151
|
Reconsolidation-induced memory persistence: Participation of late phase hippocampal ERK activation. Neurobiol Learn Mem 2016; 133:79-88. [DOI: 10.1016/j.nlm.2016.06.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 06/10/2016] [Accepted: 06/13/2016] [Indexed: 11/19/2022]
|
152
|
Dunbar AB, Taylor JR. Inhibition of protein synthesis but not β-adrenergic receptors blocks reconsolidation of a cocaine-associated cue memory. ACTA ACUST UNITED AC 2016; 23:391-8. [PMID: 27421890 PMCID: PMC4947232 DOI: 10.1101/lm.042838.116] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 05/18/2016] [Indexed: 11/25/2022]
Abstract
Previously consolidated memories have the potential to enter a state of lability upon memory recall, during which time the memory can be altered before undergoing an additional consolidation-like process and being stored again as a long-term memory. Blocking reconsolidation of aberrant memories has been proposed as a potential treatment for psychiatric disorders including addiction. Here we investigated of the effect of systemically administering the protein synthesis inhibitor cycloheximide or the β-adrenergic antagonist propranolol on reconsolidation. Rats were trained to self-administer cocaine, during which each lever press resulted in the presentation of a cue paired with an intravenous infusion of cocaine. After undergoing lever press extinction to reduce operant responding, the cue memory was reactivated and rats were administered systemic injections of propranolol, cycloheximide, or vehicle. Post-reactivation cycloheximide, but not propranolol, resulted in a reactivation-dependent decrease in cue-induced reinstatement, indicative of reconsolidation blockade by protein synthesis inhibition. The present data indicate that systemically targeting protein synthesis as opposed to the β-adrenergic system may more effectively attenuate the reconsolidation of a drug-related memory and decrease drug-seeking behavior.
Collapse
Affiliation(s)
- Amber B Dunbar
- Department of Psychiatry, Division of Molecular Psychiatry, New Haven, Connecticut 06520, USA Department of Psychology, Yale University, New Haven, Connecticut 06520, USA
| | - Jane R Taylor
- Department of Psychiatry, Division of Molecular Psychiatry, New Haven, Connecticut 06520, USA Department of Psychology, Yale University, New Haven, Connecticut 06520, USA Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut 06520, USA
| |
Collapse
|
153
|
Affiliation(s)
- Hailan Hu
- Interdisciplinary Institute of Neuroscience and Technology, Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou 310012, People's Republic of China;
- Center for Neuroscience, School of Medicine, Zhejiang University, Hangzhou 310058, People's Republic of China
| |
Collapse
|
154
|
Sadeh T, Ozubko JD, Winocur G, Moscovitch M. Forgetting Patterns Differentiate Between Two Forms of Memory Representation. Psychol Sci 2016; 27:810-20. [DOI: 10.1177/0956797616638307] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 02/18/2016] [Indexed: 11/15/2022] Open
Affiliation(s)
- Talya Sadeh
- Rotman Research Institute, Baycrest Centre, Toronto, Ontario, Canada
- Department of Psychology, University of Toronto
| | - Jason D. Ozubko
- Rotman Research Institute, Baycrest Centre, Toronto, Ontario, Canada
- Department of Psychology, University of Toronto
| | - Gordon Winocur
- Rotman Research Institute, Baycrest Centre, Toronto, Ontario, Canada
- Department of Psychology, University of Toronto
- Department of Psychology, Trent University
| | - Morris Moscovitch
- Rotman Research Institute, Baycrest Centre, Toronto, Ontario, Canada
- Department of Psychology, University of Toronto
| |
Collapse
|
155
|
Clem RL, Schiller D. New Learning and Unlearning: Strangers or Accomplices in Threat Memory Attenuation? Trends Neurosci 2016; 39:340-351. [PMID: 27079843 DOI: 10.1016/j.tins.2016.03.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 03/04/2016] [Accepted: 03/07/2016] [Indexed: 10/21/2022]
Abstract
To achieve greatest efficacy, therapies for attenuating fear and anxiety should preclude the re-emergence of emotional responses. Of relevance to this aim, preclinical models of threat memory reduction are considered to engage one of two discrete neural processes: either establishment of a new behavioral response that competes with, and thereby temporarily interferes with the expression of, threat memory (new learning) or one that modifies and thereby disrupts threat memory (unlearning). We contend that a strict dichotomy of new learning and unlearning does not provide a compelling explanation for current data. Instead, we suggest that the evidence warrants consideration of alternative models that assume cooperation rather than competition between formation of new cellular traces and the modification of preexisting ones.
Collapse
Affiliation(s)
- Roger L Clem
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Daniela Schiller
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
156
|
Abstract
Fear memory is the best-studied form of memory. It was thoroughly investigated in the past 60 years mostly using two classical conditioning procedures (contextual fear conditioning and fear conditioning to a tone) and one instrumental procedure (one-trial inhibitory avoidance). Fear memory is formed in the hippocampus (contextual conditioning and inhibitory avoidance), in the basolateral amygdala (inhibitory avoidance), and in the lateral amygdala (conditioning to a tone). The circuitry involves, in addition, the pre- and infralimbic ventromedial prefrontal cortex, the central amygdala subnuclei, and the dentate gyrus. Fear learning models, notably inhibitory avoidance, have also been very useful for the analysis of the biochemical mechanisms of memory consolidation as a whole. These studies have capitalized on in vitro observations on long-term potentiation and other kinds of plasticity. The effect of a very large number of drugs on fear learning has been intensively studied, often as a prelude to the investigation of effects on anxiety. The extinction of fear learning involves to an extent a reversal of the flow of information in the mentioned structures and is used in the therapy of posttraumatic stress disorder and fear memories in general.
Collapse
Affiliation(s)
- Ivan Izquierdo
- National Institute of Translational Neuroscience, National Research Council of Brazil, and Memory Center, Brain Institute, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Cristiane R. G. Furini
- National Institute of Translational Neuroscience, National Research Council of Brazil, and Memory Center, Brain Institute, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Jociane C. Myskiw
- National Institute of Translational Neuroscience, National Research Council of Brazil, and Memory Center, Brain Institute, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
157
|
Liao TY, Tzeng WY, Wu HH, Cherng CG, Wang CY, Hu SSJ, Yu L. Rottlerin impairs the formation and maintenance of psychostimulant-supported memory. Psychopharmacology (Berl) 2016; 233:1455-65. [PMID: 26960698 DOI: 10.1007/s00213-016-4251-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 02/07/2016] [Indexed: 02/07/2023]
Abstract
RATIONALE AND OBJECTIVE Since brain proteins such as protein kinase C (PKC), brain-derived neurotrophic factor (BDNF), and mammalian target of rapamycin (mTOR) are involved in the establishment and maintenance of psychostimulant memory, we sought to determine if systemic treatment with rottlerin, a natural compound affecting all these proteins, may modulate stimulant-supported memory. MATERIALS AND METHODS Stimulant-induced conditioned place preference (CPP) was used in modeling stimulant-supported memory. RESULTS Three cocaine (10 mg/kg; COC) or three methamphetamine (1 mg/kg; MA) conditioning trials reliably established the drug-induced CPP in male C57BL/6 mice. An intra-peritoneal rottlerin injection (5 mg/kg) at least 24 h prior to the first COC or first MA conditioning trial prevented the establishment of CPP. Following the establishment of the COC- or MA-induced CPP, saline conditioning trial was used to extinguish the CPP. Rottlerin (5 mg/kg, intra-peritoneal (i.p.)) administered 20 h prior to the first saline conditioning trial diminished subsequent drug- and stressor-primed reinstatement of the extinguished CPP. Rottlerin (5 mg/kg, i.p.) produced a fast-onset and long-lasting increase in hippocampal BDNF levels. However, treatment with a BDNF tropomyosin receptor kinase B (TrkB) receptor antagonist, K252a (5 μg/kg), did not affect rottlerin's suppressing effect on COC-induced CPP and treatment with 7,8-dihydroxyflavone (10 mg/kg x 6, 7,8-DHF), a selective TrkB agonist, prior to each conditioning trial did not affect COC-induced CPP. CONCLUSION These results suggest that systemic rottlerin treatment may impair the formation of COC- and MA-supported memory. Importantly, such a treatment may advance our understanding of the underlying mechanism through which extinction training resulted in the "forgetting" of the COC- and MA-supported memory.
Collapse
Affiliation(s)
- Tien You Liao
- Institute of Behavioral Medicine, National Cheng Kung University College of Medicine, 1 University Rd., Tainan, 70101, Taiwan, ROC
| | - Wen-Yu Tzeng
- Institute of Behavioral Medicine, National Cheng Kung University College of Medicine, 1 University Rd., Tainan, 70101, Taiwan, ROC
| | - Hsin-Hua Wu
- Institute of Behavioral Medicine, National Cheng Kung University College of Medicine, 1 University Rd., Tainan, 70101, Taiwan, ROC
| | - Chianfang G Cherng
- Department of Health Psychology, Chang Jung Christian University, Tainan, 71101, Taiwan, ROC
| | - Ching-Yi Wang
- Institute of Basic Medical Sciences, National Cheng Kung University College of Medicine, Tainan, 70101, Taiwan, ROC
| | - Sherry S-J Hu
- Department of Psychology, National Cheng Kung University, Tainan, 70101, Taiwan, ROC
| | - Lung Yu
- Institute of Behavioral Medicine, National Cheng Kung University College of Medicine, 1 University Rd., Tainan, 70101, Taiwan, ROC. .,Institute of Basic Medical Sciences, National Cheng Kung University College of Medicine, Tainan, 70101, Taiwan, ROC.
| |
Collapse
|
158
|
Guerra GP, Rubin MA, Mello CF. Modulation of learning and memory by natural polyamines. Pharmacol Res 2016; 112:99-118. [PMID: 27015893 DOI: 10.1016/j.phrs.2016.03.023] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Revised: 03/09/2016] [Accepted: 03/11/2016] [Indexed: 01/08/2023]
Abstract
Spermine and spermidine are natural polyamines that are produced mainly via decarboxylation of l-ornithine and the sequential transfer of aminopropyl groups from S-adenosylmethionine to putrescine by spermidine synthase and spermine synthase. Spermine and spermidine interact with intracellular and extracellular acidic residues of different nature, including nucleic acids, phospholipids, acidic proteins, carboxyl- and sulfate-containing polysaccharides. Therefore, multiple actions have been suggested for these polycations, including modulation of the activity of ionic channels, protein synthesis, protein kinases, and cell proliferation/death, within others. In this review we summarize these neurochemical/neurophysiological/morphological findings, particularly those that have been implicated in the improving and deleterious effects of spermine and spermidine on learning and memory of naïve animals in shock-motivated and nonshock-motivated tasks, from a historical perspective. The interaction with the opioid system, the facilitation and disruption of morphine-induced reward and the effect of polyamines and putative polyamine antagonists on animal models of cognitive diseases, such as Alzheimer's, Huntington, acute neuroinflammation and brain trauma are also reviewed and discussed. The increased production of polyamines in Alzheimer's disease and the biphasic nature of the effects of polyamines on memory and on the NMDA receptor are also considered. In light of the current literature on polyamines, which include the description of an inborn error of the metabolism characterized by mild-to moderate mental retardation and polyamine metabolism alterations in suicide completers, we can anticipate that polyamine targets may be important for the development of novel strategies and approaches for understanding the etiopathogenesis of important central disorders and their pharmacological treatment.
Collapse
Affiliation(s)
- Gustavo Petri Guerra
- Department of Food Technology, Federal Technological University of Paraná, Campus Medianeira, Medianeira, PR 85884-000, Brazil
| | - Maribel Antonello Rubin
- Department of Biochemistry, Center of Exact and Natural Sciences, Federal University of Santa Maria (UFSM), Santa Maria, RS 97105-900, Brazil.
| | - Carlos Fernando Mello
- Department of Physiology and Pharmacology, Center of Health Sciences, Federal University of Santa Maria (UFSM), Santa Maria, RS 97105-900, Brazil.
| |
Collapse
|
159
|
Escosteguy-Neto JC, Varela P, Correa-Neto NF, Coelho LS, Onaivi ES, Santos-Junior JG. Reconsolidation and update of morphine-associated contextual memory in mice. Neurobiol Learn Mem 2016; 130:194-201. [PMID: 26948121 DOI: 10.1016/j.nlm.2016.02.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Revised: 01/19/2016] [Accepted: 02/20/2016] [Indexed: 11/24/2022]
Abstract
Drug addiction can be viewed as a pathological memory that is constantly retrieved and reconsolidated. Since drug abuse takes place in different contexts, it could be considered that reconsolidation plays a role in memory updating. There is consistent evidence supporting the role of reconsolidation in the strength and maintenance of contextual memories induced by drugs of abuse. However, this role is not well established in memory update. The purpose of the current study was to assess the reconsolidation process over memory update. C57BL6 mice were subjected to a morphine-induced, conditioned place preference (CPP) paradigm. Based on CPP results, animals were divided into distinct experimental groups, according to the contextual characteristics of the re-exposure and a second CPP Test. Re-exposure in the original context was important for memory maintenance and re-exposure under discrete contextual changes resulted in memory updating, although original memory was maintained. Interestingly, cycloheximide, an inhibitor of protein synthesis, had different outcomes in our protocol. When the re-exposure was done under discrete contextual changes, cycloheximide treatment just after re-exposure blocked memory updating, without changes in memory maintenance. When re-exposure was done under the original context, only two subsequent cycloheximide injections (3 and 6h) disrupted later CPP expression. Considering the temporal window of protein synthesis in consolidation and reconsolidation, these findings suggest that re-exposure, according to the contextual characteristics in our protocol, could trigger both phenomena. Furthermore, when new information is present on retrieval, reconsolidation plays a pivotal role in memory updating.
Collapse
Affiliation(s)
- Joao Carlos Escosteguy-Neto
- Laboratory of Neurobiology, Federal University of Sao Paulo, R. Pedro de Toledo, 669, 3rd floor, Sao Paulo, SP 04039-032, Brazil; Department of Biology, William Paterson University, 300 Pompton Rd, Wayne, NJ 07470, USA
| | - Patricia Varela
- Laboratory of Neurobiology, Federal University of Sao Paulo, R. Pedro de Toledo, 669, 3rd floor, Sao Paulo, SP 04039-032, Brazil
| | - Nelson Francisco Correa-Neto
- Department of Physiological Science, Faculty of Medical Sciences of Santa Casa of São Paulo, R. Cesário Motta Jr, 61, 12th floor, São Paulo, SP 01221-020, Brazil
| | - Laura Segismundo Coelho
- Department of Physiological Science, Faculty of Medical Sciences of Santa Casa of São Paulo, R. Cesário Motta Jr, 61, 12th floor, São Paulo, SP 01221-020, Brazil
| | - Emmanuel S Onaivi
- Department of Biology, William Paterson University, 300 Pompton Rd, Wayne, NJ 07470, USA
| | - Jair Guilherme Santos-Junior
- Department of Physiological Science, Faculty of Medical Sciences of Santa Casa of São Paulo, R. Cesário Motta Jr, 61, 12th floor, São Paulo, SP 01221-020, Brazil.
| |
Collapse
|
160
|
Perry CJ, Reed F, Zbukvic IC, Kim JH, Lawrence AJ. The metabotropic glutamate 5 receptor is necessary for extinction of cocaine-associated cues. Br J Pharmacol 2016; 173:1085-94. [PMID: 26784278 DOI: 10.1111/bph.13437] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 12/10/2015] [Accepted: 12/20/2015] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND AND PURPOSE There is currently no medication approved specifically to treat cocaine addiction. Behavioural interventions such as cue exposure therapy (CET) rely heavily on new learning. Antagonism of the metabotropic glutamate 5 (mGlu5 ) receptor has emerged as a potential treatment, by reducing the reinforcing properties of cocaine. However, mGlu5 receptor activity is necessary for learning; therefore, such agents could interfere with behavioural treatments. We used a novel rodent model of CET to test the effects of mGlu5 negative and positive allosteric modulators (NAM and PAM) on behavioural therapy. EXPERIMENTAL APPROACH Rats were trained to press a lever for cocaine in the presence of a discrete cue [conditioned stimulus (CS)] and then extinguished in the absence of the CS. Following lever extinction, half the rats received CS extinction in the same chambers but with the levers withdrawn; the remaining rats received no CS extinction. Before this session, rats received a systemic administration of either vehicle or a mGlu5 NAM (MTEP, experiment 1) or PAM (CDPPB, experiment 2). Cue-induced reinstatement was tested in a drug-free session the following day. KEY RESULTS At reinstatement, rats that had received CS extinction showed reduced responding. This effect was attenuated by MTEP treatment before CS extinction. In contrast, administration of CDPPB (PAM) led to decreased reinstatement the following day, regardless of extinction condition. CONCLUSION AND IMPLICATIONS These results suggest that mGlu5 receptor activity is both necessary and sufficient for efficient extinction of a cocaine-associated CS. Therefore, mGlu5 PAMs could enhance the efficacy of CET.
Collapse
Affiliation(s)
- Christina J Perry
- Behavioural Neuroscience Division, The Florey Institute of Neuroscience and Mental Health, Parkville, VIC,, Australia.,Florey Department of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia
| | - Felicia Reed
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia
| | - Isabel C Zbukvic
- Behavioural Neuroscience Division, The Florey Institute of Neuroscience and Mental Health, Parkville, VIC,, Australia.,Florey Department of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia
| | - Jee Hyun Kim
- Behavioural Neuroscience Division, The Florey Institute of Neuroscience and Mental Health, Parkville, VIC,, Australia.,Florey Department of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia
| | - Andrew J Lawrence
- Behavioural Neuroscience Division, The Florey Institute of Neuroscience and Mental Health, Parkville, VIC,, Australia.,Florey Department of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
161
|
Contribution of an SFK-Mediated Signaling Pathway in the Dorsal Hippocampus to Cocaine-Memory Reconsolidation in Rats. Neuropsychopharmacology 2016; 41. [PMID: 26202103 PMCID: PMC4707834 DOI: 10.1038/npp.2015.217] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Environmentally induced relapse to cocaine seeking requires the retrieval of context-response-cocaine associative memories. These memories become labile when retrieved and must undergo reconsolidation into long-term memory storage to be maintained. Identification of the molecular underpinnings of cocaine-memory reconsolidation will likely facilitate the development of treatments that mitigate the impact of cocaine memories on relapse vulnerability. Here, we used the rat extinction-reinstatement procedure to test the hypothesis that the Src family of tyrosine kinases (SFK) in the dorsal hippocampus (DH) critically controls contextual cocaine-memory reconsolidation. To this end, we evaluated the effects of bilateral intra-DH microinfusions of the SFK inhibitor, PP2 (62.5 ng per 0.5 μl per hemisphere), following re-exposure to a cocaine-associated (cocaine-memory reactivation) or an unpaired context (no memory reactivation) on subsequent drug context-induced instrumental cocaine-seeking behavior. We also assessed alterations in the phosphorylation state of SFK targets, including GluN2A and GluN2B N-methyl-D-aspartate (NMDA) and GluA2 α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor subunits at the putative time of memory restabilization and following PP2 treatment. Finally, we evaluated the effects of intra-DH PEAQX (2.5 μg per 0.5 μl per hemisphere), a GluN2A-subunit-selective NMDAR antagonist, following, or in the absence of, cocaine-memory reactivation on subsequent drug context-induced cocaine-seeking behavior. GluN2A phosphorylation increased in the DH during putative memory restabilization, and intra-DH PP2 treatment inhibited this effect. Furthermore, PP2-as well as PEAQX-attenuated subsequent drug context-induced cocaine-seeking behavior, in a memory reactivation-dependent manner, relative to VEH. These findings suggest that hippocampal SFKs contribute to the long-term stability of cocaine-related memories that underlie contextual stimulus control over cocaine-seeking behavior.
Collapse
|
162
|
Liu JF, Thorn DA, Zhang Y, Li JX. Effects of Trace Amine-associated Receptor 1 Agonists on the Expression, Reconsolidation, and Extinction of Cocaine Reward Memory. Int J Neuropsychopharmacol 2016; 19:pyw009. [PMID: 26822713 PMCID: PMC4966273 DOI: 10.1093/ijnp/pyw009] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 01/25/2016] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND As a modulator of dopaminergic system, trace amine-associated receptor 1 has been shown to play a critical role in regulating the rewarding properties of additive drugs. It has been demonstrated that activation of trace amine-associated receptor 1 decreased the abuse-related behaviors of cocaine in rats. However, the role of trace amine-associated receptor 1 in specific stages of cocaine reward memory is still unclear. METHODS Here, using a cocaine-induced conditioned place preference model, we tested the effects of a selective trace amine-associated receptor 1 agonist RO5166017 on the expression, reconsolidation, and extinction of cocaine reward memory. RESULTS We found that RO5166017 inhibited the expression but not retention of cocaine-induced conditioned place preference. RO5166017 had no effect on the reconsolidation of cocaine reward memory. Pretreatment with RO5166017 before extinction hindered the formation of extinction long-term memory. RO5166017 did not affect the movement during the conditioned place preference test, indicating the inhibitory effect of RO5166017 on the expression of cocaine-induced conditioned place preference was not caused by locomotion inhibition. Using a cocaine i.v. self-administration model, we found that the combined trace amine-associated receptor 1 partial agonist RO5263397 with extinction had no effect on the following cue- and drug-induced reinstatement of cocaine-seeking behavior. Repeated administration of the trace amine-associated receptor 1 agonist during extinction showed a continually inhibitory effect on the expression of cocaine reward memory both in cocaine-induced conditioned place preference and cocaine self-administration models. CONCLUSIONS Taken together, these results indicate that activation of trace amine-associated receptor 1 specifically inhibited the expression of cocaine reward memory. The inhibitory effect of trace amine-associated receptor 1 agonists on cocaine reward memory suggests that trace amine-associated receptor 1 agonists could be a promising agent to prevent cocaine relapse.
Collapse
Affiliation(s)
| | | | | | - Jun-Xu Li
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY (Drs Liu, Thorn, and Li); Research Triangle Institute, Research Triangle Park, NC (Dr Zhang).
| |
Collapse
|
163
|
Updating our Selves: Synthesizing Philosophical and Neurobiological Perspectives on Incorporating New Information into our Worldview. NEUROETHICS-NETH 2015. [DOI: 10.1007/s12152-015-9246-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
164
|
Kida S, Kato T. Microendophenotypes of psychiatric disorders: phenotypes of psychiatric disorders at the level of molecular dynamics, synapses, neurons, and neural circuits. Curr Mol Med 2015; 15:111-8. [PMID: 25732153 PMCID: PMC4460283 DOI: 10.2174/1566524015666150303002128] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 12/20/2014] [Accepted: 01/18/2015] [Indexed: 01/31/2023]
Abstract
Psychiatric disorders are caused not only by genetic factors but also by complicated factors such as environmental ones. Moreover, environmental factors are rarely quantitated as biological and biochemical indicators, making it extremely difficult to understand the pathological conditions of psychiatric disorders as
well as their underlying pathogenic mechanisms. Additionally, we have actually no other option but to perform biological studies on postmortem human brains that display features of psychiatric disorders, thereby resulting in a lack of experimental materials to characterize the basic biology of these disorders. From these
backgrounds, animal, tissue, or cell models that can be used in basic research are indispensable to understand biologically the pathogenic mechanisms of psychiatric disorders. In this review, we discuss the importance of microendophenotypes of psychiatric disorders, i.e., phenotypes at the level of molecular
dynamics, neurons, synapses, and neural circuits, as targets of basic research on these disorders.
Collapse
Affiliation(s)
- S Kida
- Department of Bioscience, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo 156-8502, Japan.
| | | |
Collapse
|
165
|
Schlichting ML, Preston AR. Hippocampal-medial prefrontal circuit supports memory updating during learning and post-encoding rest. Neurobiol Learn Mem 2015; 134 Pt A:91-106. [PMID: 26608407 DOI: 10.1016/j.nlm.2015.11.005] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 10/22/2015] [Accepted: 11/07/2015] [Indexed: 02/03/2023]
Abstract
Learning occurs in the context of existing memories. Encountering new information that relates to prior knowledge may trigger integration, whereby established memories are updated to incorporate new content. Here, we provide a critical test of recent theories suggesting hippocampal (HPC) and medial prefrontal (MPFC) involvement in integration, both during and immediately following encoding. Human participants with established memories for a set of initial (AB) associations underwent fMRI scanning during passive rest and encoding of new related (BC) and unrelated (XY) pairs. We show that HPC-MPFC functional coupling during learning was more predictive of trial-by-trial memory for associations related to prior knowledge relative to unrelated associations. Moreover, the degree to which HPC-MPFC functional coupling was enhanced following overlapping encoding was related to memory integration behavior across participants. We observed a dissociation between anterior and posterior MPFC, with integration signatures during post-encoding rest specifically in the posterior subregion. These results highlight the persistence of integration signatures into post-encoding periods, indicating continued processing of interrelated memories during rest. We also interrogated the coherence of white matter tracts to assess the hypothesis that integration behavior would be related to the integrity of the underlying anatomical pathways. Consistent with our predictions, more coherent HPC-MPFC white matter structure was associated with better performance across participants. This HPC-MPFC circuit also interacted with content-sensitive visual cortex during learning and rest, consistent with reinstatement of prior knowledge to enable updating. These results show that the HPC-MPFC circuit supports on- and offline integration of new content into memory.
Collapse
Affiliation(s)
- Margaret L Schlichting
- Center for Learning and Memory, The University of Texas at Austin, 1 University Station, C7000, Austin, Texas 78712, USA
| | - Alison R Preston
- Center for Learning and Memory, The University of Texas at Austin, 1 University Station, C7000, Austin, Texas 78712, USA; Department of Psychology, The University of Texas at Austin, 1 University Station, A8000, Austin, TX 78712, USA; Department of Neuroscience, The University of Texas at Austin, 1 University Station, C0920, Austin, TX 78712, USA.
| |
Collapse
|
166
|
Dekel S, Hankin IT, Pratt JA, Hackler DR, Lanman ON. Posttraumatic Growth in Trauma Recollections of 9/11 Survivors: A Narrative Approach. JOURNAL OF LOSS & TRAUMA 2015. [DOI: 10.1080/15325024.2015.1108791] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
167
|
Neuroscience of learning and memory for addiction medicine: from habit formation to memory reconsolidation. PROGRESS IN BRAIN RESEARCH 2015; 223:91-113. [PMID: 26806773 DOI: 10.1016/bs.pbr.2015.07.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Identifying effective pharmacological treatments for addictive disorders has remained an elusive goal. Many different classes of drugs have shown some efficacy in preclinical models, but the number of effective clinical therapeutics has remained stubbornly low. The persistence of drug use and the high frequency of relapse is at least partly attributable to the enduring ability of environmental stimuli associated with drug use to maintain behavioral patterns of drug use and induce craving during abstinence. We propose that stimuli associated with drug use exert such powerful control over behavior through the development of abnormally strong memories, and their ability to initiate subconscious sequences of motor actions (habits) that promote uncontrolled drug use. In this chapter, we will review the evidence suggesting that drugs of abuse strengthen associations with cues in the environment and facilitate habit formation. We will also discuss potential mechanisms for disrupting memories associated with drug use to help improve treatments for addiction.
Collapse
|
168
|
Lesser Neural Pattern Similarity across Repeated Tests Is Associated with Better Long-Term Memory Retention. J Neurosci 2015; 35:9595-602. [PMID: 26134642 DOI: 10.1523/jneurosci.3550-14.2015] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Encoding and retrieval processes enhance long-term memory performance. The efficiency of encoding processes has recently been linked to representational consistency: the reactivation of a representation that gets more specific each time an item is further studied. Here we examined the complementary hypothesis of whether the efficiency of retrieval processes also is linked to representational consistency. Alternatively, recurrent retrieval might foster representational variability--the altering or adding of underlying memory representations. Human participants studied 60 Swahili-Swedish word pairs before being scanned with fMRI the same day and 1 week later. On Day 1, participants were tested three times on each word pair, and on Day 7 each pair was tested once. A BOLD signal change in right superior parietal cortex was associated with subsequent memory on Day 1 and with successful long-term retention on Day 7. A representational similarity analysis in this parietal region revealed that beneficial recurrent retrieval was associated with representational variability, such that the pattern similarity on Day 1 was lower for retrieved words subsequently remembered compared with those subsequently forgotten. This was mirrored by a monotonically decreased BOLD signal change in dorsolateral prefrontal cortex on Day 1 as a function of repeated successful retrieval for words subsequently remembered, but not for words subsequently forgotten. This reduction in prefrontal response could reflect reduced demands on cognitive control. Collectively, the results offer novel insights into why memory retention benefits from repeated retrieval, and they suggest fundamental differences between repeated study and repeated testing. SIGNIFICANCE STATEMENT Repeated testing is known to produce superior long-term retention of the to-be-learned material compared with repeated encoding and other learning techniques, much because it fosters repeated memory retrieval. This study demonstrates that repeated memory retrieval might strengthen memory by inducing more differentiated or elaborated memory representations in the parietal cortex, and at the same time reducing demands on prefrontal-cortex-mediated cognitive control processes during retrieval. The findings contrast with recent demonstrations that repeated encoding induces less differentiated or elaborated memory representations. Together, this study suggests a potential neurocognitive explanation of why repeated retrieval is more beneficial for long-term retention than repeated encoding, a phenomenon known as the testing effect.
Collapse
|
169
|
Desmedt A, Marighetto A, Piazza PV. Abnormal Fear Memory as a Model for Posttraumatic Stress Disorder. Biol Psychiatry 2015; 78:290-7. [PMID: 26238378 DOI: 10.1016/j.biopsych.2015.06.017] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 06/01/2015] [Accepted: 06/17/2015] [Indexed: 11/26/2022]
Abstract
For over a century, clinicians have consistently described the paradoxical co-existence in posttraumatic stress disorder (PTSD) of sensory intrusive hypermnesia and declarative amnesia for the same traumatic event. Although this amnesia is considered as a critical etiological factor of the development and/or persistence of PTSD, most current animal models in basic neuroscience have focused exclusively on the hypermnesia, i.e., the persistence of a strong fear memory, neglecting the qualitative alteration of fear memory. The latest is characterized by an underrepresentation of the trauma in the context-based declarative memory system in favor of its overrepresentation in a cue-based sensory/emotional memory system. Combining psychological and neurobiological data as well as theoretical hypotheses, this review supports the idea that contextual amnesia is at the core of PTSD and its persistence and that altered hippocampal-amygdalar interaction may contribute to such pathologic memory. In a first attempt to unveil the neurobiological alterations underlying PTSD-related hypermnesia/amnesia, we describe a recent animal model mimicking in mice some critical aspects of such abnormal fear memory. Finally, this line of argument emphasizes the pressing need for a systematic comparison between normal/adaptive versus abnormal/maladaptive fear memory to identify biomarkers of PTSD while distinguishing them from general stress-related, potentially adaptive, neurobiological alterations.
Collapse
Affiliation(s)
- Aline Desmedt
- Institut National de la Santé et de la Recherche Médicale, University of Bordeaux, Neurocentre Magendie, Physiopathologie de la plasticité neuronale, Bordeaux, France.
| | - Aline Marighetto
- Institut National de la Santé et de la Recherche Médicale, University of Bordeaux, Neurocentre Magendie, Physiopathologie de la plasticité neuronale, Bordeaux, France
| | - Pier-Vincenzo Piazza
- Institut National de la Santé et de la Recherche Médicale, University of Bordeaux, Neurocentre Magendie, Physiopathologie de la plasticité neuronale, Bordeaux, France
| |
Collapse
|
170
|
|
171
|
Shi HS, Luo YX, Yin X, Wu HH, Xue G, Geng XH, Hou YN. Reconsolidation of a cocaine associated memory requires DNA methyltransferase activity in the basolateral amygdala. Sci Rep 2015; 5:13327. [PMID: 26289919 PMCID: PMC4542613 DOI: 10.1038/srep13327] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 07/22/2015] [Indexed: 11/14/2022] Open
Abstract
Drug addiction is considered an aberrant form of learning, and drug-associated memories evoked by the presence of associated stimuli (drug context or drug-related cues) contribute to recurrent craving and reinstatement. Epigenetic changes mediated by DNA methyltransferase (DNMT) have been implicated in the reconsolidation of fear memory. Here, we investigated the role of DNMT activity in the reconsolidation of cocaine-associated memories. Rats were trained over 10 days to intravenously self-administer cocaine by nosepokes. Each injection was paired with a light/tone conditioned stimulus (CS). After acquisition of stable self-administration behaviour, rats underwent nosepoke extinction (10 d) followed by cue-induced reactivation and subsequent cue-induced and cocaine-priming + cue-induced reinstatement tests or subsequently tested to assess the strength of the cocaine-associated cue as a conditioned reinforcer to drive cocaine seeking behaviour. Bilateral intra-basolateral amygdala (BLA) infusion of the DNMT inhibitor5-azacytidine (5-AZA, 1 μg per side) immediately following reactivation decreased subsequent reinstatement induced by cues or cocaine priming as well as cue-maintained cocaine-seeking behaviour. In contrast, delayed intra-BLA infusion of 5-AZA 6 h after reactivation or 5-AZA infusion without reactivation had no effect on subsequent cue-induced reinstatement. These findings indicate that memory reconsolidation for a cocaine-paired stimulus depends critically on DNMT activity in the BLA.
Collapse
Affiliation(s)
- Hai-Shui Shi
- Department of Pharmacy, Bethune International Peace Hospital of PLA, Shijiazhuang 050082, China
- Department of Biochemistry and Molecular Biology, Basic Medical College, Hebei Medical University, Shijiazhuang 050017, China
| | - Yi-Xiao Luo
- Department of Pharmacology, Medical College of Hunan Normal University, Changsha 410013, China
| | - Xi Yin
- Department of Diagnosis Region of Function, Hebei Medical University Fourth Hospital, Hebei Medical University, Shijiazhuang, Hebei province, 050011
| | - Hong-Hai Wu
- Department of Pharmacy, Bethune International Peace Hospital of PLA, Shijiazhuang 050082, China
| | - Gai Xue
- Department of Pharmacy, Bethune International Peace Hospital of PLA, Shijiazhuang 050082, China
| | - Xu-Hong Geng
- Department of Diagnosis Region of Function, Hebei Medical University Fourth Hospital, Hebei Medical University, Shijiazhuang, Hebei province, 050011
| | - Yan-Ning Hou
- Department of Pharmacy, Bethune International Peace Hospital of PLA, Shijiazhuang 050082, China
| |
Collapse
|
172
|
Furini CRG, Myskiw JDC, Schmidt BE, Zinn CG, Peixoto PB, Pereira LD, Izquierdo I. The relationship between protein synthesis and protein degradation in object recognition memory. Behav Brain Res 2015. [PMID: 26200717 DOI: 10.1016/j.bbr.2015.07.038] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
For decades there has been a consensus that de novo protein synthesis is necessary for long-term memory. A second round of protein synthesis has been described for both extinction and reconsolidation following an unreinforced test session. Recently, it was shown that consolidation and reconsolidation depend not only on protein synthesis but also on protein degradation by the ubiquitin-proteasome system (UPS), a major mechanism responsible for protein turnover. However, the involvement of UPS on consolidation and reconsolidation of object recognition memory remains unknown. Here we investigate in the CA1 region of the dorsal hippocampus the involvement of UPS-mediated protein degradation in consolidation and reconsolidation of object recognition memory. Animals with infusion cannulae stereotaxically implanted in the CA1 region of the dorsal hippocampus, were exposed to an object recognition task. The UPS inhibitor β-Lactacystin did not affect the consolidation and the reconsolidation of object recognition memory at doses known to affect other forms of memory (inhibitory avoidance, spatial learning in a water maze) while the protein synthesis inhibitor anisomycin impaired the consolidation and the reconsolidation of the object recognition memory. However, β-Lactacystin was able to reverse the impairment caused by anisomycin on the reconsolidation process in the CA1 region of the hippocampus. Therefore, it is possible to postulate a direct link between protein degradation and protein synthesis during the reconsolidation of the object recognition memory.
Collapse
Affiliation(s)
- Cristiane R G Furini
- National Institute of Translational Neuroscience (INNT), National Research Council of Brazil, and Memory Center, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, 6690 - 2nd Floor, 90610-000 Porto Alegre, RS, Brazil
| | - Jociane de C Myskiw
- National Institute of Translational Neuroscience (INNT), National Research Council of Brazil, and Memory Center, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, 6690 - 2nd Floor, 90610-000 Porto Alegre, RS, Brazil
| | - Bianca E Schmidt
- National Institute of Translational Neuroscience (INNT), National Research Council of Brazil, and Memory Center, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, 6690 - 2nd Floor, 90610-000 Porto Alegre, RS, Brazil
| | - Carolina G Zinn
- National Institute of Translational Neuroscience (INNT), National Research Council of Brazil, and Memory Center, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, 6690 - 2nd Floor, 90610-000 Porto Alegre, RS, Brazil
| | - Patricia B Peixoto
- National Institute of Translational Neuroscience (INNT), National Research Council of Brazil, and Memory Center, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, 6690 - 2nd Floor, 90610-000 Porto Alegre, RS, Brazil
| | - Luiza D Pereira
- National Institute of Translational Neuroscience (INNT), National Research Council of Brazil, and Memory Center, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, 6690 - 2nd Floor, 90610-000 Porto Alegre, RS, Brazil
| | - Ivan Izquierdo
- National Institute of Translational Neuroscience (INNT), National Research Council of Brazil, and Memory Center, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, 6690 - 2nd Floor, 90610-000 Porto Alegre, RS, Brazil.
| |
Collapse
|
173
|
Cummins Jacklin E, Boughner E, Kent K, Kwiatkowski D, MacDonald T, Leri F. Memory of a drug lapse: Role of noradrenaline. Neuropharmacology 2015; 99:98-105. [PMID: 26192542 DOI: 10.1016/j.neuropharm.2015.07.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 07/15/2015] [Accepted: 07/16/2015] [Indexed: 10/23/2022]
Abstract
Memory processes may be involved in the transition from drug lapses to relapse. This study explored the role of noradrenaline (NA) in reacquisition of place preference, an animal model of relapse that involves the updating of memories about drugs and associated stimuli. Experiments involved 7 phases: habituation, conditioning (1 mg/kg heroin and vehicle; 4 pairings each), test of conditioning (Test I), extinction (vehicle and vehicle; 4 pairings each), test of extinction (Test II), reconditioning (1 mg/kg heroin and vehicle; 1 re-pairing each), and test of reconditioning (Test III). To target memory stabilization processes, various treatments were administered post-reconditioning: systemic clonidine (0, 10, 40, 100 μg/kg; α2 adrenergic receptor agonist); intra-locus coeruleus (LC) clonidine (0, 4.5, 18 nmol); and intra-basolateral amygdala (BLA) propranolol/prazosin (0, 34/2.4 nmol; β and α1 adrenergic receptor antagonists, respectively). The effect of post-reconditioning systemic clonidine on BLA c-fos expression was also assessed. It was found that systemic clonidine dose-dependently blocked heroin reacquisition when given immediately or 4 h post-reconditioning, but not 8 h later or 4 h prior to Test III. Similar effects were observed following intra-LC clonidine infusions. Post-reconditioning systemic clonidine also blocked reacquisition of cocaine place preference (20 mg/kg). Finally, BLA c-fos expression was reduced by clonidine, and blockade of BLA β and α1 receptors prevented heroin reacquisition. These findings in rats support the hypothesis that relapse involves memory stabilization processes that can be disrupted by suppression of central NA activity.
Collapse
Affiliation(s)
- Erin Cummins Jacklin
- Department of Psychology, University of Guelph, 50 Stone Road East, Guelph, Ontario, N1G 2W1, Canada.
| | - Emily Boughner
- Department of Psychology, University of Guelph, 50 Stone Road East, Guelph, Ontario, N1G 2W1, Canada.
| | - Katrina Kent
- Department of Psychology, University of Guelph, 50 Stone Road East, Guelph, Ontario, N1G 2W1, Canada.
| | - Daniela Kwiatkowski
- Department of Psychology, University of Guelph, 50 Stone Road East, Guelph, Ontario, N1G 2W1, Canada.
| | - Tyler MacDonald
- Department of Psychology, University of Guelph, 50 Stone Road East, Guelph, Ontario, N1G 2W1, Canada.
| | - Francesco Leri
- Department of Psychology, University of Guelph, 50 Stone Road East, Guelph, Ontario, N1G 2W1, Canada.
| |
Collapse
|
174
|
Abstract
Exposure-based therapy has proven to be useful to treat various anxiety disorders as well as post-traumatic stress disorder (PTSD). Despite its efficacy, a fair proportion of patients remain symptomatic after treatment. Different lines of research have put considerable efforts to investigate ways to enhance the efficacy of exposure-based therapy, which could ultimately lead to better clinical outcomes for patients. Given that this type of therapy relies on extinction learning principles, neuroscience research has tested different adjuncts that could be used as cognitive enhancers through their impact on extinction learning and its consolidation. The current review will summarize some of the latest compounds that have received attention and show some promise to be used in clinical settings to improve the efficacy of exposure-based therapy.
Collapse
|
175
|
Coureaud G, Thomas-Danguin T, Wilson DA, Ferreira G. Neonatal representation of odour objects: distinct memories of the whole and its parts. Proc Biol Sci 2015; 281:20133319. [PMID: 24990670 DOI: 10.1098/rspb.2013.3319] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Extraction of relevant information from highly complex environments is a prerequisite to survival. Within odour mixtures, such information is contained in the odours of specific elements or in the mixture configuration perceived as a whole unique odour. For instance, an AB mixture of the element A (ethyl isobutyrate) and the element B (ethyl maltol) generates a configural AB percept in humans and apparently in another species, the rabbit. Here, we examined whether the memory of such a configuration is distinct from the memory of the individual odorants. Taking advantage of the newborn rabbit's ability to learn odour mixtures, we combined behavioural and pharmacological tools to specifically eliminate elemental memory of A and B after conditioning to the AB mixture and evaluate consequences on configural memory of AB. The amnesic treatment suppressed responsiveness to A and B but not to AB. Two other experiments confirmed the specific perception and particular memory of the AB mixture. These data demonstrate the existence of configurations in certain odour mixtures and their representation as unique objects: after learning, animals form a configural memory of these mixtures, which coexists with, but is relatively dissociated from, memory of their elements. This capability emerges very early in life.
Collapse
Affiliation(s)
- Gérard Coureaud
- Centre des Sciences du Goût et de l'Alimentation (CSGA), UMR 6265 CNRS, UMR 1324 INRA, Université de Bourgogne, 9E Boulevard Jeanne d'Arc, 21000 Dijon, France
| | - Thierry Thomas-Danguin
- Centre des Sciences du Goût et de l'Alimentation (CSGA), UMR 6265 CNRS, UMR 1324 INRA, Université de Bourgogne, 9E Boulevard Jeanne d'Arc, 21000 Dijon, France
| | - Donald A Wilson
- Department of Child and Adolescent Psychiatry, New York University Langone School of Medicine, New York, NY 10016, USA
| | - Guillaume Ferreira
- Nutrition and Integrative Neurobiology group, INRA UMR 1286, 33000 Bordeaux, France Université de Bordeaux, 33000 Bordeaux, France
| |
Collapse
|
176
|
Stress, trauma and PTSD: translational insights into the core synaptic circuitry and its modulation. Brain Struct Funct 2015; 221:2401-26. [PMID: 25985955 DOI: 10.1007/s00429-015-1056-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Accepted: 04/30/2015] [Indexed: 12/19/2022]
Abstract
Evidence is considered as to whether behavioral criteria for diagnosis of post-traumatic stress disorder (PTSD) are applicable to that of traumatized animals and whether the phenomena of acquisition, extinction and reactivation of fear behavior in animals are also successfully applicable to humans. This evidence suggests an affirmative answer in both cases. Furthermore, the deficits in gray matter found in PTSD, determined with magnetic resonance imaging, are also observed in traumatized animals, lending neuropsychological support to the use of animals to probe what has gone awry in PTSD. Such animal experiments indicate that the core synaptic circuitry mediating behavior following trauma consists of the amygdala, ventral-medial prefrontal cortex and hippocampus, all of which are modulated by the basal ganglia. It is not clear if this is the case in PTSD as the observations using fMRI are equivocal and open to technical objections. Nevertheless, the effects of the basal ganglia in controlling glutamatergic synaptic transmission through dopaminergic and serotonergic synaptic mechanisms in the core synaptic circuitry provides a ready explanation for why modifying these mechanisms delays extinction in animal models and predisposes towards PTSD. In addition, changes of brain-derived neurotrophic factor (BDNF) in the core synaptic circuitry have significant effects on acquisition and extinction in animal experiments with single nucleotide polymorphisms in the BDNF gene predisposing to PTSD.
Collapse
|
177
|
Balderas I, Rodriguez-Ortiz CJ, Bermudez-Rattoni F. Consolidation and reconsolidation of object recognition memory. Behav Brain Res 2015; 285:213-22. [DOI: 10.1016/j.bbr.2014.08.049] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 08/22/2014] [Accepted: 08/25/2014] [Indexed: 01/06/2023]
|
178
|
Effects of oxytocin on the fear memory reconsolidation. Neurosci Lett 2015; 594:1-5. [DOI: 10.1016/j.neulet.2015.03.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Revised: 03/03/2015] [Accepted: 03/17/2015] [Indexed: 01/24/2023]
|
179
|
Stress-induced increases in depression-like and cocaine place-conditioned behaviors are reversed by disruption of memories during reconsolidation. Behav Pharmacol 2015; 25:599-608. [PMID: 25083575 DOI: 10.1097/fbp.0000000000000074] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Maladaptive behavioral responses characteristic of post-traumatic stress disorders are notably resistant to treatment. We hypothesized that the pharmacological disruption of memories activated during reconsolidation might reverse established stress-induced increases in depression-like behaviors and cocaine reward. C57BL/6J mice were subjected to repeated social defeat stress (SDS), and examined for time spent immobile in a subsequent forced swim test (FST). An additional set of SDS-exposed mice were place-conditioned with cocaine, and tested for cocaine-conditioned place preference (CPP). All stress-exposed mice were then subjected to a single additional trial of SDS while under the influence of propranolol or cycloheximide to disrupt memory reconsolidation, then given one additional FST or CPP test the next day. Mice subjected to repeated SDS subsequently demonstrated increases in time spent immobile in the FST or in the cocaine-paired chamber. Vehicle-treatment followed by additional SDS exposure did not alter these behaviors, but propranolol or cycloheximide treatment reversed each of the potentiated responses in a dose-dependent manner. Overall, these results demonstrate that while repeated exposure to a social defeat stressor subsequently increased depression-like behavior and cocaine-CPP, disruption of traumatic memories made labile by re-exposure to SDS during reconsolidation may have therapeutic value in the treatment of established post-traumatic stress disorder-related behaviors.
Collapse
|
180
|
Abstract
Synaptic plasticity, a key process for memory formation, manifests itself across different time scales ranging from a few seconds for plasticity induction up to hours or even years for consolidation and memory retention. We developed a three-layered model of synaptic consolidation that accounts for data across a large range of experimental conditions. Consolidation occurs in the model through the interaction of the synaptic efficacy with a scaffolding variable by a read-write process mediated by a tagging-related variable. Plasticity-inducing stimuli modify the efficacy, but the state of tag and scaffold can only change if a write protection mechanism is overcome. Our model makes a link from depotentiation protocols in vitro to behavioral results regarding the influence of novelty on inhibitory avoidance memory in rats.
Collapse
|
181
|
Fingelkurts AA, Fingelkurts AA, Kallio-Tamminen T. EEG-guided meditation: A personalized approach. ACTA ACUST UNITED AC 2015; 109:180-190. [PMID: 25805441 DOI: 10.1016/j.jphysparis.2015.03.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Accepted: 03/11/2015] [Indexed: 12/17/2022]
Abstract
The therapeutic potential of meditation for physical and mental well-being is well documented, however the possibility of adverse effects warrants further discussion of the suitability of any particular meditation practice for every given participant. This concern highlights the need for a personalized approach in the meditation practice adjusted for a concrete individual. This can be done by using an objective screening procedure that detects the weak and strong cognitive skills in brain function, thus helping design a tailored meditation training protocol. Quantitative electroencephalogram (qEEG) is a suitable tool that allows identification of individual neurophysiological types. Using qEEG screening can aid developing a meditation training program that maximizes results and minimizes risk of potential negative effects. This brief theoretical-conceptual review provides a discussion of the problem and presents some illustrative results on the usage of qEEG screening for the guidance of mediation personalization.
Collapse
|
182
|
Dodd SX, Lukowiak K. Sequential exposure to a combination of stressors blocks memory reconsolidation in Lymnaea. J Exp Biol 2015; 218:923-30. [PMID: 25617463 DOI: 10.1242/jeb.114876] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Stress alters the formation of long-term memory (LTM) in Lymnaea. When snails are exposed to more than one stressor, however, how the memory is altered becomes complicated. Here, we investigated how multiple stressors applied in a specific pattern affect an aspect of memory not often studied in regards to stress - reconsolidation. We hypothesized that the application of a sequence of stressors would block the reconsolidation process. Reconsolidation occurs following activation of a previously formed memory. Sequential crowding and handling were used as the stressors to block reconsolidation. When the two stressors were sequentially presented immediately following memory activation, reconsolidation was blocked. However, if the sequential presentation of the stressors was delayed for 1 h after memory activation, reconsolidation was not blocked. That is, LTM was observed. Finally, presentation of either stressor alone did not block reconsolidation. Thus, stressors can block reconsolidation, which may be preferable to pharmacological manipulations.
Collapse
Affiliation(s)
- Shawn Xavier Dodd
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, Canada T2N 4N1
| | - Ken Lukowiak
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, Canada T2N 4N1
| |
Collapse
|
183
|
Abstract
Many psychiatric disorders are characterized by intrusive, distracting, and disturbing memories that either perpetuate the illness or hinder successful treatment. For example, posttraumatic stress disorder (PTSD) involves such strong reemergence of memories associated with a traumatic event that the individual feels like the event is happening again. Furthermore, drug addiction is characterized by compulsive use and repeated relapse that is often driven by internal memories of drug use and/or by exposure to external stimuli that were associated with drug use. Therefore, identifying pharmacological methods to weaken the strength of maladaptive memories is a major goal of research efforts aimed at finding new treatments for these disorders. The primary mechanism by which memories could be pharmacologically disrupted or altered is through manipulation of memory reconsolidation. Reconsolidation occurs when an established memory is remembered or reactivated, reentering a labile state before again being consolidated into long-term memory storage. Memories are subject to disruption during this labile state. In this chapter we will discuss the preclinical and clinical studies identifying potential pharmacological methods for disrupting the integrity of maladaptive memory to treat mental illness.
Collapse
Affiliation(s)
- Jane R Taylor
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | | |
Collapse
|
184
|
|
185
|
Jarome TJ, Lubin FD. Epigenetic mechanisms of memory formation and reconsolidation. Neurobiol Learn Mem 2014; 115:116-27. [PMID: 25130533 PMCID: PMC4250295 DOI: 10.1016/j.nlm.2014.08.002] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 08/02/2014] [Accepted: 08/05/2014] [Indexed: 10/24/2022]
Abstract
Memory consolidation involves transcriptional control of genes in neurons to stabilize a newly formed memory. Following retrieval, a once consolidated memory destabilizes and again requires gene transcription changes in order to restabilize, a process referred to as reconsolidation. Understanding the molecular mechanisms of gene transcription during the consolidation and reconsolidation processes could provide crucial insights into normal memory formation and memory dysfunction associated with psychiatric disorders. In the past decade, modifications of epigenetic markers such as DNA methylation and posttranslational modifications of histone proteins have emerged as critical transcriptional regulators of gene expression during initial memory formation and after retrieval. In light of the rapidly growing literature in this exciting area of research, we here examine the most recent and latest evidence demonstrating how memory acquisition and retrieval trigger epigenetic changes during the consolidation and reconsolidation phases to impact behavior. In particular we focus on the reconsolidation process, where we discuss the already identified epigenetic regulators of gene transcription during memory reconsolidation, while exploring other potential epigenetic modifications that may also be involved, and expand on how these epigenetic modifications may be precisely and temporally controlled by important signaling cascades critical to the reconsolidation process. Finally, we explore the possibility that epigenetic mechanisms may serve to regulate a system or circuit level reconsolidation process and may be involved in retrieval-dependent memory updating. Hence, we propose that epigenetic mechanisms coordinate changes in neuronal gene transcription, not only during the initial memory consolidation phase, but are triggered by retrieval to regulate molecular and cellular processes during memory reconsolidation.
Collapse
Affiliation(s)
- Timothy J Jarome
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Farah D Lubin
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, United States.
| |
Collapse
|
186
|
Sandrini M, Brambilla M, Manenti R, Rosini S, Cohen LG, Cotelli M. Noninvasive stimulation of prefrontal cortex strengthens existing episodic memories and reduces forgetting in the elderly. Front Aging Neurosci 2014; 6:289. [PMID: 25368577 PMCID: PMC4202785 DOI: 10.3389/fnagi.2014.00289] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 09/30/2014] [Indexed: 11/13/2022] Open
Abstract
Memory consolidation is a dynamic process. Reactivation of consolidated memories by a reminder triggers reconsolidation, a time-limited period during which existing memories can be modified (i.e., weakened or strengthened). Episodic memory refers to our ability to recall specific past events about what happened, including where and when. Difficulties in this form of long-term memory commonly occur in healthy aging. Because episodic memory is critical for daily life functioning, the development of effective interventions to reduce memory loss in elderly individuals is of great importance. Previous studies in young adults showed that the dorsolateral prefrontal cortex (DLPFC) plays a causal role in strengthening of verbal episodic memories through reconsolidation. The aim of the present study was to explore the extent to which facilitatory transcranial direct current stimulation (anodal tDCS) over the left DLPFC would strengthen existing episodic memories through reconsolidation in elderly individuals. On Day 1, older adults learned a list of 20 words. On Day 2 (24 h later), they received a reminder or not, and after 10 min tDCS was applied over the left DLPFC. Memory recall was tested on Day 3 (48 h later) and Day 30 (1 month later). Surprisingly, anodal tDCS over the left DLPFC (i.e., with or without the reminder) strengthened existing verbal episodic memories and reduced forgetting compared to sham stimulation. These results provide a framework for testing the hypothesis that facilitatory tDCS of left DLPFC might strengthen existing episodic memories and reduce memory loss in older adults with amnestic mild cognitive impairment.
Collapse
Affiliation(s)
- Marco Sandrini
- Human Cortical Physiology and Neurorehabilitation Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health Bethesda, MD, USA ; Center for Neuroscience and Regenerative Medicine, Uniformed Services University of Health Sciences Bethesda, MD, USA
| | - Michela Brambilla
- Neuropsychology Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli Brescia, Italy
| | - Rosa Manenti
- Neuropsychology Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli Brescia, Italy
| | - Sandra Rosini
- Neuropsychology Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli Brescia, Italy
| | - Leonardo G Cohen
- Human Cortical Physiology and Neurorehabilitation Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health Bethesda, MD, USA
| | - Maria Cotelli
- Neuropsychology Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli Brescia, Italy
| |
Collapse
|
187
|
In search of a recognition memory engram. Neurosci Biobehav Rev 2014; 50:12-28. [PMID: 25280908 PMCID: PMC4382520 DOI: 10.1016/j.neubiorev.2014.09.016] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Revised: 09/18/2014] [Accepted: 09/22/2014] [Indexed: 01/06/2023]
Abstract
The role of the perirhinal cortex in familiarity discrimination is reviewed. Behavioural, pharmacological and electrophysiological evidence is considered. The cortex is found to be essential for memory acquisition, retrieval and storage. The evidence indicates that perirhinal synaptic weakening is critically involved.
A large body of data from human and animal studies using psychological, recording, imaging, and lesion techniques indicates that recognition memory involves at least two separable processes: familiarity discrimination and recollection. Familiarity discrimination for individual visual stimuli seems to be effected by a system centred on the perirhinal cortex of the temporal lobe. The fundamental change that encodes prior occurrence within the perirhinal cortex is a reduction in the responses of neurones when a stimulus is repeated. Neuronal network modelling indicates that a system based on such a change in responsiveness is potentially highly efficient in information theoretic terms. A review is given of findings indicating that perirhinal cortex acts as a storage site for recognition memory of objects and that such storage depends upon processes producing synaptic weakening.
Collapse
|
188
|
McGregor KK. What a difference a day makes: change in memory for newly learned word forms over 24 hours. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2014; 57:1842-50. [PMID: 24845578 PMCID: PMC4232218 DOI: 10.1044/2014_jslhr-l-13-0273] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 05/12/2014] [Indexed: 05/05/2023]
Abstract
PURPOSE This study explored the role of time and retrieval experience in the consolidation of word forms. METHOD Participants were 106 adults trained on 16 novel word-referent pairs, then tested immediately and 24 hr later for recognition and recall of word forms. In the interim, tests were repeated 2 hr or 12 hr after training, or not at all, thus varying the amount and timing of retrieval experience. RESULTS Recognition accuracy was stable and speed improved over the 24-hr period. But these manifestations of consolidation did not depend on interim retrieval experience; in fact, the 2-hr interim test interfered with improvements in speed. In contrast, the number of word forms recalled increased only with interim retrieval experiences, and the 12-hr interim test was more advantageous to recall than the 2-hr test. CONCLUSIONS After a word form is encoded, it can become stronger with time. Retrieval experience can also strengthen the trace, but, if retrieval occurs when the memory is still labile, it can be disruptive. This complex interplay between retrieval experience and time holds implications for measuring learning outcomes and for scheduling practice in classrooms and clinics.
Collapse
|
189
|
Warren VT, Anderson KM, Kwon C, Bosshardt L, Jovanovic T, Bradley B, Norrholm SD. Human fear extinction and return of fear using reconsolidation update mechanisms: the contribution of on-line expectancy ratings. Neurobiol Learn Mem 2014; 113:165-73. [PMID: 24183839 PMCID: PMC4351258 DOI: 10.1016/j.nlm.2013.10.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 09/25/2013] [Accepted: 10/21/2013] [Indexed: 10/26/2022]
Abstract
Disruption of the reconsolidation of conditioned fear memories has been suggested as a non-pharmacological means of preventing the return of learned fear in human populations. A reconsolidation update paradigm was developed in which a reconsolidation window is opened by a single isolated retrieval trial of a previously reinforced CS+ which is then followed by Extinction Training within that window. However, follow-up studies in humans using multi-methods fear conditioning indices (e.g., fear-potentiated startle, skin conductance, US-expectancy) have failed to replicate the retrieval+extinction effects. In the present study, we further investigated the retrieval+extinction reconsolidation update paradigm by directly comparing the acquisition, extinction, and return of fear-potentiated startle in the absence or presence of US-expectancy measures (using a trial-by-trial response keypad) with and without retrieval of a previously acquired CS-US association. Participants were fear conditioned to two visual cue CS+'s, one of which was presented as a single, isolated retrieval trial before Extinction Training and one that was extinguished as usual. The results show that the inclusion of US-expectancy measures strengthens the CS-US association to provide enhanced fear conditioning and maintenance of fear memories over the experimental sessions. In addition, in the groups that used on-line US-expectancy measures, the retrieval+extinction procedure reduced reinstatement of fear-potentiated startle to both previously reinforced CS+'s, as compared to the extinction as usual group.
Collapse
Affiliation(s)
- Victor Taylor Warren
- Atlanta Veterans Affairs Medical Center, Decatur, GA, United States; Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States
| | - Kemp M Anderson
- Atlanta Veterans Affairs Medical Center, Decatur, GA, United States; Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States
| | - Cliffe Kwon
- Atlanta Veterans Affairs Medical Center, Decatur, GA, United States; Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States
| | - Lauren Bosshardt
- Atlanta Veterans Affairs Medical Center, Decatur, GA, United States; Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States
| | - Tanja Jovanovic
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States
| | - Bekh Bradley
- Atlanta Veterans Affairs Medical Center, Decatur, GA, United States; Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States
| | - Seth Davin Norrholm
- Atlanta Veterans Affairs Medical Center, Decatur, GA, United States; Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States.
| |
Collapse
|
190
|
Almeida-Corrêa S, Amaral OB. Memory labilization in reconsolidation and extinction--evidence for a common plasticity system? ACTA ACUST UNITED AC 2014; 108:292-306. [PMID: 25173958 DOI: 10.1016/j.jphysparis.2014.08.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 06/27/2014] [Accepted: 08/20/2014] [Indexed: 12/19/2022]
Abstract
Reconsolidation and extinction are two processes occurring upon memory retrieval that have received great attention in memory research over the last decade, partly due to their purported potential in the treatment of anxiety disorders. Due to their opposite behavioral effects, the two phenomena have usually been considered as separate entities, with few attempts to build a unified view of how both could be produced by similar mechanisms. Based on computational modeling, we have previously proposed that reconsolidation and extinction are behavioral outcomes of the same set of plasticity systems, albeit working at different synapses. One of these systems seems to be pharmacologically similar to the one involved in initial memory consolidation, and likely involves traditional Hebbian plasticity, while the second seems to be more involved with the labilization of existing memories and/or synaptic changes. In this article, we review the evidence for the existence of a plasticity system specifically involved in memory labilization, as well as its possible molecular requirements, anatomical substrates, synaptic mechanisms and physiological roles. Based on these data, we propose that the field of memory updating might ultimately benefit from a paradigm shift in which reconsolidation and extinction are viewed not as separate processes but as different instantiations of plasticity systems responsible for reinforcement and labilization of synaptic changes.
Collapse
Affiliation(s)
- Suellen Almeida-Corrêa
- Leopoldo de Meis Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Brazil
| | - Olavo B Amaral
- Leopoldo de Meis Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Brazil.
| |
Collapse
|
191
|
Sol Fustiñana M, de la Fuente V, Federman N, Freudenthal R, Romano A. Protein degradation by ubiquitin-proteasome system in formation and labilization of contextual conditioning memory. ACTA ACUST UNITED AC 2014; 21:478-87. [PMID: 25135196 PMCID: PMC4138359 DOI: 10.1101/lm.035998.114] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The ubiquitin–proteasome system (UPS) of protein degradation has been evaluated in different forms of neural plasticity and memory. The role of UPS in such processes is controversial. Several results support the idea that the activation of this system in memory consolidation is necessary to overcome negative constrains for plasticity. In this case, the inhibition of the UPS during consolidation impairs memory. Similar results were reported for memory reconsolidation. However, in other cases, the inhibition of UPS had no effect on memory consolidation and reconsolidation but impedes the amnesic action of protein synthesis inhibition after retrieval. The last finding suggests a specific action of the UPS inhibitor on memory labilization. However, another interpretation is possible in terms of the synthesis/degradation balance of positive and negative elements in neural plasticity, as was found in the case of long-term potentiation. To evaluate these alternative interpretations, other reconsolidation-interfering drugs than translation inhibitors should be tested. Here we analyzed initially the UPS inhibitor effect in contextual conditioning in crabs. We found that UPS inhibition during consolidation impaired long-term memory. In contrast, UPS inhibition did not affect memory reconsolidation after contextual retrieval but, in fact, impeded memory labilization, blocking the action of drugs that does not affect directly the protein synthesis. To extend these finding to vertebrates, we performed similar experiments in contextual fear memory in mice. We found that the UPS inhibitor in hippocampus affected memory consolidation and blocked memory labilization after retrieval. These findings exclude alternative interpretations to the requirement of UPS in memory labilization and give evidence of this mechanism in both vertebrates and invertebrates.
Collapse
Affiliation(s)
- María Sol Fustiñana
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IFIByNE, CONICET, Ciudad Universitaria, 1428EHA, Buenos Aires, Argentina
| | | | - Noel Federman
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IFIByNE, CONICET, Ciudad Universitaria, 1428EHA, Buenos Aires, Argentina
| | - Ramiro Freudenthal
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IFIByNE, CONICET, Ciudad Universitaria, 1428EHA, Buenos Aires, Argentina
| | - Arturo Romano
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IFIByNE, CONICET, Ciudad Universitaria, 1428EHA, Buenos Aires, Argentina
| |
Collapse
|
192
|
Santoyo-Zedillo M, Rodriguez-Ortiz CJ, Chavez-Marchetta G, Bermudez-Rattoni F, Balderas I. Retrieval is not necessary to trigger reconsolidation of object recognition memory in the perirhinal cortex. ACTA ACUST UNITED AC 2014; 21:452-6. [PMID: 25128536 PMCID: PMC4138362 DOI: 10.1101/lm.035428.114] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Memory retrieval has been considered as requisite to initiate memory reconsolidation; however, some studies indicate that blocking retrieval does not prevent memory from undergoing reconsolidation. Since N-methyl-D-aspartate (NMDA) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) glutamate receptors in the perirhinal cortex have been involved in object recognition memory formation, the present study evaluated whether retrieval and reconsolidation are independent processes by manipulating these glutamate receptors. The results showed that AMPA receptor antagonist infusions in the perirhinal cortex blocked retrieval, but did not affect memory reconsolidation, although NMDA receptor antagonist infusions disrupted reconsolidation even if retrieval was blocked. Importantly, neither of these antagonists disrupted short-term memory. These data suggest that memory underwent reconsolidation even in the absence of retrieval.
Collapse
Affiliation(s)
- Marianela Santoyo-Zedillo
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 México D.F., Mexico
| | - Carlos J Rodriguez-Ortiz
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 México D.F., Mexico
| | - Gianfranco Chavez-Marchetta
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 México D.F., Mexico
| | - Federico Bermudez-Rattoni
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 México D.F., Mexico
| | - Israela Balderas
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 México D.F., Mexico
| |
Collapse
|
193
|
Delorenzi A, Maza FJ, Suárez LD, Barreiro K, Molina VA, Stehberg J. Memory beyond expression. ACTA ACUST UNITED AC 2014; 108:307-22. [PMID: 25102126 DOI: 10.1016/j.jphysparis.2014.07.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 07/16/2014] [Accepted: 07/17/2014] [Indexed: 01/05/2023]
Abstract
The idea that memories are not invariable after the consolidation process has led to new perspectives about several mnemonic processes. In this framework, we review our studies on the modulation of memory expression during reconsolidation. We propose that during both memory consolidation and reconsolidation, neuromodulators can determine the probability of the memory trace to guide behavior, i.e. they can either increase or decrease its behavioral expressibility without affecting the potential of persistent memories to be activated and become labile. Our hypothesis is based on the findings that positive modulation of memory expression during reconsolidation occurs even if memories are behaviorally unexpressed. This review discusses the original approach taken in the studies of the crab Neohelice (Chasmagnathus) granulata, which was then successfully applied to test the hypothesis in rodent fear memory. Data presented offers a new way of thinking about both weak trainings and experimental amnesia: memory retrieval can be dissociated from memory expression. Furthermore, the strategy presented here allowed us to show in human declarative memory that the periods in which long-term memory can be activated and become labile during reconsolidation exceeds the periods in which that memory is expressed, providing direct evidence that conscious access to memory is not needed for reconsolidation. Specific controls based on the constraints of reminders to trigger reconsolidation allow us to distinguish between obliterated and unexpressed but activated long-term memories after amnesic treatments, weak trainings and forgetting. In the hypothesis discussed, memory expressibility--the outcome of experience-dependent changes in the potential to behave--is considered as a flexible and modulable attribute of long-term memories. Expression seems to be just one of the possible fates of re-activated memories.
Collapse
Affiliation(s)
- A Delorenzi
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología y Biología Molecular, IFIByNE-CONICET, Pabellón II, FCEyN, Universidad de Buenos Aires, Ciudad Universitaria (C1428EHA), Argentina.
| | - F J Maza
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología y Biología Molecular, IFIByNE-CONICET, Pabellón II, FCEyN, Universidad de Buenos Aires, Ciudad Universitaria (C1428EHA), Argentina.
| | - L D Suárez
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología y Biología Molecular, IFIByNE-CONICET, Pabellón II, FCEyN, Universidad de Buenos Aires, Ciudad Universitaria (C1428EHA), Argentina.
| | - K Barreiro
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología y Biología Molecular, IFIByNE-CONICET, Pabellón II, FCEyN, Universidad de Buenos Aires, Ciudad Universitaria (C1428EHA), Argentina.
| | - V A Molina
- Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, IFEC-CONICET (X5000HUA), Argentina.
| | - J Stehberg
- Laboratorio de Neurobiología, Departamento de Ciencias Biológicas, Universidad Andrés Bello, Chile.
| |
Collapse
|
194
|
Vermetten E, Zhohar J, Krugers HJ. Pharmacotherapy in the aftermath of trauma; opportunities in the 'golden hours'. Curr Psychiatry Rep 2014; 16:455. [PMID: 24890991 DOI: 10.1007/s11920-014-0455-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Several lines of research have demonstrated that memories for fearful events become transiently labile upon re-exposure. Activation of molecular mechanisms is required in order to maintain retrieved information. This process is called reconsolidation. Targeting reconsolidation - as in exposure-based psychotherapy - offers therefore a potentially interesting tool to manipulate fear memories, and subsequently to treat disorders such as post-traumatic stress disorder (PTSD). In this paper we discuss the evidence for reconsolidation in rodents and humans and highlight recent studies in which clinical research on normal and abnormal fear extinction reduction of the expression of fear was obtained by targeting the process of reconsolidation. We conclude that reconsolidation presents an interesting opportunity to modify or alter fear and fear-related memories. More clinical research on normal and abnormal fear extinction is required.
Collapse
Affiliation(s)
- Eric Vermetten
- Department Psychiatry, Leiden University Medical Center Utrecht, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands,
| | | | | |
Collapse
|
195
|
Everitt BJ. Neural and psychological mechanisms underlying compulsive drug seeking habits and drug memories--indications for novel treatments of addiction. Eur J Neurosci 2014; 40:2163-82. [PMID: 24935353 PMCID: PMC4145664 DOI: 10.1111/ejn.12644] [Citation(s) in RCA: 230] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 01/23/2014] [Accepted: 02/11/2014] [Indexed: 12/12/2022]
Abstract
This review discusses the evidence for the hypothesis that the development of drug addiction can be understood in terms of interactions between Pavlovian and instrumental learning and memory mechanisms in the brain that underlie the seeking and taking of drugs. It is argued that these behaviours initially are goal-directed, but increasingly become elicited as stimulus-response habits by drug-associated conditioned stimuli that are established by Pavlovian conditioning. It is further argued that compulsive drug use emerges as the result of a loss of prefrontal cortical inhibitory control over drug seeking habits. Data are reviewed that indicate these transitions from use to abuse to addiction depend upon shifts from ventral to dorsal striatal control over behaviour, mediated in part by serial connectivity between the striatum and midbrain dopamine systems. Only some individuals lose control over their drug use, and the importance of behavioural impulsivity as a vulnerability trait predicting stimulant abuse and addiction in animals and humans, together with consideration of an emerging neuroendophenotype for addiction are discussed. Finally, the potential for developing treatments for addiction is considered in light of the neuropsychological advances that are reviewed, including the possibility of targeting drug memory reconsolidation and extinction to reduce Pavlovian influences on drug seeking as a means of promoting abstinence and preventing relapse.
Collapse
Affiliation(s)
- Barry J Everitt
- Department of Psychology, Behavioural and Clinical Neuroscience Institute, University of Cambridge, Downing Street, Cambridge, CB2 3EB, UK
| |
Collapse
|
196
|
Role of glutamate receptors of central and basolateral amygdala nuclei on retrieval and reconsolidation of taste aversive memory. Neurobiol Learn Mem 2014; 111:35-40. [DOI: 10.1016/j.nlm.2014.03.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Revised: 03/05/2014] [Accepted: 03/06/2014] [Indexed: 11/24/2022]
|
197
|
Is meditation associated with altered brain structure? A systematic review and meta-analysis of morphometric neuroimaging in meditation practitioners. Neurosci Biobehav Rev 2014; 43:48-73. [PMID: 24705269 DOI: 10.1016/j.neubiorev.2014.03.016] [Citation(s) in RCA: 372] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 03/20/2014] [Accepted: 03/24/2014] [Indexed: 02/08/2023]
Abstract
Numerous studies have begun to address how the brain's gray and white matter may be shaped by meditation. This research is yet to be integrated, however, and two fundamental questions remain: Is meditation associated with altered brain structure? If so, what is the magnitude of these differences? To address these questions, we reviewed and meta-analyzed 123 brain morphology differences from 21 neuroimaging studies examining ∼300 meditation practitioners. Anatomical likelihood estimation (ALE) meta-analysis found eight brain regions consistently altered in meditators, including areas key to meta-awareness (frontopolar cortex/BA 10), exteroceptive and interoceptive body awareness (sensory cortices and insula), memory consolidation and reconsolidation (hippocampus), self and emotion regulation (anterior and mid cingulate; orbitofrontal cortex), and intra- and interhemispheric communication (superior longitudinal fasciculus; corpus callosum). Effect size meta-analysis (calculating 132 effect sizes from 16 studies) suggests a global 'medium' effect size (Cohen's d¯=0.46; r¯=.19). Publication bias and methodological limitations are strong concerns, however. Further research using rigorous methods is required to definitively link meditation practice to altered brain morphology.
Collapse
|
198
|
Abstract
The brain mechanisms of fear have been studied extensively using Pavlovian fear conditioning, a procedure that allows exploration of how the brain learns about and later detects and responds to threats. However, mechanisms that detect and respond to threats are not the same as those that give rise to conscious fear. This is an important distinction because symptoms based on conscious and nonconscious processes may be vulnerable to different predisposing factors and may also be treatable with different approaches in people who suffer from uncontrolled fear or anxiety. A conception of so-called fear conditioning in terms of circuits that operate nonconsciously, but that indirectly contribute to conscious fear, is proposed as way forward.
Collapse
Affiliation(s)
- Joseph E. LeDoux
- Center for Neural Science and Department of Psychology, New York University, New York, NY 10003; Department of Psychiatry and Department of Child and Adolescent Psychiatry, NYU Langone Medical Center, New York, NY 10016; and The Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962
| |
Collapse
|
199
|
Rogerson T, Cai DJ, Frank A, Sano Y, Shobe J, Lopez-Aranda MF, Silva AJ. Synaptic tagging during memory allocation. Nat Rev Neurosci 2014; 15:157-69. [PMID: 24496410 DOI: 10.1038/nrn3667] [Citation(s) in RCA: 175] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
There is now compelling evidence that the allocation of memory to specific neurons (neuronal allocation) and synapses (synaptic allocation) in a neurocircuit is not random and that instead specific mechanisms, such as increases in neuronal excitability and synaptic tagging and capture, determine the exact sites where memories are stored. We propose an integrated view of these processes, such that neuronal allocation, synaptic tagging and capture, spine clustering and metaplasticity reflect related aspects of memory allocation mechanisms. Importantly, the properties of these mechanisms suggest a set of rules that profoundly affect how memories are stored and recalled.
Collapse
Affiliation(s)
- Thomas Rogerson
- Departments of Neurobiology, Psychiatry & Biobehavioral Sciences, and Psychology, Integrative Center for Learning and Memory, Brain Research Institute, University of California, Los Angeles, California 90095-1761, USA
| | - Denise J Cai
- Departments of Neurobiology, Psychiatry & Biobehavioral Sciences, and Psychology, Integrative Center for Learning and Memory, Brain Research Institute, University of California, Los Angeles, California 90095-1761, USA
| | - Adam Frank
- Departments of Neurobiology, Psychiatry & Biobehavioral Sciences, and Psychology, Integrative Center for Learning and Memory, Brain Research Institute, University of California, Los Angeles, California 90095-1761, USA
| | - Yoshitake Sano
- Departments of Neurobiology, Psychiatry & Biobehavioral Sciences, and Psychology, Integrative Center for Learning and Memory, Brain Research Institute, University of California, Los Angeles, California 90095-1761, USA
| | - Justin Shobe
- Departments of Neurobiology, Psychiatry & Biobehavioral Sciences, and Psychology, Integrative Center for Learning and Memory, Brain Research Institute, University of California, Los Angeles, California 90095-1761, USA
| | - Manuel F Lopez-Aranda
- Departments of Neurobiology, Psychiatry & Biobehavioral Sciences, and Psychology, Integrative Center for Learning and Memory, Brain Research Institute, University of California, Los Angeles, California 90095-1761, USA
| | - Alcino J Silva
- Departments of Neurobiology, Psychiatry & Biobehavioral Sciences, and Psychology, Integrative Center for Learning and Memory, Brain Research Institute, University of California, Los Angeles, California 90095-1761, USA
| |
Collapse
|
200
|
Young EJ, Aceti M, Griggs EM, Fuchs RA, Zigmond Z, Rumbaugh G, Miller CA. Selective, retrieval-independent disruption of methamphetamine-associated memory by actin depolymerization. Biol Psychiatry 2014; 75:96-104. [PMID: 24012327 PMCID: PMC4023488 DOI: 10.1016/j.biopsych.2013.07.036] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 07/01/2013] [Accepted: 07/25/2013] [Indexed: 11/27/2022]
Abstract
BACKGROUND Memories associated with drugs of abuse, such as methamphetamine (METH), increase relapse vulnerability to substance use disorder. There is a growing consensus that memory is supported by structural and functional plasticity driven by F-actin polymerization in postsynaptic dendritic spines at excitatory synapses. However, the mechanisms responsible for the long-term maintenance of memories, after consolidation has occurred, are largely unknown. METHODS Conditioned place preference (n = 112) and context-induced reinstatement of self-administration (n = 19) were used to assess the role of F-actin polymerization and myosin II, a molecular motor that drives memory-promoting dendritic spine actin polymerization, in the maintenance of METH-associated memories and related structural plasticity. RESULTS Memories formed through association with METH but not associations with foot shock or food reward were disrupted by a highly-specific actin cycling inhibitor when infused into the amygdala during the postconsolidation maintenance phase. This selective effect of depolymerization on METH-associated memory was immediate, persistent, and did not depend upon retrieval or strength of the association. Inhibition of non-muscle myosin II also resulted in a disruption of METH-associated memory. CONCLUSIONS Thus, drug-associated memories seem to be actively maintained by a unique form of cycling F-actin driven by myosin II. This finding provides a potential therapeutic approach for the selective treatment of unwanted memories associated with psychiatric disorders that is both selective and does not rely on retrieval of the memory. The results further suggest that memory maintenance depends upon the preservation of polymerized actin.
Collapse
Affiliation(s)
- Erica J. Young
- Department of Metabolism & Aging, The Scripps Research Institute, Florida.,Department of Neuroscience, The Scripps Research Institute, Florida
| | | | - Erica M. Griggs
- Department of Metabolism & Aging, The Scripps Research Institute, Florida.,Department of Neuroscience, The Scripps Research Institute, Florida
| | - Rita A. Fuchs
- Department of Psychology, University of North Carolina, Chapel Hill
| | - Zachary Zigmond
- Department of Metabolism & Aging, The Scripps Research Institute, Florida.,Department of Neuroscience, The Scripps Research Institute, Florida
| | - Gavin Rumbaugh
- Department of Neuroscience, The Scripps Research Institute, Florida
| | - Courtney A. Miller
- Department of Metabolism & Aging, The Scripps Research Institute, Florida.,Department of Neuroscience, The Scripps Research Institute, Florida.,Correspondence to:
| |
Collapse
|