151
|
Suzuki T, Kasuya Y, Itoh Y, Ota Y, Zhan P, Asamitsu K, Nakagawa H, Okamoto T, Miyata N. Identification of highly selective and potent histone deacetylase 3 inhibitors using click chemistry-based combinatorial fragment assembly. PLoS One 2013; 8:e68669. [PMID: 23874714 PMCID: PMC3713009 DOI: 10.1371/journal.pone.0068669] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 06/02/2013] [Indexed: 12/27/2022] Open
Abstract
To find histone deacetylase 3 (HDAC3)-selective inhibitors, a series of 504 candidates was assembled using "click chemistry", by reacting nine alkynes bearing a zinc-binding group with 56 azide building blocks in the presence of Cu(I) catalyst. Screening of the 504-member triazole library against HDAC3 and other HDAC isozymes led to the identification of potent and selective HDAC3 inhibitors T247 and T326. These compounds showed potent HDAC3 inhibition with submicromolar IC50s, whereas they did not strongly inhibit other isozymes. Compounds T247 and T326 also induced a dose-dependent selective increase of NF-κB acetylation in human colon cancer HCT116 cells, indicating selective inhibition of HDAC3 in the cells. In addition, these HDAC3-selective inhibitors induced growth inhibition of cancer cells, and activated HIV gene expression in latent HIV-infected cells. These findings indicate that HDAC3-selective inhibitors are promising candidates for anticancer drugs and antiviral agents. This work also suggests the usefulness of the click chemistry approach to find isozyme-selective HDAC inhibitors.
Collapse
Affiliation(s)
- Takayoshi Suzuki
- Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
- PRESTO, Japan Science and Technology Agency (JST), Saitama, Japan
- * E-mail: (TS); (NM)
| | - Yuki Kasuya
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Yukihiro Itoh
- Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yosuke Ota
- Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Peng Zhan
- Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kaori Asamitsu
- Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Hidehiko Nakagawa
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Takashi Okamoto
- Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Naoki Miyata
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
- * E-mail: (TS); (NM)
| |
Collapse
|
152
|
Vidal-Laliena M, Gallastegui E, Mateo F, Martínez-Balbás M, Pujol MJ, Bachs O. Histone deacetylase 3 regulates cyclin A stability. J Biol Chem 2013; 288:21096-21104. [PMID: 23760262 DOI: 10.1074/jbc.m113.458323] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
PCAF and GCN5 acetylate cyclin A at specific lysine residues targeting it for degradation at mitosis. We report here that histone deacetylase 3 (HDAC3) directly interacts with and deacetylates cyclin A. HDAC3 interacts with a domain included in the first 171 aa of cyclin A, a region involved in the regulation of its stability. In cells, overexpression of HDAC3 reduced cyclin A acetylation whereas the knocking down of HDAC3 increased its acetylation. Moreover, reduction of HDAC3 levels induced a decrease of cyclin A that can be reversed by proteasome inhibitors. These results indicate that HDAC3 is able to regulate cyclin A degradation during mitosis via proteasome. Interestingly, HDAC3 is abruptly degraded at mitosis also via proteasome thus facilitating cyclin A acetylation by PCAF/GCN5, which will target cyclin A for degradation. Because cyclin A is crucial for S phase progression and mitosis entry, the knock down of HDAC3 affects cell cycle progression specifically at both, S phase and G2/M transition. In summary we propose here that HDAC3 regulates cyclin A stability by counteracting the action of the acetylases PCAF/GCN5.
Collapse
Affiliation(s)
- Miriam Vidal-Laliena
- From the Department of Cell Biology, Immunology and Neurosciences, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, 08036 Barcelona, Spain and
| | - Edurne Gallastegui
- From the Department of Cell Biology, Immunology and Neurosciences, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, 08036 Barcelona, Spain and
| | | | - Marian Martínez-Balbás
- Molecular Biology, Barcelona Institute of Molecular Biology, Consejo Superior de Investigaciones Científicas (CSIC), 08028 Barcelona, Spain
| | - Maria Jesús Pujol
- From the Department of Cell Biology, Immunology and Neurosciences, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, 08036 Barcelona, Spain and
| | - Oriol Bachs
- From the Department of Cell Biology, Immunology and Neurosciences, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, 08036 Barcelona, Spain and.
| |
Collapse
|
153
|
Scafoglio C, Smolka M, Zhou H, Perissi V, Rosenfeld MG. The co-repressor SMRT delays DNA damage-induced caspase activation by repressing pro-apoptotic genes and modulating the dynamics of checkpoint kinase 2 activation. PLoS One 2013; 8:e59986. [PMID: 23690919 PMCID: PMC3656868 DOI: 10.1371/journal.pone.0059986] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 02/23/2013] [Indexed: 12/31/2022] Open
Abstract
Checkpoint kinase 2 (Chk2) is a major regulator of DNA damage response and can induce alternative cellular responses: cell cycle arrest and DNA repair or programmed cell death. Here, we report the identification of a new role of Chk2 in transcriptional regulation that also contributes to modulating the balance between survival and apoptosis following DNA damage. We found that Chk2 interacts with members of the NCoR/SMRT transcriptional co-regulator complexes and serves as a functional component of the repressor complex, being required for recruitment of SMRT on the promoter of pro-apoptotic genes upon DNA damage. Thus, the co-repressor SMRT exerts a critical protective action against genotoxic stress-induced caspase activation, repressing a functionally important cohort of pro-apoptotic genes. Amongst them, SMRT is responsible for basal repression of Wip1, a phosphatase that de-phosphorylates and inactivates Chk2, thus affecting a feedback loop responsible for licensing the correct timing of Chk2 activation and the proper execution of the DNA repair process.
Collapse
Affiliation(s)
- Claudio Scafoglio
- Howard Hughes Medical Institute and School of Medicine, University of California San Diego, La Jolla, California, United States of America
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail: (CS); (MGR)
| | - Marcus Smolka
- Ludwig Institute for Cancer Research and Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California, United States of America
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York, United States of America
| | - Huilin Zhou
- Ludwig Institute for Cancer Research and Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Valentina Perissi
- Howard Hughes Medical Institute and School of Medicine, University of California San Diego, La Jolla, California, United States of America
- School of Medicine, Boston University, Boston, Massachusetts, United States of America
| | - Michael G. Rosenfeld
- Howard Hughes Medical Institute and School of Medicine, University of California San Diego, La Jolla, California, United States of America
- Ludwig Institute for Cancer Research and Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California, United States of America
- * E-mail: (CS); (MGR)
| |
Collapse
|
154
|
Smith Z, Ryerson D, Kemper JK. Epigenomic regulation of bile acid metabolism: emerging role of transcriptional cofactors. Mol Cell Endocrinol 2013; 368:59-70. [PMID: 22579755 PMCID: PMC3473118 DOI: 10.1016/j.mce.2012.04.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 04/20/2012] [Accepted: 04/24/2012] [Indexed: 01/07/2023]
Abstract
The traditional role of bile acids is to simply facilitate absorption and digestion of lipid nutrients, but bile acids also act as endocrine signaling molecules that activate nuclear and membrane receptors to control integrative metabolism and energy balance. The mechanisms by which bile acid signals are integrated to regulate target genes are, however, largely unknown. Recently emerging evidence has shown that transcriptional cofactors sense metabolic changes and modulate gene transcription by mediating reversible epigenomic post-translational modifications (PTMs) of histones and chromatin remodeling. Importantly, targeting these epigenomic changes has been a successful approach for treating human diseases, especially cancer. Here, we review emerging roles of transcriptional cofactors in the epigenomic regulation of liver metabolism, especially focusing on bile acid metabolism. Targeting PTMs of histones and chromatin remodelers, together with the bile acid-activated receptors, may provide new therapeutic options for bile acid-related disease, such as cholestasis, obesity, diabetes, and entero-hepatic cancers.
Collapse
Affiliation(s)
- Zachary Smith
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, IL 61801, USA
| | | | | |
Collapse
|
155
|
The Caenorhabditis elegans JNK signaling pathway activates expression of stress response genes by derepressing the Fos/HDAC repressor complex. PLoS Genet 2013; 9:e1003315. [PMID: 23437011 PMCID: PMC3578760 DOI: 10.1371/journal.pgen.1003315] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 12/20/2012] [Indexed: 01/17/2023] Open
Abstract
MAP kinases are integral to the mechanisms by which cells respond to a wide variety of environmental stresses. In Caenorhabditis elegans, the KGB-1 JNK signaling pathway regulates the response to heavy metal stress. In this study, we identified FOS-1, a bZIP transcription factor, as a target of KGB-1-mediated phosphorylation. We further identified two transcriptional targets of the KGB-1 pathway, kreg-1 and kreg-2/lys-3, which are required for the defense against heavy metal stress. FOS-1 plays a critical role in the transcriptional repression of the kreg-1 gene by recruiting histone deacetylase (HDAC) to its promoter. KGB-1 phosphorylation prevents FOS-1 dimerization and promoter binding, resulting in promoter derepression. Thus, HDAC behaves as a co-repressor modulating FOS-1-mediated transcriptional regulation. This study describes the direct link from JNK signaling, Fos phosphorylation, and regulation of kreg gene transcription, which modulates the stress response in C. elegans.
Collapse
|
156
|
You SH, Lim HW, Sun Z, Broache M, Won KJ, Lazar MA. Nuclear receptor co-repressors are required for the histone-deacetylase activity of HDAC3 in vivo. Nat Struct Mol Biol 2013; 20:182-7. [PMID: 23292142 PMCID: PMC3565028 DOI: 10.1038/nsmb.2476] [Citation(s) in RCA: 152] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 11/26/2012] [Indexed: 12/11/2022]
Abstract
Histone deacetylase 3 (HDAC3) is an epigenome-modifying enzyme that is required for normal mouse development and tissue-specific functions. In vitro, HDAC3 protein itself has minimal enzyme activity but gains its histone-deacetylation function from stable association with the conserved deacetylase-activating domain (DAD) contained in nuclear receptor co-repressors NCOR1 and SMRT. Here we show that HDAC3 enzyme activity is undetectable in mice bearing point mutations in the DAD of both NCOR1 and SMRT (NS-DADm), despite having normal levels of HDAC3 protein. Local histone acetylation is increased, and genomic HDAC3 recruitment is reduced though not abrogated. Notably, NS-DADm mice are born and live to adulthood, whereas genetic deletion of HDAC3 is embryonic lethal. These findings demonstrate that nuclear receptor co-repressors are required for HDAC3 enzyme activity in vivo and suggest that a deacetylase-independent function of HDAC3 may be required for life.
Collapse
Affiliation(s)
- Seo-Hee You
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- The Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hee-Woong Lim
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- The Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zheng Sun
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- The Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Molly Broache
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- The Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kyoung-Jae Won
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- The Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mitchell A. Lazar
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- The Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
157
|
Nait Achour T, Sentis S, Teyssier C, Philippat A, Lucas A, Corbo L, Cavaillès V, Jalaguier S. Transcriptional repression of estrogen receptor α signaling by SENP2 in breast cancer cells. Mol Endocrinol 2013; 28:183-96. [PMID: 24422630 DOI: 10.1210/me.2013-1376] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Estrogen receptors (ERs) are ligand-activated transcription factors involved in many physiological and pathological processes, including breast cancer. Their activity is fine-tuned by posttranslational modifications, notably sumoylation. In the present study, we investigated the role of the small ubiquitin-related modifier (SUMO) protease, SUMO1/sentrin/suppressor of Mif 2-specific peptidase 2 (SENP2), in the regulation of ERα activity. We first found SENP2 to significantly repress estradiol-induced transcriptional activity in breast cancer cells (MCF7 and T47D). This effect was observed with a reporter plasmid and on endogenous genes such as TFF1 and CTSD, which were shown to recruit SENP2 in chromatin immunoprecipitation experiments. Using glutathione S-transferase pull-down, coimmunoprecipitation and proximity ligation assays, SENP2 was found to interact with ERα and this interaction to be mediated by the amino-terminal region of the protease and the hinge region of the receptor. Interestingly, we demonstrated that ERα repression by SENP2 is independent of its SUMO protease activity and requires a transcriptional repressive domain located in the amino-terminal end of the protease. Using small interfering RNA assays, we evidenced that this domain recruits the histone deacetylase 3 (HDAC3), to be fully active. Furthermore, using both overexpression and knockdown strategies, we showed that SENP2 robustly represses estrogen-dependent and independent proliferation of MCF7 cells. We provided evidence that this effect requires both the proteolytic and transcriptional activities of SENP2. Altogether, our study unravels a new property for a SUMO protease and identifies SENP2 as a classical transcription coregulator.
Collapse
Affiliation(s)
- Thiziri Nait Achour
- Institut de Recherche en Cancérologie de Montpellier, Institut de Recherche en Cancérologie de Montpellier, INSERM, Unité 896, Université Montpellier 1, and Institut régional du Cancer Montpellier, Montpellier (T.N.A., C.T., A.L., V.C., S.J.), F-34298, France; Université Lyon 1 (S.S., A.P., L.C.), F-69000 Lyon, France; INSERM Unité 1052, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5286, Centre de Recherche en Cancérologie de Lyon, Equipe Labellisée, La Ligue, F-69008 Lyon, France; and Institut des Sciences Pharmaceutiques et Biologiques (S.S.), Faculté de Pharmacie de Lyon, Université Lyon 1, F-69000 Lyon, France
| | | | | | | | | | | | | | | |
Collapse
|
158
|
Eckel-Mahan K, Sassone-Corsi P. Epigenetic Regulation of the Molecular Clockwork. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 119:29-50. [DOI: 10.1016/b978-0-12-396971-2.00002-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
159
|
Shi YB. Unliganded thyroid hormone receptor regulates metamorphic timing via the recruitment of histone deacetylase complexes. Curr Top Dev Biol 2013; 105:275-97. [PMID: 23962846 DOI: 10.1016/b978-0-12-396968-2.00010-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Anuran metamorphosis involves a complex series of tissue transformations that change an aquatic tadpole to a terrestrial frog and resembles the postembryonic perinatal period in mammals. Thyroid hormone (TH) plays a causative role in amphibian metamorphosis and its effect is mediated by TH receptors (TRs). Molecular analyses during Xenopus development have shown that unliganded TR recruits histone deacetylase (HDAC)-containing N-CoR/SMRT complexes and causes histone deacetylation at target genes while liganded TR leads to increased histone acetylations and altered histone methylations at target genes. Transgenic studies involving mutant TR-cofactors have shown that corepressor recruitment by unliganded TR is required to ensure proper timing of the onset of metamorphosis while coactivator levels influence the rate of metamorphic progression. In addition, a number of factors that can influence cellular free TH levels appear to contribute the timing of metamorphic transformations of different organs by regulating the levels of unliganded vs. liganded TR in an organ-specific manner. Thus, the recruitment of HDAC-containing corepressor complexes by unliganded TR likely controls both the timing of the initiation of metamorphosis and the temporal regulation of organ-specific transformations. Similar mechanisms likely mediate TR function in mammals as the maturation of many organs during postembryonic development is dependent upon TH and resembles organ metamorphosis in amphibians.
Collapse
Affiliation(s)
- Yun-Bo Shi
- Section on Molecular Morphogenesis, Program in Cellular Regulation and Metabolism, NICHD, NIH, Bethesda, Maryland, USA.
| |
Collapse
|
160
|
Muller M, Demeret C. The HPV E2-Host Protein-Protein Interactions: A Complex Hijacking of the Cellular Network. Open Virol J 2012; 6:173-89. [PMID: 23341853 PMCID: PMC3547520 DOI: 10.2174/1874357901206010173] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 07/20/2012] [Accepted: 07/30/2012] [Indexed: 11/22/2022] Open
Abstract
Over 100 genotypes of human papillomaviruses (HPVs) have been identified as being responsible for unapparent infections or for lesions ranging from benign skin or genital warts to cancer. The pathogenesis of HPV results from complex relationships between viral and host factors, driven in particular by the interplay between the host proteome and the early viral proteins. The E2 protein regulates the transcription, the replication as well as the mitotic segregation of the viral genome through the recruitment of host cell factors to the HPV regulatory region. It is thereby a pivotal factor for the productive viral life cycle and for viral persistence, a major risk factor for cancer development. In addition, the E2 proteins have been shown to engage numerous interactions through which they play important roles in modulating the host cell. Such E2 activities are probably contributing to create cell conditions appropriate for the successive stages of the viral life cycle, and some of these activities have been demonstrated only for the oncogenic high-risk HPV. The recent mapping of E2-host protein-protein interactions with 12 genotypes representative of HPV diversity has shed some light on the large complexity of the host cell hijacking and on its diversity according to viral genotypes. This article reviews the functions of E2 as they emerge from the E2/host proteome interplay, taking into account the large-scale comparative interactomic study.
Collapse
Affiliation(s)
- Mandy Muller
- Unité de Génétique, Papillomavirus et Cancer Humain (GPCH), Institut Pasteur, 25 rue du Docteur Roux, 75015 Paris, France ; Univ. Paris Diderot, Sorbonne Paris cite, Cellule Pasteur, rue du Docteur Roux, 75015 Paris, France
| | | |
Collapse
|
161
|
Shi YB, Matsuura K, Fujimoto K, Wen L, Fu L. Thyroid hormone receptor actions on transcription in amphibia: The roles of histone modification and chromatin disruption. Cell Biosci 2012; 2:42. [PMID: 23256597 PMCID: PMC3562205 DOI: 10.1186/2045-3701-2-42] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 11/21/2012] [Indexed: 01/14/2023] Open
Abstract
Thyroid hormone (T3) plays diverse roles in adult organ function and during vertebrate development. The most important stage of mammalian development affected by T3 is the perinatal period when plasma T3 level peaks. Amphibian metamorphosis resembles this mammalian postembryonic period and is absolutely dependent on T3. The ability to easily manipulate this process makes it an ideal model to study the molecular mechanisms governing T3 action during vertebrate development. T3 functions mostly by regulating gene expression through T3 receptors (TRs). Studies in vitro, in cell cultures and reconstituted frog oocyte transcription system have revealed that TRs can both activate and repress gene transcription in a T3-dependent manner and involve chromatin disruption and histone modifications. These changes are accompanied by the recruitment of diverse cofactor complexes. More recently, genetic studies in mouse and frog have provided strong evidence for a role of cofactor complexes in T3 signaling in vivo. Molecular studies on amphibian metamorphosis have also revealed that developmental gene regulation by T3 involves histone modifications and the disruption of chromatin structure at the target genes as evidenced by the loss of core histones, arguing that chromatin remodeling is an important mechanism for gene activation by liganded TR during vertebrate development.
Collapse
Affiliation(s)
- Yun-Bo Shi
- Section on Molecular Morphogenesis, Program in Cellular Regulation and Metabolism (PCRM), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, 20892, USA.
| | | | | | | | | |
Collapse
|
162
|
Human cytomegalovirus pUL29/28 and pUL38 repression of p53-regulated p21CIP1 and caspase 1 promoters during infection. J Virol 2012; 87:2463-74. [PMID: 23236067 DOI: 10.1128/jvi.01926-12] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
During infection by human cytomegalovirus (HCMV), the tumor suppressor protein p53, which promotes efficient viral gene expression, is stabilized. However, the expression of numerous p53-responsive cellular genes is not upregulated. The molecular mechanism used to manipulate the transcriptional activity of p53 during infection remains unclear. The HCMV proteins IE1, IE2, pUL44, and pUL84 likely contribute to the regulation of p53. In this study, we used a discovery-based approach to identify the protein targets of the HCMV protein pUL29/28 during infection. Previous studies have demonstrated that pUL29/28 regulates viral gene expression by interacting with the chromatin remodeling complex NuRD. Here, we observed that pUL29/28 also associates with p53, an additional deacetylase complex, and several HCMV proteins, including pUL38. We confirmed the interaction between p53 and pUL29/28 in both the presence and absence of infection. HCMV pUL29/28 with pUL38 altered the activity of the 53-regulatable p21CIP1 promoter. During infection, pUL29/28 and pUL38 contributed to the inhibition of p21CIP1 as well as caspase 1 expression. The expression of several other p53-regulating genes was not altered. Infection using a UL29-deficient virus resulted in increased p53 binding and histone H3 acetylation at the responsive promoters. Furthermore, expression of pUL29/28 and its interacting partner pUL38 contributed to an increase in the steady-state protein levels of p53. This study identified two additional HCMV proteins, pUL29/28 and pUL38, which participate in the complex regulation of p53 transcriptional activity during infection.
Collapse
|
163
|
Arrar M, Turnham R, Pierce L, de Oliveira CAF, McCammon JA. Structural insight into the separate roles of inositol tetraphosphate and deacetylase-activating domain in activation of histone deacetylase 3. Protein Sci 2012; 22:83-92. [PMID: 23139175 DOI: 10.1002/pro.2190] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 10/11/2012] [Accepted: 10/26/2012] [Indexed: 01/05/2023]
Abstract
Histone deacetylases (HDACs) repress transcription by deacetylating acetyllysines on specific histone tails. HDAC3 is implicated in neurodegenerative diseases, certain leukemias, and even in disrupting HIV-1 latency. A recent crystal structure of HDAC3 in complex with the deacetylase-activating domain (DAD) of its corepressor complex revealed an inositol tetraphosphate (IP4) molecule at the protein-protein interface. IP4 was shown to play an important, yet mechanistically ambiguous, role in the activity of HDAC3. The goal of this article is to explore the conformational ensemble of HDAC3 in its inactive apo state and in the presence of each or both of DAD and IP4. Using triplicate, 100 ns molecular dynamic simulations, we study the apo, ternary, and intermediate DAD-bound or IP4-bound HDAC3 states. We find that a population-shift effect is induced by the presence of each corepressor, and is most notable in the presence of both. Our results offer new insights into the change in dynamics necessary for the activation of HDAC3 and highlight the roles of IP4 and DAD in this process.
Collapse
Affiliation(s)
- Mehrnoosh Arrar
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093-0365, USA.
| | | | | | | | | |
Collapse
|
164
|
The novel interaction between microspherule protein Msp58 and ubiquitin E3 ligase EDD regulates cell cycle progression. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1833:21-32. [PMID: 23069210 DOI: 10.1016/j.bbamcr.2012.10.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2012] [Revised: 09/18/2012] [Accepted: 10/04/2012] [Indexed: 11/20/2022]
Abstract
Microspherule protein Msp58 (or MCRS1) plays a role in numerous cellular processes including transcriptional regulation and cell proliferation. It is not well understood either how Msp58 mediates its myriad functions or how it is itself regulated. Here, by immunoprecipitation, we identify EDD (E3 identified by differential display) as a novel Msp58-interacting protein. EDD, also called UBR5, is a HECT-domain (homologous to E6-AP carboxy-terminus) containing ubiquitin ligase that plays a role in cell proliferation, differentiation and DNA damage response. Both in vitro and in vivo binding assays show that Msp58 directly interacts with EDD. Microscopy studies reveal that these two proteins co-localize in the nucleus. We have also found that depletion of EDD leads to an increase of Msp58 protein level and extends the half-life of Msp58, demonstrating that EDD negatively regulates Msp58's protein stability. Furthermore, we show that Msp58 is upregulated in multiple different cell lines upon the treatment with proteasome inhibitor MG132 and exogenously expressed Msp58 is ubiquitinated, suggesting that Msp58 is degraded by the ubiquitin-proteasome pathway. Finally, knockdown of either Msp58 or EDD in human lung fibroblast WI-38 cells affects the levels of cyclins B, D and E, as well as cell cycle progression. Together, these results suggest a role for the Msp58/EDD interaction in controlling cell cycle progression. Given that both Msp58 and EDD are often aberrantly expressed in various human cancers, our findings open a new direction to elucidate Msp58 and EDD's roles in cell proliferation and tumorigenesis.
Collapse
|
165
|
Unsaturated fatty acids repress expression of ATP binding cassette transporter A1 and G1 in RAW 264.7 macrophages. J Nutr Biochem 2012; 23:1271-6. [DOI: 10.1016/j.jnutbio.2011.07.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2011] [Revised: 05/28/2011] [Accepted: 07/13/2011] [Indexed: 12/28/2022]
|
166
|
Reichert N, Choukrallah MA, Matthias P. Multiple roles of class I HDACs in proliferation, differentiation, and development. Cell Mol Life Sci 2012; 69:2173-87. [PMID: 22286122 PMCID: PMC11115120 DOI: 10.1007/s00018-012-0921-9] [Citation(s) in RCA: 136] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 01/07/2012] [Accepted: 01/09/2012] [Indexed: 12/19/2022]
Abstract
Class I Histone deacetylases (HDACs) play a central role in controlling cell cycle regulation, cell differentiation, and tissue development. These enzymes exert their function by deacetylating histones and a growing number of non-histone proteins, thereby regulating gene expression and several other cellular processes. Class I HDACs comprise four members: HDAC1, 2, 3, and 8. Deletion and/or overexpression of these enzymes in mammalian systems has provided important insights about their functions and mechanisms of action which are reviewed here. In particular, unique as well as redundant functions have been identified in several paradigms. Studies with small molecule inhibitors of HDACs have demonstrated the medical relevance of these enzymes and their potential as therapeutic targets in cancer and other pathological conditions. Going forward, better understanding the specific role of individual HDACs in normal physiology as well as in pathological settings will be crucial to exploit this protein family as a useful therapeutic target in a range of diseases. Further dissection of the pathways they impinge on and of their targets, in chromatin or otherwise, will form important avenues of research for the future.
Collapse
Affiliation(s)
- Nina Reichert
- Friedrich Miescher Institute for Biomedical Research, Novartis Research Foundation, PO Box 2543, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Mohamed-Amin Choukrallah
- Friedrich Miescher Institute for Biomedical Research, Novartis Research Foundation, PO Box 2543, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Patrick Matthias
- Friedrich Miescher Institute for Biomedical Research, Novartis Research Foundation, PO Box 2543, Maulbeerstrasse 66, 4058 Basel, Switzerland
| |
Collapse
|
167
|
Muller M, Jacob Y, Jones L, Weiss A, Brino L, Chantier T, Lotteau V, Favre M, Demeret C. Large scale genotype comparison of human papillomavirus E2-host interaction networks provides new insights for e2 molecular functions. PLoS Pathog 2012; 8:e1002761. [PMID: 22761572 PMCID: PMC3386243 DOI: 10.1371/journal.ppat.1002761] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Accepted: 05/04/2012] [Indexed: 11/30/2022] Open
Abstract
Human Papillomaviruses (HPV) cause widespread infections in humans, resulting in latent infections or diseases ranging from benign hyperplasia to cancers. HPV-induced pathologies result from complex interplays between viral proteins and the host proteome. Given the major public health concern due to HPV-associated cancers, most studies have focused on the early proteins expressed by HPV genotypes with high oncogenic potential (designated high-risk HPV or HR-HPV). To advance the global understanding of HPV pathogenesis, we mapped the virus/host interaction networks of the E2 regulatory protein from 12 genotypes representative of the range of HPV pathogenicity. Large-scale identification of E2-interaction partners was performed by yeast two-hybrid screenings of a HaCaT cDNA library. Based on a high-confidence scoring scheme, a subset of these partners was then validated for pair-wise interaction in mammalian cells with the whole range of the 12 E2 proteins, allowing a comparative interaction analysis. Hierarchical clustering of E2-host interaction profiles mostly recapitulated HPV phylogeny and provides clues to the involvement of E2 in HPV infection. A set of cellular proteins could thus be identified discriminating, among the mucosal HPV, E2 proteins of HR-HPV 16 or 18 from the non-oncogenic genital HPV. The study of the interaction networks revealed a preferential hijacking of highly connected cellular proteins and the targeting of several functional families. These include transcription regulation, regulation of apoptosis, RNA processing, ubiquitination and intracellular trafficking. The present work provides an overview of E2 biological functions across multiple HPV genotypes. Over 100 types of human papillomaviruses are responsible for widespread infections in humans. They cause a wide range of pathologies, ranging from inapparent infections to benign lesions, hyperplasia or cancers. Such heterogeneity results from variable interplay among viral and host cell proteins. Aiming to identify specific features that distinguish different pathological genotypes, we mapped the virus-host interaction networks of the regulatory E2 proteins from a set of 12 genotypes representative of HPV diversity. The E2-host interaction profiles recapitulate HPV phylogeny, thus providing a valuable framework for understanding the role of E2 in HPV infection of different pathological traits. The E2 proteins tend to bind to highly connected cellular proteins, indicating a profound effect on the host cell. These interactions predominantly impact on a subset of cellular processes, like transcriptional regulation, apoptosis, RNA metabolism, ubiquitination or intracellular transport. This work improves the global understanding of HPV-associated pathologies, and provides a framework to select interactions that can be used as targets for the development of new therapeutics.
Collapse
Affiliation(s)
- Mandy Muller
- Unité de Génétique, Papillomavirus et Cancer Humain (GPCH), Institut Pasteur, Paris, France
- University Paris Diderot, Sorbonne Paris cite, Cellule Pasteur, Paris, France
| | - Yves Jacob
- Unité de Génétique, Papillomavirus et Cancer Humain (GPCH), Institut Pasteur, Paris, France
| | - Louis Jones
- Groupe Logiciels et banques de données, Institut Pasteur, Paris, France
| | | | | | | | | | - Michel Favre
- Unité de Génétique, Papillomavirus et Cancer Humain (GPCH), Institut Pasteur, Paris, France
| | - Caroline Demeret
- Unité de Génétique, Papillomavirus et Cancer Humain (GPCH), Institut Pasteur, Paris, France
- * E-mail:
| |
Collapse
|
168
|
Demmerle J, Koch AJ, Holaska JM. The nuclear envelope protein emerin binds directly to histone deacetylase 3 (HDAC3) and activates HDAC3 activity. J Biol Chem 2012; 287:22080-8. [PMID: 22570481 PMCID: PMC3381166 DOI: 10.1074/jbc.m111.325308] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Revised: 05/07/2012] [Indexed: 11/06/2022] Open
Abstract
Organization of the genome is critical for maintaining cell-specific gene expression, ensuring proper cell function. It is well established that the nuclear lamina preferentially associates with repressed chromatin. However, the molecular mechanisms underlying repressive chromatin formation and maintenance at the nuclear lamina remain poorly understood. Here we show that emerin binds directly to HDAC3, the catalytic subunit of the nuclear co-repressor (NCoR) complex, and recruits HDAC3 to the nuclear periphery. Emerin binding stimulated the catalytic activity of HDAC3, and emerin-null cells exhibit increased H4K5 acetylation, which is the preferred target of the NCoR complex. Emerin-null cells exhibit an epigenetic signature similar to that seen in HDAC3-null cells. Emerin-null cells also had significantly less HDAC3 at the nuclear lamina. Collectively, these data support a model whereby emerin facilitates repressive chromatin formation at the nuclear periphery by increasing the catalytic activity of HDAC3.
Collapse
Affiliation(s)
| | - Adam J. Koch
- the Committee on Genetics, Genomics and Systems Biology, and
| | - James M. Holaska
- From the Department of Medicine, Section of Cardiology
- the Committee on Genetics, Genomics and Systems Biology, and
- the Committee on Developmental, Regeneration, and Stem Cell Biology, The University of Chicago, Chicago, Illinois 60637
| |
Collapse
|
169
|
Yoo JY, Choi HK, Choi KC, Park SY, Ota I, Yook JI, Lee YH, Kim K, Yoon HG. Nuclear hormone receptor corepressor promotes esophageal cancer cell invasion by transcriptional repression of interferon-γ-inducible protein 10 in a casein kinase 2-dependent manner. Mol Biol Cell 2012; 23:2943-54. [PMID: 22675025 PMCID: PMC3408420 DOI: 10.1091/mbc.e11-11-0947] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Casein kinase 2 (CK2) phosphorylates the nuclear hormone receptor corepressor (NCoR) to stabilize NCoR against the ubiquitin-dependent proteasomal degradation pathway. The CK2-NCoR signaling network suppresses the transcription of IP-10 to promote invasive growth of human esophageal cancer cells. Aberrant expression of casein kinase 2 (CK2) is associated with tumor progression; however, the molecular mechanism by which CK2 modulates tumorigenesis is incompletely understood. In this paper, we show that CK2α phosphorylates the C-terminal domain of the nuclear receptor corepressor (NCoR) at Ser-2436 to stabilize the NCoR against the ubiquitin-dependent proteasomal degradation pathway. Importantly, NCoR promoted the invasion of esophageal cancer cells in a CK2-dependent manner. By using cyclic DNA microarray analysis, we identified CXCL10/IP-10 as a novel CK2α-NCoR cascade–regulated gene. The depletion of both NCoR and HDAC3 commonly derepressed IP-10 transcription, demonstrating the functional engagement of the NCoR-HDAC3 axis in IP-10 transcriptional repression. Furthermore, chromatin immunoprecipitation assays showed that c-Jun recruits NCoR-HDAC3 corepressor complexes to the (AP1 site of IP-10, leading to histone hypoacetylation and IP-10 down-regulation. Collectively these data suggest that the CK2α-NCoR cascade selectively represses the transcription of IP-10 and promotes oncogenic signaling in human esophageal cancer cells.
Collapse
Affiliation(s)
- Jung-Yoon Yoo
- Department of Biochemistry and Molecular Biology, Brain Korea 21 Project for Medical Sciences, Severance Medical Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
170
|
Liu XF, Bera TK, Kahue C, Escobar T, Fei Z, Raciti GA, Pastan I. ANKRD26 and its interacting partners TRIO, GPS2, HMMR and DIPA regulate adipogenesis in 3T3-L1 cells. PLoS One 2012; 7:e38130. [PMID: 22666460 PMCID: PMC3364200 DOI: 10.1371/journal.pone.0038130] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 05/04/2012] [Indexed: 01/04/2023] Open
Abstract
Partial inactivation of the Ankyrin repeat domain 26 (Ankrd26) gene causes obesity and diabetes in mice and increases spontaneous and induced adipogenesis in mouse embryonic fibroblasts. However, it is not yet known how the Ankrd26 protein carries out its biological functions. We identified by yeast two-hybrid and immunoprecipitation assays the triple functional domain protein (TRIO), the G protein pathway suppressor 2 (GPS2), the delta-interacting protein A (DIPA) and the hyaluronan-mediated motility receptor (HMMR) as ANKRD26 interacting partners. Adipogenesis of 3T3-L1 cells was increased by selective down-regulation of Ankrd26, Trio, Gps2, Hmmr and Dipa. Furthermore, GPS2 and DIPA, which are normally located in the nucleus, were translocated to the cytoplasm, when the C-terminus of ANKRD26 was introduced into these cells. These findings provide biochemical evidence that ANKRD26, TRIO, GPS2 and HMMR are novel and important regulators of adipogenesis and identify new targets for the modulation of adipogenesis.
Collapse
Affiliation(s)
- Xiu-Fen Liu
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Tapan K. Bera
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Charissa Kahue
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Thelma Escobar
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Zhaoliang Fei
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Gregory A. Raciti
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ira Pastan
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
171
|
Grewal C, Hickmott J, Rentas S, Karagiannis J. A conserved histone deacetylase with a role in the regulation of cytokinesis in Schizosaccharomyces pombe. Cell Div 2012; 7:13. [PMID: 22559741 PMCID: PMC3485120 DOI: 10.1186/1747-1028-7-13] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 04/20/2012] [Indexed: 11/12/2022] Open
Abstract
Background In Schizosaccharomyces pombe the SET domain protein, Set3p - together with its interacting partners, Snt1p, and Hif2p - form a complex that aids in preventing cell division failure upon mild cytokinetic stress. Intriguingly, the human orthologs of these proteins (MLL5, NCOR2, and TBL1X) are also important for the faithful completion of cytokinesis in tissue culture cells. Since MLL5, NCOR2, and TBL1X form a complex with the histone deacetylase, HDAC3, we sought to determine if an orthologous counterpart played a regulatory role in fission yeast cytokinesis. Results In this report we identify the hos2 gene as the fission yeast HDAC3 ortholog. We show that Hos2p physically interacts with Set3p, Snt1p, and Hif2p, and that hos2∆ mutants are indeed compromised in their ability to reliably complete cell division in the presence of mild cytokinetic stresses. Furthermore, we demonstrate that over-expression of hos2 causes severe morphological and cytokinetic defects. Lastly, through recombinase mediated cassette exchange, we show that expression of human HDAC3 complements the cytokinetic defects exhibited by hos2∆ cells. Conclusions These data support a model in which Hos2p functions as an essential component of the Set3p-Snt1p-Hif2p complex with respect to the regulation of cytokinesis. The ability of human HDAC3 to complement the cytokinesis defects associated with the deletion of the hos2 gene suggests that further analysis of this system could provide insight into the role of HDAC3 in both the regulation of cell division, as well as other biological processes influenced by HDAC3 deacetylation.
Collapse
Affiliation(s)
- Charnpal Grewal
- Department of Biology, University of Western Ontario, London, Ontario N6A-5B7, Canada.
| | | | | | | |
Collapse
|
172
|
A protective strategy against hyperinflammatory responses requiring the nontranscriptional actions of GPS2. Mol Cell 2012; 46:91-104. [PMID: 22424771 DOI: 10.1016/j.molcel.2012.01.025] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2011] [Revised: 09/07/2011] [Accepted: 01/24/2012] [Indexed: 02/08/2023]
Abstract
The association between hyperinflammatory states and numerous diseases is widely recognized, but our understanding of the molecular strategies that have evolved to prevent uncontrolled activation of inflammatory responses remains incomplete. Here, we report a critical, nontranscriptional role of GPS2 as a guardian against hyperstimulation of the TNF-α-induced gene program. GPS2 cytoplasmic actions are required to specifically modulate RIP1 ubiquitylation and JNK activation by inhibiting TRAF2/Ubc13 enzymatic activity. In vivo relevance of GPS2 anti-inflammatory role is confirmed by inhibition of TNF-α target genes in macrophages and by improved insulin signaling in the adipose tissue of aP2-GPS2 transgenic mice. As the nontranscriptional role is complemented by GPS2 functioning as positive and negative cofactor for nuclear receptors, in vivo overexpression also results in elevated circulating level of Resistin and development of hepatic steatosis. Together, these studies define GPS2 as a molecular guardian required for precise control of inflammatory responses involved in immunity and homeostasis.
Collapse
|
173
|
Guo C, Gow CH, Li Y, Gardner A, Khan S, Zhang J. Regulated clearance of histone deacetylase 3 protects independent formation of nuclear receptor corepressor complexes. J Biol Chem 2012; 287:12111-20. [PMID: 22337871 DOI: 10.1074/jbc.m111.327023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
An important step in transcriptional regulation by corepressors N-CoR and SMRT is the formation of a stable and active histone deacetylase 3 (HDAC3)-containing complex. Although N-CoR and SMRT are thought to bind HDAC3 competitively, multiple studies have shown that they do not interfere with the function of each other. How this functional independence is sustained under the competitive interaction is unclear. Here, we show that the coupling of corepressor expression with HDAC3 degradation allows cells to maintain a stable level of uncomplexed HDAC3, thereby preventing mutual interference in the assembly of N-CoR and SMRT complexes. The free uncomplexed HDAC3 is highly unstable. Unexpectedly, the rate of HDAC3 degradation is inversely correlated with the expression level of corepressors. Our results indicate that reducing one corepressor accelerates HDAC3 clearance, thus preventing an increase in complex formation between HDAC3 and the other corepressor. In addition, this study also indicates that the formation of a stable and active HDAC3-corepressor complex is a stepwise process in which the C terminus of HDAC3 plays a critical role at late steps of the assembly process.
Collapse
Affiliation(s)
- Chun Guo
- Department of Cancer and Cell Biology, Vontz Center for Molecular Studies, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267, USA
| | | | | | | | | | | |
Collapse
|
174
|
Li J, Chu M, Wang S, Chan D, Qi S, Wu M, Zhou Z, Li J, Nishi E, Qin J, Wong J. Identification and characterization of nardilysin as a novel dimethyl H3K4-binding protein involved in transcriptional regulation. J Biol Chem 2012; 287:10089-10098. [PMID: 22294699 DOI: 10.1074/jbc.m111.313965] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Histone methylation on lysine residues is believed to function primarily as docking sites to recruit specific proteins termed as histone code "readers" or "effectors." Each lysine residue can be mono-, di, and tri-methylated and different methylation states can have different effect on chromatin function. While an increasing number of proteins have been identified and characterized as specific effectors for methylated histones, very few of the proteins are known to recognize a particular state of methylation. In this study, we identified nardilysin (NRDc), a member of M16 family metalloendopeptidases, as a novel dimethyl-H3K4 (H3K4me2)-binding protein. Among three methylated states, NRDc binds preferentially H3K4me2 both in vitro and in vivo. Biochemical purification demonstrated that NRDc interacts with the NCoR/SMRT corepressor complex. We identified target genes repressed by NRDc through microarray. We showed that NRDc is physically associated with and recruits the NCoR complex to some of the repressed genes and this association correlates with binding of H3K4me2. Thus, our study has identified a novel H3K4me2-binding protein and revealed a role of NRDc in transcriptional regulation.
Collapse
Affiliation(s)
- Jing Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Mingyue Chu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Shanshan Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Doug Chan
- Center for Molecular Discovery, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, and
| | - Shankang Qi
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Meng Wu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Zhongliang Zhou
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Jiwen Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Eiichiro Nishi
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Japan
| | - Jun Qin
- Center for Molecular Discovery, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, and
| | - Jiemin Wong
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China,.
| |
Collapse
|
175
|
Watson PJ, Fairall L, Schwabe JW. Nuclear hormone receptor co-repressors: structure and function. Mol Cell Endocrinol 2012; 348:440-9. [PMID: 21925568 PMCID: PMC3315023 DOI: 10.1016/j.mce.2011.08.033] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 08/17/2011] [Accepted: 08/25/2011] [Indexed: 01/22/2023]
Abstract
Co-repressor proteins, such as SMRT and NCoR, mediate the repressive activity of unliganded nuclear receptors and other transcription factors. They appear to act as intrinsically disordered "hub proteins" that integrate the activities of a range of transcription factors with a number of histone modifying enzymes. Although these co-repressor proteins are challenging targets for structural studies due to their largely unstructured character, a number of structures have recently been determined of co-repressor interaction regions in complex with their interacting partners. These have yielded considerable insight into the mechanism of assembly of these complexes, the structural basis for the specificity of the interactions and also open opportunities for targeting these interactions therapeutically.
Collapse
|
176
|
Abstract
Histone deacetylase enzymes (HDACs) are emerging cancer drug targets. They regulate gene expression by removing acetyl groups from lysine residues in histone tails, resulting in chromatin condensation. The enzymatic activity of most class I HDACs requires recruitment into multi-subunit co-repressor complexes, which are in turn recruited to chromatin by repressive transcription factors. Here we report the structure of a complex between an HDAC and a co-repressor, namely, human HDAC3 with the deacetylase activation domain (DAD) from the human SMRT co-repressor (also known as NCOR2). The structure reveals two remarkable features. First, the SMRT-DAD undergoes a large structural rearrangement on forming the complex. Second, there is an essential inositol tetraphosphate molecule--D-myo-inositol-(1,4,5,6)-tetrakisphosphate (Ins(1,4,5,6)P(4))--acting as an 'intermolecular glue' between the two proteins. Assembly of the complex is clearly dependent on the Ins(1,4,5,6)P(4), which may act as a regulator--potentially explaining why inositol phosphates and their kinases have been found to act as transcriptional regulators. This mechanism for the activation of HDAC3 appears to be conserved in class I HDACs from yeast to humans, and opens the way to novel therapeutic opportunities.
Collapse
|
177
|
Watson PJ, Fairall L, Santos GM, Schwabe JW. Structure of HDAC3 bound to co-repressor and inositol tetraphosphate. Nature 2012; 481:335-40. [PMID: 22230954 PMCID: PMC3272448 DOI: 10.1038/nature10728] [Citation(s) in RCA: 378] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 11/23/2011] [Indexed: 01/08/2023]
Abstract
Histone deacetylase enzymes (HDACs) are emerging cancer drug targets. They regulate gene expression by removing acetyl groups from lysine residues in histone tails, resulting in chromatin condensation. The enzymatic activity of most class I HDACs requires recruitment into multi-subunit co-repressor complexes, which are in turn recruited to chromatin by repressive transcription factors. Here we report the structure of a complex between an HDAC and a co-repressor, namely, human HDAC3 with the deacetylase activation domain (DAD) from the human SMRT co-repressor (also known as NCOR2). The structure reveals two remarkable features. First, the SMRT-DAD undergoes a large structural rearrangement on forming the complex. Second, there is an essential inositol tetraphosphate molecule--D-myo-inositol-(1,4,5,6)-tetrakisphosphate (Ins(1,4,5,6)P(4))--acting as an 'intermolecular glue' between the two proteins. Assembly of the complex is clearly dependent on the Ins(1,4,5,6)P(4), which may act as a regulator--potentially explaining why inositol phosphates and their kinases have been found to act as transcriptional regulators. This mechanism for the activation of HDAC3 appears to be conserved in class I HDACs from yeast to humans, and opens the way to novel therapeutic opportunities.
Collapse
Affiliation(s)
- Peter J. Watson
- Henry Wellcome Laboratories of Structural Biology Department of Biochemistry University of Leicester Leicester. LE1 9HN. UK
| | - Louise Fairall
- Henry Wellcome Laboratories of Structural Biology Department of Biochemistry University of Leicester Leicester. LE1 9HN. UK
| | - Guilherme M. Santos
- Henry Wellcome Laboratories of Structural Biology Department of Biochemistry University of Leicester Leicester. LE1 9HN. UK
| | - John W.R. Schwabe
- Henry Wellcome Laboratories of Structural Biology Department of Biochemistry University of Leicester Leicester. LE1 9HN. UK
| |
Collapse
|
178
|
|
179
|
Pawlak M, Lefebvre P, Staels B. General molecular biology and architecture of nuclear receptors. Curr Top Med Chem 2012; 12:486-504. [PMID: 22242852 PMCID: PMC3637177 DOI: 10.2174/156802612799436641] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 11/22/2011] [Indexed: 12/12/2022]
Abstract
Nuclear receptors (NRs) regulate and coordinate multiple processes by integrating internal and external signals, thereby maintaining homeostasis in front of nutritional, behavioral and environmental challenges. NRs exhibit strong similarities in their structure and mode of action: by selective transcriptional activation or repression of cognate target genes, which can either be controlled through a direct, DNA binding-dependent mechanism or through crosstalk with other transcriptional regulators, NRs modulate the expression of gene clusters thus achieving coordinated tissue responses. Additionally, non genomic effects of NR ligands appear mediated by ill-defined mechanisms at the plasma membrane. These effects mediate potential therapeutic effects as small lipophilic molecule targets, and many efforts have been put in elucidating their precise mechanism of action and pathophysiological roles. Currently, numerous nuclear receptor ligand analogs are used in therapy or are tested in clinical trials against various diseases such as hypertriglyceridemia, atherosclerosis, diabetes, allergies and cancer and others.
Collapse
Affiliation(s)
- Michal Pawlak
- Récepteurs nucléaires, maladies cardiovasculaires et diabète
INSERM : U1011Institut Pasteur de LilleUniversité Lille II - Droit et santé1 rue du Prof Calmette 59019 Lille Cedex,FR
| | - Philippe Lefebvre
- Récepteurs nucléaires, maladies cardiovasculaires et diabète
INSERM : U1011Institut Pasteur de LilleUniversité Lille II - Droit et santé1 rue du Prof Calmette 59019 Lille Cedex,FR
| | - Bart Staels
- Récepteurs nucléaires, maladies cardiovasculaires et diabète
INSERM : U1011Institut Pasteur de LilleUniversité Lille II - Droit et santé1 rue du Prof Calmette 59019 Lille Cedex,FR
| |
Collapse
|
180
|
Vogel-Ciernia A, Wood MA. Molecular brake pad hypothesis: pulling off the brakes for emotional memory. Rev Neurosci 2012; 23:607-26. [PMID: 23096102 PMCID: PMC4605538 DOI: 10.1515/revneuro-2012-0050] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 07/05/2012] [Indexed: 12/31/2022]
Abstract
Under basal conditions histone deacetylases(HDACs) and their associated co-repressor complexes serve as molecular 'brake pads' to prevent the gene expression required for long-term memory formation. Following a learning event, HDACs and their co-repressor complexes are removed from a subset of specific gene promoters, allowing the histone acetylation and active gene expression required for long-term memory formation.Inhibition of HDACs increases histone acetylation,extends gene expression profiles, and allows for the formation of persistent long-term memories for training events that are otherwise forgotten. We propose that emotionally salient experiences have utilized this system to form strong and persistent memories for behaviorally significant events. Consequently, the presence or absence of HDACs at a selection of specific gene promoters could serve as a critical barrier for permitting the formation of long-term memories.
Collapse
Affiliation(s)
- Annie Vogel-Ciernia
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California Irvine Irvine, CA 92697–3800, USA
| | - Marcelo A. Wood
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California Irvine Irvine, CA 92697–3800, USA
| |
Collapse
|
181
|
Heck BW, Zhang B, Tong X, Pan Z, Deng WM, Tsai CC. The transcriptional corepressor SMRTER influences both Notch and ecdysone signaling during Drosophila development. Biol Open 2011; 1:182-96. [PMID: 23213409 PMCID: PMC3507286 DOI: 10.1242/bio.2012047] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
SMRTER (SMRT-related and ecdysone receptor interacting factor) is the Drosophila homologue of the vertebrate proteins SMRT and N-CoR, and forms with them a well-conserved family of transcriptional corepressors. Molecular characterization of SMRT-family proteins in cultured cells has implicated them in a wide range of transcriptional regulatory pathways. However, little is currently known about how this conserved class of transcriptional corepressors regulates the development of particular tissues via specific pathways. In this study, through our characterization of multiple Smrter (Smr) mutant lines, mosaic analysis of a loss-of-function Smr allele, and studies of two independent Smr RNAi fly lines, we report that SMRTER is required for the development of both ovarian follicle cells and the wing. In these two tissues, SMRTER inhibits not only the ecdysone pathway, but also the Notch pathway. We differentiate SMRTER's influence on these two signaling pathways by showing that SMRTER inhibits the Notch pathway, but not the ecdysone pathway, in a spatiotemporally restricted manner. We further confirm the likely involvement of SMRTER in the Notch pathway by demonstrating a direct interaction between SMRTER and Suppressor of Hairless [Su(H)], a DNA-binding transcription factor pivotal in the Notch pathway, and the colocalization of both proteins at many chromosomal regions in salivary glands. Based on our results, we propose that SMRTER regulates the Notch pathway through its association with Su(H), and that overcoming a SMRTER-mediated transcriptional repression barrier may represent a key mechanism used by the Notch pathway to control the precise timing of events and the formation of sharp boundaries between cells in multiple tissues during development.
Collapse
Affiliation(s)
- Bryan W Heck
- UMDNJ-Robert Wood Johnson Medical School, Department of Physiology and Biophysics , 683 Hoes Lane, Piscataway, NJ 08854 , USA
| | | | | | | | | | | |
Collapse
|
182
|
Patel SR, Bhumbra SS, Paknikar RS, Dressler GR. Epigenetic mechanisms of Groucho/Grg/TLE mediated transcriptional repression. Mol Cell 2011; 45:185-95. [PMID: 22169276 DOI: 10.1016/j.molcel.2011.11.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Revised: 08/08/2011] [Accepted: 11/01/2011] [Indexed: 12/25/2022]
Abstract
The repression of transcription, through the concerted actions of tissue specific DNA binding proteins, Polycomb repressor complexes, and DNA methylation, is essential for maintaining stem cell pluripotency and for cell fate specification in development. In this report, we show that recruitment of the co-repressor protein Grg4 to a Pax DNA-binding site displaces the adaptor protein PTIP and a histone H3K4me complex. Grg4 recruits the arginine methyltransferase PRMT5 to chromatin resulting in symmetric H4R3 dimethylation. PRMT5 is essential for recruiting Polycomb proteins, in a Pax2/Grg4 dependent manner, which results in H3K27 methylation. These data define the early epigenetic events in response to Pax/Grg mediated gene repression and demonstrate that a single DNA binding protein can recruit either an activator or a repressor complex depending on the availability of Grg4. These data suggest a model for understanding the initiation of Groucho/Grg/TLE mediated gene silencing.
Collapse
Affiliation(s)
- Sanjeevkumar R Patel
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA.
| | | | | | | |
Collapse
|
183
|
Mullican SE, Gaddis CA, Alenghat T, Nair MG, Giacomin PR, Everett LJ, Feng D, Steger DJ, Schug J, Artis D, Lazar MA. Histone deacetylase 3 is an epigenomic brake in macrophage alternative activation. Genes Dev 2011; 25:2480-8. [PMID: 22156208 PMCID: PMC3243058 DOI: 10.1101/gad.175950.111] [Citation(s) in RCA: 243] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Accepted: 10/24/2011] [Indexed: 01/08/2023]
Abstract
Macrophages, a key cellular component of inflammation, become functionally polarized in a signal- and context-specific manner. Th2 cytokines such as interleukin 4 (IL-4) polarize macrophages to a state of alternative activation that limits inflammation and promotes wound healing. Alternative activation is mediated by a transcriptional program that is influenced by epigenomic modifications, including histone acetylation. Here we report that macrophages lacking histone deacetylase 3 (HDAC3) display a polarization phenotype similar to IL-4-induced alternative activation and, furthermore, are hyperresponsive to IL-4 stimulation. Throughout the macrophage genome, HDAC3 deacetylates histone tails at regulatory regions, leading to repression of many IL-4-regulated genes characteristic of alternative activation. Following exposure to Schistosoma mansoni eggs, a model of Th2 cytokine-mediated disease that is limited by alternative activation, pulmonary inflammation was ameliorated in mice lacking HDAC3 in macrophages. Thus, HDAC3 functions in alternative activation as a brake whose release could be of benefit in the treatment of multiple inflammatory diseases.
Collapse
Affiliation(s)
- Shannon E. Mullican
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine
- Department of Genetics
- The Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Christine A. Gaddis
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine
- Department of Genetics
- The Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Theresa Alenghat
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine
- Department of Genetics
- The Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Meera G. Nair
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania 19104, USA
- Department of Microbiology
- Institute for Immunology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Paul R. Giacomin
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania 19104, USA
- Department of Microbiology
- Institute for Immunology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Logan J. Everett
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine
- Department of Genetics
- The Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Dan Feng
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine
- Department of Genetics
- The Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - David J. Steger
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine
- Department of Genetics
- The Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Jonathan Schug
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine
- Department of Genetics
- The Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - David Artis
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania 19104, USA
- Department of Microbiology
- Institute for Immunology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Mitchell A. Lazar
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine
- Department of Genetics
- The Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
184
|
Transcriptional control of metabolic and inflammatory pathways by nuclear receptor SUMOylation. Biochim Biophys Acta Mol Basis Dis 2011; 1812:909-18. [DOI: 10.1016/j.bbadis.2010.12.008] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Revised: 12/08/2010] [Accepted: 12/09/2010] [Indexed: 02/07/2023]
|
185
|
Sun Z, Singh N, Mullican SE, Everett LJ, Li L, Yuan L, Liu X, Epstein JA, Lazar MA. Diet-induced lethality due to deletion of the Hdac3 gene in heart and skeletal muscle. J Biol Chem 2011; 286:33301-9. [PMID: 21808063 DOI: 10.1074/jbc.m111.277707] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Many human diseases result from the influence of the nutritional environment on gene expression. The environment interacts with the genome by altering the epigenome, including covalent modification of nucleosomal histones. Here, we report a novel and dramatic influence of diet on the phenotype and survival of mice in which histone deacetylase 3 (Hdac3) is deleted postnatally in heart and skeletal muscle. Although embryonic deletion of myocardial Hdac3 causes major cardiomyopathy that reduces survival, we found that excision of Hdac3 in heart and muscle later in development leads to a much milder phenotype and does not reduce survival when mice are fed normal chow. Remarkably, upon switching to a high fat diet, the mice begin to die within weeks and display signs of severe hypertrophic cardiomyopathy and heart failure. Down-regulation of myocardial mitochondrial bioenergetic genes, specifically those involved in lipid metabolism, precedes the full development of cardiomyopathy, suggesting that HDAC3 is important in maintaining proper mitochondrial function. These data suggest that loss of the epigenomic modifier HDAC3 causes dietary lethality by compromising the ability of cardiac mitochondria to respond to changes of nutritional environment. In addition, this study provides a mouse model for diet-inducible heart failure.
Collapse
Affiliation(s)
- Zheng Sun
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine and Department of Genetics, and Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
186
|
Pavlopoulou A, Kossida S. Cytosine methyltransferases as tumor markers. Curr Genomics 2011; 11:568-77. [PMID: 21629434 PMCID: PMC3078681 DOI: 10.2174/138920210793360916] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 09/27/2010] [Accepted: 09/27/2010] [Indexed: 02/05/2023] Open
Abstract
Changes in DNA methylation patterns is a prominent characteristic of human tumors. Tumor cells display reduced levels of genomic DNA methylation and site-specific CpG island hypermethylation. Methylation of CpG dinucleotides is catalyzed by the enzyme family of DNA methyltransferases (DNMTs). In this review, the role of DNA methylation and DNMTs as key determinants of carcinogenesis is further elucidated. The chromatin modifying proteins that are known to interact with DNMTs are also described. Finally, the role of DNMTs as potential therapeutic targets is addressed.
Collapse
Affiliation(s)
- Athanasia Pavlopoulou
- Biomedical Research Foundation of the Academy of Athens, Department of Biotechnology, Bioinformatics & Medical Informatics Team, Soranou Efesiou 4, 11527 Athens, Greece
| | | |
Collapse
|
187
|
Lee J, Park Y, Koo SI. ATP-binding cassette transporter A1 and HDL metabolism: effects of fatty acids. J Nutr Biochem 2011; 23:1-7. [PMID: 21684139 DOI: 10.1016/j.jnutbio.2011.03.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 03/14/2011] [Accepted: 03/18/2011] [Indexed: 01/08/2023]
Abstract
Ample evidence indicates that dietary fatty acids alter the plasma levels of high-density lipoprotein cholesterol (HDL-C). However, the mechanisms underlying the effects of fatty acids still remain elusive. Recent advances in our understanding of ATP-binding cassette transporter A1 (ABCA1) function and regulation have provided a valuable insight into the mechanisms by which fatty acids may affect plasma HDL-C levels. ABCA1 mediates the assembly of phospholipids and free cholesterol with apolipoprotein A-I, which is a critical step for HDL biogenesis. Studies have shown that unsaturated fatty acids, but not saturated fatty acids, repress the expression of ABCA1 in vitro. Although information on mechanisms for the fatty-acid-mediated regulation of ABCA1 expression is still limited and controversial, recent evidence suggests that unsaturated fatty acids inhibit the expression of ABCA1 at the transcriptional and posttranscriptional levels. The transcriptional repression of ABCA1 expression by unsaturated fatty acids is likely liver X receptor dependent. Evidence also suggests that histone deacetylation may play a role in the repression. Posttranscriptionally, unsaturated fatty acids may facilitate ABCA1 protein degradation, which may involve phosphorylation of ABCA1 by protein kinases. Further studies are warranted to better understand the role of dietary fatty acids in HDL metabolism and their effects on cardiovascular health.
Collapse
Affiliation(s)
- Jiyoung Lee
- Department of Nutritional Sciences, University of Connecticut, Storrs, Connecticut 06269, USA.
| | | | | |
Collapse
|
188
|
Soriano FX, Hardingham GE. In cortical neurons HDAC3 activity suppresses RD4-dependent SMRT export. PLoS One 2011; 6:e21056. [PMID: 21695276 PMCID: PMC3111469 DOI: 10.1371/journal.pone.0021056] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Accepted: 05/19/2011] [Indexed: 11/17/2022] Open
Abstract
The transcriptional corepressor SMRT controls neuronal responsiveness of several transcription factors and can regulate neuroprotective and neurogenic pathways. SMRT is a multi-domain protein that complexes with HDAC3 as well as being capable of interactions with HDACs 1, 4, 5 and 7. We previously showed that in rat cortical neurons, nuclear localisation of SMRT requires histone deacetylase activity: Inhibition of class I/II HDACs by treatment with trichostatin A (TSA) causes redistribution of SMRT to the cytoplasm, and potentiates the activation of SMRT-repressed nuclear receptors. Here we have sought to identify the HDAC(s) and region(s) of SMRT responsible for anchoring it in the nucleus under normal circumstances and for mediating nuclear export following HDAC inhibition. We show that in rat cortical neurons SMRT export can be triggered by treatment with the class I-preferring HDAC inhibitor valproate and the HDAC2/3-selective inhibitor apicidin, and by HDAC3 knockdown, implicating HDAC3 activity as being required to maintain SMRT in the nucleus. HDAC3 interaction with SMRT's deacetylation activation domain (DAD) is known to be important for activation of HDAC3 deacetylase function. Consistent with a role for HDAC3 activity in promoting SMRT nuclear localization, we found that inactivation of SMRT's DAD by deletion or point mutation triggered partial redistribution of SMRT to the cytoplasm. We also investigated whether other regions of SMRT were involved in mediating nuclear export following HDAC inhibition. TSA- and valproate-induced SMRT export was strongly impaired by deletion of its repression domain-4 (RD4). Furthermore, over-expression of a region of SMRT containing the RD4 region suppressed TSA-induced export of full-length SMRT. Collectively these data support a model whereby SMRT's RD4 region can recruit factors capable of mediating nuclear export of SMRT, but whose function and/or recruitment is suppressed by HDAC3 activity. Furthermore, they underline the fact that HDAC inhibitors can cause reorganization and redistribution of corepressor complexes.
Collapse
Affiliation(s)
- Francesc X Soriano
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom
| | | |
Collapse
|
189
|
Role for Dpy-30 in ES cell-fate specification by regulation of H3K4 methylation within bivalent domains. Cell 2011; 144:513-25. [PMID: 21335234 DOI: 10.1016/j.cell.2011.01.020] [Citation(s) in RCA: 228] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Revised: 09/22/2010] [Accepted: 01/18/2011] [Indexed: 11/24/2022]
Abstract
Histone H3K4 methylation is associated with active genes and, along with H3K27 methylation, is part of a bivalent chromatin mark that typifies poised developmental genes in embryonic stem cells (ESCs). However, its functional roles in ESC maintenance and differentiation are not established. Here we show that mammalian Dpy-30, a core subunit of the SET1/MLL histone methyltransferase complexes, modulates H3K4 methylation in vitro, and directly regulates chromosomal H3K4 trimethylation (H3K4me3) throughout the mammalian genome. Depletion of Dpy-30 does not affect ESC self-renewal, but significantly alters the differentiation potential of ESCs, particularly along the neural lineage. The differentiation defect is accompanied by defects in gene induction and in H3K4 methylation at key developmental loci. Our results strongly indicate an essential functional role for Dpy-30 and SET1/MLL complex-mediated H3K4 methylation, as a component of the bivalent mark, at developmental genes during the ESC fate transitions.
Collapse
|
190
|
Greco TM, Yu F, Guise AJ, Cristea IM. Nuclear import of histone deacetylase 5 by requisite nuclear localization signal phosphorylation. Mol Cell Proteomics 2011; 10:M110.004317. [PMID: 21081666 PMCID: PMC3033682 DOI: 10.1074/mcp.m110.004317] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Histone deacetylase 5 (HDAC5), a class IIa deacetylase, is a prominent regulator of cellular and epigenetic processes that underlie the progression of human disease, ranging from cardiac hypertrophy to cancer. Although it is established that phosphorylation mediates 14-3-3 protein binding and provides the essential link between HDAC5 nucleo-cytoplasmic shuttling and transcriptional repression, thus far only four phospho-acceptor sites have been functionally characterized. Here, using a combinatorial proteomics approach and phosphomutant screening, we present the first evidence that HDAC5 has at least 17 in vivo phosphorylation sites within functional domains, including Ser278 and Ser279 within the nuclear localization signal (NLS), Ser1108 within the nuclear export signal, and Ser755 in deacetylase domain. Global and targeted MS/MS analyses of NLS peptides demonstrated the presence of single (Ser278 and Ser279) and double (Ser278/Ser279) phosphorylations. The double S278/279A mutation showed reduced association with HDAC3, slightly decreased deacetylation activity, and significantly increased cytoplasmic localization compared with wild type HDAC5, whereas the S278A and S1108A phosphomutants were not altered. Live cell imaging revealed a deficiency in nuclear import of S278/279A HDAC5. Phosphomutant stable cell lines confirmed the cellular redistribution of NLS mutants and revealed a more pronounced cytoplasmic localization for the single S279A mutant. Proteomic analysis of immunoisolated S278/279A, S279A, and S259/498A mutants linked altered cellular localization to changes in protein interactions. S278/279A and S279A HDAC5 showed reduced association with the NCoR-HDAC3 nuclear corepressor complex as well as protein kinase D enzymes, which were potentiated in the S259/498A mutant. These results provide the first link between phosphorylation outside the known 14-3-3 sites and downstream changes in protein interactions. Together these studies identify Ser279 as a critical phosphorylation within the NLS involved in the nuclear import of HDAC5, providing a regulatory point in nucleo-cytoplasmic shuttling that may be conserved in other class IIa HDACs-HDAC4 and HDAC9.
Collapse
Affiliation(s)
| | | | - Amanda J. Guise
- From the ‡Department of Molecular Biology, Princeton University, Princeton, New Jersey, U.S.A
| | - Ileana M. Cristea
- From the ‡Department of Molecular Biology, Princeton University, Princeton, New Jersey, U.S.A
- § To whom correspondence should be addressed: 210 Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, Princeton, NJ 08544. Tel.: 6092589417; Fax: 6092584575; E-mail:
| |
Collapse
|
191
|
Oberoi J, Fairall L, Watson PJ, Yang JC, Czimmerer Z, Kampmann T, Goult BT, Greenwood JA, Gooch JT, Kallenberger BC, Nagy L, Neuhaus D, Schwabe JW. Structural basis for the assembly of the SMRT/NCoR core transcriptional repression machinery. Nat Struct Mol Biol 2011; 18:177-84. [PMID: 21240272 PMCID: PMC3232451 DOI: 10.1038/nsmb.1983] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2009] [Accepted: 11/08/2010] [Indexed: 11/08/2022]
Abstract
Eukaryotic transcriptional repressors function by recruiting large coregulatory complexes that target histone deacetylase enzymes to gene promoters and enhancers. Transcriptional repression complexes, assembled by the corepressor NCoR and its homolog SMRT, are crucial in many processes, including development and metabolic physiology. The core repression complex involves the recruitment of three proteins, HDAC3, GPS2 and TBL1, to a highly conserved repression domain within SMRT and NCoR. We have used structural and functional approaches to gain insight into the architecture and biological role of this complex. We report the crystal structure of the tetrameric oligomerization domain of TBL1, which interacts with both SMRT and GPS2, and the NMR structure of the interface complex between GPS2 and SMRT. These structures, together with computational docking, mutagenesis and functional assays, reveal the assembly mechanism and stoichiometry of the corepressor complex.
Collapse
Affiliation(s)
- Jasmeen Oberoi
- Henry Wellcome Laboratories of Structural Biology, Department of Biochemistry, University of Leicester, Lancaster Road, Leicester. LE1 9HN
- MRC-Laboratory of Molecular Biology, Hills Road, Cambridge. CB2 0QH
| | - Louise Fairall
- Henry Wellcome Laboratories of Structural Biology, Department of Biochemistry, University of Leicester, Lancaster Road, Leicester. LE1 9HN
| | - Peter J. Watson
- Henry Wellcome Laboratories of Structural Biology, Department of Biochemistry, University of Leicester, Lancaster Road, Leicester. LE1 9HN
| | - Ji-Chun Yang
- MRC-Laboratory of Molecular Biology, Hills Road, Cambridge. CB2 0QH
| | - Zsolt Czimmerer
- Apoptosis and Genomics Research Group of the Hungarian Academy of Sciences, Department of Biochemistry and Molecular Biology, Life Sciences Building, Medical and Health Science Center, University of Debrecen, Debrecen, Egyetem ter 1. H-4032 Hungary
| | - Thorsten Kampmann
- Henry Wellcome Laboratories of Structural Biology, Department of Biochemistry, University of Leicester, Lancaster Road, Leicester. LE1 9HN
| | - Benjamin T. Goult
- Henry Wellcome Laboratories of Structural Biology, Department of Biochemistry, University of Leicester, Lancaster Road, Leicester. LE1 9HN
| | - Jacquie A. Greenwood
- Henry Wellcome Laboratories of Structural Biology, Department of Biochemistry, University of Leicester, Lancaster Road, Leicester. LE1 9HN
| | - John T. Gooch
- MRC-Laboratory of Molecular Biology, Hills Road, Cambridge. CB2 0QH
| | | | - Laszlo Nagy
- Apoptosis and Genomics Research Group of the Hungarian Academy of Sciences, Department of Biochemistry and Molecular Biology, Life Sciences Building, Medical and Health Science Center, University of Debrecen, Debrecen, Egyetem ter 1. H-4032 Hungary
| | - David Neuhaus
- MRC-Laboratory of Molecular Biology, Hills Road, Cambridge. CB2 0QH
| | - John W.R. Schwabe
- Henry Wellcome Laboratories of Structural Biology, Department of Biochemistry, University of Leicester, Lancaster Road, Leicester. LE1 9HN
| |
Collapse
|
192
|
Varlakhanova N, Hahm JB, Privalsky ML. Regulation of SMRT corepressor dimerization and composition by MAP kinase phosphorylation. Mol Cell Endocrinol 2011; 332:180-8. [PMID: 20965228 PMCID: PMC3011023 DOI: 10.1016/j.mce.2010.10.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Revised: 09/30/2010] [Accepted: 10/12/2010] [Indexed: 10/18/2022]
Abstract
The SMRT (Silencing Mediator of Retinoid and Thyroid hormone receptors) corepressor mediates gene repression by nuclear receptors and other transcriptional factors. The SMRT protein serves as a key nucleating core that organizes the assembly of a larger corepressor complex. We report here that SMRT interacts with itself to form a protein dimer, and that Erk2, a mitogen-activated protein (MAP) kinase, disrupts this SMRT self-dimerization in vitro and in vivo. Notably Erk2 phosphorylation also results in a re-organization of the overall corepressor complex, characterized by a reduced sedimentation coefficient, partial release of HDAC3, TBL-1, and TBLR-1, and inhibition of transcriptional repression. We propose that SMRT dimers form the central platform on which additional corepressor components assemble, and that kinase signaling modifies the architecture, composition, and function of this complex. These observations contribute to our understanding of how the SMRT corepressor complex assembles and is regulated during cell proliferation and differentiation.
Collapse
Affiliation(s)
- Natalia Varlakhanova
- Department of Microbiology, College of Biological Sciences, University of California at Davis, United States
| | | | | |
Collapse
|
193
|
The transposon-driven evolutionary origin and basis of histone deacetylase functions and limitations in disease prevention. Clin Epigenetics 2011; 2:97-112. [PMID: 22704332 PMCID: PMC3365375 DOI: 10.1007/s13148-011-0020-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Accepted: 01/03/2011] [Indexed: 12/19/2022] Open
Abstract
Histone deacetylases (HDACs) are homologous to prokaryotic enzymes that removed acetyl groups from non-histone proteins before the evolution of eukaryotic histones. Enzymes inherited from prokaryotes or from a common ancestor were adapted for histone deacetylation, while useful deacetylation of non-histone proteins was selectively retained. Histone deacetylation served to prevent transcriptions with pathological consequences, including the expression of viral DNA and the deletion or dysregulation of vital genes by random transposon insertions. Viruses are believed to have evolved from transposons, with transposons providing the earliest impetus of HDAC evolution. Because of the wide range of genes potentially affected by transposon insertions, the range of diseases that can be prevented by HDACs is vast and inclusive. Repressive chromatin modifications that may prevent transcription also include methylation of selective lysine residues of histones H3 and H4 and the methylation of selective DNA cytosines following specific histone lysine methylation. Methylation and acetylation of individual histone residues are mutually exclusive. While transposons were sources of disease to be prevented by HDAC evolution, they were also the source of numerous and valuable coding and regulatory sequences recruited by “molecular domestication.” Those sequences contribute to evolved complex transcription regulation in which components with contradictory effects, such as HDACs and HATs, may be coordinated and complementary. Within complex transcription regulation, however, HDACs remain ineffective as defense against some critical infectious and non-infectious diseases because evolutionary compromises have rendered their activity transient.
Collapse
|
194
|
Transducin β-like protein 1 recruits nuclear factor κB to the target gene promoter for transcriptional activation. Mol Cell Biol 2010; 31:924-34. [PMID: 21189284 DOI: 10.1128/mcb.00576-10] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Nuclear factor κB (NF-κB) signaling controls a wide range of cellular functions such as tumor progression and invasion by inducing gene expression. Upon stimulation, NF-κB is translocated to the nucleus and binds to its target gene promoters to activate transcription by recruiting transcription coactivators. Although significant progress has been made in understanding NF-κB-mediated transactivation, little is known about how NF-κB is recruited to its target gene promoters. Here, we report that transducin β-like protein 1 (TBL1) controls the expression of NF-κB target genes by directly binding with NF-κB and facilitating its recruitment to target gene promoters. Tumor necrosis factor alpha stimulation triggered the formation of an NF-κB and TBL1 complex and subsequent target gene promoter binding. Knockdown of TBL1 impaired the recruitment of NF-κB to its target gene promoters. Interestingly, analysis of the Oncomine database revealed that TBL1 mRNA levels were significantly higher in invasive breast cancer tissues than in breast adenocarcinoma tissue. Consistently, TBL1 knockdown significantly reduced the invasive potential of breast cancer cells by inhibiting NF-κB. Our results reveal a new mechanism for the regulation of NF-κB activation, with important implications for the development of novel strategies for cancer therapy by targeting NF-κB.
Collapse
|
195
|
Coleman SL, Park YK, Lee JY. Unsaturated fatty acids repress the expression of adipocyte fatty acid binding protein via the modulation of histone deacetylation in RAW 264.7 macrophages. Eur J Nutr 2010; 50:323-30. [PMID: 21046125 DOI: 10.1007/s00394-010-0140-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Accepted: 10/18/2010] [Indexed: 01/07/2023]
Abstract
BACKGROUND Adipocyte fatty acid binding protein (A-FABP) present in macrophages has been implicated in the integration of lipid metabolism and inflammatory response, contributing to development of insulin resistance and atherosclerosis. AIM OF THE STUDY This study was conducted to test the hypothesis that the role of fatty acids in the inflammatory pathways is mediated through the modulation of A-FABP expression in macrophages. METHODS Murine RAW 264.7 macrophages were treated with inflammatory insults and fatty acids for quantitative real-time PCR and Western blot analysis. The cells were treated with trichostatin A (TSA), a histone deacetylase inhibitor, for elucidating mechanisms for the regulation of A-FABP expression by fatty acids. RNA interference (RNAi) to knock down A-FABP was utilized to assess its role in inflammatory gene expression. RESULTS When RAW 264.7 were incubated with lipopolysaccharides (LPS; 100 ng/ml) or 2.5 ng/ml of tumor necrosis factor α for 18 h, A-FABP mRNA and protein levels were drastically increased. Unsaturated fatty acids (100 μmol/l in complexed with BSA) such as palmitoleic acid, oleic acid, linoleic acid, linolenic acid, and eicosapentaenoic acid, significantly repressed the basal as well as LPS-induced A-FABP expression, whereas palmitic acid did not elicit the same effect. TSA increased A-FABP mRNA levels and abolished the repressive effect of linoleic acid on A-FABP expression in unstimulated and LPS-stimulated macrophages. Depletion of A-FABP expression by 70-80% using RNAi markedly decreased cyclooxygenase 2 mRNA abundance and potentiated the repression by linoleic acid. CONCLUSION Unsaturated fatty acids inhibited the basal as well as LPS-induced A-FABP expression. The mechanism may involve histone deacetylation and anti-inflammatory effect of unsaturated fatty acids may be at least in part attributed to their repression of A-FABP expression in RAW 264.7 macrophages.
Collapse
Affiliation(s)
- Sara L Coleman
- Department of Nutrition and Health Sciences, University of Nebraska, Lincoln, 68583, USA
| | | | | |
Collapse
|
196
|
Zhang L, Jin M, Margariti A, Wang G, Luo Z, Zampetaki A, Zeng L, Ye S, Zhu J, Xiao Q. Sp1-dependent activation of HDAC7 is required for platelet-derived growth factor-BB-induced smooth muscle cell differentiation from stem cells. J Biol Chem 2010; 285:38463-72. [PMID: 20889501 DOI: 10.1074/jbc.m110.153999] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
We have previously demonstrated that histone deacetylase 7 (HDAC7) expression and splicing play an important role in smooth muscle cell (SMC) differentiation from embryonic stem (ES) cells, but the molecular mechanisms of increased HDAC7 expression during SMC differentiation are currently unknown. In this study, we found that platelet-derived growth factor-BB (PDGF-BB) induced a 3-fold increase in the transcripts of HDAC7 in differentiating ES cells. Importantly, our data also revealed that PDGF-BB regulated HDAC7 expression not through phosphorylation of HDAC7 but through transcriptional activation. By dissecting its promoters with progressive deletion analysis, we identified the sequence between -343 and -292 bp in the 5'-flanking region of the Hdac7 gene promoter as the minimal PDGF-BB-responsive element, which contains one binding site for the transcription factor, specificity protein 1 (Sp1). Mutation of the Sp1 site within this PDGF-BB-responsive element abolished PDGF-BB-induced HDAC7 activity. PDGF-BB treatment enhanced Sp1 binding to the Hdac7 promoter in differentiated SMCs in vivo as demonstrated by the chromatin immunoprecipitation assay. Moreover, we also demonstrated that knockdown of Sp1 abrogated PDGF-BB-induced HDAC7 up-regulation and SMC differentiation gene expression in differentiating ES cells, although enforced expression of Sp1 alone was sufficient to increase the activity of the Hdac7 promoter and expression levels of SMC differentiation genes. Importantly, we further demonstrated that HDAC7 was required for Sp1-induced SMC differentiation of gene expression. Our data suggest that Sp1 plays an important role in the regulation of Hdac7 gene expression in SMC differentiation from ES cells. These findings provide novel molecular insights into the regulation of HDAC7 and enhance our knowledge in SMC differentiation and vessel formation during embryonic development.
Collapse
Affiliation(s)
- Li Zhang
- Department of Cardiology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
197
|
Gβγ is a negative regulator of AP-1 mediated transcription. Cell Signal 2010; 22:1254-66. [DOI: 10.1016/j.cellsig.2010.04.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Accepted: 04/12/2010] [Indexed: 11/18/2022]
|
198
|
Arabidopsis resistance protein SNC1 activates immune responses through association with a transcriptional corepressor. Proc Natl Acad Sci U S A 2010; 107:13960-5. [PMID: 20647385 DOI: 10.1073/pnas.1002828107] [Citation(s) in RCA: 183] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In both plants and animals, nucleotide-binding (NB) domain and leucine-rich repeat (LRR)-containing proteins (NLR) function as sensors of pathogen-derived molecules and trigger immune responses. Although NLR resistance (R) proteins were first reported as plant immune receptors more than 15 years ago, how these proteins activate downstream defense responses is still unclear. Here we report that the Toll-like/interleukin-1 receptor (TIR)-NB-LRR R protein, suppressor of npr1-1, constitutive 1 (SNC1) functions through its associated protein, Topless-related 1 (TPR1). Knocking out TPR1 and its close homologs compromises immunity mediated by SNC1 and several other TIR-NB-LRR-type R proteins, whereas overexpression of TPR1 constitutively activates SNC1-mediated immune responses. TPR1 functions as a transcriptional corepressor and associates with histone deacetylase 19 in vivo. Among the target genes of TPR1 are Defense no Death 1 (DND1) and Defense no Death 2 (DND2), two known negative regulators of immunity that are repressed during pathogen infection, suggesting that TPR1 activates R protein-mediated immune responses through repression of negative regulators.
Collapse
|
199
|
Interaction of the papillomavirus E8--E2C protein with the cellular CHD6 protein contributes to transcriptional repression. J Virol 2010; 84:9505-15. [PMID: 20631145 DOI: 10.1128/jvi.00678-10] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Expression of the E6 and E7 oncogenes of high-risk human papillomaviruses (HPV) is controlled by cellular transcription factors and by viral E2 and E8--E2C proteins, which are both derived from the HPV E2 gene. Both proteins bind to and repress the HPV E6/E7 promoter. Promoter inhibition has been suggested to be due to binding site competition with cellular transcription factors and to interactions of different cellular transcription modulators with the different amino termini of E2 and E8--E2C. We have now identified the cellular chromodomain helicase DNA binding domain 6 protein (CHD6) as a novel interactor with HPV31 E8--E2C by using yeast two-hybrid screening. Pull-down and coimmunoprecipitation assays indicate that CHD6 interacts with the HPV31 E8--E2C protein via the E2C domain. This interaction is conserved, as it occurs also with the E8--E2C proteins expressed by HPV16 and -18 and with the HPV31 E2 protein. Both RNA knockdown experiments and mutational analyses of the E2C domain suggest that binding of CHD6 to E8--E2C contributes to the transcriptional repression of the HPV E6/E7 oncogene promoter. We provide evidence that CHD6 is also involved in transcriptional repression but not activation by E2. Taken together our results indicate that the E2C domain not only mediates specific DNA binding but also has an additional role in transcriptional repression by recruitment of the CHD6 protein. This suggests that repression of the E6/E7 promoter by E2 and E8--E2C involves multiple interactions with host cell proteins through different protein domains.
Collapse
|
200
|
The repressing function of the oncoprotein BCL-3 requires CtBP, while its polyubiquitination and degradation involve the E3 ligase TBLR1. Mol Cell Biol 2010; 30:4006-21. [PMID: 20547759 DOI: 10.1128/mcb.01600-09] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The nuclear and oncogenic BCL-3 protein activates or represses gene transcription when bound to NF-kappaB proteins p50 and p52, yet the molecules that specifically interact with BCL-3 and drive BCL-3-mediated effects on gene expression remain largely uncharacterized. Moreover, GSK3-mediated phosphorylation of BCL-3 triggers its degradation through the proteasome, but the proteins involved in this degradative pathway are poorly characterized. Biochemical purification of interacting partners of BCL-3 led to the identification of CtBP as a molecule required for the ability of BCL-3 to repress gene transcription. CtBP is also required for the oncogenic potential of BCL-3 and for its ability to inhibit UV-mediated cell apoptosis in keratinocytes. We also defined the E3 ligase TBLR1 as a protein involved in BCL-3 degradation through a GSK3-independent pathway. Thus, our data demonstrate that the LSD1/CtBP complex is required for the repressing abilities of an oncogenic I kappaB protein, and they establish a functional link between the E3 ligase TBLR1 and NF-kappaB.
Collapse
|