151
|
Silverman E, Frödin M, Gammeltoft S, Maller JL. Activation of p90 Rsk1 is sufficient for differentiation of PC12 cells. Mol Cell Biol 2004; 24:10573-83. [PMID: 15572664 PMCID: PMC533971 DOI: 10.1128/mcb.24.24.10573-10583.2004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We investigated the role of Rsk proteins in the nerve growth factor (NGF) signaling pathway in PC12 cells. When rat Rsk1 or murine Rsk2 proteins were transiently expressed, NGF treatment (100 ng/ml for 3 days) caused three- and fivefold increases in Rsk1 and Rsk2 activities, respectively. Increased activation of both wild-type Rsk proteins could be achieved by coexpression of a constitutively active (CA) mitogen-activated protein kinase (MAPK) kinase, MEK1-DD, which is known to cause differentiation of PC12 cells even in the absence of NGF. Rsk1 and Rsk2 mutated in the PDK1-binding site were not activated by either NGF or MEK1-DD. Expression of constitutively active Rsk1 or Rsk2 in PC12 cells resulted in highly active proteins whose levels of activity did not change either with NGF treatment or after coexpression with MEK1-DD. Rsk2-CA expression had no detectable effect on the cells. However, expression of Rsk1-CA led to differentiation of PC12 cells even in the absence of NGF, as evidenced by neurite outgrowth. Differentiation was not observed with a nonactive Rsk1-CA that was mutated in the PDK1-binding site. Expression of Rsk1-CA did not lead to activation of the endogenous MAPK pathway, indicating that Rsk1 is sufficient to induce neurite outgrowth and is the only target of MAPK required for this effect. Collectively, our data demonstrate a key role for Rsk1 in the differentiation process of PC12 cells.
Collapse
Affiliation(s)
- Eran Silverman
- Howard Hughes Medical Institute and Department of Pharmacology, University of Colorado School of Medicine, 4200 E. 9th Ave., Campus Box C236, Denver, CO 80262, USA.
| | | | | | | |
Collapse
|
152
|
Grill C, Gheyas F, Dayananth P, Jin W, Ding W, Qiu P, Wang L, Doll R, English J. Analysis of the ERK1,2 transcriptome in mammary epithelial cells. Biochem J 2004; 381:635-44. [PMID: 15109307 PMCID: PMC1133872 DOI: 10.1042/bj20031688] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2003] [Revised: 04/05/2004] [Accepted: 04/26/2004] [Indexed: 11/17/2022]
Abstract
MAPK (mitogen-activated protein kinase) pathways constitute major regulators of cellular transcriptional programmes. We analysed the ERK1,2 (extracellular-signal-regulated kinase 1,2) transcriptome in a non-transformed MEC (mammary epithelial cell) line, MCF-12A, utilizing rAd MEK1EE, a recombinant adenovirus encoding constitutively active MEK1 (MAPK/ERK kinase 1). rAd MEK1EE infection induced morphological changes and DNA synthesis which were inhibited by the MEK1,2 inhibitor PD184352. Hierarchical clustering of data derived from seven time points over 24 h identified 430 and 305 co-ordinately up-regulated and down-regulated genes respectively. c-Myc binding sites were identified in the promoters of most of these up-regulated genes. A total of 46 candidate effectors of the Raf/MEK/ERK1,2 pathway in MECs were identified by comparing our dataset with previously reported Raf-1-regulated genes. These analyses led to the identification of a suite of growth factors co-ordinately induced by MEK1EE, including multiple ErbB ligands, vascular endothelial growth factor and PHRP (parathyroid hormone-related protein). PHRP is the primary mediator of humoral hypercalcaemia of malignancy, and has been implicated in metastasis to bone. We demonstrate that PHRP is secreted by MEK1EE-expressing cells. This secretion is inhibited by PD184352, but not by ErbB inhibitors. Our results suggest that, in addition to anti-proliferative properties, MEK1,2 inhibitors may be anti-angiogenic and possess therapeutic utility in the treatment of PHRP-positive tumours.
Collapse
Affiliation(s)
- Constance Grill
- *Biological Research – Oncology, Schering-Plough Research Institute, Kenilworth, NJ 07033, U.S.A
| | - Ferdous Gheyas
- †Biostatistics, Schering-Plough Research Institute, Kenilworth, NJ 07033, U.S.A
| | - Priya Dayananth
- *Biological Research – Oncology, Schering-Plough Research Institute, Kenilworth, NJ 07033, U.S.A
| | - Weihong Jin
- *Biological Research – Oncology, Schering-Plough Research Institute, Kenilworth, NJ 07033, U.S.A
| | - Wei Ding
- ‡Discovery Technology, Schering-Plough Research Institute, Kenilworth, NJ 07033, U.S.A
| | - Ping Qiu
- ‡Discovery Technology, Schering-Plough Research Institute, Kenilworth, NJ 07033, U.S.A
| | - Luquan Wang
- ‡Discovery Technology, Schering-Plough Research Institute, Kenilworth, NJ 07033, U.S.A
| | - Ronald J. Doll
- §Chemistry, Schering-Plough Research Institute, Kenilworth, NJ 07033, U.S.A
| | - Jessie M. English
- *Biological Research – Oncology, Schering-Plough Research Institute, Kenilworth, NJ 07033, U.S.A
- To whom correspondence should be addressed (e-mail )
| |
Collapse
|
153
|
Rennefahrt U, Illert B, Greiner A, Rapp UR, Troppmair J. Tumor induction by activated JNK occurs through deregulation of cellular growth. Cancer Lett 2004; 215:113-24. [PMID: 15374640 DOI: 10.1016/j.canlet.2004.05.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2004] [Revised: 05/15/2004] [Accepted: 05/18/2004] [Indexed: 01/28/2023]
Abstract
Activation of the cytoplasmic (Ras-Raf-MEK-ERK) signaling cascade was shown to be both, necessary and sufficient for transformation in vitro as well as in vivo. However, over the last years the involvement of stress-activated protein kinases (SAPKs)/Jun N-terminal kinases (JNKs), and their substrate c-Jun in the process of cellular transformation has been suggested. To dissect the mechanisms through which JNK signaling contributes to the transformation process we employed a recently generated constitutively active version of this kinase, SAPKbeta-MKK7, which behaves like a weakly transforming oncogene in vitro. Dissection of the transforming potential of oncogenic JNK demonstrates that it is sufficient for tumor induction in nude mice. In vitro studies and analysis of tumor material support the conclusion that oncogenic JNK primarily transforms through its effects on cell proliferation and tumor vascularization but does not affect cell survival.
Collapse
Affiliation(s)
- Ulrike Rennefahrt
- Institut für Medizinische Strahlenkunde und Zellforschung (MSZ), University of Würzburg, Würzburg, Germany
| | | | | | | | | |
Collapse
|
154
|
Vaqué JP, Navascues J, Shiio Y, Laiho M, Ajenjo N, Mauleon I, Matallanas D, Crespo P, León J. Myc antagonizes Ras-mediated growth arrest in leukemia cells through the inhibition of the Ras-ERK-p21Cip1 pathway. J Biol Chem 2004; 280:1112-22. [PMID: 15528212 DOI: 10.1074/jbc.m409503200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Even though RAS usually acts as a dominant transforming oncogene, in primary fibroblasts and some established cell lines Ras inhibits proliferation. This can explain the virtual absence of RAS mutations in some types of tumors, such as chronic myeloid leukemia (CML). We report that in the CML cell line K562 Ras induces p21Cip1 expression through the Raf-MEK-ERK pathway. Because K562 cells are deficient for p15INK4b, p16INK4a, p14ARF, and p53, this would be the main mechanism whereby Ras up-regulates p21 expression in these cells. Accordingly, we also found that Ras suppresses K562 growth by signaling through the Raf-ERK pathway. Because c-Myc and Ras cooperate in cell transformation and c-Myc is up-regulated in CML, we investigated the effect of c-Myc on Ras activity in K562 cells. c-Myc antagonized the induction of p21Cip1 mediated by oncogenic H-, K-, and N-Ras and by constitutively activated Raf and ERK2. Activation of the p21Cip1 promoter by Ras was dependent on Sp1/3 binding sites in K562. However, mutational analysis of the p21 promoter and the use of a Gal4-Sp1 chimeric protein strongly suggest that c-Myc affects Sp1 transcriptional activity but not the binding of Sp1 to the p21 promoter. c-Myc-mediated impairment of Ras activity on p21 expression required a transactivation domain, a DNA binding region, and a Max binding region. Moreover, the effect was independent of Miz1 binding to c-Myc. Consistent with its effect on p21Cip1 expression, c-Myc rescued cell growth inhibition induced by Ras. The data suggest that in particular tumor types, such as those associated with CML, c-Myc contributes to tumorigenesis by inhibiting Ras antiproliferative activity.
Collapse
Affiliation(s)
- Jose P Vaqué
- Grupo de Biología Molecular del Cáncer, Departamento de Biología Molecular, Unidad de Biomedicina del Consejo Superior de Investigaciones Cientiíficas, Facultad de Medicina, Universidad de Cantabria, 39011 Santander, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
155
|
Ahn M, Moon C, Lee Y, Koh CS, Kohyama K, Tanuma N, Matsumoto Y, Kim HM, Kim SR, Shin T. Activation of extracellular signal-regulated kinases in the sciatic nerves of rats with experimental autoimmune neuritis. Neurosci Lett 2004; 372:57-61. [PMID: 15531088 DOI: 10.1016/j.neulet.2004.09.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2004] [Revised: 09/01/2004] [Accepted: 09/03/2004] [Indexed: 11/23/2022]
Abstract
To investigate whether the phosphorylation of extracellular signal-regulated kinase (ERK) is involved in autoimmune injury of the peripheral nervous system (PNS), the expression of phosphorylated ERK (p-ERK) was analyzed in experimental autoimmune neuritis (EAN) in rats. Western blot analysis showed that the level of p-ERK was increased significantly in the sciatic nerves of rats on days 14 (p<0.05) and 24 (p<0.01) post-immunization, compared with controls, and its reaction declined at day 30 post-immunization. Immunohistochemistry showed that p-ERK protein was weakly expressed in Schwann cells and vascular endothelial cells in the sciatic nerves of CFA-immunized control rats. In EAN-affected sciatic nerves, p-ERK immunoreactivity was found mainly in ED1-positive macrophages on days 14 and 24 post-immunization. Moreover, on days 24 and 30 post-immunization, p-ERK immunoreactivity increased gradually in the Schwann cells of rat sciatic nerves with EAN. Based on these results, we postulated that the phosphorylation of ERK has an important role in the differentiation and survival of cells, including inflammatory cells and Schwann cells, in the rat sciatic nerve in EAN. Specifically, the activation of ERK in the recovery phase of EAN paralysis seems to be related in the survival of Schwann cells.
Collapse
Affiliation(s)
- Meejung Ahn
- Department of Veterinary Medicine, Cheju National University, Aradong 1, Jeju 690-756, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
156
|
Lou Y, Xie W, Zhang DF, Yao JH, Luo ZF, Wang YZ, Shi YY, Yao XB. Nek2A specifies the centrosomal localization of Erk2. Biochem Biophys Res Commun 2004; 321:495-501. [PMID: 15358203 DOI: 10.1016/j.bbrc.2004.06.171] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2004] [Indexed: 11/23/2022]
Abstract
Nek2A is a cell-cycle-regulated protein kinase that localizes to the centrosome and kinetochore. Our recent studies provide a link between Nek2A and spindle checkpoint signaling [J. Biol. Chem. 279 (2004) 20049]. Extracellular signal-regulated kinase 2 (Erk2) is an important kinase, which belongs to mitogen activating protein (MAP) kinase family. Here we demonstrated that Nek2A binds specifically to Erk2. Erk2 interacts with Nek2A via a conserved Erk2 docking site located to the C-terminus of Nek2A. Our studies indicate this docking site is essential and sufficient for a direct Nek2A-Erk2 interaction. In addition, our immunocytochemical studies show that Nek2A and Erk2 are co-localized to centrosome. Significantly, elimination of Nek2A by RNA interference delocalized Erk2 from its centrosomal location, while inhibition of Erk2 kinase activity did not affect the localization of Nek2A in centrosome. We propose that Erk2 links extracellular signaling to centrosome dynamics by Nek2A.
Collapse
Affiliation(s)
- Yang Lou
- School of Life Sciences, University of Science and Technology of China, Hefei 230027, China.
| | | | | | | | | | | | | | | |
Collapse
|
157
|
Guseva NV, Taghiyev AF, Sturm MT, Rokhlin OW, Cohen MB. Tumor Necrosis Factor–Related Apoptosis-Inducing Ligand–Mediated Activation of Mitochondria-Associated Nuclear Factor-κB in Prostatic Carcinoma Cell Lines. Mol Cancer Res 2004. [DOI: 10.1158/1541-7786.574.2.10] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
It has been suggested that some nuclear transcription factors may participate in the regulation of mitochondrial functions through transcriptional control of mitochondrial DNA. Very little is known about the response of transcription factors within mitochondria to the activation of death receptors. Recent publications indicate that nuclear factor-κB (NF-κB) is localized in mitochondria of mammalian cells. Because of the critical role of mitochondria in the execution of many apoptotic pathways, we suggest that NF-κB-dependent mechanisms operating at the level of mitochondria contribute to its role in regulating death receptor signaling. We have found NF-κB p65 and p50 subunits with DNA binding activity in the mitochondria of prostatic carcinoma cell lines. Tumor necrosis factor–related apoptosis-inducing ligand (TRAIL) affects DNA binding activity of mitochondria-associated NF-κB but does not change the amount of p65 in mitochondria, which suggests activation of mitochondrial NF-κB without additional translocation of NF-κB subunits to mitochondria. We have also shown that TRAIL decreases mitochondrial genome encoded mRNA levels and inhibition of NF-κB prevents this decrease. TRAIL effects on mitochondrial NF-κB-DNA binding and mitochondrial genome encoded mRNA levels also depend on Bcl-2 overexpression. In addition, transcription factor activator protein-1 with DNA binding activity is also found in mitochondria of prostatic carcinoma cells and TRAIL treatment affects this binding. In summary, NF-κB is found in mitochondria of prostatic carcinoma cells, where it is thought to regulate mitochondria genome encoded mRNA levels in response to TRAIL treatment.
Collapse
Affiliation(s)
| | | | - Mary T. Sturm
- Department of Pathology, University of Iowa, Iowa City, Iowa
| | | | | |
Collapse
|
158
|
Cronin AS, Horan TL, Spergel DJ, Brooks AN, Hastings MH, Ebling FJP. Neurotrophic effects of BDNF on embryonic gonadotropin-releasing hormone (GnRH) neurons. Eur J Neurosci 2004; 20:338-44. [PMID: 15233743 DOI: 10.1111/j.1460-9568.2004.03490.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Secretion of gonadotropin-releasing hormone (GnRH) at the median eminence is the essential activator of the reproductive axis. The mechanisms by which embryonic GnRH neurons migrate from the olfactory placode to the preoptic area and then elaborate neurites that course through the hypothalamus to terminate at the median eminence are largely unknown. We investigated the hypothesis that GnRH neurite outgrowth is promoted by brain-derived neurotrophic factor (BDNF) because GnRH neurites course through BDNF-rich areas of the forebrain during their development. Confocal microscopy revealed that most (86%) cultured embryonic GnRH cells tagged with a green fluorescent protein reporter were immunoreactive for TrkB. In primary cultures of E12.5 olfactory tissue, treatment with BDNF induced a dose-dependent increase in neurite outgrowth, but had no discernible effect on branching. BDNF induced phosphorylation of Ca(2+)/cAMP response element-binding protein (pCREB) in both GnRH and non-GnRH cells in these cultures. This was not associated with phosphorylation of ERK in GnRH-immunoreactive cells, though BDNF treatment did stimulate pERK in neighbouring non-GnRH cells. Promotion of neurite outgrowth is unlikely therefore to result from activation of the Ras-MAPK/ERK pathway. We conclude that the developing GnRH secretory system is directly sensitive to BDNF and that this polypeptide functions as a neurotrophic factor for GnRH neurons.
Collapse
Affiliation(s)
- Anna S Cronin
- Department of Anatomy, University of Cambridge, Cambridge, UK
| | | | | | | | | | | |
Collapse
|
159
|
Lee WS, Hsu CY, Wang PL, Huang CYF, Chang CH, Yuan CJ. Identification and characterization of the nuclear import and export signals of the mammalian Ste20-like protein kinase 3. FEBS Lett 2004; 572:41-5. [PMID: 15304321 DOI: 10.1016/j.febslet.2004.07.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2004] [Revised: 06/28/2004] [Accepted: 07/06/2004] [Indexed: 11/15/2022]
Abstract
Mst3, a human Ste20-like protein kinase, has been recently demonstrated to undergo a caspase-mediated cleavage during apoptosis. The proteolytic cleavage of the C-terminus of Mst3 caused nuclear translocation of its kinase domain. This work provides evidence that Mst3 may contain a bipartite-like nuclear localization sequence (NLS) at the C-terminus of its kinase domain (residues 278-292). The removal of NLS from the kinase domain of Mst3 led to the cytoplasmic accumulation of EGFP-Mst3(Delta277). The presence of nuclear exporting signals in the Mst3 was also demonstrated by leptomycin B-treatment and serial deletion of the C-terminal regulatory domain of Mst3. A nuclear export signal was also postulated to be in the regions of amino acids 335-386. In conclusion, Mst3 contains both NLS and NES signals, which may cooperate to control the subcellular distribution of Mst3.
Collapse
Affiliation(s)
- Wan-Shu Lee
- Department of Biological Science and Technology, National Chiao Tung University, 75 Po-Ai Street, Hsinchu 300, Taiwan, ROC
| | | | | | | | | | | |
Collapse
|
160
|
Lee SM, Nguyen THN, Park MH, Kim KS, Cho KJ, Moon DC, Kim HY, Yoon DY, Hong JT. EPO receptor-mediated ERK kinase and NF-kappaB activation in erythropoietin-promoted differentiation of astrocytes. Biochem Biophys Res Commun 2004; 320:1087-95. [PMID: 15249201 DOI: 10.1016/j.bbrc.2004.06.060] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2004] [Indexed: 01/28/2023]
Abstract
Erythropoietin (EPO), a hematopoietic factor, is also required for normal brain development, and its receptor is localized in brain. Therefore, it is possible that EPO could act as a neurotropic factor inducing differentiation of neurons. In the present study, we investigated whether EPO can promote differentiation of neuronal stem cells into astrocytes. In primary culture of cortical neuronal stem cells isolated from post neonatal (Day 1) rat brain, EPO dose (0.1-10U/ml) dependently promoted initiation of morphological differentiation of astrocyte and expression of an astrocyte marker protein, glial fibrillary acidic protein (GFAP). Expression of EPO receptor was also increased during morphological differentiation of astrocytes. EPO-induced increased morphological differentiation of astrocytes and GFAP expression were reduced by treatment with anti-EPO and EPO receptor antibodies. Since our previous study showed that activation of MAPK family and transcription factors is differentially involved in neuronal cell differentiation, we further determined the activation of MAP kinase family and NF-kappaB during morphological differentiation of astrocytes. Concomitant with the progression of the morphological differentiation of astrocytes, ERK(2) but not JNK(1) and p38 MAPK as well as NF-kappaB were activated. However, in the presence of PD98,059, an inhibitor of ERK, and salicylic acid, an NF-kappaB inhibitor, the EPO-induced morphological differentiation of astrocytes and expression of FGAP and EPO receptor were reduced. Conversely, treatment with anti-EPO and EPO receptor antibodies also reduced EPO-induced ERK(2) and NF-kappaB activation. These data demonstrate that EPO can promote differentiation of neuronal stem cells into astrocytes in an EPO receptor dependent manner, and this effect may be associated with the activation of ERK kinase and NF-kappaB pathway.
Collapse
Affiliation(s)
- Sang Min Lee
- College of Pharmacy, Chungbuk National University, 48, Gaesin-dong, Heungduk-gu, Cheongju, Chungbuk 361-763, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
161
|
Bryan B, Kumar V, Stafford LJ, Cai Y, Wu G, Liu M. GEFT, a Rho family guanine nucleotide exchange factor, regulates neurite outgrowth and dendritic spine formation. J Biol Chem 2004; 279:45824-32. [PMID: 15322108 DOI: 10.1074/jbc.m406216200] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Rho family of small GTPases controls a wide range of cellular processes in eukaryotic cells, such as normal cell growth, proliferation, differentiation, gene regulation, actin cytoskeletal organization, cell fate determination, and neurite outgrowth. The activation of Rho-GTPases requires the exchange of GDP for GTP, a process catalyzed by the Dbl family of guanine nucleotide exchange factors. We demonstrate that a newly identified guanine nucleotide exchange factor, GEFT, is widely expressed in the brain and highly concentrated in the hippocampus, and the Purkinje and granular cells of the cerebellum. Exogenous expression of GEFT promotes dendrite outgrowth in hippocampal neurons, resulting in spines with larger size as compared with control spines. In neuroblastoma cells, GEFT promotes the active GTP-bound state of Rac1, Cdc42, and RhoA and increases neurite outgrowth primarily via Rac1. Furthermore, we demonstrated that PAK1 and PAK5, both downstream effectors of Rac1/Cdc42, are necessary for GEFT-induced neurite outgrowth. AP-1 and NF-kappaB, two transcriptional factors involved in neurite outgrowth and survival, were up-regulated in GEFT-expressing cells. Together, our data suggest that GEFT enhances dendritic spine formation and neurite outgrowth in primary neurons and neuroblastoma cells, respectively, through the activation of Rac/Cdc42-PAK signaling pathways.
Collapse
Affiliation(s)
- Brad Bryan
- Alkek Institute of Biosciences and Technology, and Department of Medical Biochemistry and Genetics, Texas A and M University System Health Science Center, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
162
|
Diskin R, Askari N, Capone R, Engelberg D, Livnah O. Active mutants of the human p38alpha mitogen-activated protein kinase. J Biol Chem 2004; 279:47040-9. [PMID: 15284239 DOI: 10.1074/jbc.m404595200] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mitogen-activated protein (MAP) kinases compose a family of serine/threonine kinases that function in many signal transduction pathways and affect various cellular phenotypes. Despite the abundance of available data, the exact role of each MAP kinase is not completely defined, in part because of the inability to activate MAP kinase molecules individually and specifically. Based on activating mutations found in the yeast MAP kinase p38/Hog1 (Bell, M., Capone, R., Pashtan, I., Levitzki, A., and Engelberg, D. (2001) J. Biol. Chem. 276, 25351-25358), we designed and constructed single and multiple mutants of human MAP kinase p38alpha. Single (p38D176A, p38F327L, and p38F327S) and subsequent double (p38D176A/F327L and p38D176A/F327S) mutants acquired high intrinsic activity independent of any upstream regulation and reached levels of 10 and 25%, respectively, in reference to the dually phosphorylated wild type p38alpha. The active p38 mutants have retained high specificity toward p38 substrates and were inhibited by the specific p38 inhibitors SB-203580 and PD-169316. We also show that similar mutations can render p38gamma active as well. Based on the available structures of p38 and ERK2, we have analyzed the p38 mutants and identified a hydrophobic core stabilized by three aromatic residues, Tyr-69, Phe-327, and Trp-337, in the vicinity of the L16 loop region. Upon activation, a segment of the L16 loop, including Phe-327, becomes disordered. Structural analysis suggests that the active p38 mutants emulate the conformational changes imposed naturally by dual phosphorylation, namely, destabilization of the hydrophobic core. Essentially, the hydrophobic core is an inherent stabilizer that maintains low basal activity level in unphosphorylated p38.
Collapse
Affiliation(s)
- Ron Diskin
- Department of Biological Chemistry, The Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | | | | | | | |
Collapse
|
163
|
Ajenjo N, Cañón E, Sánchez-Pérez I, Matallanas D, León J, Perona R, Crespo P. Subcellular Localization Determines the Protective Effects of Activated ERK2 against Distinct Apoptogenic Stimuli in Myeloid Leukemia Cells. J Biol Chem 2004; 279:32813-23. [PMID: 15173174 DOI: 10.1074/jbc.m313656200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ERKs, mitogen-activated protein kinases, are well characterized as key mediators in the conveyance of signals that promote cell survival in cells of hemopoietic origin, a key factor in the upbringing of leukemogenesis. It is also well known that ERKs phosphorylate a wide array of substrates distributed throughout distinct cellular locations such as the nucleus, cytoplasm, and cell periphery, but the relative contribution of these compartmentalized signal components to the overall survival signal generated by activation of ERKs has yet to be established. To this end, we have utilized constitutively activated forms of ERK2, whose expression is restricted to the nucleus or to the cytoplasm, to investigate the consequences of compartmentalized activation of ERK in the survival of chronic myelogenous leukemia cells subjected to distinct apoptogenic stimuli. We show that cytoplasmic ERK2 activity protected against apoptosis caused by prolonged serum starvation, whereas ERK2 activation restricted to the nucleus antagonized apoptosis induced by the Bcr-Abl inhibitor STI571. On the other hand, neither cytoplasmic nor nuclear ERK2 activities were effective in counteracting apoptosis induced by UV light. These results demonstrate that the protective effects of ERK2 against defined apoptogenic stimuli are strictly dependent on the cellular localization where ERK activation takes place. Furthermore, we present evidence suggesting that the complex I kappa B-NF kappa B participates on ERK2-mediated survival mechanisms, in a fashion dependent on the cellular location where ERK2 is active and on the causative apoptogenic stimulus.
Collapse
Affiliation(s)
- Nuria Ajenjo
- Departamento de Biología Molecular, Unidad de Biomedicina de la Universidad de Cantabria-CSIC, Santander 39011, Spain
| | | | | | | | | | | | | |
Collapse
|
164
|
Sung YJ, Ambron RT. Pathways that elicit long-term changes in gene expression in nociceptive neurons following nerve injury: contributions to neuropathic pain. Neurol Res 2004; 26:195-203. [PMID: 15072639 DOI: 10.1179/016164104225013761] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Chronic neuropathic pain following nerve injury or inflammation is mediated by transcription-dependent changes in neurons that comprise the nociceptive pathway. Among these changes is often a long-term hyperexcitability (LTH) in primary nociceptors that persists long after the lesion has healed. LTH is manifest by a reduction in threshold and an increased tendency to fire action potentials. This increased excitability activates higher order neurons in the pathway, leading to the perception of pain. Efforts to ameliorate chronic pain would therefore benefit if we understood how LTH is induced, but studies toward this goal are impeded by the complexity and heterogeneity of vertebrate nervous systems. Fortunately, LTH is an evolutionarily conserved mechanism that underlies defensive behaviors across phyla, including invertebrates. Thus, the same electrophysiological changes that underlie LTH in vertebrate nociceptive neurons are seen in their counterparts in the experimentally favorable mollusk Aplysia californica. Nociceptive neurons of Aplysia are readily accessible and large enough to approach using a variety of cell and molecular approaches not possible in higher organisms. Studies of the molecular cascades activated by injury to Aplysia peripheral nerves has focused on a group of positive injury signals that are retrogradely transported from the injury site in the axon to the cell nucleus where they regulate gene transcription. One of these, protein kinase G, is activated by nitric oxide synthetase and its activation in axons is required for the induction of LTH after injury. This pathway, and the transcriptional events that it activates, are targets for therapeutic intervention for chronic pain.
Collapse
Affiliation(s)
- Ying-Ju Sung
- Department of Anatomy and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | | |
Collapse
|
165
|
Greenberg A, Rom W. Molecular Mechanisms of Oxidant-Induced Pulmonary Carcinogenesis. OXYGEN/NITROGEN RADICALS 2004. [DOI: 10.1201/b14147-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
166
|
Affiliation(s)
- Malavika Raman
- Department of Pharmacology, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulvard, Dallas, TX 75390-9041, USA
| | | |
Collapse
|
167
|
Bose C, Bhuvaneswaran C, Udupa KB. Altered mitogen-activated protein kinase signal transduction in human skin fibroblasts during in vitro aging: differential expression of low-density lipoprotein receptor. J Gerontol A Biol Sci Med Sci 2004; 59:126-35. [PMID: 14999025 DOI: 10.1093/gerona/59.2.b126] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The purpose of the study was to investigate the correlation of low-density lipoprotein receptor (LDLr) and mitogen-activated protein kinases (MAPK) in fibroblasts after serial passage in vitro. We used early-passage ( approximately 20 mean population division, MPD) and late-passage ( approximately 60 MPD) human skin fibroblasts to study the LDLr expression and MAPK at basal and after interleukin-1beta (IL-1beta) stimulation. We found a reduced LDLr expression in late-passage fibroblasts in comparison with early-passage fibroblasts, and late-passage fibroblasts showed a delayed induction of MAPK after IL-1beta stimulation, confirmed by the delay in translocation of MAPK from cytoplasmic to nuclear fraction. Using two specific inhibitors of MAPK, we could show a reduced LDLr expression in early-passage fibroblasts, indicating a direct relationship between MAPK signaling and LDLr expression. We conclude that one of the reasons for reduced LDLr gene expression in late passage fibroblast is related to MAPK signaling.
Collapse
Affiliation(s)
- Chhanda Bose
- Donald W. Reynolds Department of Geriatrics, University of Arkansas for Medical Sciences and Medical Research, Central Arkansas Veterans Healthcare System, Little Rock, USA
| | | | | |
Collapse
|
168
|
Vinciguerra M, Vivacqua A, Fasanella G, Gallo A, Cuozzo C, Morano A, Maggiolini M, Musti AM. Differential Phosphorylation of c-Jun and JunD in Response to the Epidermal Growth Factor Is Determined by the Structure of MAPK Targeting Sequences. J Biol Chem 2004; 279:9634-41. [PMID: 14676207 DOI: 10.1074/jbc.m308721200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
MAPK phosphorylation of various substrates is mediated by the presence of docking sites, including the D domain and the DEF motif. Depending on the number and sequences of these domains, substrates are phosphorylated by specific subsets of MAPKs. For example, a D domain targets JNK to c-Jun, whereas a DEF motif is required for ERK phosphorylation of c-Fos. JunD, in contrast, contains both D and DEF domains. Here we show that these motifs mediate JunD phosphorylation in response to either ERK or JNK activation. An intact D domain is required for phosphorylation and activation of JunD by both subtypes of MAPK. The DEF motif acts together with the D domain to elicit efficient phosphorylation of JunD in response to the epidermal growth factor (EGF) but has no function on JunD phosphorylation and activation by JNK signaling. Furthermore, we show that conversion of a c-Jun sequence to a canonical DEF domain, as it is present in JunD, elicits c-Jun activation in response to EGF. Our results suggest that evolution of a particular modular system of MAPK targeting sequences has determined a differential response of JunD and c-Jun to ERK activation.
Collapse
Affiliation(s)
- Maria Vinciguerra
- Dipartimento di Biologia e Patologia Cellulare e Molecolare, Universita' degli Studi di Napoli "Federico II", Napoli, Italy
| | | | | | | | | | | | | | | |
Collapse
|
169
|
Whitehurst AW, Robinson FL, Moore MS, Cobb MH. The Death Effector Domain Protein PEA-15 Prevents Nuclear Entry of ERK2 by Inhibiting Required Interactions. J Biol Chem 2004; 279:12840-7. [PMID: 14707138 DOI: 10.1074/jbc.m310031200] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ERK2 nuclear-cytoplasmic distribution is regulated in response to hormones and cellular state without the requirement for karyopherin-mediated nuclear import. One proposed mechanism for the movement of ERK2 into the nucleus is through a direct interaction between ERK2 and nucleoporins present in the nuclear pore complex. Previous reports have attributed regulation of ERK2 localization to proteins that activate or deactivate ERK2, such as the mitogen-activated protein (MAP) kinase kinase MEK1 and MAP kinase phosphatases. Recently, a small non-catalytic protein, PEA-15, has also been demonstrated to promote a cytoplasmic ERK2 localization. We found that the MAP kinase insert in ERK2 is required for its interaction with PEA-15. Consistent with its recognition of the MAP kinase insert, PEA-15 blocked activation of ERK2 by MEK1, which also requires the MAP kinase insert to interact productively with ERK2. To determine how PEA-15 influences the localization of ERK2, we used a permeabilized cell system to examine the effect of PEA-15 on the localization of ERK2 and mutants that have lost the ability to bind PEA-15. Wild type ERK2 was unable to enter the nucleus in the presence of an excess of PEA-15; however, ERK2 lacking the MAP kinase insert largely retained the ability to enter the nucleus. Binding assays demonstrated that PEA-15 interfered with the ability of ERK2 to bind to nucleoporins. These results suggest that PEA-15 sequesters ERK2 in the cytoplasm at least in part by interfering with its ability to interact with nucleoporins, presenting a potential paradigm for regulation of ERK2 localization.
Collapse
Affiliation(s)
- Angelique W Whitehurst
- Department of Pharmacology, the University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9041, USA
| | | | | | | |
Collapse
|
170
|
Nakade K, Zheng H, Ganguli G, Buchwalter G, Gross C, Wasylyk B. The tumor suppressor p53 inhibits Net, an effector of Ras/extracellular signal-regulated kinase signaling. Mol Cell Biol 2004; 24:1132-42. [PMID: 14729959 PMCID: PMC321436 DOI: 10.1128/mcb.24.3.1132-1142.2004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
The tumor suppressor function of p53 is linked to its ability to repress gene expression, but the mechanisms of specific gene repression are poorly understood. We report that wild-type p53 inhibits an effector of the Ras oncogene/mitogen-activated protein (MAP) kinase pathway, the transcription factor Net. Tumor-associated mutant p53s are less efficient inhibitors. p53 inhibits by preventing phosphorylation of Net by MAP kinases. Loss of p53 in vivo leads to increased Net phosphorylation in response to wound healing and UV irradiation of skin. Our results show that p53 can repress specific gene expression by inhibiting Net, a factor implicated in cell cycle entry.
Collapse
Affiliation(s)
- Koji Nakade
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, 67404 Illkirch cedex, France
| | | | | | | | | | | |
Collapse
|
171
|
Gdalyahu A, Ghosh I, Levy T, Sapir T, Sapoznik S, Fishler Y, Azoulai D, Reiner O. DCX, a new mediator of the JNK pathway. EMBO J 2004; 23:823-32. [PMID: 14765123 PMCID: PMC380994 DOI: 10.1038/sj.emboj.7600079] [Citation(s) in RCA: 173] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2003] [Accepted: 12/16/2003] [Indexed: 01/09/2023] Open
Abstract
Mutations in the X-linked gene DCX result in lissencephaly in males, and abnormal neuronal positioning in females, suggesting a role for this gene product during neuronal migration. In spite of several known protein interactions, the involvement of DCX in a signaling pathway is still elusive. Here we demonstrate that DCX is a substrate of JNK and interacts with both c-Jun N-terminal kinase (JNK) and JNK interacting protein (JIP). The localization of this signaling module in the developing brain suggests its functionality in migrating neurons. The localization of DCX at neurite tips is determined by its interaction with JIP and by the interaction of the latter with kinesin. DCX is phosphorylated by JNK in growth cones. DCX mutated in sites phosphorylated by JNK affected neurite outgrowth, and the velocity and relative pause time of migrating neurons. We hypothesize that during neuronal migration, there is a need to regulate molecular motors that are working in the cell in opposite directions: kinesin (a plus-end directed molecular motor) versus dynein (a minus-end directed molecular motor).
Collapse
Affiliation(s)
- Amos Gdalyahu
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, Israel
| | - Indraneel Ghosh
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, Israel
| | - Talia Levy
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, Israel
| | - Tamar Sapir
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, Israel
| | - Sivan Sapoznik
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, Israel
| | - Yael Fishler
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, Israel
| | - David Azoulai
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, Israel
| | - Orly Reiner
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Genetics, The Weizmann Institute of Science, 76100 Rehovot, Israel. Tel.: +972 8 9342319; Fax: +972 8 9344108; E-mail:
| |
Collapse
|
172
|
MAP kinases and their roles in pancreatic β-cells. Cell Biochem Biophys 2004. [DOI: 10.1007/bf02739023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
173
|
Rajasekhar VK, Viale A, Socci ND, Wiedmann M, Hu X, Holland EC. Oncogenic Ras and Akt signaling contribute to glioblastoma formation by differential recruitment of existing mRNAs to polysomes. Mol Cell 2003; 12:889-901. [PMID: 14580340 DOI: 10.1016/s1097-2765(03)00395-2] [Citation(s) in RCA: 322] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
In order to determine the global effects of oncogenic Ras and Akt signaling pathways on translational efficiencies, we compared the gene expression profiles of total cellular mRNA and mRNA associated with polysomes. We found that the immediate effect of Ras and Akt signaling blockade on transcription was relatively modest; however, the profile of mRNA associated with polysomes was substantially altered. These observations indicate that the immediate effect of Ras and Akt signaling regulates the recruitment of specific mRNAs to ribosomes to a far greater extent than they regulate the production of mRNAs by transcriptional effects. The mRNAs most affected are those encoding proteins that regulate growth, transcription regulation, cell to cell interactions, and morphology. These data support a model whereby Ras and Akt signaling primarily lead to cellular transformation by altering the transcriptome and producing a radical shift in the composition of mRNAs associated with actively translating polysomes.
Collapse
Affiliation(s)
- Vinagolu K Rajasekhar
- Department of Surgery (Neurosurgery), Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, USA.
| | | | | | | | | | | |
Collapse
|
174
|
Lin H, Bao J, Sung YJ, Walters ET, Ambron RT, Ying JS. Rapid electrical and delayed molecular signals regulate the serum response element after nerve injury: convergence of injury and learning signals. ACTA ACUST UNITED AC 2003; 57:204-20. [PMID: 14556286 DOI: 10.1002/neu.10275] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Axotomy elicits changes in gene expression, but little is known about how information from the site of injury is communicated to the cell nucleus. We crushed nerves in Aplysia californica and the sciatic nerve in the mouse and found short- and long-term activation of an Elk1-SRF transcription complex that binds to the serum response element (SRE). The enhanced short-term binding appeared rapidly and was attributed to the injury-induced activation of an Elk1 kinase that phosphorylates Elk1 at ser383. This kinase is the previously described Aplysia (ap) ERK2 homologue, apMAPK. Nerve crush evoked action potentials that propagated along the axon to the cell soma. Exposing axons to medium containing high K(+), which evoked a similar burst of spikes, or bathing the ganglia in 20 microM serotonin (5HT) for 20 min, activated the apMAPK and enhanced SRE binding. Since 5HT is released in response to electrical activity, our data indicate that the short-term process is initiated by an injury-induced electrical discharge that causes the release of 5HT which activates apMAPK. 5HT is also released in response to noxious stimuli for aversive learning. Hence, apMAPK is a point of convergence for injury signals and learning signals. The delay before the onset of the long-term SRE binding was reduced when the crush was closer to the ganglion and was attributed to an Elk1 kinase that is activated by injury in the axon and retrogradely transported to the cell body. Although this Elk1 kinase phosphorylates mammalian rElk1 at ser383, it is distinct from apMAPK.
Collapse
Affiliation(s)
- Hana Lin
- Department of Anatomy and Cell Biology, 1201 Black Building, Columbia University, West 168th Street, New York, New York 10032, USA
| | | | | | | | | | | |
Collapse
|
175
|
Gharami K, Das S. Delayed but sustained induction of mitogen-activated protein kinase activity is associated with β-adrenergic receptor-mediated morphological differentiation of astrocytes. J Neurochem 2003; 88:12-22. [PMID: 14675145 DOI: 10.1046/j.1471-4159.2003.02148.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Astroglial beta-adrenergic receptors (beta-ARs) are functionally linked to regulate cellular morphology. In primary cultures, the beta-AR agonist isoproterenol (ISP) can transform flat polygonal astrocytes into process-bearing, mature stellate cells by 48 h, an effect that can be blocked by the beta-AR antagonist, propranolol. ISP induced immediate activation of protein kinase A (PKA) which persisted up to 2 h, with no visible change in cell morphology. However, activation of PKA was sufficient to drive the process of transformation to completion, suggesting the involvement of downstream regulators of PKA. In addition to PKA inhibitors, the mitogen-activated protein kinase (MAPK) kinase inhibitor PD098059 also blocked ISP-induced morphological transformation. ISP treatment resulted in a biphasic response of cellular phosphorylated MAPK (phosphorylated extracellular signal-regulated kinase; p-ERK) level: an initial decline in p-ERK level followed by a sustained induction at 12-24 h, both of which were blocked by PKA inhibitor. The induction in pERK level coincided with initiation of morphological differentiation of the astrocytes and nuclear translocation of p-ERK. A long-lasting activation of p-ERK activity by ISP, at a later stage, appears to be critical for the transformation of astrocytes.
Collapse
Affiliation(s)
- Kusumika Gharami
- Neurobiology Division, Indian Institute of Chemical Biology, Jadavpur, Calcutta, India
| | | |
Collapse
|
176
|
Julien C, Coulombe P, Meloche S. Nuclear export of ERK3 by a CRM1-dependent mechanism regulates its inhibitory action on cell cycle progression. J Biol Chem 2003; 278:42615-24. [PMID: 12915405 DOI: 10.1074/jbc.m302724200] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Extracellular signal-regulated kinase 3 (ERK3) is an atypical member of the mitogen-activated protein kinase family of serine/threonine kinases. Little is known on the regulation of ERK3 function. Here, we report that ERK3 is constitutively localized in the cytoplasmic and nuclear compartments. In contrast to other mitogen-activated protein kinases, the cellular distribution of ERK3 remains unchanged in response to common mitogenic or stress stimuli and is independent of the enzymatic activity or phosphorylation of the kinase. The cytoplasmic localization of ERK3 is directed by a CRM1-dependent nuclear export mechanism. Treatment of cells with leptomycin B causes the nuclear accumulation of ERK3 in a high percentage of cells. Moreover, ectopic expression of CRM1 promotes the cytoplasmic relocalization of ERK3, whereas overexpression of snurportin 1, which binds CRM1 with high affinity, inhibits the nuclear export of ERK3. We also show that CRM1 binds to ERK3 in vitro. Importantly, we show that enforced localization of ERK3 in the nucleus or cytoplasm markedly attenuates the ability of the kinase to induce cell cycle arrest in fibroblasts. Our results suggest that nucleocytoplasmic shuttling of ERK3 is required for its negative regulatory effect on cell cycle progression.
Collapse
Affiliation(s)
- Catherine Julien
- Institut de Recherches Cliniques de Montréal, Université de Montréal, 110 Pine Avenue West, Montréal, Québec H2W 1R7, Canada
| | | | | |
Collapse
|
177
|
Colucci-D'Amato L, Perrone-Capano C, di Porzio U. Chronic activation of ERK and neurodegenerative diseases. Bioessays 2003; 25:1085-95. [PMID: 14579249 DOI: 10.1002/bies.10355] [Citation(s) in RCA: 152] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The extracellular-signal regulated kinases 1/2 (ERK or ERKs) are involved in the regulation of important neuronal functions, including neuronal plasticity in normal and pathological conditions. We present findings that support the notion that the kinetics and localization of ERK are intrinsically linked, in that the duration of ERK activation dictates its subcellular compartmentalization and/or trafficking. The latter, in turn, dictates whether ERK-expressing cells would enter a program of cell death, survival or differentiation. We summarize experimental data showing that chronic activation of ERK plays a role in the mechanisms that trigger neurodegeneration. We also discuss how MKPs, members of the subclass of dual specificity phosphatases, might be the link between ERK kinetics and its subcellular localization.
Collapse
|
178
|
Khoo S, Griffen SC, Xia Y, Baer RJ, German MS, Cobb MH. Regulation of insulin gene transcription by ERK1 and ERK2 in pancreatic beta cells. J Biol Chem 2003; 278:32969-77. [PMID: 12810726 DOI: 10.1074/jbc.m301198200] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We show that the mitogen-activated protein kinases ERK1/2 are components of the mechanism by which glucose stimulates insulin gene expression. ERK1/2 activity is required for glucose-dependent transcription from both the full-length rat insulin I promoter and the glucose-sensitive isolated E2A3/4 promoter element in intact islets and beta cell lines. Dominant negative ERK2 and MEK inhibitors suppress glucose stimulation of the rat insulin I promoter and the E2A3/4 element. Overexpression of ERK2 is sufficient to stimulate transcription from the E2A3/4 element. The glucose-induced response is dependent upon ERK1/2 phosphorylation of a subset of transcription factors that include Beta2 (also known as NeuroD1) and PDX-1. Phosphorylation increases their functional activity and results in a cumulative transactivation of the promoter. Thus, ERK1/2 act at multiple points to transduce a glucose signal to insulin gene transcription.
Collapse
MESH Headings
- Animals
- Blotting, Northern
- Cells, Cultured
- Cricetinae
- Dimerization
- Dose-Response Relationship, Drug
- Enzyme Activation
- Enzyme Inhibitors/pharmacology
- Female
- Gene Expression Regulation, Enzymologic
- Genes, Dominant
- Genetic Vectors
- Glucose/metabolism
- Glutathione Transferase/metabolism
- Insulin/metabolism
- Islets of Langerhans/metabolism
- Male
- Mice
- Mitogen-Activated Protein Kinase 1/genetics
- Mitogen-Activated Protein Kinase 1/metabolism
- Mitogen-Activated Protein Kinase 3
- Mitogen-Activated Protein Kinases/metabolism
- Mutagenesis, Site-Directed
- Phosphorylation
- Promoter Regions, Genetic
- Protein Binding
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- Recombinant Proteins/metabolism
- Retroviridae/genetics
- Transcription, Genetic
- Transcriptional Activation
- Transfection
Collapse
Affiliation(s)
- Shih Khoo
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | | | | | | | | | | |
Collapse
|
179
|
Mora AL, Stephenson LM, Enerson B, Youn J, Keegan AD, Boothby M. New programming of IL-4 receptor signal transduction in activated T cells: Stat6 induction and Th2 differentiation mediated by IL-4Ralpha lacking cytoplasmic tyrosines. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 171:1891-900. [PMID: 12902491 DOI: 10.4049/jimmunol.171.4.1891] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Signaling by the IL-4 receptor alpha-chain (IL-4Ralpha) is a key determinant of the development of the Th2 lineage of effector T cells. Studies performed in tissue culture cell lines have indicated that tyrosines of the IL-4Ralpha cytoplasmic tail are necessary for the induction of Stat6, a transcription factor required for Th2 differentiation. Surprisingly, we have found that in activated T cells, IL-4Ralpha chains lacking all cytoplasmic tyrosines promote induction of this IL-4-specific transcription factor and efficient commitment to the Th2 lineage. Mutagenesis of a tyrosine-free cytoplasmic tail identifies a requirement for the serine-rich ID-1 region in this new program of IL-4R signal transduction observed in activated T cells. Additional findings suggest that an extracellular signal-regulated kinase pathway can be necessary and sufficient for the ability of such tyrosine-free IL-4Ralpha chains to mediate Stat6 induction. These results provide novel evidence that the molecular mechanisms by which a cytokine specifically induces a Stat transcription factor can depend on the activation state of T lymphoid cells. Furthermore, the data suggest that one pathway by which such new programming may be achieved is mediated by extracellular signal-regulated mitogen-activated protein kinases.
Collapse
MESH Headings
- Animals
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Cytoplasm/genetics
- Cytoplasm/immunology
- Cytoplasm/metabolism
- Humans
- Jurkat Cells
- Lymphocyte Activation/genetics
- MAP Kinase Signaling System/genetics
- MAP Kinase Signaling System/immunology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Mutagenesis, Site-Directed
- Peptide Fragments/deficiency
- Peptide Fragments/genetics
- Peptide Fragments/physiology
- Protein Structure, Tertiary/genetics
- Protein Structure, Tertiary/physiology
- Protein Subunits/deficiency
- Protein Subunits/genetics
- Protein Subunits/physiology
- Receptors, Interleukin-4/deficiency
- Receptors, Interleukin-4/genetics
- Receptors, Interleukin-4/physiology
- STAT6 Transcription Factor
- Th2 Cells/cytology
- Th2 Cells/immunology
- Th2 Cells/metabolism
- Trans-Activators/biosynthesis
- Tyrosine/deficiency
- Tyrosine/genetics
Collapse
Affiliation(s)
- Ana L Mora
- Department of Microbiology and Immunology, Vanderbilt University Medical School, Nashville, TN 37232, USA
| | | | | | | | | | | |
Collapse
|
180
|
Hansen TVO, Rehfeld JF, Nielsen FC. KCl potentiates forskolin-induced PC12 cell neurite outgrowth via protein kinase A and extracellular signal-regulated kinase signaling pathways. Neurosci Lett 2003; 347:57-61. [PMID: 12865141 DOI: 10.1016/s0304-3940(03)00581-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the present study, the effect of KCl-induced calcium influx on PC12 cell differentiation was examined. We show that KCl depolarization potentiates the effect of forskolin-induced neurite outgrowth of PC12 cells. The effects of KCl and forskolin were mediated via the protein kinase A (PKA) and the extracellular signal-regulated kinase (ERK) signaling pathways, since addition of the ERK kinase (MEK1) inhibitor PD98059 and the PKA inhibitor H89 inhibits neurite outgrowth. KCl depolarization and forskolin synergistically activate the ERK signaling pathway, but whereas KCl-mediated ERK activation depends on both PKA and MEK1, forskolin activates ERK in a PKA-independent manner. Finally, we find that KCl depolarization and forskolin both induce nuclear ERK2 translocation via a PKA- and MEK1-dependent pathway. The results demonstrate that PKA and ERK play a key role in KCl- and forskolin-induced neuronal differentiation by integration of signals from both pathways.
Collapse
Affiliation(s)
- Thomas v O Hansen
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, DK-2100, Copenhagen, Denmark
| | | | | |
Collapse
|
181
|
Pouysségur J, Lenormand P. Fidelity and spatio-temporal control in MAP kinase (ERKs) signalling. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:3291-9. [PMID: 12899687 DOI: 10.1046/j.1432-1033.2003.03707.x] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The mitogen activated protein (MAP) kinase module: (Raf -->MEK-->ERKs) is central to the control of cell growth, cell differentiation and cell survival. The fidelity of signalling and the spatio-temporal activation are key determinants in generating precise biological responses. The fidelity is ensured by scaffold proteins - protein kinase 'insulators' - and by specific docking sites. The duration and the intensity of the response are in part controlled by the compartmentalization of the signalling molecules. Growth factors promote rapid nuclear translocation and persistent activation of p42/p44 MAP kinases, respectively and ERK2/ERK1, during the entire G1 period with an extinction during the S-phase. These features are exquisitely controlled by the temporal induction of the MAP kinase phosphatases, MKP1-3. MKP1 and 2 induction is strictly controlled by the activation of the MAP kinase module providing evidence for an auto-regulatory mechanism. This negative regulatory loop is further enhanced by the capacity of p42/p44 MAPK to phosphorylate MKP1 and 2. This action reduces the degradation rate of MKPs through the ubiquitin-proteasomal system. Whereas the two upstream kinases of the module (Raf and MEK) remain cytoplasmic, ERKs (anchored to MEK in the cytoplasm of resting cells) rapidly translocate to the nucleus upon mitogenic stimulation. This latter process is rapid, reversible and controlled by the strict activation of the MAPK cascade. Following long-term MAPK stimulation, p42/p44 MAPKs progressively accumulate in the nucleus in an inactive form. Therefore we propose that the nucleus represents a site for ERK action, sequestration and signal termination. With the generation of knockdown mice for each of the ERK isoforms, we will illustrate that besides controlling cell proliferation the ERK cascade also controls cell differentiation and cell behaviour.
Collapse
Affiliation(s)
- Jacques Pouysségur
- Institute of Signaling, Developmental Biology and Cancer Research, CNRS-UMR 6543, Centre Antoine Lacassagne, Nice, France
| | | |
Collapse
|
182
|
Yaakov G, Bell M, Hohmann S, Engelberg D. Combination of two activating mutations in one HOG1 gene forms hyperactive enzymes that induce growth arrest. Mol Cell Biol 2003; 23:4826-40. [PMID: 12832470 PMCID: PMC162220 DOI: 10.1128/mcb.23.14.4826-4840.2003] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mitogen-activated protein kinases (MAPKs) play key roles in differentiation, growth, proliferation, and apoptosis. Although MAPKs have been extensively studied, the precise function, specific substrates, and target genes of each MAPK are not known. These issues could be addressed by sole activation of a given MAPK, e.g., through the use of constitutively active MAPK enzymes. We have recently reported the isolation of eight hyperactive mutants of the Saccharomyces cerevisiae MAPK Hog1, each of which bears a distinct single point mutation. These mutants acquired high intrinsic catalytic activity but did not impose the full biological potential of the Hog1 pathway. Here we describe our attempt to obtain a MAPK that is more active than the previous mutants both catalytically and biologically. We combined two different activating point mutations in the same gene and found that two of the resulting double mutants acquired unusual properties. These alleles, HOG1(D170A,F318L) and HOG1(D170A,F318S), induced a severe growth inhibition and had to be studied through an inducible expression system. This growth inhibition correlated with very high spontaneous (in the absence of any stimulation) catalytic activity and strong induction of Hog1 target genes. Furthermore, analysis of the phosphorylation status of these active alleles shows that their acquired intrinsic activity is independent of either phospho-Thr174 or phospho-Tyr176. Through fluorescence-activated cell sorting analysis, we show that the effect on cell growth inhibition is not a result of cell death. This study provides the first example of a MAPK that is intrinsically activated by mutations and induces a strong biological effect.
Collapse
Affiliation(s)
- Gilad Yaakov
- Department of Biological Chemistry, The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | | | | | |
Collapse
|
183
|
Shin T, Ahn M, Jung K, Heo S, Kim D, Jee Y, Lim YK, Yeo EJ. Activation of mitogen-activated protein kinases in experimental autoimmune encephalomyelitis. J Neuroimmunol 2003; 140:118-25. [PMID: 12864979 DOI: 10.1016/s0165-5728(03)00174-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The expression of mitogen-activated protein (MAP) kinases, including extracellular signal-regulated kinase (ERK), c-Jun NH(2)-terminal protein kinase (JNK), and p38, was analyzed in experimental autoimmune encephalomyelitis (EAE) in rats. Western blot analysis showed that the three MAP kinases (phosphorylated ERK (p-ERK), p-JNK, and p-p38) were increased significantly in the spinal cords of rats with EAE at the peak stage as compared with the levels in controls (p<0.05), and both p-ERK and p-JNK declined slightly in the recovery stage of EAE. Immunohistochemistry showed that p-ERK was constitutively expressed in brain cells, including astroglial cells, and showed enhanced immunoreactivity in those cells in EAE, while some T cells and macrophages were weakly immunopositive for p-ERK in EAE lesions. Both p-JNK and p-p38 were intensely immunostained in T cells in EAE lesions, while a few glial cells and astrocytes were weakly positive for both. Taking all these facts into consideration, we postulate that increased expression of the phosphorylated form of each MAP kinase plays an important role in the initiation of acute monophasic EAE. Differential expression of three MAP kinases was discerned in an animal model of human autoimmune central nervous system diseases, including multiple sclerosis.
Collapse
Affiliation(s)
- Taekyun Shin
- Department of Veterinary Medicine, Institute for Life Science, Cheju National University, 690-756, Cheju, South Korea.
| | | | | | | | | | | | | | | |
Collapse
|
184
|
Coulombe P, Rodier G, Pelletier S, Pellerin J, Meloche S. Rapid turnover of extracellular signal-regulated kinase 3 by the ubiquitin-proteasome pathway defines a novel paradigm of mitogen-activated protein kinase regulation during cellular differentiation. Mol Cell Biol 2003; 23:4542-58. [PMID: 12808096 PMCID: PMC164847 DOI: 10.1128/mcb.23.13.4542-4558.2003] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mitogen-activated protein (MAP) kinases are stable enzymes that are mainly regulated by phosphorylation and subcellular targeting. Here we report that extracellular signal-regulated kinase 3 (ERK3), unlike other MAP kinases, is an unstable protein that is constitutively degraded in proliferating cells with a half-life of 30 min. The proteolysis of ERK3 is executed by the proteasome and requires ubiquitination of the protein. Contrary to other protein kinases, the catalytic activity of ERK3 is not responsible for its short half-life. Instead, analysis of ERK1/ERK3 chimeras revealed the presence of two destabilization regions (NDR1 and -2) in the N-terminal lobe of the ERK3 kinase domain that are both necessary and sufficient to target ERK3 and heterologous proteins for proteasomal degradation. To assess the physiological relevance of the rapid turnover of ERK3, we monitored the expression of the kinase in different cellular models of differentiation. We observed that ERK3 markedly accumulates during differentiation of PC12 and C2C12 cells into the neuronal and muscle lineage, respectively. The accumulation of ERK3 during myogenic differentiation is associated with the time-dependent stabilization of the protein. Terminal skeletal muscle differentiation is accompanied by cell cycle withdrawal. Interestingly, we found that expression of stabilized forms of ERK3 causes G(1) arrest in NIH 3T3 cells. We propose that ERK3 biological activity is regulated by its cellular abundance through the control of protein stability.
Collapse
Affiliation(s)
- Philippe Coulombe
- Institut de Recherches Cliniques de Montréal, Université de Montréal, Montreal, Quebec H2W 1R7, Canada
| | | | | | | | | |
Collapse
|
185
|
Chen Z, Raman M, Chen L, Lee SF, Gilman AG, Cobb MH. TAO (thousand-and-one amino acid) protein kinases mediate signaling from carbachol to p38 mitogen-activated protein kinase and ternary complex factors. J Biol Chem 2003; 278:22278-83. [PMID: 12665513 DOI: 10.1074/jbc.m301173200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The TAO (for thousand-and-one amino acids) protein kinases activate p38 mitogen-activated protein (MAP) kinase cascades in vitro and in cells by phosphorylating the MAP/ERK kinases (MEKs) 3 and 6. We found that TAO2 activity was increased by carbachol and that carbachol and the heterotrimeric G protein Galphao could activate p38 in 293 cells. Using dominant interfering kinase mutants, we found that MEKs 3 and 6 and TAOs were required for p38 activation by carbachol or the constitutively active mutant GalphaoQ205L. To explore events downstream of TAOs, the effects of TAO2 on ternary complex factors (TCFs) were investigated. Transfection studies demonstrated that TAO2 stimulates phosphorylation of the TCF Elk1 on the major activating site, Ser383, and that TAO2 stimulates transactivation of Elk1 and the related TCF, Sap1. Reporter activity was reduced by the p38-selective inhibitor SB203580. Taken together, these studies suggest that TAO protein kinases relay signals from carbachol through heterotrimeric G proteins to the p38 MAP kinase, which then activates TCFs in the nucleus.
Collapse
Affiliation(s)
- Zhu Chen
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9041, USA
| | | | | | | | | | | |
Collapse
|
186
|
Fan H, Turck CW, Derynck R. Characterization of growth factor-induced serine phosphorylation of tumor necrosis factor-alpha converting enzyme and of an alternatively translated polypeptide. J Biol Chem 2003; 278:18617-27. [PMID: 12621058 DOI: 10.1074/jbc.m300331200] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Tumor necrosis factor-alpha converting enzyme (TACE) is a prototype member of the adamalysin family of transmembrane metalloproteases that effects ectodomain cleavage and release of many transmembrane proteins, including transforming growth factor-alpha. Growth factors that act through tyrosine kinase receptors, as well as other stimuli, induce shedding through activation of the Erk mitogen-activated protein (MAP) kinase pathway without the need of new protein synthesis. How MAP kinase regulates shedding by TACE is not known. We now report that the cytoplasmic domain of TACE is phosphorylated in response to growth factor stimulation. We also identified a naturally expressed smaller polypeptide corresponding to most of the cytoplasmic domain of TACE. This protein, which we named SPRACT, is derived through alternative translation of the TACE-coding sequence and is, similarly to TACE, phosphorylated in response to growth factor and phorbol 12-myristate 13-acetate stimulation. Phosphoamino acid analysis revealed that growth factor-induced phosphorylation of TACE occurs only on serine and not on threonine or tyrosine. Tryptic mapping experiments coupled with site-directed mutagenesis identified Ser(819) as the major target of growth factor-induced phosphorylation, whereas Ser(791) undergoes dephosphorylation in response to growth factor stimulation. The phosphorylation of Ser(819), but not the dephosphorylation of Ser(791), depends on activation of the Erk MAP kinase pathway. Increased SPRACT expression or mutation of the TACE cytoplasmic domain to inactivate growth factor-induced phosphorylation did not detectably affect growth factor-induced shedding of transmembrane transforming growth factor-alpha by TACE. The roles of SPRACT and the cytoplasmic phosphorylation of TACE remain to be defined.
Collapse
Affiliation(s)
- Huizhou Fan
- Department of Growth and Development, and Anatomy, Programs in Cell Biology and Developmental Biology, University of California, San Francisco, California 94143, USA.
| | | | | |
Collapse
|
187
|
Horgan AM, Stork PJS. Examining the mechanism of Erk nuclear translocation using green fluorescent protein. Exp Cell Res 2003; 285:208-20. [PMID: 12706116 DOI: 10.1016/s0014-4827(03)00037-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In neuronal cells, the mitogen-activated protein kinase (MAP kinase) cascade is an important mediator of neurotrophin signaling from cell surface receptors to the nucleus, resulting in changes in gene expression. Nuclear localization of Erk is thought to be required for these effects. To examine the mechanism and regulation of Erk nuclear translocation, we have created a green fluorescent protein (GFP)-labeled Erk2 construct, which provides a sensitive means to follow the movement of Erk from the cytoplasm to the nucleus following receptor-mediated MAP kinase activation. Using this system in PC12 cells, we have examined a number of mechanisms that have been implicated in regulating the translocation of Erk. In PC12 cells, NGF and EGF induce a rapid translocation of GFP-Erk that requires Ras and Mek. We have found that prolonged phosphorylation of Erk is not required for the rapid and early influx of Erk into the nucleus following growth factor stimulation. Furthermore, following influx, GFP-Erk rapidly returned to the cytoplasm regardless of its phosphorylation state. The release of Erk from its cytoplasmic activator, Mek, followed by the dimerization of Erk, was sufficient to stimulate nuclear uptake, whereas Erk kinase activity was dispensable. PKA activity has been reported to be required for Erk translocation in PC12 cells. However, PKA activity was also not necessary for the early translocation of Erk into the nucleus by NGF or Ras, but it was able to induce a small influx of Erk that could be measured with GFP-Erk2.
Collapse
Affiliation(s)
- Angela M Horgan
- Vollum Institute for Advanced Biomedical Research, L474, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97201, USA
| | | |
Collapse
|
188
|
Vikis H, Guan KL. Regulation of the Ras-MAPK pathway at the level of Ras and Raf. GENETIC ENGINEERING 2003; 24:49-66. [PMID: 12416300 DOI: 10.1007/978-1-4615-0721-5_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
Affiliation(s)
- Haris Vikis
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA
| | | |
Collapse
|
189
|
Govindarajan B, Bai X, Cohen C, Zhong H, Kilroy S, Louis G, Moses M, Arbiser JL. Malignant transformation of melanocytes to melanoma by constitutive activation of mitogen-activated protein kinase kinase (MAPKK) signaling. J Biol Chem 2003; 278:9790-5. [PMID: 12514183 DOI: 10.1074/jbc.m212929200] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Malignant melanoma is the cancer with the most rapid increase in incidence in the United States. Ultraviolet light and deficiency of the p16ink4a gene are known factors that predispose one to the development of malignant melanoma. The signal transduction pathways that underlie the progression of melanoma from their precursors, atypical nevi, are not well understood. We examined activation of the MAP kinase pathway in atypical nevi and melanoma cells and found that this pathway is activated in melanomas. To determine the functional significance of this activation, we introduced constitutively active MAP kinase kinase (MAPKK) into immortalized melanocytes. The introduction of this gene into melanocytes leads to tumorigenesis in nude mice, activation of the angiogenic switch, and increased production of the proangiogenic factor, vascular endothelial growth factor (VEGF), and matrix metalloproteinases (MMPs). Activation of MAP kinase signaling may be an important pathway involved in melanoma transformation. Inhibition of MAP kinase signaling may be useful in the prevention and treatment of melanoma.
Collapse
Affiliation(s)
- Baskaran Govindarajan
- Department of Dermatology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | | | | | | | | | |
Collapse
|
190
|
Kast C, Wang M, Whiteway M. The ERK/MAPK pathway regulates the activity of the human tissue factor pathway inhibitor-2 promoter. J Biol Chem 2003; 278:6787-94. [PMID: 12446683 DOI: 10.1074/jbc.m210935200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human tissue factor pathway inhibitor-2 (hTFPI-2) is a 32-kDa serine protease inhibitor that is associated with the extracellular matrix. hTFPI-2 inhibits several extracellular matrix-degrading serine proteases and may play a role in tumor invasion and metastasis. To study the signal transduction pathway that leads to the activation of the hTFPI-2, we cloned the potential promoter region of this gene adjacent to a heterologous luciferase reporter gene. Phorbol 12-myristate 13-acetate (PMA) induced the luciferase reporter gene in HEK293 cells and other epithelial cell lines, such as the human lung carcinoma A549 cells, the breast carcinoma MCF7 cells, and the cervical HeLa cells. This PMA induction was blocked with the MEK inhibitor UO126, suggesting that the PMA-induced activation of the hTFPI-2 promoter is mediated through MEK. Furthermore, epidermal growth factor induced the luciferase reporter gene in HeLa cells. Cotransfection of the luciferase construct with constitutively active components of the Ras/Raf/MEK/ERK pathway in EcR-293 cells lead to a 7- to 92-fold induction of the luciferase reporter gene, indicating that regulation of hTFPI-2 is mediated through this pathway. A series of luciferase reporter gene constructs with progressive deletions of the 5'-flanking region suggested that the minimal basal promoter activity is located between nucleotide positions -89 and -384, whereas the minimal inducible promoter activity is between -89 and -222. We have used the computer program TFSEARCH and mutagenesis to analyze potential transcription factor binding sites. We identified an AP-1 binding site at nucleotide position -156 (inducible activity) and a Sp1 site at position -134 (basal activity) as potential cis-acting elements in the promoter region of the hTFPI-2.
Collapse
Affiliation(s)
- Christina Kast
- Biotechnology Research Institute, National Research Council of Canada, 6100 Royalmount Ave., Montreal, Quebec H4P 2R2, Canada.
| | | | | |
Collapse
|
191
|
Young MR, Yang HS, Colburn NH. Promising molecular targets for cancer prevention: AP-1, NF-kappa B and Pdcd4. Trends Mol Med 2003; 9:36-41. [PMID: 12524209 DOI: 10.1016/s1471-4914(02)00009-6] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
There are still many unanswered questions regarding the processes by which extracellular signals are transduced from plasma-membrane receptors to the transcription machinery in the nucleus and the translation machinery in the cytoplasm. Some of these gene expression events become misregulated as a result of environmental or endogenous exposure to agents that cause multistage carcinogenesis. We are now beginning to identify and validate the crucial molecular events that drive the rate-limiting steps of carcinogenesis and to target these events for cancer prevention. Transcription factors AP-1 and nuclear factor kappa B can be specifically targeted to prevent cancer induction in mouse models. A protein known as programmed-cell-death-4 is a new potential molecular target that has a surprising mode of action.
Collapse
Affiliation(s)
- Matthew R Young
- The Gene Regulation Section, Basic Research Laboratory, National Cancer Institute - Frederick, National Institutes of Health, Frederick, MD 21702, USA.
| | | | | |
Collapse
|
192
|
Povlsen GK, Ditlevsen DK, Berezin V, Bock E. Intracellular signaling by the neural cell adhesion molecule. Neurochem Res 2003; 28:127-41. [PMID: 12587671 DOI: 10.1023/a:1021660531484] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cell adhesion molecules are known to play far more complex roles than mechanically attaching one cell to an adjacent cell or to components of the extracellular matrix. Thus, important roles for cell adhesion molecules in the regulation of intracellular signaling pathways have been revealed. In this review, we discuss the present knowledge about signaling pathways activated upon homophilic binding of the neural cell adhesion molecule (NCAM). Homophilic NCAM binding leads to activation of a signal transduction pathway involving Ca2+ through activation of the fibroblast growth factor receptor, and to activation of the mitogen-activated protein kinase pathway. In addition, cyclic adenosine monophosphate and protein kinase A are involved in NCAM-mediated signaling. Among these pathways the possibility exists of cross talk or convergence, of which different possible mediators have been suggested. Finally, several downstream effector molecules leading to NCAM-mediated cellular endpoints have been demonstrated, including transcription factors and regulators of the cytoskeleton.
Collapse
Affiliation(s)
- Gro Klitgaard Povlsen
- Protein Laboratory, Institute of Molecular Pathology, University of Copenhagen, Blegdamsvej, Copenhagen, Denmark
| | | | | | | |
Collapse
|
193
|
Abstract
Mood stabilizers represent a class of drugs that are efficacious in the treatment of bipolar disorder. The most established medications in this class are lithium, valproic acid, and carbamazepine. In addition to their therapeutic effects for treatment of acute manic episodes, these medications often are useful as prophylaxis against future episodes and as adjunctive antidepressant medications. While important extracellular effects have not been excluded, most available evidence suggests that the therapeutically relevant targets of this class of medications are in the interior of cells. Herein we give a prospective of a rapidly evolving field, discussing common effects of mood stabilizers as well as effects that are unique to individual medications. Mood stabilizers have been shown to modulate the activity of enzymes, ion channels, arachidonic acid turnover, G protein coupled receptors and intracellular pathways involved in synaptic plasticity and neuroprotection. Understanding the therapeutic targets of mood stabilizers will undoubtedly lead to a better understanding of the pathophysiology of bipolar disorder and to the development of improved therapeutics for the treatment of this disease. Furthermore, the involvement of mood stabilizers in pathways operative in neuroprotection suggests that they may have utility in the treatment of classical neurodegenerative disorders.
Collapse
Affiliation(s)
- Todd D. Gould
- Laboratory of Molecular Pathophysiology, Building 49, Room B1EE16, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Guang Chen
- Laboratory of Molecular Pathophysiology, Building 49, Room B1EE16, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Husseini K. Manji
- Laboratory of Molecular Pathophysiology, Building 49, Room B1EE16, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
194
|
Shin EY, Shin KS, Lee CS, Woo KN, Quan SH, Soung NK, Kim YG, Cha CI, Kim SR, Park D, Bokoch GM, Kim EG. Phosphorylation of p85 beta PIX, a Rac/Cdc42-specific guanine nucleotide exchange factor, via the Ras/ERK/PAK2 pathway is required for basic fibroblast growth factor-induced neurite outgrowth. J Biol Chem 2002; 277:44417-30. [PMID: 12226077 DOI: 10.1074/jbc.m203754200] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Guanine nucleotide exchange factors (GEFs) have been implicated in growth factor-induced neuronal differentiation through the activation of small GTPases. Although phosphorylation of these GEFs is considered an activation mechanism, little is known about the upstream of PAK-interacting exchange factor (PIX), a member of the Dbl family of GEFs. We report here that phosphorylation of p85 betaPIX/Cool/p85SPR is mediated via the Ras/ERK/PAK2 pathway. To understand the role of p85 betaPIX in basic fibroblast growth factor (bFGF)-induced neurite outgrowth, we established PC12 cell lines that overexpress the fibroblast growth factor receptor-1 in a tetracycline-inducible manner. Treatment with bFGF induces the phosphorylation of p85 betaPIX, as determined by metabolic labeling and mobility shift upon gel electrophoresis. Interestingly, phosphorylation of p85 betaPIX is inhibited by PD98059, a specific MEK inhibitor, suggesting the involvement of the ERK cascade. PAK2, a major PAK isoform in PC12 cells as well as a binding partner of p85 betaPIX, also functions upstream of p85 betaPIX phosphorylation. Surprisingly, PAK2 directly binds to ERK, and its activation is dependent on ERK. p85 betaPIX specifically localizes to the lamellipodia at neuronal growth cones in response to bFGF. A mutant form of p85 betaPIX (S525A/T526A), in which the major phosphorylation sites are replaced by alanine, shows significant defect in targeting. Moreover, expression of the mutant p85 betaPIX efficiently blocks PC12 cell neurite outgrowth. Our study defines a novel signaling pathway for bFGF-induced neurite outgrowth that involves activation of the PAK2-p85 betaPIX complex via the ERK cascade and subsequent translocation of this complex.
Collapse
Affiliation(s)
- Eun-Young Shin
- Department of Biochemistry, College of Medicine, Chungbuk National University, Cheongju 361-763, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
195
|
Abstract
The receptor tyrosine kinase (RTK) signaling network plays a central role in regulating cellular differentiation, proliferation, and survival in all metazoan animals. Excessive or continuous activation of the RTK pathway has been linked to carcinogenesis in mammals, underscoring the importance of preventing uncontrolled signaling. This review will focus on the inhibitory mechanisms that keep RTK-mediated signals in check, with emphasis on conserved principles discerned from studies using Drosophila as a model system. Two general strategies of inhibition will be discussed. The first, threshold regulation, postulates that an effective way of antagonizing RTK signaling is to erect and maintain high threshold barriers that prevent inappropriate responses to moderate signaling levels. Activation of the pathway above this level overcomes the inhibitory blocks and shifts the balance to allow a positive flow of inductive information. A second layer of negative regulation involving induction of negative feedback loops that limit the extent, strength, or duration of the signal prevents runaway signaling in response to the high levels of activation required to surmount the threshold barriers. Such autoinhibitory mechanisms attenuate signaling at critical points throughout the network, from the receptor to the downstream effectors.
Collapse
Affiliation(s)
- Ilaria Rebay
- Whitehead Institute and Department of Biology, Massachusetts Institute of Technology, Cambridge 02142, USA.
| |
Collapse
|
196
|
Abstract
Neuronal morphological differentiation is regulated by numerous polypeptide growth factors (neurotrophic factors). Recently, significant progress has been achieved in clarifying the roles of neurotrophins as well as glial cell line-derived neurotrophic factor family members in peripheral axon elongation during development. Additionally, advances have been made in defining the signal transduction mechanisms employed by these factors in mediating axon morphological responses. Several studies addressed the role of neurotrophic factors in regenerative axon growth and suggest that signaling mechanisms in addition to those triggered by receptor tyrosine kinases may be required for successful peripheral nervous system regeneration. Finally, recent investigations demonstrate that neurotrophic factors can enhance axon growth after spinal cord injuries.
Collapse
Affiliation(s)
- Annette Markus
- Neuroscience Center, Neuroscience Research Building, 103 Mason Farm Road Campus, Box 7250, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | |
Collapse
|
197
|
Gallo A, Cuozzo C, Esposito I, Maggiolini M, Bonofiglio D, Vivacqua A, Garramone M, Weiss C, Bohmann D, Musti AM. Menin uncouples Elk-1, JunD and c-Jun phosphorylation from MAP kinase activation. Oncogene 2002; 21:6434-45. [PMID: 12226747 DOI: 10.1038/sj.onc.1205822] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2002] [Revised: 06/18/2002] [Accepted: 06/28/2002] [Indexed: 11/09/2022]
Abstract
Menin, a nuclear protein encoded by the tumor suppressor gene MEN1, interacts with the AP-1 transcription factor JunD and inhibits its transcriptional activity. In addition, overexpression of Menin counteracts Ras-induced tumorigenesis. We show that Menin inhibits ERK-dependent phosphorylation and activation of both JunD and the Ets-domain transcription factor Elk-1. We also show that Menin represses the inducible activity of the c-fos promoter. Furthermore, Menin expression inhibits Jun N-terminal kinase (JNK)-mediated phosphorylation of both JunD and c-Jun. Kinase assays show that Menin overexpression does not interfere with activation of either ERK2 or JNK1, suggesting that Menin acts at a level downstream of MAPK activation. An N-terminal deletion mutant of Menin that cannot inhibit JunD phosphorylation by JNK, can still repress JunD phosphorylation by ERK2, suggesting that Menin interferes with ERK and JNK pathways through two distinct inhibitory mechanisms. Taken together, our data suggest that Menin uncouples ERK and JNK activation from phosphorylation of their nuclear targets Elk-1, JunD and c-Jun, hence inhibiting accumulation of active Fos/Jun heterodimers. This study provides new molecular insights into the tumor suppressor function of Menin and suggests a mechanism by which Menin may interfere with Ras-dependent cell transformation and oncogenesis.
Collapse
Affiliation(s)
- Adriana Gallo
- Centro di Endocrinologia e Oncologia Sperimentale del CNR, Dipartimento di Biologia e Patologia Cellulare e Molecolare, Universita' di Napoli 'FedericoII', 80131 Napoli, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
198
|
Pouysségur J, Volmat V, Lenormand P. Fidelity and spatio-temporal control in MAP kinase (ERKs) signalling. Biochem Pharmacol 2002; 64:755-63. [PMID: 12213567 DOI: 10.1016/s0006-2952(02)01135-8] [Citation(s) in RCA: 312] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Extracellular signals transduced via receptor tyrosine kinases, G-protein-coupled receptors or integrins activate Ras, a key switch in cellular signalling. Although Ras can activate multiple downstream effectors (PI3K, Ral em leader ) one of the major activated pathway is a conserved sequential protein kinase cascade referred to as the mitogen activated protein (MAP) kinase module: Raf>MEK>ERK. The fidelity of signalling among protein kinases and the spatio-temporal activation are certainly key determinants for generating precise biological responses. The fidelity is ensured by scaffold proteins, a sort of protein kinase "insulators" and/or specific docking sites among the members of the signalling cascade. These docking sites are found in upstream and downstream regulators and MAPK substrates [Nat Cell Biol 2 2000 110]. The duration and the intensity of the response are in part controlled by the compartmentalisation of the signalling molecules. Growth factors promote nuclear accumulation and persistent activation of ERK (p42/p44 MAP kinases) during the entire G1 period with an extinction during S-phase. These features are exquisitely well controlled by (i) the temporal induction of the MAP kinase phosphatases, MKP1-3, and (ii) the compartmentalisation of the signalling molecules. We have shown that MKP1-2 induction is strictly controlled by the activation of the MAP kinase module providing evidence for an autoregulatory mechanism. This negative regulatory loop was further enhanced by the capacity of ERK to phosphorylate MKP1 and 2. This action reduced the degradation rate of these MKPs through the ubiquitin-proteasomal system [Science 286 1999 2514]. Whereas the two upstream kinases of the module, Raf and MEK remained cytoplasmic, ERK anchored to MEK in the cytoplasm of resting cells, rapidly translocated to the nucleus upon mitogenic stimulation. This process was rapid, reversible, and controlled by the strict activation of the MAPK cascade. Prevention of this nuclear translocation, by overexpression of a cytoplasmic ERK-docking molecule (inactive MKP3) prevented growth factor-stimulated DNA replication [EMBO J 18 1999 664]. Following long term stimulation, ERK progressively accumulated in the nucleus in an inactive form. This nuclear retention relied on the neosynthesis of short-lived nuclear anchoring proteins. Nuclear inactivation and sequestration was likely to be controlled by MAP kinase phosphatases 1 and 2. Therefore we propose that the nucleus represents a site for ERK action, sequestration and signal termination [J Cell Sci 114 2001 3433]. In addition, with the generation of mice invalidated for each of the ERK isoforms, we will illustrate that besides controlling cell proliferation the ERK cascade also controls cell differentiation and cell behaviour [Science 286 1999 1374].
Collapse
Affiliation(s)
- Jacques Pouysségur
- Institute of Signaling, Developmental Biology and Cancer Research, CNRS-UMR 6543, Centre Antoine Lacassagne, 33 Avenue de Valombrose, Nice, France
| | | | | |
Collapse
|
199
|
Rennefahrt UEE, Illert B, Kerkhoff E, Troppmair J, Rapp UR. Constitutive JNK activation in NIH 3T3 fibroblasts induces a partially transformed phenotype. J Biol Chem 2002; 277:29510-8. [PMID: 12039958 DOI: 10.1074/jbc.m203010200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The c-Jun N-terminal kinases (JNKs) (also known as stress-activated protein kinases or SAPKs), members of the mitogen-activated protein kinase (MAPK) family, regulate gene expression in response to a variety of physiological and unphysiological stimuli. Gene knockout experiments and the use of dominant interfering mutants have pointed to a role for JNKs in the processes of cell differentiation and survival as well as oncogenic transformation. Direct analysis of the transforming potential of JNKs has been hampered so far by the lack of constitutively active forms of these kinases. Recently, such mutants have become available by fusion of the MAPK with its direct upstream activator kinase. We have generated a constitutively active SAPK beta-MKK7 hybrid protein and, using this constitutively active kinase, we are able to demonstrate the transforming potential of activated JNK, which is weaker than that of classical oncogenes such as Ras or Raf. The inducible expression of SAPK beta-MKK7 caused morphological transformation of NIH 3T3 fibroblasts. Additionally, these cells formed small foci of transformed cells and grew anchorage-independent in soft agar. Furthermore, similar to oncogenic Ras and Raf, the expression of activated SAPK beta resulted in the disassembly of F-actin stress fibers. Our data suggest that constitutive JNK activation elicits major aspects of cellular transformation but is unable to induce the complete set of changes which are required to establish the fully transformed phenotype.
Collapse
Affiliation(s)
- Ulrike E E Rennefahrt
- Institut für Medizinische Strahlenkunde und Zellforschung, Universität Würzburg, 97078 Würzburg, Germany
| | | | | | | | | |
Collapse
|
200
|
Obrietan K, Gao XB, Van Den Pol AN. Excitatory actions of GABA increase BDNF expression via a MAPK-CREB-dependent mechanism--a positive feedback circuit in developing neurons. J Neurophysiol 2002; 88:1005-15. [PMID: 12163549 DOI: 10.1152/jn.2002.88.2.1005] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
During early neuronal development, GABA functions as an excitatory neurotransmitter, triggering membrane depolarization, action potentials, and the opening of plasma membrane Ca(2+) channels. These excitatory actions of GABA lead to a number of changes in neuronal structure and function. Although the effects of GABA on membrane biophysics during early development have been well documented, little work has been done to examine the possible mechanisms underlying GABA-regulated plastic changes in the developing brain. This study focuses on GABA-regulated kinase activity and transcriptional control. We utilized a combination of Western blotting and immunocytochemical techniques to examine two potential downstream pathways regulated by GABA excitation: the p42/44 mitogen-activated protein kinase (MAPK) cascade and the transcription factor cyclic AMP response element binding protein (CREB). During early development of cultured hypothalamic neurons (5 days in vitro), stimulation with GABA triggered activation of the MAPK cascade and phosphorylation of CREB at Ser 133. These effects were mediated by the GABA(A) receptor, since administration of the GABA(A) receptor-specific agonist muscimol (50 microM) triggered pathway activation, and pretreatment with the GABA(A)-receptor specific antagonist bicuculline (20 microM) blocked pathway activation. Immunocytochemistry revealed a spatial and temporal correlation between activation of the MAPK cascade and CREB phosphorylation. Pretreatment with the MAPK/ERK kinase (MEK) inhibitor U0126 (10 microM) attenuated CREB phosphorylation, indicating that the MAPK pathway regulates that activation state of CREB. In contrast to the excitatory effects observed during early development, in more mature neurons, GABA functions as an inhibitory transmitter. Consistent with this observation, GABA(A) receptor activation did not stimulate MAPK cascade activation or CREB phosphorylation in mature cultures (18 days in vitro). To determine whether GABA(A) receptor activation during early development stimulates gene expression, we examined the inducible expression of the neurotrophin brain-derived neurotrophic factor (BDNF). Both GABA and muscimol stimulated BDNF expression, and pretreatment with U0126 attenuated GABA-induced BDNF expression. Whole cell electrophysiological recording was used to assess the effects of BDNF on GABA release. BDNF (100 ng/ml) dramatically increased the frequency of excitatory GABAergic spontaneous postsynaptic currents. Together, these data suggest a positive excitatory feedback loop between GABA and BDNF expression during early development, where GABA facilitates BDNF expression, and BDNF facilitates the synaptic release of GABA. Signaling via the MAPK cascade and the transcription factor CREB appear to play a substantial role in this process.
Collapse
Affiliation(s)
- Karl Obrietan
- Department of Neuroscience, The Ohio State University, Columbus 43210, USA.
| | | | | |
Collapse
|