151
|
Grabner CP, Price SD, Lysakowski A, Cahill AL, Fox AP. Regulation of large dense-core vesicle volume and neurotransmitter content mediated by adaptor protein 3. Proc Natl Acad Sci U S A 2006; 103:10035-40. [PMID: 16788073 PMCID: PMC1502501 DOI: 10.1073/pnas.0509844103] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2005] [Indexed: 11/18/2022] Open
Abstract
Adaptor protein 3 (AP-3) is a vesicle-coat protein that forms a heterotetrameric complex. Two types of AP-3 subunits are found in mammalian cells. Ubiquitous AP-3 subunits are expressed in all tissues of the body, including the brain. In addition, there are neuronal AP-3 subunits that are thought to serve neuron-specific functions such as neurotransmitter release. In this study, we show that overexpression of neuronal AP-3 in mouse chromaffin cells results in a striking decrease in the neurotransmitter content of individual vesicles (quantal size), whereas deletion of all AP-3 produces a dramatic increase in quantal size; these changes were correlated with alterations in dense-core vesicle size. AP-3 appears to localize in the trans-Golgi network and possibly immature secretory vesicles, where it may be involved in the formation of neurosecretory vesicles.
Collapse
Affiliation(s)
- Chad P. Grabner
- *Department of Neurobiology, Pharmacology, and Physiology, University of Chicago, 947 East 58th Street, Chicago, IL 60637; and
| | - Steven D. Price
- Department of Anatomy and Cell Biology, University of Illinois, 808 South Wood Street, Chicago, IL 60612
| | - Anna Lysakowski
- Department of Anatomy and Cell Biology, University of Illinois, 808 South Wood Street, Chicago, IL 60612
| | - Anne L. Cahill
- *Department of Neurobiology, Pharmacology, and Physiology, University of Chicago, 947 East 58th Street, Chicago, IL 60637; and
| | - Aaron P. Fox
- *Department of Neurobiology, Pharmacology, and Physiology, University of Chicago, 947 East 58th Street, Chicago, IL 60637; and
| |
Collapse
|
152
|
Ohno H. Physiological Roles of Clathrin Adaptor AP Complexes: Lessons from Mutant Animals. ACTA ACUST UNITED AC 2006; 139:943-8. [PMID: 16788044 DOI: 10.1093/jb/mvj120] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Clathrin-associated adaptor protein (AP) complexes play a key role in the transport of proteins, by regulating the formation of transport vesicles as well as cargo selection, between organelles of the post-Golgi network, namely, the trans-Golgi network (TGN), endosomes, lysosomes and the plasma membrane. Evidence has been accumulating for the physiological importance of AP complexes. Deficiency in AP-1A or AP-2 results in embryonic lethality in mice, indicating that these AP complexes are essential for normal development of embryos in mammals. In contrast, mutations in the genes encoding subunits of AP-3A cause an autosomal recessive disorder, Hermansky-Pudlak syndrome in human and its disease models in mice. Knockout mice for the neuron-specific AP-3B suffer from epileptic seizure. Further studies on the physiological and pathological aspects of AP complexes will not only be beneficial for better understanding of developmental biology and medical sciences, but also deepen our insight into the molecular mechanisms of vesicular traffic.
Collapse
Affiliation(s)
- Hiroshi Ohno
- Laboratory for Epithelial Immunobiology, Research Center for Allergy and Immunology (RCAI), RIKEN, Yokohama.
| |
Collapse
|
153
|
Hughes I, Thalmann I, Thalmann R, Ornitz DM. Mixing model systems: using zebrafish and mouse inner ear mutants and other organ systems to unravel the mystery of otoconial development. Brain Res 2006; 1091:58-74. [PMID: 16529728 PMCID: PMC2100415 DOI: 10.1016/j.brainres.2006.01.074] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2005] [Revised: 01/16/2006] [Accepted: 01/19/2006] [Indexed: 12/11/2022]
Abstract
Human vestibular dysfunction is an increasing clinical problem. Degeneration or displacement of otoconia is a significant etiology of age-related balance disorders and Benign Positional Vertigo (BPV). In addition, commonly used antibiotics, such as aminoglycoside antibiotics, can lead to disruption of otoconial structure and function. Despite such clinical significance, relatively little information has been compiled about the development and maintenance of otoconia in humans. Recent studies in model organisms and other mammalian organ systems have revealed some of the proteins and processes required for the normal biomineralization of otoconia and otoliths in the inner ear of vertebrates. Orchestration of extracellular biomineralization requires bringing together ionic and proteinaceous components in time and space. Coordination of these events requires the normal formation of the otocyst and sensory maculae, specific secretion and localization of extracellular matrix proteins, as well as tight regulation of the endolymph ionic environment. Disruption of any of these processes can lead to the formation of abnormally shaped, or ectopic, otoconia, or otoconial agenesis. We propose that normal generation of otoconia requires a complex temporal and spatial control of developmental and biochemical events. In this review, we suggest a new hypothetical model for normal otoconial and otolith formation based on matrix vesicle mineralization in bone which we believe to be supported by information from existing mutants, morphants, and biochemical studies.
Collapse
Affiliation(s)
- Inna Hughes
- Department of Molecular Biology and Pharmacology, Rm. 3902 South Building (Campus Box 8103), Washington University in St. Louis, School of Medicine, 660 S. Euclid Ave, St. Louis, MO 63110, USA
| | - Isolde Thalmann
- Department of Otolaryngology, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA
| | - Ruediger Thalmann
- Department of Otolaryngology, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA
| | - David M. Ornitz
- Department of Molecular Biology and Pharmacology, Rm. 3902 South Building (Campus Box 8103), Washington University in St. Louis, School of Medicine, 660 S. Euclid Ave, St. Louis, MO 63110, USA
| |
Collapse
|
154
|
Abstract
The Hermansky-Pudlak syndrome (HPS) is a collection of related autosomal recessive disorders which are genetically heterogeneous. There are eight human HPS subtypes, characterized by oculocutaneous albinism and platelet storage disease; prolonged bleeding, congenital neutropenia, pulmonary fibrosis, and granulomatous colitis can also occur. HPS is caused primarily by defects in intracellular protein trafficking that result in the dysfunction of intracellular organelles known as lysosome-related organelles. HPS gene products are all ubiquitously expressed and all associate in various multi-protein complexes, yet HPS has cell type-specific disease expression. Impairment of specialized secretory cells such as melanocytes, platelets, lung alveolar type II epithelial cells and cytotoxic T cells are observed in HPS. This review summarizes recent molecular, biochemical and cell biological analyses together with clinical studies that have led to the correlation of molecular pathology with clinical manifestations and led to insights into such diverse disease processes such as albinism, fibrosis, hemorrhage, and congenital neutropenia.
Collapse
Affiliation(s)
- Maria L Wei
- Department of Dermatology, Veterans Affairs Medical Center 190, University of California, 4150 Clement St., San Francisco, USA.
| |
Collapse
|
155
|
Frankel WN, Beyer B, Maxwell CR, Pretel S, Letts VA, Siegel SJ. Development of a new genetic model for absence epilepsy: spike-wave seizures in C3H/He and backcross mice. J Neurosci 2006; 25:3452-8. [PMID: 15800200 PMCID: PMC6724901 DOI: 10.1523/jneurosci.0231-05.2005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
To characterize the genetic basis of spike-wave discharges (SWDs) detected by electroencephalography (EEG) in C3H/He mice, substrains of C3H mice were evaluated by EEG and sensitivity to ethosuximide. Crosses with the SWD-negative strain C57BL/6J were performed to map the underlying gene(s). C3H/He substrains exhibited a modest incidence (average of 19 SWDs per hour) of 7-8 Hz SWDs when at rest, compared with the C3HeB/Fe subline (four SWDs per hour). In the mapping backcross, however, many mice showed a very high incidence (50-220 SWDs per hour) throughout the recording period. SWDs were first detected at 3.5 weeks of age, were associated with behavioral arrest, were suppressed by ethosuximide, and were strongest in the cerebral cortex and thalamus. The major C3H determinant of SWDs, spkw1 (spike-wave 1), mapped to chromosome (Chr 9), and together with a C57BL/6J determinant on Chr 8, spkw2, accounted for more than one-half of the phenotypic variation in the backcross mice. The modest SWD incidence in C3H/He mice and the high incidence in backcrosses implies that SWD could be a confounding variable for other behaviors. Because C3H/He mice have no other brain abnormalities, they are an attractive alternative for studying idiopathic absence epilepsy.
Collapse
|
156
|
Mitsunari T, Nakatsu F, Shioda N, Love PE, Grinberg A, Bonifacino JS, Ohno H. Clathrin adaptor AP-2 is essential for early embryonal development. Mol Cell Biol 2005; 25:9318-23. [PMID: 16227583 PMCID: PMC1265839 DOI: 10.1128/mcb.25.21.9318-9323.2005] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The heterotetrameric adaptor protein (AP) complexes AP-1, AP-2, AP-3, and AP-4 play key roles in transport vesicle formation and cargo sorting in post-Golgi trafficking pathways. Studies on cultured mammalian cells have shown that AP-2 mediates rapid endocytosis of a subset of plasma membrane receptors. To determine whether this function is essential in the context of a whole mammalian organism, we carried out targeted disruption of the gene encoding the mu2 subunit of AP-2 in the mouse. We found that mu2 heterozygous mutant mice were viable and had an apparently normal phenotype. In contrast, no mu2 homozygous mutant embryos were identified among blastocysts from intercrossed heterozygotes, indicating that mu2-deficient embryos die before day 3.5 postcoitus (E3.5). These results indicate that AP-2 is indispensable for early embryonic development, which might be due to its requirement for cell viability.
Collapse
Affiliation(s)
- Takashi Mitsunari
- Laboratory for Epithelial Immunobiology, Research Center for Allergy and Immunology, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | | | | | | | | | | | | |
Collapse
|
157
|
Abstract
Spike-wave seizures are often considered a relatively "pure" form of epilepsy, with a uniform defect present in all patients and involvement of the whole brain homogeneously. Here, we present evidence against these common misconceptions. Rather than a uniform disorder, spike-wave rhythms arise from the normal inherent network properties of brain excitatory and inhibitory circuits, where they can be provoked by many different insults in several different brain networks. Here we discuss several different cellular and molecular mechanisms that may contribute to the generation of spike-wave seizures, particularly in idiopathic generalized epilepsy. In addition, we discuss growing evidence that electrical, neuroimaging, and molecular changes in spike-wave seizures do not involve the entire brain homogeneously. Rather, spike-wave discharges occur selectively in some thalamocortical networks, while sparing others. It is hoped that improved understanding of the heterogeneous defects and selective brain regions involved will ultimately lead to more effective treatments for spike-wave seizures.
Collapse
Affiliation(s)
- Hal Blumenfeld
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut 06520-8018, USA.
| |
Collapse
|
158
|
Besson V, Nalesso V, Herpin A, Bizot JC, Messaddeq N, Romand R, Puech A, Blanquet V, Hérault Y. Training and aging modulate the loss-of-balance phenotype observed in a new ENU-induced allele of Otopetrin1. Biol Cell 2005; 97:787-98. [PMID: 15730345 DOI: 10.1042/bc20040525] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND INFORMATION The sensing of head movement in mammals depends upon the vestibular endorgan of the inner ear, a complex structure made up of the semicircular canals and otoliths. Due to the similarity between the human and mouse vestibular apparatus, the analysis of mutant mouse is a valuable strategy aiming to identify genes involved in the control of balance and movement. RESULTS In the course of a genome-wide chemical-mutagenesis programme, we isolated a recessive mutation, named ied (inner ear defect), which induced a severe loss-of-balance. A detailed phenotypic analysis of the mutant mice demonstrates that the balance impairment does not affect the motor activity and can be rescued, in part, by training, despite a complete agenesis of otoconia in the utricule and the saccule of the inner ear. Molecular characterization of the ied mutation revealed a transversion that affects the splicing of the second exon of the Otopetrin1 gene located on mouse chromosome 5. The consequence of such a mutation leads to a disruption of the transcription of the gene. CONCLUSIONS The identification of the ied knock-down allele strengthens the role of the Otopetrin1 in the sensing of balance. Moreover, the rescue of the ied mutant phenotype in specific behavioural tasks confirmed that other sensory inputs or neural plasticity can compensate, to some extent, for the loss-of-balance. In the future, the ied mutant mice might be helpful to study the genetic control of the compensation strategies developed by organisms to counteract balance defects.
Collapse
Affiliation(s)
- Vanessa Besson
- CNRS IEM FRE2815, Institut de Transgénose, 3B rue de la Férollerie, 45071 Orleans cedex 2, France
| | | | | | | | | | | | | | | | | |
Collapse
|
159
|
Abstract
Hermansky-Pudlak syndrome (HPS) defines a group of at least seven autosomal recessive disorders characterized by albinism and prolonged bleeding. These manifestations arise from defects in the biogenesis of lysosome-related organelles, including melanosomes and platelet dense granules. Most genes associated with HPS in humans and rodent models of the disease encode components of multisubunit protein complexes that are expressed ubiquitously and play roles in intracellular protein trafficking and/or organelle distribution. A small GTPase of the Rab family, Rab38, is also implicated in the pathogenesis of the disease. This article reviews recent progress toward elucidating the cellular functions of these proteins.
Collapse
Affiliation(s)
- Santiago M Di Pietro
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | | |
Collapse
|
160
|
Quinta-Ferreira ME, Matias CM. Tetanically released zinc inhibits hippocampal mossy fiber calcium, zinc and synaptic responses. Brain Res 2005; 1047:1-9. [PMID: 15950598 DOI: 10.1016/j.brainres.2005.04.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2004] [Revised: 03/25/2005] [Accepted: 04/01/2005] [Indexed: 11/29/2022]
Abstract
At the zinc-enriched mossy fiber synapses from hippocampal CA3 area, electrical or chemical stimulation evokes zinc release from glutamatergic synaptic vesicles that may cause different pre- or postsynaptic actions. Besides zinc that can be co-localized with glutamate and GABA, the mossy fibers contain a very high density of ATP-sensitive potassium channels that are activated by zinc. We have investigated the possibility that intensely released zinc inhibits presynaptic calcium changes and consequently zinc and glutamate release. The studies were made combining optical recording of fast presynaptic calcium and zinc signals, using the fluorescent indicators Fura-2 and N-(6-methoxy-8-quinolyl)-para-toluenesulfonamide, respectively, with measurements of field potentials. We have observed that strong tetanic stimulation caused posttetanic depressions of electrically induced presynaptic calcium and zinc signals and of synaptic responses, the depressions being blocked by zinc chelators. These results suggest that endogenously released zinc has an inhibitory role, mediated by presynaptic ATP-sensitive potassium channels and/or presynaptic calcium channels, that leads to the depression of zinc and glutamate release.
Collapse
Affiliation(s)
- M E Quinta-Ferreira
- Department of Physics and Center for Neurosciences of Coimbra, University of Coimbra, 3004-516 Coimbra, Portugal.
| | | |
Collapse
|
161
|
Salazar G, Craige B, Wainer BH, Guo J, De Camilli P, Faundez V. Phosphatidylinositol-4-kinase type II alpha is a component of adaptor protein-3-derived vesicles. Mol Biol Cell 2005; 16:3692-704. [PMID: 15944223 PMCID: PMC1182308 DOI: 10.1091/mbc.e05-01-0020] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
A membrane fraction enriched in vesicles containing the adaptor protein (AP) -3 cargo zinc transporter 3 was generated from PC12 cells and was used to identify new components of these organelles by mass spectrometry. Proteins prominently represented in the fraction included AP-3 subunits, synaptic vesicle proteins, and lysosomal proteins known to be sorted in an AP-3-dependent way or to interact genetically with AP-3. A protein enriched in this fraction was phosphatidylinositol-4-kinase type IIalpha (PI4KIIalpha). Biochemical, pharmacological, and morphological analyses supported the presence of PI4KIIalpha in AP-3-positive organelles. Furthermore, the subcellular localization of PI4KIIalpha was altered in cells from AP-3-deficient mocha mutant mice. The PI4KIIalpha normally present both in perinuclear and peripheral organelles was substantially decreased in the peripheral membranes of AP-3-deficient mocha fibroblasts. In addition, as is the case for other proteins sorted in an AP-3-dependent way, PI4KIIalpha content was strongly reduced in nerve terminals of mocha hippocampal mossy fibers. The functional relationship between AP-3 and PI4KIIalpha was further explored by PI4KIIalpha knockdown experiments. Reduction of the cellular content of PI4KIIalpha strongly decreased the punctate distribution of AP-3 observed in PC12 cells. These results indicate that PI4KIIalpha is present on AP-3 organelles where it regulates AP-3 function.
Collapse
Affiliation(s)
- Gloria Salazar
- Department of Cell Biology, Emory University, Atlanta, GA 30322, USA
| | | | | | | | | | | |
Collapse
|
162
|
Fukamachi S, Asakawa S, Wakamatsu Y, Shimizu N, Mitani H, Shima A. Conserved function of medaka pink-eyed dilution in melanin synthesis and its divergent transcriptional regulation in gonads among vertebrates. Genetics 2005; 168:1519-27. [PMID: 15579703 PMCID: PMC1448775 DOI: 10.1534/genetics.104.030494] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Medaka is emerging as a model organism for the study of vertebrate development and genetics, and its effectiveness in forward genetics should prove equal to that of zebrafish. Here, we identify by positional cloning a gene responsible for the medaka i-3 albino mutant. i-3 larvae have weakly tyrosinase-positive cells but lack strongly positive and dendritic cells, suggesting loss of fully differentiated melanophores. The region surrounding the i-3 locus is syntenic to human 19p13, but a BAC clone covering the i-3 locus contained orthologs located at 15q11-13, including OCA2 (P). Medaka P consists of 842 amino acids and shares approximately 65% identity with mammalian P proteins. The i-3 mutation is a four-base deletion in exon 13, which causes a frameshift and truncation of the protein. We detected medaka P transcripts in melanin-producing eyeballs and (putative) skin melanophores on embryos and an alternatively spliced form in the non-melanin-producing ovary or oocytes. The mouse p is similarly expressed in gonads, but not alternatively spliced. This is the first isolation of nonmammalian P, the functional mechanism of action of which has not yet been elucidated, even in mammals. Further investigation of the functions of P proteins and the regulation of their expression will provide new insight into body color determination and gene evolution.
Collapse
Affiliation(s)
- Shoji Fukamachi
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa-no-ha, Kashiwa-shi, Chiba 277-8562, Japan.
| | | | | | | | | | | |
Collapse
|
163
|
Bonazzi M, Spanò S, Turacchio G, Cericola C, Valente C, Colanzi A, Kweon HS, Hsu VW, Polishchuck EV, Polishchuck RS, Sallese M, Pulvirenti T, Corda D, Luini A. CtBP3/BARS drives membrane fission in dynamin-independent transport pathways. Nat Cell Biol 2005; 7:570-80. [PMID: 15880102 DOI: 10.1038/ncb1260] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2005] [Accepted: 04/19/2005] [Indexed: 11/08/2022]
Abstract
Membrane fission is a fundamental step in membrane transport. So far, the only fission protein machinery that has been implicated in in vivo transport involves dynamin, and functions in several, but not all, transport pathways. Thus, other fission machineries may exist. Here, we report that carboxy-terminal binding protein 3/brefeldin A-ribosylated substrate (CtBP3/BARS) controls fission in basolateral transport from the Golgi to the plasma membrane and in fluid-phase endocytosis, whereas dynamin is not involved in these steps. Conversely, CtBP3/BARS protein is inactive in apical transport to the plasma membrane and in receptor-mediated endocytosis, both steps being controlled by dynamin. This indicates that CtBP3/BARS controls membrane fission in endocytic and exocytic transport pathways, distinct from those that require dynamin.
Collapse
Affiliation(s)
- Matteo Bonazzi
- Laboratory of Membrane Traffic, Consorzio Mario Negri Sud, 66030 Santa Maria Imbaro (Chieti), Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
164
|
Salazar G, Craige B, Love R, Kalman D, Faundez V. Vglut1 and ZnT3 co-targeting mechanisms regulate vesicular zinc stores in PC12 cells. J Cell Sci 2005; 118:1911-21. [PMID: 15860731 DOI: 10.1242/jcs.02319] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The lumenal ionic content of an organelle is determined by its complement of channels and transporters. These proteins reach their resident organelles by adaptor-dependent mechanisms. This concept is illustrated in AP-3 deficiencies, in which synaptic vesicle zinc is depleted because the synaptic-vesicle-specific zinc transporter 3 does not reach synaptic vesicles. However, whether zinc transporter 3 is the only membrane protein defining synaptic-vesicle zinc content remains unknown. To address this question, we examined whether zinc transporter 3 and the vesicular glutamate transporter Vglut1 (a transporter that coexists with zinc transporter 3 in brain nerve terminals) were co-targeted to synaptic-like microvesicle fractions in PC12 cells. Deconvolution microscopy and subcellular fractionation demonstrated that these two transporters were present on the same vesicles in PC12 cells. Vglut1 content in synaptic-like microvesicle fractions and brain synaptic vesicles was partially sensitive to pharmacological and genetic perturbation of AP-3 function. Whole-cell flow-cytometry analysis of PC12 cell lines expressing zinc transporter 3, Vglut1 or both showed that vesicular zinc uptake was increased by Vglut1 expression. Conversely, production of zinc transporter 3 increased the vesicular uptake of glutamate in a zinc-dependent fashion. Our results suggest that the coupling of zinc transporter 3 and Vglut1 transport mechanisms regulates neurotransmitter content in secretory vesicles.
Collapse
Affiliation(s)
- Gloria Salazar
- Department of Cell Biology, Center for Neurodegenerative Disease, and Department of Pathology and Laboratory Medicine, Emory University, 615 Michael Street, Room 446, Atlanta, GA 30322, USA
| | | | | | | | | |
Collapse
|
165
|
Styers ML, Kowalczyk AP, Faundez V. Intermediate Filaments and Vesicular Membrane Traffic: The Odd Couple's First Dance? Traffic 2005; 6:359-65. [PMID: 15813746 DOI: 10.1111/j.1600-0854.2005.00286.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
During the last two decades, much attention has been focused on the regulation of membrane traffic by the actin and microtubule cytoskeletal networks. Their dynamic and polarized behavior and associated motors provide a logical framework from which architectural and movement cues can be communicated to organelles. The study of these cytoskeletal systems has been greatly aided by pharmacological agents. In contrast, intermediate filaments (IFs) have largely been neglected as a potential player in membrane traffic, both because a comprehensive pharmacology to perturb them does not exist and because they lack the intrinsic polarity and specific motors that make the other cytoskeletal systems attractive. In this review, we will discuss evidence suggesting that IFs may play roles in controlling organelle positioning and in membrane protein targeting. Furthermore, we will discuss potential mechanisms by which IFs may regulate the localization and function of organelles.
Collapse
|
166
|
Boissy RE, Richmond B, Huizing M, Helip-Wooley A, Zhao Y, Koshoffer A, Gahl WA. Melanocyte-specific proteins are aberrantly trafficked in melanocytes of Hermansky-Pudlak syndrome-type 3. THE AMERICAN JOURNAL OF PATHOLOGY 2005; 166:231-40. [PMID: 15632015 PMCID: PMC1602298 DOI: 10.1016/s0002-9440(10)62247-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Hermansky-Pudlak Syndrome-type 3 (HPS-3) is a relatively mild subtype of HPS with minimal cutaneous and ocular depigmentation. The HPS-3 gene encodes a novel protein of unknown function with a predicted molecular weight of 114 kd. To assess the role of the HPS3 protein in melanization, cultured melanocytes developed from HPS-3 patients were evaluated biochemically and histologically for activity and localization of melanocyte-specific proteins. Endogenous tyrosinase activity of HPS-3 melanocytes was substantial, but tyrosinase activity and melanin synthesis was suppressed in intact melanocytes. However, the level of suppression, as well as extent to which up-regulation by isobutylmethylxanthine and cholera toxin was muted, was less that in HPS-1 melanocytes. Ultrastructurally, HPS-3 melanocytes contained morphologically normal melanosomes, predominantly of stage I and II with minimal stage III and few stage IV melanosomes. Dihydroxyphenylalanine (DOPA) histochemistry demonstrated an increase in melanization of melanosomes. Unique to HPS-3 melanocytes were numerous DOPA-positive 50-nm vesicles and tubular elements present throughout the cell body and dendrites. Tyrosinase, tyrosinase-related protein-1 (Tyrp1), dopachrome tautomerase (Dct), and LAMP1 and 3 localization in HPS-3 melanocytes, as evaluated by immunocytochemistry and confocal microscopy, demonstrated a fine, floccular distribution in contrast to the coarse, granular distribution characteristic of control melanocytes. The localization profile of other proteins expressed by melanocytes (ie, Silver/Pmel17, Melan-A/MART-1, LAMP2, Rab 27, transferrin, c-kit, adaptin-3, and the HPS1 protein) appeared normal. These results suggest that a specific subset of melanocyte proteins are aberrantly trafficked throughout the HPS-3 melanocyte and may be responsible for the reduction in melanin synthesis.
Collapse
Affiliation(s)
- Raymond E Boissy
- Department of Dermatology, University of Cincinnati College of Medicine, 231 Albert Sabin Way, ML-0592, Cincinnati, OH 45267-0592, USA.
| | | | | | | | | | | | | |
Collapse
|
167
|
Abstract
Clathrin-coated vesicles (CCVs) are responsible for the transport of proteins between various compartments of the secretory and endocytic systems. Clathrin forms a scaffold around these vesicles that is linked to membranes by clathrin adaptors. The adaptors simultaneously bind to clathrin and to transmembrane proteins and/or phospholipids and can also interact with each other and with other components of the CCV formation machinery. The result is a collection of proteins that can make multiple, moderate strength (microM Kd) interactions and thereby establish the dynamic regulatable networks to drive vesicle genesis at the correct time and place in the cell. This review focuses on the structure of clathrin adaptors and how these structures provide functional information on the mechanism of CCV formation.
Collapse
Affiliation(s)
- David J Owen
- Cambridge Institute for Medical Research, Department of Clinical Biochemistry, University of Cambridge, Cambridge CB2 2XY, UK.
| | | | | |
Collapse
|
168
|
Abstract
Synaptic transmission is based on the regulated exocytotic fusion of synaptic vesicles filled with neurotransmitter. In order to sustain neurotransmitter release, these vesicles need to be recycled locally. Recent data suggest that two tracks for the cycling of synaptic vesicles coexist: a slow track in which vesicles fuse completely with the presynaptic plasma membrane, followed by clathrin-mediated recycling of the vesicular components, and a fast track that may correspond to the transient opening and closing of a fusion pore. In this review, we attempt to provide an overview of the components involved in both tracks of vesicle cycling, as well as to identify possible mechanistic links between these two pathways.
Collapse
|
169
|
Gwynn B, Martina JA, Bonifacino JS, Sviderskaya EV, Lamoreux ML, Bennett DC, Moriyama K, Huizing M, Helip-Wooley A, Gahl WA, Webb LS, Lambert AJ, Peters LL. Reduced pigmentation (rp), a mouse model of Hermansky-Pudlak syndrome, encodes a novel component of the BLOC-1 complex. Blood 2004; 104:3181-3189. [PMID: 15265785 DOI: 10.1182/blood-2004-04-1538] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hermansky-Pudlak syndrome (HPS), a disorder of organelle biogenesis, affects lysosomes, melanosomes, and platelet dense bodies. Seven genes cause HPS in humans (HPS1-HPS7) and at least 15 nonallelic mutations cause HPS in mice. Where their function is known, the HPS proteins participate in protein trafficking and vesicle docking/fusion events during organelle biogenesis. HPS-associated genes participate in at least 4 distinct protein complexes: the adaptor complex AP-3; biogenesis of lysosome-related organelles complex 1 (BLOC-1), consisting of 4 HPS proteins (pallidin, muted, cappuccino, HPS7/sandy); BLOC-2, consisting of HPS6/ruby-eye, HPS5/ruby-eye-2, and HPS3/cocoa; and BLOC-3, consisting of HPS1/pale ear and HPS4/light ear. Here, we report the cloning of the mouse HPS mutation reduced pigmentation (rp). We show that the wild-type rp gene encodes a novel, widely expressed 195-amino acid protein that shares 87% amino acid identity with its human orthologue and localizes to punctate cytoplasmic structures. Further, we show that phosphorylated RP is part of the BLOC-1 complex. In mutant rp/rp mice, a premature stop codon truncates the protein after 79 amino acids. Defects in all the 5 known components of BLOC-1, including RP, cause severe HPS in mice, suggesting that the subunits are nonredundant and that BLOC-1 plays a key role in organelle biogenesis.
Collapse
Affiliation(s)
- Babette Gwynn
- The Jackson Laboratory, 600 Main St, Bar Harbor, ME 04609, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
170
|
Seong E, Wainer BH, Hughes ED, Saunders TL, Burmeister M, Faundez V. Genetic analysis of the neuronal and ubiquitous AP-3 adaptor complexes reveals divergent functions in brain. Mol Biol Cell 2004; 16:128-40. [PMID: 15537701 PMCID: PMC539158 DOI: 10.1091/mbc.e04-10-0892] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Neurons express adaptor (AP)-3 complexes assembled with either ubiquitous (beta3A) or neuronal-specific (beta3B) beta3 isoforms. However, it is unknown whether these complexes indeed perform distinct functions in neuronal tissue. Here, we explore this hypothesis by using genetically engineered mouse models lacking either beta3A- or beta3B-containing AP-3 complexes. Somatic and neurological phenotypes were specifically associated with the ubiquitous and neuronal adaptor deficiencies, respectively. At the cellular level, AP-3 isoforms were localized to distinct neuronal domains. beta3B-containing AP-3 complexes were preferentially targeted to neuronal processes. Consistently, beta3B deficiency compromised synaptic zinc stores assessed by Timm's staining and the synaptic vesicle targeting of membrane proteins involved in zinc uptake (ZnT3 and ClC-3). Surprisingly, despite the lack of neurological symptoms, beta3A-deficient mouse brain possessed significantly increased synaptic zinc stores and synaptic vesicle content of ZnT3 and ClC-3. These observations indicate that the functions of beta3A- and beta3B-containing complexes are distinct and divergent. Our results suggest that concerted nonredundant functions of neuronal and ubiquitous AP-3 provide a mechanism to control the levels of selected membrane proteins in synaptic vesicles.
Collapse
Affiliation(s)
- E Seong
- Mental Health Research Institute and Neuroscience Program, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | | | | |
Collapse
|
171
|
Abstract
It is well established that genetic factors strongly contribute to the susceptibility of an individual to schizophrenia. Straub, Kendler and colleagues have published the first of several articles demonstrating a genetic association between schizophrenia and the gene encoding the dystrobrevin-binding protein dysbindin. Although no mutations in the dysbindin gene have been found, the recent identification of a specific risk haplotype in independent samples provides further evidence that dysbindin is a possible schizophrenia susceptibility gene.
Collapse
Affiliation(s)
- Matthew A Benson
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | | | | |
Collapse
|
172
|
Abstract
New insights into mammalian zinc metabolism have been acquired through the identification and characterization of zinc transporters. These proteins all have transmembrane domains, and are encoded by two solute-linked carrier (SLC) gene families: ZnT (SLC30) and Zip (SLC39). There are at least 9 ZnT and 15 Zip transporters in human cells. They appear to have opposite roles in cellular zinc homeostasis. ZnT transporters reduce intracellular zinc availability by promoting zinc efflux from cells or into intracellular vesicles, while Zip transporters increase intracellular zinc availability by promoting extracellular zinc uptake and, perhaps, vesicular zinc release into the cytoplasm. Both the ZnT and Zip transporter families exhibit unique tissue-specific expression, differential responsiveness to dietary zinc deficiency and excess, and differential responsiveness to physiologic stimuli via hormones and cytokines.
Collapse
Affiliation(s)
- Juan P Liuzzi
- Nutrition Genomics Laboratory and Center for Nutritional Sciences, University of Florida, Gainesville, Florida, 32611-0370, USA.
| | | |
Collapse
|
173
|
Nakatsu F, Okada M, Mori F, Kumazawa N, Iwasa H, Zhu G, Kasagi Y, Kamiya H, Harada A, Nishimura K, Takeuchi A, Miyazaki T, Watanabe M, Yuasa S, Manabe T, Wakabayashi K, Kaneko S, Saito T, Ohno H. Defective function of GABA-containing synaptic vesicles in mice lacking the AP-3B clathrin adaptor. ACTA ACUST UNITED AC 2004; 167:293-302. [PMID: 15492041 PMCID: PMC2172536 DOI: 10.1083/jcb.200405032] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
AP-3 is a member of the adaptor protein (AP) complex family that regulates the vesicular transport of cargo proteins in the secretory and endocytic pathways. There are two isoforms of AP-3: the ubiquitously expressed AP-3A and the neuron-specific AP-3B. Although the physiological role of AP-3A has recently been elucidated, that of AP-3B remains unsolved. To address this question, we generated mice lacking μ3B, a subunit of AP-3B. μ3B−/− mice suffered from spontaneous epileptic seizures. Morphological abnormalities were observed at synapses in these mice. Biochemical studies demonstrated the impairment of γ-aminobutyric acid (GABA) release because of, at least in part, the reduction of vesicular GABA transporter in μ3B−/− mice. This facilitated the induction of long-term potentiation in the hippocampus and the abnormal propagation of neuronal excitability via the temporoammonic pathway. Thus, AP-3B plays a critical role in the normal formation and function of a subset of synaptic vesicles. This work adds a new aspect to the pathogenesis of epilepsy.
Collapse
Affiliation(s)
- Fubito Nakatsu
- RIKEN Research Center for Allergy and Immunology, Kanagawa 230-0045, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
174
|
Lefrançois S, Janvier K, Boehm M, Ooi CE, Bonifacino JS. An Ear-Core Interaction Regulates the Recruitment of the AP-3 Complex to Membranes. Dev Cell 2004; 7:619-25. [PMID: 15469849 DOI: 10.1016/j.devcel.2004.08.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2003] [Revised: 08/06/2004] [Accepted: 08/13/2004] [Indexed: 11/18/2022]
Abstract
AP-3 is a heterotetrameric adaptor involved in the biogenesis of lysosome-related organelles. The function of AP-3 as an adaptor relies on its ability to bind to membranes in an Arf-dependent fashion and to recognize sorting signals in the cytosolic tails of the transmembrane cargo. Here, we report an interdomain interaction involving the ear domain of the delta subunit and the sigma3 subunit of AP-3. This interaction interferes with the binding of AP-3 to Arf but not to dileucine-based sorting signals. As a consequence, the delta-ear inhibits the recruitment of AP-3 to membranes both in vitro and in vivo and impairs the sorting of lysosomal membrane proteins. These observations suggest a new regulatory mechanism for the recruitment of AP-3 to membranes involving delta-ear-sigma3 interactions.
Collapse
Affiliation(s)
- Stephane Lefrançois
- Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
175
|
Styers ML, Salazar G, Love R, Peden AA, Kowalczyk AP, Faundez V. The endo-lysosomal sorting machinery interacts with the intermediate filament cytoskeleton. Mol Biol Cell 2004; 15:5369-82. [PMID: 15456899 PMCID: PMC532017 DOI: 10.1091/mbc.e04-03-0272] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Cytoskeletal networks control organelle subcellular distribution and function. Herein, we describe a previously unsuspected association between intermediate filament proteins and the adaptor complex AP-3. AP-3 and intermediate filament proteins cosedimented and coimmunoprecipitated as a complex free of microtubule and actin binding proteins. Genetic perturbation of the intermediate filament cytoskeleton triggered changes in the subcellular distribution of the adaptor AP-3 and late endocytic/lysosome compartments. Concomitant with these architectural changes, and similarly to AP-3-null mocha cells, fibroblasts lacking vimentin were compromised in their vesicular zinc uptake, their organellar pH, and their total and surface content of AP-3 cargoes. However, the total content and surface levels, as well as the distribution of the transferrin receptor, a membrane protein whose sorting is AP-3 independent, remained unaltered in both AP-3- and vimentin-null cells. Based on the phenotypic convergence between AP-3 and vimentin deficiencies, we predicted and documented a reduced autophagosome content in mocha cells, a phenotype previously reported in cells with disrupted intermediate filament cytoskeletons. Our results reveal a novel role of the intermediate filament cytoskeleton in organelle/adaptor positioning and in regulation of the adaptor complex AP-3.
Collapse
Affiliation(s)
- Melanie L Styers
- Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA 30322, USA
| | | | | | | | | | | |
Collapse
|
176
|
Nakatsu F, Ohno H. Adaptor protein complexes as the key regulators of protein sorting in the post-Golgi network. Cell Struct Funct 2004; 28:419-29. [PMID: 14745134 DOI: 10.1247/csf.28.419] [Citation(s) in RCA: 140] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Adaptor protein (AP) complexes are cytosolic heterotetramers that mediate the sorting of membrane proteins in the secretory and endocytic pathways. AP complexes are involved in the formation of clathrin-coated vesicles (CCVs) by recruiting the scaffold protein, clathrin. AP complexes also play a pivotal role in the cargo selection by recognizing the sorting signals within the cytoplasmic tail of integral membrane proteins. Six distinct AP complexes have been identified. AP-2 mediates endocytosis from the plasma membrane, while AP-1, AP-3 and AP-4 play a role in the endosomal/lysosomal sorting pathways. Moreover, tissue-specific sorting events such as the basolateral sorting in polarized epithelial cells and the biogenesis of specialized organelles including melanosomes and synaptic vesicles are also regulated by members of AP complexes. The application of a variety of methodologies have gradually revealed the physiological role of AP complexes.
Collapse
Affiliation(s)
- Fubito Nakatsu
- Division of Molecular Membrane Biology, Cancer Research Institute, Kanazawa University, 13-1 Takara-machi, Kanazawa 920-0934, Japan.
| | | |
Collapse
|
177
|
Mannick EE, Bonomolo JC, Horswell R, Lentz JJ, Serrano MS, Zapata-Velandia A, Gastanaduy M, Himel JL, Rose SL, Udall JN, Hornick CA, Liu Z. Gene expression in mononuclear cells from patients with inflammatory bowel disease. Clin Immunol 2004; 112:247-57. [PMID: 15308118 DOI: 10.1016/j.clim.2004.03.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2003] [Accepted: 03/17/2004] [Indexed: 01/16/2023]
Abstract
OBJECTIVES Discovery of Nod2 as the inflammatory bowel disease 1 (IBD1) susceptibility gene has brought to light the significance of mononuclear cells in inflammatory bowel disease pathogenesis. The purpose of this study was to examine changes in gene expression in peripheral blood mononuclear cells in patients with untreated Crohn's disease (CD) and ulcerative colitis (UC) as compared to patients with other inflammatory gastrointestinal disorders and to healthy controls. METHODS We used a 2400 gene cDNA glass slide array (MICROMAX) to examine gene expression in peripheral blood mononuclear cells from seven patients with Crohn's disease, five patients with ulcerative colitis, 10 patients with other inflammatory gastrointestinal disorders, and 22 age- and sex-matched controls. Results. Novel categories of genes differentially expressed in Crohn's disease and ulcerative colitis patients included genes regulating hematopoietic cell differentiation and leukemogenesis, lipid raft-associated signaling, the actin cytoskeleton, and vesicular trafficking. CONCLUSIONS Altered gene expression in mononuclear cells may contribute to inflammatory bowel disease pathogenesis.
Collapse
|
178
|
Li W, Rusiniak ME, Chintala S, Gautam R, Novak EK, Swank RT. Murine Hermansky-Pudlak syndrome genes: regulators of lysosome-related organelles. Bioessays 2004; 26:616-28. [PMID: 15170859 DOI: 10.1002/bies.20042] [Citation(s) in RCA: 152] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In the mouse, at least 16 genes regulate vesicle trafficking to specialized lysosome-related organelles, including platelet dense granules and melanosomes. Fourteen of these genes have been identified by positional cloning. All 16 mouse mutants are models for the genetically heterogeneous human disease, Hermansky-Pudlak Syndrome (HPS). Five HPS genes encode known vesicle trafficking proteins. Nine genes are novel, are found only in higher eukaryotes and encode members of three protein complexes termed BLOCs (Biogenesis of Lysosome-related Organelles Complexes). Mutations in murine HPS genes, which encode protein co-members of BLOCs, produce essentially identical phenotypes. In addition to their well-known effects on pigmentation, platelet function and lysosome secretion, HPS genes control a wide range of physiological processes including immune recognition, neuronal functions and lung surfactant trafficking. Studies of the molecular functions of HPS proteins will reveal important details of vesicle trafficking and may lead to therapies for HPS.
Collapse
Affiliation(s)
- Wei Li
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | | | | | | | | | | |
Collapse
|
179
|
Abstract
The mannose 6-phosphate receptor MPR46 mediates sorting of lysosomal enzymes and recycles between the trans-Golgi network and endosomes. We characterized the retrograde transport of MPR46 from endosomes to the TGN by an in vitro transport assay using mouse fibroblast cell lines. Sulfation of a modified MPR46 upon entering the TGN is measured. The in vitro retrograde transport is time-, temperature-, ATP- and cytosol-dependent. Transport requires the SNARE proteins Vti1a and Syntaxin 16 and the Rab family member Rab6. The transport is sensitive to GTP gamma S, brefeldin A and independent of TIP47. These data indicate that MPR46 follows an early endosome-to-TGN route. Transport is inhibited by MPR46 tail peptide comprising the acidic cluster-di-leucine sorting motif to which adaptor proteins AP-1 and AP-3 bind. Transport depends on cytosolic AP-3, but not on cytosolic AP-1. Residual membrane-associated AP-1 may have masked a requirement for cytosolic AP-1. The competence of membranes from AP-1-deficient cells for endosome-to-TGN transport in vitro was severely compromised.
Collapse
Affiliation(s)
- Guruprasad Ramarao Medigeshi
- Georg-August Universität Göttingen, Zentrum für Biochemie und Molekulare Zellbiologie, Biochemie II, Heinrich-Düker-Weg-12, D-37073 Goettingen, Germany
| | | |
Collapse
|
180
|
Salazar G, Love R, Styers ML, Werner E, Peden A, Rodriguez S, Gearing M, Wainer BH, Faundez V. AP-3-dependent mechanisms control the targeting of a chloride channel (ClC-3) in neuronal and non-neuronal cells. J Biol Chem 2004; 279:25430-9. [PMID: 15073168 DOI: 10.1074/jbc.m402331200] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Adaptor protein (AP)-2 and AP-3-dependent mechanisms control the sorting of membrane proteins into synaptic vesicles. Mouse models deficient in AP-3, mocha, develop a neurological phenotype of which the central feature is an alteration of the luminal synaptic vesicle composition. This is caused by a severe reduction of vesicular levels of the zinc transporter 3 (ZnT3). It is presently unknown whether this mocha defect is restricted to ZnT3 or encompasses other synaptic vesicle proteins capable of modifying synaptic vesicle contents, such as transporters or channels. In this study, we identified a chloride channel, ClC-3, whose level in synaptic vesicles and hippocampal mossy fiber terminals was reduced in the context of the mocha AP-3 deficiency. In PC-12 cells, ClC-3 was present in transferrin receptor-positive endosomes, where it was targeted to synaptic-like microvesicles (SLMV) by a mechanism sensitive to brefeldin A, a signature of the AP-3-dependent route of SLMV biogenesis. ClC-3 was packed in SLMV along with the AP-3-targeted synaptic vesicle protein ZnT3. Co-segregation of ClC-3 and ZnT3 to common intracellular compartments was functionally significant as revealed by increased vesicular zinc transport with increased ClC3 expression. Our work has identified a synaptic vesicle protein in which trafficking to synaptic vesicles is regulated by AP-3. In addition, our findings indicate that ClC-3 and ZnT3 reside in a common vesicle population where they functionally interact to determine vesicle luminal composition.
Collapse
Affiliation(s)
- Gloria Salazar
- Department of Cell Biology, Emory University, Atlanta, GA 30322, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
181
|
Abstract
The trans-Golgi network is the major sorting compartment of the secretory pathway for protein, lipid and membrane traffic. There is a constant flow of membrane and cargo to and from this compartment. Evidence is emerging that the trans-Golgi network has multiple biochemically and functionally distinct subdomains, each of which contributes to the combined sorting and transport requirements of this dynamic compartment. The recruitment of distinct arrays of protein complexes to trans-Golgi network membranes is likely to produce the diversity of structure and biochemistry observed amongst subdomains that serve to generate different carriers or maintain resident trans-Golgi network components. This review discusses how these subdomains may be formed and examines the molecular players involved, including G proteins, clathrin adaptors and golgin tethers. Diversity within these protein families is highlighted and shown to be critical for the functionality of the trans-Golgi network, as a mediator of protein sorting and membrane transport, and for the maintenance of Golgi structure.
Collapse
Affiliation(s)
- Paul A Gleeson
- The Russell Grimwade School of Biochemistry and Molecular Biology, The University of Melbourne, Melbourne, Victoria 3010, Australia.
| | | | | | | |
Collapse
|
182
|
Abstract
Adaptors select cargo for inclusion into coated vesicles in the late secretory and endocytic pathways. Although originally there were thought to be just two adaptors, AP-1 and AP-2, it is now clear that there are many more: two additional adaptor complexes, AP-3 and AP-4, which might function independently of clathrin; a family of monomeric adaptors, the GGAs; and an ever-growing number of cargo-specific adaptors. The adaptors are targeted to the appropriate membrane at least in part by interacting with phosphoinositides, and, once on the membrane, they form interconnected networks to get different types of cargo into the same vesicle. Adaptors participate in trafficking pathways shared by all cells, and they are also used to generate specialized organelles and to influence cell fate during development.
Collapse
Affiliation(s)
- Margaret S Robinson
- University of Cambridge, Cambridge Institute for Medical Research, Wellcome Trust/MRC Building, Hills Road, Cambridge, UK CB2 2XY.
| |
Collapse
|
183
|
Gautam R, Chintala S, Li W, Zhang Q, Tan J, Novak EK, Di Pietro SM, Dell'Angelica EC, Swank RT. The Hermansky-Pudlak Syndrome 3 (Cocoa) Protein Is a Component of the Biogenesis of Lysosome-related Organelles Complex-2 (BLOC-2). J Biol Chem 2004; 279:12935-42. [PMID: 14718540 DOI: 10.1074/jbc.m311311200] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hermansky-Pudlak syndrome (HPS) is a genetically heterogeneous inherited disease affecting vesicle trafficking among lysosome-related organelles. The Hps3, Hps5, and Hps6 genes are mutated in the cocoa, ruby-eye-2, and ruby-eye mouse pigment mutants, respectively, and their human orthologs are mutated in HPS3, HPS5, and HPS6 patients. These three genes encode novel proteins of unknown function. The phenotypes of Hps5/Hps5,Hps6/Hps6 and Hps3/Hps3,Hps6/Hps6 double mutant mice mimic, in coat and eye colors, in melanosome ultrastructure, and in levels of platelet dense granule serotonin, the corresponding phenotypes of single mutants. These facts suggest that the proteins encoded by these genes act within the same pathway or protein complex in vivo to regulate vesicle trafficking. Further, the Hps5 protein is destabilized within tissues of Hps3 and Hps6 mutants, as is the Hps6 protein within tissues of Hps3 and Hps5 mutants. Also, proteins encoded by these genes co-immunoprecipitate and occur in a complex of 350 kDa as determined by sucrose gradient and gel filtration analyses. Together, these results indicate that the Hps3, Hps5, and Hps6 proteins regulate vesicle trafficking to lysosome-related organelles at the physiological level as components of the BLOC-2 (biogenesis of lysosome-related organelles complex-2) protein complex and suggest that the pathogenesis and future therapies of HPS3, HPS5, and HPS6 patients are likely to be similar. Interaction of the Hps5 and Hps6 proteins within BLOC-2 is abolished by the three-amino acid deletion in the Hps6(ru) mutant allele, indicating that these three amino acids are important for normal BLOC-2 complex formation.
Collapse
Affiliation(s)
- Rashi Gautam
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Elm & Carlton Streets, Buffalo, NY 14263, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
184
|
Lee JY, Kim JH, Hong SH, Lee JY, Cherny RA, Bush AI, Palmiter RD, Koh JY. Estrogen decreases zinc transporter 3 expression and synaptic vesicle zinc levels in mouse brain. J Biol Chem 2003; 279:8602-7. [PMID: 14681234 DOI: 10.1074/jbc.m309730200] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previous studies suggest that female sex hormones modulate synaptic zinc levels, which may influence amyloid plaque formation and Alzheimer's disease progression. We examined the effects of ovariectomy and estrogen supplement on the levels of synaptic zinc and zinc transporter protein Znt3 in the brain. Ovariectomy was performed on 5-month-old mice, and 2 weeks later, pellets containing vehicle, low (0.18 mg/pellet), or high dose (0.72 mg) 17beta-estradiol were implanted. After 4 weeks, animals were decapitated, and blood and brain were collected for analysis. Blood analysis indicated that estrogen implants altered plasma estrogen levels in a dose-dependent manner. Analysis of brain tissue showed that ovariectomy raised hippocampal synaptic vesicle zinc levels, whereas estrogen replacement lowered these zinc levels. Western blots revealed that Znt3 levels in the brain were modulated in parallel with synaptic zinc levels, whereas no change was detected in the levels of Znt3 mRNA, as determined by Northern blot and reverse transcriptase-PCR analysis. However, mRNA levels of the delta subunit of adaptor protein complex (AP)-3, which modulates the level of Znt3 levels, were altered by estrogen depletion or replacement. These data demonstrate that estrogen alters the levels of Znt3 and synaptic vesicle zinc in female mice, probably through changing AP-3 delta expression. Since synaptic zinc may play a key role in neuronal death in acute brain injury as well as in plaque formation in Alzheimer's disease, and since estrogen may be beneficial in both conditions, our results may provide new insights into the effects of estrogen on the brain.
Collapse
Affiliation(s)
- Joo-Yong Lee
- National Creative Research Initiative Center for the Study of Central Nervous System Zinc, and Department of Neurology, University of Ulsan College of Medicine, Seoul 138-736, Korea
| | | | | | | | | | | | | | | |
Collapse
|
185
|
Salazar G, Love R, Werner E, Doucette MM, Cheng S, Levey A, Faundez V. The zinc transporter ZnT3 interacts with AP-3 and it is preferentially targeted to a distinct synaptic vesicle subpopulation. Mol Biol Cell 2003; 15:575-87. [PMID: 14657250 PMCID: PMC329249 DOI: 10.1091/mbc.e03-06-0401] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Synaptic vesicles (SV) are generated by two different mechanisms, one AP-2 dependent and one AP-3 dependent. It has been uncertain, however, whether these mechanisms generate SV that differ in molecular composition. We explored this hypothesis by analyzing the targeting of ZnT3 and synaptophysin both to PC12 synaptic-like microvesicles (SLMV) as well as SV isolated from wild-type and AP-3-deficient mocha brains. ZnT3 cytosolic tail interacted selectively with AP-3 in cell-free assays. Accordingly, pharmacological disruption of either AP-2- or AP-3-dependent SLMV biogenesis preferentially reduced synaptophysin or ZnT3 targeting, respectively; suggesting that these antigens were concentrated in different vesicles. As predicted, immuno-isolated SLMV revealed that ZnT3 and synaptophysin were enriched in different vesicle populations. Likewise, morphological and biochemical analyses in hippocampal neurons indicated that these two antigens were also present in distinct but overlapping domains. ZnT3 SV content was reduced in AP-3-deficient neurons, but synaptophysin was not altered in the AP-3 null background. Our evidence indicates that neuroendocrine cells assemble molecularly heterogeneous SV and suggests that this diversity could contribute to the functional variety of synapses.
Collapse
Affiliation(s)
- Gloria Salazar
- Department of Cell Biology, Emory University, Atlanta, Georgia 30322
| | - Rachal Love
- Department of Cell Biology, Emory University, Atlanta, Georgia 30322
| | - Erica Werner
- Department of Cell Biology, Emory University, Atlanta, Georgia 30322
| | | | - Su Cheng
- Department of Cell Biology, Emory University, Atlanta, Georgia 30322
| | - Allan Levey
- Department of Neurology, Emory University, Atlanta, Georgia 30322
- The Center for Neurodegenerative Diseases, Emory University, Atlanta, Georgia 30322
| | - Victor Faundez
- Department of Cell Biology, Emory University, Atlanta, Georgia 30322
- The Center for Neurodegenerative Diseases, Emory University, Atlanta, Georgia 30322
- Corresponding author. E-mail address:
| |
Collapse
|
186
|
Abstract
Mutations in over 70 genes now define biological pathways leading to epilepsy, an episodic dysrhythmia of the cerebral cortex marked by abnormal network synchronization. Some of the inherited errors destabilize neuronal signaling by inflicting primary disorders of membrane excitability and synaptic transmission, whereas others do so indirectly by perturbing critical control points that balance the developmental assembly of inhibitory and excitatory circuits. The genetic diversity is now sufficient to discern short- and long-range functional convergence of epileptogenic molecular pathways, reducing the broad spectrum of primary molecular defects to a few common processes regulating cortical synchronization. Synaptic inhibition appears to be the most frequent target; however, each gene mutation retains unique phenotypic features. This review selects exemplary members of several gene families to illustrate principal categories of the disease and trace the biological pathways to epileptogenesis in the developing brain.
Collapse
Affiliation(s)
- Jeffrey L Noebels
- Department of Neurology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| |
Collapse
|
187
|
Muzerelle A, Alberts P, Martinez-Arca S, Jeannequin O, Lafaye P, Mazié JC, Galli T, Gaspar P. Tetanus neurotoxin-insensitive vesicle-associated membrane protein localizes to a presynaptic membrane compartment in selected terminal subsets of the rat brain. Neuroscience 2003; 122:59-75. [PMID: 14596849 DOI: 10.1016/s0306-4522(03)00567-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Tetanus neurotoxin-insensitive vesicle-associated membrane protein (TI-VAMP) is a vesicular soluble N-ethyl maleimide-sensitive fusion protein attachment protein receptor (SNARE) that has been implicated in neurite outgrowth. It has previously been reported that TI-VAMP is localised in the somatodendritic compartment of neurons indicating a role in membrane fusion events within dendrites. Using a newly produced monoclonal antibody to TI-VAMP that improves signal/noise immunodetection, we report that TI-VAMP is also present in subsets of axon terminals of the adult rat brain. Four distinctive populations of labelled axon terminals were identified: 1) the hippocampal mossy fibres of the dentate gyrus and of CA3, 2) the striatal peridendritic terminal plexuses in the globus pallidus (GP), substantia nigra pars reticulata (SNr), 3) peridendritic plexuses in the central nucleus of the amygdala, and 4) the primary sensory afferents in the dorsal horn of the spinal cord. The presynaptic localisation of TI-VAMP in these locations was demonstrated by co-localisation with synaptophysin. Ultrastructural studies showed TI-VAMP labelling over synaptic vesicles in the mossy fibres, whereas it was localised in tubulo-vesicular structures and multivesicular bodies in the pyramidal cell dendrites. The presynaptic localisation of TI-VAMP occurred by P15, so relatively late during development. In contrast, dendritic labelling was most prominent during the early post-natal period. Co-localisation with markers of neurotransmitters showed that TI-VAMP-positive terminals are GABAergic in the GP and SNr and glutamatergic in the mossy fibre system and in the dorsal root afferents. Most of these terminals are known to co-localise with neuropeptides. We found met-enkephalin-immunoreactivity in a sizeable fraction of the TI-VAMP positive terminals in the GP, amygdala, and dorsal horn, as well as in a few mossy fibre terminals. The function of TI-VAMP in subsets of mature axon terminals remains to be elucidated; it could participate in the exocytotic molecular machinery and/or be implicated in particular growth properties of the mature axon terminals. Thus, the presence of TI-VAMP in the mossy fibres may correspond to the high degree of plasticity that characterises this pathway throughout adult life.
Collapse
Affiliation(s)
- A Muzerelle
- INSERM U106, Hôpital Salpêtrière, F-75651, Paris Cedex 13, France
| | | | | | | | | | | | | | | |
Collapse
|
188
|
Elewaut D, Lawton AP, Nagarajan NA, Maverakis E, Khurana A, Honing S, Benedict CA, Sercarz E, Bakke O, Kronenberg M, Prigozy TI. The adaptor protein AP-3 is required for CD1d-mediated antigen presentation of glycosphingolipids and development of Valpha14i NKT cells. ACTA ACUST UNITED AC 2003; 198:1133-46. [PMID: 14557411 PMCID: PMC2194227 DOI: 10.1084/jem.20030143] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Relatively little is known about the pathway leading to the presentation of glycolipids by CD1 molecules. Here we show that the adaptor protein complex 3 (AP-3) is required for the efficient presentation of glycolipid antigens that require internalization and processing. AP-3 interacts with mouse CD1d, and cells from mice deficient for AP-3 have increased cell surface levels of CD1d and decreased expression in late endosomes. Spleen cells from AP-3-deficient mice have a reduced ability to present glycolipids to natural killer T (NKT) cells. Furthermore, AP-3-deficient mice have a significantly reduced NKT cell population, although this is not caused by self-tolerance that might result from increased CD1d surface levels. These data suggest that the generation of the endogenous ligand that selects NKT cells may also be AP-3 dependent. However, the function of MHC class II-reactive CD4+ T lymphocytes is not altered by AP-3 deficiency. Consistent with this divergence from the class II pathway, NKT cell development and antigen presentation by CD1d are not reduced by invariant chain deficiency. These data demonstrate that the AP-3 requirement is a particular attribute of the CD1d pathway in mice and that, although MHC class II molecules and CD1d are both found in late endosomes or lysosomes, different pathways mediate their intracellular trafficking.
Collapse
Affiliation(s)
- Dirk Elewaut
- La Jolla Institute for Allergy and Immunology, 10355 Science Center Dr., San Diego, CA 92121, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
189
|
Abstract
Lytic granules harbour many of the dangerous apoptosis-inducing molecules of the immune system, including perforin, granzymes and Fas ligand. Safe transport, storage and release of these lytic components is vital. As a secretory lysosome, the lytic granule is able to accomplish these roles, as well as conferring the lysosomal functions of cytotoxic T lymphocytes and natural killer cells. Secretory lysosomes are common to many other haemopoietic cells and also melanocytes. Many of the proteins used in lysosomal secretion are found in both melanocytes and hemopoietic cells, and are dysfunctional in genetic diseases with defects in these proteins. The genetically heterogeneous Hermansky-Pudlak syndrome represents an excellent model for revealing proteins involved in secretory lysosome functioning. However, studies of this disease reveal differences between the various different types of secretory lysosomes, including lytic granules.
Collapse
Affiliation(s)
- Richard Clark
- Sir William Dunn School of Pathology, South Parks Road, Oxford OX1 3RE, UK
| | | |
Collapse
|
190
|
Setaluri V. The Melanosome: Dark Pigment Granule Shines Bright Light on Vesicle Biogenesis and More. J Invest Dermatol 2003; 121:650-60. [PMID: 14632178 DOI: 10.1046/j.1523-1747.2003.12500.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Vijayasaradhi Setaluri
- Department of Dermatology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|
191
|
Lyerla TA, Rusiniak ME, Borchers M, Jahreis G, Tan J, Ohtake P, Novak EK, Swank RT. Aberrant lung structure, composition, and function in a murine model of Hermansky-Pudlak syndrome. Am J Physiol Lung Cell Mol Physiol 2003; 285:L643-53. [PMID: 12777251 DOI: 10.1152/ajplung.00024.2003] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hermansky-Pudlak syndrome (HPS) is a genetically heterogeneous inherited disease causing hypopigmentation and prolonged bleeding times. An additional serious clinical problem of HPS is the development of lung pathology, which may lead to severe lung disease and premature death. No cure for the disease exists, and previously, no animal model for the HPS lung abnormalities has been reported. A mouse model of HPS, which is homozygously recessive for both the Hps1 (pale ear) and Hps2 (pearl) genes, exhibits striking abnormalities of lung type II cells. Type II cells and lamellar bodies of this mutant are greatly enlarged, and the lamellar bodies are engorged with surfactant. Mutant lungs accumulate excessive autofluorescent pigment. The air spaces of mutant lungs contain age-related elevations of inflammatory cells and foamy macrophages. In vivo measurement of lung hysteresivity demonstrated aberrant lung function in mutant mice. All these features are similar to the lung pathology described in HPS patients. Morphometry of mutant lungs indicates a significant emphysema. These mutant mice provide a model to further investigate the lung pathology and therapy of HPS. We hypothesize that abnormal type II cell lamellar body structure/function may predict future lung pathology in HPS.
Collapse
Affiliation(s)
- Timothy A Lyerla
- Dept. of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | | | | | | | | | | | | | | |
Collapse
|
192
|
Li W, Zhang Q, Oiso N, Novak EK, Gautam R, O'Brien EP, Tinsley CL, Blake DJ, Spritz RA, Copeland NG, Jenkins NA, Amato D, Roe BA, Starcevic M, Dell'Angelica EC, Elliott RW, Mishra V, Kingsmore SF, Paylor RE, Swank RT. Hermansky-Pudlak syndrome type 7 (HPS-7) results from mutant dysbindin, a member of the biogenesis of lysosome-related organelles complex 1 (BLOC-1). Nat Genet 2003; 35:84-9. [PMID: 12923531 PMCID: PMC2860733 DOI: 10.1038/ng1229] [Citation(s) in RCA: 338] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2003] [Accepted: 07/25/2003] [Indexed: 02/02/2023]
Abstract
Hermansky-Pudlak syndrome (HPS; MIM 203300) is a genetically heterogeneous disorder characterized by oculocutaneous albinism, prolonged bleeding and pulmonary fibrosis due to abnormal vesicle trafficking to lysosomes and related organelles, such as melanosomes and platelet dense granules. In mice, at least 16 loci are associated with HPS, including sandy (sdy; ref. 7). Here we show that the sdy mutant mouse expresses no dysbindin protein owing to a deletion in the gene Dtnbp1 (encoding dysbindin) and that mutation of the human ortholog DTNBP1 causes a novel form of HPS called HPS-7. Dysbindin is a ubiquitously expressed protein that binds to alpha- and beta-dystrobrevins, components of the dystrophin-associated protein complex (DPC) in both muscle and nonmuscle cells. We also show that dysbindin is a component of the biogenesis of lysosome-related organelles complex 1 (BLOC-1; refs. 9-11), which regulates trafficking to lysosome-related organelles and includes the proteins pallidin, muted and cappuccino, which are associated with HPS in mice. These findings show that BLOC-1 is important in producing the HPS phenotype in humans, indicate that dysbindin has a role in the biogenesis of lysosome-related organelles and identify unexpected interactions between components of DPC and BLOC-1.
Collapse
Affiliation(s)
- Wei Li
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, New York 14263, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
193
|
Nie Z, Boehm M, Boja ES, Vass WC, Bonifacino JS, Fales HM, Randazzo PA. Specific regulation of the adaptor protein complex AP-3 by the Arf GAP AGAP1. Dev Cell 2003; 5:513-21. [PMID: 12967569 DOI: 10.1016/s1534-5807(03)00234-x] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Arf1 regulates membrane trafficking at several membrane sites by interacting with at least seven different vesicle coat proteins. Here, we test the hypothesis that Arf1-dependent coats are independently regulated by specific interaction with Arf GAPs. We find that the Arf GAP AGAP1 directly associates with and colocalizes with AP-3, a coat protein complex involved in trafficking in the endosomal-lysosomal system. Binding is mediated by the PH domain of AGAP1 and the delta and sigma3 subunits of AP-3. Overexpression of AGAP1 changes the cellular distribution of AP-3, and reduced expression of AGAP1 renders AP-3 resistant to brefeldin A. AGAP1 overexpression does not affect the distribution of other coat proteins, and AP-3 distribution is not affected by overexpression of other Arf GAPs. Cells overexpressing AGAP1 also exhibit increased LAMP1 trafficking via the plasma membrane. Taken together, these results support the hypothesis that AGAP1 directly and specifically regulates AP-3-dependent trafficking.
Collapse
Affiliation(s)
- Zhongzhen Nie
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, Building 37, Room 4118, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|
194
|
Martina JA, Moriyama K, Bonifacino JS. BLOC-3, a protein complex containing the Hermansky-Pudlak syndrome gene products HPS1 and HPS4. J Biol Chem 2003; 278:29376-29384. [PMID: 12756248 DOI: 10.1074/jbc.m301294200] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Hermansky-Pudlak syndrome (HPS) is a genetic disorder characterized by defective lysosome-related organelles. HPS results from mutations in either one of six human genes named HPS1 to HPS6, most of which encode proteins of unknown function. Here we report that the human HPS1 and HPS4 proteins are part of a complex named BLOC-3 (for biogenesis of lysosome-related organelles complex 3). Co-immunoprecipitation experiments demonstrated that epitope-tagged and endogenous HPS1 and HPS4 proteins assemble with each other in vivo. The HPS1.HPS4 complex is predominantly cytosolic, with a small amount being peripherally associated with membranes. Size exclusion chromatography and sedimentation velocity analyses of the cytosolic fraction indicate that HPS1 and HPS4 form a moderately asymmetric protein complex with a molecular mass of approximately 175 kDa. HPS4-deficient fibroblasts from light ear mice display normal distribution and trafficking of the lysosomal membrane protein, Lamp-2, in contrast to fibroblasts from AP-3-deficient pearl mice (HPS2), which exhibit increased trafficking of this lysosomal protein via the plasma membrane. Similarly, light ear fibroblasts display an apparently normal accumulation of Zn2+ in intracellular vesicles, unlike pearl fibroblasts, which exhibit a decreased intracellular Zn2+ storage. Taken together, these observations demonstrate that the HPS1 and HPS4 proteins are components of a cytosolic complex that is involved in the biogenesis of lysosomal-related organelles by a mechanism distinct from that operated by AP-3 complex.
Collapse
Affiliation(s)
- José A Martina
- Cell Biology and Metabolism Branch, NICHD, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
195
|
Martinez-Arca S, Rudge R, Vacca M, Raposo G, Camonis J, Proux-Gillardeaux V, Daviet L, Formstecher E, Hamburger A, Filippini F, D'Esposito M, Galli T. A dual mechanism controlling the localization and function of exocytic v-SNAREs. Proc Natl Acad Sci U S A 2003; 100:9011-6. [PMID: 12853575 PMCID: PMC166429 DOI: 10.1073/pnas.1431910100] [Citation(s) in RCA: 162] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
SNARE [soluble NSF (N-ethylmaleimide-sensitive factor) attachment protein receptor] proteins are essential for membrane fusion but their regulation is not yet fully understood. We have previously shown that the amino-terminal Longin domain of the v-SNARE TI-VAMP (tetanus neurotoxin-insensitive vesicle-associated membrane protein)/VAMP7 plays an inhibitory role in neurite outgrowth. The goal of this study was to investigate the regulation of TI-VAMP as a model of v-SNARE regulation. We show here that the Longin domain (LD) plays a dual role. First, it negatively regulates the ability of TI-VAMP and of a Longin/Synaptobrevin chimera to participate in SNARE complexes. Second, it interacts with the adaptor complex AP-3 and this interaction targets TI-VAMP to late endosomes. Accordingly, in mocha cells lacking AP-3 delta, TI-VAMP is retained in an early endosomal compartment. Furthermore, TI-VAMPc, an isoform of TI-VAMP lacking part of the LD, does not interact with AP-3, and therefore is not targeted to late endosomes; however, this shorter LD still inhibits SNARE-complex formation. These findings support a mechanism controlling both localization and function of TI-VAMP through the LD and clathrin adaptors. Moreover, they point to the amino-terminal domains of SNARE proteins as multifunctional modules responsible for the fine tuning of SNARE function.
Collapse
Affiliation(s)
- Sonia Martinez-Arca
- Membrane Traffic and Neuronal Plasticity, Institut National de la Santé et de la Recherche Médicale U536, Institut du Fer-à-Moulin, 75005 Paris, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
196
|
Abstract
The molecular mechanisms for the transduction of light and chemical signals in animals are fairly well understood. In contrast, the processes by which the senses of touch, balance, hearing, and proprioception are transduced are still largely unknown. Biochemical approaches to identify transduction components are difficult to use with mechanosensory systems, but genetic approaches are proving more successful. Genetic research in several organisms has demonstrated the importance of cytoskeletal, extracellular, and membrane components for sensory mechanotransduction. In particular, researchers have identified channel proteins in the DEG/ENaC and TRP families that are necessary for signaling in a variety of mechanosensory cells. Proof that these proteins are components of the transduction channel, however, is incomplete.
Collapse
Affiliation(s)
- Glen G Ernstrom
- Department of Biological Sciences, 1012 Fairchild Center, Columbia University, 1212 Amsterdam Avenue, New York, NY 10027, USA.
| | | |
Collapse
|
197
|
Klebig ML, Wall MD, Potter MD, Rowe EL, Carpenter DA, Rinchik EM. Mutations in the clathrin-assembly gene Picalm are responsible for the hematopoietic and iron metabolism abnormalities in fit1 mice. Proc Natl Acad Sci U S A 2003; 100:8360-5. [PMID: 12832620 PMCID: PMC166234 DOI: 10.1073/pnas.1432634100] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recessive N-ethyl-N-nitrosourea (ENU)-induced mutations recovered at the fitness-1 (fit1) locus in mouse chromosome 7 cause hematopoietic abnormalities, growth retardation, and shortened life span, with varying severity of the defects in different alleles. Abnormal iron distribution and metabolism and frequent scoliosis have also been associated with an allele of intermediate severity (fit14R). We report that fit14R, as well as the most severe fit15R allele, are nonsense point mutations in the mouse ortholog of the human phosphatidylinositol-binding clathrin assembly protein (PICALM) gene, whose product is involved in clathrin-mediated endocytosis. A variety of leukemias and lymphomas have been associated with translocations that fuse human PICALM with the putative transcription factor gene AF10. The Picalmfit1-5R and Picalmfit1-4R mutations are splice-donor alterations resulting in transcripts that are less abundant than normal and missing exons 4 and 17, respectively. These exon deletions introduce premature termination codons predicted to truncate the proteins near the N and C termini, respectively. No mutations in the genes encoding Picalm, clathrin, or components of the adaptor protein complex 2 (AP2) have been previously described in which the suite of disorders present in the Picalmfit1 mutant mice is apparent. These mutants thus provide unique models for exploring how the endocytic function of mouse Picalm and the transport processes mediated by clathrin and the AP2 complex contribute to normal hematopoiesis, iron metabolism, and growth.
Collapse
Affiliation(s)
- Mitchell L Klebig
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA.
| | | | | | | | | | | |
Collapse
|
198
|
Ciciotte SL, Gwynn B, Moriyama K, Huizing M, Gahl WA, Bonifacino JS, Peters LL. Cappuccino, a mouse model of Hermansky-Pudlak syndrome, encodes a novel protein that is part of the pallidin-muted complex (BLOC-1). Blood 2003; 101:4402-4407. [PMID: 12576321 DOI: 10.1182/blood-2003-01-0020] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hermansky-Pudlak syndrome (HPS) is a disorder of organelle biogenesis affecting 3 related organelles-melanosomes, platelet dense bodies, and lysosomes. Four genes causing HPS in humans (HPS1-HPS4) are known, and at least 15 nonallelic mutations cause HPS in the mouse. Where their functions are known, the HPS-associated proteins are involved in some aspect of intracellular vesicular trafficking, that is, protein sorting and vesicle docking and fusion. Biochemical and genetic evidence indicates that the HPS-associated genes encode components of at least 3 distinct protein complexes: the adaptor complex AP-3; the HPS1/HPS4 complex; and BLOC-1 (biogenesis of lysosome-related organelles complex-1), consisting of the proteins encoded at 2 mouse HPS loci, pallid (pa) and muted (mu), and at least 3 other unidentified proteins. Here, we report the cloning of the mouse HPS mutation cappuccino (cno). We show that the wild-type cno gene encodes a novel, ubiquitously expressed cytoplasmic protein that coassembles with pallidin and the muted protein in the BLOC-1 complex. Further, we identify a frameshift mutation in mutant cno/cno mice. The C-terminal 81 amino acids are replaced with 72 different amino acids in the mutant CNO protein, and its ability to interact in BLOC-1 is abolished. We performed mutation screening of patients with HPS and failed to identify any CNO defects. Notably, although defects in components of the HPS1/HPS4 and the AP-3 complexes are associated with HPS in humans, no defects in the known components of BLOC-1 have been identified in 142 patients with HPS screened to date, suggesting that BLOC-1 function may be critical in humans.
Collapse
|
199
|
Chiang PW, Oiso N, Gautam R, Suzuki T, Swank RT, Spritz RA. The Hermansky-Pudlak syndrome 1 (HPS1) and HPS4 proteins are components of two complexes, BLOC-3 and BLOC-4, involved in the biogenesis of lysosome-related organelles. J Biol Chem 2003; 278:20332-7. [PMID: 12663659 DOI: 10.1074/jbc.m300090200] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hermansky-Pudlak syndrome (HPS) is a genetic disease of lysosome, melanosome, and granule biogenesis. Mutations of six different loci have been associated with HPS in humans, the most frequent of which are mutations of the HPS1 and HPS4 genes. Here, we show that the HPS1 and HPS4 proteins are components of two novel protein complexes involved in biogenesis of melanosome and lysosome-related organelles: biogenesis of lysosome-related organelles complex-(BLOC) 3 and BLOC-4. The phenotypes of Hps1-mutant (pale-ear; ep) and Hps4-mutant (light-ear; le) mice and humans are very similar, and cells from ep and le mice exhibit similar abnormalities of melanosome morphology. HPS1 protein is absent from ep-mutant cells, and HPS4 from le-mutant cells, but le-mutant cells also lack HPS1 protein. HPS4 protein seems to be necessary for stabilization of HPS1, and the HPS1 and HPS4 proteins co-immunoprecipitate, indicating that they are in a complex. HPS1 and HPS4 do not interact directly in a yeast two-hybrid system, although HPS4 interacts with itself. In a partially purified vesicular/organellar fraction, HPS1 and HPS4 are both components of a complex with a molecular mass of approximately 500 kDa, termed BLOC-3. Within BLOC-3, HPS1 and HPS4 are components of a discrete approximately 200-kDa module termed BLOC-4. In the cytosol, HPS1 (but not HPS4) is part of yet another complex, termed BLOC-5. We propose that the BLOC-3 and BLOC-4 HPS1.HPS4 complexes play a central role in trafficking cargo proteins to newly formed cytoplasmic organelles.
Collapse
Affiliation(s)
- Pei-Wen Chiang
- Human Medical Genetics Program, University of Colorado Health Sciences Center, Denver 80262, USA
| | | | | | | | | | | |
Collapse
|
200
|
van Meer G, Wolthoorn J, Degroote S. The fate and function of glycosphingolipid glucosylceramide. Philos Trans R Soc Lond B Biol Sci 2003; 358:869-73. [PMID: 12803919 PMCID: PMC1693184 DOI: 10.1098/rstb.2003.1266] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
In higher eukaryotes, glucosylceramide is the simplest member and precursor of a fascinating class of membrane lipids, the glycosphingolipids. These lipids display an astounding variation in their carbohydrate head groups, suggesting that glycosphingolipids serve specialized functions in recognition processes. It is now realized that they are organized in signalling domains on the cell surface. They are of vital importance as, in their absence, embryonal development is inhibited at an early stage. Remarkably, individual cells can live without glycolipids, perhaps because their survival does not depend on glycosphingolipid-mediated signalling mechanisms. Still, these cells suffer from defects in intracellular membrane transport. Various membrane proteins do not reach their intracellular destination, and, indeed, some intracellular organelles do not properly differentiate to their mature stage. The fact that glycosphingolipids are required for cellular differentiation suggests that there are human diseases resulting from defects in glycosphingolipid synthesis. In addition, the same cellular differentiation processes may be affected by defects in the degradation of glycosphingolipids. At the cellular level, the pathology of glycosphingolipid storage diseases is not completely understood. Cell biological studies on the intracellular fate and function of glycosphingolipids may open new ways to understand and defeat not only lipid storage diseases, but perhaps other diseases that have not been connected to glycosphingolipids so far.
Collapse
Affiliation(s)
- Gerrit van Meer
- Department of Membrane Enzymology, Institute of Biomembranes, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| | | | | |
Collapse
|