151
|
Lim JJ, Grinstein S, Roth Z. Diversity and Versatility of Phagocytosis: Roles in Innate Immunity, Tissue Remodeling, and Homeostasis. Front Cell Infect Microbiol 2017; 7:191. [PMID: 28589095 PMCID: PMC5440456 DOI: 10.3389/fcimb.2017.00191] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 05/03/2017] [Indexed: 12/23/2022] Open
Abstract
Phagocytosis, a critical early event in the microbicidal response of neutrophils, is now appreciated to serve multiple functions in a variety of cell types. Professional phagocytes play a central role in innate immunity by eliminating pathogenic bacteria, fungi and malignant cells, and contribute to adaptive immunity by presenting antigens to lymphocytes. In addition, phagocytes play a part in tissue remodeling and maintain overall homeostasis by disposing of apoptotic cells, a task shared by non-professional phagocytes, often of epithelial origin. This functional versatility is supported by a vast array of receptors capable of recognizing a striking variety of foreign and endogenous ligands. Here we present an abbreviated overview of the different types of phagocytes, their varied modes of signaling and particle engulfment, and the multiple physiological roles of phagocytosis.
Collapse
Affiliation(s)
- Justin J Lim
- Program in Cell Biology, Hospital for Sick ChildrenToronto, ON, Canada
| | - Sergio Grinstein
- Program in Cell Biology, Hospital for Sick ChildrenToronto, ON, Canada.,Keenan Research Centre for Biomedical Science, St. Michael's HospitalToronto, ON, Canada.,Department of Biochemistry, University of TorontoToronto, ON, Canada
| | - Ziv Roth
- Program in Cell Biology, Hospital for Sick ChildrenToronto, ON, Canada
| |
Collapse
|
152
|
Nomura K, Vilalta A, Allendorf DH, Hornik TC, Brown GC. Activated Microglia Desialylate and Phagocytose Cells via Neuraminidase, Galectin-3, and Mer Tyrosine Kinase. THE JOURNAL OF IMMUNOLOGY 2017; 198:4792-4801. [PMID: 28500071 PMCID: PMC5458330 DOI: 10.4049/jimmunol.1502532] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 04/12/2017] [Indexed: 12/31/2022]
Abstract
Activated microglia can phagocytose dying, stressed, or excess neurons and synapses via the phagocytic receptor Mer tyrosine kinase (MerTK). Galectin-3 (Gal-3) can cross-link surface glycoproteins by binding galactose residues that are normally hidden below terminal sialic acid residues. Gal-3 was recently reported to opsonize cells via activating MerTK. We found that LPS-activated BV-2 microglia rapidly released Gal-3, which was blocked by calcineurin inhibitors. Gal-3 bound to MerTK on microglia and to stressed PC12 (neuron-like) cells, and it increased microglial phagocytosis of PC12 cells or primary neurons, which was blocked by inhibition of MerTK. LPS-activated microglia exhibited a sialidase activity that desialylated PC12 cells and could be inhibited by Tamiflu, a neuraminidase (sialidase) inhibitor. Sialidase treatment of PC12 cells enabled Gal-3 to bind and opsonize the live cells for phagocytosis by microglia. LPS-induced microglial phagocytosis of PC12 was prevented by small interfering RNA knockdown of Gal-3 in microglia, lactose inhibition of Gal-3 binding, inhibition of neuraminidase with Tamiflu, or inhibition of MerTK by UNC569. LPS-induced phagocytosis of primary neurons by primary microglia was also blocked by inhibition of MerTK. We conclude that activated microglia release Gal-3 and a neuraminidase that desialylates microglial and PC12 surfaces, enabling Gal-3 binding to PC12 cells and their phagocytosis via MerTK. Thus, Gal-3 acts as an opsonin of desialylated surfaces, and inflammatory loss of neurons or synapses may potentially be blocked by inhibiting neuraminidases, Gal-3, or MerTK.
Collapse
Affiliation(s)
- Koji Nomura
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom
| | - Anna Vilalta
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom
| | - David H Allendorf
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom
| | - Tamara C Hornik
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom
| | - Guy C Brown
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom
| |
Collapse
|
153
|
Rodríguez AM, Delpino MV, Miraglia MC, Costa Franco MM, Barrionuevo P, Dennis VA, Oliveira SC, Giambartolomei GH. Brucella abortus-activated microglia induce neuronal death through primary phagocytosis. Glia 2017; 65:1137-1151. [PMID: 28398652 DOI: 10.1002/glia.23149] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 02/13/2017] [Accepted: 03/22/2017] [Indexed: 01/18/2023]
Affiliation(s)
- Ana M. Rodríguez
- Instituto de Inmunología, Genética y Metabolismo (INIGEM), CONICET, Universidad de Buenos Aires; Buenos Aires Argentina
| | - M. Victoria Delpino
- Instituto de Inmunología, Genética y Metabolismo (INIGEM), CONICET, Universidad de Buenos Aires; Buenos Aires Argentina
| | - M. Cruz Miraglia
- Instituto de Inmunología, Genética y Metabolismo (INIGEM), CONICET, Universidad de Buenos Aires; Buenos Aires Argentina
| | - Miriam M. Costa Franco
- Department of Biochemistry and Immunology; Institute of Biological Sciences, Federal University of Minas Gerais; Belo Horizonte-Minas Gerais Brazil
| | - Paula Barrionuevo
- Instituto de Medicina Experimental (CONICET-Academia Nacional de Medicina); Buenos Aires Argentina
| | - Vida A. Dennis
- Center for Nano Biotechnology Research and Department of Biological Sciences; Alabama State University; Montgomery AL
| | - Sergio C. Oliveira
- Department of Biochemistry and Immunology; Institute of Biological Sciences, Federal University of Minas Gerais; Belo Horizonte-Minas Gerais Brazil
| | - Guillermo H. Giambartolomei
- Instituto de Inmunología, Genética y Metabolismo (INIGEM), CONICET, Universidad de Buenos Aires; Buenos Aires Argentina
| |
Collapse
|
154
|
Markoutsa E, Xu P. Redox Potential-Sensitive N-Acetyl Cysteine-Prodrug Nanoparticles Inhibit the Activation of Microglia and Improve Neuronal Survival. Mol Pharm 2017; 14:1591-1600. [PMID: 28335600 DOI: 10.1021/acs.molpharmaceut.6b01028] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
One hallmark of neuroinflammation is the activation of microglia, which triggers the production and release of reactive oxygen species (ROS), nitrate, nitrite, and cytokines. N-Acetyl cysteine (NAC) is a free radical scavenger that is involved in the intracellular and extracellular detoxification of reactive oxygen species in the brain. However, the clinical application of NAC is limited by its low bioavailability and short half-life. Herein, NAC was conjugated to a polymer through a disulfide bond to form a NAC-prodrug nanoparticle (NAC-NP). Dynamic light scattering found that the NAC-NP has a size of around 50 nm. In vitro studies revealed that the release of NAC from NAC-NP is responsive to its environmental redox potential. For mimicking neuroinflammation in vitro, microglial cells were stimulated by a lipopolysaccharide (LPS), and the effect of NAC-NP on activated microglia was investigated. The study found that the morphology as well as the expression of microgliosis marker Iba-1 of the cells treated with NAC-NPs and LPS were close to those of control cells, indicating that NAC-NPs can inhibit the activation of microglia stimulated by LPS. Compared with free NAC, the production of ROS, NO3-, NO2-, tumor necrosis factor-α (TNF-α), and interleukin (IL)-1β from the LPS-stimulated microglia was considerably decreased when the cells were pretreated with NAC-NPs. Furthermore, LPS-induced microglial phagocytocis of neurons was inhibited in the presence of NAC-NPs. These results indicated that NAC-NPs are more effective than free NAC for reversing the effect of LPS on microglia and subsequently protecting neurons.
Collapse
Affiliation(s)
- Eleni Markoutsa
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina , 715 Sumter Street, Columbia, South Carolina 29208, United States
| | - Peisheng Xu
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina , 715 Sumter Street, Columbia, South Carolina 29208, United States
| |
Collapse
|
155
|
Arias CF, Arias CF. How do red blood cells know when to die? ROYAL SOCIETY OPEN SCIENCE 2017; 4:160850. [PMID: 28484605 PMCID: PMC5414242 DOI: 10.1098/rsos.160850] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 03/01/2017] [Indexed: 05/19/2023]
Abstract
Human red blood cells (RBCs) are normally phagocytized by macrophages of splenic and hepatic sinusoids at 120 days of age. The destruction of RBCs is ultimately controlled by antagonist effects of phosphatidylserine (PS) and CD47 on the phagocytic activity of macrophages. In this work, we introduce a conceptual model that explains RBC lifespan as a consequence of the dynamics of these molecules. Specifically, we suggest that PS and CD47 define a molecular algorithm that sets the timing of RBC phagocytosis. We show that significant changes in RBC lifespan described in the literature can be explained as alternative outcomes of this algorithm when it is executed in different conditions of oxygen availability. The theoretical model introduced here provides a unified framework to understand a variety of empirical observations regarding RBC biology. It also highlights the role of RBC lifespan as a key element of RBC homeostasis.
Collapse
Affiliation(s)
- Clemente Fernandez Arias
- Departamento de Matemática Aplicada, Universidad Complutense de Madrid, Spain
- Grupo Interdisciplinar de Sistemas Complejos, Madrid, Spain
| | - Cristina Fernandez Arias
- HIV and Malaria Vaccine Program, Aaron Diamond AIDS Research Center, Affiliate of The Rockefeller University, New York, NY, USA
| |
Collapse
|
156
|
Bittins M, Wang X. TNT-Induced Phagocytosis: Tunneling Nanotubes Mediate the Transfer of Pro-Phagocytic Signals From Apoptotic to Viable Cells. J Cell Physiol 2017; 232:2271-2279. [PMID: 27591547 PMCID: PMC5485076 DOI: 10.1002/jcp.25584] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 09/01/2016] [Indexed: 12/24/2022]
Abstract
The exposure of phosphatidylserine (PS) on the surface membrane of apoptotic cells triggers the recruitment of phagocytic receptors and subsequently results in uptake by phagocytes. Here we describe how apoptotic cells can use intercellular membrane nanotubes to transfer exposed PS to neighboring viable cells, and thus deposit an "eat-me" tag on the viable cells. Tunneling nanotubes (TNTs) connected UV-treated apoptotic rat pheochromocytoma PC12 cells with neighboring untreated cells. These TNTs were composed of PS-exposed plasma membrane and facilitated the transfer of the membrane from apoptotic to viable cells. Other pro-phagocytic signals, such as oxidized phospholipids and calreticulin, were also transferred to viable cells. In addition, anti-phagocytic signal CD47 presenting on the plasma membrane of viable cells was masked by the transferred PS-membrane. Confocal imaging revealed an increase of phagocytosis of viable PC12 cells by murine RAW264.7 macrophages when the viable PC12 cells were cocultured with UV-treated PC12 cells. Treatment with 50 nM cytochalasin D would abolish TNTs and correspondingly inhibit this phagocytosis of the viable cells. Our study indicates that exposed-PS membrane is delivered from apoptotic to viable cells through TNTs. This transferred membrane may act as a pro-phagocytic signal for macrophages to induce phagocytosis of viable cells in a situation where they are in the vicinity of apoptotic cells. J. Cell. Physiol. 232: 2271-2279, 2017. © 2016 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals Inc.
Collapse
Affiliation(s)
| | - Xiang Wang
- Department of Biomedicine, University of Bergen, Bergen, Norway
| |
Collapse
|
157
|
McCarthy MM, Wright CL. Convergence of Sex Differences and the Neuroimmune System in Autism Spectrum Disorder. Biol Psychiatry 2017; 81:402-410. [PMID: 27871670 PMCID: PMC5285451 DOI: 10.1016/j.biopsych.2016.10.004] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 09/14/2016] [Accepted: 10/04/2016] [Indexed: 01/06/2023]
Abstract
The male bias in autism spectrum disorder incidence is among the most extreme of all neuropsychiatric disorders, yet the origins of the sex difference remain obscure. Developmentally, males are exposed to high levels of testosterone and its byproduct, estradiol. Together these steroids modify the course of brain development by altering neurogenesis, cell death, migration, differentiation, dendritic and axonal growth, synaptogenesis, and synaptic pruning, all of which can be deleteriously impacted during the course of developmental neuropsychiatric disorders. Elucidating the cellular mechanisms by which steroids modulate brain development provides valuable insights into how these processes may go awry. An emerging theme is the role of inflammatory signaling molecules and the innate immune system in directing brain masculinization, the evidence for which we review here. Evidence is also emerging that the neuroimmune system is overactivated in individuals with autism spectrum disorder. These combined observations lead us to propose that the natural process of brain masculinization puts males at risk by moving them closer to a vulnerability threshold that could more easily be breached by inflammation during critical periods of brain development. Two brain regions are highlighted: the preoptic area and the cerebellum. Both are developmentally regulated by the inflammatory prostaglandin E2, but in different ways. Microglia, innate immune cells of the brain, and astrocytes are also critical contributors to masculinization and illustrate the importance of nonneuronal cells to the health of the developing brain.
Collapse
Affiliation(s)
- Margaret M McCarthy
- Department of Pharmacology and Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland.
| | - Christopher L Wright
- Department of Pharmacology and Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
158
|
Lin FL, Lin CH, Ho JD, Yen JL, Chang HM, Chiou GCY, Cheng YW, Hsiao G. The natural retinoprotectant chrysophanol attenuated photoreceptor cell apoptosis in an N-methyl-N-nitrosourea-induced mouse model of retinal degenaration. Sci Rep 2017; 7:41086. [PMID: 28112220 PMCID: PMC5253624 DOI: 10.1038/srep41086] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 12/15/2016] [Indexed: 01/27/2023] Open
Abstract
Retinitis pigmentosa (RP) is an inherited photoreceptor-degenerative disease, and neuronal degeneration in RP is exacerbated by glial activation. Cassia seed (Jue-ming-zi) is a traditional herbal medicine commonly used to treat ocular diseases in Asia. In this report, we investigated the retina-protective effect of chrysophanol, an active component of Cassia seed, in an N-methyl-N-nitrosourea (MNU)-induced mouse model of RP. We determined that chrysophanol inhibited the functional and morphological features of MNU-induced retinal degeneration using scotopic electroretinography (ERG), optical coherence tomography (OCT), and immunohistochemistry analysis of R/G opsin and rhodopsin. Furthermore, TUNEL assays revealed that chrysophanol attenuated MNU-induced photoreceptor cell apoptosis and inhibited the expression of the apoptosis-associated proteins PARP, Bax, and caspase-3. In addition, chrysophanol ameliorated reactive gliosis, as demonstrated by a decrease in GFAP immunolabeling, and suppressed the activation of matrix metalloproteinase (MMP)-9-mediated gelatinolysis. In vitro studies indicated that chrysophanol inhibited lipopolysaccharide (LPS)-induced iNOS and COX-2 expression in the BV2 mouse microglia cell line and inhibited MMP-9 activation in primary microglia. Our results demonstrate that chrysophanol provided neuroprotective effects and inhibited glial activation, suggesting that chrysophanol might have therapeutic value for the treatment of human RP and other retinopathies.
Collapse
Affiliation(s)
- Fan-Li Lin
- Graduate Institute of Medical Sciences and Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Cheng-Hui Lin
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Jau-Der Ho
- Department of Ophthalmology, Taipei Medical University Hospital, Taipei, Taiwan
| | - Jing-Lun Yen
- Graduate Institute of Medical Sciences and Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hung-Ming Chang
- Department of Anatomy, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - George C Y Chiou
- Department of Neuroscience and Experimental Therapeutics and Institute of Ocular Pharmacology, College of Medicine, Texas A&M Health Science Center, College Station, TX, USA
| | - Yu-Wen Cheng
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - George Hsiao
- Graduate Institute of Medical Sciences and Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
159
|
Bucks SA, Cox BC, Vlosich BA, Manning JP, Nguyen TB, Stone JS. Supporting cells remove and replace sensory receptor hair cells in a balance organ of adult mice. eLife 2017; 6:e18128. [PMID: 28263708 PMCID: PMC5338920 DOI: 10.7554/elife.18128] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 01/20/2017] [Indexed: 01/20/2023] Open
Abstract
Vestibular hair cells in the inner ear encode head movements and mediate the sense of balance. These cells undergo cell death and replacement (turnover) throughout life in non-mammalian vertebrates. However, there is no definitive evidence that this process occurs in mammals. We used fate-mapping and other methods to demonstrate that utricular type II vestibular hair cells undergo turnover in adult mice under normal conditions. We found that supporting cells phagocytose both type I and II hair cells. Plp1-CreERT2-expressing supporting cells replace type II hair cells. Type I hair cells are not restored by Plp1-CreERT2-expressing supporting cells or by Atoh1-CreERTM-expressing type II hair cells. Destruction of hair cells causes supporting cells to generate 6 times as many type II hair cells compared to normal conditions. These findings expand our understanding of sensorineural plasticity in adult vestibular organs and further elucidate the roles that supporting cells serve during homeostasis and after injury.
Collapse
Affiliation(s)
- Stephanie A Bucks
- Department of Otolaryngology-Head and Neck Surgery, Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, United States
| | - Brandon C Cox
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, United States,Department of Surgery, Division of Otolaryngology, Southern Illinois University School of Medicine, Springfield, United States
| | - Brittany A Vlosich
- Department of Otolaryngology-Head and Neck Surgery, Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, United States
| | - James P Manning
- Department of Otolaryngology-Head and Neck Surgery, Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, United States
| | - Tot B Nguyen
- Department of Otolaryngology-Head and Neck Surgery, Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, United States
| | - Jennifer S Stone
- Department of Otolaryngology-Head and Neck Surgery, Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, United States,
| |
Collapse
|
160
|
Karaji N, Sattentau QJ. Efferocytosis of Pathogen-Infected Cells. Front Immunol 2017; 8:1863. [PMID: 29312342 PMCID: PMC5743670 DOI: 10.3389/fimmu.2017.01863] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 12/07/2017] [Indexed: 12/20/2022] Open
Abstract
The prompt and efficient clearance of unwanted and abnormal cells by phagocytes is termed efferocytosis and is crucial for organism development, maintenance of tissue homeostasis, and regulation of the immune system. Dying cells are recognized by phagocytes through pathways initiated via "find me" signals, recognition via "eat me" signals and down-modulation of regulatory "don't eat me" signals. Pathogen infection may trigger cell death that drives phagocytic clearance in an immunologically silent, or pro-inflammatory manner, depending on the mode of cell death. In many cases, efferocytosis is a mechanism for eliminating pathogens and pathogen-infected cells; however, some pathogens have subverted this process and use efferocytic mechanisms to avoid innate immune detection and assist phagocyte infection. In parallel, phagocytes can integrate signals received from infected dying cells to elicit the most appropriate effector response against the infecting pathogen. This review focuses on pathogen-induced cell death signals that drive infected cell recognition and uptake by phagocytes, and the outcomes for the infected target cell, the phagocyte, the pathogen and the host.
Collapse
Affiliation(s)
- Niloofar Karaji
- The Sir William Dunn School of Pathology, The University of Oxford, Oxford, United Kingdom
| | - Quentin J Sattentau
- The Sir William Dunn School of Pathology, The University of Oxford, Oxford, United Kingdom
| |
Collapse
|
161
|
Morrison HW, Filosa JA. Sex differences in astrocyte and microglia responses immediately following middle cerebral artery occlusion in adult mice. Neuroscience 2016; 339:85-99. [PMID: 27717807 PMCID: PMC5118180 DOI: 10.1016/j.neuroscience.2016.09.047] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 09/19/2016] [Accepted: 09/27/2016] [Indexed: 12/31/2022]
Abstract
Epidemiological studies report that infarct size is decreased and stroke outcomes are improved in young females when compared to males. However, mechanistic insight is lacking. We posit that sex-specific differences in glial cell functions occurring immediately after ischemic stroke are a source of dichotomous outcomes. In this study we assessed astrocyte Ca2+ dynamics, aquaporin 4 (AQP4) polarity, S100β expression pattern, as well as, microglia morphology and phagocytic marker CD11b in male and female mice following 60min of middle cerebral artery (MCA) occlusion. We reveal sex differences in the frequency of intracellular astrocyte Ca2+ elevations (F(1,86)=8.19, P=0.005) and microglia volume (F(1,40)=12.47, P=0.009) immediately following MCA occlusion in acute brain slices. Measured in fixed tissue, AQP4 polarity was disrupted (F(5,86)=3.30, P=0.009) and the area of non-S100β immunoreactivity increased in ipsilateral brain regions after 60min of MCA occlusion (F(5,86)=4.72, P=0.007). However, astrocyte changes were robust in male mice when compared to females. Additional sex differences were discovered regarding microglia phagocytic receptor CD11b. In sham mice, constitutively high CD11b immunofluorescence was observed in females when compared to males (P=0.03). When compared to sham, only male mice exhibited an increase in CD11b immunoreactivity after MCA occlusion (P=0.006). We posit that a sex difference in the presence of constitutive CD11b has a role in determining male and female microglia phagocytic responses to ischemia. Taken together, these findings are critical to understanding potential sex differences in glial physiology as well as stroke pathobiology which are foundational for the development of future sex-specific stroke therapies.
Collapse
Affiliation(s)
- Helena W Morrison
- Augusta University, 1120 15th Street, Augusta, GA 30912, United States.
| | - Jessica A Filosa
- Augusta University, 1120 15th Street, Augusta, GA 30912, United States.
| |
Collapse
|
162
|
Neniskyte U, Fricker M, Brown GC. Amyloid β induces microglia to phagocytose neurons via activation of protein kinase Cs and NADPH oxidase. Int J Biochem Cell Biol 2016; 81:346-355. [DOI: 10.1016/j.biocel.2016.06.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 05/25/2016] [Accepted: 06/03/2016] [Indexed: 10/21/2022]
|
163
|
The innate immune receptor Dectin-2 mediates the phagocytosis of cancer cells by Kupffer cells for the suppression of liver metastasis. Proc Natl Acad Sci U S A 2016; 113:14097-14102. [PMID: 27872290 DOI: 10.1073/pnas.1617903113] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Tumor metastasis is the cause of most cancer deaths. Although metastases can form in multiple end organs, the liver is recognized as a highly permissive organ. Nevertheless, there is evidence for immune cell-mediated mechanisms that function to suppress liver metastasis by certain tumors, although the underlying mechanisms for the suppression of metastasis remain elusive. Here, we show that Dectin-2, a C-type lectin receptor (CLR) family of innate receptors, is critical for the suppression of liver metastasis of cancer cells. We provide evidence that Dectin-2 functions in resident macrophages in the liver, known as Kupffer cells, to mediate the uptake and clearance of cancer cells. Interestingly, Kupffer cells are selectively endowed with Dectin-2-dependent phagocytotic activity, with neither bone marrow-derived macrophages nor alveolar macrophages showing this potential. Concordantly, subcutaneous primary tumor growth and lung metastasis are not affected by the absence of Dectin-2. In addition, macrophage C-type lectin, a CLR known to be complex with Dectin-2, also contributes to the suppression of liver metastasis. Collectively, these results highlight the hitherto poorly understood mechanism of Kupffer cell-mediated control of metastasis that is mediated by the CLR innate receptor family, with implications for the development of anticancer therapy targeting CLRs.
Collapse
|
164
|
Abstract
Historically, the brain has been considered an immune-privileged organ separated from the peripheral immune system by the blood-brain barrier. However, immune responses do occur in the brain in neurological conditions in which the integrity of the blood-brain barrier is compromised, exposing the brain to peripheral antigens and endogenous danger signals. While most of the associated pathological processes occur in the central nervous system, it is now clear that peripheral immune cells, especially mononuclear phagocytes, that infiltrate into the injury site play a key role in modulating the progression of primary brain injury development. As inflammation is a necessary and critical component for the subsequent injury resolution process, understanding the contribution of mononuclear phagocytes on the regulation of inflammatory responses may provide novel approaches for potential therapies. Furthermore, predisposed comorbid conditions at the time of stroke cause the alteration of stroke-induced immune and inflammatory responses and subsequently influence stroke outcome. In this review, we summarize a role for microglia and monocytes/macrophages in acute ischemic stroke in the context of normal and metabolically compromised conditions.
Collapse
Affiliation(s)
- Eunhee Kim
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine at Burke Medical Research Institute, White Plains, NY, 10605, USA
| | - Sunghee Cho
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine at Burke Medical Research Institute, White Plains, NY, 10605, USA.
| |
Collapse
|
165
|
Timmons AK, Mondragon AA, Meehan TL, McCall K. Control of non-apoptotic nurse cell death by engulfment genes in Drosophila. Fly (Austin) 2016; 11:104-111. [PMID: 27686122 DOI: 10.1080/19336934.2016.1238993] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Programmed cell death occurs as a normal part of oocyte development in Drosophila. For each egg that is formed, 15 germline-derived nurse cells transfer their cytoplasmic contents into the oocyte and die. Disruption of apoptosis or autophagy only partially inhibits the death of the nurse cells, indicating that other mechanisms significantly contribute to nurse cell death. Recently, we demonstrated that the surrounding stretch follicle cells non-autonomously promote nurse cell death during late oogenesis and that phagocytosis genes including draper, ced-12, and the JNK pathway are crucial for this process. When phagocytosis genes are inhibited in the follicle cells, events specifically associated with death of the nurse cells are impaired. Death of the nurse cells is not completely blocked in draper mutants, suggesting that other engulfment receptors are involved. Indeed, we found that the integrin subunit, αPS3, is enriched on stretch follicle cells during late oogenesis and is required for elimination of the nurse cells. Moreover, double mutant analysis revealed that integrins act in parallel to draper. Death of nurse cells in the Drosophila ovary is a unique example of programmed cell death that is both non-apoptotic and non-cell autonomously controlled.
Collapse
Affiliation(s)
| | | | - Tracy L Meehan
- a Department of Biology , Boston University , Boston , MA
| | | |
Collapse
|
166
|
Franchi N, Ballin F, Manni L, Schiavon F, Basso G, Ballarin L. Recurrent phagocytosis-induced apoptosis in the cyclical generation change of the compound ascidian Botryllus schlosseri. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 62:8-16. [PMID: 27106705 DOI: 10.1016/j.dci.2016.04.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 04/08/2016] [Accepted: 04/10/2016] [Indexed: 06/05/2023]
Abstract
Colonies of the marine, filter-feeding ascidian Botryllus schlosseri undergo cyclical generation changes or takeovers. These events are characterised by the progressive resorption of adult zooids and their replacement by their buds that grow to adult size, open their siphons and start filtering. During the take-over, tissues of adult zooids undergo extensive apoptosis; circulating, spreading phagocytes enter the effete tissues, ingest dying cells acquiring a giant size and a round morphology. Then, phagocytes re-enter the circulation where they represent a considerable fraction (more than 20%) of circulating haemocytes. In this study, we evidence that most of these circulating phagocytes show morphological and biochemical signs of apoptosis. Accordingly, these phagocytes express transcripts of orthologues of the apoptosis-related genes Bax, AIF1 and PARP1. Electron microscopy shows that giant phagocytes contain apoptotic phagocytes inside their own phagocytic vacuole. The transcript of the orthologues of the anti-apoptotic gene IAP7 was detected only in spreading phagocytes, mostly abundant in phases far from the take-over. Therefore, the presented data suggest that, at take-over, phagocytes undergo phagocytosis-induced apoptosis (PIA). In mammals, PIA is assumed to be a process assuring the killing and the complete elimination of microbes, by promoting the disposal of terminally differentiated phagocytes and the resolution of infection. In B. schlosseri, PIA assumes a so far undescribed role, being required for the control of asexual development and colony homeostasis.
Collapse
Affiliation(s)
| | | | - Lucia Manni
- Department of Biology, University of Padova, Italy.
| | | | - Giuseppe Basso
- Department of Woman and Child Health, University of Padova, Italy
| | | |
Collapse
|
167
|
Abstract
The phagocytic clearance of dying cells in a tissue is a highly orchestrated series of intercellular events coordinated by a complex signaling network. Recent data from genetic, biochemical, and live-imaging approaches have greatly enhanced our understanding of the dynamics of cell clearance and how the process is orchestrated at the cellular and tissue levels. We discuss how networks regulating apoptotic cell clearance are integrated to enable a rapid, efficient, and high-capacity clearance system within tissues.
Collapse
Affiliation(s)
- Michael R Elliott
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA; David H. Smith Center for Vaccine Biology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA.
| | - Kodi S Ravichandran
- Department of Microbiology, Immunology, Cancer Biology, University of Virginia, Charlottesville, VA 22908, USA; Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA 22908, USA; Center for Cell Clearance, University of Virginia, Charlottesville, VA 22908, USA.
| |
Collapse
|
168
|
ElAli A, Rivest S. Microglia in Alzheimer's disease: A multifaceted relationship. Brain Behav Immun 2016; 55:138-150. [PMID: 26254232 DOI: 10.1016/j.bbi.2015.07.021] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 07/22/2015] [Accepted: 07/23/2015] [Indexed: 12/18/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder affecting elderly people worldwide, which is mainly characterized by cerebral amyloid-beta (Aβ) plaque deposition and neurofibrillary tangle formation. The interest in microglia arose from the overwhelming experimental evidence that outlined a key role of neuroinflammation in AD pathology. Microglia constitute the powerhouse of the innate immune system in the brain. It is now widely accepted that microglia are myeloid-derived cells that infiltrate the developing brain at the early embryonic stages, and acquire a highly ramified phenotype postnatally. Microglia use these dynamic ramifications as sentinels to sense and detect any occurring alteration in brain homeostasis. Once a danger signal is detected, microglia get activated by acquiring a less ramified phenotype, and mount adequate responses that range from phagocyting cell debris to secreting inflammatory and trophic factors. Earlier reports have demonstrated, unequivocally, that microglia surround Aβ plaques and internalize Aβ microaggregates. However, the implication of these observations in AD pathology, and consequently treatment, is still a matter of debate. Nonetheless, targeting the activity of these cells constituted a convergent point in this debate. Unfortunately, the conflicting experimental findings obtained following the modulation of microglial activity in AD, further fueled the debate. This review aims at providing an overview regarding what we know about the implication of microglia in AD pathology, and treatment. The emerging role of monocytes is also discussed.
Collapse
Affiliation(s)
- Ayman ElAli
- Neuroscience Laboratory, CHU de Québec Research Center (CHUL), Department of Molecular Medicine, Faculty of Medicine, Laval University, Canada
| | - Serge Rivest
- Neuroscience Laboratory, CHU de Québec Research Center (CHUL), Department of Molecular Medicine, Faculty of Medicine, Laval University, Canada.
| |
Collapse
|
169
|
Pannexin 1 Differentially Affects Neural Precursor Cell Maintenance in the Ventricular Zone and Peri-Infarct Cortex. J Neurosci 2016; 36:1203-10. [PMID: 26818508 DOI: 10.1523/jneurosci.0436-15.2016] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
UNLABELLED We demonstrated previously that Pannexin 1 (Panx1), an ion and metabolite channel, promotes the growth and proliferation of ventricular zone (VZ) neural precursor cells (NPCs) in vitro. To investigate its role in vivo, we used floxed Panx1 mice in combination with viruses to delete Panx1 in VZ NPCs and to track numbers of Panx1-null and Panx1-expressing VZ NPCs over time. Two days after virus injection, Panx1-null cells were less abundant than Panx1-expressing cells, suggesting that Panx1 is required for the maintenance of VZ NPCs. We also investigated the effect of Panx1 deletion in VZ NPCs after focal cortical stroke via photothrombosis. Panx1 is essential for maintaining elevated VZ NPC numbers after stroke. In contrast, Panx1-null NPCs were more abundant than Panx1-expressing NPCs in the peri-infarct cortex. Together, these findings suggest that Panx1 plays an important role in NPC maintenance in the VZ niche in the naive and stroke brain and could be a key target for improving NPC survival in the peri-infarct cortex. SIGNIFICANCE STATEMENT Here, we demonstrate that Pannexin 1 (Panx1) maintains a consistent population size of neural precursor cells in the ventricular zone, both in the healthy brain and in the context of stroke. In contrast, Panx1 appears to be detrimental to the survival of neural precursor cells that surround damaged cortical tissue in the stroke brain. This suggests that targeting Panx1 in the peri-infarct cortex, in combination with other therapies, could improve cell survival around the injury site.
Collapse
|
170
|
Zhao L, Zabel MK, Wang X, Ma W, Shah P, Fariss RN, Qian H, Parkhurst CN, Gan WB, Wong WT. Microglial phagocytosis of living photoreceptors contributes to inherited retinal degeneration. EMBO Mol Med 2016; 7:1179-97. [PMID: 26139610 PMCID: PMC4568951 DOI: 10.15252/emmm.201505298] [Citation(s) in RCA: 306] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Retinitis pigmentosa, caused predominantly by mutations in photoreceptor genes, currently lacks comprehensive treatment. We discover that retinal microglia contribute non-cell autonomously to rod photoreceptor degeneration by primary phagocytosis of living rods. Using rd10 mice, we found that the initiation of rod degeneration is accompanied by early infiltration of microglia, upregulation of phagocytic molecules in microglia, and presentation of “eat-me” signals on mutated rods. On live-cell imaging, infiltrating microglia interact dynamically with photoreceptors via motile processes and engage in rapid phagocytic engulfment of non-apoptotic rods. Microglial contribution to rod demise is evidenced by morphological and functional amelioration of photoreceptor degeneration following genetic ablation of retinal microglia. Molecular inhibition of microglial phagocytosis using the vitronectin receptor antagonist cRGD also improved morphological and functional parameters of degeneration. Our findings highlight primary microglial phagocytosis as a contributing mechanism underlying cell death in retinitis pigmentosa and implicate microglia as a potential cellular target for therapy.
Collapse
Affiliation(s)
- Lian Zhao
- Unit on Neuron-Glia Interactions in Retinal Disease, National Eye institute National Institutes of Health, Bethesda, MD, USA
| | - Matthew K Zabel
- Unit on Neuron-Glia Interactions in Retinal Disease, National Eye institute National Institutes of Health, Bethesda, MD, USA
| | - Xu Wang
- Unit on Neuron-Glia Interactions in Retinal Disease, National Eye institute National Institutes of Health, Bethesda, MD, USA
| | - Wenxin Ma
- Unit on Neuron-Glia Interactions in Retinal Disease, National Eye institute National Institutes of Health, Bethesda, MD, USA
| | - Parth Shah
- Unit on Neuron-Glia Interactions in Retinal Disease, National Eye institute National Institutes of Health, Bethesda, MD, USA
| | - Robert N Fariss
- Biological Imaging Core, National Eye institute National Institutes of Health, Bethesda, MD, USA
| | - Haohua Qian
- Visual Function Core, National Eye institute National Institutes of Health, Bethesda, MD, USA
| | - Christopher N Parkhurst
- Department of Neuroscience and Physiology, Skirball Institute New York University School of Medicine, New York, NY, USA
| | - Wen-Biao Gan
- Department of Neuroscience and Physiology, Skirball Institute New York University School of Medicine, New York, NY, USA
| | - Wai T Wong
- Unit on Neuron-Glia Interactions in Retinal Disease, National Eye institute National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
171
|
Mesd extrinsically promotes phagocytosis by retinal pigment epithelial cells. Cell Biol Toxicol 2016; 32:347-58. [PMID: 27184668 DOI: 10.1007/s10565-016-9339-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 05/09/2016] [Indexed: 01/09/2023]
Abstract
Phagocytosis is a critical process to maintain tissue homeostasis. In the retina, photoreceptor cells renew their photoexcitability by shedding photoreceptor outer segments (POSs) in a diurnal rhythm. Shed POSs are phagocytosed by retinal pigment epithelial (RPE) cells to prevent debris accumulation, retinal degeneration, and blindness. Phagocytosis ligands are the key to understanding how RPE recognizes shed POSs. Here, we characterized mesoderm development candidate 2 (Mesd or Mesdc2), an endoplasmic reticulum (ER) chaperon for low-density lipoprotein receptor-related proteins (LRPs), to extrinsically promote RPE phagocytosis. The results showed that Mesd stimulated phagocytosis of fluorescence-labeled POS vesicles by D407 RPE cells. Ingested POSs were partially degraded within 3 h in some RPE cells to dispense undegradable fluorophore throughout the cytoplasm. Internalized POSs were colocalized with phagosome biomarker Rab7, suggesting that Mesd-mediated engulfment is involved in a phagocytosis pathway. Mesd also facilitated phagocytosis of POSs by primary RPE cells. Mesd bound to unknown phagocytic receptor(s) on RPE cells. Mesd was detected in the cytoplasm, but not nuclei, of different retinal layers and is predominantly expressed in the ER-free cellular compartment of POSs. Mesd was not secreted into medium from healthy cells but passively released from apoptotic cells with increased membrane permeability. Released Mesd selectively bound to the surface of POS vesicles and apoptotic cells, but not healthy cells. These results suggest that Mesd may be released from and bind to shed POSs to facilitate their phagocytic clearance.
Collapse
|
172
|
Gilloteaux J, Ruffo C, Jamison JM, Summers JL. Modes of internalizations of human prostate carcinoma (DU145) cells in vitro and in murine xenotransplants. Ultrastruct Pathol 2016; 40:231-9. [DOI: 10.1080/01913123.2016.1174908] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
173
|
|
174
|
Li M, Piao L, Chen CP, Wu X, Yeh CC, Masch R, Chang CC, Huang SJ. Modulation of Decidual Macrophage Polarization by Macrophage Colony-Stimulating Factor Derived from First-Trimester Decidual Cells: Implication in Preeclampsia. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:1258-66. [PMID: 26970370 DOI: 10.1016/j.ajpath.2015.12.021] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 12/09/2015] [Accepted: 12/14/2015] [Indexed: 12/23/2022]
Abstract
During human pregnancy, immune tolerance of the fetal semiallograft occurs in the presence of abundant maternal leukocytes. At the implantation site, macrophages comprise approximately 20% of the leukocyte population and act as primary mediators of tissue remodeling. Decidual macrophages display a balance between anti-inflammatory and proinflammatory phenotypes. However, a shift to an M1 subtype is reported in preeclampsia. Granulocyte-macrophage colony-stimulating-factor (GM-CSF) and macrophage colony-stimulating factor (M-CSF) are major differentiating factors that mediate M1 and M2 polarization, respectively. Previously, we observed the following: i) the preeclamptic decidua contains an excess of both macrophages and GM-CSF, ii) the preeclampsia-associated proinflammatory cytokines, IL-1β and tumor necrosis factor-α, markedly enhance GM-CSF and M-CSF expression in cultured leukocyte-free first-trimester decidual cells (FTDCs), iii) FTDC-secreted GM-CSF polarizes macrophages toward an M1 subtype. The microenvironment is a key determinant of macrophage phenotype. Thus, we examined proinflammatory stimulation of FTDC-secreted M-CSF and its role in macrophage development. Immunofluorescence staining demonstrated elevated M-CSF-positive decidual cell numbers in preeclamptic decidua. In FTDCs, IL-1β and tumor necrosis factor-α signal through the NF-κB pathway to induce M-CSF production, which does the following: i) enhances differentiation of and elevates CD163 expression in macrophages, ii) increases macrophage phagocytic capacity, and iii) inhibits signal-regulatory protein α expression by macrophages. These findings suggest that FTDC-secreted M-CSF modulates the decidual immune balance by inducing M2 macrophage polarization and phagocytic capacity in response to proinflammatory stimuli.
Collapse
Affiliation(s)
- Min Li
- Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut
| | - Longzhu Piao
- Department of Otolaryngology-Head and Neck Surgery, The Ohio State University College of Medicine, Columbus, Ohio
| | - Chie-Pein Chen
- Department of Obstetrics and Gynecology, Mackay Memorial Hospital, Taipei, Taiwan
| | - Xianqing Wu
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Chang-Ching Yeh
- Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Rachel Masch
- Department of Obstetrics and Gynecology, Beth Israel Medical Center, New York, New York
| | - Chi-Chang Chang
- Department of Obstetrics and Gynecology, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| | - S Joseph Huang
- Department of Obstetrics and Gynecology, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan; Department of Obstetrics and Gynecology, University of South Florida, College of Medicine, Tampa, Florida.
| |
Collapse
|
175
|
Phagocytosis genes nonautonomously promote developmental cell death in the Drosophila ovary. Proc Natl Acad Sci U S A 2016; 113:E1246-55. [PMID: 26884181 DOI: 10.1073/pnas.1522830113] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Programmed cell death (PCD) is usually considered a cell-autonomous suicide program, synonymous with apoptosis. Recent research has revealed that PCD is complex, with at least a dozen cell death modalities. Here, we demonstrate that the large-scale nonapoptotic developmental PCD in the Drosophila ovary occurs by an alternative cell death program where the surrounding follicle cells nonautonomously promote death of the germ line. The phagocytic machinery of the follicle cells, including Draper, cell death abnormality (Ced)-12, and c-Jun N-terminal kinase (JNK), is essential for the death and removal of germ-line-derived nurse cells during late oogenesis. Cell death events including acidification, nuclear envelope permeabilization, and DNA fragmentation of the nurse cells are impaired when phagocytosis is inhibited. Moreover, elimination of a small subset of follicle cells prevents nurse cell death and cytoplasmic dumping. Developmental PCD in the Drosophila ovary is an intriguing example of nonapoptotic, nonautonomous PCD, providing insight on the diversity of cell death mechanisms.
Collapse
|
176
|
Sanchez-Arias JC, Wicki-Stordeur LE, Swayne LA. Perspectives on the role of Pannexin 1 in neural precursor cell biology. Neural Regen Res 2016; 11:1540-1544. [PMID: 27904473 PMCID: PMC5116821 DOI: 10.4103/1673-5374.193221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
We recently reported that targeted deletion of Pannexin 1 in neural precursor cells of the ventricular zone impairs the maintenance of these cells in healthy and stroke-injured brain. Here we frame this exciting new finding in the context of our previous studies on Pannexin 1 in neural precursors as well as the close relationship between Pannexin 1 and purinergic receptors established by other groups. Moreover, we identify important gaps in our understanding of Pannexin 1 in neural precursor cell biology in terms of the underlying molecular mechanisms and functional/behavioural outcomes.
Collapse
Affiliation(s)
- Juan C Sanchez-Arias
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Leigh E Wicki-Stordeur
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Leigh Anne Swayne
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada; Island Medical Program and Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
177
|
Shigemoto-Mogami Y, Hoshikawa K, Hirose A, Sato K. Phagocytosis-dependent and independent mechanisms underlie the microglial cell damage caused by carbon nanotube agglomerates. J Toxicol Sci 2016; 41:501-9. [DOI: 10.2131/jts.41.501] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Yukari Shigemoto-Mogami
- Laboratory of Neuropharmacology, Division of Pharmacology, National Institute of Health Sciences
| | - Kazue Hoshikawa
- Laboratory of Neuropharmacology, Division of Pharmacology, National Institute of Health Sciences
| | - Akihiko Hirose
- Division of Risk Assessment, National Institute of Health Sciences
| | - Kaoru Sato
- Laboratory of Neuropharmacology, Division of Pharmacology, National Institute of Health Sciences
| |
Collapse
|
178
|
Esteban MÁ, Cuesta A, Chaves-Pozo E, Meseguer J. Phagocytosis in Teleosts. Implications of the New Cells Involved. BIOLOGY 2015; 4:907-22. [PMID: 26690236 PMCID: PMC4690022 DOI: 10.3390/biology4040907] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 11/24/2015] [Accepted: 11/27/2015] [Indexed: 02/07/2023]
Abstract
Phagocytosis is the process by which cells engulf some solid particles to form internal vesicles known as phagosomes. Phagocytosis is in fact a specific form of endocytosis involving the vesicular interiorization of particles. Phagocytosis is essentially a defensive reaction against infection and invasion of the body by foreign substances and, in the immune system, phagocytosis is a major mechanism used to remove pathogens and/or cell debris. For these reasons, phagocytosis in vertebrates has been recognized as a critical component of the innate and adaptive immune responses to pathogens. Furthermore, more recent studies have revealed that phagocytosis is also crucial for tissue homeostasis and remodeling. Professional phagocytes in teleosts are monocyte/macrophages, granulocytes and dendritic cells. Nevertheless, in recent years phagocytic properties have also been attributed to teleost lymphocytes and thrombocytes. The possible implications of such cells on this important biological process, new factors affecting phagocytosis, evasion of phagocytosis or new forms of phagocytosis will be considered and discussed.
Collapse
Affiliation(s)
- María Ángeles Esteban
- Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, 30100 Murcia, Spain.
| | - Alberto Cuesta
- Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, 30100 Murcia, Spain.
| | - Elena Chaves-Pozo
- Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, 30100 Murcia, Spain.
| | - José Meseguer
- Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, 30100 Murcia, Spain.
| |
Collapse
|
179
|
Hornik TC, Vilalta A, Brown GC. Activated microglia cause reversible apoptosis of pheochromocytoma cells, inducing their cell death by phagocytosis. J Cell Sci 2015; 129:65-79. [PMID: 26567213 DOI: 10.1242/jcs.174631] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 11/10/2015] [Indexed: 12/15/2022] Open
Abstract
Some apoptotic processes, such as phosphatidylserine exposure, are potentially reversible and do not necessarily lead to cell death. However, phosphatidylserine exposure can induce phagocytosis of a cell, resulting in cell death by phagocytosis: phagoptosis. Phagoptosis of neurons by microglia might contribute to neuropathology, whereas phagoptosis of tumour cells by macrophages might limit cancer. Here, we examined the mechanisms by which BV-2 microglia killed co-cultured pheochromocytoma (PC12) cells that were either undifferentiated or differentiated into neuronal cells. We found that microglia activated by lipopolysaccharide rapidly phagocytosed PC12 cells. Activated microglia caused reversible phosphatidylserine exposure on and reversible caspase activation in PC12 cells, and caspase inhibition prevented phosphatidylserine exposur and decreased subsequent phagocytosis. Nitric oxide was necessary and sufficient to induce the reversible phosphatidylserine exposure and phagocytosis. The PC12 cells were not dead at the time they were phagocytised, and inhibition of their phagocytosis left viable cells. Cell loss was inhibited by blocking phagocytosis mediated by phosphatidylserine, MFG-E8, vitronectin receptors or P2Y6 receptors. Thus, activated microglia can induce reversible apoptosis of target cells, which is insufficient to cause apoptotic cell death, but sufficient to induce their phagocytosis and therefore cell death by phagoptosis.
Collapse
Affiliation(s)
- Tamara C Hornik
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | - Anna Vilalta
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | - Guy C Brown
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| |
Collapse
|
180
|
McCarthy MM, Pickett LA, VanRyzin JW, Kight KE. Surprising origins of sex differences in the brain. Horm Behav 2015; 76:3-10. [PMID: 25917865 PMCID: PMC4620061 DOI: 10.1016/j.yhbeh.2015.04.013] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 03/22/2015] [Accepted: 04/06/2015] [Indexed: 11/22/2022]
Abstract
This article is part of a Special Issue "SBN 2014". Discerning the biologic origins of neuroanatomical sex differences has been of interest since they were first reported in the late 60's and early 70's. The centrality of gonadal hormone exposure during a developmental critical window cannot be denied but hormones are indirect agents of change, acting to induce gene transcription or modulate membrane bound signaling cascades. Sex differences in the brain include regional volume differences due to differential cell death, neuronal and glial genesis, dendritic branching and synaptic patterning. Early emphasis on mechanism therefore focused on neurotransmitters and neural growth factors, but by and large these endpoints failed to explain the origins of neural sex differences. More recently evidence has accumulated in favor of inflammatory mediators and immune cells as principle regulators of brain sexual differentiation and reveal that the establishment of dimorphic circuits is not cell autonomous but instead requires extensive cell-to-cell communication including cells of non-neuronal origin. Despite the multiplicity of cells involved the nature of the sex differences in the neuroanatomical endpoints suggests canalization, a process that explains the robustness of individuals in the face of intrinsic and extrinsic variability. We propose that some neuroanatomical endpoints are canalized to enhance sex differences in the brain by reducing variability within one sex while also preventing the sexes from diverging too greatly. We further propose mechanisms by which such canalization could occur and discuss what relevance this may have to sex differences in behavior.
Collapse
Affiliation(s)
- Margaret M McCarthy
- Department of Pharmacology, Program in Neuroscience and Program in Molecular Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Lindsay A Pickett
- Department of Pharmacology, Program in Neuroscience and Program in Molecular Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Jonathan W VanRyzin
- Department of Pharmacology, Program in Neuroscience and Program in Molecular Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Katherine E Kight
- Department of Pharmacology, Program in Neuroscience and Program in Molecular Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
181
|
Bacterial Stimulation of Toll-Like Receptor 4 Drives Macrophages To Hemophagocytose. Infect Immun 2015; 84:47-55. [PMID: 26459510 DOI: 10.1128/iai.01149-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 10/07/2015] [Indexed: 01/25/2023] Open
Abstract
During acute infection with bacteria, viruses or parasites, a fraction of macrophages engulf large numbers of red and white blood cells, a process called hemophagocytosis. Hemophagocytes persist into the chronic stage of infection and have an anti-inflammatory phenotype. Salmonella enterica serovar Typhimurium infection of immunocompetent mice results in acute followed by chronic infection, with the accumulation of hemophagocytes. The mechanism(s) that triggers a macrophage to become hemophagocytic is unknown, but it has been reported that the proinflammatory cytokine gamma interferon (IFN-γ) is responsible. We show that primary macrophages become hemophagocytic in the absence or presence of IFN-γ upon infection with Gram-negative bacterial pathogens or prolonged exposure to heat-killed Salmonella enterica, the Gram-positive bacterium Bacillus subtilis, or Mycobacterium marinum. Moreover, conserved microbe-associated molecular patterns are sufficient to stimulate macrophages to hemophagocytose. Purified bacterial lipopolysaccharide (LPS) induced hemophagocytosis in resting and IFN-γ-pretreated macrophages, whereas lipoteichoic acid and synthetic unmethylated deoxycytidine-deoxyguanosine dinucleotides, which mimic bacterial DNA, induced hemophagocytosis only in IFN-γ-pretreated macrophages. Chemical inhibition or genetic deletion of Toll-like receptor 4, a pattern recognition receptor responsive to LPS, prevented both Salmonella- and LPS-stimulated hemophagocytosis. Inhibition of NF-κB also prevented hemophagocytosis. These results indicate that recognition of microbial products by Toll-like receptors stimulates hemophagocytosis, a novel outcome of prolonged Toll-like receptor signaling, suggesting hemophagocytosis is a highly conserved innate immune response.
Collapse
|
182
|
CysLT 2 receptor mediates lipopolysaccharide-induced microglial inflammation and consequent neurotoxicity in vitro. Brain Res 2015; 1624:433-445. [DOI: 10.1016/j.brainres.2015.08.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 07/17/2015] [Accepted: 08/07/2015] [Indexed: 01/01/2023]
|
183
|
Peterson JS, Timmons AK, Mondragon AA, McCall K. The End of the Beginning: Cell Death in the Germline. Curr Top Dev Biol 2015; 114:93-119. [PMID: 26431565 DOI: 10.1016/bs.ctdb.2015.07.025] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Programmed cell death occurs in the germline of many organisms, both as an essential part of development and throughout adult life. Germline cell death can be apoptotic or nonapoptotic, depending on the stimulus or stage of development. Here, we focus on the Drosophila ovary, which is a powerful model for studying diverse types of cell death. In Drosophila, the death of primordial germ cells occurs normally during embryonic development, and germline nurse cells are programmed to die during oocyte development in adult flies. Cell death of previtellogenic egg chambers in adults can also be induced by starvation or other environmental cues. Mid-oogenesis seems to be particularly sensitive to such cues and has been proposed to serve as a checkpoint to avoid the energetically expensive cost of egg production. After the germline dies in mid-oogenesis, the remnants are engulfed by an epithelial layer of follicle cells; thus, the fly ovary also serves as a highly tractable model for engulfment by epithelial cells. These examples of cell death in the fly ovary share many similarities to the types of cell death seen in the mammalian germline. Recent progress in elucidating the molecular mechanisms of cell death in the germline is discussed.
Collapse
Affiliation(s)
- Jeanne S Peterson
- Department of Biology, Boston University, Boston, Massachusetts, USA
| | - Allison K Timmons
- Department of Biology, Boston University, Boston, Massachusetts, USA
| | | | - Kimberly McCall
- Department of Biology, Boston University, Boston, Massachusetts, USA.
| |
Collapse
|
184
|
Brown GC, Vilalta A. How microglia kill neurons. Brain Res 2015; 1628:288-297. [PMID: 26341532 DOI: 10.1016/j.brainres.2015.08.031] [Citation(s) in RCA: 209] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 08/03/2015] [Accepted: 08/24/2015] [Indexed: 12/11/2022]
Abstract
Microglia are resident brain macrophages that become inflammatory activated in most brain pathologies. Microglia normally protect neurons, but may accidentally kill neurons when attempting to limit infections or damage, and this may be more common with degenerative disease as there was no significant selection pressure on the aged brain in the past. A number of mechanisms by which activated microglia kill neurons have been identified, including: (i) stimulation of the phagocyte NADPH oxidase (PHOX) to produce superoxide and derivative oxidants, (ii) expression of inducible nitric oxide synthase (iNOS) producing NO and derivative oxidants, (iii) release of glutamate and glutaminase, (iv) release of TNFα, (v) release of cathepsin B, (vi) phagocytosis of stressed neurons, and (vii) decreased release of nutritive BDNF and IGF-1. PHOX stimulation contributes to microglial activation, but is not directly neurotoxic unless NO is present. NO is normally neuroprotective, but can react with superoxide to produce neurotoxic peroxynitrite, or in the presence of hypoxia inhibit mitochondrial respiration. Glutamate can be released by glia or neurons, but is neurotoxic only if the neurons are depolarised, for example as a result of mitochondrial inhibition. TNFα is normally neuroprotective, but can become toxic if caspase-8 or NF-κB activation are inhibited. If the above mechanisms do not kill neurons, they may still stress the neurons sufficiently to make them susceptible to phagocytosis by activated microglia. We review here whether microglial killing of neurons is an artefact, makes evolutionary sense or contributes in common neuropathologies and by what mechanisms. This article is part of a Special Issue entitled SI: Neuroprotection.
Collapse
Affiliation(s)
- Guy C Brown
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK.
| | - Anna Vilalta
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK
| |
Collapse
|
185
|
Huang H, Chen A, Wang T, Wang M, Ning X, He M, Hu Y, Yuan L, Li S, Wang Q, Liu H, Chen Z, Ren J, Sun Q. Detecting cell-in-cell structures in human tumor samples by E-cadherin/CD68/CD45 triple staining. Oncotarget 2015; 6:20278-87. [PMID: 26109430 PMCID: PMC4653004 DOI: 10.18632/oncotarget.4275] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Accepted: 06/08/2015] [Indexed: 12/18/2022] Open
Abstract
Although Cell-in-cell structures (CICs) had been documented in human tumors for decades, it is unclear what types of CICs were formed largely due to low resolution of traditional way such as H&E staining. In this work, we employed immunofluorescent method to stain a panel of human tumor samples simultaneously with antibodies against E-cadherin for Epithelium, CD68 for Macrophage and CD45 for Leukocytes, which we termed as "EML method" based on the cells detected. Detail analysis revealed four types of CICs, with tumor cells or macrophage engulfing tumor cells or leukocytes respectively. Interestingly, tumor cells seem to be dominant over macrophage (93% vs 7%) as the engulfer cells in all CICs detected, whereas the overall amount of internalized tumor cells is comparable to that of internalized CD45+ leukocytes (57% vs 43%). The CICs profiles vary from tumor to tumor, which may indicate different malignant stages and/or inflammatory conditions. Given the potential impacts different types of CICs might have on tumor growth, we therefore recommend EML analysis of tumor samples to clarify the correlation of CICs subtypes with clinical prognosis in future researches.
Collapse
Affiliation(s)
- Hongyan Huang
- Department of Oncology, Beijing Shijitan Hospital of Capital Medical University, Beijing, P. R. China
- Laboratory of Cell Engineering, Institute of Biotechnology, Beijing, P. R. China
| | - Ang Chen
- Laboratory of Cell Engineering, Institute of Biotechnology, Beijing, P. R. China
| | - Ting Wang
- Department of Vascular and Endocrine Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China, Xi'an, Shaanxi Province, P. R. China
| | - Manna Wang
- Laboratory of Cell Engineering, Institute of Biotechnology, Beijing, P. R. China
| | - Xiangkai Ning
- Laboratory of Cell Engineering, Institute of Biotechnology, Beijing, P. R. China
| | - Meifang He
- Laboratory of Cell Engineering, Institute of Biotechnology, Beijing, P. R. China
| | - Yazhuo Hu
- Beijing Key Laboratory for Aging and Geriatrics, Institute of Geriatrics, General Hospital of Chinese PLA, Beijing, P.R.China
| | - Long Yuan
- Laboratory of Cell Engineering, Institute of Biotechnology, Beijing, P. R. China
| | - Shichong Li
- Laboratory of Cell Engineering, Institute of Biotechnology, Beijing, P. R. China
| | - Qiwei Wang
- Laboratory of Cell Engineering, Institute of Biotechnology, Beijing, P. R. China
| | - Hong Liu
- Laboratory of Cell Engineering, Institute of Biotechnology, Beijing, P. R. China
| | - Zhaolie Chen
- Laboratory of Cell Engineering, Institute of Biotechnology, Beijing, P. R. China
| | - Jun Ren
- Department of Oncology, Beijing Shijitan Hospital of Capital Medical University, Beijing, P. R. China
| | - Qiang Sun
- Laboratory of Cell Engineering, Institute of Biotechnology, Beijing, P. R. China
| |
Collapse
|
186
|
Leucine-rich repeat kinase 2 modulates neuroinflammation and neurotoxicity in models of human immunodeficiency virus 1-associated neurocognitive disorders. J Neurosci 2015; 35:5271-83. [PMID: 25834052 DOI: 10.1523/jneurosci.0650-14.2015] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Leucine-rich repeat kinase 2 (LRRK2) is the single most common genetic cause of both familial and sporadic Parkinson's disease (PD), both of which share pathogenetic and neurologic similarities with human immunodeficiency virus 1 (HIV-1)-associated neurocognitive disorders (HAND). Pathologic LRRK2 activity may also contribute to neuroinflammation, because microglia lacking LRRK2 exposed to proinflammatory stimuli have attenuated responses. Because microglial activation is a hallmark of HIV-1 neuropathology, we have investigated the role of LRRK2 activation using in vitro and in vivo models of HAND. We hypothesize that LRRK2 is a key modulator of microglial inflammatory responses, which play a pathogenic role in both HAND and PD, and that these responses may cause or exacerbate neuronal damage in these diseases. The HIV-1 Tat protein is a potent neurotoxin produced during HAND that induces activation of primary microglia in culture and long-lasting neuroinflammation and neurotoxicity when injected into the CNS of mice. We found that LRRK2 inhibition attenuates Tat-induced pS935-LRRK2 expression, proinflammatory cytokine and chemokine expression, and phosphorylated p38 and Jun N-terminal kinase signaling in primary microglia. In our murine model, cortical Tat injection in LRRK2 knock-out (KO) mice results in significantly diminished neuronal damage, as assessed by microtubule-associated protein 2 (MAP2), class III β-tubulin TUJ1, synapsin-1, VGluT, and cleaved caspase-3 immunostaining. Furthermore, Tat-injected LRRK2 KO animals have decreased infiltration of peripheral neutrophils, and the morphology of microglia from these mice were similar to that of vehicle-injected controls. We conclude that pathologic activation of LRRK2 regulates a significant component of the neuroinflammation associated with HAND.
Collapse
|
187
|
He M, Huang H, Wang M, Chen A, Ning X, Yu K, Li Q, Li W, Ma L, Chen Z, Wang X, Sun Q. Fluorescence-Activated Cell Sorting Analysis of Heterotypic Cell-in-Cell Structures. Sci Rep 2015; 5:9588. [PMID: 25913618 PMCID: PMC5386181 DOI: 10.1038/srep09588] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 03/12/2015] [Indexed: 12/19/2022] Open
Abstract
Cell-in-cell structures (CICs), characterized by the presence of one or more viable cells inside another one, were recently found important player in development, immune homeostasis and tumorigenesis etc. Incompatible with ever-increasing interests on this unique phenomenon, reliable methods available for high throughput quantification and systemic investigation are lacking. Here, we report a flow cytometry-based method for rapid analysis and sorting of heterotypic CICs formed between lymphocytes and tumor cells. In this method, cells were labeled with fluorescent dyes for fluorescence-activated cell sorting (FACS) by flow cytometry, conditions for reducing cell doublets were optimized such that high purity (>95%) of CICs could be achieved. By taking advantage of this method, we analyzed CICs formation between different cell pairs, and found that factors from both internalized effector cells and engulfing target cells affect heterotypic CICs formation. Thus, flow cytometry-based FACS analysis would serve as a high throughput method to promote systemic researches on CICs.
Collapse
Affiliation(s)
- Meifang He
- 1] Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan er Road, Guangzhou, Guangdong 510080, P. R. China [2] Laboratory of Cell Engineering, Institute of Biotechnology, 20 Dongda Street, Beijing 100071, P. R. China [3] The Institute of Life Sciences, the Key Laboratory of Normal Aging &Geriatric, the State Key Laboratory of Kidney, the Chinese PLA General Hospital, Beijing 100853, P. R. China
| | - Hongyan Huang
- 1] Laboratory of Cell Engineering, Institute of Biotechnology, 20 Dongda Street, Beijing 100071, P. R. China [2] Department of Oncology, Beijing Shijitan Hospital of Capital Medical University, 10 TIEYI Road, Beijing 100038, P. R. China
| | - Manna Wang
- 1] Laboratory of Cell Engineering, Institute of Biotechnology, 20 Dongda Street, Beijing 100071, P. R. China [2] Institute of Molecular Immunology, School of Biotechnology, Southern Medical University, Guangzhou 510515, P. R. China
| | - Ang Chen
- Laboratory of Cell Engineering, Institute of Biotechnology, 20 Dongda Street, Beijing 100071, P. R. China
| | - Xiangkai Ning
- 1] Laboratory of Cell Engineering, Institute of Biotechnology, 20 Dongda Street, Beijing 100071, P. R. China [2] Institute of Molecular Immunology, School of Biotechnology, Southern Medical University, Guangzhou 510515, P. R. China
| | - Kaitao Yu
- Department of Stomatology, Affiliated Hospital of Academy of Military Medical Science, 8 Dongda Street, Beijing 100071, P. R. China
| | - Qihong Li
- Department of Stomatology, Affiliated Hospital of Academy of Military Medical Science, 8 Dongda Street, Beijing 100071, P. R. China
| | - Wen Li
- Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan er Road, Guangzhou, Guangdong 510080, P. R. China
| | - Li Ma
- Institute of Molecular Immunology, School of Biotechnology, Southern Medical University, Guangzhou 510515, P. R. China
| | - Zhaolie Chen
- Laboratory of Cell Engineering, Institute of Biotechnology, 20 Dongda Street, Beijing 100071, P. R. China
| | - Xiaoning Wang
- The Institute of Life Sciences, the Key Laboratory of Normal Aging &Geriatric, the State Key Laboratory of Kidney, the Chinese PLA General Hospital, Beijing 100853, P. R. China
| | - Qiang Sun
- 1] Laboratory of Cell Engineering, Institute of Biotechnology, 20 Dongda Street, Beijing 100071, P. R. China [2] National Key Laboratory of Medical Immunology and Institute of Immunology, Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, P. R. China
| |
Collapse
|
188
|
Identification of signalling cascades involved in red blood cell shrinkage and vesiculation. Biosci Rep 2015; 35:BSR20150019. [PMID: 25757360 PMCID: PMC4400636 DOI: 10.1042/bsr20150019] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Even though red blood cell (RBC) vesiculation is a well-documented phenomenon, notably in the context of RBC aging and blood transfusion, the exact signalling pathways and kinases involved in this process remain largely unknown. We have established a screening method for RBC vesicle shedding using the Ca2+ ionophore ionomycin which is a rapid and efficient method to promote vesiculation. In order to identify novel pathways stimulating vesiculation in RBC, we screened two libraries: the Library of Pharmacologically Active Compounds (LOPAC) and the Selleckchem Kinase Inhibitor Library for their effects on RBC from healthy donors. We investigated compounds triggering vesiculation and compounds inhibiting vesiculation induced by ionomycin. We identified 12 LOPAC compounds, nine kinase inhibitors and one kinase activator which induced RBC shrinkage and vesiculation. Thus, we discovered several novel pathways involved in vesiculation including G protein-coupled receptor (GPCR) signalling, the phosphoinositide 3-kinase (PI3K)–Akt (protein kinase B) pathway, the Jak–STAT (Janus kinase–signal transducer and activator of transcription) pathway and the Raf–MEK (mitogen-activated protein kinase kinase)–ERK (extracellular signal-regulated kinase) pathway. Moreover, we demonstrated a link between casein kinase 2 (CK2) and RBC shrinkage via regulation of the Gardos channel activity. In addition, our data showed that inhibition of several kinases with unknown functions in mature RBC, including Alk (anaplastic lymphoma kinase) kinase and vascular endothelial growth factor receptor 2 (VEGFR-2), induced RBC shrinkage and vesiculation. After screening two libraries of small bioactive molecules and kinase inhibitors, we identified several signalling pathways to be involved in red blood cell (RBC) shrinkage and vesiculation. These include the Jak (Janus kinase)–STAT (signal transducer and activator of transcription) pathway, phosphoinositide 3-kinase (PI3K)–Akt pathway, the Raf–MEK (mitogen-activated protein kinase kinase)–ERK (extracellular signal-regulated kinase) pathway and GPCR (G protein-coupled receptor) signalling.
Collapse
|
189
|
Fumagalli S, Perego C, Pischiutta F, Zanier ER, De Simoni MG. The ischemic environment drives microglia and macrophage function. Front Neurol 2015; 6:81. [PMID: 25904895 PMCID: PMC4389404 DOI: 10.3389/fneur.2015.00081] [Citation(s) in RCA: 187] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 03/25/2015] [Indexed: 12/16/2022] Open
Abstract
Cells of myeloid origin, such as microglia and macrophages, act at the crossroads of several inflammatory mechanisms during pathophysiology. Besides pro-inflammatory activity (M1 polarization), myeloid cells acquire protective functions (M2) and participate in the neuroprotective innate mechanisms after brain injury. Experimental research is making considerable efforts to understand the rules that regulate the balance between toxic and protective brain innate immunity. Environmental changes affect microglia/macrophage functions. Hypoxia can affect myeloid cell distribution, activity, and phenotype. With their intrinsic differences, microglia and macrophages respond differently to hypoxia, the former depending on ATP to activate and the latter switching to anaerobic metabolism and adapting to hypoxia. Myeloid cell functions include homeostasis control, damage-sensing activity, chemotaxis, and phagocytosis, all distinctive features of these cells. Specific markers and morphologies enable to recognize each functional state. To ensure homeostasis and activate when needed, microglia/macrophage physiology is finely tuned. Microglia are controlled by several neuron-derived components, including contact-dependent inhibitory signals and soluble molecules. Changes in this control can cause chronic activation or priming with specific functional consequences. Strategies, such as stem cell treatment, may enhance microglia protective polarization. This review presents data from the literature that has greatly advanced our understanding of myeloid cell action in brain injury. We discuss the selective responses of microglia and macrophages to hypoxia after stroke and review relevant markers with the aim of defining the different subpopulations of myeloid cells that are recruited to the injured site. We also cover the functional consequences of chronically active microglia and review pivotal works on microglia regulation that offer new therapeutic possibilities for acute brain injury.
Collapse
Affiliation(s)
- Stefano Fumagalli
- Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri , Milan , Italy ; Department of Pathophysiology and Transplantation, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico , Milan , Italy
| | - Carlo Perego
- Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri , Milan , Italy
| | - Francesca Pischiutta
- Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri , Milan , Italy
| | - Elisa R Zanier
- Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri , Milan , Italy
| | - Maria-Grazia De Simoni
- Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri , Milan , Italy
| |
Collapse
|
190
|
van Ham TJ, Brady CA, Kalicharan RD, Oosterhof N, Kuipers J, Veenstra-Algra A, Sjollema KA, Peterson RT, Kampinga HH, Giepmans BNG. Intravital correlated microscopy reveals differential macrophage and microglial dynamics during resolution of neuroinflammation. Dis Model Mech 2015; 7:857-69. [PMID: 24973753 PMCID: PMC4073275 DOI: 10.1242/dmm.014886] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Many brain diseases involve activation of resident and peripheral immune cells to clear damaged and dying neurons. Which immune cells respond in what way to cues related to brain disease, however, remains poorly understood. To elucidate these in vivo immunological events in response to brain cell death we used genetically targeted cell ablation in zebrafish. Using intravital microscopy and large-scale electron microscopy, we defined the kinetics and nature of immune responses immediately following injury. Initially, clearance of dead cells occurs by mononuclear phagocytes, including resident microglia and macrophages of peripheral origin, whereas amoeboid microglia are exclusively involved at a later stage. Granulocytes, on the other hand, do not migrate towards the injury. Remarkably, following clearance, phagocyte numbers decrease, partly by phagocyte cell death and subsequent engulfment of phagocyte corpses by microglia. Here, we identify differential temporal involvement of microglia and peripheral macrophages in clearance of dead cells in the brain, revealing the chronological sequence of events in neuroinflammatory resolution. Remarkably, recruited phagocytes undergo cell death and are engulfed by microglia. Because adult zebrafish treated at the larval stage lack signs of pathology, it is likely that this mode of resolving immune responses in brain contributes to full tissue recovery. Therefore, these findings suggest that control of such immune cell behavior could benefit recovery from neuronal damage.
Collapse
Affiliation(s)
- Tjakko J van Ham
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, A. Deusinglaan 1, 9713 AV, Groningen, The Netherlands.
| | - Colleen A Brady
- Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Charlestown, MA 02129, USA
| | - Ruby D Kalicharan
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, A. Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Nynke Oosterhof
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, A. Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Jeroen Kuipers
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, A. Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Anneke Veenstra-Algra
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, A. Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Klaas A Sjollema
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, A. Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Randall T Peterson
- Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Charlestown, MA 02129, USA
| | - Harm H Kampinga
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, A. Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Ben N G Giepmans
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, A. Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| |
Collapse
|
191
|
Ben M'Barek K, Molino D, Quignard S, Plamont MA, Chen Y, Chavrier P, Fattaccioli J. Phagocytosis of immunoglobulin-coated emulsion droplets. Biomaterials 2015; 51:270-277. [PMID: 25771017 DOI: 10.1016/j.biomaterials.2015.02.030] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 02/02/2015] [Indexed: 11/15/2022]
Abstract
Phagocytosis by macrophages represents a fundamental process essential for both immunity and tissue homeostasis. The size of targets to be eliminated ranges from small particles as bacteria to large objects as cancerous or senescent cells. Most of our current quantitative knowledge on phagocytosis is based on the use of solid polymer microparticles as model targets that are well adapted to the study of phagocytosis mechanisms that do not involve any lateral mobility of the ligands, despite the relevance of this parameter in the immunological context. Herein we designed monodisperse, IgG-coated emulsion droplets that are efficiently and specifically internalized by macrophages through in-vitro FcγR-mediated phagocytosis. We show that, contrary to solid polymeric beads, droplet uptake is efficient even for low IgG densities, and is accompagnied by the clustering of the opsonins in the zone of contact with the macrophage during the adhesion step. Beyond the sole interest in the design of the material, our results suggest that lateral mobility of proteins at the interface of a target greatly enhances the phagocytic uptake.
Collapse
Affiliation(s)
- Kalthoum Ben M'Barek
- Ecole Normale Supérieure - PSL Research University, Département de Chimie, 24 rue Lhomond, F-75005, Paris, France; Sorbonne Universités, UPMC Univ. Paris 06, PASTEUR, F-75005, Paris, France; CNRS, UMR 8640 PASTEUR, F-75005, Paris, France
| | - Diana Molino
- Ecole Normale Supérieure - PSL Research University, Département de Chimie, 24 rue Lhomond, F-75005, Paris, France; Sorbonne Universités, UPMC Univ. Paris 06, PASTEUR, F-75005, Paris, France; CNRS, UMR 8640 PASTEUR, F-75005, Paris, France
| | - Sandrine Quignard
- Ecole Normale Supérieure - PSL Research University, Département de Chimie, 24 rue Lhomond, F-75005, Paris, France; Sorbonne Universités, UPMC Univ. Paris 06, PASTEUR, F-75005, Paris, France; CNRS, UMR 8640 PASTEUR, F-75005, Paris, France
| | - Marie-Aude Plamont
- Ecole Normale Supérieure - PSL Research University, Département de Chimie, 24 rue Lhomond, F-75005, Paris, France; Sorbonne Universités, UPMC Univ. Paris 06, PASTEUR, F-75005, Paris, France; CNRS, UMR 8640 PASTEUR, F-75005, Paris, France
| | - Yong Chen
- Ecole Normale Supérieure - PSL Research University, Département de Chimie, 24 rue Lhomond, F-75005, Paris, France; Sorbonne Universités, UPMC Univ. Paris 06, PASTEUR, F-75005, Paris, France; CNRS, UMR 8640 PASTEUR, F-75005, Paris, France
| | - Philippe Chavrier
- Institut Curie, Research Center, Paris, France; Membrane and Cytoskeleton Dynamics, CNRS, UMR 144, Paris, France
| | - Jacques Fattaccioli
- Ecole Normale Supérieure - PSL Research University, Département de Chimie, 24 rue Lhomond, F-75005, Paris, France; Sorbonne Universités, UPMC Univ. Paris 06, PASTEUR, F-75005, Paris, France; CNRS, UMR 8640 PASTEUR, F-75005, Paris, France.
| |
Collapse
|
192
|
|
193
|
Karlstetter M, Scholz R, Rutar M, Wong WT, Provis JM, Langmann T. Retinal microglia: just bystander or target for therapy? Prog Retin Eye Res 2014; 45:30-57. [PMID: 25476242 DOI: 10.1016/j.preteyeres.2014.11.004] [Citation(s) in RCA: 385] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 11/20/2014] [Accepted: 11/25/2014] [Indexed: 10/24/2022]
Abstract
Resident microglial cells can be regarded as the immunological watchdogs of the brain and the retina. They are active sensors of their neuronal microenvironment and rapidly respond to various insults with a morphological and functional transformation into reactive phagocytes. There is strong evidence from animal models and in situ analyses of human tissue that microglial reactivity is a common hallmark of various retinal degenerative and inflammatory diseases. These include rare hereditary retinopathies such as retinitis pigmentosa and X-linked juvenile retinoschisis but also comprise more common multifactorial retinal diseases such as age-related macular degeneration, diabetic retinopathy, glaucoma, and uveitis as well as neurological disorders with ocular manifestation. In this review, we describe how microglial function is kept in balance under normal conditions by cross-talk with other retinal cells and summarize how microglia respond to different forms of retinal injury. In addition, we present the concept that microglia play a key role in local regulation of complement in the retina and specify aspects of microglial aging relevant for chronic inflammatory processes in the retina. We conclude that this resident immune cell of the retina cannot be simply regarded as bystander of disease but may instead be a potential therapeutic target to be modulated in the treatment of degenerative and inflammatory diseases of the retina.
Collapse
Affiliation(s)
- Marcus Karlstetter
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, University of Cologne, Cologne, Germany
| | - Rebecca Scholz
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, University of Cologne, Cologne, Germany
| | - Matt Rutar
- The John Curtin School of Medical Research, The Australian National University (ANU), Canberra, Australian Capital Territory, Australia
| | - Wai T Wong
- Unit on Neuron-Glia Interactions in Retinal Disease, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jan M Provis
- The John Curtin School of Medical Research, The Australian National University (ANU), Canberra, Australian Capital Territory, Australia
| | - Thomas Langmann
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, University of Cologne, Cologne, Germany.
| |
Collapse
|
194
|
Sun Q, Cibas ES, Huang H, Hodgson L, Overholtzer M. Induction of entosis by epithelial cadherin expression. Cell Res 2014; 24:1288-98. [PMID: 25342558 DOI: 10.1038/cr.2014.137] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 03/07/2014] [Accepted: 07/30/2014] [Indexed: 12/17/2022] Open
Abstract
Cell engulfment typically targets dead or dying cells for clearance from metazoan tissues. However, recent evidence demonstrates that live cells can also be targeted and that engulfment can cause cell death. Entosis is one mechanism proposed to mediate the engulfment and killing of live tumor cells by their neighbors, an activity often referred to as cell cannibalism. Here we report that the expression of exogenous epithelial cadherin proteins (E- or P-cadherin) in human breast tumor cells lacking endogenous expression of epithelial cadherins induces entosis and inhibits transformed growth. Entosis induced by cadherin expression is associated with the polarized distribution of Rho and Rho-kinase (ROCK) activity within entotic cells, which is dependent on p190A RhoGAP activity. ROCK inhibition or downregulation of p190A RhoGAP expression reduces entosis and increases the transformed growth of epithelial cadherin-expressing tumor cells. These data define new cell systems for the study of entosis, and identify entosis as a mechanism of cell cannibalism that is induced by the establishment of epithelial adhesion and inhibits transformed growth.
Collapse
Affiliation(s)
- Qiang Sun
- 1] Laboratory of Cell Engineering, Institute of Biotechnology, Beijing 100071, China [2] Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Edmund S Cibas
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Hongyan Huang
- Department of Oncology, Beijing Shijitan Hospital of Capital Medical University, 10 TIEYI Road, Beijing 100038, China
| | - Louis Hodgson
- Department of Anatomy and Structural Biology and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine of Yeshiva University, Bronx, NY, USA
| | - Michael Overholtzer
- 1] Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA [2] BCMB Allied Program, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA
| |
Collapse
|
195
|
Kuo HH, Fan R, Dvorina N, Chiesa-Vottero A, Baldwin WM. Platelets in early antibody-mediated rejection of renal transplants. J Am Soc Nephrol 2014; 26:855-63. [PMID: 25145937 DOI: 10.1681/asn.2013121289] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Antibody-mediated rejection is a major complication in renal transplantation. The pathologic manifestations of acute antibody-mediated rejection that has progressed to functional impairment of a renal transplant have been defined in clinical biopsy specimens. However, the initial stages of the process are difficult to resolve with the unavoidable variables of clinical studies. We devised a model of renal transplantation to elucidate the initial stages of humoral rejection. Kidneys were orthotopically allografted to immunodeficient mice. After perioperative inflammation subsided, donor-specific alloantibodies were passively transferred to the recipient. Within 1 hour after a single transfer of antibodies, C4d was deposited diffusely on capillaries, and von Willebrand factor released from endothelial cells coated intravascular platelet aggregates. Platelet-transported inflammatory mediators platelet factor 4 and serotonin accumulated in the graft at 100- to 1000-fold higher concentrations compared with other platelet-transported chemokines. Activated platelets that expressed P-selectin attached to vascular endothelium and macrophages. These intragraft inflammatory changes were accompanied by evidence of acute endothelial injury. Repeated transfers of alloantibodies over 1 week sustained high levels of platelet factor 4 and serotonin. Platelet depletion decreased platelet mediators and altered the accumulation of macrophages. These data indicate that platelets augment early inflammation in response to donor-specific antibodies and that platelet-derived mediators may be markers of evolving alloantibody responses.
Collapse
Affiliation(s)
- Hsiao-Hsuan Kuo
- Departments of Immunology and Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, Ohio
| | - Ran Fan
- Departments of Immunology and
| | | | | | | |
Collapse
|
196
|
A pivotal role of nonmuscle myosin II during microglial activation. Exp Neurol 2014; 261:666-76. [PMID: 25150163 DOI: 10.1016/j.expneurol.2014.08.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 08/02/2014] [Accepted: 08/12/2014] [Indexed: 01/15/2023]
Abstract
Microglia are resident macrophages in the central nervous system (CNS) and the primary cells that contribute to CNS inflammation in many pathological conditions. Upon any signs of brain damage, microglia become activated and undergo tremendous cellular reorganization to adopt appropriate phenotypes. They migrate to lesion areas, accumulate, phagocytose cells or cellular debris, and produce a large array of inflammatory mediators like cytokines, chemokines, reactive oxygen species, and other mediators. To cope with the extreme cellular rearrangements during activation, microglia have to be highly dynamic. One major component of the cytoskeleton in nonmuscle cells is nonmuscle myosin II (NM II). This study was aimed to examine the functional role of NM II in resting and activated microglia. Using immunohistochemistry, we demonstrate strong expression of NM II isoform B (NM IIB) in microglia during cuprizone-induced demyelination as well as in cultured microglia. Treatment with the NM II inhibitor blebbistatin prevented the morphological shaping of microglial cells, led to functional deficits during chemokine-directed migration and phagocytosis, induced NM IIB redistribution, and affected actin microfilament patterning. In addition, inhibition of NM II led to an attenuated release of nitric oxide (NO), while TNFα secretion was not altered. In conclusion, we propose a pivotal role of NM II in cytoskeleton organization during microglial activation. This is of great importance to understand the mechanisms of microglial action in inflammatory CNS diseases.
Collapse
|
197
|
Abstract
Systemic inflammatory reactions have been postulated to exacerbate neurodegenerative diseases via microglial activation. We now demonstrate in vivo that repeated systemic challenge of mice over four consecutive days with bacterial LPS maintained an elevated microglial inflammatory phenotype and induced loss of dopaminergic neurons in the substantia nigra. The same total cumulative LPS dose given within a single application did not induce neurodegeneration. Whole-genome transcriptome analysis of the brain demonstrated that repeated systemic LPS application induced an activation pattern involving the classical complement system and its associated phagosome pathway. Loss of dopaminergic neurons induced by repeated systemic LPS application was rescued in complement C3-deficient mice, confirming the involvement of the complement system in neurodegeneration. Our data demonstrate that a phagosomal inflammatory response of microglia is leading to complement-mediated loss of dopaminergic neurons.
Collapse
|
198
|
Segawa K, Kurata S, Yanagihashi Y, Brummelkamp TR, Matsuda F, Nagata S. Caspase-mediated cleavage of phospholipid flippase for apoptotic phosphatidylserine exposure. Science 2014; 344:1164-8. [PMID: 24904167 DOI: 10.1126/science.1252809] [Citation(s) in RCA: 376] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Phospholipids are asymmetrically distributed in the plasma membrane. This asymmetrical distribution is disrupted during apoptosis, exposing phosphatidylserine (PtdSer) on the cell surface. Using a haploid genetic screen in human cells, we found that ATP11C (adenosine triphosphatase type 11C) and CDC50A (cell division cycle protein 50A) are required for aminophospholipid translocation from the outer to the inner plasma membrane leaflet; that is, they display flippase activity. ATP11C contained caspase recognition sites, and mutations at these sites generated caspase-resistant ATP11C without affecting its flippase activity. Cells expressing caspase-resistant ATP11C did not expose PtdSer during apoptosis and were not engulfed by macrophages, which suggests that inactivation of the flippase activity is required for apoptotic PtdSer exposure. CDC50A-deficient cells displayed PtdSer on their surface and were engulfed by macrophages, indicating that PtdSer is sufficient as an "eat me" signal.
Collapse
Affiliation(s)
- Katsumori Segawa
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Yoshida-Konoe, Kyoto 606-8501, Japan
| | - Sachiko Kurata
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Yoshida-Konoe, Kyoto 606-8501, Japan
| | - Yuichi Yanagihashi
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Yoshida-Konoe, Kyoto 606-8501, Japan
| | - Thijn R Brummelkamp
- Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, Netherlands
| | - Fumihiko Matsuda
- Center for Genomic Medicine, Graduate School of Medicine, Kyoto University, Yoshida-Konoe, Kyoto 606-8501, Japan
| | - Shigekazu Nagata
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Yoshida-Konoe, Kyoto 606-8501, Japan. Core Research for Evolutional Science and Technology, Japan Science and Technology Corporation, Kyoto 606-8501, Japan.
| |
Collapse
|
199
|
Liu J, Marey MA, Kowsar R, Hambruch N, Shimizu T, Haneda S, Matsui M, Sasaki M, Hayakawa H, Pfarrer C, Miyamoto A. An acute-phase protein as a regulator of sperm survival in the bovine oviduct: alpha 1-acid-glycoprotein impairs neutrophil phagocytosis of sperm in vitro. J Reprod Dev 2014; 60:342-8. [PMID: 24931131 PMCID: PMC4219990 DOI: 10.1262/jrd.2014-049] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
We have previously shown that polymorphonuclear neutrophils (PMNs) are present in bovine oviduct fluid under physiological conditions, and that the oviduct provides a microenvironment that protects sperm from phagocytosis by PMNs. Alpha 1-acid glycoprotein (AGP) is a major acute-phase protein produced mainly in the liver that has immunomodulatory functions. AGP mRNA is expressed in extrahepatic organs, such as the lung, kidney, spleen, lymph node, uterus, and ovary. Therefore, in this study, we investigated, 1) the local production of AGP in the bovine oviduct, 2) the effect of AGP on the phagocytic activity of PMNs for sperm and superoxide production and 3) the impact of AGP desialylation on the PMN phagocytosis of sperm. The AGP gene was expressed in cultured bovine oviduct epithelial cells (BOECs) and AGP protein was detected in oviduct fluid. Preexposure of PMNs to AGP at physiological levels impaired PMN phagocytosis for sperm and superoxide generation. The desialylation of AGP eliminated these suppressive effects of AGP on PMN. Scanning electron microscopy revealed that AGP drastically reduced the formation of DNA-based neutrophil extracellular traps (NETs) for sperm entanglement. Additionally, AGP dose-dependently stimulated BOECs to produce prostaglandin E2 (PGE2) which has been shown to partially contribute to the regulation of sperm phagocytosis in the bovine oviduct. AGP and PGE2 at concentrations detected in the oviducts additively suppressed sperm phagocytosis by PMNs. These results provide evidence that locally produced AGP may be involved in protecting sperm from phagocytosis by PMNs in the bovine oviduct.
Collapse
Affiliation(s)
- Jinghui Liu
- Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Hokkaido 080-8555, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
200
|
Neniskyte U, Vilalta A, Brown GC. Tumour necrosis factor alpha-induced neuronal loss is mediated by microglial phagocytosis. FEBS Lett 2014; 588:2952-6. [PMID: 24911209 PMCID: PMC4158418 DOI: 10.1016/j.febslet.2014.05.046] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 05/13/2014] [Accepted: 05/28/2014] [Indexed: 11/18/2022]
Abstract
TNF-α induces neuronal loss in culture without neuronal necrosis or apoptosis. TNF-α induces microglial phagocytosis, and the neuronal loss requires microglia. Neuronal loss requires the microglial vitronectin receptor, P2Y6 receptor and MFG-E8. Blocking these phagocytic receptors leaves viable neurons. TNF-α induced phagoptosis might contribute to neuroinflammatory pathologies.
Tumour necrosis factor-α (TNF-α) is a pro-inflammatory cytokine, expressed in many brain pathologies and associated with neuronal loss. We show here that addition of TNF-α to neuronal–glial co-cultures increases microglial proliferation and phagocytosis, and results in neuronal loss that is prevented by eliminating microglia. Blocking microglial phagocytosis by inhibiting phagocytic vitronectin and P2Y6 receptors, or genetically removing opsonin MFG-E8, prevented TNF-α induced loss of live neurons. Thus TNF-α appears to induce neuronal loss via microglial activation and phagocytosis of neurons, causing neuronal death by phagoptosis.
Collapse
Affiliation(s)
- Urte Neniskyte
- Department of Biochemistry, University of Cambridge, UK; Mouse Biology Unit, European Molecular Biology Laboratory, Italy
| | - Anna Vilalta
- Department of Biochemistry, University of Cambridge, UK
| | - Guy C Brown
- Department of Biochemistry, University of Cambridge, UK.
| |
Collapse
|