-order kinetics. The PEF treatment of 1.03mM 4-hydroxyphenylacetic acid in 0.050M Na2SO4 allowed 98% mineralization at 360min even at low current density, whereas 80% mineralization and a significant enhancement of biodegradability were achieved with the real OOMW.
Collapse
Affiliation(s)
- Nelly Flores
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Pere Lluís Cabot
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Francesc Centellas
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - José Antonio Garrido
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Rosa María Rodríguez
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Enric Brillas
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain.
| | - Ignasi Sirés
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain.
| |
Collapse
|
197
|
Alsafadi D, Al-Mashaqbeh O. A one-stage cultivation process for the production of poly-3-(hydroxybutyrate-co-hydroxyvalerate) from olive mill wastewater by Haloferax mediterranei. N Biotechnol 2017; 34:47-53. [DOI: 10.1016/j.nbt.2016.05.003] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 04/28/2016] [Accepted: 05/10/2016] [Indexed: 11/16/2022]
|
198
|
Lozano-Sánchez J, Bendini A, Di Lecce G, Valli E, Gallina Toschi T, Segura-Carretero A. Macro and micro functional components of a spreadable olive by-product (pâté) generated by new concept of two-phase decanter. EUR J LIPID SCI TECH 2016. [DOI: 10.1002/ejlt.201600096] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Jesús Lozano-Sánchez
- Research and Development of Functional Food Centre (CIDAF); PTS Granada; Edificio BioRegión; Granada Spain
- Research and Development of Functional Olive Oil Department; Aceites Maeva S. L.; Escúzar Granada Spain
| | - Alessandra Bendini
- Department of Agricultural and Food Sciences; Alma Mater Studiorum-University of Bologna; piazza Goidanich; Cesena (FC) Italy
| | - Giuseppe Di Lecce
- Department of Agricultural and Food Sciences; Alma Mater Studiorum-University of Bologna; piazza Goidanich; Cesena (FC) Italy
| | - Enrico Valli
- Department of Agricultural and Food Sciences; Alma Mater Studiorum-University of Bologna; piazza Goidanich; Cesena (FC) Italy
| | - Tullia Gallina Toschi
- Department of Agricultural and Food Sciences; Alma Mater Studiorum-University of Bologna; piazza Goidanich; Cesena (FC) Italy
| | - Antonio Segura-Carretero
- Research and Development of Functional Food Centre (CIDAF); PTS Granada; Edificio BioRegión; Granada Spain
- Department of Analytical Chemistry; University of Granada; Granada Spain
| |
Collapse
|
199
|
Flores N, Sirés I, Garrido JA, Centellas F, Rodríguez RM, Cabot PL, Brillas E. Degradation of trans-ferulic acid in acidic aqueous medium by anodic oxidation, electro-Fenton and photoelectro-Fenton. JOURNAL OF HAZARDOUS MATERIALS 2016; 319:3-12. [PMID: 26691522 DOI: 10.1016/j.jhazmat.2015.11.040] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Revised: 11/19/2015] [Accepted: 11/20/2015] [Indexed: 06/05/2023]
Abstract
Solutions of pH 3.0 containing trans-ferulic acid, a phenolic compound in olive oil mill wastewater, have been comparatively degraded by anodic oxidation with electrogenerated H2O2 (AO-H2O2), electro-Fenton (EF) and photoelectro-Fenton (PEF). Trials were performed with a BDD/air-diffusion cell, where oxidizing OH was produced from water discharge at the BDD anode and/or in the solution bulk from Fenton's reaction between cathodically generated H2O2 and added catalytic Fe(2+). The substrate was very slowly removed by AO-H2O2, whereas it was very rapidly abated by EF and PEF, at similar rate in both cases, due to its fast reaction with OH in the bulk. The AO-H2O2 process yielded a slightly lower mineralization than EF, which promoted the accumulation of barely oxidizable products like Fe(III) complexes. In contrast, the fast photolysis of these latter species under irradiation with UVA light in PEF led to an almost total mineralization with 98% total organic carbon decay. The effect of current density and substrate concentration on the performance of all treatments was examined. Several solar PEF (SPEF) trials showed its viability for the treatment of wastewater containing trans-ferulic acid at larger scale. Four primary aromatic products were identified by GC-MS analysis of electrolyzed solutions, and final carboxylic acids like fumaric, acetic and oxalic were detected by ion-exclusion HPLC. A reaction sequence for trans-ferulic acid mineralization involving all the detected products is finally proposed.
Collapse
Affiliation(s)
- Nelly Flores
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Ignasi Sirés
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - José Antonio Garrido
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Francesc Centellas
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Rosa María Rodríguez
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Pere Lluís Cabot
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Enric Brillas
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain.
| |
Collapse
|
200
|
Hawashin MD, Al-Juhaimi F, Ahmed IAM, Ghafoor K, Babiker EE. Physicochemical, microbiological and sensory evaluation of beef patties incorporated with destoned olive cake powder. Meat Sci 2016; 122:32-39. [DOI: 10.1016/j.meatsci.2016.07.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 07/19/2016] [Accepted: 07/21/2016] [Indexed: 10/21/2022]
|