151
|
Murchison D, Dove LS, Abbott LC, Griffith WH. Homeostatic compensation maintains Ca2+ signaling functions in Purkinje neurons in the leaner mutant mouse. CEREBELLUM (LONDON, ENGLAND) 2002; 1:119-27. [PMID: 12882361 DOI: 10.1080/147342202753671259] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Several human neurological disorders have been associated with mutations in the gene coding for the alpha1 subunit of the P/Q type voltage-gated calcium channel (alpha1A/Ca(v)2.1). Mutations in this gene also occur in a number of neurologically affected mouse strains, including leaner (tg(la)/tg(la)). Because the P-type calcium current is very prominent in cerebellar Purkinje neurons, these cells from mice with alpha1 subunit mutations make excellent models for the investigation of the functional consequences of native mutations in a voltage-gated calcium channel of mammalian central nervous system. In this review, we describe the impact of altered channel function on cellular calcium homeostasis and signaling. Remarkably, calcium buffering functions of the endoplasmic reticulum and calcium-binding proteins appear to be regulated in order to compensate for altered calcium influx through the mutant channels. Although this compensation may serve to maintain calcium signaling functions, such as calcium-induced calcium release, it remains uncertain whether such compensation alleviates or contributes to the behavioral phenotype.
Collapse
Affiliation(s)
- David Murchison
- Department of Medical Pharmacology & Toxicology, College of Medicine, Texas A&M University System Health Science Center, College Station, Texas 77843-1114, USA
| | | | | | | |
Collapse
|
152
|
Nishi M, Hashimoto K, Kuriyama K, Komazaki S, Kano M, Shibata S, Takeshima H. Motor discoordination in mutant mice lacking junctophilin type 3. Biochem Biophys Res Commun 2002; 292:318-24. [PMID: 11906164 DOI: 10.1006/bbrc.2002.6649] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Junctional complexes between the plasma membrane and endoplasmic reticulum (ER), often called "subsurface cisternae" or "peripheral coupling," are shared by excitable cells. These junctional membranes probably provide structural foundation for functional crosstalk between cell-surface and intracellular ionic channels. Our current studies have indicated that junctophilins (JPs) take part in the formation of junctional membrane complexes by spanning the ER membrane and interacting with the plasma membrane. Of the JP subtypes defined, JP type 3 (JP-3) is specifically expressed in neurons in the brain. It has been currently reported that triplet repeat expansions in the JP-3 gene are associated with Huntington's disease-like symptoms including motor disorder in human. To survey the physiological role of JP-3, we generated the knockout mice. The JP-3-knockout mice grew and reproduced normally, and we did not observe any morphological abnormality in the mutant brain. In the behavioral study, the mutant mice showed impaired performance specifically in balance/motor coordination tasks. Although obvious defects could not be observed in excitatory transmission among cerebellar neurons from the mutant mice, the data indicate that JP-3 plays an active role in certain neurons involved in motor coordination.
Collapse
Affiliation(s)
- Miyuki Nishi
- Department of Biochemistry, Graduate School of Medicine, Tohoku University, CREST, Japan Science and Technology Corporation, Seiryo-machi, Sendai, Miyagi
| | | | | | | | | | | | | |
Collapse
|
153
|
Beck A, Lohr C, Berthold H, Deitmer JW. Calcium influx into dendrites of the leech Retzius neuron evoked by 5-hydroxytryptamine. Cell Calcium 2002; 31:137-49. [PMID: 12027387 DOI: 10.1054/ceca.2001.0268] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
5-Hydroxytryptamine (5-HT) is a ubiquitous neurotransmitter and neuromodulator that affects neural circuits and behaviours in vertebrates and invertebrates. In the present study, we have investigated 5-HT-induced Ca(2+) transients in subcellular compartments of Retzius neurons in the leech central nervous system using confocal laser scanning microscopy, and studied the effect of 5-HT on the electrical coupling between the Retzius neurons. Bath application of 5-HT (50mM) induced a Ca(2+) transient in axon, dendrites and cell body of the Retzius neuron. This Ca(2+) transient was significantly faster and larger in dendrites than in axon and cell body, and was half-maximal at a 5-HT concentration of 5-12mM. The Ca(2+) transient was suppressed in the absence of extracellular Ca(2+) and by methysergide (100mM), a non-specific antagonist of metabotropic 5-HT receptors, and was strongly reduced by bath application of the Ca(2+) channel blocker Co(2+) (2mM). Injection of the non-hydrolysable GTP analogue GTPgammaS increased and prolonged the dendritic 5-HT-induced Ca(2+) transient. The non-selective protein kinase inhibitor H7 (100mM) and the adenylate cyclase inhibitor SQ22536 (500 mM) did not affect the Ca(2+) transient, and the membrane-permeable cAMP analogue dibutyryl-cAMP (500 mM) did not mimic the effect of 5-HT application. 5-HT reduced the apparent electrical coupling between the two Retzius neurons, whereas suppression of the Ca(2+) influx by removal of external Ca(2+) improved the transmission of action potentials at the electrical synapses which are located between the dendrites of the adjacent Retzius neurons. The results indicate that 5-HT induces a Ca(2+) influx through calcium channels located primarily in the dendrites, and presumably activated by a G protein-coupled 5-HT receptor. The dendritic Ca(2+) increase appears to modulate the excitability of, and the synchronization between, the two Retzius neurons.
Collapse
Affiliation(s)
- A Beck
- Abteilung für Allgemeine Zoologie, Universität Kaiserslautern, Germany.
| | | | | | | |
Collapse
|
154
|
Albrecht MA, Colegrove SL, Friel DD. Differential regulation of ER Ca2+ uptake and release rates accounts for multiple modes of Ca2+-induced Ca2+ release. J Gen Physiol 2002; 119:211-33. [PMID: 11865019 PMCID: PMC2217286 DOI: 10.1085/jgp.20028484] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2001] [Revised: 01/22/2002] [Accepted: 01/25/2002] [Indexed: 11/23/2022] Open
Abstract
The ER is a central element in Ca(2+) signaling, both as a modulator of cytoplasmic Ca(2+) concentration ([Ca(2+)](i)) and as a locus of Ca(2+)-regulated events. During surface membrane depolarization in excitable cells, the ER may either accumulate or release net Ca(2+), but the conditions of stimulation that determine which form of net Ca(2+) transport occurs are not well understood. The direction of net ER Ca(2+) transport depends on the relative rates of Ca(2+) uptake and release via distinct pathways that are differentially regulated by Ca(2+), so we investigated these rates and their sensitivity to Ca(2+) using sympathetic neurons as model cells. The rate of Ca(2+) uptake by SERCAs (J(SERCA)), measured as the t-BuBHQ-sensitive component of the total cytoplasmic Ca(2+) flux, increased monotonically with [Ca(2+)](i). Measurement of the rate of Ca(2+) release (J(Release)) during t-BuBHQ-induced [Ca(2+)](i) transients made it possible to characterize the Ca(2+) permeability of the ER ((~)P(ER)), describing the activity of all Ca(2+)-permeable channels that contribute to passive ER Ca(2+) release, including ryanodine-sensitive Ca(2+) release channels (RyRs) that are responsible for CICR. Simulations based on experimentally determined descriptions of J(SERCA), and of Ca(2+) extrusion across the plasma membrane (J(pm)) accounted for our previous finding that during weak depolarization, the ER accumulates Ca(2+), but at a rate that is attenuated by activation of a CICR pathway operating in parallel with SERCAs to regulate net ER Ca(2+) transport. Caffeine greatly increased the [Ca(2+)] sensitivity of ((~)P(ER)), accounting for the effects of caffeine on depolarization-evoked [Ca(2+)](i) elevations and caffeine-induced [Ca(2+)](i) oscillations. Extending the rate descriptions of J(SERCA), ((~)P(ER)), and J(pm) to higher [Ca(2+)](i) levels shows how the interplay between Ca(2+) transport systems with different Ca(2+) sensitivities accounts for the different modes of CICR over different ranges of [Ca(2+)](i) during stimulation.
Collapse
Affiliation(s)
- Meredith A Albrecht
- Department of Neurosciences, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | | | | |
Collapse
|
155
|
Solovyova N, Veselovsky N, Toescu E, Verkhratsky A. Ca(2+) dynamics in the lumen of the endoplasmic reticulum in sensory neurons: direct visualization of Ca(2+)-induced Ca(2+) release triggered by physiological Ca(2+) entry. EMBO J 2002; 21:622-30. [PMID: 11847110 PMCID: PMC125857 DOI: 10.1093/emboj/21.4.622] [Citation(s) in RCA: 159] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In cultured rat dorsal root ganglia neurons, we measured membrane currents, using the patch-clamp whole-cell technique, and the concentrations of free Ca(2+) in the cytosol ([Ca(2+)](i)) and in the lumen of the endoplasmic reticulum (ER) ([Ca(2+)](L)), using high- (Fluo-3) and low- (Mag-Fura-2) affinity Ca(2+)-sensitive fluorescent probes and video imaging. Resting [Ca(2+)](L) concentration varied between 60 and 270 microM. Activation of ryanodine receptors by caffeine triggered a rapid fall in [Ca(2+)](L) levels, which amounted to only 40--50% of the resting [Ca(2+)](L) value. Using electrophysiological depolarization, we directly demonstrate the process of Ca(2+)-induced Ca(2+) release triggered by Ca(2+) entry through voltage-gated Ca(2+) channels. The amplitude of Ca(2+) release from the ER lumen was linearly dependent on I(Ca).
Collapse
Affiliation(s)
| | - N. Veselovsky
- The University of Manchester, School of Biological Sciences, 1.124 Stopford Building, Oxford Road, Manchester M13 9PT,
School of Medicine, Birmingham University, Birmingham B15 2TT, UK and Bogomoletz Institute of Physiology, Bogomoletz Str. 4, Kiev-24, The Ukraine Corresponding author e-mail:
| | - E.C. Toescu
- The University of Manchester, School of Biological Sciences, 1.124 Stopford Building, Oxford Road, Manchester M13 9PT,
School of Medicine, Birmingham University, Birmingham B15 2TT, UK and Bogomoletz Institute of Physiology, Bogomoletz Str. 4, Kiev-24, The Ukraine Corresponding author e-mail:
| | - A. Verkhratsky
- The University of Manchester, School of Biological Sciences, 1.124 Stopford Building, Oxford Road, Manchester M13 9PT,
School of Medicine, Birmingham University, Birmingham B15 2TT, UK and Bogomoletz Institute of Physiology, Bogomoletz Str. 4, Kiev-24, The Ukraine Corresponding author e-mail:
| |
Collapse
|
156
|
González A, Schmid A, Salido GM, Camello PJ, Pariente JA. XOD-catalyzed ROS generation mobilizes calcium from intracellular stores in mouse pancreatic acinar cells. Cell Signal 2002; 14:153-9. [PMID: 11781140 DOI: 10.1016/s0898-6568(01)00247-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In fura-2 loaded isolated mouse pancreatic acinar cells, xanthine oxidase (XOD)-catalyzed reactive oxygen species (ROS) generation caused an increase in the cytosolic Ca(2+) concentration ([Ca(2+)](i)) by release of Ca(2+) from intracellular stores. The ROS-induced Ca(2+) signals showed large variability in shape and time-course and resembled in part Ca(2+) signals in response to physiological secretagogues. ROS-induced Ca(2+) mobilization started at the luminal cell pole and spread towards the basolateral side in a wave manner. ROS-evoked Ca(2+) responses were not inhibited by the phospholipase C (PLC) inhibitor U73122 (10 microM). Neither 2-aminoethoxy-diphenylborate (2-APB) (70 microM) nor ryanodine (50 microM) suppressed ROS-evoked Ca(2+) release. ROS still released Ca(2+) when the endoplasmic reticulum Ca(2+)-ATPase was blocked with thapsigargin (1 microM), or when rotenone (10 microM) was added to release Ca(2+) from mitochondria. Our results suggest that pancreatic acinar cells ROS do not unspecifically affect Ca(2+) homeostasis. ROS primarily affect Ca(2+) stores located in the luminal cell pole, which is also the trigger zone for agonist-induced Ca(2+) signals. Release of Ca(2+) induces Ca(2+) waves carried by Ca(2+)-induced Ca(2+) release and produces thereby global Ca(2+) signals. Under oxidative stress conditions, the increase in [Ca(2+)](i) could be one mechanism contributing to an overstimulation of the cell which could result in cell dysfunction and cell damage.
Collapse
Affiliation(s)
- Antonio González
- Department of Physiology, Faculty of Veterinary Sciences, University of Extremadura, P.O. Box 643 10071, Cáceres, Spain.
| | | | | | | | | |
Collapse
|
157
|
Pan CY, Kao YH, Fox AP. Enhancement of inward Ca(2+) currents in bovine chromaffin cells by green tea polyphenol extracts. Neurochem Int 2002; 40:131-7. [PMID: 11738479 DOI: 10.1016/s0197-0186(01)00083-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Green tea contains four major polyphenol compounds: they are (-)-epigallocatechin-3-gallate (EGCG), (-)-epigallocatechin (EGC), (-)-epicatechin-3-gallate (ECG), and (-)-epicatechin (EC). Although all four polyphenol compounds are known to affect tumor suppression, little is known about whether they alter membrane properties. In this study, we examined the effects of ECG and EGCG on ionic currents and secretion. Membrane capacitance changes were used to monitor secretion in bovine chromaffin cells. ECG had the ability to reversibly enhance the inward Ca(2+) current by 21%, and inhibited the peak sodium current by 34%. EGCG had no effect on Ca(2+) current even though it differs from ECG by just a hydroxyl group. The EC(50) of ECG in enhancing Ca(2+) current was 7.6 microM. The maximum enhancement of Ca(2+) current was observed at 0 mV and the maximum current was shifted approximately 10 mV in the hyperpolarizing direction. When cells were stimulated by trains of depolarizations, the exocytosis elicited was enhanced by ECG treatment and the largest enhancement of secretion was observed in later stimulations. EGCG, although it had no significant effect on Ca(2+) current, enhanced exocytosis and slowed endocytosis. These results suggest that green tea polyphenol compounds modulate stimulus-secretion coupling in bovine chromaffin cells.
Collapse
Affiliation(s)
- Chien Yuan Pan
- Department of Neurobiology, Pharmacology and Physiology, The University of Chicago, 947 East 58th Street, Chicago, IL 60637, USA.
| | | | | |
Collapse
|
158
|
Yoshida M, Sugimoto A, Ohshima Y, Takeshima H. Important role of junctophilin in nematode motor function. Biochem Biophys Res Commun 2001; 289:234-9. [PMID: 11708805 DOI: 10.1006/bbrc.2001.5951] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Junctional complexes between the plasma membrane and endoplasmic/sarcoplasmic reticulum are shared by excitable cells and seem to be the structural ground for cross-talk between cell-surface and intracellular ionic channels. Our current studies have identified junctophilins (JPs) as members of a novel transmembrane protein family in the junctional membrane complex. Biochemical and gene-knockout studies have suggested that JPs contribute to the formation of the junctional membrane complex by spanning the intracellular store membrane and interacting with the plasma membrane. We report here invertebrate JPs in fruit fly and nematode. Three distinct JP subtype genes are found in the mammalian genome, while a single JP gene exists in either invertebrate genome. Mammalian and invertebrate JPs share characteristic structural features, although some intervening sequences are found in invertebrate JPs. A reporter assay indicated that the JP gene is predominantly activated in muscle cells in nematode. Nematodes, in which expression of JP was inhibited by RNA-mediated interference (RNAi), showed hypolocomotion. Taking account of the cell-type-specific expression and data from previous reports, the hypolocomotion is likely to be due to the deficiency of junctional membrane structures and the resulting reduction of Ca(2+) signaling during excitation-contraction coupling in muscle cells.
Collapse
Affiliation(s)
- M Yoshida
- Institute of Life Science, Kurume University and CREST, Japan Science and Technology Corporation, Aikawa-machi, Kurume, Fukuoka 839-0861, Japan
| | | | | | | |
Collapse
|
159
|
Yoshimura H, Sugai T, Onoda N, Segami N, Kato N. Synchronized population oscillation of excitatory synaptic potentials dependent of calcium-induced calcium release in rat neocortex layer II/III neurons. Brain Res 2001; 915:94-100. [PMID: 11578624 DOI: 10.1016/s0006-8993(01)02832-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We examined the roles played by calcium-induced calcium release from ryanodine-sensitive calcium stores in induction of neocortical membrane potential oscillation by using caffeine, an agonist of ryanodine receptors. Intracellular recordings were made from neurons in layer II/III of rat visual cortex slices in a caffeine-containing medium. White matter stimulation initially evoked monophasic synaptic potentials. As low-frequency stimulation continued for over 10 min, an oscillating synaptic potential gradually became evoked, in which a paroxysmal depolarization shift was followed by a 8-10-Hz train of several depolarizing wavelets. This oscillating potential was not induced in a medium containing no caffeine with 2 or 0.5 mM [Mg2+](o). Under blockade of N-methyl-D-aspartate receptors, induction of this oscillating potential failed even with caffeine application. Experiments with the calcium store depletor, thapsigargin, revealed that this oscillating potential is induced in a manner dependent on intracellular calcium release. Dual intracellular recordings revealed that the oscillation was synchronized in pairs of layer II/III neurons. The oscillating potential was detectable by field potential recordings also, suggesting that the present oscillation seems to reflect a network property.
Collapse
Affiliation(s)
- H Yoshimura
- Department of Integrative Brain Science, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| | | | | | | | | |
Collapse
|
160
|
Meldolesi J. Rapidly exchanging Ca2+ stores in neurons: molecular, structural and functional properties. Prog Neurobiol 2001; 65:309-38. [PMID: 11473791 DOI: 10.1016/s0301-0082(01)00004-1] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- J Meldolesi
- DIBIT, Scientific Institute S. Raffaele, Vita-Salute University, Via Olgettina, 58, 20132, Milan, Italy.
| |
Collapse
|
161
|
Pal S, Sun D, Limbrick D, Rafiq A, DeLorenzo RJ. Epileptogenesis induces long-term alterations in intracellular calcium release and sequestration mechanisms in the hippocampal neuronal culture model of epilepsy. Cell Calcium 2001; 30:285-96. [PMID: 11587552 DOI: 10.1054/ceca.2001.0236] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Calcium and calcium-dependent processes have been hypothesized to be involved in the induction of epilepsy. It has been shown that epileptic neurons have altered calcium homeostatic mechanisms following epileptogenesis in the hippocampal neuronal culture (HNC) and pilocarpine models of epilepsy. To investigate the mechanisms causing these alterations in [Ca2+]i homeostatic processes following epileptogenesis, we utilized the HNC model of in vitro 'epilepsy' which produces spontaneous recurrent epileptiform discharges (SREDs). Using [Ca2+]i imaging, studies were initiated to evaluate the mechanisms mediating these changes in [Ca2+]i homeostasis. 'Epileptic' neurons required much longer to restore a glutamate induced [Ca2+]i load to baseline levels than control neurons. Inhibition of Ca2+ entry through voltage and receptor gated Ca2+ channels and stretch activated Ca2+ channels had no effect on the prolonged glutamate induced increase in [Ca2+]i in epileptic neurons. Employing thapsigargin, an inhibitor of the sarco/endoplasmic reticulum calcium ATPase (SERCA), it was shown that thapsigargin inhibited sequestration of [Ca2+]i by SERCA was significantly decreased in 'epileptic' neurons. Using Ca2+ induced Ca2+ release (CICR) cell permeable inhibitors for the ryanodine receptor (dantrolene) and the IP3 receptor (2-amino-ethoxydiphenylborate, 2APB) mediated CICR, we demonstrated that CICR was significantly augmented in the 'epileptic' neurons, and determined that the IP3 receptor mediated CICR was the major release mechanism altered in epileptogenesis. These data indicate that both inhibition of SERCA and augmentation of CICR activity contribute to the alterations accounting for the impaired calcium homeostatic processes observed in 'epileptic' neurons. The results suggest that persistent changes in [Ca2+]i levels following epileptogenesis may contribute to the long-term plasticity changes manifested in epilepsy and that understanding the basic mechanisms mediating these changes may provide an insight into the development of novel therapeutic approaches to treat epilepsy and prevent or reverse epileptogenesis.
Collapse
Affiliation(s)
- S Pal
- Department of Neurology, Medical College of Virginia, Virginia Commonwealth University, Richmond 23298-0599, USA
| | | | | | | | | |
Collapse
|
162
|
Messutat S, Heine M, Wicher D. Calcium-induced calcium release in neurosecretory insect neurons: fast and slow responses. Cell Calcium 2001; 30:199-211. [PMID: 11508999 DOI: 10.1054/ceca.2001.0227] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The dynamics of intracellular free Ca(2+)([Ca(2+)](i)) changes were investigated in dorsal unpaired median (DUM) neurons of the cockroach Periplaneta americana. Activation of voltage-gated Ca(2+) channels caused a steep increase in [Ca(2+)](i). Depolarizations lasting for < 100ms led to Ca(2+) release from intracellular stores as is indicated by the finding that the rise of [Ca(2+)](i) was greatly reduced by the antagonists of ryanodine receptors, ryanodine and ruthenium red. There is a resting Ca(2+)current which is potentiated on application of a neuropeptide, Neurohormone D (NHD), a member of the adipokinetic hormone family. Ca(2+) influx enhanced in this way again caused a rise of [Ca(2+)](i) sensitive to ryanodine and ruthenium red. Such rises developed and relaxed much more slowly than the depolarization-induced signals. Ca(2+)responses similar to those induced by NHD were obtained with the ryanodine receptor agonists caffeine (20mM) and cADP-ribose (cADPR, 100nM). These Ca(2+) responses, however, varied considerably in size and kinetics, and part of the cells did not respond at all to caffeine or cADPR. Such cells, however, produced Ca(2+) rises after having been treated with NHD. Thus, the variability of Ca(2+) signals might be caused by different filling states of Ca(2+) stores, and the resting Ca(2+) current seems to represent a source to fill empty Ca(2+) stores. In line with this notion, block of the endoplasmic Ca(2+) pump by thapsigargin (1 microM) produced either no or largely varying Ca(2+) responses. The Ca(2+) signals induced by caffeine and cADPR displayed different sensitivity to ryanodine receptor blockers. cADPR failed to elicit any response when ryanodine or ruthenium red were present. By contrast, the response to caffeine, in the presence of ryanodine, was only reduced by about 50% and, in the presence of ruthenium red, it was not at all reduced. Thus, there may be different types of Ca(2+) release channels. Block of mitochondrial Ca(2+) uptake with carbonyl cyanide m -chlorophenylhydrazone (CCCP, 1 microM) completely abolished cADPR-induced Ca(2+) signals, but it did not affect the caffeine-induced signals. Taken together our findings seem to indicate that there are different stores using different Ca(2+) uptake pathways and that some of these pathways involve mitochondria.
Collapse
Affiliation(s)
- S Messutat
- Sächsische Akademie der Wissenschaften zu Leipzig, Erbertstrasse 1, 07743 Jena, Germany
| | | | | |
Collapse
|
163
|
Jackson VM, Cunnane TC. Neurotransmitter release mechanisms in sympathetic neurons: past, present, and future perspectives. Neurochem Res 2001; 26:875-89. [PMID: 11699939 DOI: 10.1023/a:1012320130988] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In 1969, Paton and Vizi described the inhibitory actions of noradrenaline on acetylcholine release from the innervation of the guinea-pig ileum longitudinal muscle. They concluded "that acetylcholine output by the nervous networks of the longitudinal strip is under the normal control of the sympathetic by a species of presynaptic inhibition mediated by <==> receptors". This work was carried out in the Pharmacology Department at Oxford University. Clearly, a period in the 'Dreaming Spires' of Oxford sufficiently inspired Sylvester to take up a life long career in scientific research. He has published more than 300 papers on a wide range of topics but clearly has a strong interest in neurotransmitter release mechanisms and recently, non-synaptic interactions between neurons. It seems fitting therefore to write a brief review on the continuing studies on neurotransmitter release mechanisms in sympathetic neurons in a volume honoring the now distinguished Professor Vizi.
Collapse
|
164
|
Collins RO, Thomas RC. The effect of calcium pump inhibitors on the response of intracellular calcium to caffeine in snail neurones. Cell Calcium 2001; 30:41-8. [PMID: 11396986 DOI: 10.1054/ceca.2001.0209] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We have measured intracellular free calcium ([Ca(2+)]i) using Fura-2 or Ca(2+)-sensitive microelectrodes in voltage-clamped neurones of the snail, Helix aspersa. Caffeine-induced transient increases in [Ca(2+)]i were normally followed by a brief fall of [Ca(2+)]i below its pre-caffeine level. We investigated the cause of this undershoot by raising [Ca(2+)]i; and by inhibiting the plasma membrane or endoplasmic reticulum Ca ATPases (PMCA or SERCA respectively). When the cell membrane potential was decreased from -60 to -25mV, steady-state [Ca(2+)]i increased. The caffeine-induced transients were smaller while the undershoots were larger than in control conditions. When the PMCA was inhibited by high pH the steady-state [Ca(2+)]i increased by 100-400nM. The caffeine-induced [Ca(2+)]i increase and the subsequent undershoot both became larger. Injection of orthovanadate, which inhibits the PMCA and increases [Ca(2+)]i, did not block either effect of caffeine. But when the SERCA was inhibited by cyclopiazonic acid the undershoot disappeared. The phosphodiesterase inhibitor IBMX did not influence the undershoot. These results suggest that the undershoot is generated by the Ca(2+)] ATPase of the stores rather than that of the plasma membrane. Since the undershoot increased as [Ca(2+)]i increased, we conclude that at higher levels of [Ca(2+)]i the stores refill more rapidly.
Collapse
Affiliation(s)
- R O Collins
- Department of Physiology, University of Cambridge, CB2 3EG, UK
| | | |
Collapse
|
165
|
Hoesch RE, Weinreich D, Kao JP. A novel Ca(2+) influx pathway in mammalian primary sensory neurons is activated by caffeine. J Neurophysiol 2001; 86:190-6. [PMID: 11431501 DOI: 10.1152/jn.2001.86.1.190] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Single-cell microfluorimetry and electrophysiology techniques were used to identify and characterize a novel Ca(2+) influx pathway in adult rabbit vagal sensory neurons. Acutely dissociated nodose ganglion neurons (NGNs) exhibit robust Ca(2+)-induced Ca(2+) release (CICR) that can be triggered by 10 mM caffeine, the classic agonist of CICR. A caffeine-induced increase in cytosolic-free Ca(2+) concentration ([Ca(2+)](i)) is considered diagnostic evidence of the existence of CICR. However, when CICR was disabled through depletion of intracellular Ca(2+) stores or pharmacological blockade of intracellular Ca(2+) release channels (ryanodine receptors), caffeine still elicited a significant rise in [Ca(2+)](i) in approximately 50% of NGNs. The same response was not elicited by pharmacological agents that elevate cyclic nucleotide concentrations. Moreover, extracellular Ca(2+) was obligatory for such caffeine-induced [Ca(2+)](i) rises in this population of NGNs, suggesting that Ca(2+) influx is responsible for this rise. Simultaneous microfluorimetry with whole cell patch-clamp studies showed that caffeine activates an inward current that temporally parallels the rise in [Ca(2+)](i). The inward current had a reversal potential of +8.1 +/- 6.1 (SE) mV (n = 4), a mean peak amplitude of -126 +/- 24 pA (n = 4) at E(m) = -50 mV, and a slope conductance of 1.43 +/- 0.79 nS (n = 4). Estimated EC(50) values for caffeine-induced CICR and for caffeine-activated current were 1.5 and approximately 0.6 mM, respectively. These results indicate that caffeine-induced rises in [Ca(2+)](i), in the presence of extracellular Ca(2+), can no longer be interpreted as unequivocal diagnostic evidence for CICR in neurons. These results also indicate that sensory neurons possess a novel Ca(2+) influx pathway.
Collapse
Affiliation(s)
- R E Hoesch
- Department of Physiology, Medical Biotechnology Center, University of Maryland Biotechnology Institute, Baltimore, Maryland 21201, USA
| | | | | |
Collapse
|
166
|
Albrecht MA, Colegrove SL, Hongpaisan J, Pivovarova NB, Andrews SB, Friel DD. Multiple modes of calcium-induced calcium release in sympathetic neurons I: attenuation of endoplasmic reticulum Ca2+ accumulation at low [Ca2+](i) during weak depolarization. J Gen Physiol 2001; 118:83-100. [PMID: 11429446 PMCID: PMC2233742 DOI: 10.1085/jgp.118.1.83] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many cells express ryanodine receptors (RyRs) whose activation is thought to amplify depolarization-evoked elevations in cytoplasmic Ca2+ concentration [Ca2+](i) through a process of Ca2+ -induced Ca2+ release (CICR). In neurons, it is usually assumed that CICR triggers net Ca2+ release from an ER Ca2+ store. However, since net ER Ca 2+ transport depends on the relative rates of Ca2+ uptake and release via distinct pathways, weak activation of a CICR pathway during periods of ER Ca accumulation would have a totally different effect: attenuation of Ca2+ accumulation. Stronger CICR activation at higher [Ca2+](i) could further attenuate Ca2+ accumulation or trigger net Ca2+ release, depending on the quantitative properties of the underlying Ca2+ transporters. This and the companion study (Hongpaisan, J., N.B. Pivovarova, S.L. Colgrove, R.D. Leapman, and D.D. Friel, and S.B. Andrews. 2001. J. Gen. Physiol. 118:101-112) investigate which of these CICR "modes" operate during depolarization-induced Ca2+ entry in sympathetic neurons. The present study focuses on small [Ca2+](i) elevations (less than approximately 350 nM) evoked by weak depolarization. The following two approaches were used: (1) Ca2+ fluxes were estimated from simultaneous measurements of [Ca2+](i) and I(Ca) in fura-2-loaded cells (perforated patch conditions), and (2) total ER Ca concentrations ([Ca](ER)) were measured using X-ray microanalysis. Flux analysis revealed triggered net Ca2+ release during depolarization in the presence but not the absence of caffeine, and [Ca2+](i) responses were accelerated by SERCA inhibitors, implicating ER Ca2+ accumulation, which was confirmed by direct [Ca](ER) measurements. Ryanodine abolished caffeine-induced CICR and enhanced depolarization-induced ER Ca2+ accumulation, indicating that activation of the CICR pathway normally attenuates ER Ca2+ accumulation, which is a novel mechanism for accelerating evoked [Ca2+](i) responses. Theory shows how such a low gain mode of CICR can operate during weak stimulation and switch to net Ca2+ release at high [Ca2+](i), a transition demonstrated in the companion study. These results emphasize the importance of the relative rates of Ca2+ uptake and release in defining ER contributions to depolarization-induced Ca2+ signals.
Collapse
Affiliation(s)
- Meredith A. Albrecht
- Department of Neuroscience, Case Western Reserve University, Cleveland, OH 44106
| | - Stephen L. Colegrove
- Department of Neuroscience, Case Western Reserve University, Cleveland, OH 44106
| | - Jarin Hongpaisan
- Laboratory of Neurobiology, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD 20892
| | - Natalia B. Pivovarova
- Laboratory of Neurobiology, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD 20892
| | - S. Brian Andrews
- Laboratory of Neurobiology, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD 20892
| | - David D. Friel
- Department of Neuroscience, Case Western Reserve University, Cleveland, OH 44106
| |
Collapse
|
167
|
Hongpaisan J, Pivovarova NB, Colegrove SL, Leapman RD, Friel DD, Andrews SB. Multiple modes of calcium-induced calcium release in sympathetic neurons II: a [Ca2+](i)- and location-dependent transition from endoplasmic reticulum Ca accumulation to net Ca release. J Gen Physiol 2001; 118:101-12. [PMID: 11429447 PMCID: PMC2233743 DOI: 10.1085/jgp.118.1.101] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
CICR from an intracellular store, here directly characterized as the ER, usually refers to net Ca(2)+ release that amplifies evoked elevations in cytosolic free calcium [Ca2+](i). However, the companion paper (Albrecht, M.A., S.L. Colegrove, J. Hongpaisan, N.B. Pivovarova, S.B. Andrews, and D.D. Friel. 2001. J. Gen. Physiol. 118:83-100) shows that in sympathetic neurons, small [Ca2+](i) elevations evoked by weak depolarization stimulate ER Ca accumulation, but at a rate attenuated by activation of a ryanodine-sensitive CICR pathway. Here, we have measured depolarization-evoked changes in total ER Ca concentration ([Ca](ER)) as a function of [Ca2+](i), and found that progressively larger [Ca2+](i) elevations cause a graded transition from ER Ca accumulation to net release, consistent with the expression of multiple modes of CICR. [Ca](ER) is relatively high at rest (12.8 +/- 0.9 mmol/kg dry weight, mean +/- SEM) and is reduced by thapsigargin or ryanodine (5.5 +/- 0.7 and 4.7 +/- 1.1 mmol/kg, respectively). [Ca](ER) rises during weak depolarization (to 17.0 +/- 1.6 mmol/kg over 120s, [Ca2+](i) less than approximately 350 nM), changes little in response to stronger depolarization (12.1 +/- 1.1 mmol/kg, [Ca2+](i) approximately 700 nM), and declines (to 6.5 +/- 1.0 mmol/kg) with larger [Ca2+](i) elevations (>1 microM) evoked by the same depolarization when mitochondrial Ca2+ uptake is inhibited (FCCP). Thus, net ER Ca2+ transport exhibits a biphasic dependence on [Ca2+](i). With mitochondrial Ca2+ uptake enabled, [Ca](ER) rises after repolarization (to 16.6 +/- 1.8 mmol/kg at 15 min) as [Ca2+](i) falls within the permissive range for ER Ca accumulation over a period lengthened by mitochondrial Ca2+ release. Finally, although spatially averaged [Ca](ER) is unchanged during strong depolarization, net ER Ca2+ release still occurs, but only in the outermost approximately 5-microm cytoplasmic shell where [Ca2+](i) should reach its highest levels. Since mitochondrial Ca accumulation occurs preferentially in peripheral cytoplasm, as demonstrated here by electron energy loss Ca maps, the Ca content of ER and mitochondria exhibit reciprocal dependencies on proximity to sites of Ca2+ entry, possibly reflecting indirect mitochondrial regulation of ER Ca(2)+ transport.
Collapse
Affiliation(s)
- Jarin Hongpaisan
- Laboratory of Neurobiology, National Institute of Neurological Disorders and Stroke
| | | | - Stephen L. Colegrove
- Department of Neuroscience, Case Western Reserve University, Cleveland, OH 44106
| | - Richard D. Leapman
- Bioengineering and Physical Science Program, Office of the Director, National Institutes of Health, Bethesda, MD 20892
| | - David D. Friel
- Department of Neuroscience, Case Western Reserve University, Cleveland, OH 44106
| | - S. Brian Andrews
- Laboratory of Neurobiology, National Institute of Neurological Disorders and Stroke
| |
Collapse
|
168
|
Glazner GW, Camandola S, Geiger JD, Mattson MP. Endoplasmic reticulum D-myo-inositol 1,4,5-trisphosphate-sensitive stores regulate nuclear factor-kappaB binding activity in a calcium-independent manner. J Biol Chem 2001; 276:22461-7. [PMID: 11309390 DOI: 10.1074/jbc.m101315200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The transcription factor nuclear factor-kappaB (NF-kappaB) plays critical roles in neuronal survival and plasticity and in activation of immune responses. The activation of NF-kappaB has been closely associated with changes in intracellular calcium levels, but the relationship between the two remains unclear. Here we report that inhibition of endoplasmic reticulum (ER) d-myo-inositol 1,4,5-trisphosphate (IP(3))-gated calcium release caused decreased basal NF-kappaB DNA-binding activity in cultured rat cortical neurons. Activation of NF-kappaB in response to tumor necrosis factor-alpha and glutamate was completely abolished when IP(3) receptors were blocked, and NF-kappaB activation in response to depletion of ER calcium by thapsigargin treatment was also decreased by IP(3) receptor blockade. We further investigated the relationship between IP(3) receptor activation and NF-kappaB activity using a cell-free system. Microsomes enriched in the ER were isolated from adult rat cerebral cortex, resuspended, and treated with agents that induce or inhibit ER calcium release. They were then recentrifuged, and the supernatant was added to cytoplasmic extract isolated from the same source tissue. We found that microsomes released an NF-kappaB-stimulating signal in response to activation of IP(3) receptors or inhibition of the ER Ca(2+)-ATPase, but not in response to ryanodine. Studies of intact cells and cell-free preparations indicated that the signal released from the ER was not calcium and was heat- and trypsin-sensitive. Our data suggest that activation of IP(3) receptors is required for a major component of both constitutive and inducible NF-kappaB binding activity in neurons and that decreasing ER intraluminal calcium levels triggers release of a diffusible NF-kappaB-activating signal from the ER.
Collapse
Affiliation(s)
- G W Glazner
- Laboratory of Neurosciences, NIA Gerontology Research Center, National Institutes of Health, Baltimore, Maryland 21224, USA
| | | | | | | |
Collapse
|
169
|
Tanaka H, Furuya T, Kameda N, Kobayashi T, Mizusawa H. Triad proteins and intracellular Ca2+ transients during development of human skeletal muscle cells in aneural and innervated cultures. J Muscle Res Cell Motil 2001; 21:507-26. [PMID: 11206130 DOI: 10.1023/a:1026561120566] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Dihydropyridine receptors (DHPRs), ryanodine receptors (RyRs), and triadin are major components of triads of mature skeletal muscle and play crucial roles in Ca2+ release in excitation-contraction (E-C) coupling. We investigated the expression and localization of these proteins as well as intracellular Ca2+ transients during development of human muscle cells cultured aneurally and innervated with rat spinal cord. mRNAs encoding skeletal muscle isoforms of the DHPR alpha1 subunit (alpha1S-DHPR), the RyR, and triadin were scarce in myoblasts and increased remarkably after myotube formation. Immunocytochemically, alpha1S-DHPR was expressed after myoblast fusion and localized mainly within the cytoplasmic area of aneural myotubes whereas the cardiac isoform (alpha1C-DHPR) was abundant along the plasma membrane. RyRs and triadin were both detected after myotube formation and colocalized in the cytoplasm of aneural myotubes and innervated muscle fibers. Along the plasma membrane of aneural myotubes, colocalization of alpha1C-DHPR with the RyR was more frequently observed than that of alpha1S-DHPR. In innervated muscle fibers, alpha1S-DHPR and RyR were colocalized first along the plasma membrane and later in the cytoplasmic area and formed regular double rows of cross-striation. The alpha1C-DHPR diminished after innervation. In Ca2+ imaging, spontaneous irregular slow Ca2+ oscillations were observed in aneurally cultured myotubes whereas nerve-driven regular fast oscillations were observed in innervated muscle fibers. Both caffeine and depolarization induced Ca2+ transients in aneurally cultured myotubes and innervated muscle fibers. In aneurally cultured myotubes, depolarization-induced Ca2+ transients were highly dependent on extracellular Ca2+, suggesting immaturity of the Ca2+ release system. This dependence remarkably decreased after innervation. Our present results show that these proteins are expressed differently in aneurally cultured myotubes than in adult skeletal muscle, that Ca2+ release in aneurally cultured myotubes is different from in adult skeletal muscle, and that innervation induces formation of a mature skeletal muscle-like excitation-contraction coupling system in cultured human muscle cells.
Collapse
MESH Headings
- Animals
- Calcium/metabolism
- Calcium Channels, L-Type/genetics
- Calcium Channels, L-Type/metabolism
- Calcium Signaling/physiology
- Carrier Proteins
- Cells, Cultured/cytology
- Cells, Cultured/metabolism
- Coculture Techniques
- Fetus
- Humans
- Intracellular Fluid/metabolism
- Intracellular Signaling Peptides and Proteins
- Muscle Fibers, Skeletal/cytology
- Muscle Fibers, Skeletal/metabolism
- Muscle Proteins/genetics
- Muscle Proteins/metabolism
- Muscle, Skeletal/cytology
- Muscle, Skeletal/embryology
- Muscle, Skeletal/innervation
- Neurites/metabolism
- Neurites/ultrastructure
- Neuromuscular Junction/cytology
- Neuromuscular Junction/embryology
- Neuromuscular Junction/metabolism
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- Ryanodine Receptor Calcium Release Channel/genetics
- Ryanodine Receptor Calcium Release Channel/metabolism
- Spinal Cord/embryology
- Spinal Cord/metabolism
- Spinal Cord/transplantation
Collapse
Affiliation(s)
- H Tanaka
- Department of Neurology, Tokyo Medical and Dental University School of Medicine, Japan
| | | | | | | | | |
Collapse
|
170
|
Akopian A, Witkovsky P. Intracellular calcium reduces light-induced excitatory post-synaptic responses in salamander retinal ganglion cells. J Physiol 2001; 532:43-53. [PMID: 11283224 PMCID: PMC2278530 DOI: 10.1111/j.1469-7793.2001.0043g.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The whole-cell patch clamp technique was used to study the effect of intracellular Ca2+ on light-evoked EPSCs in on-off ganglion cells in salamander retinal slices. Both AMPA and NMDA receptors contributed to the light-evoked responses. In the presence of strychnine and picrotoxin, ganglion cells responded to light onset and offset with transient inward currents at -70 mV. These currents were reduced by 35 +/- 3 % when the light stimulus was preceded by a depolarizing step from -70 to 0 mV. The inhibitory effect of depolarization on light-evoked EPSCs was strongly reduced in the presence of 10 mM BAPTA. The degree of EPSC inhibition by the prepulse holding potential followed the current-voltage relationship of the Ca2+ current found in the ganglion cell. In the presence of the NMDA receptor antagonist AP-7, glutamate-dependent current was nearly abolished when high Ca2+ was substituted for high Na+ solution. The release of Ca2+ from internal stores by caffeine or inositol trisphosphate reduced the EPSCs by 36 +/- 5 and 38 +/- 11 %, respectively, and abolished the inhibitory effect of depolarization. The inhibitory effect of depolarization on EPSCs was reduced 5-fold in the presence of AP-7, but was not reduced by the AMPA receptor antagonist CNQX. Neither inhibition of Ca2+-calmodulin-dependent enzymes, nor inhibition of protein kinase A or C had any significant effect on the depolarization-induced inhibition of EPSCs. Our data suggest that elevation of [Ca2+]i, through voltage-gated channels or by release from intracellular stores, reduced primarily the NMDA component of the light-evoked EPSCs.
Collapse
Affiliation(s)
- A Akopian
- Department of Ophthalmology, New York University School of Medicine, New York, NY 10016, USA.
| | | |
Collapse
|
171
|
Puopolo M, Hochstetler SE, Gustincich S, Wightman RM, Raviola E. Extrasynaptic release of dopamine in a retinal neuron: activity dependence and transmitter modulation. Neuron 2001; 30:211-25. [PMID: 11343656 DOI: 10.1016/s0896-6273(01)00274-4] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Extrasynaptic release of dopamine is well documented, but its relation to the physiological activity of the neuron is unclear. Here we show that in absence of presynaptic active zones, solitary cell bodies of retinal dopaminergic neurons release by exocytosis packets of approximately 40,000 molecules of dopamine at irregular intervals and low frequency. The release is triggered by the action potentials that the neurons generate in a rhythmic fashion upon removal of all synaptic influences and therefore depends upon the electrical events at the neuronal surface. Furthermore, it is stimulated by kainate and abolished by GABA and quinpirole, an agonist at the D(2) dopamine receptor. Since the somatic receptors for these ligands are extrasynaptic, we suggest that the composition of the extracellular fluid directly modulates extrasynaptic release.
Collapse
Affiliation(s)
- M Puopolo
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
172
|
Jiménez N, Hernández-Cruz A. Modifications of intracellular Ca2+ signalling during nerve growth factor-induced neuronal differentiation of rat adrenal chromaffin cells. Eur J Neurosci 2001; 13:1487-500. [PMID: 11328344 DOI: 10.1046/j.0953-816x.2001.01524.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Postnatal sympathetic neurons (SNs) and chromaffin cells (CCs) derive from neural crest precursors. CCs can differentiate in vitro into SN-like cells after nerve growth factor (NGF) exposure. This study examines changes of intracellular Ca2+ homeostasis and dynamics of CCs under conditions that promote a neuronal phenotype. Spontaneous Ca2+ fluctuations, a frequent observation in early cultures of CCs, diminished after > 10 days in vitro in control cells and ceased in NGF-treated ones. At the same time, Ca2+ rises resulting from entry upon membrane depolarization, gradually increased both their size and peak d[Ca2+]i/dt, resembling those recorded in SNs. Concomitantly, caffeine-induced Ca2+ rises, resulting from Ca2+ release from intracellular stores, increased their size and their peak d[Ca2+]i/dt by > 1000%, and developed transient and sustained release components, similar to those of SNs. The transient component, linked to regenerative Ca2+ release, appeared after > 10 days of NGF treatment, suggesting a delayed steep enhancement of Ca2+-induced Ca2+ release (CICR). Immunostaining showed that proteins coded by the three known isoforms of ryanodine receptors (RyRs) are present in CCs, but that only RyR2 increased significantly after NGF treatment. Since the transient release component increased more steeply than RyR2 immunostaining, we suggest that the development of robust CICR requires both an increased expression of RyRs and more efficient functional coupling among them. NGF-induced transdifferentiation of chromaffin cells involves the enhancement of both voltage-gated Ca2+ influx and Ca2+ release from intracellular stores. These modifications are likely to complement the extensive morphological and functional reorganization required for the replacement of the endocrine phenotype with the neuronal one.
Collapse
Affiliation(s)
- N Jiménez
- Instituto de Fisiología Celular, Departamento de Biofísica, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, México City, D.F. 04510, México
| | | |
Collapse
|
173
|
de Plater GM, Milburn PJ, Martin RL. Venom from the platypus, Ornithorhynchus anatinus, induces a calcium-dependent current in cultured dorsal root ganglion cells. J Neurophysiol 2001; 85:1340-5. [PMID: 11248005 DOI: 10.1152/jn.2001.85.3.1340] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The platypus (Ornithorhynchus anatinus), a uniquely Australian species, is one of the few living venomous mammals. Although envenomation of humans by many vertebrate and invertebrate species results in pain, this is often not the principal symptom of envenomation. However, platypus envenomation results in an immediate excruciating pain that develops into a very long-lasting hyperalgesia. We have previously shown that the venom contains a C-type natriuretic peptide that causes mast cell degranulation, and this probably contributes to the development of the painful response. Now we demonstrate that platypus venom has a potent action on putative nociceptors. Application of the venom to small to medium diameter dorsal root ganglion cells for 10 s resulted in an inward current lasting several minutes when the venom was diluted in buffer at pH 6.1 but not at pH 7.4. The venom itself has a pH of 6.3. The venom activated a current with a linear current-voltage relationship between -100 and -25 mV and with a reversal potential of -11 mV. Ion substitution experiments indicate that the current is a nonspecific cationic current. The response to the venom was blocked by the membrane-permeant Ca(2+)-ATPase inhibitor, thapsigargin, and by the tyrosine- and serine-kinase inhibitor, k252a. Thus the response appears to be dependent on calcium release from intracellular stores. The identity of the venom component(s) that is responsible for the responses we have described is yet to be determined but is probably not the C-type natriuretic peptide or the defensin-like peptides that are present in the venom.
Collapse
Affiliation(s)
- G M de Plater
- Division of Neuroscience, Australian National University, Canberra, ACT 0200, Australia
| | | | | |
Collapse
|
174
|
Scornik FS, Merriam LA, Parsons RL. Number of K(Ca) channels underlying spontaneous miniature outward currents (SMOCs) in mudpuppy cardiac neurons. J Neurophysiol 2001; 85:54-60. [PMID: 11152705 DOI: 10.1152/jn.2001.85.1.54] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Spontaneous miniature outward currents (SMOCs) in parasympathetic neurons from mudpuppy cardiac ganglia are caused by activation of TEA- and iberiotoxin-sensitive, Ca(2+)-dependent K(+) (BK) channels. Previously we reported that SMOCs are activated by Ca(2+)-induced Ca(2+) release (CICR) from caffeine- and ryanodine-sensitive intracellular Ca(2+) stores. In the present study, we analyzed the single channel currents that contribute to SMOC generation in mudpuppy cardiac neurons. The slope conductance of BK channels, determined from the I-V relationship of single-channel currents recorded with cell-attached patches in physiological K(+) concentrations, was 84 pS. The evidence supporting the identity of this channel as the channel involved in SMOC generation was its sensitivity to internal Ca(2+), external TEA, and caffeine. In cell-attached patch recordings, 166 microM TEA applied in the pipette reduced single-channel current amplitude by 32%, and bath-applied caffeine increased BK channel activity. The ratio between the averaged SMOC amplitude and the single-channel current amplitude was used to estimate the average number of channels involved in SMOC generation. The estimated number of channels involved in generation of an averaged SMOC ranged from 18 to 23 channels. We also determined that the Po of the BK channels at the peak of a SMOC remains constant at voltages more positive than -20 mV, suggesting that the transient rise in intracellular Ca(2+) from ryanodine-sensitive intracellular stores in the vicinity of the BK channel reached concentrations most likely exceeding 40 microM.
Collapse
Affiliation(s)
- F S Scornik
- Department of Anatomy and Neurobiology, University of Vermont College of Medicine, Burlington, Vermont 05405, USA
| | | | | |
Collapse
|
175
|
Griffith WH, Jasek MC, Bain SH, Murchison D. Modification of ion channels and calcium homeostasis of basal forebrain neurons during aging. Behav Brain Res 2000; 115:219-33. [PMID: 11000422 DOI: 10.1016/s0166-4328(00)00260-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this paper we review the last several years of work from our lab with attention to changes in the properties of basal forebrain neurons during aging. These neurons play a central role in behavioral functions, such as: attention, arousal, cognition and autonomic activity, and these functions can be adversely affected during aging. Therefore, it is fundamental to define the cellular mechanisms of aging in order to understand the basal forebrain and to correct deficits associated with aging. We have examined changes in the physiological properties of basal forebrain neurons during aging with whole-cell and single-channel patch-clamp, as well as, microfluorimetric measurements of intracellular calcium concentrations. These studies contribute to the understanding of integration within the basal forebrain and to the identification of age-related changes within central mammalian neurons. Although extensive functional/behavioral decline is often assumed to occur during aging, our data support an interpretation of compensatory increases in function for excitatory amino acid receptors, GABA(A) receptors, voltage-gated calcium currents and calcium homeostatic mechanisms. We believe that these changes occur to compensate for decrements accruing with age, such as decreased synaptic contacts, ion imbalances or neuronal loss. The basal forebrain must retain functionality into late aging if senescence is to be productive. Thus, it is critical to recognize the potential cellular and subcellular targets for therapeutic interventions intended to correct age-related behavioral deficits.
Collapse
Affiliation(s)
- W H Griffith
- Department of Medical Pharmacology and Toxicology, College of Medicine, Texas A&M University System Health Science Center, College Station, TX 77843-1114, USA.
| | | | | | | |
Collapse
|
176
|
Abstract
The last decade has witnessed a significant turn in our understanding of the mechanisms responsible for the decline of cognitive functions in aged brain. As has been demonstrated by detailed morphological reassessments, the senescence-related changes in cognition cannot be attributed to a simple decrease in the number of neurons. It is becoming clearer that a major cause of age-induced deterioration of brain capability involves much subtler changes at the level of synapses. These changes are either morphological, i.e. reduction in the number of effective synapses and/or functional alterations, i.e. changes in the efficacy of remaining synapses. Important questions are now raised regarding the mechanisms which mediate these synaptic changes. Clearly, an important candidate is calcium, the cytotoxic role of which is already firmly established. The wealth of evidence collected so far regarding the changes of Ca2+ homeostasis in aged neurons shows that the overall duration of cytoplasmic Ca2+ signals becomes longer. This is the most consistent result, demonstrated on different preparations and using different techniques. What is not yet clear is the underlying mechanism, as this result could be explained either through an increased Ca2+ influx or because of a deficit in the Ca2+ buffering/clearance systems. It is conceivable that these prolonged Ca2+ signals may exert a local excitotoxic effect, removing preferentially the most active synapses. Uncovering of the role of Ca2+ in the synaptic function of the aged brain presents an exciting challenge for all those involved in the neurobiology of the senescent CNS.
Collapse
Affiliation(s)
| | - ALEXEJ VERKHRATSKY
- School of Biological Sciences, University of Manchester, Manchester, UK
- Correspondence to Dr A. Verkhratsky, University of Manchester, School of Biological Sciences, 1.124 Stopford Building, Oxford Road, Manchester M13 9PT, UK. Tel: (+44 161) 275 5414; fax: (+44 161) 275 5948; mail:
| |
Collapse
|
177
|
Ward SM, Kenyon JL. The spatial relationship between Ca2+ channels and Ca2+-activated channels and the function of Ca2+-buffering in avian sensory neurons. Cell Calcium 2000; 28:233-46. [PMID: 11032779 DOI: 10.1054/ceca.2000.0151] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In order to learn about the endogenous Ca2+-buffering in the cytoplasm of chick dorsal root ganglion (DRG) neurons and the distance separating the ryanodine receptor Ca2+ release channels (RyRs) from the plasma membrane, we monitored the amplitude and time course of Ca2+-activated Cl- currents (I(ClCa)) in protocols that manipulated Ca2+-buffering. I(ClCa)was activated by Ca2+ influx via voltage-gated Ca2+ channels or by Ca2+ release via RyRs activated by 10 mM caffeine. I(ClCa)was measured in neurons at 20 degrees C and 35 degrees C using the amphotericin perforated patch technique that preserves endogenous Ca2+-buffering, or at 20 degrees C in neurons dialyzed with pipette solutions designed to replace the endogenous Ca2+ buffers. The amplitude of I(ClCa)activated by Ca2+ influx or Ca2+ at 20 degrees C was similar in the amphotericin neurons and neurons dialyzed with an 'unbuffered' pipette solution containing 10 mM citrate and 3 mM ATP as the only Ca2+ binding molecules. Thus, endogenous mobile Ca2+ buffers are relatively unimportant in chick DRG neurons. Warming the neurons from 20 degrees C to 35 degrees C increased the amplitude and the rate of deactivation of I(ClCa)consistent with an increased rate of Ca2+ buffering by fixed endogenous Ca2+-buffers. Dialysis with 2 mM EGTA/0.1 microM free Ca2+ reduced the amplitude and increased the rate of deactivation of I(ClCa)activated by Ca2+ influx and abolished I(ClCa)activated by Ca2+ release. Dialysis with 2 mM BAPTA/0.1 microM free Ca2+ abolished I(ClCa)activated by Ca2+ influx or release. Dialysis with 42 mM HEEDTA/0.5 microM free Ca2+ caused the persistent activation of I(ClCa). Calculations using a Ca2+-diffusion model suggest that the voltage-gated Ca2+ channels and the Ca2+-activated Cl- channels are separated by 50-400 nm and that the RyRs are more than 600 nm from the plasma membrane.
Collapse
Affiliation(s)
- S M Ward
- Department of Physiology & Cell Biology/MS 352, University of Nevada School of Medicine, Reno, NV, 89557, USA
| | | |
Collapse
|
178
|
Pan CY, Fox AP. Rundown of secretion after depletion of intracellular calcium stores in bovine adrenal chromaffin cells. J Neurochem 2000; 75:1132-9. [PMID: 10936195 DOI: 10.1046/j.1471-4159.2000.0751132.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
In this study, the relationship between intracellular calcium stores and depolarization-evoked stimulation was examined in bovine chromaffin cells, using changes in membrane capacitance to monitor both exocytosis and endocytosis. Cells were voltage-clamped using the perforated whole-cell patch configuration to minimize alterations in intracellular constituents. Control cells exhibited reproducible secretory responses each time the cell was stimulated. However, the same stimulation protocol elicited progressively smaller secretory responses in cells where their intracellular calcium store was emptied by thapsigargin. Transient elevation of the intracellular calcium concentration with a brief histamine treatment enhanced subsequent secretory responses in control but not in thapsigargin-treated cells. A series of depolarizations to -20 mV, which allowed small amounts of Ca(2+) influx but which by itself did not trigger catecholamine secretion, enhanced subsequent exocytosis in both control and thapsigargin-treated cells. Caffeine-pretreated cells exhibited a rundown in the secretory response that was similar to that produced by thapsigargin. These results suggest that brief elevations of [Ca(2+)](i) could enhance subsequent secretory responses. In addition, the data suggest that intracellular calcium stores are vital for the maintenance of exocytosis during repetitive stimulation.
Collapse
Affiliation(s)
- C Y Pan
- Department of Neurobiology, Pharmacology, and Physiology, University of Chicago, IL 60637, USA
| | | |
Collapse
|
179
|
Cui XL, Jin WW, Ding YX, Alexander LD, Hopfer U, Douglas JG. Ca(2+)-dependent activation of c-jun NH(2)-terminal kinase in primary rabbit proximal tubule epithelial cells. Am J Physiol Cell Physiol 2000; 279:C403-9. [PMID: 10913007 PMCID: PMC3014607 DOI: 10.1152/ajpcell.2000.279.2.c403] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previous work from this laboratory demonstrated that arachidonic acid activates c-jun NH(2)-terminal kinase (JNK) through oxidative intermediates in a Ca(2+)-independent manner (Cui X and Douglas JG. Arachidonic acid activates c-jun N-terminal kinase through NADPH oxidase in rabbit proximal tubular epithelial cells. Proc Natl Acad Sci USA 94: 3771-3776, 1997.). We now report that JNK can also be activated via a Ca(2+)-dependent mechanism by agents that increase the cytosolic Ca(2+) concentration (Ca(2+) ionophore A(23187), Ca(2+)-ATPase inhibitor thapsigargin) or deplete intracellular Ca(2+) stores [intracellular Ca(2+) chelator 1, 2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA)-AM]. The activation of JNK by BAPTA-AM occurs despite a decrease in cytosolic Ca(2+) concentration as detected by the indicator dye fura 2, but appears to be related to Ca(2+) metabolism, because modification of BAPTA with two methyl groups increases not only the chelation affinity for Ca(2+), but also the potency for JNK activation. BAPTA-AM stimulates Ca(2+) influx across the plasma membrane, and the resulting local Ca(2+) increases are probably involved in activation of JNK because Ca(2+) influx inhibitors (SKF-96365, nifedipine) and lowering of the free extracellular Ca(2+) concentration with EGTA reduce the BAPTA-induced JNK activation.
Collapse
Affiliation(s)
- X L Cui
- Division of Hypertension, Case Western Reserve University School of Medicine and University Hospitals of Cleveland, Ohio 44106-4982, USA.
| | | | | | | | | | | |
Collapse
|
180
|
|
181
|
Dove LS, Nahm SS, Murchison D, Abbott LC, Griffith WH. Altered calcium homeostasis in cerebellar Purkinje cells of leaner mutant mice. J Neurophysiol 2000; 84:513-24. [PMID: 10899223 DOI: 10.1152/jn.2000.84.1.513] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The leaner (tg(la)) mouse mutation occurs in the gene encoding the voltage-activated Ca(2+) channel alpha(1A) subunit, the pore-forming subunit of P/Q-type Ca(2+) channels. This mutation results in dramatic reductions in P-type Ca(2+) channel function in cerebellar Purkinje neurons of tg(la)/tg(la) mice that could affect intracellular Ca(2+) signaling. We combined whole cell patch-clamp electrophysiology with fura-2 microfluorimetry to examine aspects of Ca(2+) homeostasis in acutely dissociated tg(la)/tg(la) Purkinje cells. There was no difference between resting somatic Ca(2+) concentrations in tg(la)/tg(la) cells and in wild-type (+/+) cells. However, by quantifying the relationship between intracellular Ca(2+) elevations and depolarization-induced Ca(2+) influx, we detected marked alterations in rapid calcium buffering between the two genotypes. Calcium buffering values (ratio of bound/free ions) were significantly reduced in tg(la)/tg(la) (584 +/- 52) Purkinje cells relative to +/+ (1,221 +/- 80) cells. By blocking the endoplasmic reticulum (ER) Ca(2+)-ATPases with thapsigargin, we observed that the ER had a profound impact on rapid Ca(2+) buffering that was also differential between tg(la)/tg(la) and +/+ Purkinje cells. Diminished Ca(2+) uptake by the ER apparently contributes to the reduced buffering ability of mutant cells. This report constitutes one of the few instances in which the ER has been implicated in rapid Ca(2+) buffering. Concomitant with this reduced buffering, in situ hybridization with calbindin D28k and parvalbumin antisense oligonucleotides revealed significant reductions in mRNA levels for these Ca(2+)-binding proteins (CaBPs) in tg(la)/tg(la) Purkinje cells. All of these results suggest that alterations of Ca(2+) homeostasis in tg(la)/tg(la) mouse Purkinje cells may serve as a mechanism whereby reduced P-type Ca(2+) channel function contributes to the mutant phenotype.
Collapse
Affiliation(s)
- L S Dove
- Department of Medical Pharmacology and Toxicology, College of Medicine, Texas A&M University System Health Science Center, College Station 77843-1114, Texas, USA
| | | | | | | | | |
Collapse
|
182
|
Toescu EC. Activity of voltage-operated calcium channels in rat cerebellar granule neurons and neuronal survival. Neuroscience 1999; 94:561-70. [PMID: 10579216 DOI: 10.1016/s0306-4522(99)00261-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Neuronal activity and Ca2+ channel activation play important roles in neuronal survival and development. In cerebellar granule neurons, the culture conditions can induce differential expression of various membrane receptor proteins. To test the hypothesis that culture conditions might affect the activity of voltage-operated Ca2+ channels, the present study analysed the differences in Ca2+ signalling between granule neurons grown in the presence of normal (5 mM) or high (25 mM) KCl. The Ca2+ transients evoked by 50 mM KCl developed similarly in both cultures, as a function of age. In contrast, when compared with neurons grown in 25 mM KCl, a proportion of the neurons grown in normal KCl showed, between days in vitro 4 and 6, a higher Ca2+ transient in response to 12.5 mM KCl. These neurons were less sensitive to the effect of 10 microM nifedipine and, conversely, more sensitive to the effects of 10 microM omega-conotoxin MVIIC when stimulated with 50 mM KCl, indicating that they express preferentially, at this stage, the N- and/or Q-type Ca2+ channels. This period of maximal activity of the N/Q-type Ca2+ channels was associated with a significant increase in the rate of neuronal apoptosis. The present study also shows, by comparing the rates of neuronal apoptosis, that the long-term maintenance in 25 mM KCl appears to "synchronize" and sensitize the neuronal population to the apoptotic process. These results illustrate the differential effect the culture conditions can have on the expression and activity of Ca2+ channels, which, in turn, can modulate neuronal survival.
Collapse
Affiliation(s)
- E C Toescu
- Department of Physiology, School of Medicine, Birmingham University, Edgbaston, UK.
| |
Collapse
|
183
|
Lajas AI, Pozo MJ, Camello PJ, Salido GM, Pariente JA. Phenylarsine oxide evokes intracellular calcium increases and amylase secretion in isolated rat pancreatic acinar cells. Cell Signal 1999; 11:727-34. [PMID: 10574327 DOI: 10.1016/s0898-6568(99)00044-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The effects of the thiol reagent, phenylarsine oxide (PAO, 10(-5)-10(-3) M ), a membrane-permeable trivalent arsenical compound that specifically complexes vicinal sulfhydryl groups of proteins to form stable ring structures, were studied by monitoring intracellular free calcium concentration ([Ca2+]i) and amylase secretion in collagenase dispersed rat pancreatic acinar cells. PAO increased [Ca2+]i by mobilizing calcium from intracellular stores, since this increase was observed in the absence of extracellular calcium. PAO also prevented the CCK-8-induced signal of [Ca2+]i and inhibited the oscillatory pattern initiated by aluminium fluoride (AlF-4). In addition to the effects of PAO on calcium mobilization, it caused a significant increase in amylase secretion and reduced the secretory response to either CCK-8 or AlF-4. The effects of PAO on both [Ca2+]i and amylase release were reversed by the sulfhydryl reducing agent, dithiothreitol (2 mM). Pretreatment of acinar cells with high concentration of ryanodine (50 microM) reduced the PAO-evoked calcium release. However, PAO was still able to release a small fraction of Ca2+ from acinar cells in which agonist-releasable Ca2+ pools had been previously depleted by thapsigargin (0.5 microM) and ryanodine receptors were blocked by 50 microM ryanodine. We conclude that, in pancreatic acinar cells, PAO mainly releases Ca2+ from the ryanodine-sensitive calcium pool and consequently induces amylase secretion. These effects are likely to be due to the oxidizing effects of this compound.
Collapse
Affiliation(s)
- A I Lajas
- Department of Physiology, Faculty of Veterinary Science, University of Extremadura, Cáceres, Spain
| | | | | | | | | |
Collapse
|
184
|
Kato N, Tanaka T, Yamamoto K, Isomura Y. Distinct temporal profiles of activity-dependent calcium increase in pyramidal neurons of the rat visual cortex. J Physiol 1999; 519 Pt 2:467-79. [PMID: 10457063 PMCID: PMC2269525 DOI: 10.1111/j.1469-7793.1999.0467m.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
1. Using fluo-3-based fluorometry, we studied variation in depolarization-induced calcium increases in the proximal dendrites or soma of pyramidal neurons in layer II/III of the rat visual cortex. 2. Depolarization for all durations tested (0.1-2 s; 0.5 nA) evoked a train of action potentials and a small increase in calcium signal (mean 26 %) which peaked within 1 s of the onset of depolarization. With depolarization for longer than 1 s, this small increase was often followed by a larger increase (73 %). This later phase of calcium increase occurred without sudden changes in action potential firing. 3. Application of ryanodine, which suppresses intracellular calcium release, abolished the second phase without affecting the early phase in a use-dependent manner. Meanwhile, no major changes were observed in the pattern of action potential firing. 4. In calcium-free medium, both the early and late phases were almost undetectable, although action potential firing was still evoked by injection of depolarizing currents. Since the late phase depended on intracellular calcium release, this effect of calcium-free medium on the late phase is likely to be indirect through an influence on the early phase. 5. This two-phase profile was observed with somatic depolarization or with antidromic action potentials induced by tetanization. Neocortical pyramidal neurons can thus recruit calcium from different sources, even without chemical sensitization, generating temporally diverse profiles of intracellular calcium signal in response to action potential firing. 6. Such variety in the mechanisms of calcium increase may be relevant to the role of calcium as a versatile second messenger for various types of synaptic plasticity.
Collapse
Affiliation(s)
- N Kato
- Department of Integrative Brain Science, Kyoto University Graduate School of Medicine, Kyoto 606-8501 and Japan Science and Technology Corporation, Saitama 332-0012, Japan.
| | | | | | | |
Collapse
|
185
|
Merriam LA, Scornik FS, Parsons RL. Ca(2+)-induced Ca(2+) release activates spontaneous miniature outward currents (SMOCs) in parasympathetic cardiac neurons. J Neurophysiol 1999; 82:540-50. [PMID: 10444654 DOI: 10.1152/jn.1999.82.2.540] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mudpuppy parasympathetic cardiac neurons exhibit spontaneous miniature outward currents (SMOCs) that are thought to be due to the activation of clusters of large conductance Ca(2+)-activated K(+) channels (BK channels) by localized release of Ca(2+) from internal stores close to the plasma membrane. Perforated-patch whole cell recordings were used to determine whether Ca(2+)-induced Ca(2+) release (CICR) is involved in SMOC generation. We confirmed that BK channels are involved by showing that SMOCs are inhibited by 100 nM iberiotoxin or 500 microM tetraethylammonium (TEA), but not by 100 nM apamin. SMOC frequency is decreased in solutions that contain 0 Ca(2+)/3.6 mM Mg(2+), and also in the presence of 1 microM nifedipine and 3 microM omega-conotoxin GVIA, suggesting that SMOC activation is dependent on calcium influx. However, Ca(2+) influx alone is not sufficient; SMOC activation is also dependent on Ca(2+) release from the caffeine- and ryanodine-sensitive Ca(2+) store, because exposure to 2 mM caffeine consistently caused an increase in SMOC frequency, and 10-100 microM ryanodine altered the configuration of SMOCs and eventually inhibited SMOC activity. Depletion of intracellular Ca(2+) stores by the Ca-ATPase inhibitor cyclopiazonic acid (10 microM) inhibited SMOC activity, even when Ca(2+) influx was not compromised. We also tested the effects of the membrane-permeable Ca(2+) chelators, bis-(o-aminophenoxy)-N,N,N', N'-tetraacetic acid-AM (BAPTA-AM) and EGTA-AM. EGTA-AM (10 microM) caused no inhibition of SMOC activation, whereas 10 microM BAPTA-AM consistently inhibited SMOCs. After SMOCs were completely inhibited by BAPTA, 3 mM caffeine caused SMOC activity to resume. This effect was reversible on removal of caffeine and suggests that the source of Ca(2+) that triggers the internal Ca(2+) release channel is different from the source of Ca(2+) that activates clusters of BK channels. We propose that influx of Ca(2+) through voltage-dependent Ca(2+) channels is required for SMOC generation, but that the influx of Ca(2+) triggers CICR from intracellular stores, which then activates the BK channels responsible for SMOC generation.
Collapse
Affiliation(s)
- L A Merriam
- Department of Anatomy and Neurobiology, University of Vermont College of Medicine, Burlington, Vermont 05405, USA
| | | | | |
Collapse
|
186
|
|
187
|
Kobayashi M, Imamura K, Kaub PA, Nakadate K, Watanabe Y. Developmental regulation of intracellular calcium by N-methyl-D-aspartate and noradrenaline in rat visual cortex. Neuroscience 1999; 92:1309-22. [PMID: 10426486 DOI: 10.1016/s0306-4522(99)00033-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The effects of N-methyl-D-aspartate and noradrenaline on intracellular Ca2+ concentration in slices of rat visual cortex were studied using a fluorescent indicator, Fura-2. Bath application of N-methyl-D-aspartate (1-100 microM) increased intracellular Ca2+ concentration in a dose-dependent manner, especially in layers II/III. Noradrenaline (1-100 microM) also increased intracellular Ca2+ concentration in a dose-dependent manner, especially in layers I and IV. However, the maximum increase in intracellular Ca2+ concentration after 100 microM noradrenaline application was less than half of that after 100 microM N-methyl-D-aspartate application in slices obtained from animals in the sensitive period. The effect of noradrenaline was most prominent in slices of the sensitive period, whereas the N-methyl-D-aspartate-induced intracellular Ca2+ concentration response decreased with age. Additive effects from application of both N-methyl-D-aspartate and noradrenaline on intracellular Ca2+ concentration were found only in the neonatal stage. Pharmacological experiments showed that alpha1-adrenergic receptors play a major role in the noradrenaline-induced intracellular Ca2+ concentration response, although both alpha2- and beta-adrenergic receptors were also partially involved. The release of Ca2+ from intracellular storage underlay the early phase of the noradrenaline-induced intracellular Ca2+ concentration response, while extracellular Ca2+ influxes contributed to the sustained phase. Experiments using a gliotoxin, fluorocitric acid, suggested that the function of glial cells is involved in the noradrenaline-induced increase of intracellular Ca2+ concentration. The larger intracellular Ca2+ concentration response to noradrenaline during the sensitive period may modulate the increase in intracellular Ca2+ concentration by N-methyl-D-aspartate to maintain a higher level of cortical plasticity during this period.
Collapse
Affiliation(s)
- M Kobayashi
- Department of Neuroscience, Osaka Bioscience Institute, CREST, Japan Science and Technology Corporation, Suita
| | | | | | | | | |
Collapse
|
188
|
Kelliher M, Fastbom J, Cowburn RF, Bonkale W, Ohm TG, Ravid R, Sorrentino V, O'Neill C. Alterations in the ryanodine receptor calcium release channel correlate with Alzheimer's disease neurofibrillary and beta-amyloid pathologies. Neuroscience 1999; 92:499-513. [PMID: 10408600 DOI: 10.1016/s0306-4522(99)00042-1] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Investigation of the integrity of the ryanodine receptor in Alzheimer's disease is important because it plays a critical role in the regulation of calcium release from the endoplasmic reticulum in brain, impairment of which is believed to contribute to the pathogenesis of Alzheimer's disease. The present study compared ryanodine receptor levels and their functional modulation in particulate fractions from control and Alzheimer's disease temporal cortex, occipital cortex and putamen. Relationships between ryanodine receptor changes and the progression of Alzheimer's disease pathology were determined by examining autoradiographic [3H]ryanodine binding in entorhinal cortex/anterior hippocampus sections from 22 cases that had been staged for neurofibrillary changes and beta-amyloid deposition. A significant (P < 0.02) 40% decrease in the Bmax for [3H]ryanodine binding and significantly higher IC50 values for both magnesium and Ruthenium Red inhibition of [3H]ryanodine binding were detected in Alzheimer's disease temporal cortex particulate fractions compared to controls. Immunoblot analyses showed Type 2 ryanodine receptor holoprotein levels to be decreased by 20% (P < 0.05) in these Alzheimer's disease cases compared to controls. No significant differences were detected in [3H]ryanodine binding comparing control and Alzheimer's disease occipital cortex or putamen samples. The autoradiography study detected increased [3H]ryanodine binding in the subiculum, CA2 and CA1 regions in cases with early (stage I-II) neurofibrillary pathology when compared to Stage 0 cases. Analysis of variance of data with respect to the different stages of neurofibrillary pathology revealed significant stage-related declines of [3H]ryanodine binding in the subiculum (P < 0.02) with trends towards significant decreases in CA1, CA2 and CA4. Post-hoc testing with Fisher's PLSD showed significant reductions (74-94%) of [3H]ryanodine binding in the subiculum, and CA1-CA4 regions of the late isocortical stage (V-VI) cases compared to the early entorhinal stage I-II cases. [3H]Ryanodine binding also showed significant declines with staging for beta-amyloid deposition in the entorhinal cortex (P < 0.01) and CA4 (P < 0.05) with trends towards a significant decrease in the dentate gyrus. We conclude that alterations in ryanodine receptor binding and function are very early events in the pathogenesis of Alzheimer's disease, and may be fundamental to the progression of both neurofibrillary and beta-amyloid pathologies.
Collapse
Affiliation(s)
- M Kelliher
- Department of Biochemistry, University College, Lee Maltings, Prospect Row, Cork, Ireland
| | | | | | | | | | | | | | | |
Collapse
|
189
|
Nelson TJ, Zhao WQ, Yuan S, Favit A, Pozzo-Miller L, Alkon DL. Calexcitin interaction with neuronal ryanodine receptors. Biochem J 1999; 341 ( Pt 2):423-33. [PMID: 10393102 PMCID: PMC1220376 DOI: 10.1042/0264-6021:3410423] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Calexcitin (CE), a Ca2+- and GTP-binding protein, which is phosphorylated during memory consolidation, is shown here to co-purify with ryanodine receptors (RyRs) and bind to RyRs in a calcium-dependent manner. Nanomolar concentrations of CE released up to 46% of the 45Ca label from microsomes preloaded with 45CaCl2. This release was Ca2+-dependent and was blocked by antibodies against the RyR or CE, by the RyR inhibitor dantrolene, and by a seven-amino-acid peptide fragment corresponding to positions 4689-4697 of the RyR, but not by heparin, an Ins(1,4,5)P3-receptor antagonist. Anti-CE antibodies, in the absence of added CE, also blocked Ca2+ release elicited by ryanodine, suggesting that the CE and ryanodine binding sites were in relative proximity. Calcium imaging with bis-fura-2 after loading CE into hippocampal CA1 pyramidal cells in hippocampal slices revealed slow, local calcium transients independent of membrane depolarization. Calexcitin also released Ca2+ from liposomes into which purified RyR had been incorporated, indicating that CE binding can be a proximate cause of Ca2+ release. These results indicated that CE bound to RyRs and suggest that CE may be an endogenous modulator of the neuronal RyR.
Collapse
Affiliation(s)
- T J Nelson
- Laboratory of Adaptive Systems, National Institutes of Health, Bldg. 36, Room 4A-23, Bethesda, MD 20892, USA.
| | | | | | | | | | | |
Collapse
|
190
|
Abstract
Two central concepts of human hypertensive disease remain poorly understood: (1) elevated blood pressure as merely one component of an underlying systemic condition, characterized by multiple defects in diverse tissues (eg, "Syndrome X"), and (2) the heterogeneity of hypertension, in which different and even opposite clinical responses to different dietary and drug therapies are routinely observed among equally hypertensive subjects. To help explain these clinical phenomena, a unifying "ionic hypothesis" is proposed, in which steady-state elevations of cytosolic free calcium and suppressed intracellular free magnesium levels, characteristic features of all hypertension, concomitantly alter the function of many tissues. In blood vessels this causes vasoconstriction, arterial stiffness, and/or hypertension; in the heart, cardiac hypertrophy; in platelets, increased aggregation and thrombosis; in fat and skeletal muscle, insulin resistance; in pancreatic beta cells, other endocrine tissues, and sympathetic neurons, potentiated stimulus-secretion coupling resulting in hyperinsulinemia, increased sympathetic nerve activity, and so on. Furthermore, an analysis of cellular biochemical, dietary-nutrient, and hormonal factors that normally regulate steady-state levels of these intracellular ions suggests an ionic equivalent to Laragh's volume-vasoconstriction analysis of hypertension. This provides a cellular-based explanation for the heterogeneity of hypertension and a rational basis for individualizing dietary and drug recommendations among different hypertensive subjects.
Collapse
Affiliation(s)
- L Resnick
- University Vascular Center, Wayne State University Medical Center, Detroit, MI, USA
| |
Collapse
|
191
|
Volfovsky N, Parnas H, Segal M, Korkotian E. Geometry of dendritic spines affects calcium dynamics in hippocampal neurons: theory and experiments. J Neurophysiol 1999; 82:450-62. [PMID: 10400971 DOI: 10.1152/jn.1999.82.1.450] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The role of dendritic spine morphology in the regulation of the spatiotemporal distribution of free intracellular calcium concentration ([Ca2+]i) was examined in a unique axial-symmetrical model that focuses on spine-dendrite interactions, and the simulations of the model were compared with the behavior of real dendritic spines in cultured hippocampal neurons. A set of nonlinear differential equations describes the behavior of a spherical dendritic spine head, linked to a dendrite via a cylindrical spine neck. Mechanisms for handling of calcium (including internal stores, buffers, and efflux pathways) are placed in both the dendrites and spines. In response to a calcium surge, the magnitude and time course of the response in both the spine and the parent dendrite vary as a function of the length of the spine neck such that a short neck increases the magnitude of the response in the dendrite and speeds up the recovery in the spine head. The generality of the model, originally constructed for a case of release of calcium from stores, was tested in simulations of fast calcium influx through membrane channels and verified the impact of spine neck on calcium dynamics. Spatiotemporal distributions of [Ca2+]i, measured in individual dendritic spines of cultured hippocampal neurons injected with Calcium Green-1, were monitored with a confocal laser scanning microscope. Line scans of spines and dendrites at a <1-ms time resolution reveal simultaneous transient rises in [Ca2+]i in spines and their parent dendrites after application of caffeine or during spontaneous calcium transients associated with synaptic or action potential discharges. The magnitude of responses in the individual compartments, spine-dendrite disparity, and the temporal distribution of [Ca2+]i were different for spines with short and long necks, with the latter being more independent of the dendrite, in agreement with prediction of the model.
Collapse
|
192
|
Kato N, Tanaka T, Yamamoto K, Isomura Y. Enhancement of activity-dependent calcium increase by neurotrophin-4 in visual cortex pyramidal neurons. Brain Res 1999; 832:179-83. [PMID: 10375667 DOI: 10.1016/s0006-8993(99)01474-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In pyramidal neurons from rat visual cortex slices, bath-application of NT-4 (20 ng/ml) did not much affected the baseline calcium signal, but did enhance calcium signals elicited by injections of depolarizing currents (+0.5 nA, 1 s). This enhancing effect of NT-4 was abolished by co-applying K252a. With ryanodine injected intracellularly, the effect of NT-4 was significantly reduced, suggesting an involvement of intracellular calcium release in this NT-4-induced enhancement of calcium transient.
Collapse
Affiliation(s)
- N Kato
- Department of Integrative Brain Science, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan.
| | | | | | | |
Collapse
|
193
|
Rakovic S, Cui Y, Iino S, Galione A, Ashamu GA, Potter BV, Terrar DA. An antagonist of cADP-ribose inhibits arrhythmogenic oscillations of intracellular Ca2+ in heart cells. J Biol Chem 1999; 274:17820-7. [PMID: 10364226 DOI: 10.1074/jbc.274.25.17820] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Oscillations of Ca2+ in heart cells are a major underlying cause of important cardiac arrhythmias, and it is known that Ca2+-induced release of Ca2+ from intracellular stores (the sarcoplasmic reticulum) is fundamental to the generation of such oscillations. There is now evidence that cADP-ribose may be an endogenous regulator of the Ca2+ release channel of the sarcoplasmic reticulum (the ryanodine receptor), raising the possibility that cADP-ribose may influence arrhythmogenic mechanisms in the heart. 8-Amino-cADP-ribose, an antagonist of cADP-ribose, suppressed oscillatory activity associated with overloading of intracellular Ca2+ stores in cardiac myocytes exposed to high doses of the beta-adrenoreceptor agonist isoproterenol or the Na+/K+-ATPase inhibitor ouabain. The oscillations suppressed by 8-amino-cADP-ribose included intracellular Ca2+ waves, spontaneous action potentials, after-depolarizations, and transient inward currents. Another antagonist of cADP-ribose, 8-bromo-cADP-ribose, was also effective in suppressing isoproterenol-induced oscillatory activity. Furthermore, in the presence of ouabain under conditions in which there was no arrhythmogenesis, exogenous cADP-ribose was found to be capable of triggering spontaneous contractile and electrical activity. Because enzymatic machinery for regulating the cytosolic cADP-ribose concentration is present within the cell, we propose that 8-amino-cADP-ribose and 8-bromo-cADP-ribose suppress cytosolic Ca2+ oscillations by antagonism of endogenous cADP-ribose, which sensitizes the Ca2+ release channels of the sarcoplasmic reticulum to Ca2+.
Collapse
Affiliation(s)
- S Rakovic
- University Department Of Pharmacology, Oxford University Oxford OX1 3QT, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
194
|
Calcium-induced calcium release contributes to action potential-evoked calcium transients in hippocampal CA1 pyramidal neurons. J Neurosci 1999. [PMID: 10341236 DOI: 10.1523/jneurosci.19-11-04325.1999] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Calcium-induced calcium release (CICR) is a mechanism by which local elevations of intracellular calcium (Ca2+) are amplified by Ca2+ release from ryanodine-sensitive Ca2+ stores. CICR is known to be coupled to Ca2+ entry in skeletal muscle, cardiac muscle, and peripheral neurons, but no evidence suggests that such coupling occurs in central neurons during the firing of action potentials. Using fast Ca2+ imaging in CA1 neurons from hippocampal slices, we found evidence for CICR during action potential-evoked Ca2+ transients. A low concentration of caffeine enhanced Ca2+ transient amplitude, whereas a higher concentration reduced it. Simultaneous Ca2+ imaging and whole-cell recordings showed that membrane potential, action potential amplitude, and waveform were unchanged during caffeine application. The enhancement of Ca2+ transients by caffeine was not affected by the L-type channel blocker nifedipine, the phosphodiesterase inhibitor IBMX, the adenylyl cyclase activator forskolin, or the PKA antagonist H-89. However, thapsigargin or ryanodine, which both empty intracellular Ca2+ stores, occluded this effect. In addition, thapsigargin, ryanodine, and cyclopiazonic acid reduced action potential-evoked Ca2+ transients in the absence of caffeine. These results suggest that Ca2+ release from ryanodine-sensitive stores contributes to Ca2+ signals triggered by action potentials in CA1 neurons.
Collapse
|
195
|
Murchison D, Griffith WH. Age-related alterations in caffeine-sensitive calcium stores and mitochondrial buffering in rat basal forebrain. Cell Calcium 1999; 25:439-52. [PMID: 10579055 DOI: 10.1054/ceca.1999.0048] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The properties of caffeine- and thapsigargin-sensitive endoplasmic reticulum calcium stores were compared in acutely dissociated basal forebrain neurons from young and aged F344 rats by ratiometric microfluorimetry. The ability of these stores to sequester and release calcium resembles that observed in other central neurons, with an important role of mitochondrial calcium buffering in regulating the response to caffeine. An age-related reduction in the filling state of the stores in resting cells appears to be mediated by increased rapid calcium buffering, which reduces the availability of calcium for uptake into the stores. An age-related decrease in the amplitude of maximal caffeine-induced calcium release was attributed to increased mitochondrial buffering. There were no age-related differences in the sensitivity to caffeine or in the calcium sequestration/release process at the level of the endoplasmic reticulum per se. These findings demonstrate the importance of interactions between cellular calcium buffering mechanisms and provide details regarding age-related changes in calcium homeostasis which have been thought to occur in these and other neurons associated with age-related neuronal dysfunctions.
Collapse
Affiliation(s)
- D Murchison
- Department of Medical Pharmacology and Toxicology, College of Medicine, Texas A&M University Health Science Center, College Station 77843-1114, USA
| | | |
Collapse
|
196
|
Gracy KN, Clarke CL, Meyers MB, Pickel VM. N-methyl-D-aspartate receptor 1 in the caudate-putamen nucleus: ultrastructural localization and co-expression with sorcin, a 22,000 mol. wt calcium binding protein. Neuroscience 1999; 90:107-17. [PMID: 10188938 DOI: 10.1016/s0306-4522(98)00440-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Entry of calcium through N-methyl-D-aspartate-type glutamate receptors in the caudate-putamen nucleus is essential for normal motor activity, but can produce cytotoxicity with continued stimulation and subsequent release of intracellular calcium. To determine potential functional sites for N-methyl-D-aspartate receptor activation in this region, we examined the ultrastructural localization of the R1 subunit of the N-methyl-D-aspartate receptor (NMDAR1) in rat brain. In addition, we comparatively examined the localization of NMDAR1 and sorcin, a 22,000 mol. wt calcium binding protein present in certain striatal neurons and involved in calcium-induced calcium release. NMDAR1-like immunoreactivity was seen at synaptic and non-synaptic sites on neuronal plasma membranes. Of 1514 NMDAR1-labeled profiles, 62% were dendrites and dendritic spines and the remainder were mainly unmyelinated axons and axon terminals. Sorcin-like immunoreactivity was present in 39% of the profiles that contained NMDAR1 labeling, most (533/595) of which were dendrites and dendritic spines. Of 1807 sorcin-labeled profiles, 42% were identified, however, as small processes including spine necks and unmyelinated axons or axon terminals. These profiles also occasionally contained NMDAR1 or showed synaptic or appositional contacts with other NMDAR1-immunoreactive neurons. The results of this study suggest that in the caudate-putamen nucleus, activation of NMDA receptors permits calcium influx at plasmalemmal sites mainly on dendrites where sorcin may play a role in calcium-induced calcium release. The presence of sorcin in some, but not all NMDA-containing neurons in the caudate-putamen nucleus has potential implications for the known differential vulnerability of certain striatal neurons to excitotoxins.
Collapse
Affiliation(s)
- K N Gracy
- Department of Neurology and Neuroscience, Cornell University Medical College, New York, NY 10021, USA
| | | | | | | |
Collapse
|
197
|
Alonso MT, Barrero MJ, Michelena P, Carnicero E, Cuchillo I, García AG, García-Sancho J, Montero M, Alvarez J. Ca2+-induced Ca2+ release in chromaffin cells seen from inside the ER with targeted aequorin. J Cell Biol 1999; 144:241-54. [PMID: 9922451 PMCID: PMC2132888 DOI: 10.1083/jcb.144.2.241] [Citation(s) in RCA: 151] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/1998] [Revised: 12/04/1998] [Indexed: 11/22/2022] Open
Abstract
The presence and physiological role of Ca2+-induced Ca2+ release (CICR) in nonmuscle excitable cells has been investigated only indirectly through measurements of cytosolic [Ca2+] ([Ca2+]c). Using targeted aequorin, we have directly monitored [Ca2+] changes inside the ER ([Ca2+]ER) in bovine adrenal chromaffin cells. Ca2+ entry induced by cell depolarization triggered a transient Ca2+ release from the ER that was highly dependent on [Ca2+]ER and sensitized by low concentrations of caffeine. Caffeine-induced Ca2+ release was quantal in nature due to modulation by [Ca2+]ER. Whereas caffeine released essentially all the Ca2+ from the ER, inositol 1,4, 5-trisphosphate (InsP3)- producing agonists released only 60-80%. Both InsP3 and caffeine emptied completely the ER in digitonin-permeabilized cells whereas cyclic ADP-ribose had no effect. Ryanodine induced permanent emptying of the Ca2+ stores in a use-dependent manner after activation by caffeine. Fast confocal [Ca2+]c measurements showed that the wave of [Ca2+]c induced by 100-ms depolarizing pulses in voltage-clamped cells was delayed and reduced in intensity in ryanodine-treated cells. Our results indicate that the ER of chromaffin cells behaves mostly as a single homogeneous thapsigargin-sensitive Ca2+ pool that can release Ca2+ both via InsP3 receptors or CICR.
Collapse
Affiliation(s)
- M T Alonso
- Instituto de Biología y Genética Molecular, Departamento de Bioquímica y Biología Molecular y Fisiología, Facultad de Medicina, Universidad de Valladolid y Consejo Superior de Investigaciones Científicas, E-47005 Valladolil, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
198
|
Emptage N, Bliss TV, Fine A. Single synaptic events evoke NMDA receptor-mediated release of calcium from internal stores in hippocampal dendritic spines. Neuron 1999; 22:115-24. [PMID: 10027294 DOI: 10.1016/s0896-6273(00)80683-2] [Citation(s) in RCA: 351] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We have used confocal microscopy to monitor synaptically evoked Ca2+ transients in the dendritic spines of hippocampal pyramidal cells. Individual spines respond to single afferent stimuli (<0.1 Hz) with Ca2+ transients or failures, reflecting the probability of transmitter release at the activated synapse. Both AMPA and NMDA glutamate receptor antagonists block the synaptically evoked Ca2+ transients; the block by AMPA antagonists is relieved by low Mg2+. The Ca2+ transients are mainly due to the release of calcium from internal stores, since they are abolished by antagonists of calcium-induced calcium release (CICR); CICR antagonists, however, do not depress spine Ca2+ transients generated by backpropagating action potentials. These results have implications for synaptic plasticity, since they show that synaptic stimulation can activate NMDA receptors, evoking substantial Ca2+ release from the internal stores in spines without inducing long-term potentiation (LTP) or depression (LTD).
Collapse
Affiliation(s)
- N Emptage
- Division of Neurophysiology, National Institute for Medical Research, London, United Kingdom
| | | | | |
Collapse
|
199
|
Alkon DL, Nelson TJ, Zhao W, Cavallaro S. Time domains of neuronal Ca2+ signaling and associative memory: steps through a calexcitin, ryanodine receptor, K+ channel cascade. Trends Neurosci 1998; 21:529-37. [PMID: 9881851 DOI: 10.1016/s0166-2236(98)01277-6] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Synaptic changes that underlie associative learning and memory begin with temporally related activity of two or more independent synaptic inputs to common postsynaptic targets. In turn, temporally related molecular events regulate cytosolic Ca2+ during progressively longer-lasting time domains. Associative learning behaviors of living animals have been correlated with changes of neuronal voltage-dependent K+ currents, protein kinase C-mediated phosphorylation and synthesis of the Ca2+ and GTP-binding protein, calexcitin (CE),and increased expression of the Ca2+-releasing ryanodine receptor (type II). These molecular events, some of which have been found to be dysfunctional in Alzheimer's disease, provide means of altering dendritic excitability and thus synaptic efficacy during induction, consolidation and storage of associative memory. Apparently, such stages of behavioral learning correspond to sequential differences of Ca2+ signaling that could occur in spatially segregated dendritic compartments distributed across brain structures, such as the hippocampus.
Collapse
Affiliation(s)
- D L Alkon
- Laboratory of Adaptive Systems, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892-4012, USA
| | | | | | | |
Collapse
|
200
|
Abstract
Neuronal calcium stores associated with specialized intracellular organelles, such as endoplasmic reticulum and mitochondria, dynamically participate in generation of cytoplasmic calcium signals which accompany neuronal activity. They fulfil a dual role in neuronal Ca2+ homeostasis being involved in both buffering the excess of Ca2+ entering the cytoplasm through plasmalemmal channels and providing an intracellular source for Ca2+. Increase of Ca2+ content within the stores regulates the availability and magnitude of intracellular calcium release, thereby providing a mechanism which couples the neuronal activity with functional state of intracellular Ca2+ stores. Apart of 'classical' calcium stores (endoplasmic reticulum and mitochondria) other organelles (e.g. nuclear envelope and neurotransmitter vesicles) may potentially act as a functional Ca2+ storage compartments. Calcium ions released from internal stores participate in many neuronal functions, and might be primarily involved in regulation of various aspects of neuronal plasticity.
Collapse
Affiliation(s)
- A J Verkhratsky
- Max Delbrück Center for Molecular Medicine, Berlin, Germany.
| | | |
Collapse
|