151
|
Schuller M, Höfner G, Wanner KT. Simultaneous Multiple MS Binding Assays Addressing D 1 and D 2 Dopamine Receptors. ChemMedChem 2017; 12:1585-1594. [PMID: 28776962 DOI: 10.1002/cmdc.201700369] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 07/27/2017] [Indexed: 01/08/2023]
Abstract
MS Binding Assays are a label-free alternative to radioligand binding assays. They provide basically the same capabilities as the latter, but use a non-labeled reporter ligand instead of a radioligand. In contrast to radioligand binding assays, MS Binding Assays offer-owing to the selectivity of mass spectrometric detection-the opportunity to monitor the binding of different reporter ligands at different targets simultaneously. The present study shows a proof of concept for this strategy as exemplified for MS Binding Assays selectively addressing D1 and D2 dopamine receptors in a single binding experiment. A highly sensitive, rapid and robust LC-ESI-MS/MS quantification method capable of quantifying both SCH23390 and raclopride, selectively addressing D1 and D2 receptors, respectively, was established and validated for this purpose. Based thereon, simultaneous saturation and competition experiments with SCH23390 and raclopride in the presence of both D1 and D2 receptors were performed and analyzed by LC-MS/MS within a single chromatographic cycle. The present study thus demonstrates the feasibility of this strategy and the high versatility of MS Binding Assays that appears to surpass that common for conventional radioligand binding assays.
Collapse
Affiliation(s)
- Marion Schuller
- Structural Genomics Consortium and Target Discovery Institute, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - Georg Höfner
- Department of Pharmacy, Center of Drug Research, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377, Munich, Germany
| | - Klaus T Wanner
- Department of Pharmacy, Center of Drug Research, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377, Munich, Germany
| |
Collapse
|
152
|
DR1 activation reduces the proliferation of vascular smooth muscle cells by JNK/c-Jun dependent increasing of Prx3. Mol Cell Biochem 2017; 440:157-165. [DOI: 10.1007/s11010-017-3164-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Accepted: 08/16/2017] [Indexed: 12/29/2022]
|
153
|
Two dopamine D2-like receptor genes from the silkworm (Bombyx mori) and their evolutionary history in metazoan. Sci Rep 2017; 7:6848. [PMID: 28754962 PMCID: PMC5533763 DOI: 10.1038/s41598-017-07055-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 06/09/2017] [Indexed: 12/25/2022] Open
Abstract
Dopamine is widely distributed in metazoans and is implicated in many physiological functions. Dopaminergic signaling is mediated through two classes of dopamine receptors, D1-like and D2-like. Phylogeny analysis reveals that, the dopamine receptors probably appeared ahead of the cnidarian divergence, two distinct classes of dopamine receptors likely formed prior to the separation of deuterostomes and protostomes, and INDRs probably split from its ancestor before the emergence of nematodes. Two D2-like genes are closely linked on the same scaffold, and the chromosome region around D2-like gene loci show colinearity among different species within Lepidoptera. These indicate two D2-like and their adjunction genes are likely Lepidoptera-specific orthologs, and occur by gene duplication event taken place after Lepidoptera ancestor split from the common ancestor of Lepidoptera and Diptera. In silkworm, two D2-like genes were expressed in examined tissues, and encoded BmDop2R2 having all the features of D2-like receptors and BmDop2R1 being a truncated variant without the region of N-terminal to TM II. Only dopamine distinctly lowered cAMP levels in BmDop2R2-expressing cells, whereas all tested amines for BmDop2R1 had not markedly effect in pharmacological test. These suggest there is functional difference between the two genes, which are likely resulted from subfunctionalization of gene duplication.
Collapse
|
154
|
Niewiarowska-Sendo A, Polit A, Piwowar M, Tworzydło M, Kozik A, Guevara-Lora I. Bradykinin B2 and dopamine D2 receptors form a functional dimer. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:1855-1866. [PMID: 28757212 DOI: 10.1016/j.bbamcr.2017.07.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 07/19/2017] [Accepted: 07/25/2017] [Indexed: 01/11/2023]
Abstract
In recent years a wide range of studies have shown that G protein-coupled receptors modulate a variety of cell functions through the formation of dimers. For instance, there is growing evidence for the dimerization of bradykinin or dopamine receptors, both as homodimers and heterodimers. A discovery of direct interactions of angiotensin II receptors with bradykinin 2 receptor (B2R) or dopamine D2 (D2R) receptor has led to a hypothesis on a potential dimerization between two latter receptors. In this study, we have demonstrated a constitutive colocalization of receptors on the membranes of HEK293 cells transiently transfected with plasmid vectors encoding B2R and D2R, fused with fluorescent proteins. The receptor colocalization was significantly enhanced by specific agonists of B2R or D2R after 5min following the addition, whereas simultaneous stimulation with these agonists did not influence the B2R/D2R colocalization level. In addition, B2R-D2R heterodimerization was confirmed with FLIM-FRET technique. The most characteristic signaling pathways for B2R and D2R, dependent on intracellular Ca2+ and cAMP concentration, respectively, were analyzed in cells presenting similar endogenous expression of B2R and D2R. Significant changes in receptors' signaling were observed after simultaneous stimulation with agonists, suggesting transformations in proteins' conformation after dimerization. The evidence of B2R-D2R dimerization may open new perspectives in the modulation of diverse cellular functions which depend on their activation.
Collapse
Affiliation(s)
- Anna Niewiarowska-Sendo
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Poland
| | - Agnieszka Polit
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Poland
| | - Monika Piwowar
- Department of Bioinformatics and Telemedicine, Medical College, Jagiellonian University in Krakow, Poland
| | - Magdalena Tworzydło
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Poland
| | - Andrzej Kozik
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Poland
| | - Ibeth Guevara-Lora
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Poland.
| |
Collapse
|
155
|
Silwal AP, Yadav R, Sprague JE, Lu HP. Raman Spectroscopic Signature Markers of Dopamine-Human Dopamine Transporter Interaction in Living Cells. ACS Chem Neurosci 2017; 8:1510-1518. [PMID: 28375605 DOI: 10.1021/acschemneuro.7b00048] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Dopamine (DA) controls many psychological and behavioral activities in the central nervous system (CNS) through interactions with the human dopamine transporter (hDAT) and dopamine receptors. The roles of DA in the function of the CNS are affected by the targeted binding of drugs to hDAT; thus, hDAT plays a critical role in neurophysiology and neuropathophysiology. An effective experimental method is necessary to study the DA-hDAT interaction and effects of variety of drugs like psychostimulants and antidepressants that are dependent on this interaction. In searching for obtaining and identifying the Raman spectral signatures, we have used surface enhanced Raman scattering (SERS) spectroscopy to record SERS spectra from DA, human embryonic kidney 293 cells (HEK293), hDAT-HEK293, DA-HEK293, and DA-hDAT-HEK293. We have demonstrated a specific 2D-distribution SERS spectral analytical approach to analyze DA-hDAT interaction. Our study shows that the Raman modes at 807, 839, 1076, 1090, 1538, and 1665 cm-1 are related to DA-hDAT interaction, where Raman shifts at 807 and 1076 cm-1 are the signature markers for the bound state of DA to probe DA-hDAT interaction. On the basis of density function theory (DFT) calculation, Raman shift of the bound state of DA at 807 cm-1 is related to combination of bending modes α(C3-O10-H21), α(C2-O11-H22), α(C7-C8-H18), α(C6-C4-H13), α(C7-C8-H19), and α(C7-C8-N9), and Raman shift at 1076 cm-1 is related to combination of bending modes α(H19-N9-C8), γ(N9-H19), γ(C8-H19), γ(N9-H20), γ(C8-H18), and α(C7-C8-H18). These findings demonstrate that protein-ligand interactions can be confirmed by probing change in Raman shift of ligand molecules, which could be crucial to understanding molecular interactions between neurotransmitters and their receptors or transporters.
Collapse
Affiliation(s)
- Achut P. Silwal
- Department of Chemistry
and Center for Photochemical Sciences, Bowling Green State University, Bowling
Green, Ohio 43403, United States
| | - Rajeev Yadav
- Department of Chemistry
and Center for Photochemical Sciences, Bowling Green State University, Bowling
Green, Ohio 43403, United States
| | - Jon E. Sprague
- The Ohio Attorney General’s Center for the Future of Forensic Science, Bowling Green, Ohio 43403, United States
| | - H. Peter Lu
- Department of Chemistry
and Center for Photochemical Sciences, Bowling Green State University, Bowling
Green, Ohio 43403, United States
| |
Collapse
|
156
|
Allikalt A, Rinken A. Budded baculovirus particles as a source of membrane proteins for radioligand binding assay: The case of dopamine D 1 receptor. J Pharmacol Toxicol Methods 2017; 86:81-86. [DOI: 10.1016/j.vascn.2017.04.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 03/16/2017] [Accepted: 04/08/2017] [Indexed: 01/27/2023]
|
157
|
Shi YW, Fan BF, Xue L, Wen JL, Zhao H. Regulation of Fear Extinction in the Basolateral Amygdala by Dopamine D2 Receptors Accompanied by Altered GluR1, GluR1-Ser845 and NR2B Levels. Front Behav Neurosci 2017; 11:116. [PMID: 28676746 PMCID: PMC5476700 DOI: 10.3389/fnbeh.2017.00116] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 05/30/2017] [Indexed: 01/17/2023] Open
Abstract
The amygdala, a critical structure for both Pavlovian fear conditioning and fear extinction, receives sparse but comprehensive dopamine innervation and contains dopamine D1 and D2 receptors. Fear extinction, which involves learning to suppress the expression of a previously learned fear, appears to require the dopaminergic system. The specific roles of D2 receptors in mediating associative learning underlying fear extinction require further study. Intra-basolateral amygdala (BLA) infusions of a D2 receptor agonist, quinpirole, and a D2 receptor antagonist, sulpiride, prior to fear extinction and extinction retention were tested 24 h after fear extinction training for long-term memory (LTM). LTM was facilitated by quinpirole and attenuated by sulpiride. In addition, A-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor glutamate receptor 1 (GluR1) subunit, GluR1 phospho-Ser845, and N-methyl-D-aspartic acid receptor NR2B subunit levels in the BLA were generally increased by quinpirole and down-regulated by sulpiride. The present study suggests that activation of D2 receptors facilitates fear extinction and that blockade of D2 receptors impairs fear extinction, accompanied by changes in GluR1, GluR1-Ser845 and NR2B levels in the amygdala.
Collapse
Affiliation(s)
- Yan-Wei Shi
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen UniversityGuangzhou, China.,Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen UniversityGuangzhou, China.,Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Zhongshan School of Medicine, Sun Yat-sen UniversityGuangzhou, China
| | - Bu-Fang Fan
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen UniversityGuangzhou, China
| | - Li Xue
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen UniversityGuangzhou, China.,Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen UniversityGuangzhou, China.,Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Zhongshan School of Medicine, Sun Yat-sen UniversityGuangzhou, China
| | - Jia-Ling Wen
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen UniversityGuangzhou, China
| | - Hu Zhao
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen UniversityGuangzhou, China.,Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen UniversityGuangzhou, China.,Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Zhongshan School of Medicine, Sun Yat-sen UniversityGuangzhou, China
| |
Collapse
|
158
|
Rassu M, Del Giudice MG, Sanna S, Taymans JM, Morari M, Brugnoli A, Frassineti M, Masala A, Esposito S, Galioto M, Valle C, Carri MT, Biosa A, Greggio E, Crosio C, Iaccarino C. Role of LRRK2 in the regulation of dopamine receptor trafficking. PLoS One 2017; 12:e0179082. [PMID: 28582422 PMCID: PMC5459500 DOI: 10.1371/journal.pone.0179082] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 05/23/2017] [Indexed: 11/18/2022] Open
Abstract
Mutations in LRRK2 play a critical role in both familial and sporadic Parkinson’s disease (PD). Up to date, the role of LRRK2 in PD onset and progression remains largely unknown. However, experimental evidence highlights a critical role of LRRK2 in the control of vesicle trafficking that in turn may regulate different aspects of neuronal physiology. We have analyzed the role of LRRK2 in regulating dopamine receptor D1 (DRD1) and D2 (DRD2) trafficking. DRD1 and DRD2 are the most abundant dopamine receptors in the brain. They differ in structural, pharmacological and biochemical properties, as well as in localization and internalization mechanisms. Our results indicate that disease-associated mutant G2019S LRRK2 impairs DRD1 internalization, leading to an alteration in signal transduction. Moreover, the mutant forms of LRRK2 affect receptor turnover by decreasing the rate of DRD2 trafficking from the Golgi complex to the cell membrane. Collectively, our findings are consistent with the conclusion that LRRK2 influences the motility of neuronal vesicles and the neuronal receptor trafficking. These findings have important implications for the complex role that LRRK2 plays in neuronal physiology and the possible pathological mechanisms that may lead to neuronal death in PD.
Collapse
Affiliation(s)
- Mauro Rassu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | | | - Simona Sanna
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Jean Marc Taymans
- UMR-S1172, Jean-Pierre Aubert Research Center (Inserm – Université de Lille – CHRU de Lille), Lille, France
| | - Michele Morari
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy and National Institute for Neuroscience, Ferrara, Italy
| | - Alberto Brugnoli
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy and National Institute for Neuroscience, Ferrara, Italy
| | - Martina Frassineti
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy and National Institute for Neuroscience, Ferrara, Italy
| | - Alessandra Masala
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Sonia Esposito
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Manuela Galioto
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Cristiana Valle
- Fondazione Santa Lucia, IRCCS, Rome, Italy
- Institute of Cell Biology and Neurobiology, IBCN, CNR, Rome, Italy
| | - Maria Teresa Carri
- Fondazione Santa Lucia, IRCCS, Rome, Italy
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Alice Biosa
- Department of Biology, University of Padova, Padova, Italy
| | - Elisa Greggio
- Department of Biology, University of Padova, Padova, Italy
| | - Claudia Crosio
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Ciro Iaccarino
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- * E-mail:
| |
Collapse
|
159
|
Chang A, Fox SH. Psychosis in Parkinson's Disease: Epidemiology, Pathophysiology, and Management. Drugs 2017; 76:1093-118. [PMID: 27312429 DOI: 10.1007/s40265-016-0600-5] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Psychotic symptoms are common in Parkinson's disease (PD) and are associated with poorer quality of life and increased caregiver burden. PD psychosis is correlated with several factors, such as more advanced disease, cognitive impairment, depression, and sleep disorders. The underlying causes of psychosis in PD thus involve a complex interplay between exogenous (e.g., drugs, intercurrent illnesses) and endogenous (e.g., PD disease pathology) factors. Current theories of the pathophysiology of PD psychosis have come from several neuropathological and neuroimaging studies that implicate pathways involving visual processing and executive function, including temporo-limbic structures and neocortical gray matter with altered neurotransmitter functioning (e.g., dopamine, serotonin, and acetylcholine). Treatment of PD psychosis requires a step-wise process, including initial careful investigation of treatable triggering conditions and a comprehensive evaluation with adjustment of PD medications and/or initiation of specific antipsychotic therapies. Clozapine remains the only recommended drug for the treatment of PD psychosis; however, because of regular blood monitoring, quetiapine is usually first-line therapy, although less efficacious. Emerging studies have focused on agents involving other neurotransmitters, including the serotonin 5-HT2A receptor inverse agonist pimavanserin, cholinesterase inhibitors, and antidepressants and anxiolytics.
Collapse
Affiliation(s)
- Anna Chang
- Morton and Gloria Shulman Movement Disorder Clinic, University of Toronto, Toronto Western Hospital, 7th Floor, McLaughlin Pavilion, 399 Bathurst Street, Toronto, ON, M5T 2S8, Canada.,Department of Neurology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Susan H Fox
- Morton and Gloria Shulman Movement Disorder Clinic, University of Toronto, Toronto Western Hospital, 7th Floor, McLaughlin Pavilion, 399 Bathurst Street, Toronto, ON, M5T 2S8, Canada.
| |
Collapse
|
160
|
Siahposht-Khachaki A, Pourreza P, Ezzatpanah S, Haghparast A. Nucleus accumbens dopamine receptors mediate hypothalamus-induced antinociception in the rat formalin test. Eur J Pain 2017; 21:1285-1294. [DOI: 10.1002/ejp.1029] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2017] [Indexed: 12/15/2022]
Affiliation(s)
- A. Siahposht-Khachaki
- Department of Physiology and Pharmacology; Mazandaran University of Medical Sciences, Ramsar International Branch; Sari Iran
| | - P. Pourreza
- Neuroscience Research Center, School of Medicine; Shahid Beheshti University of Medical Sciences; Tehran Iran
| | - S. Ezzatpanah
- Neuroscience Research Center, School of Medicine; Shahid Beheshti University of Medical Sciences; Tehran Iran
| | - A. Haghparast
- Neuroscience Research Center, School of Medicine; Shahid Beheshti University of Medical Sciences; Tehran Iran
| |
Collapse
|
161
|
Dysregulation of Striatal Dopamine Receptor Binding in Suicide. Neuropsychopharmacology 2017; 42:974-982. [PMID: 27402414 PMCID: PMC5312055 DOI: 10.1038/npp.2016.124] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 06/03/2016] [Accepted: 07/04/2016] [Indexed: 02/02/2023]
Abstract
Inconsistent evidence implicates disruptions of striatal dopaminergic indices in suicide and major depression. To determine whether there are alterations in the striatal dopamine system in suicide, we conducted a quantitative autoradiographic survey of dopamine transporter (DAT; [3H]mazindol), D1 receptor ([3H]SCH23390), and D2 receptor ([3H]sulpiride) binding in the dorsal striatum postmortem from matched suicides and controls. Axis I and axis II psychiatric diagnosis, recent treatment history, and early life adversity (ELA) were determined by psychological autopsy. Mean DAT, D2, and D1 receptor binding did not differ in suicide. However, there was a positive correlation between D1 and D2 receptor binding in the dorsal striatum of control subjects (R2=0.31, p<0.05) that was not present in suicides (R2=0.00, p=0.97). In suicides and controls with reported ELA, there was no correlation between striatal DAT and D1 receptor binding (R2=0.07, p=0.33), although DAT and D1 receptor binding was positively correlated in subjects with no report of ELA (R2=0.32, p<0.05). After controlling for age, there were no significant ELA-related mean differences. Binding of D1 receptors and DAT throughout the striatum correlated negatively with age (D1 receptor: R2=0.12, p<0.05; DAT: R2=0.36, p<0.001). There appears to be an imbalance in dopaminergic receptor and transporter expression related to suicide that differs from that associated with ELA or age.
Collapse
|
162
|
Role of D2 dopamine receptors of the ventral pallidum in inhibitory avoidance learning. Behav Brain Res 2017; 321:99-105. [DOI: 10.1016/j.bbr.2017.01.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 12/13/2016] [Accepted: 01/01/2017] [Indexed: 11/21/2022]
|
163
|
Sadeghzadeh F, Babapour V, Haghparast A. Food deprivation facilitates reinstatement of morphine-induced conditioned place preference: Role of intra-accumbal dopamine D2-like receptors in associating reinstatement of morphine CPP with stress. Synapse 2017; 71. [DOI: 10.1002/syn.21951] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 11/20/2016] [Accepted: 11/22/2016] [Indexed: 12/18/2022]
Affiliation(s)
- Fatemeh Sadeghzadeh
- Department of Basic Sciences Faculty of Veterinary Medicine; University of Tehran; Tehran Iran
| | - Vahab Babapour
- Department of Basic Sciences Faculty of Veterinary Medicine; University of Tehran; Tehran Iran
| | - Abbas Haghparast
- Neuroscience Research Center; Shahid Beheshti University of Medical Sciences; Tehran Iran
| |
Collapse
|
164
|
Ishimaru Y, Kozuka C, Nakajima K, Sasaki T. Expanding frontiers in weight-control research explored by young investigators. J Physiol Sci 2017; 67:83-95. [PMID: 27730500 PMCID: PMC5138253 DOI: 10.1007/s12576-016-0495-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 09/30/2016] [Indexed: 01/30/2023]
Abstract
At the 93rd annual meeting of the Physiological Society of Japan, a symposium entitled "Expanding frontiers in weight-control research explored by young investigators" was organized. The latest research on weight control was presented by young up-and-coming investigators. The symposium consisted of the following presentations: Gastrointestinal brush cells, immunity, and energy homeostasis; Impact of a brown rice-derived bioactive product on feeding regulation and fuel metabolism; A novel G protein-coupled receptor-regulated neuronal signaling pathway triggers sustained orexigenic effects; and NMDA receptor co-agonist D-serine regulates food preference. These four talks presented at the symposium were summarized as a series of short reviews in this review.
Collapse
Affiliation(s)
- Yoshiro Ishimaru
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.
| | - Chisayo Kozuka
- Division of Endocrinology, Diabetes and Metabolism, Hematology, Rheumatology (Second Department of Internal Medicine), Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan.
| | - Kenichiro Nakajima
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.
| | - Tsutomu Sasaki
- Laboratory for Metabolic Signaling. Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan.
| |
Collapse
|
165
|
Variants of G protein-coupled receptors: a reappraisal of their role in receptor regulation. Biochem Soc Trans 2016; 44:589-94. [PMID: 27068974 DOI: 10.1042/bst20150239] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Indexed: 01/11/2023]
Abstract
Truncated or shorter forms of G protein-coupled receptors (GPCRs), originating by alternative splicing, have been considered physiologically irrelevant for a rather long time. Nevertheless, it is now recognized that alternative splicing variants of GPCRs greatly increase the total number of receptor isoforms and can regulate receptor trafficking and signalling. Furthermore, dimerization of these truncated variants with other receptors concurs to expand receptor diversity. Highly truncated variants of GPCRs, typically, are retained in the endoplasmic reticulum (ER) and by heteromerization prevent the wild-type receptor to reach the plasma membrane, exerting a dominant-negative effect on its function. This can be responsible for some pathological conditions but in some other cases, it can offer protection from a disease because the expression of the receptor, that is necessary for binding an infectious agent, is attenuated. Here, we propose a possible new mechanism of creation of truncated GPCR variants through an internal ribosome entry site (IRES), a nucleotide sequence that allows cap independent translation of proteins by recruiting the ribosome in proximity of an internal initiation codon. We suggest that an IRES, situated in the third cytoplasmic loop, could be responsible for the translation of the last two transmembrane (TM) regions of the muscarinic M2receptor. IRES driven expression of this C-terminal part of the muscarinic M2receptor could represent a novel and additional mechanism of receptor regulation.
Collapse
|
166
|
Effects of (-)-Sesamin on Chronic Stress-Induced Anxiety Disorders in Mice. Neurochem Res 2016; 42:1123-1129. [PMID: 27995494 DOI: 10.1007/s11064-016-2146-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 11/28/2016] [Accepted: 12/08/2016] [Indexed: 12/17/2022]
Abstract
This study investigated the effects of (-)-sesamin on chronic electric footshock (EF) stress-induced anxiety disorders in mice. Mice were treated with (-)-sesamin (25 and 50 mg/kg) orally once a day for 21 days prior to exposure to EF stress (0.6 mA, 1 s every 5 s, 3 min). Mice treated with (-)-sesamin (25 and 50 mg/kg) exhibited less severe decreases in the number of open arm entries and time spent on open arms in the elevated plus-maze test and the distance traveled in the open field test following exposure to chronic EF stress. Similarly, mice treated with (-)-sesamin exhibited significantly less severe decreases in brain levels of dopamine, norepinephrine, and serotonin following exposure to chronic EF stress. Increases in serum levels of corticosterone and expression of c-Fos were also less pronounced in mice treated with (-)-sesamin (25 and 50 mg/kg). These results suggest that (-)-sesamin may protect against the effects of chronic EF stress-induced anxiety disorders by modulating dopamine, norepinephrine, and serotonin levels, c-Fos expression, and corticosterone levels.
Collapse
|
167
|
Dopamine regulates renal osmoregulation during hyposaline stress via DRD1 in the spotted scat (Scatophagus argus). Sci Rep 2016; 6:37535. [PMID: 27857228 PMCID: PMC5114590 DOI: 10.1038/srep37535] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 11/01/2016] [Indexed: 01/11/2023] Open
Abstract
Dopamine is an important regulator of renal natriuresis and is critical for the adaptation of many animals to changing environmental salinity. However, the molecular mechanisms through which dopamine promotes this adaptation remain poorly understood. We studied the effects of dopamine on renal hypo-osmoregulation in the euryhaline fish Scatophagus argus (S. argus) during abrupt transfer from seawater (SW) to freshwater (FW). Following the transfer, serum dopamine concentration was decreased, and dopamine activated expression of the dopamine receptor 1 (designated SaDRD1) in the kidney, triggering the osmoregulatory signaling cascade. SaDRD1 protein is expressed in the renal proximal tubule cells in vivo, and is localized to the cell membrane of renal primary cells in vitro. Knockdown of SaDRD1 mRNA by siRNA significantly increased Na+/K+-ATPase (NKA) activity in cultured renal primary cells in vitro, suggesting that expression of SaDRD1 may oppose the activity of NKA. We demonstrate that exogenous dopamine enhances the response of NKA to hyposaline stress after transferring primary renal cells from isosmotic medium to hypoosmotic medium. Our results indicate that dopamine regulation via SaDRD1 ignited the renal dopaminergic system to balance the osmotic pressure through inhibiting NKA activity, providing a new perspective on the hyposaline adaptation of fish.
Collapse
|
168
|
Orendain-Jaime EN, Ortega-Ibarra JM, López-Pérez SJ. Evidence of sexual dimorphism in D1 and D2 dopaminergic receptors expression in frontal cortex and striatum of young rats. Neurochem Int 2016; 100:62-66. [DOI: 10.1016/j.neuint.2016.09.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 07/27/2016] [Accepted: 09/02/2016] [Indexed: 01/08/2023]
|
169
|
Galan-Rodriguez B, Martin E, Brouillet E, Déglon N, Betuing S, Caboche J. Coupling of D2R Short but not D2R Long receptor isoform to the Rho/ROCK signaling pathway renders striatal neurons vulnerable to mutant huntingtin. Eur J Neurosci 2016; 45:198-206. [PMID: 27717053 DOI: 10.1111/ejn.13415] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 09/09/2016] [Accepted: 09/21/2016] [Indexed: 01/27/2023]
Abstract
Huntington's disease, an inherited neurodegenerative disorder, results from abnormal polyglutamine extension in the N-terminal region of the huntingtin protein. This mutation causes preferential degeneration of striatal projection neurons. We previously demonstrated, in vitro, that dopaminergic D2 receptor stimulation acted in synergy with expanded huntingtin to increase aggregates formation and striatal death through activation of the Rho/ROCK signaling pathway. In vivo, in a lentiviral-mediated model of expanded huntingtin expression in the rat striatum, we found that the D2 antagonist haloperidol protects striatal neurons against expanded huntingtin-mediated toxicity. Two variant transcripts are generated by alternative splicing of the of D2 receptor gene, the D2R-Long and the D2R-Short, which are thought to play different functional roles. We show herein that overexpression of D2R-Short, but not D2R-Long in cell lines is associated with activation of the RhoA/ROCK signaling pathway. In striatal neurons in culture, the selective D2 agonist Quinpirole triggers phosphorylation of cofilin, a downstream effector of ROCK, which is abrogated by siRNAs that knockdown both D2R-Long and D2R-Short, but not by siRNAs targeting D2R-Long alone. Aggregate formation and neuronal death induced by expanded huntingtin, were potentiated by Quinpirole. This D2 agonist-mediated effect was selectively inhibited by the siRNA targeting both D2R-Long and D2R-Short but not D2R-Long alone. Our data provide evidence for a specific coupling of D2R-Short to the RhoA/ROCK/cofilin pathway, and its involvement in striatal vulnerability to expanded huntingtin. A new route for targeting Rho-ROCK signaling in Huntington's disease is unraveled with our findings.
Collapse
Affiliation(s)
- Beatriz Galan-Rodriguez
- UMRS-INSERM1130, Neurosciences Paris Seine, Paris, France.,Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, Sevilla, Spain
| | - Elodie Martin
- INSERM UMRS_1127/UPMC/CNRS UMR7225, Institut du Cerveau et de la Moelle, Hôpital Pitié-Salpêtrière, Paris, France
| | - Emmanuel Brouillet
- CEA, DSV, I²BM, Molecular Imaging Research Center (MIRCen), Fontenay-aux-Roses, France.,Neurodegenerative Diseases Laboratory, CNRS CEA URA 2210, Fontenay-aux-Roses, France
| | - Nicole Déglon
- Department of Clinical Neurosciences (DNC), Laboratory of Cellular and Molecular Neurotherapies (LNCM), Lausanne University Medical School (CHUV), Lausanne, Switzerland.,Neuroscience Research Center (CRN), Laboratory of Cellular and Molecular Neurotherapies (LNCM), Lausanne University Medical School (CHUV), Lausanne, Switzerland
| | - Sandrine Betuing
- UMRS-INSERM1130, Neurosciences Paris Seine, Paris, France.,UMR CNRS-8246, Paris, France.,Sorbonne Université, UM119, Université Pierre and Marie Curie-Paris 6, 9 quai Saint Bernard, 75005, Paris, France
| | - Jocelyne Caboche
- UMRS-INSERM1130, Neurosciences Paris Seine, Paris, France.,UMR CNRS-8246, Paris, France.,Sorbonne Université, UM119, Université Pierre and Marie Curie-Paris 6, 9 quai Saint Bernard, 75005, Paris, France
| |
Collapse
|
170
|
Role of ventral pallidal D2 dopamine receptors in the consolidation of spatial memory. Behav Brain Res 2016; 313:1-9. [DOI: 10.1016/j.bbr.2016.07.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 06/30/2016] [Accepted: 07/04/2016] [Indexed: 11/18/2022]
|
171
|
Hagena H, Manahan-Vaughan D. Dopamine D1/D5, But not D2/D3, Receptor Dependency of Synaptic Plasticity at Hippocampal Mossy Fiber Synapses that Is Enabled by Patterned Afferent Stimulation, or Spatial Learning. Front Synaptic Neurosci 2016; 8:31. [PMID: 27721791 PMCID: PMC5033958 DOI: 10.3389/fnsyn.2016.00031] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 09/08/2016] [Indexed: 01/11/2023] Open
Abstract
Although the mossy fiber (MF) synapses of the hippocampal CA3 region display quite distinct properties in terms of the molecular mechanisms that underlie synaptic plasticity, they nonetheless exhibit persistent (>24 h) synaptic plasticity that is akin to that observed at the Schaffer collateral (SCH)-CA1 and perforant path (PP)-dentate gyrus (DG) synapses of freely behaving rats. In addition, they also respond to novel spatial learning with very enduring forms of long-term potentiation (LTP) and long-term depression (LTD). These latter forms of synaptic plasticity are directly related to the learning behavior: novel exploration of generalized changes in space facilitates the expression of LTP at MF-CA3 synapses, whereas exploration of novel configurations of large environmental features facilitates the expression of LTD. In the absence of spatial novelty, synaptic plasticity is not expressed. Motivation is a potent determinant of whether learning about the spatial experience effectively occurs and the neuromodulator dopamine (DA) plays a key role in motivation-based learning. Prior research on the regulation by DA receptors of long-term synaptic plasticity in CA1 and DG synapses in vivo suggests that whereas D2/D3 receptors may modulate a general predisposition toward expressing plasticity, D1/D5 receptors may directly regulate the direction of change in synaptic strength that occurs during learning. Although the CA3 region is believed to play a pivotal role in many forms of learning, the role of dopamine receptors in persistent (>24 h) forms of synaptic plasticity at MF-CA3 synapses is unknown. Here, we report that whereas pharmacological antagonism of D2/D3 receptors had no impact on LTP or LTD, antagonism of D1/D5 receptors significantly impaired LTP and LTD that were induced by solely by means of patterned afferent stimulation, or LTP/LTD that are typically enhanced by the conjunction of afferent stimulation and novel spatial learning. These data indicate an important role for DA acting on D1/D5 receptors in the support of long-lasting and learning-related forms of synaptic plasticity at MF-CA3 synapses and provide further evidence for an important neuromodulatory role for this receptor in experience-dependent synaptic encoding in the hippocampal subfields.
Collapse
Affiliation(s)
- Hardy Hagena
- Department of Neurophysiology, Medical Faculty, Ruhr University Bochum Bochum, Germany
| | | |
Collapse
|
172
|
Sescousse G, Janssen LK, Hashemi MM, Timmer MHM, Geurts DEM, ter Huurne NP, Clark L, Cools R. Amplified Striatal Responses to Near-Miss Outcomes in Pathological Gamblers. Neuropsychopharmacology 2016; 41:2614-23. [PMID: 27006113 PMCID: PMC4987843 DOI: 10.1038/npp.2016.43] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 02/17/2016] [Accepted: 03/18/2016] [Indexed: 01/06/2023]
Abstract
Near-misses in gambling games are losing events that come close to a win. Near-misses were previously shown to recruit reward-related brain regions including the ventral striatum, and to invigorate gambling behavior, supposedly by fostering an illusion of control. Given that pathological gamblers are particularly vulnerable to such cognitive illusions, their persistent gambling behavior might result from an amplified striatal sensitivity to near-misses. In addition, animal studies have shown that behavioral responses to near-miss-like events are sensitive to dopamine, but this dopaminergic influence has not been tested in humans. To investigate these hypotheses, we recruited 22 pathological gamblers and 22 healthy controls who played a slot machine task delivering wins, near-misses and full-misses, inside an fMRI scanner. Each participant played the task twice, once under placebo and once under a dopamine D2 receptor antagonist (sulpiride 400 mg), in a double-blind, counter-balanced design. Participants were asked about their motivation to continue gambling throughout the task. Across all participants, near-misses elicited higher motivation to continue gambling and increased striatal responses compared with full-misses. Crucially, pathological gamblers showed amplified striatal responses to near-misses compared with controls. These group differences were not observed following win outcomes. In contrast to our hypothesis, sulpiride did not induce any reliable modulation of brain responses to near-misses. Together, our results demonstrate that pathological gamblers have amplified brain responses to near-misses, which likely contribute to their persistent gambling behavior. However, there is no evidence that these responses are influenced by dopamine. These results have implications for treatment and gambling regulation.
Collapse
Affiliation(s)
- Guillaume Sescousse
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
- Department of Psychiatry, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Lieneke K Janssen
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
- Department of Psychiatry, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Mahur M Hashemi
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Monique H M Timmer
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
- Department of Neurology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Dirk E M Geurts
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
- Department of Psychiatry, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Niels P ter Huurne
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
- Karakter Child and Adolescent Psychiatry University Centre, Nijmegen, The Netherlands
| | - Luke Clark
- Department of Psychology, Centre for Gambling Research at UBC, University of British Columbia, Vancouver, British Columbia, Canada
| | - Roshan Cools
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
- Department of Psychiatry, Radboud University Medical Centre, Nijmegen, The Netherlands
| |
Collapse
|
173
|
Jolly C, Rousseau K, Prézeau L, Vol C, Tomkiewicz J, Dufour S, Pasqualini C. Functional Characterisation of Eel Dopamine D2 Receptors and Involvement in the Direct Inhibition of Pituitary Gonadotrophins. J Neuroendocrinol 2016; 28. [PMID: 27453551 DOI: 10.1111/jne.12411] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 06/21/2016] [Accepted: 07/20/2016] [Indexed: 01/11/2023]
Abstract
In various vertebrate species, dopamine (DA) exerts an inhibitory action on reproduction. In the European eel, DA plays a pivotal role in the inhibitory control of gonadotroph function and the blockade of puberty. In vivo studies have suggested that this effect is mediated by receptors pharmacologically related to the D2 family. In the European eel, two distinct D2 receptor (D2-R) paralogous genes have been identified (D2A-R and D2B-R) and both were shown to be expressed in the pituitary. We investigated the potential role of each paralogue in the control of gonadotroph function in this species. Eel recombinant D2A-R or D2B-R were expressed in HEK 293 cells, with a universal Gα subunit, and receptor activation was followed by inositol phosphate production. Recombinant D2-Rs exhibited a comparable affinity for DA, although they had differential affinities for mammalian D2-R agonists and antagonists, supporting subtle structure/activity differences. Furthermore, using eel pituitary cell primary cultures, the expression by gonadotroph cells of both native eel D2-R paralogues was examined by in situ hybridisation of D2A-R or D2B-R transcripts, coupled with immunofluorescence of luteinising hormone (LH)β or follicle-stimulating (FSH)β. LH and to a lesser extent, FSH cells expressed both D2-R transcripts but with a clear predominance of D2B-R. Notably, D2B-R transcripts were detected for the majority of LH cells. Accordingly, using these cultures, we showed that DA potently inhibited basal and testosterone-stimulated LHβ expression and less potently basal and activin-stimulated FSHβ expression. We also tested some D2-R antagonists, aiming to select the most adequate one to be used in innovative protocols for induction of eel sexual maturation. We identified eticlopride as the most potent inhibitor of DA action on basal and stimulated LH expression in vitro. Our data suggest a differential functionalisation of the duplicated receptor genes and demonstrate that mainly D2B-R is involved in the dopaminergic inhibitory control of eel gonadotroph function.
Collapse
Affiliation(s)
- C Jolly
- Muséum National d'Histoire Naturelle, Sorbonne Universités, Research Unit BOREA, Biologie des Organismes et Ecosystèmes Aquatiques, CNRS 7208, IRD207, UPMC, UCN, UA, Paris, France
| | - K Rousseau
- Muséum National d'Histoire Naturelle, Sorbonne Universités, Research Unit BOREA, Biologie des Organismes et Ecosystèmes Aquatiques, CNRS 7208, IRD207, UPMC, UCN, UA, Paris, France
| | - L Prézeau
- CNRS UMR5203, Institut de Génomique Fonctionnelle, Montpellier, France
- INSERM U661, Montpellier, France
- Université de Montpellier 1 & 2, Montpellier, France
| | - C Vol
- CNRS UMR5203, Institut de Génomique Fonctionnelle, Montpellier, France
- INSERM U661, Montpellier, France
- Université de Montpellier 1 & 2, Montpellier, France
| | - J Tomkiewicz
- National Institute of Aquatic Resources, Technical University of Denmark, Charlottenlund, Denmark
| | - S Dufour
- Muséum National d'Histoire Naturelle, Sorbonne Universités, Research Unit BOREA, Biologie des Organismes et Ecosystèmes Aquatiques, CNRS 7208, IRD207, UPMC, UCN, UA, Paris, France.
| | - C Pasqualini
- Institut des Neurosciences Paris-Saclay, Développement et Evolution de la Neurotransmission, Département Dev-Evo, Université Paris Sud, CNRS UMR 9197, Gif-Sur-Yvette, France.
| |
Collapse
|
174
|
Arafa NMS, Marie MAS, AlAzimi SAM. Effect of canagliflozin and metformin on cortical neurotransmitters in a diabetic rat model. Chem Biol Interact 2016; 258:79-88. [PMID: 27566243 DOI: 10.1016/j.cbi.2016.08.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 08/05/2016] [Accepted: 08/19/2016] [Indexed: 12/13/2022]
Abstract
BACKGROUND The rapid economic development in the Arabian Gulf has resulted in lifestyle changes that have increased the prevalence of obesity and type 2 diabetes, with the greatest increases observed in Kuwait. Dyslipidemia and diabetes are risk factors for disruptions in cortical neurotransmitter homeostasis. This study investigated the effect of the antidiabetic medications canagliflozin (CAN) and metformin (MET) on the levels of cortical neurotransmitters in a diabetic rat model. MATERIALS AND METHODS The rats were assigned to the control (C) group, the diabetic group that did not receive treatment (D) or the diabetic group treated with either CAN (10 mg/kg) or MET (100 mg/kg) for 2 or 4 weeks. Blood and urine glucose levels and cortical acetylcholinesterase (AChE) activity were assayed, and amino acid and monoamine levels were measured using HPLC. RESULTS The diabetic group exhibited a significant increase in AChE activity and a decrease in monoamine and amino acid neurotransmitter levels. In the CAN group, AChE was significantly lower than that in the D and D + MET groups after 2 weeks of treatment. In addition, a significant increase in some cortical monoamines and amino acids was observed in the D + MET and D + CAN groups compared with the D group. Histopathological analysis revealed the presence of severe focal hemorrhage, neuronal degeneration, and cerebral blood vessel congestion, with gliosis in the cerebrum of rats in the D group. The CAN-treated group exhibited severe cerebral blood vessel congestion after 2 weeks of treatment and focal gliosis in the cerebrum after 4 weeks of treatment. Focal gliosis in the cerebrum of rats in the MET-treated group was observed after 2 and 4 weeks of treatment. CONCLUSIONS We conclude that the effect of CAN and MET on neurotransmitters is potentially mediated by their antihyperglycemic and antihyperlipidemic effects. In addition, the effects of CAN on neurotransmitters might be associated with its receptor activity, and the effect of MET on neurotransmitters might be associated with cerebral metabolism.
Collapse
Affiliation(s)
- Nadia M S Arafa
- Faculty of Science, Biology Department, Jazan University, KSA & National Organization for Drug Control and Research, Department of Physiology, Egypt.
| | | | | |
Collapse
|
175
|
Dopamine- and Tyrosine Hydroxylase-Immunoreactive Neurons in the Brain of the American Cockroach, Periplaneta americana. PLoS One 2016; 11:e0160531. [PMID: 27494326 PMCID: PMC4975486 DOI: 10.1371/journal.pone.0160531] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 07/19/2016] [Indexed: 11/19/2022] Open
Abstract
The catecholamine dopamine plays several vital roles in the central nervous system of many species, but its neural mechanisms remain elusive. Detailed neuroanatomical characterization of dopamine neurons is a prerequisite for elucidating dopamine’s actions in the brain. In the present study, we investigated the distribution of dopaminergic neurons in the brain of the American cockroach, Periplaneta americana, using two antisera: 1) an antiserum against dopamine, and 2) an antiserum against tyrosine hydroxylase (TH, an enzyme required for dopamine synthesis), and identified about 250 putatively dopaminergic neurons. The patterns of dopamine- and TH-immunoreactive neurons were strikingly similar, suggesting that both antisera recognize the same sets of “dopaminergic” neurons. The dopamine and TH antibodies intensively or moderately immunolabeled prominent brain neuropils, e.g. the mushroom body (memory center), antennal lobe (first-order olfactory center) and central complex (motor coordination center). All subdivisions of the mushroom body exhibit both dopamine and TH immunoreactivity. Comparison of immunolabeled neurons with those filled by dye injection revealed that a group of immunolabeled neurons with cell bodies near the calyx projects into a distal region of the vertical lobe, which is a plausible site for olfactory memory formation in insects. In the antennal lobe, ordinary glomeruli as well as macroglomeruli exhibit both dopamine and TH immunoreactivity. It is noteworthy that the dopamine antiserum labeled tiny granular structures inside the glomeruli whereas the TH antiserum labeled processes in the marginal regions of the glomeruli, suggesting a different origin. In the central complex, all subdivisions excluding part of the noduli and protocerebral bridge exhibit both dopamine and TH immunoreactivity. These anatomical findings will accelerate our understanding of dopaminergic systems, specifically in neural circuits underlying aversive memory formation and arousal, in insects.
Collapse
|
176
|
Characterization of the interaction between the dopamine D4 receptor, KLHL12 and β-arrestins. Cell Signal 2016; 28:1001-14. [DOI: 10.1016/j.cellsig.2016.05.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Revised: 04/27/2016] [Accepted: 05/02/2016] [Indexed: 01/11/2023]
|
177
|
Connectome and molecular pharmacological differences in the dopaminergic system in restless legs syndrome (RLS): plastic changes and neuroadaptations that may contribute to augmentation. Sleep Med 2016; 31:71-77. [PMID: 27539027 DOI: 10.1016/j.sleep.2016.06.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 05/21/2016] [Accepted: 06/04/2016] [Indexed: 01/08/2023]
Abstract
Restless legs syndrome (RLS) is primarily treated with levodopa and dopaminergics that target the inhibitory dopamine receptor subtypes D3 and D2. The initial success of this therapy led to the idea of a hypodopaminergic state as the mechanism underlying RLS. However, multiple lines of evidence suggest that this simplified concept of a reduced dopamine function as the basis of RLS is incomplete. Moreover, long-term medication with the D2/D3 agonists leads to a reversal of the initial benefits of dopamine agonists and augmentation, which is a worsening of symptoms under therapy. The recent findings on the state of the dopamine system in RLS that support the notion that a dysfunction in the dopamine system may in fact induce a hyperdopaminergic state are summarized. On the basis of these data, the concept of a dynamic nature of the dopamine effects in a circadian context is presented. The possible interactions of cell adhesion molecules expressed by the dopaminergic systems and their possible effects on RLS and augmentation are discussed. Genome-wide association studies (GWAS) indicate a significantly increased risk for RLS in populations with genomic variants of the cell adhesion molecule receptor type protein tyrosine phosphatase D (PTPRD), and PTPRD is abundantly expressed by dopamine neurons. PTPRD may play a role in the reconfiguration of neural circuits, including shaping the interplay of G protein-coupled receptor (GPCR) homomers and heteromers that mediate dopaminergic modulation. Recent animal model data support the concept that interactions between functionally distinct dopamine receptor subtypes can reshape behavioral outcomes and change with normal aging. Additionally, long-term activation of one dopamine receptor subtype can increase the receptor expression of a different receptor subtype with opposite modulatory actions. Such dopamine receptor interactions at both spinal and supraspinal levels appear to play important roles in RLS. In addition, these interactions can extend to the adenosine A1 and A2A receptors, which are also prominently expressed in the striatum. Interactions between adenosine and dopamine receptors and dopaminergic cell adhesion molecules, including PTPRD, may provide new pharmacological targets for treating RLS. In summary, new treatment options for RLS that include recovery from augmentation will have to consider dynamic changes in the dopamine system that occur during the circadian cycle, plastic changes that can develop as a function of treatment or with aging, changes in the connectome based on alterations in cell adhesion molecules, and receptor interactions that may extend beyond the dopamine system itself.
Collapse
|
178
|
Valente TS, Baldi F, Sant’Anna AC, Albuquerque LG, Paranhos da Costa MJR. Genome-Wide Association Study between Single Nucleotide Polymorphisms and Flight Speed in Nellore Cattle. PLoS One 2016; 11:e0156956. [PMID: 27300296 PMCID: PMC4907449 DOI: 10.1371/journal.pone.0156956] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 05/23/2016] [Indexed: 12/17/2022] Open
Abstract
Introduction Cattle temperament is an important factor that affects the profitability of beef cattle enterprises, due to its relationship with productivity traits, animal welfare and labor safety. Temperament is a complex phenotype often assessed by measuring a series of behavioral traits, which result from the effects of multiple environmental and genetic factors, and their interactions. The aims of this study were to perform a genome-wide association study and detect genomic regions, potential candidate genes and their biological mechanisms underlying temperament, measured by flight speed (FS) test in Nellore cattle. Materials and Methods The genome-wide association study (GWAS) was performed using a single-step procedure (ssGBLUP) which combined simultaneously all 16,600 phenotypes from genotyped and non-genotyped animals, full pedigree information of 162,645 animals and 1,384 genotyped animals in one step. The animals were genotyped with High Density Bovine SNP BeadChip which contains 777,962 SNP markers. After quality control (QC) a total of 455,374 SNPs remained. Results Heritability estimated for FS was 0.21 ± 0.02. Consecutive SNPs explaining 1% or more of the total additive genetic variance were considered as windows associated with FS. Nine candidate regions located on eight different Bos taurus chromosomes (BTA) (1 at 73 Mb, 2 at 65 Mb, 5 at 22 Mb and 119 Mb, 9 at 98 Mb, 11 at 67 Mb, 15 at 16 Mb, 17 at 63 Kb, and 26 at 47 Mb) were identified. The candidate genes identified in these regions were NCKAP5 (BTA2), PARK2 (BTA9), ANTXR1 (BTA11), GUCY1A2 (BTA15), CPE (BTA17) and DOCK1 (BTA26). Among these genes PARK2, GUCY1A2, CPE and DOCK1 are related to dopaminergic system, memory formation, biosynthesis of peptide hormone and neurotransmitter and brain development, respectively. Conclusions Our findings allowed us to identify nine genomic regions (SNP windows) associated with beef cattle temperament, measured by FS test. Within these windows, six promising candidate genes and their biological functions were identified. These results may contribute to a better comprehension into the genetic control of temperament expression in Nellore cattle.
Collapse
Affiliation(s)
- Tiago Silva Valente
- Universidade Estadual Paulista (Unesp), Faculdade de Ciências Agrárias e Veterinárias, Departamento de Zootecnia, Via de Acesso Professor Paulo Donato Castellane, Jaboticabal, SP 14.884-900, Brazil
| | - Fernando Baldi
- Universidade Estadual Paulista (Unesp), Faculdade de Ciências Agrárias e Veterinárias, Departamento de Zootecnia, Via de Acesso Professor Paulo Donato Castellane, Jaboticabal, SP 14.884-900, Brazil
| | - Aline Cristina Sant’Anna
- Universidade Federal de Juiz de Fora (UFJF), Instituto de Ciências Biológicas, Departamento de Zoologia, Rua José Lourenço Kelmer, Juiz de Fora, MG 36.036-900, Brazil
| | - Lucia Galvão Albuquerque
- Universidade Estadual Paulista (Unesp), Faculdade de Ciências Agrárias e Veterinárias, Departamento de Zootecnia, Via de Acesso Professor Paulo Donato Castellane, Jaboticabal, SP 14.884-900, Brazil
| | - Mateus José Rodrigues Paranhos da Costa
- Universidade Estadual Paulista (Unesp), Faculdade de Ciências Agrárias e Veterinárias, Departamento de Zootecnia, Via de Acesso Professor Paulo Donato Castellane, Jaboticabal, SP 14.884-900, Brazil
- * E-mail:
| |
Collapse
|
179
|
Jenkins PO, Mehta MA, Sharp DJ. Catecholamines and cognition after traumatic brain injury. Brain 2016; 139:2345-71. [PMID: 27256296 PMCID: PMC4995357 DOI: 10.1093/brain/aww128] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 04/20/2016] [Indexed: 01/11/2023] Open
Abstract
Cognitive problems are one of the main causes of ongoing disability after traumatic brain injury. The heterogeneity of the injuries sustained and the variability of the resulting cognitive deficits makes treating these problems difficult. Identifying the underlying pathology allows a targeted treatment approach aimed at cognitive enhancement. For example, damage to neuromodulatory neurotransmitter systems is common after traumatic brain injury and is an important cause of cognitive impairment. Here, we discuss the evidence implicating disruption of the catecholamines (dopamine and noradrenaline) and review the efficacy of catecholaminergic drugs in treating post-traumatic brain injury cognitive impairments. The response to these therapies is often variable, a likely consequence of the heterogeneous patterns of injury as well as a non-linear relationship between catecholamine levels and cognitive functions. This individual variability means that measuring the structure and function of a person’s catecholaminergic systems is likely to allow more refined therapy. Advanced structural and molecular imaging techniques offer the potential to identify disruption to the catecholaminergic systems and to provide a direct measure of catecholamine levels. In addition, measures of structural and functional connectivity can be used to identify common patterns of injury and to measure the functioning of brain ‘networks’ that are important for normal cognitive functioning. As the catecholamine systems modulate these cognitive networks, these measures could potentially be used to stratify treatment selection and monitor response to treatment in a more sophisticated manner.
Collapse
Affiliation(s)
- Peter O Jenkins
- 1 The Division of Brain Sciences, The Department of Medicine, Imperial College London, UK
| | - Mitul A Mehta
- 2 Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - David J Sharp
- 1 The Division of Brain Sciences, The Department of Medicine, Imperial College London, UK
| |
Collapse
|
180
|
Okbay A, Baselmans BML, De Neve JE, Turley P, Nivard MG, Fontana MA, Meddens SFW, Linnér RK, Rietveld CA, Derringer J, Gratten J, Lee JJ, Liu JZ, de Vlaming R, Ahluwalia TS, Buchwald J, Cavadino A, Frazier-Wood AC, Furlotte NA, Garfield V, Geisel MH, Gonzalez JR, Haitjema S, Karlsson R, van der Laan SW, Ladwig KH, Lahti J, van der Lee SJ, Lind PA, Liu T, Matteson L, Mihailov E, Miller MB, Minica CC, Nolte IM, Mook-Kanamori D, van der Most PJ, Oldmeadow C, Qian Y, Raitakari O, Rawal R, Realo A, Rueedi R, Schmidt B, Smith AV, Stergiakouli E, Tanaka T, Taylor K, Thorleifsson G, Wedenoja J, Wellmann J, Westra HJ, Willems SM, Zhao W, Amin N, Bakshi A, Bergmann S, Bjornsdottir G, Boyle PA, Cherney S, Cox SR, Davies G, Davis OSP, Ding J, Direk N, Eibich P, Emeny RT, Fatemifar G, Faul JD, Ferrucci L, Forstner AJ, Gieger C, Gupta R, Harris TB, Harris JM, Holliday EG, Hottenga JJ, De Jager PL, Kaakinen MA, Kajantie E, Karhunen V, Kolcic I, Kumari M, Launer LJ, Franke L, Li-Gao R, Liewald DC, Koini M, Loukola A, Marques-Vidal P, Montgomery GW, Mosing MA, Paternoster L, Pattie A, Petrovic KE, Pulkki-Råback L, Quaye L, Räikkönen K, Rudan I, Scott RJ, Smith JA, Sutin AR, Trzaskowski M, Vinkhuyzen AE, Yu L, Zabaneh D, Attia JR, Bennett DA, Berger K, Bertram L, Boomsma DI, Snieder H, Chang SC, Cucca F, Deary IJ, van Duijn CM, Eriksson JG, Bültmann U, de Geus EJC, Groenen PJF, Gudnason V, Hansen T, Hartman CA, Haworth CMA, Hayward C, Heath AC, Hinds DA, Hyppönen E, Iacono WG, Järvelin MR, Jöckel KH, Kaprio J, Kardia SLR, Keltikangas-Järvinen L, Kraft P, Kubzansky LD, Lehtimäki T, Magnusson PKE, Martin NG, McGue M, Metspalu A, Mills M, de Mutsert R, Oldehinkel AJ, Pasterkamp G, Pedersen NL, Plomin R, Polasek O, Power C, Rich SS, Rosendaal FR, den Ruijter HM, Schlessinger D, Schmidt H, Svento R, Schmidt R, Alizadeh BZ, Sørensen TIA, Spector TD, Starr JM, Stefansson K, Steptoe A, Terracciano A, Thorsteinsdottir U, Thurik AR, Timpson NJ, Tiemeier H, Uitterlinden AG, Vollenweider P, Wagner GG, Weir DR, Yang J, Conley DC, Smith GD, Hofman A, Johannesson M, Laibson DI, Medland SE, Meyer MN, Pickrell JK, Esko T, Krueger RF, Beauchamp JP, Koellinger PD, Benjamin DJ, Bartels M, Cesarini D. Genetic variants associated with subjective well-being, depressive symptoms, and neuroticism identified through genome-wide analyses. Nat Genet 2016; 48:624-33. [PMID: 27089181 PMCID: PMC4884152 DOI: 10.1038/ng.3552] [Citation(s) in RCA: 583] [Impact Index Per Article: 72.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 03/24/2016] [Indexed: 12/15/2022]
Abstract
Very few genetic variants have been associated with depression and neuroticism, likely because of limitations on sample size in previous studies. Subjective well-being, a phenotype that is genetically correlated with both of these traits, has not yet been studied with genome-wide data. We conducted genome-wide association studies of three phenotypes: subjective well-being (n = 298,420), depressive symptoms (n = 161,460), and neuroticism (n = 170,911). We identify 3 variants associated with subjective well-being, 2 variants associated with depressive symptoms, and 11 variants associated with neuroticism, including 2 inversion polymorphisms. The two loci associated with depressive symptoms replicate in an independent depression sample. Joint analyses that exploit the high genetic correlations between the phenotypes (|ρ^| ≈ 0.8) strengthen the overall credibility of the findings and allow us to identify additional variants. Across our phenotypes, loci regulating expression in central nervous system and adrenal or pancreas tissues are strongly enriched for association.
Collapse
Affiliation(s)
- Aysu Okbay
- Department of Applied Economics, Erasmus School of Economics, Erasmus University Rotterdam, Rotterdam, the Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
- Erasmus University Rotterdam Institute for Behavior and Biology, Rotterdam, the Netherlands
| | - Bart M L Baselmans
- Department of Biological Psychology, Vrije Universiteit, Amsterdam, the Netherlands
- EMGO+ Institute for Health and Care Research, Amsterdam, the Netherlands
| | | | - Patrick Turley
- Department of Economics, Harvard University, Cambridge, Massachusetts, USA
| | - Michel G Nivard
- Department of Biological Psychology, Vrije Universiteit, Amsterdam, the Netherlands
| | - Mark Alan Fontana
- Center for Economic and Social Research, University of Southern California, Los Angeles, California, USA
| | - S Fleur W Meddens
- Erasmus University Rotterdam Institute for Behavior and Biology, Rotterdam, the Netherlands
- Department of Complex Trait Genetics, Vrije Universiteit, Center for Neurogenomics and Cognitive Research, Amsterdam, the Netherlands
- Amsterdam Business School, University of Amsterdam, Amsterdam, the Netherlands
| | - Richard Karlsson Linnér
- Erasmus University Rotterdam Institute for Behavior and Biology, Rotterdam, the Netherlands
- Department of Complex Trait Genetics, Vrije Universiteit, Center for Neurogenomics and Cognitive Research, Amsterdam, the Netherlands
- Amsterdam Business School, University of Amsterdam, Amsterdam, the Netherlands
| | - Cornelius A Rietveld
- Department of Applied Economics, Erasmus School of Economics, Erasmus University Rotterdam, Rotterdam, the Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
- Erasmus University Rotterdam Institute for Behavior and Biology, Rotterdam, the Netherlands
| | - Jaime Derringer
- Department of Psychology, University of Illinois, Champaign, Illinois, USA
| | - Jacob Gratten
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia
| | - James J Lee
- Department of Psychology, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
| | - Jimmy Z Liu
- New York Genome Center, New York, New York, USA
| | - Ronald de Vlaming
- Department of Applied Economics, Erasmus School of Economics, Erasmus University Rotterdam, Rotterdam, the Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
- Erasmus University Rotterdam Institute for Behavior and Biology, Rotterdam, the Netherlands
| | - Tarunveer S Ahluwalia
- COPSAC (Copenhagen Prospective Studies on Asthma in Childhood), Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, University of Copenhagen, Faculty of Health and Medical Sciences, Copenhagen, Denmark
- Steno Diabetes Center, Gentofte, Denmark
| | - Jadwiga Buchwald
- Department of Public Health, University of Helsinki, Helsinki, Finland
| | - Alana Cavadino
- Centre for Environmental and Preventive Medicine, Wolfson Institute of Preventive Medicine, Queen Mary University of London, London, UK
- South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Alexis C Frazier-Wood
- USDA-ARS Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas, USA
| | | | - Victoria Garfield
- Department of Epidemiology and Public Health, University College London, London, UK
| | - Marie Henrike Geisel
- Institute for Medical Informatics, Biometry and Epidemiology, University Hospital of Essen, Essen, Germany
| | - Juan R Gonzalez
- Centre for Research in Environmental Epidemiology, Institute for Global Health, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- CIBER Epidemiología y Salud Pública, Barcelona, Spain
| | - Saskia Haitjema
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Robert Karlsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Sander W van der Laan
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Karl-Heinz Ladwig
- Department of Psychosomatic Medicine and Psychotherapy, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Jari Lahti
- Institute of Behavioural Sciences, University of Helsinki, Helsinki, Finland
- Folkhälsan Research Centre, Helsingfors, Finland
- Helsinki Collegium for Advanced Studies, University of Helsinki, Helsinki, Finland
| | - Sven J van der Lee
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Penelope A Lind
- Psychiatric Genetics, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Tian Liu
- Max Planck Institute for Human Development, Berlin, Germany
- Max Planck Institute for Molecular Genetics, Department of Vertebrate Genomics, Berlin, Germany
| | - Lindsay Matteson
- Department of Psychology, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
| | | | - Michael B Miller
- Department of Psychology, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
| | - Camelia C Minica
- Department of Biological Psychology, Vrije Universiteit, Amsterdam, the Netherlands
| | - Ilja M Nolte
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Dennis Mook-Kanamori
- Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
- Public Health and Primary Care, Leiden University Medical Center, Leiden, the Netherlands
- BESC, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Peter J van der Most
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Christopher Oldmeadow
- Public Health Stream, Hunter Medical Research Institute, New Lambton, New South Wales, Australia
- Faculty of Health and Medicine, University of Newcastle, Newcastle, New South Wales, Australia
| | - Yong Qian
- Laboratory of Genetics, National Institute on Aging, Baltimore, Maryland, USA
| | - Olli Raitakari
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
- Department of Clinical Physiology, Turku University Hospital, Turku, Finland
| | - Rajesh Rawal
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Anu Realo
- Department of Psychology, University of Tartu, Tartu, Estonia
- Department of Psychology, University of Warwick, Coventry, UK
| | - Rico Rueedi
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Börge Schmidt
- Institute for Medical Informatics, Biometry and Epidemiology, University Hospital of Essen, Essen, Germany
| | - Albert V Smith
- Icelandic Heart Association, Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Evie Stergiakouli
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Toshiko Tanaka
- National Institute on Aging, US National Institutes of Health, Baltimore, Maryland, USA
| | - Kent Taylor
- Los Angeles Biomedical Research Institute and Department of Pediatrics, Harbor-UCLA, Torrence, California, USA
| | | | - Juho Wedenoja
- Department of Public Health, University of Helsinki, Helsinki, Finland
| | - Juergen Wellmann
- Institute of Epidemiology and Social Medicine, University of Münster, Münster, Germany
| | - Harm-Jan Westra
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Division of Rheumatology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Sara M Willems
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Wei Zhao
- Department of Epidemiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Najaf Amin
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Andrew Bakshi
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia
| | | | | | - Patricia A Boyle
- Department of Behavioral Sciences, Rush University Medical Center, Chicago, Illinois, USA
| | | | - Simon R Cox
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
- Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Gail Davies
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
- Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Oliver S P Davis
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Jun Ding
- Laboratory of Genetics, National Institute on Aging, Baltimore, Maryland, USA
| | - Nese Direk
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Peter Eibich
- German Socio-Economic Panel Study, DIW Berlin, Berlin, Germany
- Health Economics Research Centre, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Rebecca T Emeny
- Institute of Epidemiology II, Mental Health Research Unit, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Ghazaleh Fatemifar
- Farr Institute of Health Informatics, University College London, London, UK
| | - Jessica D Faul
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, Michigan, USA
| | - Luigi Ferrucci
- National Institute on Aging, US National Institutes of Health, Baltimore, Maryland, USA
| | - Andreas J Forstner
- Institute of Human Genetics, University of Bonn, Bonn, Germany
- Department of Genomics, Life and Brain Center, University of Bonn, Bonn, Germany
| | - Christian Gieger
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Richa Gupta
- Department of Public Health, University of Helsinki, Helsinki, Finland
| | - Tamara B Harris
- Laboratory of Epidemiology, Demography, National Institute on Aging, US National Institutes of Health, Bethesda, Maryland, USA
| | - Juliette M Harris
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Elizabeth G Holliday
- Public Health Stream, Hunter Medical Research Institute, New Lambton, New South Wales, Australia
- Faculty of Health and Medicine, University of Newcastle, Newcastle, New South Wales, Australia
| | - Jouke-Jan Hottenga
- Department of Biological Psychology, Vrije Universiteit, Amsterdam, the Netherlands
- EMGO+ Institute for Health and Care Research, Amsterdam, the Netherlands
| | - Philip L De Jager
- Program in Translational NeuroPsychiatric Genomics, Departments of Neurology and Psychiatry, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | - Marika A Kaakinen
- Department of Genomics of Common Disease, Imperial College London, London, UK
- Center for Life Course Health Research, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Eero Kajantie
- Department of Pediatrics, University of Helsinki, Helsinki, Finland
- National Institute for Health and Welfare, Helsinki, Finland
| | - Ville Karhunen
- Center for Life Course Health Research, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Ivana Kolcic
- Department of Public Health, Faculty of Medicine, University of Split, Split, Croatia
| | - Meena Kumari
- Institute for Social and Economic Research, University of Essex, Wivenhoe Park, UK
| | - Lenore J Launer
- Neuroepidemiology Section, National Institute on Aging, US National Institutes of Health, Bethesda, Maryland, USA
| | - Lude Franke
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Ruifang Li-Gao
- Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Marisa Koini
- Department of Neurology, General Hospital and Medical University Graz, Graz, Austria
| | - Anu Loukola
- Department of Public Health, University of Helsinki, Helsinki, Finland
| | - Pedro Marques-Vidal
- Department of Internal Medicine, Internal Medicine, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Grant W Montgomery
- Molecular Epidemiology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Miriam A Mosing
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | | - Alison Pattie
- Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Katja E Petrovic
- Department of Neurology, General Hospital and Medical University Graz, Graz, Austria
| | - Laura Pulkki-Råback
- Institute of Behavioural Sciences, University of Helsinki, Helsinki, Finland
- Helsinki Collegium for Advanced Studies, University of Helsinki, Helsinki, Finland
| | - Lydia Quaye
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Katri Räikkönen
- Institute of Behavioural Sciences, University of Helsinki, Helsinki, Finland
| | - Igor Rudan
- Centre for Global Health Research, Usher Institute for Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
| | - Rodney J Scott
- Faculty of Health and Medicine, University of Newcastle, Newcastle, New South Wales, Australia
- Information-Based Medicine Stream, Hunter Medical Research Institute, New Lambton, New South Wales, Australia
| | - Jennifer A Smith
- Department of Epidemiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Angelina R Sutin
- National Institute on Aging, US National Institutes of Health, Baltimore, Maryland, USA
- Department of Behavioral Sciences and Social Medicine, Florida State University College of Medicine, Tallahassee, Florida, USA
| | - Maciej Trzaskowski
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia
- Department of Public Health, Faculty of Medicine, University of Split, Split, Croatia
| | - Anna E Vinkhuyzen
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia
| | - Lei Yu
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, USA
| | - Delilah Zabaneh
- Department of Public Health, Faculty of Medicine, University of Split, Split, Croatia
| | - John R Attia
- Public Health Stream, Hunter Medical Research Institute, New Lambton, New South Wales, Australia
- Faculty of Health and Medicine, University of Newcastle, Newcastle, New South Wales, Australia
| | - David A Bennett
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, USA
| | - Klaus Berger
- Institute of Epidemiology and Social Medicine, University of Münster, Münster, Germany
| | - Lars Bertram
- Lübeck Interdisciplinary Platform for Genome Analytics (LIGA), Institute of Neurogenetics and Institute of Integrative and Experimental Genomics, University of Lübeck, Lübeck, Germany
- Neuroepidemiology and Ageing Research Unit, School of Public Health, Faculty of Medicine, Imperial College London, London, UK
| | - Dorret I Boomsma
- Department of Biological Psychology, Vrije Universiteit, Amsterdam, the Netherlands
- EMGO+ Institute for Health and Care Research, Amsterdam, the Netherlands
- Neuroscience Campus Amsterdam, Amsterdam, the Netherlands
| | - Harold Snieder
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Shun-Chiao Chang
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Francesco Cucca
- Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche, Cittadella Universitarià di Monserrato, Monserrato, Italy
| | - Ian J Deary
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
- Department of Psychology, University of Edinburgh, Edinburgh, UK
| | | | - Johan G Eriksson
- Department of General Practice and Primary Health Care, University of Helsinki, Helsinki, Finland
- Department of Chronic Disease Prevention, National Institute for Health and Welfare, Helsinki, Finland
- Unit of General Practice, University Central Hospital, Helsinki, Finland
| | - Ute Bültmann
- Department of Health Sciences, Community and Occupational Medicine, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Eco J C de Geus
- Department of Biological Psychology, Vrije Universiteit, Amsterdam, the Netherlands
- EMGO+ Institute for Health and Care Research, Amsterdam, the Netherlands
- Neuroscience Campus Amsterdam, Amsterdam, the Netherlands
| | - Patrick J F Groenen
- Erasmus University Rotterdam Institute for Behavior and Biology, Rotterdam, the Netherlands
- Econometric Institute, Erasmus School of Economics, Erasmus University Rotterdam, Rotterdam, the Netherlands
| | - Vilmundur Gudnason
- Icelandic Heart Association, Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, University of Copenhagen, Faculty of Health and Medical Sciences, Copenhagen, Denmark
| | - Catharine A Hartman
- Department of Psychiatry, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | | | - Caroline Hayward
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Andrew C Heath
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | - Elina Hyppönen
- South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- Centre for Population Health Research, School of Health Sciences and Sansom Institute, University of South Australia, Adelaide, South Australia, Australia
- Population, Policy and Practice, UCL Institute of Child Health, London, UK
| | - William G Iacono
- Department of Psychology, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
| | - Marjo-Riitta Järvelin
- Department of Genomics of Common Disease, Imperial College London, London, UK
- Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
- Biocenter Oulu, University of Oulu, Oulu, Finland
- Unit of Primary Care, Oulu University Hospital, Oulu, Finland
| | - Karl-Heinz Jöckel
- Institute for Medical Informatics, Biometry and Epidemiology, University Hospital of Essen, Essen, Germany
| | - Jaakko Kaprio
- Department of Public Health, University of Helsinki, Helsinki, Finland
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Department for Health, THL (National Institute for Health and Welfare), Helsinki, Finland
| | - Sharon L R Kardia
- Department of Epidemiology, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Peter Kraft
- Department of Epidemiology and Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Laura D Kubzansky
- Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Terho Lehtimäki
- Fimlab Laboratories, Tampere, Finland
- Department of Clinical Chemistry, University of Tampere, School of Medicine, Tampere, Finland
| | - Patrik K E Magnusson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Nicholas G Martin
- Genetic Epidemiology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Matt McGue
- Department of Psychology, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
| | - Andres Metspalu
- Estonian Genome Center, University of Tartu, Tartu, Estonia
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Melinda Mills
- Department of Sociology, University of Oxford, Oxford, UK
| | - Renée de Mutsert
- Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Albertine J Oldehinkel
- Econometric Institute, Erasmus School of Economics, Erasmus University Rotterdam, Rotterdam, the Netherlands
| | - Gerard Pasterkamp
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands
- Laboratory of Clinical Chemistry and Hematology, Division of Laboratories and Pharmacy, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Nancy L Pedersen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Robert Plomin
- Social, Genetic and Developmental Psychiatry Centre, King's College London, De Crespigny Park, UK
| | - Ozren Polasek
- Department of Public Health, Faculty of Medicine, University of Split, Split, Croatia
| | - Christine Power
- South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- Population, Policy and Practice, UCL Institute of Child Health, London, UK
| | - Stephen S Rich
- Department of Public Health Sciences, University of Virginia, Charlottesville, Virginia, USA
| | - Frits R Rosendaal
- Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Hester M den Ruijter
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - David Schlessinger
- Laboratory of Genetics, National Institute on Aging, Baltimore, Maryland, USA
| | - Helena Schmidt
- Department of Neurology, General Hospital and Medical University Graz, Graz, Austria
- Research Unit for Genetic Epidemiology, Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, General Hospital and Medical University Graz, Graz, Austria
| | - Rauli Svento
- Department of Economics, Oulu Business School, Oulu, Finland
| | - Reinhold Schmidt
- Department of Neurology, General Hospital and Medical University Graz, Graz, Austria
| | - Behrooz Z Alizadeh
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Thorkild I A Sørensen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, University of Copenhagen, Faculty of Health and Medical Sciences, Copenhagen, Denmark
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Institute of Preventive Medicine, Bispebjerg and Frederiksberg Hospitals, Capital Region, Frederiksberg, Denmark
| | - Tim D Spector
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | | | | | - Andrew Steptoe
- Department of Epidemiology and Public Health, University College London, London, UK
| | - Antonio Terracciano
- National Institute on Aging, US National Institutes of Health, Baltimore, Maryland, USA
- Department of Behavioral Sciences and Social Medicine, Florida State University College of Medicine, Tallahassee, Florida, USA
| | | | - A Roy Thurik
- Department of Applied Economics, Erasmus School of Economics, Erasmus University Rotterdam, Rotterdam, the Netherlands
- Erasmus University Rotterdam Institute for Behavior and Biology, Rotterdam, the Netherlands
- Montpellier Business School, Montpellier, France
- Panteia, Zoetermeer, the Netherlands
| | | | - Henning Tiemeier
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
- Department of Psychiatry, Erasmus Medical Center, Rotterdam, the Netherlands
- Department of Child and Adolescent Psychiatry, Erasmus Medical Center, Rotterdam, the Netherlands
| | - André G Uitterlinden
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
- Erasmus University Rotterdam Institute for Behavior and Biology, Rotterdam, the Netherlands
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Peter Vollenweider
- Department of Internal Medicine, Internal Medicine, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Gert G Wagner
- Max Planck Institute for Human Development, Berlin, Germany
- German Socio-Economic Panel Study, DIW Berlin, Berlin, Germany
- School of Economics and Management, Berlin University of Technology, Berlin, Germany
| | - David R Weir
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, Michigan, USA
| | - Jian Yang
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia
- University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland, Australia
| | - Dalton C Conley
- Department of Sociology, Princeton University, Princeton, New Jersey, USA
| | | | - Albert Hofman
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Magnus Johannesson
- Department of Economics, Stockholm School of Economics, Stockholm, Sweden
| | - David I Laibson
- Department of Economics, Harvard University, Cambridge, Massachusetts, USA
| | - Sarah E Medland
- Psychiatric Genetics, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Michelle N Meyer
- Department of Bioethics, Clarkson University, Schenectady, New York, USA
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Joseph K Pickrell
- New York Genome Center, New York, New York, USA
- Department of Biological Sciences, Columbia University, New York, New York, USA
| | - Tõnu Esko
- Estonian Genome Center, University of Tartu, Tartu, Estonia
| | - Robert F Krueger
- Department of Psychology, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
| | | | - Philipp D Koellinger
- Erasmus University Rotterdam Institute for Behavior and Biology, Rotterdam, the Netherlands
- Department of Complex Trait Genetics, Vrije Universiteit, Center for Neurogenomics and Cognitive Research, Amsterdam, the Netherlands
- Amsterdam Business School, University of Amsterdam, Amsterdam, the Netherlands
| | - Daniel J Benjamin
- Center for Economic and Social Research, University of Southern California, Los Angeles, California, USA
| | - Meike Bartels
- Department of Biological Psychology, Vrije Universiteit, Amsterdam, the Netherlands
- EMGO+ Institute for Health and Care Research, Amsterdam, the Netherlands
- Neuroscience Campus Amsterdam, Amsterdam, the Netherlands
| | - David Cesarini
- Department of Economics, New York University, New York, New York, USA
- Research Institute for Industrial Economics, Stockholm, Sweden
| |
Collapse
|
181
|
Jaromin E, Sadowska ET, Koteja P. A dopamine and noradrenaline reuptake inhibitor (bupropion) does not alter exercise performance of bank voles. Curr Zool 2016; 62:307-315. [PMID: 29491918 PMCID: PMC5804238 DOI: 10.1093/cz/zow026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Accepted: 02/11/2016] [Indexed: 12/22/2022] Open
Abstract
Physical performance is determined both by biophysical and physiological limitations and behavioral characteristic, specifically motivation. We applied an experimental evolution approach combined with pharmacological manipulation to test the hypothesis that evolution of increased aerobic exercise performance can be triggered by evolution of motivation to undertake physical activity. We used a unique model system: bank voles from A lines, selected for high swim-induced aerobic metabolism (VO2swim), which achieved a 61% higher mass-adjusted VO2swim than those from unselected C lines. Because the voles could float on the water surface with only a minimum activity, the maximum rate of metabolism achieved in that test depended not only on their aerobic capacity, but also on motivation to undertake intensive activity. Therefore, we hypothesized that signaling of neurotransmitters putatively involved in regulating physical activity (dopamine and noradrenaline) had changed in response to selection. We measured VO2swim after intraperitoneal injections of saline or the norepinephrine and dopamine reuptake inhibitor bupropion (20 mg/kg or 30 mg/kg). Additionally, we measured forced-exercise VO2 (VO2max). In C lines, VO2swim (mass-adjusted mean ± standard error (SE): 4.0 ± 0.1 mLO2/min) was lower than VO2max (5.0 ± 0.1 mLO2/min), but in A lines VO2swim (6.0 ± 0.1 mLO2/min) was as high as VO2max (6.0 ± 0.1 mLO2/min). Thus, the selection effectively changed both the physiological-physical performance limit and mechanisms responsible for the willingness to undertake vigorous locomotor activity. Surprisingly, the drug had no effect on the achieved level of VO2swim. Thus, the results did not allow firm conclusions concerning involvement of these neurotransmitters in evolution of increased aerobic exercise performance in the experimental evolution model system.
Collapse
Affiliation(s)
- Ewa Jaromin
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, Krakow 30-387, Poland
| | - Edyta Teresa Sadowska
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, Krakow 30-387, Poland
| | - Paweł Koteja
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, Krakow 30-387, Poland
| |
Collapse
|
182
|
Ebada ME, Kendall DA, Pardon MC. Corticosterone and dopamine D2/D3 receptors mediate the motivation for voluntary wheel running in C57BL/6J mice. Behav Brain Res 2016; 311:228-238. [PMID: 27233827 DOI: 10.1016/j.bbr.2016.05.051] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Revised: 04/07/2016] [Accepted: 05/23/2016] [Indexed: 12/13/2022]
Abstract
Physical exercise can improve cognition but whether this is related to motivation levels is unknown. Voluntary wheel running is a rewarding activity proposed as a model of motivation to exercise. To question the potential effects of exercise motivation on subsequent behaviour, we used a pharmacological approach targeting some reward mechanisms. The stress hormone corticosterone has rewarding effects mediated by activation of low affinity glucocorticoid receptors (GR). To investigate whether corticosterone synthesis motivates exercise via activation of GRs and subsequently, impacts on behaviour, we treated C57BL/6J mice acutely with the inhibitor of corticosterone synthesis metyrapone (35mg/kg) or repeatedly with the GR antagonist mifepristone (30mg/kg) prior to 1-h running wheel sessions. To investigate whether reducing motivation to exercise impacts on behaviour, we antagonised running-induced dopamine D2/D3 receptors activation with sulpiride (25 or 50mg/kg) and assessed locomotor, anxiety-related and memory performance after 20 running sessions over 4 weeks. We found that corticosterone synthesis contributes to running levels, but the maintenance of running behaviour was not mediated by activation of GRs. Intermittent exercise was not associated with changes in behavioural or cognitive performance. The persistent reduction in exercise levels triggered by sulpiride also had limited impact on behavioural performance, although the level of performance for some behaviours was related to the level of exercise. Altogether, these findings indicate that corticosterone and dopamine D2/D3 receptor activation contribute to the motivation for wheel running, but suggest that motivation for exercise is not a sufficient factor to alter behaviour in healthy mice.
Collapse
Affiliation(s)
- Mohamed Elsaed Ebada
- University of Nottingham Medical School, School of Life Sciences, Neuroscience Group, Queen's Medical Centre, Nottingham, NG7 2UH, United Kingdom
| | - David A Kendall
- University of Nottingham Medical School, School of Life Sciences, Neuroscience Group, Queen's Medical Centre, Nottingham, NG7 2UH, United Kingdom
| | - Marie-Christine Pardon
- University of Nottingham Medical School, School of Life Sciences, Neuroscience Group, Queen's Medical Centre, Nottingham, NG7 2UH, United Kingdom.
| |
Collapse
|
183
|
Lloyd K, Dayan P. Safety out of control: dopamine and defence. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2016; 12:15. [PMID: 27216176 PMCID: PMC4878001 DOI: 10.1186/s12993-016-0099-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 05/13/2016] [Indexed: 12/21/2022]
Abstract
We enjoy a sophisticated understanding of how animals learn to predict appetitive outcomes and direct their behaviour accordingly. This encompasses well-defined learning algorithms and details of how these might be implemented in the brain. Dopamine has played an important part in this unfolding story, appearing to embody a learning signal for predicting rewards and stamping in useful actions, while also being a modulator of behavioural vigour. By contrast, although choosing correct actions and executing them vigorously in the face of adversity is at least as important, our understanding of learning and behaviour in aversive settings is less well developed. We examine aversive processing through the medium of the role of dopamine and targets such as D2 receptors in the striatum. We consider critical factors such as the degree of control that an animal believes it exerts over key aspects of its environment, the distinction between 'better' and 'good' actual or predicted future states, and the potential requirement for a particular form of opponent to dopamine to ensure proper calibration of state values.
Collapse
Affiliation(s)
- Kevin Lloyd
- Gatsby Computational Neuroscience Unit, 25 Howland Street, London, UK
| | - Peter Dayan
- Gatsby Computational Neuroscience Unit, 25 Howland Street, London, UK
| |
Collapse
|
184
|
Jawinski P, Tegelkamp S, Sander C, Häntzsch M, Huang J, Mauche N, Scholz M, Spada J, Ulke C, Burkhardt R, Reif A, Hegerl U, Hensch T. Time to wake up: No impact of COMT Val158Met gene variation on circadian preferences, arousal regulation and sleep. Chronobiol Int 2016; 33:893-905. [PMID: 27148829 DOI: 10.1080/07420528.2016.1178275] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Dopamine has been implicated in the regulation of sleep-wake states and the circadian rhythm. However, there is no consensus on the impact of two established dopaminergic gene variants: the catechol-O-methyltransferase Val158Met (COMT Val158Met; rs4680) and the dopamine D4 receptor Exon III variable-number-of-tandem-repeat polymorphism (DRD4 VNTR). Pursuing a multi-method approach, we examined their potential effects on circadian preferences, arousal regulation and sleep. Subjects underwent a 7-day actigraphy assessment (SenseWear Pro3), a 20-minute resting EEG (analyzed using VIGALL 2.0) and a body mass index (BMI) assessment. Further, they completed the Morningness-Eveningness Questionnaire (MEQ), the Epworth Sleepiness Scale (ESS) and the Pittsburgh Sleep Quality Index (PSQI). The sample comprised 4625 subjects (19-82 years) genotyped for COMT Val158Met, and 689 elderly subjects (64-82 years) genotyped for DRD4 VNTR. The number of subjects varied across phenotypes. Power calculations revealed a minimum required phenotypic variance explained by genotype ranging between 0.5% and 1.5% for COMT Val158Met and between 3.3% and 6.0% for DRD4 VNTR. Analyses did not reveal significant genotype effects on MEQ, ESS, PSQI, BMI, actigraphy and EEG variables. Additionally, we found no compelling evidence in sex- and age-stratified subsamples. Few associations surpassed the threshold of nominal significance (p < .05), providing some indication for a link between DRD4 VNTR and daytime sleepiness. Taken together, in light of the statistical power obtained in the present study, our data particularly suggest no impact of the COMT Val158Met polymorphism on circadian preferences, arousal regulation and sleep. The suggestive link between DRD4 VNTR and daytime sleepiness, on the other hand, might be worth investigation in a sample enriched with younger adults.
Collapse
Affiliation(s)
- Philippe Jawinski
- a LIFE - Leipzig Research Center for Civilization Diseases , University of Leipzig , Leipzig , Germany.,b Department of Psychiatry and Psychotherapy , University of Leipzig , Leipzig , Germany.,c Depression Research Center of the German Depression Foundation , Leipzig , Germany
| | - Sophie Tegelkamp
- b Department of Psychiatry and Psychotherapy , University of Leipzig , Leipzig , Germany
| | - Christian Sander
- a LIFE - Leipzig Research Center for Civilization Diseases , University of Leipzig , Leipzig , Germany.,b Department of Psychiatry and Psychotherapy , University of Leipzig , Leipzig , Germany.,c Depression Research Center of the German Depression Foundation , Leipzig , Germany
| | - Madlen Häntzsch
- a LIFE - Leipzig Research Center for Civilization Diseases , University of Leipzig , Leipzig , Germany.,d Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics , University Hospital Leipzig , Leipzig , Germany
| | - Jue Huang
- b Department of Psychiatry and Psychotherapy , University of Leipzig , Leipzig , Germany
| | - Nicole Mauche
- a LIFE - Leipzig Research Center for Civilization Diseases , University of Leipzig , Leipzig , Germany.,b Department of Psychiatry and Psychotherapy , University of Leipzig , Leipzig , Germany
| | - Markus Scholz
- a LIFE - Leipzig Research Center for Civilization Diseases , University of Leipzig , Leipzig , Germany.,e Institute for Medical Informatics, Statistics and Epidemiology , University of Leipzig , Leipzig , Germany
| | - Janek Spada
- b Department of Psychiatry and Psychotherapy , University of Leipzig , Leipzig , Germany.,c Depression Research Center of the German Depression Foundation , Leipzig , Germany
| | - Christine Ulke
- a LIFE - Leipzig Research Center for Civilization Diseases , University of Leipzig , Leipzig , Germany.,c Depression Research Center of the German Depression Foundation , Leipzig , Germany
| | - Ralph Burkhardt
- a LIFE - Leipzig Research Center for Civilization Diseases , University of Leipzig , Leipzig , Germany.,d Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics , University Hospital Leipzig , Leipzig , Germany
| | - Andreas Reif
- f Department of Psychiatry , Psychosomatics and Psychotherapy, Goethe-Universität Frankfurt , Frankfurt , Germany
| | - Ulrich Hegerl
- a LIFE - Leipzig Research Center for Civilization Diseases , University of Leipzig , Leipzig , Germany.,b Department of Psychiatry and Psychotherapy , University of Leipzig , Leipzig , Germany.,c Depression Research Center of the German Depression Foundation , Leipzig , Germany
| | - Tilman Hensch
- a LIFE - Leipzig Research Center for Civilization Diseases , University of Leipzig , Leipzig , Germany.,b Department of Psychiatry and Psychotherapy , University of Leipzig , Leipzig , Germany
| |
Collapse
|
185
|
Xue L, Geng Y, Li M, Jin YF, Ren HX, Li X, Wu F, Wang B, Cheng WY, Chen T, Chen YJ. The effects of D3R on TLR4 signaling involved in the regulation of METH-mediated mast cells activation. Int Immunopharmacol 2016; 36:187-198. [PMID: 27156126 DOI: 10.1016/j.intimp.2016.04.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 04/09/2016] [Accepted: 04/19/2016] [Indexed: 01/06/2023]
Abstract
Accumulating studies have revealed that the dopamine D3 receptor (D3R) plays an important role in methamphetamine (METH) addiction. However, the action of D3R on METH-mediated immune response and the underlying mechanism remain unclear. Mast cells (MCs) are currently identified as effector cells in many processes of immune responses, and MC activation is induced by various stimuli such as lipopolysaccharide (LPS). Moreover, CD117 and FcεRI are known as MC markers due to their specific expression in MCs. To investigate the effects of D3R on METH-mediated alteration of LPS-induced MCs activation and the underlying mechanism, in this study, we examined the expression of CD117 and FcεRI in the intestines of wild-type (D3R(+/+)) and D3R-deficient (D3R(-/-)) mice. We also measured the production of MC-derived cytokines, including TNF-α, IL-6, IL-4, IL-13 and CCL-5, in the bone marrow-derived mast cells (BMMCs) of WT and D3R(-/-) mice. Furthermore, we explored the effects of D3R on METH-mediated TLR4 and downstream MAPK and NF-κB signaling induced by LPS in mouse BMMCs. We found that METH suppressed MC activation induced by LPS in the intestines of D3R(+/)mice. In contrast, LPS-induced MC activation was less affected by METH in D3R(-/-) mice. Furthermore, METH altered LPS-induced cytokine production in BMMCs of D3R(+/+) mice but not D3R(-/-) mice. D3R was also involved in METH-mediated modulation of LPS-induced expression of TLR4 and downstream MAPK and NF-κB signaling molecules in mouse BMMCs. Taken together, our findings demonstrate that the effect of D3R on TLR4 signaling may be implicated in the regulation of METH-mediated MCs activation induced by LPS.
Collapse
Affiliation(s)
- Li Xue
- Department of Immunology and Pathogenic Biology, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an 710061, China; Department of Laboratory, The Second Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an 71004, China
| | - Yan Geng
- Department of Laboratory, The Second Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an 71004, China
| | - Ming Li
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an 710061, China
| | - Yao-Feng Jin
- Pathology Department, The Second Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an 710004, China
| | - Hui-Xun Ren
- Department of Immunology and Pathogenic Biology, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an 710061, China
| | - Xia Li
- VIP Internal Medicine Department, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Feng Wu
- Graduate Teaching and Experiment Centre, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an 710061, China
| | - Biao Wang
- Department of Immunology and Pathogenic Biology, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an 710061, China
| | - Wei-Ying Cheng
- Department of Immunology and Pathogenic Biology, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an 710061, China
| | - Teng Chen
- Forensic Medicine College of Xi'an Jiaotong University, Key Laboratory of the Health Ministry for Forensic Medicine, Key Laboratory of the Ministry of Education for Environment and Genes Related to Diseases, Xi'an 710061, China
| | - Yan-Jiong Chen
- Department of Immunology and Pathogenic Biology, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an 710061, China.
| |
Collapse
|
186
|
Naitou K, Nakamori H, Shiina T, Ikeda A, Nozue Y, Sano Y, Yokoyama T, Yamamoto Y, Yamada A, Akimoto N, Furue H, Shimizu Y. Stimulation of dopamine D2-like receptors in the lumbosacral defaecation centre causes propulsive colorectal contractions in rats. J Physiol 2016; 594:4339-50. [PMID: 26999074 DOI: 10.1113/jp272073] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 03/13/2016] [Indexed: 12/24/2022] Open
Abstract
KEY POINTS The pathophysiological roles of the CNS in bowel dysfunction in patients with irritable bowel syndrome and Parkinson's disease remain obscure. In the present study, we demonstrate that dopamine in the lumbosacral defaecation centre causes strong propulsive motility of the colorectum. The effect of dopamine is a result of activation of sacral parasympathetic preganglionic neurons via D2-like dopamine receptors. Considering that dopamine is a neurotransmitter of descending pain inhibitory pathways, our results highlight the novel concept that descending pain inhibitory pathways control not only pain, but also the defaecation reflex. In addition, severe constipation in patients with Parkinson's disease can be explained by reduced parasympathetic outflow as a result of a loss of the effect of dopaminergic neurons. ABSTRACT We have recently demonstrated that intrathecally injected noradrenaline caused propulsive contractions of the colorectum. We hypothesized that descending pain inhibitory pathways control not only pain, but also the defaecation reflex. Because dopamine is one of the major neurotransmitters of descending pain inhibitory pathways in the spinal cord, we examined the effects of the intrathecal application of dopamine to the spinal defaecation centre on colorectal motility. Colorectal intraluminal pressure and expelled volume were recorded in vivo in anaesthetized rats. Slice patch clamp and immunohistochemistry were used to confirm the existence of dopamine-sensitive neurons in the sacral parasympathetic nuclei. Intrathecal application of dopamine into the L6-S1 spinal cord, where the lumbosacral defaecation centre is located, caused propulsive contractions of the colorectum. Inactivation of spinal neurons using TTX blocked the effect of dopamine. Although thoracic spinal transection had no effect on the enhancement of colorectal motility by intrathecal dopamine, the severing of the pelvic nerves abolished the enhanced motility. Pharmacological experiments revealed that the effect of dopamine is mediated primarily by D2-like dopamine receptors. Neurons labelled with retrograde dye injected at the colorectum showed an inward current in response to dopamine in slice patch clamp recordings. Furthermore, immunohistochemical analysis revealed that neurons immunoreactive to choline acetyltransferase express D2-like dopamine receptors. Taken together, our findings demonstrate that dopamine activates sacral parasympathetic preganglionic neurons via D2-like dopamine receptors and causes propulsive motility of the colorectum in rats. The present study supports the hypothesis that descending pain inhibitory pathways regulate defaecation reflexes.
Collapse
Affiliation(s)
- Kiyotada Naitou
- Department of Basic Veterinary Science, Laboratory of Physiology, The United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
| | - Hiroyuki Nakamori
- Department of Basic Veterinary Science, Laboratory of Physiology, The United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
| | - Takahiko Shiina
- Department of Basic Veterinary Science, Laboratory of Physiology, The United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
| | - Azusa Ikeda
- Department of Basic Veterinary Science, Laboratory of Physiology, The United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
| | - Yuuta Nozue
- Department of Basic Veterinary Science, Laboratory of Physiology, The United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
| | - Yuuki Sano
- Department of Basic Veterinary Science, Laboratory of Physiology, The United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
| | - Takuya Yokoyama
- Laboratory of Veterinary Anatomy and Cell Biology, Faculty of Agriculture, Iwate University, Morioka, Japan
| | - Yoshio Yamamoto
- Laboratory of Veterinary Anatomy and Cell Biology, Faculty of Agriculture, Iwate University, Morioka, Japan
| | - Akihiro Yamada
- Department of Information Physiology, National Institute for Physiological Sciences, Okazaki, Japan
| | - Nozomi Akimoto
- Department of Information Physiology, National Institute for Physiological Sciences, Okazaki, Japan
| | - Hidemasa Furue
- Department of Information Physiology, National Institute for Physiological Sciences, Okazaki, Japan
| | - Yasutake Shimizu
- Department of Basic Veterinary Science, Laboratory of Physiology, The United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
| |
Collapse
|
187
|
Heysieattalab S, Naghdi N, Hosseinmardi N, Zarrindast MR, Haghparast A, Khoshbouei H. Methamphetamine-induced enhancement of hippocampal long-term potentiation is modulated by NMDA and GABA receptors in the shell-accumbens. Synapse 2016; 70:325-35. [PMID: 27029021 DOI: 10.1002/syn.21905] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 03/24/2016] [Accepted: 03/28/2016] [Indexed: 01/01/2023]
Abstract
Addictive drugs modulate synaptic transmission in the meso-corticolimbic system by hijacking normal adaptive forms of experience-dependent synaptic plasticity. Psychostimulants such as METH have been shown to affect hippocampal synaptic plasticity, albeit with a less understood synaptic mechanism. METH is one of the most addictive drugs that elicit long-term alterations in the synaptic plasticity in brain areas involved in reinforcement learning and reward processing. Dopamine transporter (DAT) is one of the main targets of METH. As a substrate for DAT, METH decreases dopamine uptake and increases dopamine efflux via the transporter in the target brain regions such as nucleus accumbens (NAc) and hippocampus. Due to cross talk between NAc and hippocampus, stimulation of NAc has been shown to alter hippocampal plasticity. In this study, we tested the hypothesis that manipulation of glutamatergic and GABA-ergic systems in the shell-NAc modulates METH-induced enhancement of long term potentiation (LTP) in the hippocampus. Rats treated with METH (four injections of 5 mg/kg) exhibited enhanced LTP as compared to saline-treated animals. Intra-NAc infusion of muscimol (GABA receptor agonist) decreased METH-induced enhancement of dentate gyrus (DG)-LTP, while infusion of AP5 (NMDA receptor antagonist) prevented METH-induced enhancement of LTP. These data support the interpretation that reducing NAc activity can ameliorate METH-induced hippocampal LTP through a hippocampus-NAc-VTA circuit loop. Synapse 70:325-335, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Soomaayeh Heysieattalab
- Department of Neuroscience, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nasser Naghdi
- Department of Physiology and Pharmacology, Pasteur Institute of Iran, Tehran, Iran
| | - Narges Hosseinmardi
- Department of Physiology, Medical School, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Neurophysiology Research Center, Medical School, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad-Reza Zarrindast
- Department of Neuroscience, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Haghparast
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Habibeh Khoshbouei
- Department of Neuroscience, University of Florida, Gainesville, Florida, 323611
| |
Collapse
|
188
|
Zou MF, Keck TM, Kumar V, Donthamsetti P, Michino M, Burzynski C, Schweppe C, Bonifazi A, Free RB, Sibley DR, Janowsky A, Shi L, Javitch JA, Newman AH. Novel Analogues of (R)-5-(Methylamino)-5,6-dihydro-4H-imidazo[4,5,1-ij]quinolin-2(1H)-one (Sumanirole) Provide Clues to Dopamine D2/D3 Receptor Agonist Selectivity. J Med Chem 2016; 59:2973-88. [PMID: 27035329 PMCID: PMC4915350 DOI: 10.1021/acs.jmedchem.5b01612] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Novel 1-, 5-, and 8-substituted analogues of sumanirole (1), a dopamine D2/D3 receptor (D2R/D3R) agonist, were synthesized. Binding affinities at both D2R and D3R were higher when determined in competition with the agonist radioligand [(3)H]7-hydroxy-N,N-dipropyl-2-aminotetralin (7-OH-DPAT) than with the antagonist radioligand [(3)H]N-methylspiperone. Although 1 was confirmed as a D2R-preferential agonist, its selectivity in binding and functional studies was lower than previously reported. All analogues were determined to be D2R/D3R agonists in both GoBRET and mitogenesis functional assays. Loss of efficacy was detected for the N-1-substituted analogues at D3R. In contrast, the N-5-alkyl-substituted analogues, and notably the n-butyl-arylamides (22b and 22c), all showed improved affinity at D2R over 1 with neither a loss of efficacy nor an increase in selectivity. Computational modeling provided a structural basis for the D2R selectivity of 1, illustrating how subtle differences in the highly homologous orthosteric binding site (OBS) differentially affect D2R/D3R affinity and functional efficacy.
Collapse
Affiliation(s)
| | | | | | - Prashant Donthamsetti
- Departments of Psychiatry and Pharmacology, Columbia University College of Physicians and Surgeons , New York, New York 10027, United States.,Division of Molecular Therapeutics, New York State Psychiatric Institute , New York, New York 10032, United States
| | | | | | | | | | - R Benjamin Free
- Molecular Neuropharmacology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health , 5625 Fishers Lane, Room 4S-04, Bethesda, Maryland 20892-9405, United States
| | - David R Sibley
- Molecular Neuropharmacology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health , 5625 Fishers Lane, Room 4S-04, Bethesda, Maryland 20892-9405, United States
| | - Aaron Janowsky
- Research & Development Service, Veterans Affairs Portland Health Care System , Portland, Oregon 97239, United States.,Department of Psychiatry and Behavioral Neuroscience, School of Medicine and Methamphetamine Abuse Research Center, Oregon Health & Science University , Portland, Oregon 97239, United States
| | - Lei Shi
- Department of Physiology and Biophysics and the Institute for Computational Biomedicine, Weill Medical College of Cornell University , New York, New York 10065, United States
| | - Jonathan A Javitch
- Departments of Psychiatry and Pharmacology, Columbia University College of Physicians and Surgeons , New York, New York 10027, United States.,Division of Molecular Therapeutics, New York State Psychiatric Institute , New York, New York 10032, United States
| | | |
Collapse
|
189
|
Konieczny J, Lenda T, Czarnecka A. Early increase in dopamine release in the ipsilateral striatum after unilateral intranigral administration of lactacystin produces spontaneous contralateral rotations in rats. Neuroscience 2016; 324:92-106. [PMID: 26964686 DOI: 10.1016/j.neuroscience.2016.02.072] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 02/25/2016] [Accepted: 02/29/2016] [Indexed: 11/26/2022]
Abstract
Since the discovery of the role of the ubiquitin-proteasome system (UPS) in the pathogenesis of Parkinson's disease, UPS inhibitors, such as lactacystin have been used to investigate the relationship between UPS impairment and degeneration of dopamine (DA) neurons. However, mostly long-term neurotoxic effects of lactacystin have been studied in animal models. Therefore, the aim of our study was to investigate behavioral and biochemical changes related to the DA system during the first week following unilateral intranigral injection of lactacystin to rats. We found that lactacystin produced early spontaneous contralateral rotations which were inhibited by combined administration of DA D1 and D2 receptor antagonists. Simultaneously, an increase in the extracellular level of DA and its metabolites 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanilic acid (HVA) was found in the ipsilateral striatum. In contrast, one week after lesion, when turning behavior was no longer visible, a decrease in the extracellular level of DA, DOPAC and HVA was demonstrated. It was accompanied by a substantial reduction in the tissue levels of DA and its metabolites in the lesioned substantia nigra and striatum. We concluded that unilateral intranigral administration of lactacystin produces an early increase in DA neurotransmission which precedes a decrease in the striatal and nigral tissue DA content. It is manifested by the appearance of spontaneous contralateral rotations and an elevation of the extracellular DA level in the ipsilateral striatum. Since similar behavior was previously observed after intranigral administration of rotenone and MPP(+) but not 6-hydroxydopamine (6-OHDA), it may indicate a common mechanism of action shared by these neurotoxins.
Collapse
Affiliation(s)
- J Konieczny
- Department of Neuropsychopharmacology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31-343 Krakow, Poland.
| | - T Lenda
- Department of Neuropsychopharmacology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31-343 Krakow, Poland
| | - A Czarnecka
- Department of Neuropsychopharmacology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31-343 Krakow, Poland
| |
Collapse
|
190
|
Andreou D, Söderman E, Axelsson T, Sedvall GC, Terenius L, Agartz I, Jönsson EG. Associations between a locus downstream DRD1 gene and cerebrospinal fluid dopamine metabolite concentrations in psychosis. Neurosci Lett 2016; 619:126-30. [PMID: 26957229 DOI: 10.1016/j.neulet.2016.03.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 02/13/2016] [Accepted: 03/02/2016] [Indexed: 02/07/2023]
Abstract
Dopamine activity, mediated by the catecholaminergic neurotransmitter dopamine, is prominent in the human brain and has been implicated in schizophrenia. Dopamine targets five different receptors and is then degraded to its major metabolite homovanillic acid (HVA). We hypothesized that genes encoding dopamine receptors may be associated with cerebrospinal fluid (CSF) HVA concentrations in patients with psychotic disorder. We searched for association between 67 single nucleotide polymorphisms (SNPs) in the five dopamine receptor genes i.e., DRD1, DRD2, DRD3, DRD4 and DRD5, and the CSF HVA concentrations in 74 patients with psychotic disorder. Nominally associated SNPs were also tested in 111 healthy controls. We identified a locus, located downstream DRD1 gene, where four SNPs, rs11747728, rs11742274, rs265974 and rs11747886, showed association with CSF HVA concentrations in psychotic patients. The associations between rs11747728, which is a regulatory region variant, and rs11742274 with HVA remained significant after correction for multiple testing. These associations were restricted to psychotic patients and were absent in healthy controls. The results suggest that the DRD1 gene is implicated in the pathophysiology of psychosis and support the dopamine hypothesis of schizophrenia.
Collapse
Affiliation(s)
- Dimitrios Andreou
- Department of Clinical Neuroscience, Psychiatry Section, HUBIN Project, Karolinska Institutet and Hospital, Stockholm, Sweden.
| | - Erik Söderman
- Department of Clinical Neuroscience, Psychiatry Section, HUBIN Project, Karolinska Institutet and Hospital, Stockholm, Sweden
| | - Tomas Axelsson
- Department of Medical Sciences, Molecular Medicine, Uppsala University, Uppsala, Sweden
| | - Göran C Sedvall
- Department of Clinical Neuroscience, Psychiatry Section, HUBIN Project, Karolinska Institutet and Hospital, Stockholm, Sweden
| | - Lars Terenius
- Department of Clinical Neuroscience, Psychiatry Section, HUBIN Project, Karolinska Institutet and Hospital, Stockholm, Sweden
| | - Ingrid Agartz
- Department of Clinical Neuroscience, Psychiatry Section, HUBIN Project, Karolinska Institutet and Hospital, Stockholm, Sweden; NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Erik G Jönsson
- Department of Clinical Neuroscience, Psychiatry Section, HUBIN Project, Karolinska Institutet and Hospital, Stockholm, Sweden
| |
Collapse
|
191
|
Bidel F, Di Poi C, Imarazene B, Koueta N, Budzinski H, Van Delft P, Bellanger C, Jozet-Alves C. Pre-hatching fluoxetine-induced neurochemical, neurodevelopmental, and immunological changes in newly hatched cuttlefish. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:5030-5045. [PMID: 25966880 DOI: 10.1007/s11356-015-4591-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 04/22/2015] [Indexed: 06/04/2023]
Abstract
Embryonic and early postembryonic development of the cuttlefish Sepia officinalis (a cephalopod mollusk) occurs in coastal waters, an environment subject to considerable pressure from xenobiotic pollutants such as pharmaceutical residues. Given the role of serotonin in brain development and its interaction with neurodevelopmental functions, this study focused on fluoxetine (FLX), a selective serotonin reuptake inhibitor (SSRI, antidepressant). The goal was to determine the effects of subchronic waterborne FLX exposure (1 and 10 μg L(-1)) during the last 15 days of embryonic development on neurochemical, neurodevelopmental, behavioral, and immunological endpoints at hatching. Our results showed for the first time that organic contaminants, such as FLX, could pass through the eggshell during embryonic development, leading to a substantial accumulation of this molecule in hatchlings. We also found that FLX embryonic exposure (1 and 10 μg L(-1)) (1) modulated dopaminergic but not serotonergic neurotransmission, (2) decreased cell proliferation in key brain structures for cognitive and visual processing, (3) did not induce a conspicuous change in camouflage quality, and (4) decreased lysozyme activity. In the long term, these alterations observed during a critical period of development may impair complex behaviors of the juvenile cuttlefish and thus lead to a decrease in their survival. Finally, we suggest a different mode of action by FLX between vertebrate and non-vertebrate species and raise questions regarding the vulnerability of early life stages of cuttlefish to the pharmaceutical contamination found in coastal waters.
Collapse
Affiliation(s)
- Flavie Bidel
- Normandie Université, CS F-14032, Caen, France
- GMPc (Groupe Mémoire et Plasticité comportementale), EA 4259, Campus Horowitz, Université de Caen Basse-Normandie, Esplanade de la Paix, CS F-14032, Caen cedex, France
| | - Carole Di Poi
- Normandie Université, CS F-14032, Caen, France
- GMPc (Groupe Mémoire et Plasticité comportementale), EA 4259, Campus Horowitz, Université de Caen Basse-Normandie, Esplanade de la Paix, CS F-14032, Caen cedex, France
| | - Boudjema Imarazene
- Normandie Université, CS F-14032, Caen, France
- UMR BOREA, MNHN, UPMC, CNRS-7028, IRD-207, IBFA Université de Caen Basse-Normandie, Esplanade de la Paix, CS F-14032, Caen Cedex, France
| | - Noussithé Koueta
- Normandie Université, CS F-14032, Caen, France
- UMR BOREA, MNHN, UPMC, CNRS-7028, IRD-207, IBFA Université de Caen Basse-Normandie, Esplanade de la Paix, CS F-14032, Caen Cedex, France
| | - Hélène Budzinski
- EPOC (Environnements et Paléoenvironnements Océaniques et Continentaux), UMR 5805 CNRS, Laboratoire de Physico- et Toxico-Chimie de l'Environnement (LPTC), 351 crs de la Libération, 33405, Talence, France
| | - Pierre Van Delft
- EPOC (Environnements et Paléoenvironnements Océaniques et Continentaux), UMR 5805 CNRS, Laboratoire de Physico- et Toxico-Chimie de l'Environnement (LPTC), 351 crs de la Libération, 33405, Talence, France
| | - Cécile Bellanger
- Normandie Université, CS F-14032, Caen, France
- GMPc (Groupe Mémoire et Plasticité comportementale), EA 4259, Campus Horowitz, Université de Caen Basse-Normandie, Esplanade de la Paix, CS F-14032, Caen cedex, France
| | - Christelle Jozet-Alves
- Normandie Université, CS F-14032, Caen, France.
- GMPc (Groupe Mémoire et Plasticité comportementale), EA 4259, Campus Horowitz, Université de Caen Basse-Normandie, Esplanade de la Paix, CS F-14032, Caen cedex, France.
| |
Collapse
|
192
|
Melnikov M, Belousova O, Murugin V, Pashenkov М, Boyко A. The role of dopamine in modulation of Th-17 immune response in multiple sclerosis. J Neuroimmunol 2016; 292:97-101. [PMID: 26943966 DOI: 10.1016/j.jneuroim.2016.01.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Revised: 01/27/2016] [Accepted: 01/29/2016] [Indexed: 12/25/2022]
Abstract
Neuromediators may modulate neuroinflammation, particularly in multiple sclerosis (MS). We investigated the effects of dopamine (DA) on the pro-inflammatory Th17-branch of immunity in 43 patients with relapsing-remitting MS and 20 healthy subjects. Serum DA was lower in MS relapse, whereas percentages of blood CD4(+)CD26(+)CD161(+)CD196(+) Th17-cells and production of interleukin-17 (IL-17) and interferon-gamma by anti-CD3/anti-CD28-stimulated peripheral blood mononuclear cells (PBMC) were higher in MS relapse than in remission or healthy subjects. DA suppressed IL-17 production by PBMC from MS patients and healthy subjects. The suppressive effect of DA was abolished in the presence of an antagonist of D2-like receptors (sulpiride). These data suggest an anti-inflammatory role for DA in MS.
Collapse
Affiliation(s)
- Mikhail Melnikov
- Pirogov Russian National Research Medical University, Moscow, Russia.
| | - Olga Belousova
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - Vladimir Murugin
- Laboratory of Clinical Immunology, Institute of Immunology, Moscow, Russia
| | - Мikhail Pashenkov
- Laboratory of Clinical Immunology, Institute of Immunology, Moscow, Russia
| | - Alexey Boyко
- Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
193
|
Chang ZW, Ke ZH, Chang CC. Roles of dopamine receptors in mediating acute modulation of immunological responses in Macrobrachium rosenbergii. FISH & SHELLFISH IMMUNOLOGY 2016; 49:286-297. [PMID: 26766178 DOI: 10.1016/j.fsi.2015.12.046] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 12/29/2015] [Accepted: 12/30/2015] [Indexed: 06/05/2023]
Abstract
Dopamine (DA) was found to influence the immunological responses and resistance to pathogen infection in invertebrates. To clarify the possible modulation of DA through dopamine receptors (DAR) against acute environmental stress, the levels of DA, glucose and lactate in the haemolymph of Macrobrachium rosenbergii under hypo- and hyperthermal stresses were measured. The changes in immune parameters such as total haemocyte count (THC), differential haemocyte count (DHC), phenoloxidase (PO) activity, respiratory bursts (RBs), superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities and phagocytic activity (PA) were evaluated in prawns which received DAR antagonists (SCH23390, SCH, D1 antagonist; domperidone, DOM, D2 antagonist; chlorpromazine, CH, D1+2 antagonist) followed by hypo- (15 °C) and hyperthermal (34 °C) stresses. In addition, pharmacological analysis of the effect DA modulation was studied in haemocytes incubated with DA and DAR antagonists. The results revealed a significant increase in haemolymph DA accompanied with upregulated levels of glucose and lactate in prawns exposed to both hypo- and hyperthermal stresses in 2 h. In addition, a significant decrease in RBs per haemocyte was noted in prawns which received DAR antagonists when they exposed to hyperthermal stress for 30 min. In in vitro test, antagonism on RBs, SOD and GPx activity of haemocytes were further evidenced through D1, D1, D1+D2 DARs, respectively, in the meantime, no significant difference in PO activity and PA was observed among the treatment groups. These results suggest that the upregulation of DA, glucose and lactate in haemolymph might be the response to acute thermal stress for the demand of energy, and the DAR occupied by its antagonistic action impart no effect on immunological responses except RBs in vivo even though the modulation mediated through D1 DAR was further evidenced in RBs, SOD and GPx activities in vitro. It is therefore concluded that thermal stress mediate stress responses not only through DAR but also via diverse pathways, and DA might modulate the levels of RBs, SOD and GPx activities mainly through D1 DAR.
Collapse
Affiliation(s)
- Zhong-Wen Chang
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan, ROC
| | - Zhi-Han Ke
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan, ROC
| | - Chin-Chyuan Chang
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan, ROC.
| |
Collapse
|
194
|
Salgado R, López-Doval S, Pereiro N, Lafuente A. Perfluorooctane sulfonate (PFOS) exposure could modify the dopaminergic system in several limbic brain regions. Toxicol Lett 2016; 240:226-35. [DOI: 10.1016/j.toxlet.2015.10.023] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 10/22/2015] [Accepted: 10/26/2015] [Indexed: 01/01/2023]
|
195
|
Role of the basolateral amygdala dopamine receptors in arachidonylcyclopropylamide-induced fear learning deficits. Psychopharmacology (Berl) 2016; 233:213-24. [PMID: 26546370 DOI: 10.1007/s00213-015-4096-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Accepted: 09/21/2015] [Indexed: 10/22/2022]
Abstract
There is much evidence suggesting that the mesoamygdala dopaminergic (DAergic) system plays a crucial role in the formation and expression of fear conditioning, with both D1 and D2 receptors being involved. In addition, cannabinoid CB1 receptor (CB1R) signaling modulates DAergic pathways. The present study sought to determine the involvement of basolateral amygdala (BLA) dopamine receptors in arachidonylcyclopropylamide (ACPA)-induced fear learning deficits. Context- and tone-dependent fear conditioning in adult male NMRI mice was evaluated. Pre-training intraperitoneal administration of ACPA (0.1 mg/kg) decreased the percentage of freezing in context- or tone-dependent fear conditioning, suggesting an acquisition impairment. Pre-training intra-BLA microinjection of a subthreshold dose of SKF38393 (D1-like receptor agonist), SCH23390 (D1-like receptor antagonist), quinpirole (D2-like receptor agonist), or sulpiride (D2-like receptor antagonist) did not alter the context-dependent fear learning deficit induced by ACPA, while SKF38393 or quinpirole restored ACPA effect on tone-dependent fear learning. Moreover, SKF38393 (1 μg/mouse), SCH23390 (0.04 and 0.08 μg/mouse), or quinpirole (0.1 μg/mouse) all impaired context-dependent fear learning. It is concluded that D1 or D2 dopamine (DA) receptor activation restores tone- but not context-dependent fear learning deficit induced by CB1 activation using ACPA.
Collapse
|
196
|
KLHL12 Promotes Non-Lysine Ubiquitination of the Dopamine Receptors D4.2 and D4.4, but Not of the ADHD-Associated D4.7 Variant. PLoS One 2015; 10:e0145654. [PMID: 26717573 PMCID: PMC4738440 DOI: 10.1371/journal.pone.0145654] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 12/07/2015] [Indexed: 01/11/2023] Open
Abstract
DOPAMINE D4 RECEPTOR POLYMORPHISM The dopamine D4 receptor has an important polymorphism in its third intracellular loop that is intensively studied and has been associated with several abnormal conditions, among others, attention deficit hyperactivity disorder. KLHL12 PROMOTES UBIQUITINATION OF THE DOPAMINE D4 RECEPTOR ON NON-LYSINE RESIDUES In previous studies we have shown that KLHL12, a BTB-Kelch protein, specifically interacts with the polymorphic repeats of the dopamine D4 receptor and enhances its ubiquitination, which, however, has no influence on receptor degradation. In this study we provide evidence that KLHL12 promotes ubiquitination of the dopamine D4 receptor on non-lysine residues. By using lysine-deficient receptor mutants and chemical approaches we concluded that ubiquitination on cysteine, serine and/or threonine is possible. DIFFERENTIAL UBIQUITINATION OF THE DOPAMINE D4 RECEPTOR POLYMORPHIC VARIANTS Additionally, we show that the dopamine D4.7 receptor variant, which is associated with a predisposition to develop attention deficient hyperactivity disorder, is differentially ubiquitinated compared to the other common receptor variants D4.2 and D4.4. Together, our study suggests that GPCR ubiquitination is a complex and variable process.
Collapse
|
197
|
Osier ND, Dixon CE. Catecholaminergic based therapies for functional recovery after TBI. Brain Res 2015; 1640:15-35. [PMID: 26711850 DOI: 10.1016/j.brainres.2015.12.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 12/11/2015] [Accepted: 12/14/2015] [Indexed: 11/15/2022]
Abstract
Among the many pathophysiologic consequences of traumatic brain injury are changes in catecholamines, including dopamine, epinephrine, and norepinephrine. In the context of TBI, dopamine is the one most extensively studied, though some research exploring epinephrine and norepinephrine have also been published. The purpose of this review is to summarize the evidence surrounding use of drugs that target the catecholaminergic system on pathophysiological and functional outcomes of TBI using published evidence from pre-clinical and clinical brain injury studies. Evidence of the effects of specific drugs that target catecholamines as agonists or antagonists will be discussed. Taken together, available evidence suggests that therapies targeting the catecholaminergic system may attenuate functional deficits after TBI. Notably, it is fairly common for TBI patients to be treated with catecholamine agonists for either physiological symptoms of TBI (e.g. altered cerebral perfusion pressures) or a co-occuring condition (e.g. shock), or cognitive symptoms (e.g. attentional and arousal deficits). Previous clinical trials are limited by methodological limitations, failure to replicate findings, challenges translating therapies to clinical practice, the complexity or lack of specificity of catecholamine receptors, as well as potentially counfounding effects of personal and genetic factors. Overall, there is a need for additional research evidence, along with a need for systematic dissemination of important study details and results as outlined in the common data elements published by the National Institute of Neurological Diseases and Stroke. Ultimately, a better understanding of catecholamines in the context of TBI may lead to therapeutic advancements. This article is part of a Special Issue entitled SI:Brain injury and recovery.
Collapse
Affiliation(s)
- Nicole D Osier
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15213, USA; School of Nursing, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - C Edward Dixon
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15260, USA; V.A. Pittsburgh Healthcare System, Pittsburgh, PA 15240, USA.
| |
Collapse
|
198
|
Firsov ML, Astakhova LA. The Role of Dopamine in Controlling Retinal Photoreceptor Function in Vertebrates. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/s11055-015-0210-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
199
|
Lu JH, Liu YQ, Deng QW, Peng YP, Qiu YH. Dopamine D2 Receptor Is Involved in Alleviation of Type II Collagen-Induced Arthritis in Mice. BIOMED RESEARCH INTERNATIONAL 2015; 2015:496759. [PMID: 26693483 PMCID: PMC4677027 DOI: 10.1155/2015/496759] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 10/28/2015] [Accepted: 11/09/2015] [Indexed: 01/11/2023]
Abstract
Human and murine lymphocytes express dopamine (DA) D2-like receptors including DRD2, DRD3, and DRD4. However, their roles in rheumatoid arthritis (RA) are less clear. Here we showed that lymphocyte DRD2 activation alleviates both imbalance of T-helper (Th)17/T-regulatory (Treg) cells and inflamed symptoms in a mouse arthritis model of RA. Collagen-induced arthritis (CIA) was prepared by intradermal injection of chicken collagen type II (CII) in tail base of DBA/1 mice or Drd2 (-/-) C57BL/6 mice. D2-like receptor agonist quinpirole downregulated expression of proinflammatory Th17-related cytokines interleukin- (IL-) 17 and IL-22 but further upregulated expression of anti-inflammatory Treg-related cytokines transforming growth factor- (TGF-) β and IL-10 in lymphocytes in vitro and in ankle joints in vivo in CIA mice. Quinpirole intraperitoneal administration reduced both clinical arthritis score and serum anti-CII IgG level in CIA mice. However, Drd2 (-/-) CIA mice manifested more severe limb inflammation and higher serum anti-CII IgG level and further upregulated IL-17 and IL-22 expression and downregulated TGF-β and IL-10 expression than wild-type CIA mice. In contrast, Drd1 (-/-) CIA mice did not alter limb inflammation or anti-CII IgG level compared with wild-type CIA mice. These results suggest that DRD2 activation is involved in alleviation of CIA symptoms by amelioration of Th17/Treg imbalance.
Collapse
MESH Headings
- Animals
- Ankle Joint/metabolism
- Ankle Joint/pathology
- Arthritis, Experimental/genetics
- Arthritis, Experimental/immunology
- Arthritis, Experimental/pathology
- Arthritis, Rheumatoid/genetics
- Arthritis, Rheumatoid/immunology
- Arthritis, Rheumatoid/pathology
- Disease Models, Animal
- Gene Expression Regulation
- Humans
- Inflammation/genetics
- Inflammation/immunology
- Inflammation/pathology
- Interleukin-10/biosynthesis
- Interleukin-17/biosynthesis
- Interleukins/biosynthesis
- Lymphocyte Activation/genetics
- Lymphocyte Activation/immunology
- Mice
- Mice, Knockout
- Receptors, Dopamine D1/genetics
- Receptors, Dopamine D2/genetics
- Receptors, Dopamine D2/metabolism
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/pathology
- Th17 Cells/immunology
- Th17 Cells/pathology
- Transforming Growth Factor beta/biosynthesis
- Interleukin-22
Collapse
Affiliation(s)
- Jian-Hua Lu
- Department of Physiology, School of Medicine and Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, Jiangsu 226001, China
| | - Yi-Qian Liu
- Department of Physiology, School of Medicine and Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, Jiangsu 226001, China
| | - Qiao-Wen Deng
- Department of Physiology, School of Medicine and Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, Jiangsu 226001, China
| | - Yu-Ping Peng
- Department of Physiology, School of Medicine and Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, Jiangsu 226001, China
| | - Yi-Hua Qiu
- Department of Physiology, School of Medicine and Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, Jiangsu 226001, China
| |
Collapse
|
200
|
Yamamoto K, Fontaine R, Pasqualini C, Vernier P. Classification of Dopamine Receptor Genes in Vertebrates: Nine Subtypes in Osteichthyes. BRAIN, BEHAVIOR AND EVOLUTION 2015; 86:164-75. [PMID: 26613258 DOI: 10.1159/000441550] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 10/08/2015] [Indexed: 11/19/2022]
Abstract
Dopamine neurotransmission regulates various brain functions, and its regulatory roles are mediated by two families of G protein-coupled receptors: the D1 and D2 receptor families. In mammals, the D1 family comprises two receptor subtypes (D1 and D5), while the D2 family comprises three receptor subtypes (D2, D3 and D4). Phylogenetic analyses of dopamine receptor genes strongly suggest that the common ancestor of Osteichthyes (bony jawed vertebrates) possessed four subtypes in the D1 family and five subtypes in the D2 family. Mammals have secondarily lost almost half of the ancestral dopamine receptor genes, whereas nonmammalian species kept many of them. Although the mammalian situation is an exception among Osteichthyes, the current classification and characterization of dopamine receptors are based on mammalian features, which have led to confusion in the identification of dopamine receptor subtypes in nonmammalian species. Here we begin by reviewing the history of the discovery of dopamine receptors in vertebrates. The recent genome sequencing of coelacanth, gar and elephant shark led to the proposal of a refined scenario of evolution of dopamine receptor genes. We also discuss a current problem of nomenclature of dopamine receptors. Following the official nomenclature of mammalian dopamine receptors from D1 to D5, we propose to name newly identified receptor subtypes from D6 to D9 in order to facilitate the use of an identical name for orthologous genes among different species. To promote a nomenclature change which allows distinguishing the two dopamine receptor families, a nomenclature consortium is needed. This comparative perspective is crucial to correctly interpret data obtained in animal studies on dopamine-related brain disorders, and more fundamentally, to understand the characteristics of dopamine neurotransmission in vertebrates.
Collapse
Affiliation(s)
- Kei Yamamoto
- Paris-Saclay Institute of Neuroscience (UMR 9197), CNRS - Universitx00E9; Paris-Sud, Universitx00E9; Paris-Saclay, Gif-sur-Yvette, France
| | | | | | | |
Collapse
|