151
|
Mild cognitive deficits associated to neocortical microgyria in mice with genetic deletion of cellular prion protein. Brain Res 2008; 1241:148-56. [DOI: 10.1016/j.brainres.2008.08.097] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2008] [Revised: 08/12/2008] [Accepted: 08/13/2008] [Indexed: 11/23/2022]
|
152
|
Dupré SM, Burt DW, Talbot R, Downing A, Mouzaki D, Waddington D, Malpaux B, Davis JRE, Lincoln GA, Loudon ASI. Identification of melatonin-regulated genes in the ovine pituitary pars tuberalis, a target site for seasonal hormone control. Endocrinology 2008; 149:5527-39. [PMID: 18669596 DOI: 10.1210/en.2008-0834] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The pars tuberalis (PT) of the pituitary gland expresses a high density of melatonin (MEL) receptors and is believed to regulate seasonal physiology by decoding changes in nocturnal melatonin secretion. Circadian clock genes are known to be expressed in the PT in response to the decline (Per1) and onset (Cry1) of MEL secretion, but to date little is known of other molecular changes in this key MEL target site. To identify transcriptional pathways that may be involved in the diurnal and photoperiod-transduction mechanism, we performed a whole genome transcriptome analysis using PT RNA isolated from sheep culled at three time points over the 24-h cycle under either long or short photoperiods. Our results reveal 153 transcripts where expression differs between photoperiods at the light-dark transition and 54 transcripts where expression level was more globally altered by photoperiod (all time points combined). Cry1 induction at night was associated with up-regulation of genes coding for NeuroD1 (neurogenic differentiation factor 1), Pbef / Nampt (nicotinamide phosphoribosyltransferase), Hif1alpha (hypoxia-inducible factor-1alpha), and Kcnq5 (K+ channel) and down-regulation of Rorbeta, a key clock gene regulator. Using in situ hybridization, we confirmed day-night differences in expression for Pbef / Nampt, NeuroD1, and Rorbeta in the PT. Treatment of sheep with MEL increased PT expression for Cry1, Pbef / Nampt, NeuroD1, and Hif1alpha, but not Kcnq5. Our data thus reveal a cluster of Cry1-associated genes that are acutely responsive to MEL and novel transcriptional pathways involved in MEL action in the PT.
Collapse
Affiliation(s)
- Sandrine M Dupré
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
153
|
Gilch S, Krammer C, Schätzl HM. Targeting prion proteins in neurodegenerative disease. Expert Opin Biol Ther 2008; 8:923-40. [PMID: 18549323 DOI: 10.1517/14712598.8.7.923] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Spongiform neurodegeneration is the pathological hallmark of individuals suffering from prion disease. These disorders, whose manifestation is sporadic, familial or acquired by infection, are caused by accumulation of the aberrantly folded isoform of the cellular prion protein (PrP(c)), termed PrP(Sc). Although usually rare, prion disorders are inevitably fatal and transferrable by infection. OBJECTIVE Pathology is restricted to the central nervous system and premortem diagnosis is usually not possible. Yet, promising approaches towards developing therapeutic regimens have been made recently. METHODS The biology of prion proteins and current models of neurotoxicity are discussed and prophylactic and therapeutic concepts are introduced. RESULTS/CONCLUSIONS Although various promising drug candidates with antiprion activity have been identified, this proof-of-concept cannot be transferred into translational medicine yet.
Collapse
Affiliation(s)
- Sabine Gilch
- Technische Universität München, Institute of Virology, Prion Research Group, Trogerstreet 30, 81675 Munich, Germany
| | | | | |
Collapse
|
154
|
Baracchi F, Opp MR. Sleep-wake behavior and responses to sleep deprivation of mice lacking both interleukin-1 beta receptor 1 and tumor necrosis factor-alpha receptor 1. Brain Behav Immun 2008; 22:982-93. [PMID: 18329246 PMCID: PMC4164115 DOI: 10.1016/j.bbi.2008.02.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Revised: 01/29/2008] [Accepted: 02/03/2008] [Indexed: 01/15/2023] Open
Abstract
Data indicate that interleukin (IL)-1 beta and tumor necrosis factor-alpha (TNFalpha) are involved in the regulation of non-rapid eye movement sleep (NREMS). Previous studies demonstrate that mice lacking the IL-1 beta type 1 receptor spend less time in NREMS during the light period, whereas mice lacking the p55 (type 1) receptor for TNFalpha spend less time in NREMS during the dark period. To further investigate roles for IL-1 beta and TNFalpha in sleep regulation we phenotyped sleep and responses to sleep deprivation of mice lacking both the IL-1 beta receptor 1 and TNFalpha receptor 1 (IL-1R1/TNFR1 KO). Male adult mice (IL-1R1/TNFR1 KO, n=14; B6129SF2/J, n=14) were surgically instrumented with EEG electrodes and with a thermistor to measure brain temperature. After recovery and adaptation to the recording apparatus, 48 h of undisturbed baseline recordings were obtained. Mice were then subjected to 6h sleep deprivation at light onset by gentle handling. IL-1R1/TNFR1 KO mice spent less time in NREMS during the last 6h of the dark period and less time in rapid eye movement sleep (REMS) during the light period. There were no differences between strains in the diurnal timing of delta power during NREMS. However, there were strain differences in the relative power spectra of the NREMS EEG during both the light period and the dark period. In addition, during the light period relative power in the theta frequency band of the REMS EEG differed between strains. After sleep deprivation, control mice exhibited prolonged increases in NREMS and REMS, whereas the duration of the NREMS increase was shorter and there was no increase in REMS of IL-1R1/TNFR1 KO mice. Delta power during NREMS increased in both strains after sleep deprivation, but the increase in delta power during NREMS of IL-1R1/TNFR1 KO mice was of greater magnitude and of longer duration than that observed in control mice. These results provide additional evidence that the IL-1 beta and TNFalpha cytokine systems play a role in sleep regulation and in the alterations in sleep that follow prolonged wakefulness.
Collapse
MESH Headings
- Animals
- Arousal/genetics
- Arousal/physiology
- Body Temperature/physiology
- Electroencephalography
- Interleukin-1beta/physiology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Inbred Strains
- Mice, Knockout
- Polyethylene Glycols
- Receptors, Interleukin-1 Type I/deficiency
- Receptors, Interleukin-1 Type I/genetics
- Receptors, Tumor Necrosis Factor, Type I/deficiency
- Receptors, Tumor Necrosis Factor, Type I/genetics
- Sleep/genetics
- Sleep/physiology
- Sleep Deprivation/genetics
- Sleep Deprivation/physiopathology
- Sleep Stages/genetics
- Sleep Stages/physiology
- Sleep, REM/genetics
- Sleep, REM/physiology
- Tumor Necrosis Factor-alpha/physiology
- Wakefulness/genetics
- Wakefulness/physiology
Collapse
Affiliation(s)
- Francesca Baracchi
- Department of Anesthesiology, University of Michigan, 7422 Medical Sciences Building I, 1150 W. Medical Center Drive, Ann Arbor, MI 48109-5615, USA
| | - Mark R. Opp
- Department of Anesthesiology, University of Michigan, 7422 Medical Sciences Building I, 1150 W. Medical Center Drive, Ann Arbor, MI 48109-5615, USA
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
155
|
Alfa Cissé M, Louis K, Braun U, Mari B, Leitges M, Slack BE, Fisher A, Auberger P, Checler F, Vincent B. Isoform-specific contribution of protein kinase C to prion processing. Mol Cell Neurosci 2008; 39:400-10. [PMID: 18722532 DOI: 10.1016/j.mcn.2008.07.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2008] [Revised: 07/11/2008] [Accepted: 07/16/2008] [Indexed: 11/30/2022] Open
Abstract
The cellular prion protein (PrP(c)) undergoes a physiological cleavage between amino acids 111 and 112, thereby leading to the secretion of an amino-terminal fragment referred to as N1. This proteolytic event is either constitutive or regulated by protein kinase C (PKC) and is operated by the disintegrins ADAM9/ADAM10 or ADAM17 respectively. We recently showed that the stimulation of the M1/M3 muscarinic receptors potentiates this cleavage via the phosphorylation and activation of ADAM17. We have examined the contribution of various PKC isoforms in the regulated processing of PrP(c). First we show that the PDBu- and carbachol-stimulated N1 secretions are blocked by the general PKC inhibitor GF109203X. We establish that HEK293 and human-derived rhabdhomyosarcoma cells over-expressing constitutively active PKCalpha, PKCdelta or PKCepsilon, but not PKCzeta, produce increased amounts of N1 and harbor enhanced ability to hydrolyze the fluorimetric substrate of ADAM17, JMV2770. Conversely, over-expression of the corresponding dominant negative proteins abolishes PDBU-stimulated N1 secretion and restores N1 to levels comparable to constitutive production. Moreover, deletion of PKCalpha lowers N1 recovery in primary cultured fibroblasts. Importantly, mutation of threonine 735 of ADAM17 significantly lowers the PDBu-induced N1 formation while transient over-expression of constitutively active PKCalpha, PKCdelta or PKCepsilon, but not PKCzeta, induced both the phosphorylation of ADAM17 on its threonine residues and N1 secretion. As a corollary, T735A mutation concomitantly reversed PKCalpha-, PKCdelta- and PKCepsilon-induced ADAM17 phosphorylation and N1 recovery. Finally, we established that PKCepsilon-dependent N1 production is fully prevented by ADAM17 deficiency. Altogether, the present results provide strong evidence that the activation of PKCalpha, delta and epsilon, but not zeta, isoforms leads to increased N1 secretion via the phosphorylation and activation of ADAM17, a process that likely accounts for M1/M3 muscarinic receptors-mediated control of N1 production.
Collapse
Affiliation(s)
- Moustapha Alfa Cissé
- Institut de Pharmacologie Moléculaire et Cellulaire du CNRS, UMR6097, UNSA, Equipe labellisée Fondation pour la Recherche Médicale, Sophia-Antipolis, Valbonne, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
156
|
Affiliation(s)
- Adriano Aguzzi
- Institute of Neuropathology, University of Zurich, CH-8091 Zurich, Switzerland,
| | - Frank Baumann
- Institute of Neuropathology, University of Zurich, CH-8091 Zurich, Switzerland,
| | - Juliane Bremer
- Institute of Neuropathology, University of Zurich, CH-8091 Zurich, Switzerland,
| |
Collapse
|
157
|
Linden R, Martins VR, Prado MAM, Cammarota M, Izquierdo I, Brentani RR. Physiology of the prion protein. Physiol Rev 2008; 88:673-728. [PMID: 18391177 DOI: 10.1152/physrev.00007.2007] [Citation(s) in RCA: 444] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Prion diseases are transmissible spongiform encephalopathies (TSEs), attributed to conformational conversion of the cellular prion protein (PrP(C)) into an abnormal conformer that accumulates in the brain. Understanding the pathogenesis of TSEs requires the identification of functional properties of PrP(C). Here we examine the physiological functions of PrP(C) at the systemic, cellular, and molecular level. Current data show that both the expression and the engagement of PrP(C) with a variety of ligands modulate the following: 1) functions of the nervous and immune systems, including memory and inflammatory reactions; 2) cell proliferation, differentiation, and sensitivity to programmed cell death both in the nervous and immune systems, as well as in various cell lines; 3) the activity of numerous signal transduction pathways, including cAMP/protein kinase A, mitogen-activated protein kinase, phosphatidylinositol 3-kinase/Akt pathways, as well as soluble non-receptor tyrosine kinases; and 4) trafficking of PrP(C) both laterally among distinct plasma membrane domains, and along endocytic pathways, on top of continuous, rapid recycling. A unified view of these functional properties indicates that the prion protein is a dynamic cell surface platform for the assembly of signaling modules, based on which selective interactions with many ligands and transmembrane signaling pathways translate into wide-range consequences upon both physiology and behavior.
Collapse
Affiliation(s)
- Rafael Linden
- Instituto de Biofísica da Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| | | | | | | | | | | |
Collapse
|
158
|
Winsky-Sommerer R, Knapman A, Fedele DE, Schofield CM, Vladyslav, Vyazovskiy, Rudolph U, Huguenard JR, Fritschy JM, Tobler I. Normal sleep homeostasis and lack of epilepsy phenotype in GABA A receptor alpha3 subunit-knockout mice. Neuroscience 2008; 154:595-605. [PMID: 18485607 PMCID: PMC2587445 DOI: 10.1016/j.neuroscience.2008.03.081] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2008] [Revised: 03/27/2008] [Accepted: 03/27/2008] [Indexed: 11/17/2022]
Abstract
Thalamo-cortical networks generate specific patterns of oscillations during distinct vigilance states and epilepsy, well characterized by electroencephalography (EEG). Oscillations depend on recurrent synaptic loops, which are controlled by GABAergic transmission. In particular, GABA A receptors containing the alpha3 subunit are expressed predominantly in cortical layer VI and thalamic reticular nucleus (nRT) and regulate the activity and firing pattern of neurons in relay nuclei. Therefore, ablation of these receptors by gene targeting might profoundly affect thalamo-cortical oscillations. Here, we investigated the role of alpha3-GABA A receptors in regulating vigilance states and seizure activity by analyzing chronic EEG recordings in alpha3 subunit-knockout (alpha3-KO) mice. The presence of postsynaptic alpha3-GABA A receptors/gephyrin clusters in the nRT and GABA A-mediated synaptic currents in acute thalamic slices was also examined. EEG spectral analysis showed no difference between genotypes during non rapid-eye movement (NREM) sleep or at waking-NREM sleep transitions. EEG power in the spindle frequency range (10-15 Hz) was significantly lower at NREM-REM sleep transitions in mutant compared with wild-type mice. Enhancement of sleep pressure by 6 h sleep deprivation did not reveal any differences in the regulation of EEG activities between genotypes. Finally, the waking EEG showed a slightly larger power in the 11-13-Hz band in alpha3-KO mice. However, neither behavior nor the waking EEG showed alterations suggestive of absence seizures. Furthermore, alpha3-KO mice did not differ in seizure susceptibility in a model of temporal lobe epilepsy. Strikingly, despite the disruption of postsynaptic gephyrin clusters, whole-cell patch clamp recordings revealed intact inhibitory synaptic transmission in the nRT of alpha3-KO mice. These findings show that the lack of alpha3-GABA(A) receptors is extensively compensated for to preserve the integrity of thalamo-cortical function in physiological and pathophysiological situations.
Collapse
Affiliation(s)
| | - Alana Knapman
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Denise E. Fedele
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Claude M. Schofield
- Department of Neurology and Neurological Sciences, Stanford University Medical Center, Stanford, CA, USA
| | | | - Vyazovskiy
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Uwe Rudolph
- Laboratory of Genetic Neuropharmacology, McLean Hospital, Department of Psychiatry, Harvard, Medical School, Belmont, MA, USA
| | - John R Huguenard
- Department of Neurology and Neurological Sciences, Stanford University Medical Center, Stanford, CA, USA
| | - Jean-Marc Fritschy
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Irene Tobler
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
159
|
Barnard AR, Nolan PM. When clocks go bad: neurobehavioural consequences of disrupted circadian timing. PLoS Genet 2008; 4:e1000040. [PMID: 18516223 PMCID: PMC2295261 DOI: 10.1371/journal.pgen.1000040] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Accepted: 02/26/2008] [Indexed: 12/20/2022] Open
Abstract
Progress in unravelling the cellular and molecular basis of mammalian circadian regulation over the past decade has provided us with new avenues through which we can explore central nervous system disease. Deteriorations in measurable circadian output parameters, such as sleep/wake deficits and dysregulation of circulating hormone levels, are common features of most central nervous system disorders. At the core of the mammalian circadian system is a complex of molecular oscillations within the hypothalamic suprachiasmatic nucleus. These oscillations are modifiable by afferent signals from the environment, and integrated signals are subsequently conveyed to remote central neural circuits where specific output rhythms are regulated. Mutations in circadian genes in mice can disturb both molecular oscillations and measurable output rhythms. Moreover, systematic analysis of these mutants indicates that they can express an array of abnormal behavioural phenotypes that are intermediate signatures of central nervous system disorders. Furthermore, the response of these mutants to psychoactive drugs suggests that clock genes can modify a number of the brain's critical neurotransmitter systems. This evidence has led to promising investigations into clock gene polymorphisms in psychiatric disease. Preliminary indications favour the systematic investigation of the contribution of circadian genes to central nervous system disease.
Collapse
Affiliation(s)
- Alun R. Barnard
- Neurobehavioural Genetics Group, Medical Research Council Mammalian Genetics Unit, Harwell, Oxfordshire, United Kingdom
| | - Patrick M. Nolan
- Neurobehavioural Genetics Group, Medical Research Council Mammalian Genetics Unit, Harwell, Oxfordshire, United Kingdom
| |
Collapse
|
160
|
Mackiewicz M, Naidoo N, Zimmerman JE, Pack AI. Molecular Mechanisms of Sleep and Wakefulness. Ann N Y Acad Sci 2008; 1129:335-49. [DOI: 10.1196/annals.1417.030] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
161
|
Abstract
This is a review of prion replication in the context of the cell biology of membrane proteins especially folding quality control in the endoplasmic reticulum (ER). Transmissible spongiform encephalopathies, such as scrapie and BSE, are infectious lethal diseases of mammalian neurons characterised by conversion of the normal membrane protein PrPC to the disease-associated conformational isomer called PrPSc. PrPSc, apparently responsible for infectivity, forms a number of different conformations and specific N-glycosylation site occupancies that correlate with TSE strain differences. Dimerisation and specific binding of PrPc and PrPSc seems critical in PrPSc biosynthesis and is influenced by N-glycosylation and disulfide bond formation. PrPsc can be amplified in vitro but new glycosylation cannot occur in cell free environments without the special conditions of microsome mediated in vitro translation, thus strain specific glycosylation of PrPSc formed in vitro in the absence of these conditions must take place by imprintation of PrPc from existing glycosylation site-occupancies. PrPSc formed in cell free homogenates is not infectious pointing to events necessary for infectivity that only occur in intact cells. Such events may include glycosylation site occupancy and ER folding chaperone activity. In the biosynthetic pathway of PrPSc, early acquisition of sensitivity of the GPI anchor to phospholipase C can be distinguished from the later acquisition of protease resistance and detergent insolubility. By analogy to the co-translational formation of the MHC I loading complex, it is postulated that PrPSc or its specific peptides could imprint nascent PrPc chains thereby ensuring its own folds and the observed glycosylation site occupancy ratios of strains.
Collapse
Affiliation(s)
- P H Atkinson
- AgResearch Wallaceville, PO Box 40063, Upper Hutt, New Zealand.
| |
Collapse
|
162
|
|
163
|
Rangel A, Burgaya F, Gavín R, Soriano E, Aguzzi A, Del Río JA. Enhanced susceptibility of Prnp-deficient mice to kainate-induced seizures, neuronal apoptosis, and death: Role of AMPA/kainate receptors. J Neurosci Res 2008; 85:2741-55. [PMID: 17304577 DOI: 10.1002/jnr.21215] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Normal physiologic functions of the cellular prion protein (PrPc) are still elusive. This GPI-anchored protein exerts many functions, including roles in neuron proliferation, neuroprotection or redox homeostasis. There are, however, conflicting data concerning its role in synaptic transmission. Although several studies report that PrPc participates in NMDA-mediated neurotransmission, parallel studies describe normal behavior of PrPc-mutant mice. Abnormal axon connections have been described in the dentate gyrus of the hippocampi of PrPc-deficient mice similar to those observed in epilepsy. A study indicates increased susceptibility to kainate (KA) in these mutant mice. We extend the observation of these studies by means of several histologic and biochemical analyses of KA-treated mice. PrPc-deficient mice showed increased sensitivity to KA-induced seizures in vivo and in vitro in organotypic slices. In addition, we show that this sensitivity is cell-specific because interference experiments to abolish PrPc expression increased susceptibility to KA in PrPc-expressing cells. We indicate a correlation of susceptibility to KA in cells lacking PrPc with the differential expression of GluR6 and GluR7 KA receptor subunits using real-time RT-PCR methods. These results indicate that PrPc exerts a neuroprotective role against KA-induced neurotoxicity, probably by regulating the expression of KA receptor subunits.
Collapse
Affiliation(s)
- Alejandra Rangel
- Cellular and Molecular Basis of Neurodegeneration and Neurorepair, Department of Cell Biology, University of Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
164
|
Abstract
Prions represent a new biological paradigm of protein-mediated information transfer. In mammals, prions are the cause of fatal, transmissible neurodegenerative diseases, often referred to as transmissible spongiform encephalopathies. Many unresolved issues remain, including the exact molecular nature of the prion, the detailed mechanism of prion propagation, and the mechanism by which prion diseases can be both genetic and infectious. In addition, we know little about the mechanism by which neurons degenerate during prion diseases. Tied to this, the physiological function of the normal form of the prion protein remains unclear, and it is uncertain whether loss of this function contributes to prion pathogenesis. The factors governing the transmission of prions between species remain unclear, in particular the means by which prion strains and PrP primary structure interact to affect interspecies prion transmission. Despite all these unknowns, dramatic advances in our understanding of prions have occurred because of their transmissibility to experimental animals and the development of transgenic mouse models has done much to further our understanding about various aspects of prion biology. In this chapter, I review recent advances in our understanding of prion biology that derive from this powerful and informative approach.
Collapse
Affiliation(s)
- Glenn C Telling
- Department of Microbiology, Immunology and Molecular Genetics, Sanders Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
165
|
Hu W, Kieseier B, Frohman E, Eagar TN, Rosenberg RN, Hartung HP, Stüve O. Prion proteins: Physiological functions and role in neurological disorders. J Neurol Sci 2008; 264:1-8. [PMID: 17707411 DOI: 10.1016/j.jns.2007.06.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2007] [Revised: 05/01/2007] [Accepted: 06/08/2007] [Indexed: 02/01/2023]
Abstract
Stanley Prusiner was the first to promote the concept of misfolded proteins as a cause for neurological disease. It has since been shown by him and other investigators that the scrapie isoform of prion protein (PrP(Sc)) functions as an infectious agent in numerous human and non-human disorders of the central nervous system (CNS). Interestingly, other organ systems appear to be less affected, and do not appear to lead to major co-morbidities. The physiological function of the endogenous cellular form of the prion protein (PrP(C)) is much less clear. It is intriguing that PrP(c) is expressed on most tissues in mammals, suggesting not only biological functions outside the CNS, but also a role other than the propagation of its misfolded isotype. In this review, we summarize accumulating in vitro and in vivo evidence regarding the physiological functions of PrP(C) in the nervous system, as well as in lymphoid organs.
Collapse
Affiliation(s)
- Wei Hu
- Department of Neurology, University of Texas Southwestern Medical Center at Dallas, TX 75390-9036, United States
| | | | | | | | | | | | | |
Collapse
|
166
|
Zomosa-Signoret V, Arnaud JD, Fontes P, Alvarez-Martinez MT, Liautard JP. Physiological role of the cellular prion protein. Vet Res 2007; 39:9. [PMID: 18073096 DOI: 10.1051/vetres:2007048] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2007] [Accepted: 09/21/2007] [Indexed: 01/30/2023] Open
Abstract
The prion protein (PrP) plays a key role in the pathogenesis of prion diseases. However, the normal function of the protein remains unclear. The cellular isoform (PrP(C)) is expressed most abundantly in the brain, but has also been detected in other non-neuronal tissues as diverse as lymphoid cells, lung, heart, kidney, gastrointestinal tract, muscle, and mammary glands. Cell biological studies of PrP contribute to our understanding of PrP(C) function. Like other membrane proteins, PrP(C) is post-translationally processed in the endoplasmic reticulum and Golgi on its way to the cell surface after synthesis. Cell surface PrP(C) constitutively cycles between the plasma membrane and early endosomes via a clathrin-dependent mechanism, a pathway consistent with a suggested role for PrP(C) in cellular trafficking of copper ions. Although PrP(-/-) mice have been reported to have only minor alterations in immune function, PrP(C) is up-regulated in T cell activation and may be expressed at higher levels by specialized classes of lymphocytes. Furthermore, antibody cross-linking of surface PrP(C) modulates T cell activation and leads to rearrangements of lipid raft constituents and increased phosphorylation of signaling proteins. These findings appear to indicate an important but, as yet, ill-defined role in T cell function. Recent work has suggested that PrP(C) is required for self-renewal of haematopoietic stem cells. PrP(C) is highly expressed in the central nervous system, and since this is the major site of prion pathology, most interest has focused on defining the role of PrP(C) in neurones. Although PrP(-/-) mice have a grossly normal neurological phenotype, even when neuronal PrP(C) is knocked out postnatally, they do have subtle abnormalities in synaptic transmission, hippocampal morphology, circadian rhythms, and cognition and seizure threshold. Other postulated neuronal roles for PrP(C) include copper-binding, as an anti- and conversely, pro-apoptotic protein, as a signaling molecule, and in supporting neuronal morphology and adhesion. The prion protein may also function as a metal binding protein such as copper, yielding cellular antioxidant capacity suggesting a role in the oxidative stress homeostasis. Finally, recent observations on the role of PrP(C) in long-term memory open a challenging field.
Collapse
|
167
|
Erlich P, Cesbron JY, Lemaire-Vieille C, Curt A, Andrieu JP, Schoehn G, Jamin M, Gagnon J. PrP N-terminal domain triggers PrP(Sc)-like aggregation of Dpl. Biochem Biophys Res Commun 2007; 365:478-83. [PMID: 17997980 DOI: 10.1016/j.bbrc.2007.10.202] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2007] [Accepted: 10/31/2007] [Indexed: 12/19/2022]
Abstract
Transmissible spongiform encephalopathies are fatal neurodegenerative disorders thought to be transmitted by self-perpetuating conformational conversion of a neuronal membrane glycoprotein (PrP(C), for "cellular prion protein") into an abnormal state (PrP(Sc), for "scrapie prion protein"). Doppel (Dpl) is a protein that shares significant biochemical and structural homology with PrP(C). In contrast to its homologue PrP(C), Dpl is unable to participate in prion disease progression or to achieve an abnormal PrP(Sc)-like state. We have constructed a chimeric mouse protein, composed of the N-terminal domain of PrP(C) (residues 23-125) and the C-terminal part of Dpl (residues 58-157). This chimeric protein displays PrP-like biochemical and structural features; when incubated in presence of NaCl, the alpha-helical monomer forms soluble beta-sheet-rich oligomers which acquire partial resistance to pepsin proteolysis in vitro, as do PrP oligomers. Moreover, the presence of aggregates akin to protofibrils is observed in soluble oligomeric species by electron microscopy.
Collapse
Affiliation(s)
- Paul Erlich
- Laboratoire Adaptation et Pathogénie des Micro-organismes, Université Joseph Fourier, BP 170, 38042 Grenoble Cedex 9, France
| | | | | | | | | | | | | | | |
Collapse
|
168
|
Sakaguchi S. Molecular biology of prion protein and its first homologous protein. THE JOURNAL OF MEDICAL INVESTIGATION 2007; 54:211-23. [PMID: 17878669 DOI: 10.2152/jmi.54.211] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Conformational conversion of the normal cellular isoform of prion protein, PrP(C), a glycoprotein anchored to the cell membrane by a glycosylphosphatidylinositol moiety, into the abnormally folded, amyloidogenic prion protein, PrP(Sc), plays a pivotal role in the pathogenesis of prion diseases. It has been suggested that PrP(C) might be functionally disturbed by constitutive conversion to PrP(Sc) due to either the resulting depletion of PrP(C) or the dominant negative effects of PrP(Sc) on PrP(C) or both. Consistent with this, we and others showed that mice devoid of PrP(C) (PrP-/-) spontaneously developed abnormal phenotypes very similar to the neurological abnormalities of prion diseases, supporting the concept that functional loss of PrP(C) might at least be partly involved in the pathogenesis of the diseases. However, no neuronal cell death could be detected in PrP-/- mice, indicating that the functional loss of PrP(C) alone might not be enough to induce neuronal cell death, one of major pathological hallmarks of prion diseases. Interestingly, it was recently shown that the first identified PrP-like protein, termed PrPLP/Doppel (Dpl), is neurotoxic in the absence of PrP(C), causing Purkinje cell degeneration in the cerebellum of mice. Although it is not understood if PrP(Sc) could have a neurotoxic potential similar to PrPLP/Dpl, it is very interesting to speculate that accumulation of PrP(Sc) and the functional disturbance of PrP(C), both of which are caused by constitutive conversion, might be required for the neurodegeneration in prion diseases.
Collapse
Affiliation(s)
- Suehiro Sakaguchi
- Division of Molecular Neurobiology, The Institute for Enzyme Research, The University of Tokushima, Japan
| |
Collapse
|
169
|
Lima FRS, Arantes CP, Muras AG, Nomizo R, Brentani RR, Martins VR. Cellular prion protein expression in astrocytes modulates neuronal survival and differentiation. J Neurochem 2007; 103:2164-76. [PMID: 17868300 DOI: 10.1111/j.1471-4159.2007.04904.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The functions of cellular prion protein (PrP(C)) are under intense debate and PrP(C) loss of function has been implicated in the pathology of prion diseases. Neuronal PrP(C) engagement with stress-inducible protein-1 and laminin (LN) plays a key role in cell survival and differentiation. The present study evaluated whether PrP(C) expression in astrocytes modulates neuron-glia cross-talk that underlies neuronal survival and differentiation. Astrocytes from wild-type mice promoted a higher level neuritogenesis than astrocytes obtained from PrP(C)-null animals. Remarkably, neuritogenesis was greatly diminished in co-cultures combining PrP(C)-null astrocytes and neurons. LN secreted and deposited at the extracellular matrix by wild-type astrocytes presented a fibrillary pattern and was permissive for neuritogenesis. Conversely, LN coming from PrP(C)-null astrocytes displayed a punctate distribution, and did not support neuronal differentiation. Additionally, secreted soluble factors from PrP(C)-null astrocytes promoted lower levels of neuronal survival than those secreted by wild-type astrocytes. PrP(C) and stress-inducible protein-1 were characterized as soluble molecules secreted by astrocytes which participate in neuronal survival. Taken together, these data indicate that PrP(C) expression in astrocytes is critical for sustaining cell-to-cell interactions, the organization of the extracellular matrix, and the secretion of soluble factors, all of which are essential events for neuronal differentiation and survival.
Collapse
Affiliation(s)
- Flavia R S Lima
- Ludwig Institute for Cancer Research, Hospital Alemão Oswaldo Cruz, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
170
|
Gains MJ, LeBlanc AC. Canadian Association of Neurosciences Review: prion protein and prion diseases: the good and the bad. Can J Neurol Sci 2007; 34:126-45. [PMID: 17598589 DOI: 10.1017/s0317167100005953] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In the 1700's a strange new disease affecting sheep was recognized in Europe. The disease later became known as "Scrapie" and was the first of a family of similar diseases affecting a number of species that are now known as the Transmissible Spongiform Encephalopathies (TSEs). The appearance of a new disease in humans linked to the consumption of meat products from infected cattle has stimulated widespread public concern and scientific interest in the prion protein and related diseases. Nearly 300 years after the first report, these diseases still merit the descriptor "strange". This family of diseases is characterized by a unique profile of histological changes, can be transmitted as inherited or acquired diseases, as well as apparent sporadic spontaneous generation of the disease. These diseases are believed by many, to be caused by a unique protein only infectious agent. The "prion protein" (PrPC), a term first coined by Stanley Prusiner in 1982 is crucial to the development of these diseases, apparently by acting as a substrate for an abnormal disease associated form. However, aside from being critical to the pathogenesis of the disease, the function of PrPC, which is expressed in all mammals, has defied definitive description. Several roles have been proposed on the basis of in vitro studies, however, thus far, in vivo confirmation has not been forthcoming. The biological features of PrPC also seem to be unusual. Numerous mouse models have been generated in an attempt to understand the pathogenesis of these diseases. This review summarizes the current state of histological features, the etiologic agent, the normal metabolism and the function of the prion protein, as well as the limitations of the mouse models.
Collapse
Affiliation(s)
- Malcolm J Gains
- Department of Neurology and Neurosurgery, McGill University, Montréal, Canada
| | | |
Collapse
|
171
|
Abstract
The biological role of the scrapie isoform of prion protein (PrP(Sc)) as an infectious agent in numerous human and non-human disorders of the central nervous system is well established. In contrast, and despite decades of intensive research, the physiological function of the endogenous cellular form of the prion protein (PrP(C)) remains elusive. In mammals, the ubiquitous expression of PrP(C) suggests biological functions other than its pathological role in propagating the accumulation of its misfolded isotype. Other functions that have been attributed to PrP(C) include signal transduction, synaptic transmission and protection against cell death through the apoptotic pathway. More recently, immunoregulatory properties of PrP(C) have been reported. We review accumulating in vitro and in vivo evidence regarding physiological functions of PrP(C).
Collapse
Affiliation(s)
- W Hu
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, Dallas, TX 75390-9036, USA
| | | | | |
Collapse
|
172
|
Cavadini G, Petrzilka S, Kohler P, Jud C, Tobler I, Birchler T, Fontana A. TNF-alpha suppresses the expression of clock genes by interfering with E-box-mediated transcription. Proc Natl Acad Sci U S A 2007; 104:12843-8. [PMID: 17646651 PMCID: PMC1937554 DOI: 10.1073/pnas.0701466104] [Citation(s) in RCA: 315] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Production of TNF-alpha and IL-1 in infectious and autoimmune diseases is associated with fever, fatigue, and sleep disturbances, which are collectively referred to as sickness behavior syndrome. In mice TNF-alpha and IL-1 increase nonrapid eye movement sleep. Because clock genes regulate the circadian rhythm and thereby locomotor activity and may alter sleep architecture we assessed the influence of TNF-alpha on the circadian timing system. TNF-alpha is shown here to suppress the expression of the PAR bZip clock-controlled genes Dbp, Tef, and Hlf and of the period genes Per1, Per2, and Per3 in fibroblasts in vitro and in vivo in the liver of mice infused with the cytokine. The effect of TNF-alpha on clock genes is shared by IL-1beta, but not by IFN-alpha, and IL-6. Furthermore, TNF-alpha interferes with the expression of Dbp in the suprachiasmatic nucleus and causes prolonged rest periods in the dark when mice show spontaneous locomotor activity. Using clock reporter genes TNF-alpha is found here to inhibit CLOCK-BMAL1-induced activation of E-box regulatory elements-dependent clock gene promoters. We suggest that the increase of TNF-alpha and IL-1beta, as seen in infectious and autoimmune diseases, impairs clock gene functions and causes fatigue.
Collapse
Affiliation(s)
- Gionata Cavadini
- *Division of Clinical Immunology, University Hospital Zurich, Haeldeliweg 4, CH-8044 Zurich, Switzerland
| | - Saskia Petrzilka
- *Division of Clinical Immunology, University Hospital Zurich, Haeldeliweg 4, CH-8044 Zurich, Switzerland
| | - Philipp Kohler
- *Division of Clinical Immunology, University Hospital Zurich, Haeldeliweg 4, CH-8044 Zurich, Switzerland
| | - Corinne Jud
- Institute of Biochemistry, University of Fribourg, Rue du Musée 5, CH-1700 Fribourg, Switzerland; and
| | - Irene Tobler
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Thomas Birchler
- *Division of Clinical Immunology, University Hospital Zurich, Haeldeliweg 4, CH-8044 Zurich, Switzerland
- To whom correspondence may be addressed. E-mail: or
| | - Adriano Fontana
- *Division of Clinical Immunology, University Hospital Zurich, Haeldeliweg 4, CH-8044 Zurich, Switzerland
- To whom correspondence may be addressed. E-mail: or
| |
Collapse
|
173
|
Ogawa S, Kwon CH, Zhou J, Koovakkattu D, Parada LF, Sinton CM. A seizure-prone phenotype is associated with altered free-running rhythm in Pten mutant mice. Brain Res 2007; 1168:112-23. [PMID: 17706614 DOI: 10.1016/j.brainres.2007.06.074] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2007] [Revised: 06/08/2007] [Accepted: 06/15/2007] [Indexed: 01/16/2023]
Abstract
Conditional deletion of Pten (phosphatase and tensin homolog on chromosome ten) in differentiated cortical and hippocampal neurons in the mouse results in seizures, macrocephaly, social interaction deficits and anxiety, reminiscent of human autism spectrum disorder. Here we extended our previous examination of these mice using electroencephalogram/electromyogram (EEG/EMG) monitoring and found age-related increases in spontaneous seizures, which were correlated with cellular dispersion in the hippocampal dentate gyrus. Increased spontaneous locomotor activity in the open field on the first and the second day of a 3-day continuous study suggested heightened anxiety in Pten mutant mice. In contrast, the mutants exhibited decreased wheel running activity, which may reflect reduced adaptability to a novel environment. Synchronization to the light-dark cycle was normal, but for up to 28 days under constant darkness, the Pten mutants maintained a significantly lengthened and remarkably constant free-running period of almost exactly 24 h. This result implies the involvement of Pten in the maintenance of circadian rhythms, which we interpret as being due to an effect on the phosphatidylinositol 3-kinase (PI3K) signaling cascade.
Collapse
Affiliation(s)
- Shiori Ogawa
- Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | | | | | | | | | | |
Collapse
|
174
|
Sánchez-Alavez M, Conti B, Moroncini G, Criado JR. Contributions of neuronal prion protein on sleep recovery and stress response following sleep deprivation. Brain Res 2007; 1158:71-80. [PMID: 17570349 PMCID: PMC1994827 DOI: 10.1016/j.brainres.2007.05.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2006] [Revised: 04/09/2007] [Accepted: 05/08/2007] [Indexed: 11/18/2022]
Abstract
In order to gain insights on the function of the cellular prion protein (PrP(C)) sleep and the levels of the stress hormones corticosterone (CORT) and the adrenocorticotropic hormone (ACTH) before and after sleep deprivation (SD) were compared in two wild type (WT) mice strains and the following three PrP(C) transgenic lines: mice null for PrP(C) (mPrP(0/0)) and mice with specific and central expression of PrP in neurons (NSE-HPrP/mPrP(0/0)) or in glia cells (GFAP-HPrP/mPrP(0/0)). After SD mPrP(0/0) mice showed a larger degree of sleep fragmentation and of latency to enter rapid eye movement (REM) and non-REM sleep (NREM) than WT. During sleep recovery, the amount of NREM sleep and the slow-wave activity (SWA) were reduced in mPrP(0/0) mice. After SD, CORT and ACTH levels have distinct patterns in WT and mPrP(0/0). The NREM and SWA deficit was restored in NSE-HPrP/mPrP(0/0) mice but not in GFAP-HPrP/mPrP(0/0). Hormonal profile was only partially restored in NSE-HPrP/mPrP(0/0) mice and was similar to that of mPrP(0/0) and GFAP-HPrP/mPrP(0/0) mice. These findings demonstrate that neuronal, but not non-neuronal, PrP(C) is involved in sleep homeostasis and sleep continuity. They also suggest that neuronal PrP(c)-dependent hormonal regulation of HPA axis may contribute to the sleep homeostasis.
Collapse
Affiliation(s)
- Manuel Sánchez-Alavez
- Molecular and Integrative Neuroscience Department, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | | | | | | |
Collapse
|
175
|
Watts JC, Westaway D. The prion protein family: Diversity, rivalry, and dysfunction. Biochim Biophys Acta Mol Basis Dis 2007; 1772:654-72. [PMID: 17562432 DOI: 10.1016/j.bbadis.2007.05.001] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2006] [Revised: 04/26/2007] [Accepted: 05/02/2007] [Indexed: 11/24/2022]
Abstract
The prion gene family currently consists of three members: Prnp which encodes PrP(C), the precursor to prion disease associated isoforms such as PrP(Sc); Prnd which encodes Doppel, a testis-specific protein involved in the male reproductive system; and Sprn which encodes the newest PrP-like protein, Shadoo, which is expressed in the CNS. Although the identification of numerous candidate binding partners for PrP(C) has hinted at possible cellular roles, molecular interpretations of PrP(C) activity remain obscure and no widely-accepted view as to PrP(C) function has emerged. Nonetheless, studies into the functional interrelationships of prion proteins have revealed an interesting phenomenon: Doppel is neurotoxic to cerebellar cells in a manner which can be blocked by either PrP(C) or Shadoo. Further examination of this paradigm may help to shed light on two prominent unanswered questions in prion biology: the functional role of PrP(C) and the neurotoxic pathways initiated by PrP(Sc) in prion disease.
Collapse
Affiliation(s)
- Joel C Watts
- Centre for Research in Neurodegenerative Diseases and Department of Laboratory Medicine and Pathobiology, University of Toronto, Canada
| | | |
Collapse
|
176
|
Nazor KE, Seward T, Telling GC. Motor behavioral and neuropathological deficits in mice deficient for normal prion protein expression. BIOCHIMICA ET BIOPHYSICA ACTA 2007; 1772:645-53. [PMID: 17531449 PMCID: PMC3025296 DOI: 10.1016/j.bbadis.2007.04.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/22/2007] [Revised: 04/12/2007] [Accepted: 04/17/2007] [Indexed: 10/23/2022]
Abstract
It has been difficult to reconcile the absence of pathology and apparently normal behavior of mice lacking prion protein (PrP), referred to as Prnp(0/0) mice, with a mechanism of prion pathogenesis involving progressive loss of PrP(C)-mediated neuroprotection. However, here we report that Prnp(0/0) mice exhibit significant age-related defects in motor coordination and balance compared with mice expressing wild type Prnp on a syngeneic background, and that the brains of behaviorally-impaired Prnp(0/0) mice display the cardinal neuropathological hallmarks of spongiform pathology and reactive astrocytic gliosis that normally accompany prion disease. Consistent with the appearance of cerebellar ataxia as an early symptom in patients with Gerstmann-Sträussler-Scheinker syndrome (GSS), an inherited form of human prion disease, motor coordination and balance defects manifested in a transgenic (Tg) mouse model of GSS considerably earlier than the onset of end-stage neurodegenerative disease. Our results are consistent with a mechanism in which loss of normal PrP(C) function is an important pathological component of prion diseases.
Collapse
Affiliation(s)
- Karah E. Nazor
- Sanders Brown Center on Aging, University of Kentucky, Lexington, KY
- Graduate Center for Gerontology, University of Kentucky, Lexington, KY
| | - Tanya Seward
- Sanders Brown Center on Aging, University of Kentucky, Lexington, KY
| | - Glenn C. Telling
- Sanders Brown Center on Aging, University of Kentucky, Lexington, KY
- Graduate Center for Gerontology, University of Kentucky, Lexington, KY
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, KY
- Department of Neurology, University of Kentucky, Lexington, KY
| |
Collapse
|
177
|
Kim CK, Hirose Y, Sakudo A, Takeyama N, Kang CB, Taniuchi Y, Matsumoto Y, Itohara S, Sakaguchi S, Onodera T. Reduced response of splenocytes after mitogen-stimulation in the prion protein (PrP) gene-deficient mouse: PrPLP/Doppel production and cerebral degeneration. Biochem Biophys Res Commun 2007; 358:469-74. [PMID: 17498663 DOI: 10.1016/j.bbrc.2007.04.174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2007] [Revised: 04/20/2007] [Accepted: 04/20/2007] [Indexed: 11/17/2022]
Abstract
Splenocytes of wild-type (Prnp(+/+)) and prion protein gene-deficient (Prnp(-/-)) mice were treated with various activation stimuli such as T cell mitogen concanavalin A (ConA), phorbol 12-myristate 13-acetate (PMA)+ionomycin (Io), or B cell mitogen lipopolysaccharide (LPS). Cellular prion protein (PrP(C)) expression was enhanced following ConA stimulation, but not PMA+Io or LPS in Prnp(+/+) splenocytes. Rikn Prnp(-/-) splenocytes elicited lower cell proliferations than Prnp(+/+) or Zrch I Prnp(-/-) splenocytes after LPS stimulation and showed sporadic nerve cells in the cerebral cortex and deeper structure. Around the degenerated nerve cells, mild vacuolation in the neuropil was observed. This neural alteration correlated well to the suppressed response of B cells in the spleen. The finding that discrete lesions within the central nervous systems induced marked modulation of immune function probably indicates the existence of a delicately balanced neural-endocrine network by PrP(C) and PrPLP/Doppel.
Collapse
Affiliation(s)
- Chi-Kyeong Kim
- Department of Molecular Immunology, School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
178
|
Westergard L, Christensen HM, Harris DA. The cellular prion protein (PrP(C)): its physiological function and role in disease. BIOCHIMICA ET BIOPHYSICA ACTA 2007; 1772:629-44. [PMID: 17451912 PMCID: PMC1986710 DOI: 10.1016/j.bbadis.2007.02.011] [Citation(s) in RCA: 295] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/14/2006] [Revised: 02/20/2007] [Accepted: 02/22/2007] [Indexed: 12/13/2022]
Abstract
Prion diseases are caused by conversion of a normal cell-surface glycoprotein (PrP(C)) into a conformationally altered isoform (PrP(Sc)) that is infectious in the absence of nucleic acid. Although a great deal has been learned about PrP(Sc) and its role in prion propagation, much less is known about the physiological function of PrP(C). In this review, we will summarize some of the major proposed functions for PrP(C), including protection against apoptotic and oxidative stress, cellular uptake or binding of copper ions, transmembrane signaling, formation and maintenance of synapses, and adhesion to the extracellular matrix. We will also outline how loss or subversion of the cytoprotective or neuronal survival activities of PrP(C) might contribute to the pathogenesis of prion diseases, and how similar mechanisms are probably operative in other neurodegenerative disorders.
Collapse
Affiliation(s)
| | | | - David A. Harris
- Department of Cell Biology and Physiology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110
| |
Collapse
|
179
|
Abstract
Sleep is investigated in many different ways, many different species and under many different circumstances. Modern sleep research is a multidisciplinary venture. Therefore, this review cannot give a complete overview of all techniques used in sleep research and sleep medicine. What it will try to do is to give an overview of widely applied techniques and exciting new developments. Electroencephalography has been the backbone of sleep research and sleep medicine since its first application in the 1930s. The electroencephalogram is still used but now combined with many different techniques monitoring body and brain temperature, changes in brain and blood chemistry, or changes in brain functioning. Animal research has been very important for progress in sleep research and sleep medicine. It provides opportunities to investigate the sleeping brain in ways not possible in healthy volunteers. Progress in genomics has brought new insights in sleep regulation, the best example being the discovery of hypocretin/orexin deficiency as the cause of narcolepsy. Gene manipulation holds great promise for the future since it is possible not only to investigate the functions of different genes under normal conditions, but also to mimic human pathology in much greater detail.
Collapse
Affiliation(s)
- T Deboer
- Laboratory for Neurophysiology, Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
180
|
Paar C, Wurm S, Pfarr W, Sonnleitner A, Wechselberger C. Prion protein resides in membrane microclusters of the immunological synapse during lymphocyte activation. Eur J Cell Biol 2007; 86:253-64. [PMID: 17449139 DOI: 10.1016/j.ejcb.2007.03.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2006] [Revised: 01/19/2007] [Accepted: 03/07/2007] [Indexed: 12/22/2022] Open
Abstract
Expression of prion protein (PrP) has been reported for a variety of cell types including neuronal cells, haematopoietic stem cells, antigen-presenting cells, as well as lymphocytes. However, besides this widespread occurrence little is known about the physiological roles exhibited by this enigmatic protein. In this study, the contribution of PrP to the classical T-lymphocyte activation process was characterized by clustering the T-cell receptor component CD3epsilon as well as PrP with soluble and surface-immobilized antibodies, respectively. We present evidence that PrP is a component of signaling structures recently described as plasma membrane microclusters established during T-lymphocyte activation. The formation of immunological synapses, however, did not depend on the presence of PrP as proven by siRNA knockdown experiments, indicating very subtle physiological roles of PrP in vivo within the immune system.
Collapse
Affiliation(s)
- Christian Paar
- Upper Austrian Research GmbH, Center for Biomedical Nanotechnology, Scharitzerstrasse 6-8, A-4020 Linz, Austria
| | | | | | | | | |
Collapse
|
181
|
Steele AD, Lindquist S, Aguzzi A. The prion protein knockout mouse: a phenotype under challenge. Prion 2007; 1:83-93. [PMID: 19164918 DOI: 10.4161/pri.1.2.4346] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The key pathogenic event in prion disease involves misfolding and aggregation of the cellular prion protein (PrP). Beyond this fundamental observation, the mechanism by which PrP misfolding in neurons leads to injury and death remains enigmatic. Prion toxicity may come about by perverting the normal function of PrP. If so, understanding the normal function of PrP may help to elucidate the molecular mechansim of prion disease. Ablation of the Prnp gene, which encodes PrP, was instrumental for determining that the continuous production of PrP is essential for replicating prion infectivity. Since the structure of PrP has not provided any hints to its possible function, and there is no obvious phenotype in PrP KO mice, studies of PrP function have often relied on intuition and serendipity. Here, we enumerate the multitude of phenotypes described in PrP deficient mice, many of which manifest themselves only upon physiological challenge. We discuss the pleiotropic phenotypes of PrP deficient mice in relation to the possible normal function of PrP. The critical question remains open: which of these phenotypes are primary effects of PrP deletion and what do they tell us about the function of PrP?
Collapse
Affiliation(s)
- Andrew D Steele
- Whitehead Institute for Biomedical Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA.
| | | | | |
Collapse
|
182
|
Priola SA, Vorberg I. Molecular aspects of disease pathogenesis in the transmissible spongiform encephalopathies. Mol Biotechnol 2007; 33:71-88. [PMID: 16691009 DOI: 10.1385/mb:33:1:71] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 11/11/2022]
Abstract
The transmissible spongiform encephalopathies (TSE), or prion diseases, are a group of rare, fatal, and transmissible neurodegenerative diseases of mammals for which there are no known viral or bacterial etiological agents. The bovine form of these diseases, bovine spongiform encephalopathy (BSE), has crossed over into humans to cause variant Creutzfeldt-Jakob disease. As a result, BSE and the TSE diseases are now considered a significant threat to human health. Understanding the basic mechanisms of TSE pathogenesis is essential for the development of effective TSE diagnostic tests and anti-TSE therapeutic regimens. This review provides an overview of the molecular mechanisms that underlie this enigmatic group of diseases.
Collapse
Affiliation(s)
- Suzette A Priola
- Laboratory of Persistent Viral Diseases, National Institute of Allergy and Infectious Diseases, Rocky Mountain Laboratories, 903 S. 4th St., Hamilton, MT 59840, USA.
| | | |
Collapse
|
183
|
Vana K, Zuber C, Nikles D, Weiss S. Novel aspects of prions, their receptor molecules, and innovative approaches for TSE therapy. Cell Mol Neurobiol 2007; 27:107-28. [PMID: 17151946 PMCID: PMC11517296 DOI: 10.1007/s10571-006-9121-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2006] [Accepted: 09/20/2006] [Indexed: 10/23/2022]
Abstract
1. Prion diseases are a group of rare, fatal neurodegenerative diseases, also known as transmissible spongiform encephalopathies (TSEs), that affect both animals and humans and include bovine spongiform encephalopathy (BSE) in cattle, scrapie in sheep, chronic wasting disease (CWD) in deer and elk, and Creutzfeldt-Jakob disease (CJD) in humans. TSEs are usually rapidly progressive and clinical symptoms comprise dementia and loss of movement coordination due to the accumulation of an abnormal isoform (PrP(Sc)) of the host-encoded prion protein (PrP(c)). 2. This article reviews the current knowledge on PrP(c) and PrP(Sc), prion replication mechanisms, interaction partners of prions, and their cell surface receptors. Several strategies, summarized in this article, have been investigated for an effective antiprion treatment including development of a vaccination therapy and screening for potent chemical compounds. Currently, no effective treatment for prion diseases is available. 3. The identification of the 37 kDa/67 kDa laminin receptor (LRP/LR) and heparan sulfate as cell surface receptors for prions, however, opens new avenues for the development of alternative TSE therapies.
Collapse
Affiliation(s)
- Karen Vana
- Laboratorium für Molekulare Biologie, Genzentrum, Institut für Biochemie der Ludwig-Maximilians-Universität München, Feodor-Lynen-Str. 25, 81377 München, Germany
| | - Chantal Zuber
- Laboratorium für Molekulare Biologie, Genzentrum, Institut für Biochemie der Ludwig-Maximilians-Universität München, Feodor-Lynen-Str. 25, 81377 München, Germany
| | - Daphne Nikles
- Laboratorium für Molekulare Biologie, Genzentrum, Institut für Biochemie der Ludwig-Maximilians-Universität München, Feodor-Lynen-Str. 25, 81377 München, Germany
| | - Stefan Weiss
- Laboratorium für Molekulare Biologie, Genzentrum, Institut für Biochemie der Ludwig-Maximilians-Universität München, Feodor-Lynen-Str. 25, 81377 München, Germany
| |
Collapse
|
184
|
Richt JA, Kasinathan P, Hamir AN, Castilla J, Sathiyaseelan T, Vargas F, Sathiyaseelan J, Wu H, Matsushita H, Koster J, Kato S, Ishida I, Soto C, Robl JM, Kuroiwa Y. Production of cattle lacking prion protein. Nat Biotechnol 2007; 25:132-8. [PMID: 17195841 PMCID: PMC2813193 DOI: 10.1038/nbt1271] [Citation(s) in RCA: 210] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2006] [Accepted: 10/27/2006] [Indexed: 01/12/2023]
Abstract
Prion diseases are caused by propagation of misfolded forms of the normal cellular prion protein PrP(C), such as PrP(BSE) in bovine spongiform encephalopathy (BSE) in cattle and PrP(CJD) in Creutzfeldt-Jakob disease (CJD) in humans. Disruption of PrP(C) expression in mice, a species that does not naturally contract prion diseases, results in no apparent developmental abnormalities. However, the impact of ablating PrP(C) function in natural host species of prion diseases is unknown. Here we report the generation and characterization of PrP(C)-deficient cattle produced by a sequential gene-targeting system. At over 20 months of age, the cattle are clinically, physiologically, histopathologically, immunologically and reproductively normal. Brain tissue homogenates are resistant to prion propagation in vitro as assessed by protein misfolding cyclic amplification. PrP(C)-deficient cattle may be a useful model for prion research and could provide industrial bovine products free of prion proteins.
Collapse
Affiliation(s)
- Jürgen A Richt
- National Animal Disease Center, Agriculture Research Services, United States Department of Agriculture, 2300 Dayton Avenue, Ames, Iowa 50010, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
185
|
Wells M, Jelinska C, Hosszu L, Craven C, Clarke A, Collinge J, Waltho J, Jackson G. Multiple forms of copper (II) co-ordination occur throughout the disordered N-terminal region of the prion protein at pH 7.4. Biochem J 2006; 400:501-10. [PMID: 16925523 PMCID: PMC1698597 DOI: 10.1042/bj20060721] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2006] [Revised: 07/20/2006] [Accepted: 08/22/2006] [Indexed: 11/17/2022]
Abstract
Although the physiological function of the prion protein remains unknown, in vitro experiments suggest that the protein may bind copper (II) ions and play a role in copper transport or homoeostasis in vivo. The unstructured N-terminal region of the prion protein has been shown to bind up to six copper (II) ions, with each of these ions co-ordinated by a single histidine imidazole and nearby backbone amide nitrogen atoms. Individually, these sites have micromolar affinities, which is weaker than would be expected of a true cuproprotein. In the present study, we show that with subsaturating levels of copper, different forms of co-ordination will occur, which have higher affinity. We have investigated the copper-binding properties of two peptides representing the known copper-binding regions of the prion protein: residues 57-91, which contains four tandem repeats of the octapeptide GGGWGQPH, and residues 91-115. Using equilibrium dialysis and spectroscopic methods, we unambiguously demonstrate that the mode of copper co-ordination in both of these peptides depends on the number of copper ions bound and that, at low copper occupancy, copper ions are co-ordinated with sub-micromolar affinity by multiple histidine imidazole groups. At pH 7.4, three different modes of copper co-ordination are accessible within the octapeptide repeats and two within the peptide comprising residues 91-115. The highest affinity copper (II)-binding modes cause self-association of both peptides, suggesting a role for copper (II) in controlling prion protein self-association in vivo.
Collapse
Affiliation(s)
- Mark A. Wells
- *Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, U.K
- †MRC Prion Unit, Department of Neurodegenerative Disease, Institute of Neurology, University College London, Queen Square, London WC1N 3BG, U.K
| | - Clare Jelinska
- *Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, U.K
| | - Laszlo L. P. Hosszu
- *Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, U.K
- †MRC Prion Unit, Department of Neurodegenerative Disease, Institute of Neurology, University College London, Queen Square, London WC1N 3BG, U.K
| | - C. Jeremy Craven
- *Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, U.K
| | - Anthony R. Clarke
- †MRC Prion Unit, Department of Neurodegenerative Disease, Institute of Neurology, University College London, Queen Square, London WC1N 3BG, U.K
| | - John Collinge
- †MRC Prion Unit, Department of Neurodegenerative Disease, Institute of Neurology, University College London, Queen Square, London WC1N 3BG, U.K
| | - Jonathan P. Waltho
- *Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, U.K
| | - Graham S. Jackson
- †MRC Prion Unit, Department of Neurodegenerative Disease, Institute of Neurology, University College London, Queen Square, London WC1N 3BG, U.K
| |
Collapse
|
186
|
Harrington M, Molyneux P, Soscia S, Prabakar C, McKinley-Brewer J, Lall G. Behavioral and neurochemical sources of variability of circadian period and phase: studies of circadian rhythms of npy-/- mice. Am J Physiol Regul Integr Comp Physiol 2006; 292:R1306-14. [PMID: 17082354 DOI: 10.1152/ajpregu.00383.2006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The cycle length or period of the free-running rhythm is a key characteristic of circadian rhythms. In this study we verify prior reports that locomotor activity patterns and running wheel access can alter the circadian period, and we report that these treatments also increase variability of the circadian period between animals. We demonstrate that the loss of a neurochemical, neuropeptide Y (NPY), abolishes these influences and reduces the interindividual variability in clock period. These behavioral and environmental influences, from daily distribution of peak locomotor activity and from access to a running wheel, both act to push the mean circadian period to a value < 24 h. Magnitude of light-induced resetting is altered as well. When photoperiod was abruptly changed from a 18:6-h light-dark cycle (LD18:6) to LD6:18, mice deficient in NPY were slower to respond to the change in photoperiod by redistribution of their activity within the prolonged dark and eventually adopted a delayed phase angle of entrainment compared with controls. These results support the hypothesis that nonphotic influences on circadian period serve a useful function when animals must respond to abruptly changing photoperiods and point to the NPYergic pathway from the intergeniculate leaflet innervating the suprachiasmatic nucleus as a circuit mediating these effects.
Collapse
Affiliation(s)
- Mary Harrington
- Neuroscience Program, Smith College, Northampton, MA 01063, USA.
| | | | | | | | | | | |
Collapse
|
187
|
Abstract
Prions, the infectious agents of transmissible spongiform encephalopathies (TSEs), have defied full characterization for decades. The dogma has been that prions lack nucleic acids and are composed of a pathological, self-inducing form of the host's prion protein (PrP). Recent progress in propagating TSE infectivity in cell-free systems has effectively ruled out the involvement of foreign nucleic acids. However, host-derived nucleic acids or other non-PrP molecules seem to be crucial. Interactions between TSE-associated PrP and its normal counterpart are also pathologically important, so the physiological functions of normal PrP and how they might be corrupted by TSE infections have been the subject of recent research.
Collapse
Affiliation(s)
- Byron Caughey
- National Institute of Allergy and Infectious Disease, National Institutes of Health, Rocky Mountain Laboratories, 903 South 4th Street, Hamilton, Montana 59840, USA.
| | | |
Collapse
|
188
|
Isaacs JD, Jackson GS, Altmann DM. The role of the cellular prion protein in the immune system. Clin Exp Immunol 2006; 146:1-8. [PMID: 16968391 PMCID: PMC1809729 DOI: 10.1111/j.1365-2249.2006.03194.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2006] [Indexed: 12/31/2022] Open
Abstract
Prion protein (PrP) plays a key role in the pathogenesis of prion diseases. However, the normal function of the protein remains unclear. The cellular isoform (PrP(C)) is expressed widely in the immune system, in haematopoietic stem cells and mature lymphoid and myeloid compartments in addition to cells of the central nervous system. It is up-regulated in T cell activation and may be expressed at higher levels by specialized classes of lymphocyte. Furthermore, antibody cross-linking of surface PrP modulates T cell activation and leads to rearrangements of lipid raft constituents and increased phosphorylation of signalling proteins. These findings appear to indicate an important but, as yet, ill-defined role in T cell function. Although PrP(-/-) mice have been reported to have only minor alterations in immune function, recent work has suggested that PrP is required for self-renewal of haematopoietic stem cells. Here, we consider the evidence for a distinctive role for PrP(C) in the immune system and what the effects of anti-prion therapeutics may be on immune function.
Collapse
Affiliation(s)
- J D Isaacs
- Human Disease Immunogenetics Group, Department of Infectious Diseases and Immunity, Imperial College London, Hammersmith Hospital, London, UK
| | | | | |
Collapse
|
189
|
Davies GA, Bryant AR, Reynolds JD, Jirik FR, Sharkey KA. Prion diseases and the gastrointestinal tract. CANADIAN JOURNAL OF GASTROENTEROLOGY = JOURNAL CANADIEN DE GASTROENTEROLOGIE 2006; 20:18-24. [PMID: 16432555 PMCID: PMC2538961 DOI: 10.1155/2006/184528] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The gastrointestinal (GI) tract plays a central role in the pathogenesis of transmissible spongiform encephalopathies. These are human and animal diseases that include bovine spongiform encephalopathy, scrapie and Creutzfeldt-Jakob disease. They are uniformly fatal neurological diseases, which are characterized by ataxia and vacuolation in the central nervous system. Although they are known to be caused by the conversion of normal cellular prion protein to its infectious conformational isoform (PrPsc) the process by which this isoform is propagated and transported to the brain remains poorly understood. M cells, dendritic cells and possibly enteroendocrine cells are important in the movement of infectious prions across the GI epithelium. From there, PrPsc propagation requires B lymphocytes, dendritic cells and follicular dendritic cells of Peyer's patches. The early accumulation of the disease-causing agent in the plexuses of the enteric nervous system supports the contention that the autonomic nervous system is important in disease transmission. This is further supported by the presence of PrPsc in the ganglia of the parasympathetic and sympathetic nerves that innervate the GI tract. Additionally, the lymphoreticular system has been implicated as the route of transmission from the gut to the brain. Although normal cellular prion protein is found in the enteric nervous system, its role has not been characterized. Further research is required to understand how the cellular components of the gut wall interact to propagate and transmit infectious prions to develop potential therapies that may prevent the progression of transmissible spongiform encephalopathies.
Collapse
Affiliation(s)
- Gwynivere A Davies
- Institute for Infection, Immunity and Inflammation, University of Calgary, Calgary, Alberta
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta
- Department of Physiology and Biophysics, University of Calgary, Calgary, Alberta
| | - Adam R Bryant
- Institute for Infection, Immunity and Inflammation, University of Calgary, Calgary, Alberta
- Department of Anatomy and Cell Biology, University of Calgary, Calgary, Alberta
| | - John D Reynolds
- Institute for Infection, Immunity and Inflammation, University of Calgary, Calgary, Alberta
- Department of Anatomy and Cell Biology, University of Calgary, Calgary, Alberta
| | - Frank R Jirik
- Alberta Bone and Joint Institute, University of Calgary, Calgary, Alberta
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta
| | - Keith A Sharkey
- Institute for Infection, Immunity and Inflammation, University of Calgary, Calgary, Alberta
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta
- Department of Physiology and Biophysics, University of Calgary, Calgary, Alberta
- Correspondence: Dr Keith Sharkey, Department of Physiology and Biophysics, University of Calgary, 3330 Hospital Drive Northwest, Calgary, Alberta T2N 4N1. Telephone 403–220–4601, fax 403–283–3028, e-mail
| |
Collapse
|
190
|
Abstract
Neuronal vacuolation (spongiosis), neuronal death, and pronounced glial reactions are the hallmarks of transmissible spongiform encephalopathies (TSEs), or prion diseases. A wealth of physical, biochemical, and immunological evidence indicates that the TSE agent, termed prion, does not contain agent-specific nucleic acid encoding its own constituents, as is the case for all other infectious pathogens. Also, no adaptive immune responses are elicited upon infection. A defining feature of TSEs is the deposition, mainly in the brain and lymphoreticular tissues, of an aggregated and structurally abnormal protein, designated PrP(Sc) or PrP-res, which represents a conformational isomer of the ubiquitous surface protein PrP(C). Biochemical and genetic evidence link PrP and its gene to the disease. Although TSEs are by definition transmissible, a growing number of Prnp-associated non-infectious neurodegenerative proteinopathies are now being recognized.
Collapse
Affiliation(s)
- Adriano Aguzzi
- Institute of Neuropathology, Universitätsspital Zürich, Zürich, Switzerland.
| |
Collapse
|
191
|
Abstract
Personal experience indicates we sleep differently when sick. Data reviewed demonstrate the extent to which sleep is altered during the course of infection of host organisms by several classes of pathogens. One important unanswered question is whether or not the alterations in sleep during infection are of functional relevance. That is, does the way we sleep when sick facilitate or impede recovery? One retrospective, preclinical study suggests that sleep changes during infection are of functional relevance. Toth and colleagues [102] analyzed sleep responses of rabbits to three different microbial infections. Those rabbits that exhibited robust increases in NREM sleep were more likely to survive than those that exhibited long periods of NREM sleep suppression. These tantalizing data suggest that the precise alterations in sleep through the course of infection are important determinants of morbidity and mortality. Data from healthy subjects demonstrate a role for at least two cytokines in the regulation of spontaneous, physiologic NREM sleep. A second critical yet unanswered question is whether or not cytokines mediate infection-induced alterations in sleep. The hypothesis that cytokines mediate infection-induced alterations in sleep is logical based on observations of the impact of infection on levels of cytokines in the peripheral immune system and in the brain. No attempts have been made to intervene with cytokine systems in brain during the course of infection to determine if there is an impact on infection-induced alterations in sleep. Although substantial progress has been made in elucidating the myriad mechanisms by which cytokines regulate and modulate sleep, much remains to be determined with respect to mechanistic and functional aspects of infection-induced alterations in sleep.
Collapse
Affiliation(s)
- Mark R Opp
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI 48109-0615, USA.
| |
Collapse
|
192
|
Vyazovskiy VV, Kopp C, Wigger E, Jones MEE, Simpson ER, Tobler I. Sleep and rest regulation in young and old oestrogen-deficient female mice. J Neuroendocrinol 2006; 18:567-76. [PMID: 16867177 DOI: 10.1111/j.1365-2826.2006.01452.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The effect of circulating oestrogen deficiency on sleep regulation and locomotor activity was investigated in aromatase cytochrome P450 deficient mice (ArKO) and wild-type (WT) controls. Sleep was recorded in 3-month old mice during a 24-h baseline day, 6-h sleep deprivation (SD) and 18-h recovery, and activity was recorded at the age of 3, 9 and 12 months. In mice deficient of oestrogen, the total amount of sleep per 24 h was the same as in WT controls. However, in ArKO mice, sleep was enhanced in the dark period at the expense of sleep in the light phase, and was more fragmented than sleep in WT mice. This redistribution of sleep resulted in a damped amplitude of slow-wave activity (SWA; power between 0.75-4.0 Hz) in non-rapid eye movement sleep across 24 h. After SD, the rebound of sleep and SWA was similar between the genotypes, suggesting that oestrogen deficiency does not affect the mechanisms maintaining the homeostatic balance between the amount of sleep and its intensity. Motor activity decreased with age in both genotypes and was lower in ArKO mice compared to WT at all three ages. After SD, the amount of rest in 3-month old WT mice increased above baseline and was more consolidated. Both effects were less pronounced in ArKO mice, reflecting the baseline differences between the genotypes. The results indicate that despite the pronounced redistribution of sleep and motor activity in oestrogen deficient mice, the basic homeostatic mechanisms of sleep regulation in ArKO mice remain intact.
Collapse
Affiliation(s)
- V V Vyazovskiy
- Institute of Pharmacology and Toxicology, University of Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
193
|
Kretlow A, Wang Q, Kneipp J, Lasch P, Beekes M, Miller L, Naumann D. FTIR-microspectroscopy of prion-infected nervous tissue. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2006; 1758:948-59. [PMID: 16887095 DOI: 10.1016/j.bbamem.2006.05.026] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2006] [Revised: 05/04/2006] [Accepted: 05/08/2006] [Indexed: 10/24/2022]
Abstract
The family of transmissible spongiform encephalopathies (TSE), also termed prion diseases, is a group of fatal, neurodegenerative diseases characterized by the accumulation of a misfolded protein, the disease-associated prion protein PrPSc. This glycoprotein differs in secondary structure from its normal, cellular isoform PrPC, which is physiologically expressed mostly by neurons. Scrapie is a prion disease first described in the 18th century in sheep and goats, and has been established as a model in rodents to study the pathogenesis and pathology of prion diseases. Assuming a multitude of molecular parameters change in the tissue in the course of the disease, FTIR microspectroscopy has been proposed as a valuable new method to study and identify prion-affected tissues due to its ability to detect a variety of changes in molecular structure and composition simultaneously. This paper reviews and discusses results from previous FTIR microspectroscopic studies on nervous tissue of scrapie-infected hamsters in the context of histological and molecular alterations known from conventional pathogenesis studies. In particular, data from studies reporting on disease-specific changes of protein structure characteristics, and also results of a recent study on hamster dorsal root ganglia (DRG) are discussed. These data include an illustration on how the application of a brilliant IR synchrotron light source enables the in situ investigation of localized changes in protein structure and composition in nervous cells or tissue due to PrPSc deposition, and a demonstration on how the IR spectral information can be correlated with results of complementary studies using immunohistochemistry and x-ray fluorescence techniques. Using IR microspectroscopy, some neurons exhibited a high accumulation of disease-associated prion protein evidenced by an increased amount of beta-sheet at narrow regions in or around the infected nervous cells. However, not all neurons from terminally diseased hamsters showed PrPSc deposition. Generally, the average spectral differences between all control and diseased DRG spectra are small but consistent as demonstrated by independent experiments. Along with studies on the purified misfolded prion protein, these data suggest that synchrotron FTIR microspectroscopy is capable of detecting the misfolded prion protein in situ without the necessity of immunostaining or purification procedures.
Collapse
Affiliation(s)
- Ariane Kretlow
- P25, Robert Koch-Institut, Nordufer 20, 13353 Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
194
|
Ballerini C, Gourdain P, Bachy V, Blanchard N, Levavasseur E, Grégoire S, Fontes P, Aucouturier P, Hivroz C, Carnaud C. Functional Implication of Cellular Prion Protein in Antigen-Driven Interactions between T Cells and Dendritic Cells. THE JOURNAL OF IMMUNOLOGY 2006; 176:7254-62. [PMID: 16751368 DOI: 10.4049/jimmunol.176.12.7254] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The cellular prion protein (PrPC) is a host-encoded, GPI-anchored cell surface protein, expressed on a wide range of tissues including neuronal and lymphoreticular cells. PrPC may undergo posttranslational conversion, giving rise to scrapie PrP, the pathogenic conformer considered as responsible for prion diseases. Despite intensive studies, the normal function of PrPC is still enigmatic. Starting from microscope observations showing an accumulation of PrPC at the sites of contact between T cells and Ag-loaded dendritic cells (DC), we have studied the contribution of PrPC in alloantigen and peptide-MHC-driven T/DC interactions. Whereas the absence of PrPC on the DC results in a reduced allogeneic T cell response, its absence on the T cell partner has no apparent effect upon this response. Therefore, PrPC seems to fulfill different functions on the two cell partners forming the synapse. In contrast, PrPC mobilization by Ab reduces the stimulatory properties of DC and the proliferative potential of responding T cells. The contrasted consequences, regarding T cell function, between PrPC deletion and PrPC coating by Abs, suggests that the prion protein acts as a signaling molecule on T cells. Furthermore, our results show that the absence of PrPC has consequences in vivo also, upon the ability of APCs to stimulate proliferative T cell responses. Thus, independent of neurological considerations, some of the evolutionary constraints that may have contributed to the conservation of the Prnp gene in mammalians, could be of immunological origin.
Collapse
Affiliation(s)
- Clara Ballerini
- Université Pierre et Marie Curie-Paris6 and Unité Mixte de Recherche (UMR) Institut National de la Santé et de la Recherche Médicale (INSERM) Unité (U)-712, Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
195
|
Abstract
The key clinical aspects of FFI, i.e. hypovigilance and attention deficit, inability to generate EEG sleep patterns, sympathetic hyperactivity and attenuation of vegetative and hormonal circadian oscillations, are related to selective atrophy of the anteroventral and mediodorsal thalamic nuclei. These nuclei constitute the limbic part of the thalamus interconnecting limbic and paralimbic regions of the cortex and other subcortical structures in the limbic system including the hypothalamus. The hypothalamus released from cortico-limbic control is shifted to a prevalence of activating, as opposed to deactivating, functions including loss of sleep, sympathetic hyperactivity and the attendant attenuation of autonomic circadian and endocrine oscillations. These findings document that the limbic thalamus has a strategic position in the central autonomic network running from the limbic cortical regions to the lower brain stem which regulates the body's homeostasis in an integrated fashion.
Collapse
Affiliation(s)
- E Lugaresi
- Institute of Clinical Neurology, University of Bologna, Italy.
| | | | | | | |
Collapse
|
196
|
Raeber AJ, Brandner S, Klein MA, Benninger Y, Musahl C, Frigg R, Roeckl C, Fischer MB, Weissmann C, Aguzzi A. Transgenic and knockout mice in research on prion diseases. Brain Pathol 2006; 8:715-33. [PMID: 9804380 PMCID: PMC8098451 DOI: 10.1111/j.1750-3639.1998.tb00197.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Since the discovery of the prion protein (PrP) gene more than a decade ago, transgenetic investigations on the PrP gene have shaped the field of prion biology in an unprecedented way. Many questions regarding the role of PrP in susceptibility of an organism exposed to prions have been elucidated. For example mice with a targeted disruption of the PrP gene have allowed the demonstration that an organism that lacks PrPc is resistant to infection by prions. Reconstitution of these mice with mutant PrP genes allowed investigations on the structure-activity relationship of the PrP gene with regard to scrapie susceptibility. Unexpectedly, transgenic mice expressing PrP with specific amino-proximal truncations spontaneously develop a neurologic syndrome presenting with ataxia and cerebellar lesions. A distinct spontaneous neurologic phenotype was observed in mice with internal deletions in PrP. Using ectopic expression of PrP in PrP knockout mice has turned out to be a valuable approach towards the identification of host cells that are capable of replicating prions. Transgenic mice have also contributed to our understanding of the molecular basis of the species barrier for prions. Finally, the availability of PrP knockout mice and transgenic mice overexpressing PrP allows selective reconstitution experiments aimed at expressing PrP in neurografts or in specific populations of hemato- and lymphopoietic cells. Such studies have shed new light onto the mechanisms of prion spread and disease pathogenesis.
Collapse
Affiliation(s)
- A J Raeber
- Institute of Neuropathology, Department of Pathology, University Hospital, Zürich, Switzerland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
197
|
Liang J, Pan YL, Ning XX, Sun LJ, Lan M, Hong L, Du JP, Liu N, Liu CJ, Qiao TD, Fan DM. Overexpression of PrPC and its antiapoptosis function in gastric cancer. Tumour Biol 2006; 27:84-91. [PMID: 16582585 DOI: 10.1159/000092488] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2005] [Accepted: 05/24/2005] [Indexed: 12/30/2022] Open
Abstract
Cellular prion protein (PrP(C)), a glycosylphosphatidylinositol-anchored membrane protein, was found in our lab to be widely expressed in gastric cancer cell lines. In order to evaluate its biological significance in human gastric cancer, we investigated its expression in a large series of gastric tissue samples (n = 124) by immuno histochemical staining with the monoclonal antibody 3F4. Compared with normal tissues, gastric adenocarcinoma showed increased PrP(C) expression, correlated with the histopathological differentiation (according to the WHO and Lauren classifications) and tumor progression (as documented by pTNM staging). To better understand the underlying mechanism, we introduced the PrP(C) and two pairs of RNAi into the poorly differentiated gastric cancer cell line AGS and found that PrP(C) suppressed ROS and slowed down apoptosis in transfected cells. Further study proved that the apoptosis-related protein Bcl-2 was upregulated whereas p53 and Bax were downregulated in the PrP(C)-transfected cells. A reverse effect was observed in PrP(C) siRNA-transfected cells. These results strongly suggested that PrP(C) might play a role as an effective antiapoptotic protein through Bcl-2-dependent apoptotic pathways in gastric cancer cells. Further study into the mechanism of these relationships might enrich the knowledge of PrP, better our understanding of the nature of gastric carcinoma, and further develop possible strategies to block or reverse the development of gastric carcinoma.
Collapse
Affiliation(s)
- J Liang
- State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
198
|
Fonck C, Cohen BN, Nashmi R, Whiteaker P, Wagenaar DA, Rodrigues-Pinguet N, Deshpande P, McKinney S, Kwoh S, Munoz J, Labarca C, Collins AC, Marks MJ, Lester HA. Novel seizure phenotype and sleep disruptions in knock-in mice with hypersensitive alpha 4* nicotinic receptors. J Neurosci 2006; 25:11396-411. [PMID: 16339034 PMCID: PMC6725918 DOI: 10.1523/jneurosci.3597-05.2005] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A leucine to alanine substitution (L9'A) was introduced in the M2 region of the mouse alpha4 neuronal nicotinic acetylcholine receptor (nAChR) subunit. Expressed in Xenopus oocytes, alpha4(L9'A)beta2 nAChRs were > or =30-fold more sensitive than wild type (WT) to both ACh and nicotine. We generated knock-in mice with the L9'A mutation and studied their cellular responses, seizure phenotype, and sleep-wake cycle. Seizure studies on alpha4-mutated animals are relevant to epilepsy research because all known mutations linked to autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE) occur in the M2 region of alpha4or beta2 subunits. Thalamic cultures and synaptosomes from L9'A mice were hypersensitive to nicotine-induced ion flux. L9'A mice were approximately 15-fold more sensitive to seizures elicited by nicotine injection than their WT littermates. Seizures in L9'A mice differed qualitatively from those in WT: L9'A seizures started earlier, were prevented by nicotine pretreatment, lacked EEG spike-wave discharges, and consisted of fast repetitive movements. Nicotine-induced seizures in L9'A mice were partial, whereas WT seizures were generalized. When L9'A homozygous mice received a 10 mg/kg nicotine injection, there was temporal and phenomenological separation of mutant and WT-like seizures: an initial seizure approximately 20 s after injection was clonic and showed no EEG changes. A second seizure began 3-4 min after injection, was tonic-clonic, and had EEG spike-wave activity. No spontaneous seizures were detected in L9'A mice during chronic video/EEG recordings, but their sleep-wake cycle was altered. Our findings show that hypersensitive alpha4* nicotinic receptors in mice mediate changes in the sleep-wake cycle and nicotine-induced seizures resembling ADNFLE.
Collapse
Affiliation(s)
- Carlos Fonck
- Division of Biology, California Institute of Technology, Pasadena, California 91125, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
199
|
Radovanovic I, Braun N, Giger OT, Mertz K, Miele G, Prinz M, Navarro B, Aguzzi A. Truncated prion protein and Doppel are myelinotoxic in the absence of oligodendrocytic PrPC. J Neurosci 2006; 25:4879-88. [PMID: 15888663 PMCID: PMC6724775 DOI: 10.1523/jneurosci.0328-05.2005] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The cellular prion protein PrP(C) confers susceptibility to transmissible spongiform encephalopathies, yet its normal function is unknown. Although PrP(C)-deficient mice develop and live normally, expression of amino proximally truncated PrP(C) (DeltaPrP) or of its structural homolog Doppel (Dpl) causes cerebellar degeneration that is prevented by coexpression of full-length PrP(C). We now report that mice expressing DeltaPrP or Dpl suffer from widespread leukoencephalopathy. Oligodendrocyte-specific expression of full-length PrP(C) under control of the myelin basic protein (MBP) promoter repressed leukoencephalopathy and vastly extended survival but did not prevent cerebellar granule cell (CGC) degeneration. Conversely, neuron-specific PrP(C) expression under control of the neuron-specific enolase (NSE) promoter antagonized CGC degeneration but not leukoencephalopathy. PrP(C) was found in purified myelin and in cultured oligodendrocytes of both wild-type and MBP-PrP transgenic mice but not in NSE-PrP mice. These results identify white-matter damage as an extraneuronal PrP-associated pathology and suggest a previously unrecognized role of PrP(C) in myelin maintenance.
Collapse
Affiliation(s)
- Ivan Radovanovic
- Institute of Neuropathology, University Hospital of Zurich, CH-8091 Zurich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
200
|
Abstract
Prion diseases are neurodegenerative conditions that cause extensive damage to nerve cells within the brain and can be fatal. Some prion disease agents accumulate first in lymphoid tissues, as they make their journey from the site of infection, such as the gut, to the brain. Studies in mouse models have shown that this accumulation is obligatory for the efficient delivery of prions to the brain. Indeed, if the accumulation of prions in lymphoid tissues is blocked, disease susceptibility is reduced. Therefore, the identification of the cells and molecules that are involved in the delivery of prions to the brain might identify targets for therapeutic intervention. This review describes the current understanding of the mechanisms involved in the delivery of prions to the brain.
Collapse
Affiliation(s)
- Neil A Mabbott
- Institute for Animal Health, Ogston Building, West Mains Road, Edinburgh EH9 3JF, UK.
| | | |
Collapse
|