151
|
Rone MB, Midzak AS, Martinez-Arguelles DB, Fan J, Ye X, Blonder J, Papadopoulos V. Steroidogenesis in MA-10 mouse Leydig cells is altered via fatty acid import into the mitochondria. Biol Reprod 2014; 91:96. [PMID: 25210128 DOI: 10.1095/biolreprod.114.121434] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mitochondria are home to many cellular processes, including oxidative phosphorylation and fatty acid metabolism, and in steroid-synthesizing cells, they are involved in cholesterol import and metabolism, which is the initiating step in steroidogenesis. The formation of macromolecular protein complexes aids in the regulation and efficiency of these mitochondrial functions, though because of their dynamic nature, they are hard to identify. To overcome this problem, we used Blue-Native PAGE with whole-gel mass spectrometry on isolated mitochondria from control and hormone-treated MA-10 mouse tumor Leydig cells. The presence of multiple mitochondrial protein complexes was shown. Although these were qualitatively similar under control and human chorionic gonadotropin (hCG)-stimulated conditions, quantitative differences in the components of the complexes emerged after hCG treatment. A prominent decrease was observed with proteins involved in fatty acid import into the mitochondria, implying that mitochondrial beta-oxidation is not essential for steroidogenesis. To confirm this observation, we inhibited fatty acid import utilizing the CPT1a inhibitor etomoxir, resulting in increased steroid production. Conversely, stimulation of mitochondrial beta-oxidation with metformin resulted in a dose-dependent reduction in steroidogenesis. These changes were accompanied by changes in mitochondrial respiration and in the lactic acid formed during glycolysis. Taken together, these results suggest that upon hormonal stimulation, mitochondria efficiently import cholesterol for steroid production at the expense of other lipids necessary for energy production, specifically fatty acids required for beta-oxidation.
Collapse
Affiliation(s)
- Malena B Rone
- The Research Institute of the McGill University Health Centre and Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Andrew S Midzak
- The Research Institute of the McGill University Health Centre and Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Daniel B Martinez-Arguelles
- The Research Institute of the McGill University Health Centre and Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Jinjiang Fan
- The Research Institute of the McGill University Health Centre and Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Xiaoying Ye
- Protein Characterization Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, NCI, Frederick, Maryland
| | - Josip Blonder
- Protein Characterization Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, NCI, Frederick, Maryland
| | - Vassilios Papadopoulos
- The Research Institute of the McGill University Health Centre and Department of Medicine, McGill University, Montreal, Quebec, Canada Departments of Biochemistry and Pharmacology & Therapeutics, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
152
|
Li X, Li Y, Yang W, Xiao C, Fu S, Deng Q, Ding H, Wang Z, Liu G, Li X. SREBP-1c overexpression induces triglycerides accumulation through increasing lipid synthesis and decreasing lipid oxidation and VLDL assembly in bovine hepatocytes. J Steroid Biochem Mol Biol 2014; 143:174-82. [PMID: 24565561 DOI: 10.1016/j.jsbmb.2014.02.009] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 01/20/2014] [Accepted: 02/14/2014] [Indexed: 02/06/2023]
Abstract
The natural incidence of fatty liver in ruminants is significantly higher than in monogastric animals. Fatty liver is associated with sterol regulatory element-binding protein 1c (SREBP-1c). The aim of this study was to investigate the regulatory network effects of SREBP-1c on the lipid metabolic genes involved in fatty acid uptake, activation, oxidation, synthesis, and very low-density lipoprotein (VLDL) assembly in bovine hepatocytes. In vitro, bovine hepatocytes were transfected with an adenovirus-mediated SREBP-1c overexpression vector. SREBP-1c overexpression significantly up-regulated the expression and activity of the fatty acid uptake, activation, and synthesis enzymes: liver fatty acid binding protein, fatty acid translocase, acyl-CoA synthetase long-chain 1, acetyl-CoA carboxylase 1, and fatty acid synthase, increasing triglyceride (TG) synthesis and accumulation. SREBP-1c overexpression down-regulated the expression and activity of the lipid oxidation enzymes: carnitine palmitoyltransferase 1 and carnitine palmitoyltransferase 2. Furthermore, the apolipoprotein B100 expression and microsomal triglyceride transfer protein activity were significantly decreased. SREBP-1c overexpression reduced lipid oxidation and VLDL synthesis, thereby decreasing TG disposal and export. Therefore, large amounts of TG accumulated in the bovine hepatocytes. Taken together, these results indicate that SREBP-1c overexpression increases lipid synthesis and decreases lipid oxidation and VLDL export, thereby inducing TG accumulation in bovine hepatocytes.
Collapse
Affiliation(s)
- Xinwei Li
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun 130062, Jilin, China
| | - Yu Li
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun 130062, Jilin, China
| | - Wentao Yang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun 130062, Jilin, China
| | - Chong Xiao
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun 130062, Jilin, China
| | - Shixin Fu
- Institute of Animal Science and Technology, Heilongjiang Bayi Agriculture University, Daqing 163319, Heilongjiang, China
| | - Qinghua Deng
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun 130062, Jilin, China
| | - Hongyan Ding
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun 130062, Jilin, China
| | - Zhe Wang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun 130062, Jilin, China
| | - Guowen Liu
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun 130062, Jilin, China.
| | - Xiaobing Li
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun 130062, Jilin, China.
| |
Collapse
|
153
|
Morris EM, Jackman MR, Johnson GC, Liu TW, Lopez JL, Kearney ML, Fletcher JA, Meers GME, Koch LG, Britton SL, Rector RS, Ibdah JA, MacLean PS, Thyfault JP. Intrinsic aerobic capacity impacts susceptibility to acute high-fat diet-induced hepatic steatosis. Am J Physiol Endocrinol Metab 2014; 307:E355-64. [PMID: 24961240 PMCID: PMC4137118 DOI: 10.1152/ajpendo.00093.2014] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Aerobic capacity/fitness significantly impacts susceptibility for fatty liver and diabetes, but the mechanisms remain unknown. Herein, we utilized rats selectively bred for high (HCR) and low (LCR) intrinsic aerobic capacity to examine the mechanisms by which aerobic capacity impacts metabolic vulnerability for fatty liver following a 3-day high-fat diet (HFD). Indirect calorimetry assessment of energy metabolism combined with radiolabeled dietary food was employed to examine systemic metabolism in combination with ex vivo measurements of hepatic lipid oxidation. The LCR, but not HCR, displayed increased hepatic lipid accumulation in response to the HFD despite both groups increasing energy intake. However, LCR rats had a greater increase in energy intake and demonstrated greater daily weight gain and percent body fat due to HFD compared with HCR. Additionally, total energy expenditure was higher in the larger LCR. However, controlling for the difference in body weight, the LCR has lower resting energy expenditure compared with HCR. Importantly, respiratory quotient was significantly higher during the HFD in the LCR compared with HCR, suggesting reduced whole body lipid utilization in the LCR. This was confirmed by the observed lower whole body dietary fatty acid oxidation in LCR compared with HCR. Furthermore, LCR liver homogenate and isolated mitochondria showed lower complete fatty acid oxidation compared with HCR. We conclude that rats bred for low intrinsic aerobic capacity show greater susceptibility for dietary-induced hepatic steatosis, which is associated with a lower energy expenditure and reduced whole body and hepatic mitochondrial lipid oxidation.
Collapse
Affiliation(s)
| | - Matthew R Jackman
- Departments of Physiology and Biophysics, Medicine - Endocrinology, Diabetes, and Metabolism, University of Colorado School of Medicine, Aurora, Colorado
| | - Ginger C Johnson
- Departments of Physiology and Biophysics, Medicine - Endocrinology, Diabetes, and Metabolism, University of Colorado School of Medicine, Aurora, Colorado
| | - Tzu-Wen Liu
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
| | - Jordan L Lopez
- Departments of Physiology and Biophysics, Medicine - Endocrinology, Diabetes, and Metabolism, University of Colorado School of Medicine, Aurora, Colorado
| | - Monica L Kearney
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
| | - Justin A Fletcher
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
| | - Grace M E Meers
- Department of Medicine - Gastroenterology and Hepatology, and
| | - Lauren G Koch
- Department of Anesthesiology, University of Michigan, Ann Arbor, Michigan
| | - Stephen L Britton
- Department of Anesthesiology, University of Michigan, Ann Arbor, Michigan
| | - R Scott Rector
- Department of Medicine - Gastroenterology and Hepatology, and Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri; Harry S. Truman Memorial Veterans Affairs Hospital-Research Service, Columbia, Missouri
| | - Jamal A Ibdah
- Department of Medicine - Gastroenterology and Hepatology, and Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri; Harry S. Truman Memorial Veterans Affairs Hospital-Research Service, Columbia, Missouri
| | - Paul S MacLean
- Anschutz Health and Wellness Center, Aurora, Colorado; and Departments of Physiology and Biophysics, Medicine - Endocrinology, Diabetes, and Metabolism, University of Colorado School of Medicine, Aurora, Colorado
| | - John P Thyfault
- Department of Medicine - Gastroenterology and Hepatology, and Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri; Harry S. Truman Memorial Veterans Affairs Hospital-Research Service, Columbia, Missouri;
| |
Collapse
|
154
|
Postnatal overfeeding promotes early onset and exaggeration of high-fat diet-induced nonalcoholic fatty liver disease through disordered hepatic lipid metabolism in rats. J Nutr Biochem 2014; 25:1108-1116. [PMID: 25154569 DOI: 10.1016/j.jnutbio.2014.06.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Revised: 04/01/2014] [Accepted: 06/13/2014] [Indexed: 01/03/2023]
Abstract
Exposure to overnutrition in critical or sensitive developmental periods may increase the risk of developing obesity and metabolic syndrome in adults. Nonalcoholic fatty liver disease (NAFLD) is the hepatic manifestation of the metabolic syndrome, but the relationship among postnatal nutrition, lipid metabolism, and NAFLD progression during development remains poorly understood. Here we investigated in a rat model whether postnatal overfeeding increases susceptibility to NAFLD in response to a high-fat diet. Litters from Sprague-Dawley dams were culled to three (small litters) or ten (normal litters) pups and then weaned onto a standard or high-fat diet at postnatal day 21 to generate normal-litter, small-litter, normal-litter/high-fat, and small-litter/high-fat groups. At age 16 weeks, the small-litter and both high-fat groups showed obesity, dyslipidemia, and insulin resistance. Hepatic disorders appeared earlier in the small-litter/high-fat rats with greater liver mass gain and higher hepatic triglycerides and steatosis score versus normal-litter/high-fat rats. Hepatic acetyl-CoA carboxylase activity and mRNA expression were increased in small-litter rats and aggravated in small-litter/high-fat rats but not in normal-litter/high-fat rats. The high expression in small-litter/high-fat rats coincided with high sterol regulatory element-binding protein-1c mRNA and protein expression. However, mRNA expression of enzymes involved in hepatic fatty acid oxidation (carnitine palmitoyltransferase 1) and output (microsomal triglyceride transfer protein) was decreased under a high-fat diet regardless of litter size. In conclusion, overfeeding related to small-litter rearing during lactation contributes to the NAFLD phenotype when combined with a high-fat diet, possibly through up-regulated hepatic lipogenesis.
Collapse
|
155
|
Aon MA, Bhatt N, Cortassa SC. Mitochondrial and cellular mechanisms for managing lipid excess. Front Physiol 2014; 5:282. [PMID: 25132820 PMCID: PMC4116787 DOI: 10.3389/fphys.2014.00282] [Citation(s) in RCA: 164] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 07/10/2014] [Indexed: 12/16/2022] Open
Abstract
Current scientific debates center on the impact of lipids and mitochondrial function on diverse aspects of human health, nutrition and disease, among them the association of lipotoxicity with the onset of insulin resistance in skeletal muscle, and with heart dysfunction in obesity and diabetes. Mitochondria play a fundamental role in aging and in prevalent acute or chronic diseases. Lipids are main mitochondrial fuels however these molecules can also behave as uncouplers and inhibitors of oxidative phosphorylation. Knowledge about the functional composition of these contradictory effects and their impact on mitochondrial-cellular energetics/redox status is incomplete. Cells store fatty acids (FAs) as triacylglycerol and package them into cytoplasmic lipid droplets (LDs). New emerging data shows the LD as a highly dynamic storage pool of FAs that can be used for energy reserve. Lipid excess packaging into LDs can be seen as an adaptive response to fulfilling energy supply without hindering mitochondrial or cellular redox status and keeping low concentration of lipotoxic intermediates. Herein we review the mechanisms of action and utilization of lipids by mitochondria reported in liver, heart and skeletal muscle under relevant physiological situations, e.g., exercise. We report on perilipins, a family of proteins that associate with LDs in response to loading of cells with lipids. Evidence showing that in addition to physical contact, mitochondria and LDs exhibit metabolic interactions is presented and discussed. A hypothetical model of channeled lipid utilization by mitochondria is proposed. Direct delivery and channeled processing of lipids in mitochondria could represent a reliable and efficient way to maintain reactive oxygen species (ROS) within levels compatible with signaling while ensuring robust and reliable energy supply.
Collapse
Affiliation(s)
- Miguel A Aon
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine Baltimore, MD, USA
| | - Niraj Bhatt
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine Baltimore, MD, USA
| | - Sonia C Cortassa
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine Baltimore, MD, USA
| |
Collapse
|
156
|
Agnoux AM, Antignac JP, Simard G, Poupeau G, Darmaun D, Parnet P, Alexandre-Gouabau MC. Time window-dependent effect of perinatal maternal protein restriction on insulin sensitivity and energy substrate oxidation in adult male offspring. Am J Physiol Regul Integr Comp Physiol 2014; 307:R184-97. [DOI: 10.1152/ajpregu.00015.2014] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Epidemiological and experimental evidence suggests that a suboptimal environment during perinatal life programs offspring susceptibility to the development of metabolic syndrome and Type 2 diabetes. We hypothesized that the lasting impact of perinatal protein deprivation on mitochondrial fuel oxidation and insulin sensitivity would depend on the time window of exposure. To improve our understanding of underlying mechanisms, an integrative approach was used, combining the assessment of insulin sensitivity and untargeted mass spectrometry-based metabolomics in the offspring. A hyperinsulinemic-euglycemic clamp was performed in adult male rats born from dams fed a low-protein diet during gestation and/or lactation, and subsequently exposed to a Western diet (WD) for 10 wk. Metabolomics was combined with targeted acylcarnitine profiling and analysis of liver gene expression to identify markers of adaptation to WD that influence the phenotype outcome evaluated by body composition analysis. At adulthood, offspring of protein-restricted dams had impaired insulin secretion when fed a standard diet. Moreover, rats who demonstrated catch-up growth at weaning displayed higher gluconeogenesis and branched-chain amino acid catabolism, and lower fatty acid β-oxidation compared with control rats. Postweaning exposure of intrauterine growth restriction-born rats to a WD exacerbated incomplete fatty acid β-oxidation and excess fat deposition. Control offspring nursed by protein-restricted mothers showed peculiar low-fat accretion through adulthood and preserved insulin sensitivity even after WD-exposure. Altogether, our findings suggest a testable hypothesis about how maternal diet might influence metabolic outcomes (insulin sensitivity) in the next generation such as mitochondrial overload and/or substrate oxidation inflexibility dependent on the time window of perinatal dietary manipulation.
Collapse
Affiliation(s)
- Aurore Martin Agnoux
- Institut National de la Recherche Agronomique (INRA), UMR 1280, Physiologie des Adaptations Nutritionnelles, Institut des maladies de l'appareil digestif (IMAD), Centre de Recherche en Nutrition Humaine Ouest (CRNH), Nantes, France
- Université de Nantes, UMR 1280, Physiologie des Adaptations Nutritionnelles, IMAD, CRNH, Nantes, France
| | - Jean-Philippe Antignac
- L'Université Nantes Angers Le Mans (LUNAM) université, Oniris, Laboratoire d'Etude des Résidus et Contaminants dans les Aliments, Unité Sous Contrat (USC) INRA, Nantes, France
| | - Gilles Simard
- LUNAM Université, Angers, France
- Institut National de la Santé et de la Recherche Médicale U1063, Angers, France; and
- Université d'Angers, Centre Hospitalier Universitaire (CHU) Angers, Department of Biochemistry, Angers, France
| | - Guillaume Poupeau
- Institut National de la Recherche Agronomique (INRA), UMR 1280, Physiologie des Adaptations Nutritionnelles, Institut des maladies de l'appareil digestif (IMAD), Centre de Recherche en Nutrition Humaine Ouest (CRNH), Nantes, France
- Université de Nantes, UMR 1280, Physiologie des Adaptations Nutritionnelles, IMAD, CRNH, Nantes, France
| | - Dominique Darmaun
- Institut National de la Recherche Agronomique (INRA), UMR 1280, Physiologie des Adaptations Nutritionnelles, Institut des maladies de l'appareil digestif (IMAD), Centre de Recherche en Nutrition Humaine Ouest (CRNH), Nantes, France
- Université de Nantes, UMR 1280, Physiologie des Adaptations Nutritionnelles, IMAD, CRNH, Nantes, France
| | - Patricia Parnet
- Institut National de la Recherche Agronomique (INRA), UMR 1280, Physiologie des Adaptations Nutritionnelles, Institut des maladies de l'appareil digestif (IMAD), Centre de Recherche en Nutrition Humaine Ouest (CRNH), Nantes, France
- Université de Nantes, UMR 1280, Physiologie des Adaptations Nutritionnelles, IMAD, CRNH, Nantes, France
| | - Marie-Cécile Alexandre-Gouabau
- Institut National de la Recherche Agronomique (INRA), UMR 1280, Physiologie des Adaptations Nutritionnelles, Institut des maladies de l'appareil digestif (IMAD), Centre de Recherche en Nutrition Humaine Ouest (CRNH), Nantes, France
- Université de Nantes, UMR 1280, Physiologie des Adaptations Nutritionnelles, IMAD, CRNH, Nantes, France
| |
Collapse
|
157
|
Fouad AM, El-Senousey HK. Nutritional factors affecting abdominal fat deposition in poultry: a review. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2014; 27:1057-68. [PMID: 25050050 PMCID: PMC4093572 DOI: 10.5713/ajas.2013.13702] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 01/20/2014] [Accepted: 02/19/2014] [Indexed: 12/14/2022]
Abstract
The major goals of the poultry industry are to increase the carcass yield and to reduce carcass fatness, mainly the abdominal fat pad. The increase in poultry meat consumption has guided the selection process toward fast-growing broilers with a reduced feed conversion ratio. Intensive selection has led to great improvements in economic traits such as body weight gain, feed efficiency, and breast yield to meet the demands of consumers, but modern commercial chickens exhibit excessive fat accumulation in the abdomen area. However, dietary composition and feeding strategies may offer practical and efficient solutions for reducing body fat deposition in modern poultry strains. Thus, the regulation of lipid metabolism to reduce the abdominal fat content based on dietary composition and feeding strategy, as well as elucidating their effects on the key enzymes associated with lipid metabolism, could facilitate the production of lean meat and help to understand the fat-lowering effects of diet and different feeding strategies.
Collapse
Affiliation(s)
- A. M. Fouad
- Corresponding Author: A. M. Fouad. Tel: +20-2-35440696, Fax: +20-2-35717355, E-mail:
| | | |
Collapse
|
158
|
Carley AN, Taegtmeyer H, Lewandowski ED. Matrix revisited: mechanisms linking energy substrate metabolism to the function of the heart. Circ Res 2014; 114:717-29. [PMID: 24526677 DOI: 10.1161/circresaha.114.301863] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Metabolic signaling mechanisms are increasingly recognized to mediate the cellular response to alterations in workload demand, as a consequence of physiological and pathophysiological challenges. Thus, an understanding of the metabolic mechanisms coordinating activity in the cytosol with the energy-providing pathways in the mitochondrial matrix becomes critical for deepening our insights into the pathogenic changes that occur in the stressed cardiomyocyte. Processes that exchange both metabolic intermediates and cations between the cytosol and mitochondria enable transduction of dynamic changes in contractile state to the mitochondrial compartment of the cell. Disruption of such metabolic transduction pathways has severe consequences for the energetic support of contractile function in the heart and is implicated in the pathogenesis of heart failure. Deficiencies in metabolic reserve and impaired metabolic transduction in the cardiomyocyte can result from inherent deficiencies in metabolic phenotype or maladaptive changes in metabolic enzyme expression and regulation in the response to pathogenic stress. This review examines both current and emerging concepts of the functional linkage between the cytosol and the mitochondrial matrix with a specific focus on metabolic reserve and energetic efficiency. These principles of exchange and transport mechanisms across the mitochondrial membrane are reviewed for the failing heart from the perspectives of chronic pressure overload and diabetes mellitus.
Collapse
Affiliation(s)
- Andrew N Carley
- From the Center for Cardiovascular Research, University of Illinois at Chicago College of Medicine, Chicago IL (A.N.C., E.D.L.); and Department of Internal Medicine, Division of Cardiology, The University of Texas Medical School at Houston (H.T.)
| | | | | |
Collapse
|
159
|
XU HEN, ZHOU RONG, MOON LILY, FENG MIN, LI LINZ. 3D IMAGING OF THE MITOCHONDRIAL REDOX STATE OF RAT HEARTS UNDER NORMAL AND FASTING CONDITIONS. JOURNAL OF INNOVATIVE OPTICAL HEALTH SCIENCES 2014; 7:1350045. [PMID: 24917891 PMCID: PMC4048726 DOI: 10.1142/s1793545813500454] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The heart requires continuous ATP availability that is generated in the mitochondria. Although studies using the cell culture and perfused organ models have been carried out to investigate the biochemistry in the mitochondria in response to a change in substrate supply, mitochondrial bioenergetics of heart under normal feed or fasting conditions has not been studied at the tissue level with a sub-millimeter spatial resolution either in vivo or ex vivo. Oxidation of many food-derived metabolites to generate ATP in the mitochondria is realized through the NADH/NAD+ couple acting as a central electron carrier. We employed the Chance redox scanner - the low-temperature fluorescence scanner to image the three-dimensional (3D) spatial distribution of the mitochondrial redox states in heart tissues of rats under normal feeding or an overnight starvation for 14.5 h. Multiple consecutive sections of each heart were imaged to map three redox indices, i.e., NADH, oxidized flavoproteins (Fp, including flavin adenine dinucleotide (FAD)) and the redox ratio NADH/Fp. The imaging results revealed the micro-heterogeneity and the spatial distribution of these redox indices. The quantitative analysis showed that in the fasted hearts the standard deviation of both NADH and Fp, i.e., SD_NADH and SD_Fp, significantly decreased with a p value of 0.032 and 0.045, respectively, indicating that the hearts become relatively more homogeneous after fasting. The fasted hearts contained 28.6% less NADH (p = 0.038). No significant change in Fp was found (p = 0.4). The NADH/Fp ratio decreased with a marginal p value (0.076). The decreased NADH in the fasted hearts is consistent with the cardiac cells' reliance of fatty acids consumption for energy metabolism when glucose becomes scarce. The experimental observation of NADH decrease induced by dietary restriction in the heart at tissue level has not been reported to our best knowledge. The Chance redox scanner demonstrated the feasibility of 3D imaging of the mitochondrial redox state in the heart and provides a useful tool to study heart metabolism and function under normal, dietary-change and pathological conditions at tissue level.
Collapse
Affiliation(s)
- HE N. XU
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Britton Chance Laboratory of Redox Imaging, Johnson Research Foundation, Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - RONG ZHOU
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - LILY MOON
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Britton Chance Laboratory of Redox Imaging, Johnson Research Foundation, Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - MIN FENG
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Britton Chance Laboratory of Redox Imaging, Johnson Research Foundation, Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - LIN Z. LI
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Britton Chance Laboratory of Redox Imaging, Johnson Research Foundation, Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute of Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
160
|
Salabei JK, Gibb AA, Hill BG. Comprehensive measurement of respiratory activity in permeabilized cells using extracellular flux analysis. Nat Protoc 2014; 9:421-38. [PMID: 24457333 DOI: 10.1038/nprot.2014.018] [Citation(s) in RCA: 233] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Extracellular flux (XF) analysis has become a mainstream method for measuring mitochondrial function in cells and tissues. Although this technique is commonly used to measure bioenergetics in intact cells, we outline here a detailed XF protocol for measuring respiration in permeabilized cells. Cells are permeabilized using saponin (SAP), digitonin (DIG) or recombinant perfringolysin O (rPFO) (XF-plasma membrane permeabilizer (PMP) reagent), and they are provided with specific substrates to measure complex I- or complex II-mediated respiratory activity, complex III+IV respiratory activity or complex IV activity. Medium- and long-chain acylcarnitines or glutamine may also be provided for measuring fatty acid (FA) oxidation or glutamine oxidation, respectively. This protocol uses a minimal number of cells compared with other protocols and does not require isolation of mitochondria. The results are highly reproducible, and mitochondria remain well coupled. Collectively, this protocol provides comprehensive and detailed information regarding mitochondrial activity and efficiency, and, after preparative steps, it takes 6-8 h to complete.
Collapse
Affiliation(s)
- Joshua K Salabei
- Diabetes and Obesity Center, Institute of Molecular Cardiology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Andrew A Gibb
- 1] Diabetes and Obesity Center, Institute of Molecular Cardiology, University of Louisville School of Medicine, Louisville, Kentucky, USA. [2] Department of Physiology and Biophysics, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Bradford G Hill
- 1] Diabetes and Obesity Center, Institute of Molecular Cardiology, University of Louisville School of Medicine, Louisville, Kentucky, USA. [2] Department of Physiology and Biophysics, University of Louisville School of Medicine, Louisville, Kentucky, USA. [3] Department of Biochemistry and Molecular Biology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| |
Collapse
|
161
|
Serviddio G, Bellanti F, Vendemiale G. Free radical biology for medicine: learning from nonalcoholic fatty liver disease. Free Radic Biol Med 2013; 65:952-968. [PMID: 23994574 DOI: 10.1016/j.freeradbiomed.2013.08.174] [Citation(s) in RCA: 195] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 08/20/2013] [Accepted: 08/20/2013] [Indexed: 02/07/2023]
Abstract
Reactive oxygen species, when released under controlled conditions and limited amounts, contribute to cellular proliferation, senescence, and survival by acting as signaling intermediates. In past decades there has been an epidemic diffusion of nonalcoholic fatty liver disease (NAFLD) that represents the result of the impairment of lipid metabolism, redox imbalance, and insulin resistance in the liver. To date, most studies and reviews have been focused on the molecular mechanisms by which fatty liver progresses to steatohepatitis, but the processes leading toward the development of hepatic steatosis in NAFLD are not fully understood yet. Several nuclear receptors, such as peroxisome proliferator-activated receptors (PPARs) α/γ/δ, PPARγ coactivators 1α and 1β, sterol-regulatory element-binding proteins, AMP-activated protein kinase, liver-X-receptors, and farnesoid-X-receptor, play key roles in the regulation of lipid homeostasis during the pathogenesis of NAFLD. These nuclear receptors may act as redox sensors and may modulate various metabolic pathways in response to specific molecules that act as ligands. It is conceivable that a redox-dependent modulation of lipid metabolism, nuclear receptor-mediated, could cause the development of hepatic steatosis and insulin resistance. Thus, this network may represent a potential therapeutic target for the treatment and prevention of hepatic steatosis and its progression to steatohepatitis. This review summarizes the redox-dependent factors that contribute to metabolism alterations in fatty liver with a focus on the redox control of nuclear receptors in normal liver as well as in NAFLD.
Collapse
Affiliation(s)
- Gaetano Serviddio
- C.U.R.E. Centre for Liver Disease Research and Treatment, Institute of Internal Medicine, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy.
| | - Francesco Bellanti
- C.U.R.E. Centre for Liver Disease Research and Treatment, Institute of Internal Medicine, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | - Gianluigi Vendemiale
- C.U.R.E. Centre for Liver Disease Research and Treatment, Institute of Internal Medicine, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| |
Collapse
|
162
|
Schönfeld P, Reiser G. Why does brain metabolism not favor burning of fatty acids to provide energy? Reflections on disadvantages of the use of free fatty acids as fuel for brain. J Cereb Blood Flow Metab 2013; 33:1493-9. [PMID: 23921897 PMCID: PMC3790936 DOI: 10.1038/jcbfm.2013.128] [Citation(s) in RCA: 287] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 06/11/2013] [Accepted: 07/05/2013] [Indexed: 02/08/2023]
Abstract
It is puzzling that hydrogen-rich fatty acids are used only poorly as fuel in the brain. The long-standing belief that a slow passage of fatty acids across the blood-brain barrier might be the reason. However, this has been corrected by experimental results. Otherwise, accumulated nonesterified fatty acids or their activated derivatives could exert detrimental activities on mitochondria, which might trigger the mitochondrial route of apoptosis. Here, we draw attention to three particular problems: (1) ATP generation linked to β-oxidation of fatty acids demands more oxygen than glucose, thereby enhancing the risk for neurons to become hypoxic; (2) β-oxidation of fatty acids generates superoxide, which, taken together with the poor anti-oxidative defense in neurons, causes severe oxidative stress; (3) the rate of ATP generation based on adipose tissue-derived fatty acids is slower than that using blood glucose as fuel. Thus, in periods of extended continuous and rapid neuronal firing, fatty acid oxidation cannot guarantee rapid ATP generation in neurons. We conjecture that the disadvantages connected with using fatty acids as fuel have created evolutionary pressure on lowering the expression of the β-oxidation enzyme equipment in brain mitochondria to avoid extensive fatty acid oxidation and to favor glucose oxidation in brain.
Collapse
Affiliation(s)
- Peter Schönfeld
- Institute of Biochemistry and Cell Biology, Medical Faculty of Otto-von-Guericke-University, Magdeburg, Germany
| | | |
Collapse
|
163
|
Smith BK, Perry CGR, Herbst EAF, Ritchie IR, Beaudoin MS, Smith JC, Neufer PD, Wright DC, Holloway GP. Submaximal ADP-stimulated respiration is impaired in ZDF rats and recovered by resveratrol. J Physiol 2013; 591:6089-101. [PMID: 24081154 DOI: 10.1113/jphysiol.2013.259226] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Mitochondrial dysfunction and reactive oxygen species (ROS) have been implicated in the aetiology of skeletal muscle insulin resistance, although there is considerable controversy regarding these concepts. Mitochondrial function has been traditionally assessed in the presence of saturating ADP, but ATP turnover and the resultant ADP is thought to limit respiration in vivo. Therefore, we investigated the potential link between submaximal ADP-stimulated respiration rates, ROS generation and skeletal muscle insulin sensitivity in a model of type 2 diabetes mellitus, the ZDF rat. Utilizing permeabilized muscle fibres we observed that submaximal ADP-stimulated respiration rates (250-2000 μm ADP) were lower in ZDF rats than in lean controls, which coincided with decreased adenine nucleotide translocase 2 (ANT2) protein content. This decrease in submaximal ADP-stimulated respiration occurred in the absence of a decrease in electron transport chain function. Treating ZDF rats with resveratrol improved skeletal muscle insulin resistance and this was associated with elevated submaximal ADP-stimulated respiration rates as well as an increase in ANT2 protein content. These results coincided with a greater ability of ADP to attenuate mitochondrial ROS emission and an improvement in cellular redox balance. Together, these data suggest that mitochondrial dysfunction is present in skeletal muscle insulin resistance when assessed at submaximal ADP concentrations and that ADP dynamics may influence skeletal muscle insulin sensitivity through alterations in the propensity for mitochondrial ROS emission.
Collapse
Affiliation(s)
- Brennan K Smith
- G. P. Holloway: Human Health and Nutritional Sciences, University of Guelph, 491 Gordon St., Guelph, ON, Canada, N1G 2W1.
| | | | | | | | | | | | | | | | | |
Collapse
|
164
|
Matthew Morris E, Fletcher JA, Thyfault JP, Rector RS. The role of angiotensin II in nonalcoholic steatohepatitis. Mol Cell Endocrinol 2013; 378:29-40. [PMID: 22579612 DOI: 10.1016/j.mce.2012.04.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Accepted: 04/30/2012] [Indexed: 01/18/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is now considered the most prevalent chronic liver disease, affecting over 30% of the US adult population. NAFLD is strongly linked to insulin resistance and is considered the hepatic manifestation of the metabolic syndrome. Activation of the renin-angiotensin-aldosterone system (RAAS) is known to play a role in the hypertension observed in the metabolic syndrome and also is thought to play a central role in insulin resistance and NAFLD. Angiotensin II (AngII) is considered the primary effector of the physiological outcomes of RAAS signaling, both at the systemic and local tissue level. Herein, we review data describing the potential involvement of AngII-mediated signaling at multiple levels in the development and progression of NAFLD, including increased steatosis, inflammation, insulin resistance, and fibrosis. Additionally, we present recent work on the potential therapeutic benefits of RAAS and angiotensin II signaling inhibition in rodent models and patients with NAFLD.
Collapse
Affiliation(s)
- E Matthew Morris
- Department of Internal Medicine - Division of Gastroenterology and Hepatology, University of Missouri, MO, United States; Harry S Truman Memorial Veterans Medical Center, Columbia, MO 65201, United States.
| | | | | | | |
Collapse
|
165
|
Glutathione controls the redox state of the mitochondrial carnitine/acylcarnitine carrier Cys residues by glutathionylation. Biochim Biophys Acta Gen Subj 2013; 1830:5299-304. [PMID: 23948593 DOI: 10.1016/j.bbagen.2013.08.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 07/26/2013] [Accepted: 08/05/2013] [Indexed: 01/13/2023]
Abstract
BACKGROUND The mitochondrial carnitine/acylcarnitine carrier (CAC) is essential for cell metabolism since it catalyzes the transport of acylcarnitines into mitochondria allowing the β-oxidation of fatty acids. CAC functional and structural properties have been characterized. Cys residues which could form disulfides suggest the involvement of CAC in redox switches. METHODS The effect of GSH and GSSG on the [(3)H]-carnitine/carnitine antiport catalyzed by the CAC in proteoliposomes has been studied. The Cys residues involved in the redox switch have been identified by site-directed mutagenesis. Glutathionylated CAC has been assessed by glutathionyl-protein specific antibody. RESULTS GSH led to increase of transport activity of the CAC extracted from liver mitochondria. A similar effect was observed on the recombinant CAC. The presence of glutaredoxin-1 (Grx1) accelerated the GSH activation of the recombinant CAC. The effect was more evident at 37°C. GSSG led to transport inhibition which was reversed by dithioerythritol (DTE). The effects of GSH and GSSG were studied on CAC Cys-mutants. CAC lacking C136 and C155 was insensitive to both reagents. Mutants containing these two Cys responded as the wild-type. Anti-glutathionyl antibody revealed the formation of glutathionylated CAC. CONCLUSIONS CAC is redox-sensitive and it is regulated by the GSH/GSSG couple. C136 and C155 are responsible for the regulation which occurs through glutathionylation. GENERAL SIGNIFICANCE CAC is sensitive to the redox state of the cell switching between oxidized and reduced forms in response to variation of GSSG and GSH concentrations.
Collapse
|
166
|
Li X, Chen H, Guan Y, Li X, Lei L, Liu J, Yin L, Liu G, Wang Z. Acetic acid activates the AMP-activated protein kinase signaling pathway to regulate lipid metabolism in bovine hepatocytes. PLoS One 2013; 8:e67880. [PMID: 23861826 PMCID: PMC3701595 DOI: 10.1371/journal.pone.0067880] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 05/23/2013] [Indexed: 11/24/2022] Open
Abstract
The effect of acetic acid on hepatic lipid metabolism in ruminants differs significantly from that in monogastric animals. Therefore, the aim of this study was to investigate the regulation mechanism of acetic acid on the hepatic lipid metabolism in dairy cows. The AMP-activated protein kinase (AMPK) signaling pathway plays a key role in regulating hepatic lipid metabolism. In vitro, bovine hepatocytes were cultured and treated with different concentrations of sodium acetate (neutralized acetic acid) and BML-275 (an AMPKα inhibitor). Acetic acid consumed a large amount of ATP, resulting in an increase in AMPKα phosphorylation. The increase in AMPKα phosphorylation increased the expression and transcriptional activity of peroxisome proliferator-activated receptor α, which upregulated the expression of lipid oxidation genes, thereby increasing lipid oxidation in bovine hepatocytes. Furthermore, elevated AMPKα phosphorylation reduced the expression and transcriptional activity of the sterol regulatory element-binding protein 1c and the carbohydrate responsive element-binding protein, which reduced the expression of lipogenic genes, thereby decreasing lipid biosynthesis in bovine hepatocytes. In addition, activated AMPKα inhibited the activity of acetyl-CoA carboxylase. Consequently, the triglyceride content in the acetate-treated hepatocytes was significantly decreased. These results indicate that acetic acid activates the AMPKα signaling pathway to increase lipid oxidation and decrease lipid synthesis in bovine hepatocytes, thereby reducing liver fat accumulation in dairy cows.
Collapse
Affiliation(s)
- Xinwei Li
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Hui Chen
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Yuan Guan
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Xiaobing Li
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Liancheng Lei
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Juxiong Liu
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Liheng Yin
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Guowen Liu
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
- * E-mail: (GL); (ZW)
| | - Zhe Wang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
- * E-mail: (GL); (ZW)
| |
Collapse
|
167
|
de Oliveira JE, Druyan S, Uni Z, Ashwell CM, Ferket PR. Metabolic profiling of late-term turkey embryos by microarrays. Poult Sci 2013; 92:1011-28. [PMID: 23472025 DOI: 10.3382/ps.2012-02354] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The last stages of embryonic development are crucial for turkeys as their metabolism shifts to accommodate posthatch survival and growth. To better understand the metabolic change that occurs during the perinatal period, focused microarray methodology was used to identify changes in the expression of key genes that control metabolism of turkey embryos from 20 d of incubation (E) until hatch (E28). Gene expression patterns were evaluated in liver, pectoral muscle, and hatching muscle and were associated with measured embryonic growth and tissue glycogen concentration. Within the studied period, the expression of 60 genes significantly changed in liver, 53 in pectoral muscle, and 51 in hatching muscle. Genes related to lipid metabolism (enoyl-CoA hydratase, 3-hydroxyacyl-CoA dehydrogenase, 3-hydroxymethylglutaryl-CoA reductase, acetyl-CoA carboxylase, lipoprotein lipase, and thyroxine deiodinase) had reduced expression between E22 and E26, corresponding to the period of expected limited oxygen supply. In contrast, genes related to opposing pathways in carbohydrate metabolism, such as glycolysis and gluconeogenesis (hexokinases, glucose-6 phosphatase, phosphofructokinases, glucose 1-6 phosphatase, pyruvate kinase, and phosphoenolpyruvate carboxykinase), or glycogenesis and glycogenolysis (glycogen synthase and glycogen phosphorylase) had rather static expression patterns between E22 and E26, indicating their enzymatic activity must be under posttranscriptional control. Metabolic survey by microarray methodology brings new insights into avian embryonic development and physiology.
Collapse
Affiliation(s)
- J E de Oliveira
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC, USA
| | | | | | | | | |
Collapse
|
168
|
Seiliez I, Médale F, Aguirre P, Larquier M, Lanneretonne L, Alami-Durante H, Panserat S, Skiba-Cassy S. Postprandial regulation of growth- and metabolism-related factors in zebrafish. Zebrafish 2013; 10:237-48. [PMID: 23659367 DOI: 10.1089/zeb.2012.0835] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Zebrafish (Danio rerio) have been proposed as a possible model organism for nutritional physiology. However, this potential has not yet been realized and studies on the field remain scarce. In this work, we investigated in this species the effect of a single meal as well as that of an increase in the ratio of dietary carbohydrates/proteins on the postprandial expression of several hepatic and muscle metabolism-related genes and proteins. Fish were fed once either a commercial diet (experiment 1) or one of two experimental diets (experiment 2) containing different protein and carbohydrate levels after 72 h of starvation. Refeeding induced the postprandial expression of genes of glycolysis (GK, HK1) and lipogenesis (FAS, G6PDH, ACCa) and inhibited those of gluconeogenesis (cPEPCK) and beta-oxidation (CPT1b) in the viscera. In the muscle, refeeding increased transcript levels of myogenesis (Myf5, Myogenin), inhibited those of Ub-proteasomal proteolytic system (Atrogin1, Murf1a, Murf1b), and induced the activation of key signaling factors of protein synthesis (Akt, 4EBP1, S6K1, S6). However, diet composition had a low impact on the studied factors. Together, these results highlight some specificity of the zebrafish metabolism and demonstrate the interest and the limits of this species as a model organism for nutritional physiology studies.
Collapse
Affiliation(s)
- Iban Seiliez
- Institut National de la Recherche Agronomique , UR1067 Nutrition Métabolisme Aquaculture, St-Pée-sur-Nivelle, France.
| | | | | | | | | | | | | | | |
Collapse
|
169
|
Cintolesi A, Rodríguez-Moyá M, Gonzalez R. Fatty acid oxidation: systems analysis and applications. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2013; 5:575-85. [DOI: 10.1002/wsbm.1226] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 03/26/2013] [Accepted: 03/29/2013] [Indexed: 12/30/2022]
Affiliation(s)
- Angela Cintolesi
- Department of Chemical and Biomolecular Engineering; Rice University; Houston TX USA
| | - María Rodríguez-Moyá
- Department of Chemical and Biomolecular Engineering; Rice University; Houston TX USA
| | - Ramon Gonzalez
- Department of Chemical and Biomolecular Engineering; Rice University; Houston TX USA
- Department of Bioengineering; Rice University; Houston TX USA
| |
Collapse
|
170
|
Madsen KL, Preisler N, Orngreen MC, Andersen SP, Olesen JH, Lund AM, Vissing J. Patients with medium-chain acyl-coenzyme a dehydrogenase deficiency have impaired oxidation of fat during exercise but no effect of L-carnitine supplementation. J Clin Endocrinol Metab 2013; 98:1667-75. [PMID: 23426616 DOI: 10.1210/jc.2012-3791] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
BACKGROUND It is not clear to what extent skeletal muscle is affected in patients with medium-chain acyl-coenzyme A dehydrogenase deficiency (MCADD). l-Carnitine is commonly used as a supplement in patients with MCADD, although its beneficial effect has not been verified. DESIGN We investigated (1) fuel utilization during prolonged low-intensity exercise in patients with MCADD and (2) the influence of 4 weeks of oral l-carnitine supplementation on fuel utilization during exercise. METHODS Four asymptomatic patients with MCADD and 11 untrained, healthy, age- and sex-matched control subjects were included. The subjects performed a 1-hour cycling test at a constant workload corresponding to 55% of Vo2max, while fat and carbohydrate metabolism was assessed, using the stable isotope technique and indirect calorimetry. The patients ingested 100 mg/kg/d of l-carnitine for 4 weeks, after which the cycling tests were repeated. RESULTS At rest, palmitate oxidation and total fatty acid oxidation (FAO) rates were similar in patients and healthy control subjects. During constant workload cycling, palmitate oxidation and FAO rates increased in both groups, but increased 2 times as much in healthy control subjects as in patients (P = .007). Palmitate oxidation and FAO rates were unchanged by the l-carnitine supplementation. CONCLUSION Our results indicate that patients with MCADD have an impaired ability to increase FAO during exercise but less so than that observed in patients with a number of other disorders of fat oxidation, which explains the milder skeletal muscle phenotype in MCADD. The use of carnitine supplementation in MCADD cannot be supported by the present findings.
Collapse
Affiliation(s)
- K L Madsen
- Neuromuscular Research Unit, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.
| | | | | | | | | | | | | |
Collapse
|
171
|
Tonazzi A, Console L, Indiveri C. Inhibition of mitochondrial carnitine/acylcarnitine transporter by H2O2: Molecular mechanism and possible implication in pathophysiology. Chem Biol Interact 2013; 203:423-9. [DOI: 10.1016/j.cbi.2013.01.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Revised: 01/14/2013] [Accepted: 01/31/2013] [Indexed: 12/29/2022]
|
172
|
Keung W, Ussher JR, Jaswal JS, Raubenheimer M, Lam VH, Wagg CS, Lopaschuk GD. Inhibition of carnitine palmitoyltransferase-1 activity alleviates insulin resistance in diet-induced obese mice. Diabetes 2013; 62:711-20. [PMID: 23139350 PMCID: PMC3581198 DOI: 10.2337/db12-0259] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Impaired skeletal muscle fatty acid oxidation has been suggested to contribute to insulin resistance and glucose intolerance. However, increasing muscle fatty acid oxidation may cause a reciprocal decrease in glucose oxidation, which might impair insulin sensitivity and glucose tolerance. We therefore investigated what effect inhibition of mitochondrial fatty acid uptake has on whole-body glucose tolerance and insulin sensitivity in obese insulin-resistant mice. C57BL/6 mice were fed a high-fat diet (60% calories from fat) for 12 weeks to develop insulin resistance. Subsequent treatment of mice for 4 weeks with the carnitine palmitoyltransferase-1 inhibitor, oxfenicine (150 mg/kg i.p. daily), resulted in improved whole-body glucose tolerance and insulin sensitivity. Exercise capacity was increased in oxfenicine-treated mice, which was accompanied by an increased respiratory exchange ratio. In the gastrocnemius muscle, oxfenicine increased pyruvate dehydrogenase activity, membrane GLUT4 content, and insulin-stimulated Akt phosphorylation. Intramyocellular levels of lipid intermediates, including ceramide, long-chain acyl CoA, and diacylglycerol, were also decreased. Our results demonstrate that inhibition of mitochondrial fatty acid uptake improves insulin sensitivity in diet-induced obese mice. This is associated with increased carbohydrate utilization and improved insulin signaling in the skeletal muscle, suggestive of an operating Randle Cycle in muscle.
Collapse
|
173
|
Wall BT, Stephens FB, van Loon LJ, Constantin-Teodosiu D, Macdonald IA, Greenhaff PL. Reduced fat oxidation during high intensity, submaximal exercise: is the availability of carnitine important? Eur J Sport Sci 2013. [DOI: 10.1080/17461391.2011.630103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
174
|
Sundari K, Karthik D, Ilavenil S, Kaleeswaran B, Srigopalram S, Ravikumar S. Hepatoprotective and proteomic mechanism of Sphaeranthus indicus in paracetamol induced hepatotoxicity in wistar rats. FOOD BIOSCI 2013. [DOI: 10.1016/j.fbio.2013.03.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
175
|
Abstract
Metabolic syndrome comprises a cluster of cardiovascular risk factors (hypertension, altered glucose metabolism, dyslipidemia, and abdominal obesity) that occur in obese children. However, metabolic syndrome can also occur in lean individuals, suggesting that obesity is a marker for the syndrome, not a cause. Metabolic syndrome is difficult to define, due to its nonuniform classification and reliance on hard cutoffs in the evaluation of disorders with non-Gaussian distributions. Defining the syndrome is even more difficult in children, owing to racial and pubertal differences and lack of cardiovascular events. Lipid partitioning among specific fat depots is associated with insulin resistance, which can lead to mitochondrial overload and dysfunctional subcellular energy use and drive the various elements of metabolic syndrome. Multiple environmental factors, in particular a typical Western diet, drive mitochondrial overload, while other changes in Western society, such as stress and sleep deprivation, increase insulin resistance and the propensity for food intake. These culminate in an adverse biochemical phenotype, including development of altered glucose metabolism and early atherogenesis during childhood and early adulthood.
Collapse
Affiliation(s)
- Ram Weiss
- Department of Pediatrics, Hadassah Hebrew University School of Medicine, Jerusalem, Israel
| | | | | |
Collapse
|
176
|
Affiliation(s)
- Marieke G. Schooneman
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Frédéric M. Vaz
- Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Sander M. Houten
- Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Department of Pediatrics, Emma Children’s Hospital, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Maarten R. Soeters
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Corresponding author: Maarten R. Soeters,
| |
Collapse
|
177
|
The determination and analysis of site-specific rates of mitochondrial reactive oxygen species production. Methods Enzymol 2013; 526:189-217. [PMID: 23791102 DOI: 10.1016/b978-0-12-405883-5.00012-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Mitochondrial reactive oxygen species (ROS) are widely implicated in physiological and pathological pathways. We propose that it is critical to understand the specific sites of mitochondrial ROS production and their mechanisms of action. Mitochondria possess at least eight distinct sites of ROS production in the electron transport chain and matrix compartment. In this chapter, we describe the nature of the mitochondrial ROS-producing machinery and the relative capacities of each site. We provide detailed methods for the measurement of H2O2 release and the conditions under which maximal rates from each site can be achieved in intact skeletal muscle mitochondria.
Collapse
|
178
|
Dietary L-arginine supplementation reduces abdominal fat content by modulating lipid metabolism in broiler chickens. Animal 2013; 7:1239-45. [DOI: 10.1017/s1751731113000347] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
179
|
Abstract
For an adult in N balance, apart from small amounts of amino acids required for the synthesis of neurotransmitters, hormones, etc, an amount of amino acids almost equal to that absorbed from the diet can be considered to be "surplus" in that it will be catabolized. The higher diet-induced thermogenesis from protein than from carbohydrate or fat has generally been assumed to be due to increased protein synthesis, which is ATP expensive. To this must be added the ATP cost of protein catabolism through the ubiquitin-proteasome pathway. Amino acid catabolism will add to thermogenesis. Deamination results in net ATP formation except when serine and threonine deaminases are used, but there is the energy cost of synthesizing glutamine in extra-hepatic tissues. The synthesis of urea has a net cost of only 1·5 × ATP when the ATP yield from fumarate metabolism is offset against the ATP cost of the urea cycle, but this offset is thermogenic. In fasting and on a low carbohydrate diet as much of the amino acid carbon as possible will be used for gluconeogenesis - an ATP-expensive, and hence thermogenic, process. Complete oxidation of most amino acid carbon skeletons also involves a number of thermogenic steps in which ATP (or GTP) or reduced coenzymes are utilized. There are no such thermogenic steps in the metabolism of pyruvate, acetyl CoA or acetoacetate, but for amino acids that are metabolized by way of the citric acid cycle intermediates there is thermogenesis ranging from 1 up to 7 × ATP equivalent per mol.
Collapse
|
180
|
Abstract
The maintenance of metabolic homeostasis requires the well-orchestrated network of several pathways of glucose, lipid and amino acid metabolism. Mitochondria integrate these pathways and serve not only as the prime site of cellular energy harvesting but also as the producer of many key metabolic intermediates. The sirtuins are a family of NAD(+)-dependent enzymes, which have a crucial role in the cellular adaptation to metabolic stress. The mitochondrial sirtuins SIRT3, SIRT4 and SIRT5 together with the nuclear SIRT1 regulate several aspects of mitochondrial physiology by controlling post-translational modifications of mitochondrial protein and transcription of mitochondrial genes. Here we discuss current knowledge how mitochondrial sirtuins and SIRT1 govern mitochondrial processes involved in different metabolic pathways.
Collapse
Affiliation(s)
- Eija Pirinen
- Laboratory for Integrative and Systems Physiology, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.
- Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, Biocenter Kuopio, University of Eastern Finland, Kuopio, Finland
| | - Giuseppe Lo Sasso
- Laboratory for Integrative and Systems Physiology, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.
| | - Johan Auwerx
- Laboratory for Integrative and Systems Physiology, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.
- To whom correspondence should be addressed:
| |
Collapse
|
181
|
Martins-Maciel ER, Campos LB, Salgueiro-Pagadigorria CL, Bracht A, Ishii-Iwamoto EL. Raloxifene affects fatty acid oxidation in livers from ovariectomized rats by acting as a pro-oxidant agent. Toxicol Lett 2012. [PMID: 23201442 DOI: 10.1016/j.toxlet.2012.11.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Estrogen deficiency accelerates the development of several disorders including visceral obesity and hepatic steatosis. The predisposing factors can be exacerbated by drugs that affect hepatic lipid metabolism. The aim of the present work was to determine if raloxifene, a selective estrogen receptor modulator (SERM) used extensively by postmenopausal women, affects hepatic fatty acid oxidation pathways. Fatty acids oxidation was measured in the livers, mitochondria and peroxisomes of ovariectomized (OVX) rats. Mitochondrial and peroxisomal β-oxidation was inhibited by raloxifene at a concentration range of 2.5-25 μM. In perfused livers, raloxifene reduced the ketogenesis from endogenous and exogenous fatty acids and increased the β-hydroxybutyrate/acetoacetate ratio. An increase in ¹⁴CO₂ production without a parallel increase in the oxygen consumption indicated that raloxifene caused a diversion of NADH from the mitochondrial respiratory chain to another oxidative reaction. It was found that raloxifene has a strong ability to react with H₂O₂ in the presence of peroxidase. It is likely that the generation of phenoxyl radical derivatives of raloxifene in intact livers led to the co-oxidation of NADH and a shift of the cellular redox state to an oxidised condition. This change can perturb other important liver metabolic processes dependent on cellular NADH/NAD⁺ ratio.
Collapse
Affiliation(s)
- E R Martins-Maciel
- Laboratory of Biological Oxidations, Department of Biochemistry, University of Maringá, 87020900 Maringá, Brazil
| | | | | | | | | |
Collapse
|
182
|
|
183
|
Completion of the core β-oxidative pathway of benzoic acid biosynthesis in plants. Proc Natl Acad Sci U S A 2012; 109:16383-8. [PMID: 22988098 DOI: 10.1073/pnas.1211001109] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Despite the importance of benzoic acid (BA) as a precursor for a wide array of primary and secondary metabolites, its biosynthesis in plants has not been fully elucidated. BA formation from phenylalanine requires shortening of the C(3) side chain by two carbon units, which can occur by a non-β-oxidative route and/or a β-oxidative pathway analogous to the catabolism of fatty acids. Enzymes responsible for the first and last reactions of the core BA β-oxidative pathway (cinnamic acid → cinnamoyl-CoA → 3-hydroxy-3-phenylpropanoyl-CoA → 3-oxo-3-phenylpropanoyl-CoA → BA-CoA) have previously been characterized in petunia, a plant with flowers rich in phenylpropanoid/benzenoid volatile compounds. Using a functional genomics approach, we have identified a petunia gene encoding cinnamoyl-CoA hydratase-dehydrogenase (PhCHD), a bifunctional peroxisomal enzyme responsible for two consecutively occurring unexplored intermediate steps in the core BA β-oxidative pathway. PhCHD spatially, developmentally, and temporally coexpresses with known genes in the BA β-oxidative pathway, and correlates with emission of benzenoid volatiles. Kinetic analysis of recombinant PhCHD revealed it most efficiently converts cinnamoyl-CoA to 3-oxo-3-phenylpropanoyl-CoA, thus forming the substrate for the final step in the pathway. Down-regulation of PhCHD expression in petunia flowers resulted in reduced CHD enzyme activity, as well as decreased formation of BA-CoA, BA and their derived volatiles. Moreover, transgenic lines accumulated the PhCHD substrate cinnamoyl-CoA and the upstream pathway intermediate cinnamic acid. Discovery of PhCHD completes the elucidation of the core BA β-oxidative route in plants, and together with the previously characterized CoA-ligase and thiolase enzymes, provides evidence that the whole pathway occurs in peroxisomes.
Collapse
|
184
|
Budick-Harmelin N, Anavi S, Madar Z, Tirosh O. Fatty acids-stress attenuates gluconeogenesis induction and glucose production in primary hepatocytes. Lipids Health Dis 2012; 11:66. [PMID: 22676303 PMCID: PMC3391994 DOI: 10.1186/1476-511x-11-66] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 06/07/2012] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Hepatic gluconeogenesis tightly controls blood glucose levels in healthy individuals, yet disorders of fatty acids (FAs) oxidation are characterized by hypoglycemia. We studied the ability of free-FAs to directly inhibit gluconeogenesis, as a novel mechanism that elucidates the hypoglycemic effect of FAs oxidation defects. METHODS Primary rat hepatocytes were pre-treated with FAs prior to gluconeogenic stimuli with glucagon or dexamethasone and cAMP. RESULTS Pre-treatment with 1 mM FAs (mixture of 2:1 oleate:palmitate) for 1 hour prior to gluconeogenic induction, significantly decreases the induced expression of the gluconeogenic genes phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6pase) as well as the induced glucose production by the cells. The inhibitory effect of FAs upon gluconeogenesis is abolished when pre-treatment is elongated to 18 hours, allowing clearance of FAs into triglycerides by the cells. Replacement of palmitate with the non-metabolic fatty acid 2-bromopalmitate inhibits esterification of FAs into triglycerides. Accordingly, the increased exposure to unesterified-FAs allows their inhibitory effect to be extended even when pre-treatment is elongated to 18 hours. Similar changes were caused by FAs to the induction of peroxisome-proliferator-activated receptor-γ coactivator 1α (PGC1α) expression, indicating this transcriptional coactivator as the mediating link of the effect. This inhibitory effect of FAs upon gluconeogenic induction is shown to involve reduced activation of cAMP response element-binding (CREB) transcription factor. CONCLUSIONS The present results demonstrate that free-FAs directly inhibit the induced gluconeogenic response in hepatocytes. Hence, high levels of free-FAs may attenuate hepatic gluconeogenesis, and liver glucose output.
Collapse
Affiliation(s)
- Noga Budick-Harmelin
- School of Nutritional Sciences, Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | | | | | | |
Collapse
|
185
|
Abstract
The effects of glucocorticoid on lipid metabolism of broiler chicken (Gallus gallus domesticus) skeletal muscle were investigated. Male Arbor Acres chickens (35 days old) were subjected to dexamethasone treatment for 3 days. We found that dexamethasone retards body growth while facilitating lipid accumulation. In M. pectoralis major (PM), dexamethasone increased the expression of glucocorticoid receptor (GR), fatty acid transport protein 1 (FATP1), heart fatty acid-binding protein (H-FABP) and long-chain acyl-CoA dehydrogenase (LCAD) mRNA and decreased the expression of liver carnitine palmitoyltransferase 1 (L-CPT1), adenosine-monophosphate-activated protein kinase (AMPK) α2 and lipoprotein lipase (LPL) mRNA. LPL activity was also decreased. In M. biceps femoris (BF), the levels of GR, FATP1 and L-CPT1 mRNA were increased. AMPKα (Thr172) phosphorylation and CTP1 activity of skeletal muscle were decreased by dexamethasone. In fed chickens, dexamethasone enhanced very low-density lipoprotein receptor (VLDLR) expression and AMPK activity in muscle, but it impaired the expression of LPL and L-CPT1 mRNA and LPL activity in PM and augmented the expression of GR, LPL, H-FABP, L-CPT1, LCAD and AMPKα2 mRNA in BF. Adipose triglyceride lipase (ATGL) protein expression was not affected by dexamethasone. In conclusion, in the fasting state, dexamethasone-induced-retarded fatty acid utilisation may be involved in the augmented intramyocellular lipid accumulation in both glycolytic (PM) and oxidative (BF) muscle tissues. In the fed state, dexamethasone promoted the transcriptional activity of genes related to lipid uptake and oxidation in muscles. Unmatched lipid uptake and utilisation are suggested to be involved in the augmented intramyocellular lipid accumulation.
Collapse
Affiliation(s)
- X J Wang
- Department of Animal Science, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | | | | | | |
Collapse
|
186
|
Gregersen N, Hansen J, Palmfeldt J. Mitochondrial proteomics--a tool for the study of metabolic disorders. J Inherit Metab Dis 2012; 35:715-26. [PMID: 22526845 DOI: 10.1007/s10545-012-9480-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Revised: 03/13/2012] [Accepted: 03/14/2012] [Indexed: 12/14/2022]
Abstract
Mitochondria are important for a number of life and death processes, such as energy production, creation of reactive oxygen species, and elicitation of stress responses. These responses range from induction of protein quality control and antioxidant systems to mitochondria elimination and cell death. Mitochondrial dysfunctions are involved in pathologies associated with many diseases, for example metabolic disorders, diabetes, cancers, cardiovascular and neurodegenerative diseases as well as obesity and aging. Mitochondrial proteomics can be a powerful tool in the study of these diseases, especially since it can cover mitochondrial proteins from several metabolic pathways, such as the citric acid cycle, fatty acid oxidation, and respiratory chain, as well as protein networks involved in stress responses. The mitochondrial proteome can consist of more than 1,000 different proteins. However, it is difficult to define the precise number, since mitochondria are dynamic and difficult to purify, and because an unknown number of proteins possess dual or multiple localization, depending on cell type and physiological conditions. This review describes several quantitative studies of proteins from mitochondria isolated by centrifugation, separated by various methods (e.g., electrophoresis and nanoLC), and analyzed by advanced mass spectrometry. We illustrate the methods by showing that multiple pathways and networks are affected in cells from patients carrying gene variations affecting a mitochondrial protein. The study of cultured skin fibroblasts from patients with ethylmalonic aciduria associated with variations in the genes coding for short-chain acyl-CoA dehydrogenase (SCAD) or ETHE1 are two of the examples. The possibility of obtaining mitochondrial proteomics data from whole cell proteomics studies is also exemplified by the involvement of liver mitochondria in metabolic syndrome.
Collapse
Affiliation(s)
- Niels Gregersen
- Research Unit for Molecular Medicine, Institute of Clinical Medicine, Faculty of Health Sciences, Aarhus University, Aarhus, Denmark
| | | | | |
Collapse
|
187
|
Quercetin Protects against Cadmium-Induced Renal Uric Acid Transport System Alteration and Lipid Metabolism Disorder in Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 2012:548430. [PMID: 22690247 PMCID: PMC3368504 DOI: 10.1155/2012/548430] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 03/26/2012] [Indexed: 11/17/2022]
Abstract
Hyperuricemia and dyslipidemia are involved in Cd nephrotoxicity. The aim of this study was to determine the effect of quercetin, a dietary flavonoid with anti-hyperuricemic and anti-dyslipidemic properties, on the alteration of renal UA transport system and disorder of renal lipid accumulation in 3 and 6 mg/kg Cd-exposed rats for 4 weeks. Cd exposure induced hyperuricemia with renal XOR hyperactivity and UA excretion dysfunction in rats. Simultaneously, abnormal expression levels of renal UA transport-related proteins including RST, OAT1, MRP4 and ABCG2 were observed in Cd-exposed rats with inhibitory activity of renal Na+-K+-ATPase. Furthermore, Cd exposure disturbed lipid metabolism with down-regulation of AMPK and its downstream targets PPARα, OCTN2 and CPT1 expressions, and up-regulation of PGC-1β and SREBP-1 expressions in renal cortex of rats. We had proved that Cd-induced disorder of renal UA transport and production system might have cross-talking with renal AMPK-PPARα/PGC-1β signal pathway impairment, contributing to Cd nephrotoxicity of rats. Quercetin was found to be effective against Cd-induced dysexpression of RST and OAT1 with XOR hyperactivity and impairment of AMPK-PPARα/PGC-1β signal pathway, resulting in renal lipid accumulation reduction of rats.
Collapse
|
188
|
Farhoud MH, Nijtmans LG, Wanders RJA, Wessels HJCT, Lasonder E, Janssen AJM, Rodenburg RRJ, van den Heuvel LP, Smeitink JAM. Impaired ubiquitin-proteasome-mediated PGC-1α protein turnover and induced mitochondrial biogenesis secondary to complex-I deficiency. Proteomics 2012; 12:1349-62. [DOI: 10.1002/pmic.201100326] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Murtada H. Farhoud
- Nijmegen Center for Mitochondrial Disorders (NCMD); Radboud University Nijmegen Medical Centre; Nijmegen The Netherlands
| | - Leo G. Nijtmans
- Nijmegen Center for Mitochondrial Disorders (NCMD); Radboud University Nijmegen Medical Centre; Nijmegen The Netherlands
| | - Ronald J. A. Wanders
- Laboratory of Genetic Metabolic Diseases; Academic Medical Center at the University of Amsterdam; Meibergdreef Amsterdam The Netherlands
| | - Hans J. C. T. Wessels
- Nijmegen Center for Mitochondrial Disorders (NCMD); Radboud University Nijmegen Medical Centre; Nijmegen The Netherlands
| | - Edwin Lasonder
- Center for Molecular and Biomolecular Informatics; Nijmegen Center of Molecular Life Sciences, Radboud University Nijmegen Medical Centre; Nijmegen The Netherlands
| | - Antoon J. M. Janssen
- Nijmegen Center for Mitochondrial Disorders (NCMD); Radboud University Nijmegen Medical Centre; Nijmegen The Netherlands
| | - Richard R. J. Rodenburg
- Nijmegen Center for Mitochondrial Disorders (NCMD); Radboud University Nijmegen Medical Centre; Nijmegen The Netherlands
| | - Lambert P. van den Heuvel
- Nijmegen Center for Mitochondrial Disorders (NCMD); Radboud University Nijmegen Medical Centre; Nijmegen The Netherlands
| | - Jan A. M. Smeitink
- Nijmegen Center for Mitochondrial Disorders (NCMD); Radboud University Nijmegen Medical Centre; Nijmegen The Netherlands
| |
Collapse
|
189
|
Krug S, Kastenmüller G, Stückler F, Rist MJ, Skurk T, Sailer M, Raffler J, Römisch‐Margl W, Adamski J, Prehn C, Frank T, Engel K, Hofmann T, Luy B, Zimmermann R, Moritz F, Schmitt‐Kopplin P, Krumsiek J, Kremer W, Huber F, Oeh U, Theis FJ, Szymczak W, Hauner H, Suhre K, Daniel H. The dynamic range of the human metabolome revealed by challenges. FASEB J 2012; 26:2607-19. [DOI: 10.1096/fj.11-198093] [Citation(s) in RCA: 240] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Susanne Krug
- Department of Nutritional MedicineResearch Center for Nutrition and Food SciencesTechnische Universität MünchenFreising‐WeihenstephanGermany
| | - Gabi Kastenmüller
- Institute of Bioinformatics and Systems BiologyHelmholtz Zentrum MünchenNeuherbergGermany
| | - Ferdinand Stückler
- Institute of Bioinformatics and Systems BiologyHelmholtz Zentrum MünchenNeuherbergGermany
| | - Manuela J. Rist
- Molecular Nutrition UnitTechnische Universität MünchenFreising‐WeihenstephanGermany
| | - Thomas Skurk
- Department of Nutritional MedicineResearch Center for Nutrition and Food SciencesTechnische Universität MünchenFreising‐WeihenstephanGermany
- Medical Radiation Physics and Diagnostics Research UnitHelmholtz Zentrum MünchenNeuherbergGermany
| | - Manuela Sailer
- Molecular Nutrition UnitTechnische Universität MünchenFreising‐WeihenstephanGermany
| | - Johannes Raffler
- Institute of Bioinformatics and Systems BiologyHelmholtz Zentrum MünchenNeuherbergGermany
- Faculty of BiologyLudwig‐Maximilians‐UniversitätPlanegg‐MartinsriedGermany
| | - Werner Römisch‐Margl
- Institute of Bioinformatics and Systems BiologyHelmholtz Zentrum MünchenNeuherbergGermany
| | - Jerzy Adamski
- Institute of Experimental GeneticsGenome Analysis CenterHelmholtz Zentrum MünchenNeuherbergGermany
| | - Cornelia Prehn
- Institute of Experimental GeneticsGenome Analysis CenterHelmholtz Zentrum MünchenNeuherbergGermany
| | - Thomas Frank
- Department of General Food TechnologyTechnische Universität MünchenFreising‐WeihenstephanGermany
| | - Karl‐Heinz Engel
- Department of General Food TechnologyTechnische Universität MünchenFreising‐WeihenstephanGermany
| | - Thomas Hofmann
- Department of Food Chemistry and Molecular Sensory ScienceTechnische Universität MünchenFreising‐WeihenstephanGermany
| | - Burkhard Luy
- Institute of Organic ChemistryKarlsruhe Institute of Technology (KIT)KarlsruheGermany
- Institute for Biological Interfaces IIKarlsruhe Institute of Technology (KIT)KarlsruheGermany
| | - Ralf Zimmermann
- Comprehensive Molecular Analytics Cooperation Group, Joint Mass Spectrometry CentreHelmholtz Zentrum MünchenNeuherbergGermany
- Department of Analytical ChemistryUniversity of RostockRostockGermany
| | - Franco Moritz
- Analytical Biogeochemistry Research UnitHelmholtz Zentrum MünchenNeuherbergGermany
| | | | - Jan Krumsiek
- Institute of Bioinformatics and Systems BiologyHelmholtz Zentrum MünchenNeuherbergGermany
| | - Werner Kremer
- LipoFIT Analytic GmbHRegensburgGermany
- Institute of Biophysics and Physical BiochemistryUniversity of RegensburgRegensburgGermany
- Center for Magnetic Resonance in Chemistry and BiomedicineUniversity of RegensburgRegensburgGermany
| | | | - Uwe Oeh
- Medical Radiation Physics and Diagnostics Research UnitHelmholtz Zentrum MünchenNeuherbergGermany
| | - Fabian J. Theis
- Institute of Bioinformatics and Systems BiologyHelmholtz Zentrum MünchenNeuherbergGermany
- Department of MathematicsTechnische Universität MünchenMunichGermany
| | - Wilfried Szymczak
- Medical Radiation Physics and Diagnostics Research UnitHelmholtz Zentrum MünchenNeuherbergGermany
| | - Hans Hauner
- Department of Nutritional MedicineResearch Center for Nutrition and Food SciencesTechnische Universität MünchenFreising‐WeihenstephanGermany
- Klinikum Rechts der IsarTechnische Universität MünchenMunichGermany
| | - Karsten Suhre
- Institute of Bioinformatics and Systems BiologyHelmholtz Zentrum MünchenNeuherbergGermany
- Faculty of BiologyLudwig‐Maximilians‐UniversitätPlanegg‐MartinsriedGermany
- Department of Physiology and BiophysicsWeill Cornell Medical College in QatarDohaQatar
| | - Hannelore Daniel
- Molecular Nutrition UnitTechnische Universität MünchenFreising‐WeihenstephanGermany
| |
Collapse
|
190
|
Abstract
Despite a lack of consistent diagnostic criteria, the metabolic syndrome (MetS) is increasingly evident in children and adolescents, portending a tsunami of chronic disease and mortality as this generation ages. The diagnostic criteria for MetS apply absolute cutoffs to continuous variables and fail to take into account aging, pubertal changes, and race/ethnicity. We attempt to define MetS mechanistically to determine its specific etiologies and to identify targets for therapy. Whereas the majority of studies document a relationship of visceral fat to insulin resistance, ectopic liver fat correlates better with dysfunctional insulin dynamics from which the rest of MetS derives. In contrast to the systemic metabolism of glucose, the liver is the primary metabolic clearinghouse for 4 specific foodstuffs that have been associated with the development of MetS: trans-fats, branched-chain amino acids, ethanol, and fructose. These 4 substrates (1) are not insulin regulated and (2) deliver metabolic intermediates to hepatic mitochondria without an appropriate "pop-off" mechanism for excess substrate, enhancing lipogenesis and ectopic adipose storage. Excessive fatty acid derivatives interfere with hepatic insulin signal transduction. Reactive oxygen species accumulate, which cannot be quenched by adjacent peroxisomes; these reactive oxygen species reach the endoplasmic reticulum, leading to a compensatory process termed the "unfolded protein response," driving further insulin resistance and eventually insulin deficiency. No obvious drug target exists in this pathway; thus, the only rational therapeutic approaches remain (1) altering hepatic substrate availability (dietary modification), (2) reducing hepatic substrate flux (high fiber), or (3) increasing mitochondrial efficiency (exercise).
Collapse
Affiliation(s)
- Andrew A. Bremer
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Michele Mietus-Snyder
- Department of Pediatrics and Children’s National Obesity Institute, Children’s National Medical Center, Washington, District of Columbia; and
| | - Robert H. Lustig
- Department of Pediatrics, University of California, San Francisco, San Francisco, California
| |
Collapse
|
191
|
Fatty Acid Oxidation and Cardiovascular Risk during Menopause: A Mitochondrial Connection? J Lipids 2012; 2012:365798. [PMID: 22496981 PMCID: PMC3306973 DOI: 10.1155/2012/365798] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Accepted: 10/17/2011] [Indexed: 01/16/2023] Open
Abstract
Menopause is a consequence of the normal aging process in women. This fact implies that the physiological and biochemical alterations resulting from menopause often blur with those from the aging process. It is thought that menopause in women presents a higher risk for cardiovascular disease although the precise mechanism is still under discussion. The postmenopause lipid profile is clearly altered, which can present a risk factor for cardiovascular disease. Due to the role of mitochondria in fatty acid oxidation, alterations of the lipid profile in the menopausal women will also influence mitochondrial fatty acid oxidation fluxes in several organs. In this paper, we propose that alterations of mitochondrial bioenergetics in the heart, consequence from normal aging and/or from the menopausal process, result in decreased fatty acid oxidation and accumulation of fatty acid intermediates in the cardiomyocyte cytosol, resulting in lipotoxicity and increasing the cardiovascular risk in the menopausal women.
Collapse
|
192
|
Kärst S, Cheng R, Schmitt AO, Yang H, de Villena FPM, Palmer AA, Brockmann GA. Genetic determinants for intramuscular fat content and water-holding capacity in mice selected for high muscle mass. Mamm Genome 2011; 22:530-43. [PMID: 21732194 PMCID: PMC3318964 DOI: 10.1007/s00335-011-9342-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Accepted: 05/27/2011] [Indexed: 12/22/2022]
Abstract
Intramuscular fat content and water-holding capacity are important traits in livestock as they influence meat quality, nutritive value of the muscle, and animal health. As a model for livestock, two inbred lines of the Berlin Muscle Mouse population, which had been long-term selected for high muscle mass, were used to identify genomic regions affecting intramuscular fat content and water-holding capacity. The intramuscular fat content of the Musculus longissimus was on average 1.4 times higher in BMMI806 than in BMMI816 mice. This was accompanied by a 1.5 times lower water-holding capacity of the Musculus quadriceps in BMMI816 mice. Linkage analyses with 332 G(3) animals of reciprocal crosses between these two lines revealed quantitative trait loci for intramuscular fat content on chromosome 7 and for water-holding capacity on chromosome 2. In part, the identified loci coincide with syntenic regions in pigs in which genetic effects for the same traits were found. Therefore, these muscle-weight-selected mouse lines and the produced intercross populations are valuable genetic resources to identify genes that could also contribute to meat quality in other species.
Collapse
Affiliation(s)
- Stefan Kärst
- Department for Crop and Animal Sciences, Humboldt-Universität zu Berlin, Invalidenstraße 42, 10115 Berlin, Germany.
| | | | | | | | | | | | | |
Collapse
|
193
|
Wong KE, Kong J, Zhang W, Szeto FL, Ye H, Deb DK, Brady MJ, Li YC. Targeted expression of human vitamin D receptor in adipocytes decreases energy expenditure and induces obesity in mice. J Biol Chem 2011; 286:33804-10. [PMID: 21840998 DOI: 10.1074/jbc.m111.257568] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Our previous studies demonstrated a high fat diet-resistant lean phenotype of vitamin D receptor (VDR)-null mutant mice mainly due to increased energy expenditure, suggesting an involvement of the VDR in energy metabolism. Here, we took a transgenic approach to further define the role of VDR in adipocyte biology. We used the aP2 gene promoter to target the expression of the human (h) VDR in adipocytes in mice. In contrast to the VDR-null mice, the aP2-hVDR Tg mice developed obesity compared with the wild-type counterparts without changes in food intake. The increase in fat mass was mainly due to markedly reduced energy expenditure, which was correlated with decreased locomotive activity and reduced fatty acid β-oxidation and lipolysis in the adipose tissue in the transgenic mice. Consistently, the expression of genes involved in the regulation of fatty acid transport, thermogenesis, and lipolysis were suppressed in the transgenic mice. Taken together, these data confirm an important role of the VDR in the regulation of energy metabolism.
Collapse
Affiliation(s)
- Kari E Wong
- Committee on Molecular Metabolism and Nutrition, Division of Biological Sciences,The University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | | | | | | | |
Collapse
|
194
|
Schlüter A, Ruiz-Trillo I, Pujol A. Phylogenomic evidence for a myxococcal contribution to the mitochondrial fatty acid beta-oxidation. PLoS One 2011; 6:e21989. [PMID: 21760940 PMCID: PMC3131387 DOI: 10.1371/journal.pone.0021989] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Accepted: 06/09/2011] [Indexed: 11/26/2022] Open
Abstract
Background The origin of eukaryotes remains a fundamental question in evolutionary biology. Although it is clear that eukaryotic genomes are a chimeric combination of genes of eubacterial and archaebacterial ancestry, the specific ancestry of most eubacterial genes is still unknown. The growing availability of microbial genomes offers the possibility of analyzing the ancestry of eukaryotic genomes and testing previous hypotheses on their origins. Methodology/Principal Findings Here, we have applied a phylogenomic analysis to investigate a possible contribution of the Myxococcales to the first eukaryotes. We conducted a conservative pipeline with homologous sequence searches against a genomic sampling of 40 eukaryotic and 357 prokaryotic genomes. The phylogenetic reconstruction showed that several eukaryotic proteins traced to Myxococcales. Most of these proteins were associated with mitochondrial lipid intermediate pathways, particularly enzymes generating reducing equivalents with pivotal roles in fatty acid β-oxidation metabolism. Our data suggest that myxococcal species with the ability to oxidize fatty acids transferred several genes to eubacteria that eventually gave rise to the mitochondrial ancestor. Later, the eukaryotic nucleocytoplasmic lineage acquired those metabolic genes through endosymbiotic gene transfer. Conclusions/Significance Our results support a prokaryotic origin, different from α-proteobacteria, for several mitochondrial genes. Our data reinforce a fluid prokaryotic chromosome model in which the mitochondrion appears to be an important entry point for myxococcal genes to enter eukaryotes.
Collapse
Affiliation(s)
- Agatha Schlüter
- Neurometabolic Diseases Laboratory, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
- Institut de Neuropatologia, Hospital Universitari de Bellvitge, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación en Red sobre Enfermedades Raras (CIBERER), Valencia, Spain
| | - Iñaki Ruiz-Trillo
- Departament de Genètica & Institut de Recerca en Biodiversitat (Irbio), Universitat de Barcelona, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Aurora Pujol
- Neurometabolic Diseases Laboratory, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
- Institut de Neuropatologia, Hospital Universitari de Bellvitge, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación en Red sobre Enfermedades Raras (CIBERER), Valencia, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- * E-mail:
| |
Collapse
|
195
|
Yang Y, Andrews MC, Hu Y, Wang D, Qin Y, Zhu Y, Ni H, Ling W. Anthocyanin extract from black rice significantly ameliorates platelet hyperactivity and hypertriglyceridemia in dyslipidemic rats induced by high fat diets. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:6759-6764. [PMID: 21568342 DOI: 10.1021/jf201079h] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Our previous studies have demonstrated that anthocyanin extract from black rice (AEBR) inhibits atherosclerosis. Whether dietary AEBR supplementation can affect platelet function, an important factor in the pathogenesis of cardiovascular diseases, remains unclear. The aim of the present study is to explore the effects and mechanisms of dietary AEBR supplementation on platelet function and lipid profile in dyslipidemic rats. We demonstrated herein that thromboxane A(2), the thrombogenic ratio of thromboxane A₂ and prostacyclin, serum calmodulin, and soluble P-selectin were significantly decreased in rats fed a high fat diet supplemented with AEBR. AEBR supplementation also remarkably lowered serum triglyceride and raised hepatic CPT-1 mRNA expression. These findings suggest that dietary intake of AEBR reduces platelet hyperactivity, hypertriglyceridemia, and body weight gain, and facilitates in the maintenance of optimal platelet function in dyslipidemic rats induced by high fat diets.
Collapse
Affiliation(s)
- Yan Yang
- Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou 510080, People's Republic of China.
| | | | | | | | | | | | | | | |
Collapse
|
196
|
Alkhateeb H, Holloway GP, Bonen A. Skeletal muscle fatty acid oxidation is not directly associated with AMPK or ACC2 phosphorylation. Appl Physiol Nutr Metab 2011; 36:361-7. [DOI: 10.1139/h11-024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Rescue of palmitate-induced insulin resistance has been linked with improvements in fatty acid oxidation, but importantly, not always with concurrently altered AMPK or ACC2 phosphorylation. Therefore, we examined the interrelationships among AMPK, ACC2, and fatty acid oxidation under 12 controlled conditions in isolated muscle. Incubation of soleus muscle (0–12 h) did not alter fatty acid oxidation, but did increase AMPK and ACC2 phosphorylation (24%–30%). Muscle incubation with palmitate (2 mmol·L–1) inhibited palmitate oxidation (∼55%), but paradoxically, this was associated with increased AMPK and ACC2 phosphorylation (∼50%). Addition of an AMPK activator (thujone) to control (no palmitate) muscle increased AMPK and ACC2 phosphorylation (∼25%) but did not alter palmitate oxidation. Addition of AMPK inhibitors, compound C (50 µmol·L–1) or adenine 9-β-d-arabinofuranoside (Ara; 2.5 mmol·L–1), to thujone-treated muscles (no palmitate) did not alter palmiate oxidation but reduced AMPK phosphorylation (32%–42%), while ACC2 phosphorylation remained above basal level (+14%–18%). Finally, in palmitate-treated muscle, thujone increased AMPK (+100%) and ACC2 phosphorylation (+52%) and restored palmitate oxidation. Compound C or Ara, administered along with thujone in palmitate-treated muscle, only partly blunted palmitate oxidation recovery despite inhibiting AMPK phosphorylation (–22%), although ACC2 phosphorylation remained upregulated (+33%). Among these experiments, AMPK phosphorylation and ACC2 phosphorylation were positively correlated. However, AMPK phosphorylation was not correlated with palmitate oxidation, and unexpectedly, palmitate oxidation was negatively correlated with ACC2 phosphorylation. Our study, in accordance with a growing body of evidence, indicates that neither AMPK phosphorylation nor ACC2 phosphorylation is by itself an appropriate marker of fatty acid oxidation, and further serves to question their regulatory role.
Collapse
Affiliation(s)
- Hakam Alkhateeb
- Department of Laboratory Medical Sciences, Hashemite University, Zarqa, Jordan
| | - Graham P. Holloway
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Arend Bonen
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
197
|
Ludwig S, Tinwell H, Schorsch F, Cavaillé C, Pallardy M, Rouquié D, Bars R. A molecular and phenotypic integrative approach to identify a no-effect dose level for antiandrogen-induced testicular toxicity. Toxicol Sci 2011; 122:52-63. [PMID: 21525395 DOI: 10.1093/toxsci/kfr099] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The safety assessment of chemicals for humans relies on identifying no-observed adverse effect levels (NOAELs) in animal toxicity studies using standard methods. With the advent of high information content technologies, especially microarrays, it is pertinent to determine the impact of molecular data on the NOAELs. Consequently, we conducted an integrative study to identify a no-transcriptomic effect dose using microarray analyses coupled with quantitative reverse transcriptase PCR (RT-qPCR) and determined how this correlated with the NOAEL. We assessed the testicular effects of the antiandrogen, flutamide (FM), in a rat 28-day toxicity study using doses of 0.2-30 mg/kg/day. Plasma testosterone levels and testicular histopathology indicated a NOAEL of 1 mg/kg/day. A no-effect dose of 0.2 mg/kg/day was established based on molecular data relevant to the phenotypic changes. We observed differential gene expression starting from 1 mg/kg/day and a deregulation of more than 1500 genes at 30 mg/kg/day. Dose-related changes were identified for the major pathways (e.g., fatty acid metabolism) associated with the testicular lesion (Leydig cell hyperplasia) that were confirmed by RT-qPCR. These data, along with protein accumulation profiles and FM metabolite concentrations in testis, supported the no-effect dose of 0.2 mg/kg/day. Furthermore, the microarray data indicated a dose-dependent change in the fatty acid catabolism pathway, a biological process described for the first time to be affected by FM in testicular tissue. In conclusion, the present data indicate the existence of a transcriptomic threshold, which must be exceeded to progress from a normal state to an adaptative state and subsequently to adverse toxicity.
Collapse
Affiliation(s)
- Sophie Ludwig
- Department of Research Toxicology, Université Paris-Sud, INSERM UMR 996, Chatenay-Malabry, France
| | | | | | | | | | | | | |
Collapse
|
198
|
Bereta G, Palczewski K. Heterogeneous N-terminal acylation of retinal proteins results from the retina's unusual lipid metabolism. Biochemistry 2011; 50:3764-76. [PMID: 21449552 DOI: 10.1021/bi200245t] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protein N-myristoylation occurs by a covalent attachment of a C14:0 fatty acid to the N-terminal Gly residue. This reaction is catalyzed by a N-myristoyltransferase that uses myristoyl-coenzyme A as substrate. But proteins in the retina also undergo heterogeneous N-acylation with C14:2, C14:1, and C12:0 fatty acids. The basis and the role of this retina-specific phenomenon are poorly understood. We studied guanylate cyclase-activating protein 1 (GCAP1) as an example of retina-specific heterogeneously N-acylated protein. The types and the abundance of fatty acids bound to bovine retinal GCAP1 were C14:2, 37.0%; C14:0, 32.4%; C14:1, 22.3%; and C12:0, 8.3% as quantified by liquid chromatography coupled mass spectrometry. We also devised a method for N-acylating proteins in vitro and used it to modify GCAP1 with acyl moieties of different lengths. Analysis of these GCAPs both confirmed that N-terminal acylation of GCAP1 is critical for its high activity and proper Ca(2+)-dependent response and revealed comparable functionality for GCAP1 with acyl moieties of various lengths. We also tested the hypothesis that retinal heterogeneous N-acylation results from retinal enrichment of unusual N-myristoyltransferase substrates. Thus, acyl-coenzyme A esters were purified from both bovine retina and brain and analyzed by liquid chromatography coupled mass spectrometry. Substantial differences in acyl-coenzyme A profiles between the retina and brain were detected. Importantly, the ratios of uncommon N-acylation substrates--C14:2- and C14:1-coenyzme A to C14:0-coenzyme A--were higher in the retina than in the brain. Thus, our results suggest that heterogeneous N-acylation, responsible for expansion of retinal proteome, reflects the unique character of retinal lipid metabolism. Additionally, we propose a new hypothesis explaining the physiological relevance of elevated retinal ratios of C14:2- and C14:1-coenzyme A to C14:0-coenzyme A.
Collapse
Affiliation(s)
- Grzegorz Bereta
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4965, USA
| | | |
Collapse
|
199
|
Serviddio G, Bellanti F, Vendemiale G, Altomare E. Mitochondrial dysfunction in nonalcoholic steatohepatitis. Expert Rev Gastroenterol Hepatol 2011; 5:233-44. [PMID: 21476918 DOI: 10.1586/egh.11.11] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The pathogenesis of nonalcoholic steatohepatitis (NASH) is poorly understood and the mechanisms are still being elucidated. Mitochondrial dysfunction participates at different levels in NASH pathogenesis since it impairs fatty liver homeostasis and induces overproduction of free radicals that in turn trigger lipid peroxidation and cell death. In this article, we review the role of mitochondria in fat metabolism, energy homeostasis and reactive oxygen species production, with a focus on the role of mitochondrial impairment and uncoupling proteins in the pathophysiology of NASH progression. The potential effects of some molecules targeted to mitochondria are also discussed.
Collapse
Affiliation(s)
- Gaetano Serviddio
- CURE (Centre for Liver Disease Research and Treatment), Department of Medical and Occupational Sciences, University of Foggia, 70124 Foggia, Italy.
| | | | | | | |
Collapse
|
200
|
Vial G, Dubouchaud H, Couturier K, Cottet-Rousselle C, Taleux N, Athias A, Galinier A, Casteilla L, Leverve XM. Effects of a high-fat diet on energy metabolism and ROS production in rat liver. J Hepatol 2011; 54:348-56. [PMID: 21109325 DOI: 10.1016/j.jhep.2010.06.044] [Citation(s) in RCA: 162] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Revised: 06/15/2010] [Accepted: 06/22/2010] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS A high-fat diet affects liver metabolism, leading to steatosis, a complex disorder related to insulin resistance and mitochondrial alterations. Steatosis is still poorly understood since diverse effects have been reported, depending on the different experimental models used. METHODS We hereby report the effects of an 8 week high-fat diet on liver energy metabolism in a rat model, investigated in both isolated mitochondria and hepatocytes. RESULTS Liver mass was unchanged but lipid content and composition were markedly affected. State-3 mitochondrial oxidative phosphorylation was inhibited, contrasting with unaffected cytochrome content. Oxidative phosphorylation stoichiometry was unaffected, as were ATPase and adenine nucleotide translocator proteins and mRNAs. Mitochondrial acylcarnitine-related H(2)O(2) production was substantially higher and the mitochondrial quinone pool was smaller and more reduced. Cellular consequences of these mitochondrial alterations were investigated in perifused, freshly isolated hepatocytes. Ketogenesis and fatty acid-dependent respiration were lower, indicating a lower β-oxidation rate contrasting with higher RNA contents of CD36, FABP, CPT-1, and AcylCoA dehydrogenases. Concomitantly, the cellular redox state was more reduced in the mitochondrial matrix but more oxidized in the cytosol: these opposing changes are in agreement with a significantly higher in situ mitochondrial proton motive force. CONCLUSIONS A high-fat diet results in both a decrease in mitochondrial quinone pool and a profound modification in mitochondrial lipid composition. These changes appear to play a key role in the resulting inhibition of fatty acid oxidation and of mitochondrial oxidative-phosphorylation associated with an increased mitochondrial ROS production. Mitochondrial quinone pool could have prospects as a crucial event, potentially leading to interesting therapeutic perspectives.
Collapse
|