151
|
White JA, Simonetti FR, Beg S, McMyn NF, Dai W, Bachmann N, Lai J, Ford WC, Bunch C, Jones JL, Ribeiro RM, Perelson AS, Siliciano JD, Siliciano RF. Complex decay dynamics of HIV virions, intact and defective proviruses, and 2LTR circles following initiation of antiretroviral therapy. Proc Natl Acad Sci U S A 2022; 119:e2120326119. [PMID: 35110411 PMCID: PMC8833145 DOI: 10.1073/pnas.2120326119] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 12/21/2021] [Indexed: 02/07/2023] Open
Abstract
In persons living with HIV-1 (PLWH) who start antiretroviral therapy (ART), plasma virus decays in a biphasic fashion to below the detection limit. The first phase reflects the short half-life (<1 d) of cells that produce most of the plasma virus. The second phase represents the slower turnover (t1/2 = 14 d) of another infected cell population, whose identity is unclear. Using the intact proviral DNA assay (IPDA) to distinguish intact and defective proviruses, we analyzed viral decay in 17 PLWH initiating ART. Circulating CD4+ T cells with intact proviruses include few of the rapidly decaying first-phase cells. Instead, this population initially decays more slowly (t1/2 = 12.9 d) in a process that largely represents death or exit from the circulation rather than transition to latency. This more protracted decay potentially allows for immune selection. After ∼3 mo, the decay slope changes, and CD4+ T cells with intact proviruses decay with a half-life of 19 mo, which is still shorter than that of the latently infected cells that persist on long-term ART. Two-long-terminal repeat (2LTR) circles decay with fast and slow phases paralleling intact proviruses, a finding that precludes their use as a simple marker of ongoing viral replication. Proviruses with defects at the 5' or 3' end of the genome show equivalent monophasic decay at rates that vary among individuals. Understanding these complex early decay processes is important for correct use of reservoir assays and may provide insights into properties of surviving cells that can constitute the stable latent reservoir.
Collapse
Affiliation(s)
- Jennifer A White
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Francesco R Simonetti
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Subul Beg
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Natalie F McMyn
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Weiwei Dai
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Niklas Bachmann
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Jun Lai
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - William C Ford
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Christina Bunch
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Joyce L Jones
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Ruy M Ribeiro
- Department of Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545
| | - Alan S Perelson
- Department of Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545
| | - Janet D Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Robert F Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205;
- HHMI, Baltimore, MD 21205
| |
Collapse
|
152
|
Moldt B, Günthard HF, Workowski KA, Little SJ, Eron JJ, Overton ET, Lehmann C, Rokx C, Kozal MJ, Gandhi RT, Braun DL, Parvangada A, Li J, Martin R, Selzer L, Cox S, Margot N, Liu H, Slamowitz D, Makadzange T, Collins SE, Geleziunas R, Callebaut C. Evaluation of HIV-1 reservoir size and broadly neutralizing antibody susceptibility in acute antiretroviral therapy-treated individuals. AIDS 2022; 36:205-214. [PMID: 34586088 DOI: 10.1097/qad.0000000000003088] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OBJECTIVE Persistence of the viral reservoir is the main barrier to curing HIV. Initiation of ART during acute HIV infection can limit the size and diversity of the reservoir. In depth characterization of the reservoir in individuals who initiate ART during acute infection will be critical for clinical trial design and cure strategies. METHODS Four cohorts with participants who initiated ART during acute infection or during chronic infection were enrolled in a cross-sectional, noninterventional study. Viral reservoir was evaluated by the Intact Proviral DNA Assay (IPDA), the Total HIV DNA Assay (THDA) and the Quantitative Viral Outgrowth Assay (QVOA). Viral diversity and susceptibility to V3-glycan bNAbs were determined by genotyping of the viral envelope gene. RESULTS Participants who initiated ART during the acute Fiebig I-IV stages had lower level of total HIV DNA than participants who initiated ART during chronic infection whereas no difference was observed in intact HIV DNA or outgrowth virus. Participants who initiated ART during Fiebig I-IV also had lower viral diversity and appeared to have higher susceptibility to bNAbs than participants initiating ART during chronic infection. CONCLUSION Individuals initiating ART during Fiebig I-IV had small viral reservoirs, low viral diversity, and high susceptibility to bNAbs, and would be an optimal target population for proof-of-concept HIV cure trials.
Collapse
Affiliation(s)
| | - Huldrych F Günthard
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Kimberly A Workowski
- Department of Medicine, Division of Infectious Diseases, Emory University, Atlanta, Georgia
| | - Susan J Little
- Division of Infectious Diseases and Global Public Health, University of California San Diego, San Diego, California
| | - Joseph J Eron
- Division of Infectious Diseases, University of North Carolina at Chapel Hill School of Medicine, North Carolina
| | - Edgar T Overton
- Division of Infectious Diseases, University of Alabama at Birmingham School of Medicine, Alabama, USA
| | - Clara Lehmann
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne
- German Center for Infection Research, Partner Site Bonn-Cologne
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Casper Rokx
- Department of Internal Medicine, and
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, Netherlands
| | | | - Rajesh T Gandhi
- Massachusetts General Hospital and Harvard Medical School, Cambridge, Massachusett, USA
| | - Dominique L Braun
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | | | - Jiani Li
- Gilead Sciences, Inc., California, USA
| | | | | | | | | | - Hui Liu
- Gilead Sciences, Inc., California, USA
| | | | | | | | | | | |
Collapse
|
153
|
Richardson ZA, Deleage C, Tutuka CSA, Walkiewicz M, Del Río-Estrada PM, Pascoe RD, Evans VA, Reyesteran G, Gonzales M, Roberts-Thomson S, González-Navarro M, Torres-Ruiz F, Estes JD, Lewin SR, Cameron PU. Multiparameter immunohistochemistry analysis of HIV DNA, RNA and immune checkpoints in lymph node tissue. J Immunol Methods 2022; 501:113198. [PMID: 34863818 PMCID: PMC9036546 DOI: 10.1016/j.jim.2021.113198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 09/02/2021] [Accepted: 11/29/2021] [Indexed: 11/18/2022]
Abstract
The main barrier to a cure for HIV is the persistence of long-lived and proliferating latently infected CD4+ T-cells despite antiretroviral therapy (ART). Latency is well characterized in multiple CD4+ T-cell subsets, however, the contribution of regulatory T-cells (Tregs) expressing FoxP3 as well as immune checkpoints (ICs) PD-1 and CTLA-4 as targets for productive and latent HIV infection in people living with HIV on suppressive ART is less well defined. We used multiplex detection of HIV DNA and RNA with immunohistochemistry (mIHC) on formalin-fixed paraffin embedded (FFPE) cells to simultaneously detect HIV RNA and DNA and cellular markers. HIV DNA and RNA were detected by in situ hybridization (ISH) (RNA/DNAscope) and IHC was used to detect cellular markers (CD4, PD-1, FoxP3, and CTLA-4) by incorporating the tyramide system amplification (TSA) system. We evaluated latently infected cell lines, a primary cell model of HIV latency and excisional lymph node (LN) biopsies collected from people living with HIV (PLWH) on and off ART. We clearly detected infected cells that coexpressed HIV RNA and DNA (active replication) and DNA only (latently infected cells) in combination with IHC markers in the in vitro infection model as well as LN tissue from PLWH both on and off ART. Combining ISH targeting HIV RNA and DNA with IHC provides a platform to detect and quantify HIV persistence within cells identified by multiple markers in tissue samples from PLWH on ART or to study HIV latency.
Collapse
Affiliation(s)
- Zuwena A Richardson
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, Australia
| | - Claire Deleage
- Frederick National Laboratories for Cancer Research, MD, Frederick, United States of America
| | - Candani S A Tutuka
- Olivia Newton John Cancer Centre Research Institute, Austin Hospital, Heidelberg, Australia; La Trobe School of Cancer Medicine, La Trobe University, Melbourne, Australia
| | - Marzena Walkiewicz
- Olivia Newton John Cancer Centre Research Institute, Austin Hospital, Heidelberg, Australia; Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Australia
| | - Perla M Del Río-Estrada
- Centro de Investigación en Enfermdades Infecciosas, Instituto Nacional de Enfermedades Respiratoriras, Mexico City, Mexico
| | - Rachel D Pascoe
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, Australia
| | - Vanessa A Evans
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, Australia
| | - Gustavo Reyesteran
- Centro de Investigación en Enfermdades Infecciosas, Instituto Nacional de Enfermedades Respiratoriras, Mexico City, Mexico
| | - Michael Gonzales
- Pathology Department, The Royal Melbourne Hospital, Melbourne, Australia
| | | | - Mauricio González-Navarro
- Centro de Investigación en Enfermdades Infecciosas, Instituto Nacional de Enfermedades Respiratoriras, Mexico City, Mexico
| | - Fernanda Torres-Ruiz
- Centro de Investigación en Enfermdades Infecciosas, Instituto Nacional de Enfermedades Respiratoriras, Mexico City, Mexico
| | - Jacob D Estes
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health Science University, Portland, Oregon, USA
| | - Sharon R Lewin
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, Australia; Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, Australia; Victorian Infectious Diseases Service, Royal Melbourne Hospital, Melbourne, Australia
| | - Paul U Cameron
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, Australia; La Trobe School of Cancer Medicine, La Trobe University, Melbourne, Australia; Launceston General Hospital, Tasmania, Launceston, Australia.
| |
Collapse
|
154
|
Liu Y, Lei J, San D, Yang Y, Paek C, Xia Z, Chen Y, Yin L. Structural Basis for Unusual TCR CDR3β Usage Against an Immunodominant HIV-1 Gag Protein Peptide Restricted to an HLA-B*81:01 Molecule. Front Immunol 2022; 13:822210. [PMID: 35173732 PMCID: PMC8841528 DOI: 10.3389/fimmu.2022.822210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/12/2022] [Indexed: 12/02/2022] Open
Abstract
In HIV infection, some closely associated human leukocyte antigen (HLA) alleles are correlated with distinct clinical outcomes although presenting the same HIV epitopes. The mechanism that underpins this observation is still unknown, but may be due to the essential features of HLA alleles or T cell receptors (TCR). In this study, we investigate how T18A TCR, which is beneficial for a long-term control of HIV in clinic, recognizes immunodominant Gag epitope TL9 (TPQDLTML180-188) from HIV in the context of the antigen presenting molecule HLA-B*81:01. We found that T18A TCR exhibits differential recognition for TL9 restricted by HLA-B*81:01. Furthermore, via structural and biophysical approaches, we observed that TL9 complexes with HLA-B*81:01 undergoes no conformational change after TCR engagement. Remarkably, the CDR3β in T18A complexes does not contact with TL9 at all but with intensive contacts to HLA-B*81:01. The binding kinetic data of T18A TCR revealed that this TCR can recognize TL9 epitope and several mutant versions, which might explain the correlation of T18A TCR with better clinic outcomes despite the relative high mutation rate of HIV. Collectively, we provided a portrait of how CD8+ T cells engage in HIV-mediated T cell response.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jun Lei
- Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Dan San
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yi Yang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Chonil Paek
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Zixiong Xia
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yongshun Chen
- Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan, China
- *Correspondence: Yongshun Chen, ; Lei Yin,
| | - Lei Yin
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
- *Correspondence: Yongshun Chen, ; Lei Yin,
| |
Collapse
|
155
|
Miller JS, Davis ZB, Helgeson E, Reilly C, Thorkelson A, Anderson J, Lima NS, Jorstad S, Hart GT, Lee JH, Safrit JT, Wong H, Cooley S, Gharu L, Chung H, Soon-Shiong P, Dobrowolski C, Fletcher CV, Karn J, Douek DC, Schacker TW. Safety and virologic impact of the IL-15 superagonist N-803 in people living with HIV: a phase 1 trial. Nat Med 2022; 28:392-400. [DOI: 10.1038/s41591-021-01651-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/30/2021] [Indexed: 12/26/2022]
|
156
|
Longitudinal clonal dynamics of HIV-1 latent reservoirs measured by combination quadruplex polymerase chain reaction and sequencing. Proc Natl Acad Sci U S A 2022; 119:2117630119. [PMID: 35042816 PMCID: PMC8794825 DOI: 10.1073/pnas.2117630119] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2021] [Indexed: 01/26/2023] Open
Abstract
HIV-1 infection produces a long-lived reservoir of latently infected CD4+ T cells that represents the major barrier to HIV-1 cure. The reservoir contains both intact and defective proviruses, but only the proviruses that are intact can reinitiate infection upon cessation of antiretroviral therapy (ART). Here we combine four-color quantitative PCR and next-generation sequencing (Q4PCR) to distinguish intact and defective proviruses and measure reservoir content longitudinally in 12 infected individuals. Q4PCR differs from other PCR-based methods in that the amplified proviruses are sequence verified as intact or defective. Samples were collected systematically over the course of up to 10 y beginning shortly after the initiation of ART. The size of the defective reservoir was relatively stable with minimal decay during the 10-y observation period. In contrast, the intact proviral reservoir decayed with an estimated half-life of 4.9 y. Nevertheless, both intact and defective proviral reservoirs are dynamic. As a result, the fraction of intact proviruses found in expanded clones of CD4+ T cells increases over time with a concomitant decrease in overall reservoir complexity. Thus, reservoir decay measurements by Q4PCR are quantitatively similar to viral outgrowth assay (VOA) and intact proviral DNA PCR assay (IPDA) with the addition of sequence information that distinguishes intact and defective proviruses and informs reservoir dynamics. The data are consistent with the notion that intact and defective proviruses are under distinct selective pressure, and that the intact proviral reservoir is progressively enriched in expanded clones of CD4+ T cells resulting in diminishing complexity over time.
Collapse
|
157
|
Joussef-Piña S, Nankya I, Nalukwago S, Baseke J, Rwambuya S, Winner D, Kyeyune F, Chervenak K, Thiel B, Asaad R, Dobrowolski C, Luttge B, Lawley B, Kityo CM, Boom WH, Karn J, Quiñones-Mateu ME. Reduced and highly diverse peripheral HIV-1 reservoir in virally suppressed patients infected with non-B HIV-1 strains in Uganda. Retrovirology 2022; 19:1. [PMID: 35033105 PMCID: PMC8760765 DOI: 10.1186/s12977-022-00587-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/03/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Our understanding of the peripheral human immunodeficiency virus type 1 (HIV-1) reservoir is strongly biased towards subtype B HIV-1 strains, with only limited information available from patients infected with non-B HIV-1 subtypes, which are the predominant viruses seen in low- and middle-income countries (LMIC) in Africa and Asia. RESULTS In this study, blood samples were obtained from well-suppressed ART-experienced HIV-1 patients monitored in Uganda (n = 62) or the U.S. (n = 50), with plasma HIV-1 loads < 50 copies/ml and CD4+ T-cell counts > 300 cells/ml. The peripheral HIV-1 reservoir, i.e., cell-associated HIV-1 RNA and proviral DNA, was characterized using our novel deep sequencing-based EDITS assay. Ugandan patients were slightly younger (median age 43 vs 49 years) and had slightly lower CD4+ counts (508 vs 772 cells/ml) than U.S. individuals. All Ugandan patients were infected with non-B HIV-1 subtypes (31% A1, 64% D, or 5% C), while all U.S. individuals were infected with subtype B viruses. Unexpectedly, we observed a significantly larger peripheral inducible HIV-1 reservoir in U.S. patients compared to Ugandan individuals (48 vs. 11 cell equivalents/million cells, p < 0.0001). This divergence in reservoir size was verified measuring proviral DNA (206 vs. 88 cell equivalents/million cells, p < 0.0001). However, the peripheral HIV-1 reservoir was more diverse in Ugandan than in U.S. individuals (8.6 vs. 4.7 p-distance, p < 0.0001). CONCLUSIONS The smaller, but more diverse, peripheral HIV-1 reservoir in Ugandan patients might be associated with viral (e.g., non-B subtype with higher cytopathicity) and/or host (e.g., higher incidence of co-infections or co-morbidities leading to less clonal expansion) factors. This highlights the need to understand reservoir dynamics in diverse populations as part of ongoing efforts to find a functional cure for HIV-1 infection in LMICs.
Collapse
Affiliation(s)
- Samira Joussef-Piña
- Departments of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH, USA
| | - Immaculate Nankya
- Center for AIDS Research Uganda Laboratories, Joint Clinical Research Centre, Kampala, Uganda
| | - Sophie Nalukwago
- Center for AIDS Research Uganda Laboratories, Joint Clinical Research Centre, Kampala, Uganda
| | - Joy Baseke
- Center for AIDS Research Uganda Laboratories, Joint Clinical Research Centre, Kampala, Uganda
| | - Sandra Rwambuya
- Center for AIDS Research Uganda Laboratories, Joint Clinical Research Centre, Kampala, Uganda
| | - Dane Winner
- Departments of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH, USA
| | - Fred Kyeyune
- Center for AIDS Research Uganda Laboratories, Joint Clinical Research Centre, Kampala, Uganda
| | - Keith Chervenak
- Departments of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Bonnie Thiel
- Departments of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Robert Asaad
- Departments of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Curtis Dobrowolski
- Departments of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH, USA
| | - Benjamin Luttge
- Departments of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH, USA
| | - Blair Lawley
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, 720 Cumberland Street, P.O. Box 56, Dunedin, New Zealand
| | - Cissy M Kityo
- Center for AIDS Research Uganda Laboratories, Joint Clinical Research Centre, Kampala, Uganda
| | - W Henry Boom
- Center for AIDS Research Uganda Laboratories, Joint Clinical Research Centre, Kampala, Uganda
- Departments of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Jonathan Karn
- Departments of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH, USA
- Center for AIDS Research Uganda Laboratories, Joint Clinical Research Centre, Kampala, Uganda
| | - Miguel E Quiñones-Mateu
- Center for AIDS Research Uganda Laboratories, Joint Clinical Research Centre, Kampala, Uganda.
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, 720 Cumberland Street, P.O. Box 56, Dunedin, New Zealand.
- Webster Centre for Infectious Diseases, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
158
|
Kleinman AJ, Pandrea I, Apetrei C. So Pathogenic or So What?-A Brief Overview of SIV Pathogenesis with an Emphasis on Cure Research. Viruses 2022; 14:135. [PMID: 35062339 PMCID: PMC8781889 DOI: 10.3390/v14010135] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/10/2021] [Accepted: 12/25/2021] [Indexed: 02/07/2023] Open
Abstract
HIV infection requires lifelong antiretroviral therapy (ART) to control disease progression. Although ART has greatly extended the life expectancy of persons living with HIV (PWH), PWH nonetheless suffer from an increase in AIDS-related and non-AIDS related comorbidities resulting from HIV pathogenesis. Thus, an HIV cure is imperative to improve the quality of life of PWH. In this review, we discuss the origins of various SIV strains utilized in cure and comorbidity research as well as their respective animal species used. We briefly detail the life cycle of HIV and describe the pathogenesis of HIV/SIV and the integral role of chronic immune activation and inflammation on disease progression and comorbidities, with comparisons between pathogenic infections and nonpathogenic infections that occur in natural hosts of SIVs. We further discuss the various HIV cure strategies being explored with an emphasis on immunological therapies and "shock and kill".
Collapse
Affiliation(s)
- Adam J. Kleinman
- Division of Infectious Diseases, DOM, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA;
| | - Ivona Pandrea
- Department of Infectious Diseases and Immunology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA;
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Cristian Apetrei
- Division of Infectious Diseases, DOM, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA;
- Department of Infectious Diseases and Immunology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA;
| |
Collapse
|
159
|
Abstract
The development of therapies to eliminate the latent HIV-1 reservoir is hampered by our incomplete understanding of the biomolecular mechanism governing HIV-1 latency. To further complicate matters, recent single cell RNA-seq studies reported extensive heterogeneity between latently HIV-1-infected primary T cells, implying that latent HIV-1 infection can persist in greatly differing host cell environments. We here show that transcriptomic heterogeneity is also found between latently infected T cell lines, which allowed us to study the underlying mechanisms of intercell heterogeneity at high signal resolution. Latently infected T cells exhibited a de-differentiated phenotype, characterized by the loss of T cell-specific markers and gene regulation profiles reminiscent of hematopoietic stem cells (HSC). These changes had functional consequences. As reported for stem cells, latently HIV-1 infected T cells efficiently forced lentiviral superinfections into a latent state and favored glycolysis. As a result, metabolic reprogramming or cell re-differentiation destabilized latent infection. Guided by these findings, data-mining of single cell RNA-seq data of latently HIV-1 infected primary T cells from patients revealed the presence of similar dedifferentiation motifs. >20% of the highly detectable genes that were differentially regulated in latently infected cells were associated with hematopoietic lineage development (e.g. HUWE1, IRF4, PRDM1, BATF3, TOX, ID2, IKZF3, CDK6) or were hematopoietic markers (SRGN; hematopoietic proteoglycan core protein). The data add to evidence that the biomolecular phenotype of latently HIV-1 infected cells differs from normal T cells and strategies to address their differential phenotype need to be considered in the design of therapeutic cure interventions. IMPORTANCE HIV-1 persists in a latent reservoir in memory CD4 T cells for the lifetime of a patient. Understanding the biomolecular mechanisms used by the host cells to suppress viral expression will provide essential insights required to develop curative therapeutic interventions. Unfortunately, our current understanding of these control mechanisms is still limited. By studying gene expression profiles, we demonstrated that latently HIV-1-infected T cells have a de-differentiated T cell phenotype. Software-based data integration allowed for the identification of drug targets that would re-differentiate viral host cells and, in extension, destabilize latent HIV-1 infection events. The importance of the presented data lies within the clear demonstration that HIV-1 latency is a host cell phenomenon. As such, therapeutic strategies must first restore proper host cell functionality to accomplish efficient HIV-1 reactivation.
Collapse
|
160
|
Routy JP, Dupuy FP, Lin J, Isnard S. More than a Gender Issue: Testis as a Distinctive HIV Reservoir and Its Implication for Viral Eradication. Methods Mol Biol 2022; 2407:173-186. [PMID: 34985665 DOI: 10.1007/978-1-0716-1871-4_13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Early establishment of HIV reservoir represents the main impediment to an HIV cure. Mainly composed of infected memory CD4 T-cells and macrophages, HIV reservoirs are found in several organs including lymph nodes, gut, and testes. In men, and as seen in brain and eyes, testes represent a distinctive organ characterized by an immune privilege, allowing the tolerance of spermatozoa which only develop after puberty, long after the establishment of systemic immunity. The immune privilege of testes relies on a strict testis-blood barrier, and a local immunosuppressive environment. Testes has been described as reservoir for several viruses including Ebola, Zika, and HIV. Indeed, HIV reservoirs were detected in tested viremic and virally suppressed donor taking antiretroviral therapy (ART). Herein, we discuss the distinctive environment found in human testes and describe a validated method allowing the characterization and quantification of HIV-infected CD4 T-cells in human testes. Using mechanical and enzymatic treatment, cells can be extracted from human testis samples. Characterization of those cells can be performed by flow cytometry and HIV reservoir quantification performed by nested qPCR after flow cytometry sorting.
Collapse
Affiliation(s)
- Jean-Pierre Routy
- Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre, Montreal, QC, Canada.
- Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada.
- Division of Hematology, McGill University Health Centre, Montreal, QC, Canada.
| | - Franck P Dupuy
- Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre, Montreal, QC, Canada
- Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada
| | - John Lin
- Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre, Montreal, QC, Canada
- Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada
| | - Stéphane Isnard
- Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre, Montreal, QC, Canada
- Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada
- CIHR Canadian HIV Trials Network (CTN), Vancouver, BC, Canada
| |
Collapse
|
161
|
Wei Hou ZZ, Chen S. Updates on CRISPR-based gene editing in HIV-1/AIDS therapy. Virol Sin 2022; 37:1-10. [PMID: 35234622 PMCID: PMC8922418 DOI: 10.1016/j.virs.2022.01.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 11/15/2021] [Indexed: 12/17/2022] Open
Abstract
Although tremendous efforts have been made to prevent and treat HIV-1 infection, HIV-1/AIDS remains a major threat to global human health. The combination antiretroviral therapy (cART), although able to suppress HIV-1 replication, cannot eliminate the proviral DNA integrated into the human genome and thus requires lifelong treatment that may lead to various side effects. In recent years, clustered regularly interspaced short palindromic repeat (CRISPR)-associated nuclease 9 (Cas9) related gene-editing systems have been developed and designed as effective ways to treat HIV-1 infection. However, new gene-targeting tools derived from or functioning like CRISPR/Cas9, including base editor, prime editing, SHERLOCK, DETECTR, PAC-MAN, ABACAS, pfAGO, have been developed and optimized for pathogens detection and diseases correction. Here, we summarize recent studies on HIV-1/AIDS gene therapy and provide more gene-editing targets based on studies relating to the molecular mechanism of HIV-1 infection. We also identify the strategies and potential applications of these new gene-editing technologies for HIV-1/AIDS treatment in the future. Moreover, we discuss the caveats and problems that should be addressed before the clinical use of these versatile CRISPR-based gene targeting tools. Finally, we offer alternative solutions to improve the practice of gene targeting in HIV-1/AIDS gene therapy. New gene-targeting tools derived from CRISPR/Cas9 have been introduced. Recent researches in HIV-1/AIDS gene therapy have been summarized. The strategies and potential applications of new gene editing technologies for HIV-1/AIDS treatment have been provided. The caveats and challenges in HIV-1/AIDS gene therapy have been discussed.
Collapse
|
162
|
Abstract
The introduction of antiretroviral therapy (ART) and highly active antiretroviral therapy (HAART) has transformed human immunodeficiency virus (HIV)-1 into a chronic, well-managed disease. However, these therapies do not eliminate all infected cells from the body despite suppressing viral load. Viral rebound is largely due to the presence of cellular reservoirs which support long-term persistence of HIV-1. A thorough understanding of the HIV-1 reservoir will facilitate the development of new strategies leading to its detection, reduction, and elimination, ultimately leading to curative therapies for HIV-1. Although immune cells derived from lymphoid and myeloid progenitors have been thoroughly studied as HIV-1 reservoirs, few studies have examined whether mesenchymal stromal/stem cells (MSCs) can assume this function. In this review, we evaluate published studies which have assessed whether MSCs contribute to the HIV-1 reservoir. MSCs have been found to express the receptors and co-receptors required for HIV-1 entry, albeit at levels of expression and receptor localisation that vary considerably between studies. Exposure to HIV-1 and HIV-1 proteins alters MSC properties in vitro, including their proliferation capacity and differentiation potential. However, in vitro and in vivo experiments investigating whether MSCs can become infected with and harbour latent integrated proviral DNA are lacking. In conclusion, MSCs appear to have the potential to contribute to the HIV-1 reservoir. However, further studies are needed using techniques such as those used to prove that cluster of differentiation (CD)4+ T cells constitute an HIV-1 reservoir before a reservoir function can definitively be ascribed to MSCs.
Collapse
|
163
|
Shukla M, Kizito F, Mbonye U, Nguyen K, Dobrowolski C, Karn J. A Reliable Primary Cell Model for HIV Latency: The QUECEL (Quiescent Effector Cell Latency) Method. Methods Mol Biol 2022; 2407:57-68. [PMID: 34985657 DOI: 10.1007/978-1-0716-1871-4_5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
One of the main methods to generate the HIV reservoir is during the transition of infected activated effector CD4 T cells to a memory phenotype. The QUECEL (Quiescent Effector Cell Latency) protocol mimics this process efficiently and allows for production of large numbers of latently infected CD4+ T cells. After polarization and expansion, CD4+ T cells are infected with a single round reporter virus which expressed GFP/CD8a. The infected cells are purified and coerced into quiescence using a defined cocktail of cytokines including TGF-β, IL-10, and IL-8, producing a homogeneous population of latently infected cells. Since homogeneous populations of latently infected cells can be recovered, the QUECEL model has an excellent signal-to-noise ratio, and has been extremely consistent and reproducible in numerous experiments performed during the last 5 years. The ease, efficiency, and accurate mimicking of physiological conditions make the QUECEL model a robust and reproducible tool to study the molecular mechanisms underlying HIV latency.
Collapse
Affiliation(s)
- Meenakshi Shukla
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Fredrick Kizito
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Uri Mbonye
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Kien Nguyen
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Curtis Dobrowolski
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Jonathan Karn
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
| |
Collapse
|
164
|
Li R, Romerio F. An In Vitro System to Model the Establishment and Reactivation of HIV-1 Latency in Primary Human CD4+ T Cells. Methods Mol Biol 2022; 2407:31-43. [PMID: 34985655 DOI: 10.1007/978-1-0716-1871-4_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
HIV-1 establishes latency primarily by infecting activated CD4+ T cells that later return to quiescence as memory cells. Latency allows HIV-1 to evade immune responses and to persist during antiretroviral therapy, which represents an important problem in clinical practice. Here we describe both the original and a simplified version of HIV-1 latency models that mimics this process using replication competent viruses. Our model allows generation of large numbers of latently infected CD4+ T cell to dissect molecular mechanisms of HIV latency and reactivation.
Collapse
Affiliation(s)
- Rui Li
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Fabio Romerio
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
165
|
Wong LM, Li D, Tang Y, Méndez-Lagares G, Thompson GR, Hartigan-O'Connor DJ, Dandekar S, Jiang G. Human Immunodeficiency Virus-1 Latency Reversal via the Induction of Early Growth Response Protein 1 to Bypass Protein Kinase C Agonist-Associated Immune Activation. Front Microbiol 2022; 13:836831. [PMID: 35359743 PMCID: PMC8960990 DOI: 10.3389/fmicb.2022.836831] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/28/2022] [Indexed: 01/12/2023] Open
Abstract
Human Immunodeficiency Virus-1 (HIV) remains a global health challenge due to the latent HIV reservoirs in people living with HIV (PLWH). Dormant yet replication competent HIV harbored in the resting CD4+ T cells cannot be purged by antiretroviral therapy (ART) alone. One approach of HIV cure is the "Kick and Kill" strategy where latency reversal agents (LRAs) have been implemented to disrupt latent HIV, expecting to eradicate HIV reservoirs by viral cytopathic effect or immune-mediated clearance. Protein Kinase C agonists (PKCa), a family of LRAs, have demonstrated the ability to disrupt latent HIV to an extent. However, the toxicity of PKCa remains a concern in vivo. Early growth response protein 1 (EGR1) is a downstream target of PKCa during latency reversal. Here, we show that PKCa induces EGR1 which directly drives Tat-dependent HIV transcription. Resveratrol, a natural phytoalexin found in grapes and various plants, induces Egr1 expression and disrupts latent HIV in several HIV latency models in vitro and in CD4+ T cells isolated from ART-suppressed PLWH ex vivo. In the primary CD4+ T cells, resveratrol does not induce immune activation at the dosage that it reverses latency, indicating that targeting EGR1 may be able to reverse latency and bypass PKCa-induced immune activation.
Collapse
Affiliation(s)
- Lilly M Wong
- UNC HIV Cure Center, Institute of Global Health and Infectious Diseases, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Dajiang Li
- UNC HIV Cure Center, Institute of Global Health and Infectious Diseases, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Yuyang Tang
- UNC HIV Cure Center, Institute of Global Health and Infectious Diseases, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Gema Méndez-Lagares
- Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA, United States
| | - George R Thompson
- Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA, United States
| | - Dennis J Hartigan-O'Connor
- Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA, United States
| | - Satya Dandekar
- Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA, United States
| | - Guochun Jiang
- UNC HIV Cure Center, Institute of Global Health and Infectious Diseases, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
166
|
Gilbertson A, Tucker JD, Dubé K, Dijkstra M, Rennie S. Ethical considerations for HIV remission clinical research involving participants diagnosed during acute HIV infection. BMC Med Ethics 2021; 22:169. [PMID: 34961509 PMCID: PMC8714439 DOI: 10.1186/s12910-021-00716-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/20/2021] [Indexed: 11/16/2022] Open
Abstract
HIV remission clinical researchers are increasingly seeking study participants who are diagnosed and treated during acute HIV infection—the brief period between infection and the point when the body creates detectable HIV antibodies. This earliest stage of infection is often marked by flu-like illness and may be an especially tumultuous period of confusion, guilt, anger, and uncertainty. Such experiences may present added ethical challenges for HIV research recruitment, participation, and retention. The purpose of this paper is to identify potential ethical challenges associated with involving acutely diagnosed people living with HIV in remission research and considerations for how to mitigate them. We identify three domains of potential ethical concern for clinicians, researchers, and ethics committee members to consider: 1) Recruitment and informed consent; (2) Transmission risks and partner protection; and (3) Ancillary and continuing care. We discuss each of these domains with the aim of inspiring further work to advance the ethical conduct of HIV remission research. For example, experiences of confusion and uncertainty regarding illness and diagnosis during acute HIV infection may complicate informed consent procedures in studies that seek to recruit directly after diagnosis. To address this, it may be appropriate to use staged re-consent procedures or comprehension assessment. Responsible conduct of research requires a broad understanding of acute HIV infection that encompasses its biomedical, psychological, social, and behavioral dimensions. We argue that the lived experience of acute HIV infection may introduce ethical concerns that researchers and reviewers should address during study design and ethical approval.
Collapse
Affiliation(s)
- Adam Gilbertson
- Pacific Institute for Research and Evaluation, Chapel Hill Center, 101 Conner Drive, Suite 200, Chapel Hill, NC, 27514-7038, USA. .,UNC Center for Bioethics, Department of Social Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| | - Joseph D Tucker
- Institute for Global Health and Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.,Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, WCE1, UK.,UNC Project-China, 2 Lujing Road, Guangzhou, China
| | - Karine Dubé
- Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Maartje Dijkstra
- Department of Infectious Diseases, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Department of Infectious Diseases, Public Health Service Amsterdam, Amsterdam, The Netherlands
| | - Stuart Rennie
- UNC Center for Bioethics, Department of Social Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| |
Collapse
|
167
|
Immunotherapy with Cell-Based Biological Drugs to Cure HIV-1 Infection. Cells 2021; 11:cells11010077. [PMID: 35011639 PMCID: PMC8750418 DOI: 10.3390/cells11010077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/21/2021] [Accepted: 12/25/2021] [Indexed: 11/17/2022] Open
Abstract
Since its discovery 35 years ago, there have been no therapeutic interventions shown to enable full HIV-1 remission. Combined antiretroviral therapy (cART) has achieved the sustained control of HIV-1 replication, however, the life-long treatment does not eradicate long-lived latently infected reservoirs and can result in multiple side effects including the development of multidrug-resistant escape mutants. Antibody-based treatments have emerged as alternative approaches for a HIV-1 cure. Here, we will review clinical advances in coreceptor-targeting antibodies, with respect to anti-CCR5 antibodies in particular, which are currently being generated to target the early stages of infection. Among the Env-specific antibodies widely accepted as relevant in cure strategies, the potential role of those targeting CD4-induced (CD4i) epitopes of the CD4-binding site (CD4bs) in eliminating HIV-1 infected cells has gained increasing interest and will be presented. Together, with approaches targeting the HIV-1 replication cycle, we will discuss the strategies aimed at boosting and modulating specific HIV-1 immune responses, highlighting the harnessing of TLR agonists for their dual role as latency reverting agents (LRAs) and immune-modulatory compounds. The synergistic combinations of different approaches have shown promising results to ultimately enable a HIV-1 cure.
Collapse
|
168
|
Quantification of Total HIV DNA as a Marker to Measure Viral Reservoir: Methods and Potential Implications for Clinical Practice. Diagnostics (Basel) 2021; 12:diagnostics12010039. [PMID: 35054206 PMCID: PMC8774405 DOI: 10.3390/diagnostics12010039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/19/2021] [Accepted: 12/21/2021] [Indexed: 01/08/2023] Open
Abstract
The focus of this review is to examine the importance of quantifying total HIV DNA to target the HIV reservoir and the clinical implications and challenges involved in its future application in clinical practice. Despite intrinsic limitations, the quantification of total HIV DNA is currently the most widely used marker for exploring the HIV reservoir. As it allows estimating all forms of HIV DNA in the infected cells, total HIV DNA load is the biomarker of the HIV reservoir that provides most of the insights into HIV pathogenesis. The clinical role of total HIV-DNA in both untreated and treated patients is extensively supported by important lines of evidence. Thus, predictive models that include total HIV DNA load together with other variables could constitute a prognostic tool for use in clinical practice. To date, however, this marker has been primarily used in experimental evaluations. The main challenge is technical. Although the implementation of droplet digital PCR could improve analytical performance over real-time PCR, the lack of standardization has made cross-comparisons of the data difficult. An effort by investigators to compare protocols is needed. Furthermore, the main effort now should be to involve the biomedical industry in the development of certified assays for in vitro diagnostics use.
Collapse
|
169
|
Atlas of the HIV-1 Reservoir in Peripheral CD4 T Cells of Individuals on Successful Antiretroviral Therapy. mBio 2021; 12:e0307821. [PMID: 34844430 PMCID: PMC8630536 DOI: 10.1128/mbio.03078-21] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Knowing the mechanisms that govern the persistence of infected CD4+ subpopulations could help us to design new therapies to cure HIV-1 infection. We evaluated the simultaneous distribution of the HIV-1 reservoir in 13 CD4+ subpopulations from 14 HIV-1-infected individuals on antiretroviral therapy to analyze its relationship with HIV-1 transcription, immune activation, and cell proliferation. A unique large blood donation was used to isolate CD4, CD4 resting (CD4r), CD4 activated (CD4a), T naive (TN), T stem cell memory (TSCM), T central memory (TCM), T transitional memory (TTM), T effector memory (TEM), circulating T follicular helper (cTFH), TCD20, TCD32, and resting memory TCD2high (rmTCD2high) cells. HIV-1 DNA measured by droplet digital PCR ranged from 3,636 copies/106 in TTM to 244 in peripheral blood mononuclear cells (PBMCs), with no subpopulation standing out for provirus enrichment. Importantly, all the subpopulations harbored intact provirus by intact provirus DNA assay (IPDA). TCD32, cTFH, and TTM had the highest levels of HIV-1 transcription measured by fluorescent in situ hybridization with flow cytometry (FISH/flow), but without reaching statistical differences. The subpopulations more enriched in provirus had a memory phenotype, were less activated (measured by CD38+/HLA-DR+), and expressed more programmed cell death 1 (PD-1). Conversely, subpopulations transcribing more HIV-1 RNA were not necessarily enriched in provirus and were more activated (measured by CD38+/HLA-DR+) and more proliferative (measured by Ki-67). In conclusion, the HIV reservoir is composed of a mosaic of subpopulations contributing to the HIV-1 persistence through different mechanisms such as susceptibility to infection, provirus intactness, or transcriptional status. The narrow range of reservoir differences between the different blood cell subsets tested suggests limited efficacy in targeting only specific cell subpopulations during HIV-1 cure strategies. IMPORTANCE The main barrier for HIV-1 cure is the presence of latently infected CD4+ T cells. Although various cell subpopulations have been identified as major HIV-1 reservoir cells, the relative contribution of infected CD4 subpopulations in the HIV-1 reservoir remains largely unknown. Here, we evaluated the simultaneous distribution of the HIV-1 reservoir in 13 CD4+ T-cell subpopulations in peripheral blood from HIV-1-infected individuals under suppressive antiretroviral therapy. We found that the HIV-1 reservoir is composed of a mosaic of cell subpopulations, with heterogeneous proviral DNA, HIV-1 transcription, and activation status. Hence, each cell subpopulation contributes to the HIV-1 persistence through different mechanisms such as susceptibility to infection, rates of intact provirus, transcriptional status or half-life. This research provides new insights into the composition of the HIV-1 reservoir, suggesting that, to be effective, eradication strategies must simultaneously target multiple cell subpopulations.
Collapse
|
170
|
Murray JM. Dynamics of latent HIV under clonal expansion. PLoS Pathog 2021; 17:e1010165. [PMID: 34929000 PMCID: PMC8722732 DOI: 10.1371/journal.ppat.1010165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 01/03/2022] [Accepted: 12/02/2021] [Indexed: 11/23/2022] Open
Abstract
The HIV latent reservoir exhibits slow decay on antiretroviral therapy (ART), impacted by homeostatic proliferation and activation. How these processes contribute to the total dynamic while also producing the observed profile of sampled latent clone sizes is unclear. An agent-based model was developed that tracks individual latent clones, incorporating homeostatic proliferation of cells and activation of clones. The model was calibrated to produce observed latent reservoir dynamics as well as observed clonal size profiles. Simulations were compared to previously published latent HIV integration data from 5 adults and 3 children. The model simulations reproduced reservoir dynamics as well as generating residual plasma viremia levels (pVL) consistent with observations on ART. Over 382 Latin Hypercube Sample simulations, the median latent reservoir grew by only 0.3 log10 over the 10 years prior to ART initiation, after which time it decreased with a half-life of 15 years, despite number of clones decreasing at a faster rate. Activation produced a maximum size of genetically intact clones of around one million cells. The individual simulation that best reproduced the sampled clone profile, produced a reservoir that decayed with a 13.9 year half-life and where pVL, produced mainly from proliferation, decayed with a half-life of 10.8 years. These slow decay rates were achieved with mean cell life-spans of only 14.2 months, due to expansion of the reservoir through proliferation and activation. Although the reservoir decayed on ART, a number of clones increased in size more than 4,000-fold. While small sampled clones may have expanded through proliferation, the large sizes exclusively arose from activation. Simulations where homeostatic proliferation contributed more to pVL than activation, produced pVL that was less variable over time and exhibited fewer viral blips. While homeostatic proliferation adds to the latent reservoir, activation can both add and remove latent cells. Latent activation can produce large clones, where these may have been seeded much earlier than when first sampled. Elimination of the reservoir is complicated by expanding clones whose dynamic differ considerably to that of the entire reservoir. The HIV latent reservoir decreases slowly on antiretroviral therapy (ART). However there are cellular processes operating within this reservoir that can expand or contract subpopulations. This means that what is happening at the macro level may not be reflected at the micro level. To investigate this, we analysed published data on HIV latent clone sizes. By constructing an agent model incorporating the processes of cellular activation and proliferation, we were able to show that activation can expand clone sizes significantly even while on ART. Homeostatic proliferation also plays a role in maintaining the reservoir but these clones, though more frequent, are much smaller in size. Our calculations also show that activation and proliferation of the intact latent reservoir can lead to some of these cells becoming virally productive to a level consistent with observed residual viremia during ART. This analysis explains how normal cellular processes restructure the make-up of the latent reservoir and contribute to residual viremia.
Collapse
Affiliation(s)
- John M. Murray
- School of Mathematics and Statistics, UNSW Sydney, Australia
- * E-mail:
| |
Collapse
|
171
|
Lau CY, Adan MA, Maldarelli F. Why the HIV Reservoir Never Runs Dry: Clonal Expansion and the Characteristics of HIV-Infected Cells Challenge Strategies to Cure and Control HIV Infection. Viruses 2021; 13:2512. [PMID: 34960781 PMCID: PMC8708047 DOI: 10.3390/v13122512] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/22/2021] [Accepted: 11/27/2021] [Indexed: 12/13/2022] Open
Abstract
Antiretroviral therapy (ART) effectively reduces cycles of viral replication but does not target proviral populations in cells that persist for prolonged periods and that can undergo clonal expansion. Consequently, chronic human immunodeficiency virus (HIV) infection is sustained during ART by a reservoir of long-lived latently infected cells and their progeny. This proviral landscape undergoes change over time on ART. One of the forces driving change in the landscape is the clonal expansion of infected CD4 T cells, which presents a key obstacle to HIV eradication. Potential mechanisms of clonal expansion include general immune activation, antigenic stimulation, homeostatic proliferation, and provirus-driven clonal expansion, each of which likely contributes in varying, and largely unmeasured, amounts to maintaining the reservoir. The role of clinical events, such as infections or neoplasms, in driving these mechanisms remains uncertain, but characterizing these forces may shed light on approaches to effectively eradicate HIV. A limited number of individuals have been cured of HIV infection in the setting of bone marrow transplant; information from these and other studies may identify the means to eradicate or control the virus without ART. In this review, we describe the mechanisms of HIV-1 persistence and clonal expansion, along with the attempts to modify these factors as part of reservoir reduction and cure strategies.
Collapse
Affiliation(s)
- Chuen-Yen Lau
- HIV Dynamics and Replication Program, NCI, NIH, Bethesda, MD 20892, USA; (C.-Y.L.); (M.A.A.)
| | - Matthew A. Adan
- HIV Dynamics and Replication Program, NCI, NIH, Bethesda, MD 20892, USA; (C.-Y.L.); (M.A.A.)
- Vagelos College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA
| | - Frank Maldarelli
- HIV Dynamics and Replication Program, NCI, NIH, Bethesda, MD 20892, USA; (C.-Y.L.); (M.A.A.)
| |
Collapse
|
172
|
Li X, Huang Y, Jin Q, Ji J. Mixed-charge modification as a robust method to realize the antiviral ability of gold nanoparticles in a high protein environment. NANOSCALE 2021; 13:19857-19863. [PMID: 34825689 DOI: 10.1039/d1nr06756g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Pandemics caused by viruses have resulted in incalculable losses to human beings, which are exacerbated due to the lack of antiviral drugs. Sulfonic group modified nanomedicine has been proved to possess a broad-spectrum antiviral ability. However, it is very challenging to maintain the antiviral activity in a high protein environment in vivo. To improve the tolerance to the complex biological environment, sulfonic mixed-charge modified gold nanoparticles (MC_AuNPs) were prepared in this research by introducing positively charged ligands into sulfonic ligand modified gold nanoparticles. The MC_AuNPs showed excellent non-fouling ability while retaining comparable antiviral ability to single sulfonic ligand modified gold nanoparticles (MDS_AuNPs). The MC_AuNPs maintained their antiviral ability in 10 mg mL-1 protein solutions, but the MDS_AuNPs completely lost their antiviral capability in 1 mg mL-1 protein medium. The mixed-charge modification strategy provides a practical avenue to maintain the antiviral capability of HSPG mimicking nanoparticles in high protein environments.
Collapse
Affiliation(s)
- Xu Li
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, PR China.
| | - Yue Huang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, PR China.
| | - Qiao Jin
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, PR China.
| | - Jian Ji
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, PR China.
| |
Collapse
|
173
|
Xue J, Chong H, Zhu Y, Zhang J, Tong L, Lu J, Chen T, Cong Z, Wei Q, He Y. Efficient treatment and pre-exposure prophylaxis in rhesus macaques by an HIV fusion-inhibitory lipopeptide. Cell 2021; 185:131-144.e18. [PMID: 34919814 DOI: 10.1016/j.cell.2021.11.032] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 09/23/2021] [Accepted: 11/19/2021] [Indexed: 01/21/2023]
Abstract
Two HIV fusion-inhibitory lipopeptides (LP-97 and LP-98) were designed with highly potent, long-acting antiviral activity. Monotherapy using a low dose of LP-98 sharply reduced viral loads and maintained long-term viral suppression in 21 SHIVSF162P3-infected rhesus macaques. We found that five treated monkeys achieved potential posttreatment control (PTC) efficacy and had lower viral DNA in deep lymph nodes, whereas monkeys with a stable viral rebound had higher viral DNA in superficial lymph nodes. The tissues of PTC monkeys exhibited significantly decreased quantitative viral outgrowth and fewer PD-1+ central memory CD4+ T cells, and CD8+ T cells contributed to virologic control efficacy. Moreover, LP-98 administrated as a pre-exposure prophylaxis (PrEP) provided complete protection against SHIVSF162P3 and SIVmac239 infections in 51 monkeys via intrarectal, intravaginal, or intravenous challenge. In conclusion, our lipopeptides exhibit high potential as an efficient HIV treatment or prevention strategy.
Collapse
Affiliation(s)
- Jing Xue
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing 100021, China; Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.
| | - Huihui Chong
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yuanmei Zhu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Jingjing Zhang
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing 100021, China
| | - Ling Tong
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing 100021, China
| | - Jiahan Lu
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing 100021, China
| | - Ting Chen
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing 100021, China
| | - Zhe Cong
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing 100021, China
| | - Qiang Wei
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing 100021, China; Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yuxian He
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.
| |
Collapse
|
174
|
Crespo-Bermejo C, de Arellano ER, Lara-Aguilar V, Valle-Millares D, Gómez-Lus ML, Madrid R, Martín-Carbonero L, Briz V. Persistent low-Level viremia in persons living with HIV undertreatment: An unresolved status. Virulence 2021; 12:2919-2931. [PMID: 34874239 PMCID: PMC8654475 DOI: 10.1080/21505594.2021.2004743] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Antiretroviral therapy (ART) allows suppressed viremia to reach less than 50 copies/mL in most treated persons living with HIV (PLWH). However, the existence of PLWH that show events of persistent low-level viremia (pLLV) between 50 and 1000 copies/mL and with different virological consequences have been observed. PLLV has been associated with higher virological failure (VF), viral genotype resistance, adherence difficulties and AIDS events. Moreover, some reports show that pLLV status can lead to residual immune activation and inflammation, with an increased risk of immunovirological failure and a pro-inflammatory cytokine level which can lead to a higher occurrence of non-AIDS defining events (NADEs) and other adverse clinical outcomes. Until now, however, published data have shown controversial results that hinder understanding of the true cause(s) and origin(s) of this phenomenon. Molecular mechanisms related to viral reservoir size and clonal expansion have been suggested as the possible origin of pLLV. This review aims to assess recent findings to provide a global view of the role of pLLV in PLWH and the impact this status may cause on the clinical progression of these patients.
Collapse
Affiliation(s)
- Celia Crespo-Bermejo
- Laboratory of Reference and Research on Viral Hepatitis, National Center of Microbiology, Institute of Health Carlos Iii, Majadahonda, Madrid, Spain
| | - Eva Ramírez de Arellano
- Laboratory of Reference and Research on Viral Hepatitis, National Center of Microbiology, Institute of Health Carlos Iii, Majadahonda, Madrid, Spain
| | - Violeta Lara-Aguilar
- Laboratory of Reference and Research on Viral Hepatitis, National Center of Microbiology, Institute of Health Carlos Iii, Majadahonda, Madrid, Spain
| | - Daniel Valle-Millares
- Laboratory of Reference and Research on Viral Hepatitis, National Center of Microbiology, Institute of Health Carlos Iii, Majadahonda, Madrid, Spain
| | - Mª Luisa Gómez-Lus
- Departamento de Medicina- Área de Microbiología. Facultad de Medicina. Universidad Complutense, Madrid, Spain
| | - Ricardo Madrid
- Parque Científico de Madrid, Campus de Cantoblanco, Madrid, Spain.,Department of Genetics, Physiology and Microbiology. Faculty of Biology, Complutense University of Madrid, Madrid, Spain
| | - Luz Martín-Carbonero
- Unidad de Vih. Servicio de Medicina Interna. Hospital Universitario La Paz. Instituto de Investigación Sanitaria Hospital de La Paz (Idipaz), Madrid, Spain
| | - Verónica Briz
- Laboratory of Reference and Research on Viral Hepatitis, National Center of Microbiology, Institute of Health Carlos Iii, Majadahonda, Madrid, Spain
| |
Collapse
|
175
|
Huang AS, Ramos V, Oliveira TY, Gaebler C, Jankovic M, Nussenzweig MC, Cohn LB. Integration features of intact latent HIV-1 in CD4+ T cell clones contribute to viral persistence. J Exp Med 2021; 218:e20211427. [PMID: 34636876 PMCID: PMC8515646 DOI: 10.1084/jem.20211427] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/17/2021] [Accepted: 09/27/2021] [Indexed: 01/26/2023] Open
Abstract
Latent intact HIV-1 proviruses persist in a small subset of long-lived CD4+ T cells that can undergo clonal expansion in vivo. Expanded clones of CD4+ T cells dominate latent reservoirs in individuals on long-term antiretroviral therapy (ART) and represent a major barrier to HIV-1 cure. To determine how integration landscape might contribute to latency, we analyzed integration sites of near full length HIV-1 genomes from individuals on long-term ART, focusing on individuals whose reservoirs are highly clonal. We find that intact proviruses in expanded CD4+ T cell clones are preferentially integrated within Krüppel-associated box (KRAB) domain-containing zinc finger (ZNF) genes. ZNF genes are associated with heterochromatin in memory CD4+ T cells; nevertheless, they are expressed in these cells under steady-state conditions. In contrast to genes carrying unique integrations, ZNF genes carrying clonal intact integrations are down-regulated upon cellular activation. Together, the data suggest selected genomic sites, including ZNF genes, can be especially permissive for maintaining HIV-1 latency during memory CD4+ T cell expansion.
Collapse
Affiliation(s)
- Amy S. Huang
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Victor Ramos
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Thiago Y. Oliveira
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Christian Gaebler
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Mila Jankovic
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Michel C. Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
- Howard Hughes Medical Institute, Chevy Chase, MD
| | | |
Collapse
|
176
|
Alagaratnam J, Winston A. Molecular neuroimaging of inflammation in HIV. Clin Exp Immunol 2021; 210:14-23. [PMID: 35020855 PMCID: PMC9585552 DOI: 10.1093/cei/uxab013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/13/2021] [Accepted: 11/03/2021] [Indexed: 01/12/2023] Open
Abstract
People with HIV now have near-normal life expectancies due to the success of effective combination antiretroviral therapy (cART). Following cART initiation, immune recovery occurs, and opportunistic diseases become rare. Despite this, high rates of non-infectious comorbidities persist in treated people with HIV, hypothesized to be related to persistent immuno-activation. One such comorbidity is cognitive impairment, which may partly be driven by ongoing neuro-inflammation in otherwise effectively treated people with HIV. In order to develop therapeutic interventions to address neuro-inflammation in effectively treated people with HIV, a deeper understanding of the pathogenic mechanisms driving persistent neuro-inflammatory responses and the ability to better characterize and measure neuro-inflammation in the central nervous system is required. This review highlights recent advances in molecular neuroimaging techniques which have the potential to assess neuro-inflammatory responses within the central nervous system in HIV disease. Proton magnetic resonance spectroscopy (1H-MRS) has been utilized to assess neuro-inflammatory responses since early in the HIV pandemic and shows promise in recent studies assessing different antiretroviral regimens. 1H-MRS is widely available in both resource-rich and some resource-constrained settings and is relatively inexpensive. Brain positron emission tomography (PET) imaging using Translocator Protein (TSPO) radioligands is a rapidly evolving field; newer TSPO-radioligands have lower signal-to-noise ratio and have the potential to localize neuro-inflammation within the brain in people with HIV. As HIV therapeutics evolve, people with HIV continue to age and develop age-related comorbidities including cognitive disorders. The use of novel neuroimaging modalities in the field is likely to advance in order to rapidly assess novel therapeutic interventions and may play a role in future clinical assessments.
Collapse
Affiliation(s)
- Jasmini Alagaratnam
- Correspondence: Jasmini Alagaratnam, Clinical Trials Centre, Winston Churchill Wing, St. Mary’s Hospital, Praed Street, London W2 1NY, UK.
| | - Alan Winston
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK,Department of Genitourinary Medicine & HIV, St Mary’s Hospital, Imperial College Healthcare NHS Trust, London, UK
| |
Collapse
|
177
|
Siliciano JD, Siliciano RF. In Vivo Dynamics of the Latent Reservoir for HIV-1: New Insights and Implications for Cure. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2021; 17:271-294. [PMID: 34736342 DOI: 10.1146/annurev-pathol-050520-112001] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Although antiretroviral therapy (ART) can reduce viremia to below the limit of detection and allow persons living with HIV-1 (PLWH) to lead relatively normal lives, viremia rebounds when treatment is interrupted. Rebound reflects viral persistence in a stable latent reservoir in resting CD4+ T cells. This reservoir is now recognized as the major barrier to cure and is the focus of intense international research efforts. Strategies to cure HIV-1 infection include interventions to eliminate this reservoir, to prevent viral rebound from the reservoir, or to enhance immune responses such that viral replication is effectively controlled. Here we consider recent developments in understanding the composition of the reservoir and how it can be measured in clinical studies. We also discuss exciting new insights into the in vivo dynamics of the reservoir and the reasons for its remarkable stability. Finally we discuss recent discoveries on the complex processes that govern viral rebound. Expected final online publication date for the Annual Review of Pathology: Mechanisms of Disease, Volume 17 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Janet D Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA;
| | - Robert F Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA; .,Howard Hughes Medical Institute, Baltimore, Maryland 21205, USA
| |
Collapse
|
178
|
Hunter JR, dos Santos DEM, Munerato P, Janini LM, Castelo A, Sucupira MC, Truong HHM, Diaz RS. Fitness Cost of Antiretroviral Drug Resistance Mutations on the pol Gene during Analytical Antiretroviral Treatment Interruption among Individuals Experiencing Virological Failure. Pathogens 2021; 10:pathogens10111425. [PMID: 34832581 PMCID: PMC8622617 DOI: 10.3390/pathogens10111425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 11/16/2022] Open
Abstract
HIV cure studies require patients to enter an analytical treatment interruption (ATI). Here, we describe previously unanalyzed data that sheds light on ATI dynamics in PLHIV (People Living with HIV). We present drug resistance mutation dynamics on the pol gene among individuals with antiretroviral virological failure who underwent ATI. The study involved a 12-week interruption in antiretroviral therapy (ART), monitoring of viral load, CD4+/CD8+ T cell counts, and sequencing of the pol gene from 38 individuals experiencing virological failure and harboring 3-class resistant HIV strains: nucleoside reverse transcriptase inhibitors (NRTI) non-nucleoside inhibitors (NNRTI), and protease inhibitors (PI). Protease and reverse transcriptase regions of the pol gene were sequenced at baseline before ATI and every four weeks thereafter from PBMCs and at baseline and after 12 weeks from plasma HIV RNA using population-based Sanger sequencing. Average viral load increased 0.559 log10 copies per milliliter. CD4+ T cell count decreased as soon as ART was withdrawn, an average loss of 99.0 cells/mL. Forty-three percent of the mutations associated with antiretroviral resistance in PBMCs disappeared and fifty-seven percent of the mutations in plasma reverted to wild type, which was less than the 100% reversion expected. In PBMC, the PI mutations reverted more slowly than reverse transcriptase mutations. The patients were projected to need an average of 33.7 weeks for PI to revert compared with 20.9 weeks for NRTI and 19.8 weeks for NNRTI. Mutations in the pol gene can cause virological failure and difficulty in re-establishing effective virological suppression.
Collapse
Affiliation(s)
- James R. Hunter
- Department of Medicine, Federal University of São Paulo, São Paulo 04039-032, Brazil; (J.R.H.); (D.E.M.d.S.); (P.M.); (L.M.J.); (A.C.); (M.C.S.)
| | - Domingos E. Matos dos Santos
- Department of Medicine, Federal University of São Paulo, São Paulo 04039-032, Brazil; (J.R.H.); (D.E.M.d.S.); (P.M.); (L.M.J.); (A.C.); (M.C.S.)
| | - Patricia Munerato
- Department of Medicine, Federal University of São Paulo, São Paulo 04039-032, Brazil; (J.R.H.); (D.E.M.d.S.); (P.M.); (L.M.J.); (A.C.); (M.C.S.)
| | - Luiz Mario Janini
- Department of Medicine, Federal University of São Paulo, São Paulo 04039-032, Brazil; (J.R.H.); (D.E.M.d.S.); (P.M.); (L.M.J.); (A.C.); (M.C.S.)
| | - Adauto Castelo
- Department of Medicine, Federal University of São Paulo, São Paulo 04039-032, Brazil; (J.R.H.); (D.E.M.d.S.); (P.M.); (L.M.J.); (A.C.); (M.C.S.)
| | - Maria Cecilia Sucupira
- Department of Medicine, Federal University of São Paulo, São Paulo 04039-032, Brazil; (J.R.H.); (D.E.M.d.S.); (P.M.); (L.M.J.); (A.C.); (M.C.S.)
| | - Hong-Ha M. Truong
- Department of Medicine, University of California, San Francisco, CA 94158, USA;
| | - Ricardo Sobhie Diaz
- Department of Medicine, Federal University of São Paulo, São Paulo 04039-032, Brazil; (J.R.H.); (D.E.M.d.S.); (P.M.); (L.M.J.); (A.C.); (M.C.S.)
- Correspondence:
| |
Collapse
|
179
|
Stern J, Solomon A, Dantanarayana A, Pascoe R, Reynaldi A, Davenport MP, Milush J, Deeks SG, Hartogensis W, Hecht FM, Cockerham L, Roche M, Lewin SR. Cell-associated HIV RNA has a Circadian Cycle in Males Living with HIV on Antiretroviral Therapy. J Infect Dis 2021; 225:1721-1730. [PMID: 34655216 DOI: 10.1093/infdis/jiab533] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 10/15/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Circadian transcription factors that regulate cell-autonomous circadian clocks can also increase HIV transcription in vitro. We aimed to determine if circadian variation in HIV transcription exists in people living with HIV (PLHIV) on antiretroviral therapy (ART). METHODS We performed a prospective observational study of male PLHIV on ART, sampling blood every four hours for 24 hours. Using qPCR, we quantified expression of circadian associated genes, HIV DNA and cell-associated unspliced (CA-US) RNA in peripheral blood CD4+ T-cells. Plasma sex hormones were quantified alongside plasma and salivary cortisol. The primary outcome was to identify temporal variations in CA-US HIV RNA using a linear mixed effect regression framework and maximum likelihood estimation. RESULTS Salivary and plasma cortisol, and circadian genes including Clock, Bmal1, and Per3 varied with a circadian rhythm. CA-US HIV RNA and the ratio of CA-US HIV RNA-to-DNA in CD4+ T-cells also demonstrated circadian variations, with no variation in HIV DNA. Circulating oestradiol was highly predictive of CA-US HIV RNA variation in vivo. CONCLUSION CA-US HIV RNA in PLHIV on ART varies temporally with a circadian rhythm. These findings have implications for the design of clinical trials and biomarkers to assess HIV cure interventions.
Collapse
Affiliation(s)
- Jared Stern
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, Australia
| | - Ajantha Solomon
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, Australia
| | - Ashanti Dantanarayana
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, Australia
| | - Rachel Pascoe
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, Australia
| | - Arnold Reynaldi
- The Kirby Institute, University of New South Wales, Sydney, Australia
| | - Miles P Davenport
- The Kirby Institute, University of New South Wales, Sydney, Australia
| | - Jeffrey Milush
- Department of Medicine, University of California, San Francisco, USA
| | - Steven G Deeks
- Department of Medicine, University of California, San Francisco, USA
| | - Wendy Hartogensis
- Osher Center for Integrative Medicine, University of California San Francisco, San Francisco, USA
| | - Frederick M Hecht
- Osher Center for Integrative Medicine, University of California San Francisco, San Francisco, USA
| | - Leslie Cockerham
- Division of Infectious Diseases, Medical College of Wisconsin, Milwaukee, USA
| | - Michael Roche
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, Australia
| | - Sharon R Lewin
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, Australia.,Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, Australia
| |
Collapse
|
180
|
Coffin JM, Hughes SH. Clonal Expansion of Infected CD4+ T Cells in People Living with HIV. Viruses 2021; 13:v13102078. [PMID: 34696507 PMCID: PMC8537114 DOI: 10.3390/v13102078] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/28/2021] [Accepted: 10/05/2021] [Indexed: 01/16/2023] Open
Abstract
HIV infection is not curable with current antiretroviral therapy (ART) because a small fraction of CD4+ T cells infected prior to ART initiation persists. Understanding the nature of this latent reservoir and how it is created is essential to development of potentially curative strategies. The discovery that a large fraction of the persistently infected cells in individuals on suppressive ART are members of large clones greatly changed our view of the reservoir and how it arises. Rather than being the products of infection of resting cells, as was once thought, HIV persistence is largely or entirely a consequence of infection of cells that are either expanding or are destined to expand, primarily due to antigen-driven activation. Although most of the clones carry defective proviruses, some carry intact infectious proviruses; these clones comprise the majority of the reservoir. A large majority of both the defective and the intact infectious proviruses in clones of infected cells are transcriptionally silent; however, a small fraction expresses a few copies of unspliced HIV RNA. A much smaller fraction is responsible for production of low levels of infectious virus, which can rekindle infection when ART is stopped. Further understanding of the reservoir will be needed to clarify the mechanism(s) by which provirus expression is controlled in the clones of cells that constitute the reservoir.
Collapse
Affiliation(s)
- John M. Coffin
- Department of Molecular Biology and Microbiology, Tufts University, Boston, MA 02111, USA;
| | - Stephen H. Hughes
- HIV Dynamics and Replication Program, National Cancer Institute in Frederick, Frederick, MD 21702, USA
- Correspondence:
| |
Collapse
|
181
|
Kjær K, Leth S, Konrad CV, Gunst JD, Nymann R, Østergaard L, Søgaard OS, Schleimann MH, Tolstrup M, Denton PW. Modest de novo Reactivation of Single HIV-1 Proviruses in Peripheral CD4+ T Cells by Romidepsin. FRONTIERS IN VIROLOGY 2021. [DOI: 10.3389/fviro.2021.736395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
A cure for human immunodeficiency virus (HIV-1) is restricted by the continued presence of a latent reservoir of memory CD4+ T cells with proviruses integrated into their DNA despite suppressive antiretroviral therapy (ART). A predominant strategy currently pursued in HIV-1 cure-related research is the “kick and kill” approach, where latency reversal agents (LRAs) are used to reactivate transcription from integrated proviruses. The premise of this approach is that “kicking” latent virus out of hiding allows the host immune system to recognize and kill infected cells. Clinical trials investigating the efficacy of LRAs, such as romidepsin, have shown that these interventions do induce transient spikes in viral RNA in HIV-1-infected individuals. However, since these trials failed to significantly reduce viral reservoir size or significantly delay time to viral rebound during analytical treatment interruptions, it is questioned how much each individual latent provirus is actually “kicked” to produce viral transcripts and/or proteins by the LRA. Here, we developed sensitive and specific digital droplet PCR-based assays with single-provirus level resolution. Combining these assays allowed us to interrogate the level of viral RNA transcripts from single proviruses in individuals on suppressive ART with or without concomitant romidepsin treatment. Small numbers of proviruses in peripheral blood memory CD4+ T cells were triggered to become marginally transcriptionally active upon romidepsin treatment. These novel assays can be applied retrospectively and prospectively in HIV-1 cure-related clinical trials to gain crucial insights into LRA efficacy at the single provirus level.
Collapse
|
182
|
Buckley S, Byrnes S, Cochrane C, Roche M, Estes JD, Selemidis S, Angelovich TA, Churchill MJ. The role of oxidative stress in HIV-associated neurocognitive disorders. Brain Behav Immun Health 2021; 13:100235. [PMID: 34589750 PMCID: PMC8474476 DOI: 10.1016/j.bbih.2021.100235] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 01/18/2021] [Accepted: 02/24/2021] [Indexed: 12/02/2022] Open
Abstract
HIV-associated neurocognitive disorders (HAND) are a leading cause of morbidity in up to 50% of individuals living with HIV, despite effective treatment with antiretroviral therapy (ART). Current evidence suggests that chronic inflammation associated with HIV is especially attributed to the dysregulated production of reactive oxygen species (ROS) that contribute to neurodegeneration and poor clinical outcomes. While ROS have beneficial effects in eliciting immune responses to infection, chronic ROS production causes damage to macromolecules such as DNA and lipids that has been linked to altered redox homeostasis associated with antioxidant dysregulation. As a result, this disruption in the balance between antioxidant-dependent mechanisms of ROS inactivation and ROS production by enzymes such as the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase family, as well as from the electron transport chain of the mitochondria can result in oxidative stress. This is particularly relevant to the brain, which is exquisitely susceptible to oxidative stress due to its inherently high lipid concentration and ROS levels that have been linked to many neurodegenerative diseases that have similar stages of pathogenesis to HAND. In this review, we discuss the possible role and mechanisms of ROS production leading to oxidative stress that underpin HAND pathogenesis even when HIV is suppressed by current gold-standard antiretroviral therapies. Furthermore, we highlight that pathological ROS can serve as biomarkers for HIV-dependent HAND, and how manipulation of oxidative stress and antioxidant-dependent pathways may facilitate novel strategies for HIV cure. Production of reactive oxygen species has been linked to neurodegenerative diseases. ROS production contributes to HIV-associated neurocognitive disorders. ROS may be used as a biomarker for HIV-associated neurocognitive disorders. Manipulation of antioxidant pathways may present novel HIV cure strategies.
Collapse
Affiliation(s)
- Sarah Buckley
- Chronic Infectious and Inflammatory Diseases Program, School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia
| | - Sarah Byrnes
- Chronic Infectious and Inflammatory Diseases Program, School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia
| | - Catherine Cochrane
- Chronic Infectious and Inflammatory Diseases Program, School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia
| | - Michael Roche
- Chronic Infectious and Inflammatory Diseases Program, School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia.,The Peter Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, Australia
| | - Jacob D Estes
- Chronic Infectious and Inflammatory Diseases Program, School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia.,Vaccine and Gene Therapy Institute, Oregon National Primate Research Centre, Oregon Health & Science University, United States
| | - Stavros Selemidis
- Chronic Infectious and Inflammatory Diseases Program, School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia
| | - Thomas A Angelovich
- Chronic Infectious and Inflammatory Diseases Program, School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia.,Life Sciences, Burnet Institute, Melbourne, Australia
| | - Melissa J Churchill
- Chronic Infectious and Inflammatory Diseases Program, School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia.,Life Sciences, Burnet Institute, Melbourne, Australia.,Departments of Microbiology and Medicine, Monash University, Clayton, Australia
| |
Collapse
|
183
|
Lustig G, Cele S, Karim F, Derache A, Ngoepe A, Khan K, Gosnell BI, Moosa MYS, Ntshuba N, Marais S, Jeena PM, Govender K, Adamson J, Kløverpris H, Gupta RK, Harrichandparsad R, Patel VB, Sigal A. T cell derived HIV-1 is present in the CSF in the face of suppressive antiretroviral therapy. PLoS Pathog 2021; 17:e1009871. [PMID: 34555123 PMCID: PMC8509856 DOI: 10.1371/journal.ppat.1009871] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/12/2021] [Accepted: 08/06/2021] [Indexed: 12/14/2022] Open
Abstract
HIV cerebrospinal fluid (CSF) escape, where HIV is suppressed in blood but detectable in CSF, occurs when HIV persists in the CNS despite antiretroviral therapy (ART). To determine the virus producing cell type and whether lowered CSF ART levels are responsible for CSF escape, we collected blood and CSF from 156 neurosymptomatic participants from Durban, South Africa. We observed that 28% of participants with an undetectable HIV blood viral load showed CSF escape. We detected host cell surface markers on the HIV envelope to determine the cellular source of HIV in participants on the first line regimen of efavirenz, emtricitabine, and tenofovir. We confirmed CD26 as a marker which could differentiate between T cells and macrophages and microglia, and quantified CD26 levels on the virion surface, comparing the result to virus from in vitro infected T cells or macrophages. The measured CD26 level was consistent with the presence of T cell produced virus. We found no significant differences in ART concentrations between CSF escape and fully suppressed individuals in CSF or blood, and did not observe a clear association with drug resistance mutations in CSF virus which would allow HIV to replicate. Hence, CSF HIV in the face of ART may at least partly originate in CD4+ T cell populations.
Collapse
Affiliation(s)
- Gila Lustig
- Centre for the AIDS Programme of Research in South Africa, Durban, South Africa
| | - Sandile Cele
- Africa Health Research Institute, Durban, South Africa
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Farina Karim
- Africa Health Research Institute, Durban, South Africa
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Anne Derache
- Africa Health Research Institute, Durban, South Africa
| | | | - Khadija Khan
- Africa Health Research Institute, Durban, South Africa
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Bernadett I. Gosnell
- Department of Infectious Diseases, University of KwaZulu-Natal, Durban, South Africa
| | | | | | - Suzaan Marais
- Department of Neurology, University of KwaZulu-Natal, Durban, South Africa
| | - Prakash M. Jeena
- Discipline of Pediatrics and Child Health, University of KwaZulu-Natal, Durban, South Africa
| | | | - John Adamson
- Africa Health Research Institute, Durban, South Africa
| | - Henrik Kløverpris
- Africa Health Research Institute, Durban, South Africa
- Division of Infection and Immunity, University College London, London, United Kingdom
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Ravindra K. Gupta
- Africa Health Research Institute, Durban, South Africa
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | | | - Vinod B. Patel
- Department of Neurology, University of KwaZulu-Natal, Durban, South Africa
| | - Alex Sigal
- Africa Health Research Institute, Durban, South Africa
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
- Max Planck Institute for Infection Biology, Berlin, Germany
- * E-mail:
| |
Collapse
|
184
|
Shrivastava S, Ray RM, Holguin L, Echavarria L, Grepo N, Scott TA, Burnett J, Morris KV. Exosome-mediated stable epigenetic repression of HIV-1. Nat Commun 2021; 12:5541. [PMID: 34545097 PMCID: PMC8452652 DOI: 10.1038/s41467-021-25839-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 08/31/2021] [Indexed: 11/25/2022] Open
Abstract
Human Immunodeficiency Virus (HIV-1) produces a persistent latent infection. Control of HIV-1 using combination antiretroviral therapy (cART) comes at the cost of life-shortening side effects and development of drug-resistant HIV-1. An ideal and safer therapy should be deliverable in vivo and target the stable epigenetic repression of the virus, inducing a stable "block and lock" of virus expression. Towards this goal, we developed an HIV-1 promoter-targeting Zinc Finger Protein (ZFP-362) fused to active domains of DNA methyltransferase 3 A to induce long-term stable epigenetic repression of HIV-1. Cells were engineered to produce exosomes packaged with RNAs encoding this HIV-1 repressor protein. We find here that the repressor loaded anti-HIV-1 exosomes suppress virus expression and that this suppression is mechanistically driven by DNA methylation of HIV-1 in humanized NSG mouse models. The observations presented here pave the way for an exosome-mediated systemic delivery platform of therapeutic cargo to epigenetically repress HIV-1 infection.
Collapse
Affiliation(s)
- Surya Shrivastava
- Center for Gene Therapy, City of Hope-Beckman Research Institute, Duarte, CA, USA
| | - Roslyn M Ray
- Center for Gene Therapy, City of Hope-Beckman Research Institute, Duarte, CA, USA
| | - Leo Holguin
- Center for Gene Therapy, City of Hope-Beckman Research Institute, Duarte, CA, USA
| | - Lilliana Echavarria
- Center for Gene Therapy, City of Hope-Beckman Research Institute, Duarte, CA, USA
| | - Nicole Grepo
- Center for Gene Therapy, City of Hope-Beckman Research Institute, Duarte, CA, USA
| | - Tristan A Scott
- Center for Gene Therapy, City of Hope-Beckman Research Institute, Duarte, CA, USA
| | - John Burnett
- Center for Gene Therapy, City of Hope-Beckman Research Institute, Duarte, CA, USA
- Hematological Malignancy and Stem Cell Transplantation Institute at the City of Hope, Duarte, CA, USA
| | - Kevin V Morris
- Center for Gene Therapy, City of Hope-Beckman Research Institute, Duarte, CA, USA.
- Hematological Malignancy and Stem Cell Transplantation Institute at the City of Hope, Duarte, CA, USA.
- Menzies Health Institute Queensland, School of Medical Science Griffith University, Gold Coast Campus, Brisbane, Australia.
| |
Collapse
|
185
|
Lee GQ. Chemistry and Bioinformatics Considerations in Using Next-Generation Sequencing Technologies to Inferring HIV Proviral DNA Genome-Intactness. Viruses 2021; 13:1874. [PMID: 34578455 PMCID: PMC8473067 DOI: 10.3390/v13091874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/06/2021] [Accepted: 09/06/2021] [Indexed: 12/20/2022] Open
Abstract
HIV persists via integration of the viral DNA into the human genome. The HIV DNA pool within an infected individual is a complex population that comprises both intact and defective viral genomes, each with a distinct integration site, in addition to a unique repertoire of viral quasi-species. Obtaining an accurate profile of the viral DNA pool is critical to understanding viral persistence and resolving interhost differences. Recent advances in next-generation deep sequencing (NGS) technologies have enabled the development of two sequencing assays to capture viral near-full- genome sequences at single molecule resolution (FLIP-seq) or to co-capture full-length viral genome sequences in conjunction with its associated viral integration site (MIP-seq). This commentary aims to provide an overview on both FLIP-seq and MIP-seq, discuss their strengths and limitations, and outline specific chemistry and bioinformatics concerns when using these assays to study HIV persistence.
Collapse
Affiliation(s)
- Guinevere Q Lee
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| |
Collapse
|
186
|
Mbonye U, Leskov K, Shukla M, Valadkhan S, Karn J. Biogenesis of P-TEFb in CD4+ T cells to reverse HIV latency is mediated by protein kinase C (PKC)-independent signaling pathways. PLoS Pathog 2021; 17:e1009581. [PMID: 34529720 PMCID: PMC8478230 DOI: 10.1371/journal.ppat.1009581] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 09/28/2021] [Accepted: 09/04/2021] [Indexed: 01/09/2023] Open
Abstract
The switch between HIV latency and productive transcription is regulated by an auto-feedback mechanism initiated by the viral trans-activator Tat, which functions to recruit the host transcription elongation factor P-TEFb to proviral HIV. A heterodimeric complex of CDK9 and one of three cyclin T subunits, P-TEFb is expressed at vanishingly low levels in resting memory CD4+ T cells and cellular mechanisms controlling its availability are central to regulation of the emergence of HIV from latency. Using a well-characterized primary T-cell model of HIV latency alongside healthy donor memory CD4+ T cells, we characterized specific T-cell receptor (TCR) signaling pathways that regulate the generation of transcriptionally active P-TEFb, defined as the coordinate expression of cyclin T1 and phospho-Ser175 CDK9. Protein kinase C (PKC) agonists, such as ingenol and prostratin, stimulated active P-TEFb expression and reactivated latent HIV with minimal cytotoxicity, even in the absence of intracellular calcium mobilization with an ionophore. Unexpectedly, inhibition-based experiments demonstrated that PKC agonists and TCR-mobilized diacylglycerol signal through MAP kinases ERK1/2 rather than through PKC to effect the reactivation of both P-TEFb and latent HIV. Single-cell and bulk RNA-seq analyses revealed that of the four known isoforms of the Ras guanine nucleotide exchange factor RasGRP, RasGRP1 is by far the predominantly expressed diacylglycerol-dependent isoform in CD4+ T cells. RasGRP1 should therefore mediate the activation of ERK1/2 via Ras-Raf signaling upon TCR co-stimulation or PKC agonist challenge. Combined inhibition of the PI3K-mTORC2-AKT-mTORC1 pathway and the ERK1/2 activator MEK prior to TCR co-stimulation abrogated active P-TEFb expression and substantially suppressed latent HIV reactivation. Therefore, contrary to prevailing models, the coordinate reactivation of P-TEFb and latent HIV in primary T cells following either TCR co-stimulation or PKC agonist challenge is independent of PKC but rather involves two complementary signaling arms of the TCR cascade, namely, RasGRP1-Ras-Raf-MEK-ERK1/2 and PI3K-mTORC2-AKT-mTORC1.
Collapse
Affiliation(s)
- Uri Mbonye
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
- * E-mail: (UM); (JK)
| | - Konstantin Leskov
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Meenakshi Shukla
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Saba Valadkhan
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Jonathan Karn
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
- * E-mail: (UM); (JK)
| |
Collapse
|
187
|
Quinn TC. Forty years of AIDS: a retrospective and the way forward. J Clin Invest 2021; 131:e154196. [PMID: 34523618 DOI: 10.1172/jci154196] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Affiliation(s)
- Thomas C Quinn
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA.,Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
188
|
Siliciano JD, Siliciano RF. Low Inducibility of Latent Human Immunodeficiency Virus Type 1 Proviruses as a Major Barrier to Cure. J Infect Dis 2021; 223:13-21. [PMID: 33586775 DOI: 10.1093/infdis/jiaa649] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The latent reservoir for human immunodeficiency virus type 1 (HIV-1) in resting CD4+ T cells is a major barrier to cure. The dimensions of the reservoir problem can be defined with 2 assays. A definitive minimal estimate of the frequency of latently infected cells is provided by the quantitative viral outgrowth assay (QVOA), which detects cells that can be induced by T-cell activation to release infectious virus. In contrast, the intact proviral DNA assay (IPDA) detects all genetically intact proviruses and provides a more accurate upper limit on reservoir size than standard single-amplicon polymerase chain reaction assays which mainly detect defective proviruses. The frequency of cells capable of initiating viral rebound on interruption of antiretroviral therapy lies between the values produced by the QVOA and the IPDA. We argue here that the 1-2-log difference between QVOA and IPDA values in part reflects that the fact that many replication-competent proviruses are not readily induced by T-cell activation. Findings of earlier studies suggest that latently infected cells can be activated to proliferate in vivo without expressing viral genes. The proliferating cells nevertheless retain the ability to produce virus on subsequent stimulation. The low inducibility of latent proviruses is a major problem for the shock-and-kill strategy for curing HIV-1 infection, which uses latency-reversing agents to induce viral gene expression and render infected cells susceptible to immune clearance. The latency-reversing agents developed to date are much less effective at reversing latency than T-cell activation. Taken together, these results indicate that HIV-1 eradication will require the discovery of much more effective ways to induce viral gene expression.
Collapse
Affiliation(s)
- Janet D Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Robert F Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Howard Hughes Medical Institute, Baltimore, Maryland, USA
| |
Collapse
|
189
|
Li Y, Mohammadi A, Li JZ. Challenges and Promise of Human Immunodeficiency Virus Remission. J Infect Dis 2021; 223:4-12. [PMID: 33586773 DOI: 10.1093/infdis/jiaa568] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Antiretroviral therapy effectively controls human immunodeficiency virus (HIV) replication but it is unable to fully eradicate the HIV reservoir and treatment must be life-long. Progress toward a strategy for HIV remission will require overcoming key hurdles to fill gaps in our understanding of HIV persistence, but the identification of individuals who have attained sterilizing or functional HIV cure show that such a goal is achievable. In this review, we first outline challenges in targeting the HIV reservoir, including difficulties identifying HIV-infected cells, ongoing work elucidating the complex intracellular environment that contribute to HIV latency, and barriers to reactivating and clearing the HIV reservoir. We then review reported cases of HIV sterilizing cure and explore natural models of HIV remission and the promise that such HIV spontaneous and posttreatment controllers may hold in our search for a broadly-applicable strategy for the millions of patients living with HIV.
Collapse
Affiliation(s)
- Yijia Li
- Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Abbas Mohammadi
- Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jonathan Z Li
- Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
190
|
Zhou Y, Maldini CR, Jadlowsky J, Riley JL. Challenges and Opportunities of Using Adoptive T-Cell Therapy as Part of an HIV Cure Strategy. J Infect Dis 2021; 223:38-45. [PMID: 33586770 DOI: 10.1093/infdis/jiaa223] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
HIV-infected individuals successfully controlling viral replication via antiretroviral therapy often have a compromised HIV-specific T-cell immune response due to the lack of CD4 T-cell help, viral escape, T-cell exhaustion, and reduction in numbers due to the withdrawal of cognate antigen. A successful HIV cure strategy will likely involve a durable and potent police force that can effectively recognize and eliminate remaining virus that may emerge decades after an individual undergoes an HIV cure regimen. T cells are ideally suited to serve in this role, but given the state of the HIV-specific T-cell response, it is unclear how to best restore HIV-specific T-cell activity prior initiation of a HIV cure strategy. Here, we review several strategies of generating HIV-specific T cells ex vivo that are currently being tested in the clinic and discuss how infused T cells can be part of an HIV cure strategy.
Collapse
Affiliation(s)
- Yuqi Zhou
- Department of Microbiology, Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Colby R Maldini
- Department of Microbiology, Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Julie Jadlowsky
- Department of Microbiology, Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - James L Riley
- Department of Microbiology, Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
191
|
Alagaratnam J, Stöhr W, Toombs J, Heslegrave A, Zetterberg H, Gisslén M, Pett S, Nelson M, Clarke A, Nwokolo N, Johnson MA, Khan M, Hanke T, Kopycinski J, Dorrell L, Fox J, Kinloch S, Underwood J, Pace M, Frater J, Winston A, Fidler S. No evidence of neuronal damage as measured by neurofilament light chain in a HIV cure study utilising a kick-and-kill approach. J Virus Erad 2021; 7:100056. [PMID: 34611495 PMCID: PMC8477217 DOI: 10.1016/j.jve.2021.100056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 08/03/2021] [Accepted: 09/08/2021] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVE HIV-remission strategies including kick-and-kill could induce viral transcription and immune-activation in the central nervous system, potentially causing neuronal injury. We investigated the impact of kick-and-kill on plasma neurofilament light (NfL), a marker of neuro-axonal injury, in RIVER trial participants commencing antiretroviral treatment (ART) during primary infection and randomly allocated to ART-alone or kick-and-kill (ART + vaccination + vorinostat (ART + V + V)). DESIGN Sub-study measuring serial plasma NfL concentrations. METHODS Plasma NfL (using Simoa digital immunoassay), plasma HIV-1 RNA (using single-copy assay) and total HIV-1 DNA (using quantitative polymerase chain reaction in peripheral CD4+ T-cells) were measured at randomisation (following ≥22 weeks ART), week 12 (on final intervention day in ART + V + V) and week 18 post-randomisation. HIV-specific T-cells were quantified by intracellular cytokine staining at randomisation and week 12. Differences in plasma NfL longitudinally and by study arm were analysed using mixed models and Student's t-test. Associations with plasma NfL were assessed using linear regression and rank statistics. RESULTS At randomisation, 58 male participants had median age 32 years and CD4+ count 696 cells/μL. No significant difference in plasma NfL was seen longitudinally and by study arm, with median plasma NfL (pg/mL) in ART-only vs ART + V + V: 7.4 vs 6.4, p = 0.16 (randomisation), 8.0 vs 6.9, p = 0.22 (week 12) and 7.1 vs 6.8, p = 0.74 (week 18). Plasma NfL did not significantly correlate with plasma HIV-1 RNA and total HIV-1 DNA concentration in peripheral CD4+ T-cells at any timepoint. While higher HIV-specific T-cell responses were seen at week 12 in ART + V + V, there were no significant correlations with plasma NfL. In multivariate analysis, higher plasma NfL was associated with older age, higher CD8+ count and lower body mass index. CONCLUSIONS Despite evidence of vaccine-induced HIV-specific T-cell responses, we observed no evidence of increased neuro-axonal injury using plasma NfL as a biomarker up to 18 weeks following kick-and-kill, compared with ART-only.
Collapse
Affiliation(s)
- Jasmini Alagaratnam
- Department of Infectious Disease, St Mary's Hospital Campus, Imperial College London, London, W2 1NY, United Kingdom
- Genitourinary Medicine and HIV Department, St Mary's Hospital, Imperial College Healthcare NHS Trust, London, W2 1NY, United Kingdom
| | - Wolfgang Stöhr
- Medical Research Council Clinical Trials Unit at UCL, 90 High Holborn, Holborn, London, WC1V 6LJ, United Kingdom
| | - Jamie Toombs
- UK Dementia Research Institute at University College London, UCL Cruciform Building, Gower Street, Bloomsbury, London, WC1E 6BT, UK
| | - Amanda Heslegrave
- UK Dementia Research Institute at University College London, UCL Cruciform Building, Gower Street, Bloomsbury, London, WC1E 6BT, UK
| | - Henrik Zetterberg
- UK Dementia Research Institute at University College London, UCL Cruciform Building, Gower Street, Bloomsbury, London, WC1E 6BT, UK
- Department of Neurodegenerative Disease, UCL Institute of Neurology, University College London, Queen Square, London, WC1N 3BG, United Kingdom
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Wallingsgatan 6, 431 41, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Magnus Gisslén
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Blå Stråket 5, 413 45, Göteborg, Sweden
- Region Västra Götaland, Sahlgrenska University Hospital, Department of Infectious Diseases, Blå Stråket 5, 413 45, Göteborg, Sweden
| | - Sarah Pett
- Medical Research Council Clinical Trials Unit at UCL, 90 High Holborn, Holborn, London, WC1V 6LJ, United Kingdom
- Institute for Global Health, University College London, Gower St, Bloomsbury, London, WC1E 6BT, UK
- Mortimer Market Centre, Central and North West London NHS Foundation Trust, Capper St, Bloomsbury, London, WC1E 6JB, UK
| | - Mark Nelson
- Department of Genitourinary Medicine and HIV, Chelsea & Westminster NHS Foundation Trust, 369 Fulham Rd, Chelsea, London, SW10 9NH, UK
| | - Amanda Clarke
- Department of Genitourinary Medicine and HIV, Brighton & Sussex University Hospitals NHS Trust, Kemptown, Brighton, BN2 1ES, UK
| | - Nneka Nwokolo
- Department of Genitourinary Medicine and HIV, Chelsea & Westminster NHS Foundation Trust, 369 Fulham Rd, Chelsea, London, SW10 9NH, UK
| | - Margaret A. Johnson
- Department of Infection and Immunity, Royal Free Hospital, Pond Street, London, NW3 2QG, United Kingdom
| | - Maryam Khan
- Department of Infectious Disease, St Mary's Hospital Campus, Imperial College London, London, W2 1NY, United Kingdom
| | - Tomas Hanke
- The Jenner Institute, University of Oxford, Old Road Campus Research Build, Roosevelt Dr, Headington, Oxford, OX3 7DQ, UK
- The Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 860-0811, Japan
| | - Jakub Kopycinski
- Nuffield Department of Medicine, University of Oxford, Oxford, OX1 2JD, UK
| | - Lucy Dorrell
- Nuffield Department of Medicine, University of Oxford, Oxford, OX1 2JD, UK
| | - Julie Fox
- Department of Genitourinary Medicine and HIV, Guy's and St Thomas' NHS Foundation Trust, Great Maze Pond, London, SE1 9RT, UK
| | - Sabine Kinloch
- Department of Infection and Immunity, Royal Free Hospital, Pond Street, London, NW3 2QG, United Kingdom
| | - Jonathan Underwood
- Department of Infectious Disease, St Mary's Hospital Campus, Imperial College London, London, W2 1NY, United Kingdom
- Division of Infection and Immunity, School of Medicine, Cardiff University, School of Medicine, UHW Main Building, Heath Park, Cardiff, CF14 4XN, UK
| | - Matthew Pace
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, South Parks Road, Oxford, OX1 3SY, UK
| | - John Frater
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, South Parks Road, Oxford, OX1 3SY, UK
- Oxford University National Institute of Health Research Biomedical Research Centre, Oxford, OX1 2JD, UK
| | - Alan Winston
- Department of Infectious Disease, St Mary's Hospital Campus, Imperial College London, London, W2 1NY, United Kingdom
- Genitourinary Medicine and HIV Department, St Mary's Hospital, Imperial College Healthcare NHS Trust, London, W2 1NY, United Kingdom
| | - Sarah Fidler
- Department of Infectious Disease, St Mary's Hospital Campus, Imperial College London, London, W2 1NY, United Kingdom
- Genitourinary Medicine and HIV Department, St Mary's Hospital, Imperial College Healthcare NHS Trust, London, W2 1NY, United Kingdom
| | - the RIVER trial study group
- Department of Infectious Disease, St Mary's Hospital Campus, Imperial College London, London, W2 1NY, United Kingdom
- Genitourinary Medicine and HIV Department, St Mary's Hospital, Imperial College Healthcare NHS Trust, London, W2 1NY, United Kingdom
- Medical Research Council Clinical Trials Unit at UCL, 90 High Holborn, Holborn, London, WC1V 6LJ, United Kingdom
- UK Dementia Research Institute at University College London, UCL Cruciform Building, Gower Street, Bloomsbury, London, WC1E 6BT, UK
- Department of Neurodegenerative Disease, UCL Institute of Neurology, University College London, Queen Square, London, WC1N 3BG, United Kingdom
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Wallingsgatan 6, 431 41, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Blå Stråket 5, 413 45, Göteborg, Sweden
- Region Västra Götaland, Sahlgrenska University Hospital, Department of Infectious Diseases, Blå Stråket 5, 413 45, Göteborg, Sweden
- Institute for Global Health, University College London, Gower St, Bloomsbury, London, WC1E 6BT, UK
- Mortimer Market Centre, Central and North West London NHS Foundation Trust, Capper St, Bloomsbury, London, WC1E 6JB, UK
- Department of Genitourinary Medicine and HIV, Chelsea & Westminster NHS Foundation Trust, 369 Fulham Rd, Chelsea, London, SW10 9NH, UK
- Department of Genitourinary Medicine and HIV, Brighton & Sussex University Hospitals NHS Trust, Kemptown, Brighton, BN2 1ES, UK
- Department of Infection and Immunity, Royal Free Hospital, Pond Street, London, NW3 2QG, United Kingdom
- The Jenner Institute, University of Oxford, Old Road Campus Research Build, Roosevelt Dr, Headington, Oxford, OX3 7DQ, UK
- The Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 860-0811, Japan
- Nuffield Department of Medicine, University of Oxford, Oxford, OX1 2JD, UK
- Department of Genitourinary Medicine and HIV, Guy's and St Thomas' NHS Foundation Trust, Great Maze Pond, London, SE1 9RT, UK
- Division of Infection and Immunity, School of Medicine, Cardiff University, School of Medicine, UHW Main Building, Heath Park, Cardiff, CF14 4XN, UK
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, South Parks Road, Oxford, OX1 3SY, UK
- Oxford University National Institute of Health Research Biomedical Research Centre, Oxford, OX1 2JD, UK
| |
Collapse
|
192
|
Rosenberg YJ, Jiang X, Cheever T, Coulter FJ, Pandey S, Sack M, Mao L, Urban L, Lees J, Fischer M, Smedley J, Sidener H, Stanton J, Haigwood NL. Protection of Newborn Macaques by Plant-Derived HIV Broadly Neutralizing Antibodies: a Model for Passive Immunotherapy during Breastfeeding. J Virol 2021; 95:e0026821. [PMID: 34190597 PMCID: PMC8387040 DOI: 10.1128/jvi.00268-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 06/10/2021] [Indexed: 12/16/2022] Open
Abstract
Preventing human immunodeficiency virus (HIV) infection in newborns by vertical transmission remains an important unmet medical need in resource-poor areas where antiretroviral therapy (ART) is not available and mothers and infants cannot be treated prepartum or during the breastfeeding period. In the present study, the protective efficacy of the potent HIV-neutralizing antibodies PGT121 and VRC07-523, both produced in plants, were assessed in a multiple-SHIV (simian-human immunodeficiency virus)-challenge breastfeeding macaque model. Newborn macaques received either six weekly subcutaneous injections with PGT121 alone or as a cocktail of PGT121-LS plus VRC07-523-LS injected three times every 2 weeks. Viral challenge with SHIVSF162P3 was twice weekly over 5.5 weeks using 11 exposures. Despite the transient presence of plasma viral RNA either immediately after the first challenge or as single-point blips, the antibodies prevented a productive infection in all babies with no sustained plasma viremia, compared to viral loads ranging from 103 to 5 × 108 virions/ml in four untreated controls. No virus was detected in peripheral blood mononuclear cells (PBMCs), and only 3 of 159 tissue samples were weakly positive in the treated babies. Newborn macaques proved to be immunocompetent, producing transient anti-Env antibodies and anti-drug antibody (ADA), which were maintained in the circulation after passive broadly neutralizing antibody clearance. ADA responses were directed to the IgG1 Fc CH2-CH3 domains, which has not been observed to date in adult monkeys passively treated with PGT121 or VRC01. In addition, high levels of VRC07-523 anti-idiotypic antibodies in the circulation of one newborn was concomitant with the rapid elimination of VRC07. Plant-expressed antibodies show promise as passive immunoprophylaxis in a breastfeeding model in newborns. IMPORTANCE Plant-produced human neutralizing antibody prophylaxis is highly effective in preventing infection in newborn monkeys during repeated oral exposure, modeling virus in breastmilk, and offers advantages in cost of production and safety. These findings raise the possibility that anti-Env antibodies may contribute to the control of viral replication in this newborn model and that the observed immune responsiveness may be driven by the long-lived presence of immune complexes.
Collapse
Affiliation(s)
| | | | - Tracy Cheever
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Felicity J. Coulter
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, Oregon, USA
| | - Shilpi Pandey
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | | | - Lingjun Mao
- PlantVax Corporation, Rockville, Maryland, USA
| | - Lori Urban
- PlantVax Corporation, Rockville, Maryland, USA
| | | | - Miranda Fischer
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Jeremy Smedley
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Heather Sidener
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Jeffrey Stanton
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Nancy L. Haigwood
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
193
|
Broadly neutralizing antibodies combined with latency-reversing agents or immune modulators as strategy for HIV-1 remission. Curr Opin HIV AIDS 2021; 15:309-315. [PMID: 32675575 DOI: 10.1097/coh.0000000000000641] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE OF REVIEW Antiretroviral therapy (ART) is extremely effective in controlling HIV-1 infection; however, ART is not curative. Here, we review broadly neutralizing anti-HIV-1 antibodies (bNAbs) combined with latency-reversing agents (LRAs) or immune modulators as strategy for achieving long-term HIV-1 remission. RECENT FINDINGS Clinical trials testing the effect of a single intervention such as a LRA 'shock and kill', immune modulator or bNAbs among HIV-1 infected individuals on long-term suppressive ART have not lead to long-term HIV-1 remission when ART is stopped. Novel combinations of interventions designed to eliminate infected cells and enhance immune-effector functions are being investigated. Findings in nonhuman primates (NHPs) of such combinations are very promising and clinical trials are now ongoing. These trials will provide the first indication of the efficacy of combinations of bNAbs and LRA or immune modulators for achieving durable HIV-1 remission. SUMMARY bNAbs facilitate the elimination of HIV-1 infected cells and boost immune responses. Preclinical findings show that these effects can be harnessed by simultaneous administration of LRAs or immune modulators such as Toll-like receptor agonists. The clinical success of such combination strategies may be impacted by factors such as immune exhaustion, bNAbs sensitivity as well as the pharmacodynamics of the investigational compounds.
Collapse
|
194
|
Abstract
PURPOSE OF REVIEW HIV persists in distinct cellular and anatomical compartments in the body including blood, Central nervous system, and lymphoid tissues (spleen, lymph nodes [LNs], gut-associated lymphoid tissue) by diverse mechanisms despite antiretroviral therapy. Within LNs, human and animal studies have highlighted that a specific CD4 T cell subset - called T follicular helper cells locating in B cell follicles is enriched in cells containing replication-competent HIV as compared to extra-follicular CD4 T cells. Therefore, the objective of the present review is to focus on the potential mechanisms allowing HIV to persist within LN microenvironment. RECENT FINDINGS The combination of factors that might be involved in the regulation of HIV persistence within LNs remain to be fully identified but may include - the level of activation, antiretroviral drug concentrations, presence of cytolytic mechanisms and/or regulatory cells, in addition to cell survival and proliferation propensity which would ultimately determine the fate of HIV-infected cells within LN tissue areas. SUMMARY HIV persistence in blood and distinct body compartments despite long-standing and potent therapy is one of the major barriers to a cure. Given that the HIV reservoir is established early and is highly complex based on composition, viral diversity, distribution, replication competence, migration dynamics across the human body and possible compartmentalization in specific tissues, combinatorial therapeutic approaches are needed that may synergize to target multiple viral reservoirs to achieve a cure for HIV infection.
Collapse
Affiliation(s)
- Riddhima Banga
- Divisions of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | | | | |
Collapse
|
195
|
Bedwell GJ, Jang S, Li W, Singh PK, Engelman AN. rigrag: high-resolution mapping of genic targeting preferences during HIV-1 integration in vitro and in vivo. Nucleic Acids Res 2021; 49:7330-7346. [PMID: 34165568 PMCID: PMC8287940 DOI: 10.1093/nar/gkab514] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 05/31/2021] [Accepted: 06/22/2021] [Indexed: 12/19/2022] Open
Abstract
HIV-1 integration favors recurrent integration gene (RIG) targets and genic proviruses can confer cell survival in vivo. However, the relationship between initial RIG integrants and how these evolve in patients over time are unknown. To address these shortcomings, we built phenomenological models of random integration in silico, which were used to identify 3718 RIGs as well as 2150 recurrent avoided genes from 1.7 million integration sites across 10 in vitro datasets. Despite RIGs comprising only 13% of human genes, they harbored 70% of genic HIV-1 integrations across in vitro and patient-derived datasets. Although previously reported to associate with super-enhancers, RIGs tracked more strongly with speckle-associated domains. While depletion of the integrase cofactor LEDGF/p75 significantly reduced recurrent HIV-1 integration in vitro, LEDGF/p75 primarily occupied non-speckle-associated regions of chromatin, suggesting a previously unappreciated dynamic aspect of LEDGF/p75 functionality in HIV-1 integration targeting. Finally, we identified only six genes from patient samples-BACH2, STAT5B, MKL1, MKL2, IL2RB and MDC1-that displayed enriched integration targeting frequencies and harbored proviruses that likely contributed to cell survival. Thus, despite the known preference of HIV-1 to target cancer-related genes for integration, we conclude that genic proviruses play a limited role to directly affect cell proliferation in vivo.
Collapse
Affiliation(s)
- Gregory J Bedwell
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA.,Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Sooin Jang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA.,Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Wen Li
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA.,Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Parmit K Singh
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA.,Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Alan N Engelman
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA.,Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
196
|
Shytaj IL, Procopio FA, Tarek M, Carlon‐Andres I, Tang H, Goldman AR, Munshi M, Kumar Pal V, Forcato M, Sreeram S, Leskov K, Ye F, Lucic B, Cruz N, Ndhlovu LC, Bicciato S, Padilla‐Parra S, Diaz RS, Singh A, Lusic M, Karn J, Alvarez‐Carbonell D, Savarino A. Glycolysis downregulation is a hallmark of HIV-1 latency and sensitizes infected cells to oxidative stress. EMBO Mol Med 2021; 13:e13901. [PMID: 34289240 PMCID: PMC8350904 DOI: 10.15252/emmm.202013901] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 12/12/2022] Open
Abstract
HIV-1 infects lymphoid and myeloid cells, which can harbor a latent proviral reservoir responsible for maintaining lifelong infection. Glycolytic metabolism has been identified as a determinant of susceptibility to HIV-1 infection, but its role in the development and maintenance of HIV-1 latency has not been elucidated. By combining transcriptomic, proteomic, and metabolomic analyses, we here show that transition to latent HIV-1 infection downregulates glycolysis, while viral reactivation by conventional stimuli reverts this effect. Decreased glycolytic output in latently infected cells is associated with downregulation of NAD+ /NADH. Consequently, infected cells rely on the parallel pentose phosphate pathway and its main product, NADPH, fueling antioxidant pathways maintaining HIV-1 latency. Of note, blocking NADPH downstream effectors, thioredoxin and glutathione, favors HIV-1 reactivation from latency in lymphoid and myeloid cellular models. This provides a "shock and kill effect" decreasing proviral DNA in cells from people living with HIV/AIDS. Overall, our data show that downmodulation of glycolysis is a metabolic signature of HIV-1 latency that can be exploited to target latently infected cells with eradication strategies.
Collapse
Affiliation(s)
- Iart Luca Shytaj
- Department of Infectious DiseasesItalian Institute of HealthRomeItaly
- Department of Infectious DiseasesHeidelberg University HospitalHeidelbergGermany
- Infectious Diseases DepartmentFederal University of São PauloSão PauloBrazil
| | - Francesco Andrea Procopio
- Service of Immunology and AllergyLausanne University HospitalUniversity of LausanneLausanneSwitzerland
| | - Mohammad Tarek
- Bioinformatics DepartmentArmed Forces College of Medicine (AFCM)CairoEgypt
| | - Irene Carlon‐Andres
- Division of Structural BiologyWellcome Centre for Human GeneticsUniversity of OxfordOxfordUK
- Department of Infectious DiseasesFaculty of Life Sciences & MedicineKing’s College LondonLondonUK
- Randall Division of Cell and Molecular BiophysicsKing’s College LondonLondonUK
| | | | | | | | | | - Mattia Forcato
- Department of Life SciencesUniversity of Modena and Reggio EmiliaModenaItaly
| | - Sheetal Sreeram
- Department of Molecular Biology and MicrobiologyCase Western Reserve UniversityClevelandOHUSA
| | - Konstantin Leskov
- Department of Molecular Biology and MicrobiologyCase Western Reserve UniversityClevelandOHUSA
| | - Fengchun Ye
- Department of Molecular Biology and MicrobiologyCase Western Reserve UniversityClevelandOHUSA
| | - Bojana Lucic
- Department of Infectious DiseasesHeidelberg University HospitalHeidelbergGermany
- German Center for Infection ResearchHeidelbergGermany
| | - Nicolly Cruz
- Infectious Diseases DepartmentFederal University of São PauloSão PauloBrazil
| | - Lishomwa C Ndhlovu
- Division of Infectious DiseasesDepartment of MedicineWeill Cornell MedicineNew YorkNYUSA
| | - Silvio Bicciato
- Department of Life SciencesUniversity of Modena and Reggio EmiliaModenaItaly
| | - Sergi Padilla‐Parra
- Division of Structural BiologyWellcome Centre for Human GeneticsUniversity of OxfordOxfordUK
- Department of Infectious DiseasesFaculty of Life Sciences & MedicineKing’s College LondonLondonUK
- Randall Division of Cell and Molecular BiophysicsKing’s College LondonLondonUK
| | - Ricardo Sobhie Diaz
- Infectious Diseases DepartmentFederal University of São PauloSão PauloBrazil
| | - Amit Singh
- Indian Institute of ScienceBangaloreIndia
| | - Marina Lusic
- Department of Infectious DiseasesHeidelberg University HospitalHeidelbergGermany
- German Center for Infection ResearchHeidelbergGermany
| | - Jonathan Karn
- Department of Molecular Biology and MicrobiologyCase Western Reserve UniversityClevelandOHUSA
| | - David Alvarez‐Carbonell
- Department of Molecular Biology and MicrobiologyCase Western Reserve UniversityClevelandOHUSA
| | - Andrea Savarino
- Department of Infectious DiseasesItalian Institute of HealthRomeItaly
| |
Collapse
|
197
|
Bricker KM, Chahroudi A, Mavigner M. New Latency Reversing Agents for HIV-1 Cure: Insights from Nonhuman Primate Models. Viruses 2021; 13:1560. [PMID: 34452425 PMCID: PMC8402914 DOI: 10.3390/v13081560] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/26/2021] [Accepted: 08/03/2021] [Indexed: 01/30/2023] Open
Abstract
Antiretroviral therapy (ART) controls human immunodeficiency virus 1 (HIV-1) replication and prevents disease progression but does not eradicate HIV-1. The persistence of a reservoir of latently infected cells represents the main barrier to a cure. "Shock and kill" is a promising strategy involving latency reversing agents (LRAs) to reactivate HIV-1 from latently infected cells, thus exposing the infected cells to killing by the immune system or clearance agents. Here, we review advances to the "shock and kill" strategy made through the nonhuman primate (NHP) model, highlighting recently identified latency reversing agents and approaches such as mimetics of the second mitochondrial activator of caspase (SMACm), experimental CD8+ T cell depletion, immune checkpoint blockade (ICI), and toll-like receptor (TLR) agonists. We also discuss the advantages and limits of the NHP model for HIV cure research and methods developed to evaluate the efficacy of in vivo treatment with LRAs in NHPs.
Collapse
Affiliation(s)
- Katherine M. Bricker
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA; (K.M.B.); (A.C.)
| | - Ann Chahroudi
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA; (K.M.B.); (A.C.)
- Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA
- Emory + Children’s Center for Childhood Infections and Vaccines, Atlanta, GA 30322, USA
| | - Maud Mavigner
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA; (K.M.B.); (A.C.)
| |
Collapse
|
198
|
Ismail SD, Pankrac J, Ndashimye E, Prodger JL, Abrahams MR, Mann JFS, Redd AD, Arts EJ. Addressing an HIV cure in LMIC. Retrovirology 2021; 18:21. [PMID: 34344423 PMCID: PMC8330180 DOI: 10.1186/s12977-021-00565-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/19/2021] [Indexed: 12/15/2022] Open
Abstract
HIV-1 persists in infected individuals despite years of antiretroviral therapy (ART), due to the formation of a stable and long-lived latent viral reservoir. Early ART can reduce the latent reservoir and is associated with post-treatment control in people living with HIV (PLWH). However, even in post-treatment controllers, ART cessation after a period of time inevitably results in rebound of plasma viraemia, thus lifelong treatment for viral suppression is indicated. Due to the difficulties of sustained life-long treatment in the millions of PLWH worldwide, a cure is undeniably necessary. This requires an in-depth understanding of reservoir formation and dynamics. Differences exist in treatment guidelines and accessibility to treatment as well as social stigma between low- and-middle income countries (LMICs) and high-income countries. In addition, demographic differences exist in PLWH from different geographical regions such as infecting viral subtype and host genetics, which can contribute to differences in the viral reservoir between different populations. Here, we review topics relevant to HIV-1 cure research in LMICs, with a focus on sub-Saharan Africa, the region of the world bearing the greatest burden of HIV-1. We present a summary of ART in LMICs, highlighting challenges that may be experienced in implementing a HIV-1 cure therapeutic. Furthermore, we discuss current research on the HIV-1 latent reservoir in different populations, highlighting research in LMIC and gaps in the research that may facilitate a global cure. Finally, we discuss current experimental cure strategies in the context of their potential application in LMICs.
Collapse
Affiliation(s)
- Sherazaan D Ismail
- Division of Medical Virology, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, 7925, South Africa
| | - Joshua Pankrac
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A5C1, Canada
| | - Emmanuel Ndashimye
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A5C1, Canada
- Center for AIDS Research Uganda Laboratories, Joint Clinical Research Centre, Kampala, Uganda
| | - Jessica L Prodger
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A5C1, Canada
- Department of Epidemiology and Biostatistics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 5C1, Canada
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Melissa-Rose Abrahams
- Division of Medical Virology, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, 7925, South Africa
| | - Jamie F S Mann
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A5C1, Canada
- Bristol Veterinary School, University of Bristol, Langford House, Langford, Bristol, BS40 5DU, UK
| | - Andrew D Redd
- Division of Medical Virology, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, 7925, South Africa
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Laboratory of Immunoregulation, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Eric J Arts
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A5C1, Canada.
- Division of Infectious Diseases, Department of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
199
|
Kuse N, Akahoshi T, Takiguchi M. STING Ligand-Mediated Priming of Functional CD8 + T Cells Specific for HIV-1-Protective Epitopes from Naive T Cells. J Virol 2021; 95:e0069921. [PMID: 34076478 PMCID: PMC8312882 DOI: 10.1128/jvi.00699-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 05/19/2021] [Indexed: 12/03/2022] Open
Abstract
Functional HIV-1-specific CD8+ T cells primed from naive T cells are expected to act as effector T cells in a "shock-and-kill" therapeutic strategy for an HIV-1 cure since less functional HIV-1-specific CD8+ T cells are elicited from memory T cells in HIV-1-infected individuals on combined antiretroviral therapy (cART). CD8+ T cells specific for HIV-1 conserved and protective epitopes are candidates for such T cells. We investigated the priming with STING ligand of CD8+ T cells specific for HLA-B*52:01 or HLA-C*12:02-restricted protective epitopes from naive T cells. STING ligand 3'3'-cGAMP effectively primed CD8+ T cells specific for 3 of 4 HLA-B*52:01-restricted epitopes but failed to prime those specific for all 3 HLA-C*12:02-restricted epitopes from the naive T cells of HIV-1-uninfected individuals having an HLA-B*52:01-C*12:02 protective haplotype. These HLA-B*52:01-restricted CD8+ T cells had a strong ability to suppress HIV-1 replication and expressed a high level of cytolytic effector molecules. The viral suppression ability of these T cells was significantly correlated with the expression level of perforin and showed a trend for a positive correlation with the expression level of CD107a. The present study highlighted the priming with STING ligand of functional CD8+ T cells specific for protective epitopes, which T cells would contribute as effector T cells to a shock-and-kill therapy. IMPORTANCE The current "shock-and-kill" therapeutic strategy for HIV cure has been directed toward eliminating latent viral reservoirs by reactivation of latent reservoirs with latency-reversing agents followed by eradication of these cells by immune-mediated responses. Although HIV-1-specific T cells are expected to eradicate viral reservoirs, the function of these T cells is reduced in HIV-1-infected individuals with long-term cART. Therefore, priming of HIV-1-specific T cells with high function from naive T cells is to be expected in these individuals. In this study, we demonstrated the priming with STING ligand 3'3'-cGAMP of CD8+ T cells specific for HIV-1-protective epitopes from naive T cells. cGAMP primed CD8+ T cells specific for 3 HLA-B*52:01-restricted protective epitopes, which cells expressed a high level of cytolytic effector molecules and effectively suppressed HIV-1 replication. The present study suggested that the priming with STING ligand of functional CD8+ T cells specific for protective epitopes would be useful in a therapy for an HIV-1 cure.
Collapse
Affiliation(s)
- Nozomi Kuse
- Tokyo Joint Laboratory and Division of International Collaboration Research, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
- Center for AIDS Research, Kumamoto University, Kumamoto, Japan
| | | | - Masafumi Takiguchi
- Tokyo Joint Laboratory and Division of International Collaboration Research, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
- Center for AIDS Research, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
200
|
Lin A, Elbezanti WO, Schirling A, Ahmed A, Van Duyne R, Cocklin S, Klase Z. Alprazolam Prompts HIV-1 Transcriptional Reactivation and Enhances CTL Response Through RUNX1 Inhibition and STAT5 Activation. Front Neurol 2021; 12:663793. [PMID: 34367046 PMCID: PMC8339301 DOI: 10.3389/fneur.2021.663793] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 06/17/2021] [Indexed: 12/02/2022] Open
Abstract
The HIV-1 pandemic is a significant challenge to the field of medicine. Despite advancements in antiretroviral (ART) development, 38 million people worldwide still live with this disease without a cure. A significant barrier to the eradication of HIV-1 lies in the persistently latent pool that establishes early in the infection. The “shock and kill” strategy relies on the discovery of a latency-reversing agent (LRA) that can robustly reactivate the latent pool and not limit immune clearance. We have found that a benzodiazepine (BDZ), that is commonly prescribed for panic and anxiety disorder, to be an ideal candidate for latency reversal. The BDZ Alprazolam functions as an inhibitor of the transcription factor RUNX1, which negatively regulates HIV-1 transcription. In addition to the displacement of RUNX1 from the HIV-1 5′LTR, Alprazolam potentiates the activation of STAT5 and its recruitment to the viral promoter. The activation of STAT5 in cytotoxic T cells may enable immune activation which is independent of the IL-2 receptor. These findings have significance for the potential use of Alprazolam in a curative strategy and to addressing the neuroinflammation associated with neuroHIV-1.
Collapse
Affiliation(s)
- Angel Lin
- Department of Biological Sciences, University of the Sciences, Philadelphia, PA, United States.,Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Weam Othman Elbezanti
- Department of Biological Sciences, University of the Sciences, Philadelphia, PA, United States.,Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, United States
| | - Alexis Schirling
- Department of Biological Sciences, University of the Sciences, Philadelphia, PA, United States.,HIV-1 Dynamics and Replication Program, National Cancer Institute, Frederick, MD, United States
| | - Adel Ahmed
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Rachel Van Duyne
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Simon Cocklin
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Zachary Klase
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, United States.,Center for Neuroimmunology and CNS Therapeutics, Institute of Molecular Medicine and Infectious Diseases, Drexel University College of Medicine, Philadelphia, PA, United States
| |
Collapse
|