151
|
Extracellular Vesicle Application as a Novel Therapeutic Strategy for Ischemic Stroke. Transl Stroke Res 2021; 13:171-187. [PMID: 33982152 DOI: 10.1007/s12975-021-00915-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 04/26/2021] [Accepted: 04/29/2021] [Indexed: 12/12/2022]
Abstract
Ischemic stroke (IS) accounts for most of the cases of stroke onset, and due to short therapeutic time window for thrombolysis and numerous limited treatment measures and contraindications, lots of patients cannot receive satisfying therapeutic effects resulting in high disability and mortality worldly. In recent years, extracellular vesicles (EVs), as nanosized membrane-structured vesicles secreted from almost all cells, especially from stem/progenitor cells, have been reported to exert significant beneficial effects on IS from multiple approaches and notably ameliorate neurological outcome. Moreover, based on nano-size and lipid bilayer structure, EVs can easily penetrate the blood-brain barrier and migrate into the brain. In this review, we mainly systematically summarize the therapeutic effects of EVs on IS and explore their potential applications. Simultaneously, we also discuss administration routines, dosages, experimental observation time, and some key issues of EV application during IS treatment. It contributes to a comprehensive understanding of the progress of EV treatment for IS and providing confident evidence for further EV clinical application widely.
Collapse
|
152
|
Srinivasan A, Sundar IK. Recent updates on the role of extracellular vesicles in the pathogenesis of allergic asthma. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2021; 2:127-147. [PMID: 34414402 PMCID: PMC8372030 DOI: 10.20517/evcna.2021.03] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Asthma is a chronic inflammatory disease of the airway diagnosed with different endotypes and phenotypes, characterized by airway obstruction in response to allergens, bacterial/viral infections, or pollutants. Several cell types such as the airway epithelial cells, mesenchymal stem cells and different immune cells including dendritic cells (DCs), T and B cells and mast cells play an essential role during the pathobiology of asthma. Extracellular vesicles (EVs) are membranous nanovesicles produced by every cell type that facilitates intercellular communications. EVs contain heterogeneous cargos that primarily depend on the composition or cell type of origin and they can alter the physiological state of the target cells. EVs encompass a wide variety of proteins including Tetraspanins, MHC classes I and II, co-stimulatory molecules, nucleic acids such as RNA, miRNA, piRNA, circRNA, and lipids like ceramides and sphingolipids. Recent literature indicates that EVs play a pivotal role in the pathophysiology of allergic asthma and may potentially be used as a novel biomarker to determine endotypes and phenotypes in severe asthmatics. Based on the prior reports, we speculate that regulation of EVs biogenesis and release might be under the control of circadian rhythms. Thus, circadian rhythms may influence the composition of the EVs, which alter the microenvironment that results in the induction of an immune-inflammatory response to various environmental insults or allergens such as air pollutants, ozone, diesel exhaust particles, pollens, outdoor molds, environmental tobacco smoke, etc. In this mini-review, we summarize the recent updates on the novel role of EVs in the pathogenesis of asthma, and highlight the link between circadian rhythms and EVs that may be important to identify molecular mechanisms to target during the pathogenesis of chronic inflammatory lung disease such as asthma.
Collapse
Affiliation(s)
- Ashokkumar Srinivasan
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Kansas Medical Center, Lawrence, KS 66160, USA
| | - Isaac Kirubakaran Sundar
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Kansas Medical Center, Lawrence, KS 66160, USA
| |
Collapse
|
153
|
Zhao B, Zheng J, Qiao Y, Wang Y, Luo Y, Zhang D, Cai Q, Xu Y, Zhou Z, Shen W. Prostatic fluid exosome-mediated microRNA-155 promotes the pathogenesis of type IIIA chronic prostatitis. Transl Androl Urol 2021; 10:1976-1987. [PMID: 34159078 PMCID: PMC8185664 DOI: 10.21037/tau-21-139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background The latest research has shown that exosomes play an important role in cell-to-cell communication and are closely related to the occurrence of many chronic inflammatory diseases. However, no studies have clarified whether exosomes are involved in the pathogenesis of aseptic inflammation, type IIIA chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS-A). This study aimed to explore the relationship between prostatic fluid exosomes and CP/CPPS-A and reveal new pathogenesis. Methods Our group collected prostatic fluid samples from CP/CPPS-A patients and normal adult men. Electron microscope, quantitative PCR (qPCR), Western Blot, nanoparticle tracking analysis, hematoxylin-and-eosin (HE) staining, immunofluorescence staining and miRNA-155 functional analysis were used to verify the role of exosomes in CP/CPPS-A in vivo and in vitro. Results Exosomes were abundantly enriched in the prostatic fluid of CP/CPPS-A patients and selectively overloaded with microRNA-155 (miRNA-155). These exosomes were taken up by prostatic stromal cells in large quantities. They activated interleukin (IL)-8 and tumor necrosis factor-alpha (TNF-α) expression in vitro, and the integrity of the exosomes' plasma membrane is a necessary condition for information transmission by exosomes. In in vivo experiments, histological results showed that prostatic fluid exosomes induced prostatitis in rats. Also, immunofluorescence staining showed excessive activation of IL-8, TNF-α, and inducible nitric oxide synthase (iNOS). Conclusions Exosomes in the prostatic fluid and the miRNA-155 contained therein were may be involved with the pathogenesis of CP/CPPS-A.
Collapse
Affiliation(s)
- Baixiong Zhao
- Department of Urology, Southwest Hospital, The First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, China
| | - Jun Zheng
- Department of Urology, Southwest Hospital, The First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, China
| | - Yang Qiao
- Department of Urology, Southwest Hospital, The First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, China
| | - Yongquan Wang
- Department of Urology, Southwest Hospital, The First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, China
| | - Yang Luo
- Center of Smart Laboratory and Molecular Medicine, Medical College, Chongqing University, Chongqing, China
| | - Dinglin Zhang
- Department of Urology, Southwest Hospital, The First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, China.,Department of Chemistry, College of Basic Medicine, Third Military Medical University (Army Medical University), Chongqing, China
| | - Qiyan Cai
- Department of Histology and Embryology, College of Basic Medicine, Army Medical University, Chongqing, China
| | - Yang Xu
- Department of Histology and Embryology, College of Basic Medicine, Army Medical University, Chongqing, China.,Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Zhansong Zhou
- Department of Urology, Southwest Hospital, The First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, China
| | - Wenhao Shen
- Department of Urology, Southwest Hospital, The First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
154
|
Chen X, Zhang S, Du K, Zheng N, Liu Y, Chen H, Xie G, Ma Y, Zhou Y, Zheng Y, Zeng L, Yang J, Shen L. Gastric cancer-secreted exosomal X26nt increases angiogenesis and vascular permeability by targeting VE-cadherin. Cancer Sci 2021; 112:1839-1852. [PMID: 33205567 PMCID: PMC8088954 DOI: 10.1111/cas.14740] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 11/12/2020] [Accepted: 11/14/2020] [Indexed: 12/21/2022] Open
Abstract
Angiogenesis is closely associated with tumorigenesis, invasion, and metastasis by providing oxygen and nutrients. Recently, increasing evidence indicates that cancer-derived exosomes which contain proteins, coding, and noncoding RNAs (ncRNAs) were shown to have proangiogenic function in cancer. A 26-nt-long ncRNA (X26nt) is generated in the process of inositol-requiring enzyme 1 alpha (IRE1α)-induced unspliced XBP1 splicing. However, the role of X26nt in the angiogenesis of gastric cancer (GC) remains largely unknown. In the present study, we found that X26nt was significantly elevated in GC and GC exosomes. Then, we verified that X26nt could be delivered into human umbilical vein endothelial cells (HUVECs) via GC cell exosomes and promote the proliferation, migration, and tube formation of HUVECs. We revealed that exosomal X26nt decreased vascular endothelial cadherin (VE-cadherin) by directly combining the 3'UTR of VE-cadherin mRNA in HUVECs, thereby increasing vascular permeability. We further demonstrated that X26nt accelerates the tumor growth and angiogenesis in a mouse subcutaneous tumor model. Our findings investigate a unique intercellular communication mediated by cancer-derived exosomes and reveal a novel mechanism of exosomal X26nt in the regulation of tumor vasculature.
Collapse
Affiliation(s)
- Xiaocui Chen
- Department of Clinical LaboratoryXinhua HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Shuqiong Zhang
- Department of Clinical LaboratoryXinhua HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Kun Du
- Department of Clinical LaboratoryXinhua HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Naisheng Zheng
- Department of Clinical LaboratoryXinhua HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yi Liu
- Department of Clinical LaboratoryXinhua HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Hui Chen
- Department of Clinical LaboratoryXinhua HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Guohua Xie
- Department of Clinical LaboratoryXinhua HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yanhui Ma
- Department of Clinical LaboratoryXinhua HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yunlan Zhou
- Department of Clinical LaboratoryXinhua HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yingxia Zheng
- Department of Clinical LaboratoryXinhua HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Lingfang Zeng
- School of Cardiovascular Medicine and SciencesKing's College – London British Heart Foundation Centre of ExcellenceFaculty of Life Science and MedicineKing's College LondonLondonUK
| | - Junyao Yang
- Department of Clinical LaboratoryXinhua HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Lisong Shen
- Department of Clinical LaboratoryXinhua HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Faculty of Medical Laboratory SciencesShanghai Jiao Tong University School of MedicineShanghaiChina
- Xin Hua Children's HospitalShanghaiChina
| |
Collapse
|
155
|
Examining the evidence for extracellular RNA function in mammals. Nat Rev Genet 2021; 22:448-458. [PMID: 33824487 DOI: 10.1038/s41576-021-00346-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2021] [Indexed: 12/21/2022]
Abstract
The presence of RNAs in the extracellular milieu has sparked the hypothesis that RNA may play a role in mammalian cell-cell communication. As functional nucleic acids transfer from cell to cell in plants and nematodes, the idea that mammalian cells also transfer functional extracellular RNA (exRNA) is enticing. However, untangling the role of mammalian exRNAs poses considerable experimental challenges. This Review discusses the evidence for and against functional exRNAs in mammals and their proposed roles in health and disease, such as cancer and cardiovascular disease. We conclude with a discussion of the forward-looking prospects for studying the potential of mammalian exRNAs as mediators of cell-cell communication.
Collapse
|
156
|
Wu Z, He D, Li H. Bioglass enhances the production of exosomes and improves their capability of promoting vascularization. Bioact Mater 2021; 6:823-835. [PMID: 33024902 PMCID: PMC7530219 DOI: 10.1016/j.bioactmat.2020.09.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/16/2020] [Accepted: 09/16/2020] [Indexed: 02/07/2023] Open
Abstract
Recently, exosomes have been extensively applied in tissue regeneration. However, their practical applications are severely restricted by the limited exosome secretion capability of cells. Therefore, developing strategies to enhance the production of exosomes and improve their biological function attracts great interest. Studies have shown that biomaterials can significantly enhance the paracrine effects of cells and exosomes are the main signal carriers of intercellular paracrine communication, thus biomaterials are considered to affect the exosome secretion of cells and their biological function. In this study, a widely recognized biomaterial, 45S5 Bioglass® (BG), is used to create a mild and cell-friendly microenvironment for mesenchymal stem cells (MSCs) with its ion products. Results showed that BG ion products can significantly improve exosome production of MSCs by upregulating the expression of neutral sphingomyelinase-2 (nSMase2) and Rab27a which enhanced the nSMases and Rab GTPases pathways, respectively. Besides, microRNA analysis indicates that BG ion products can modulate the cargoes of MSCs-derived exosomes by decreasing microRNA-342-5p level while increasing microRNA-1290 level. Subsequently, the function of exosomes is modified as their capabilities of promoting the vascularization of endothelial cells and facilitating the intradermal angiogenesis are enhanced. Taken together, BG ion products are confirmed to enhance exosome production and simultaneously improve exosome function, suggesting a feasible approach to improve the practical application of exosomes in regenerative medicine.
Collapse
Affiliation(s)
- Zhi Wu
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China
- Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China
| | - Dan He
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China
- Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China
| | - Haiyan Li
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China
- Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China
| |
Collapse
|
157
|
Gassama Y, Favereaux A. Emerging Roles of Extracellular Vesicles in the Central Nervous System: Physiology, Pathology, and Therapeutic Perspectives. Front Cell Neurosci 2021; 15:626043. [PMID: 33708073 PMCID: PMC7940515 DOI: 10.3389/fncel.2021.626043] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/11/2021] [Indexed: 12/15/2022] Open
Abstract
Extracellular vesicles or EVs are secreted by most, if not all, eukaryote cell types and recaptured by neighboring or distant cells. Their cargo, composed of a vast diversity of proteins, lipids, and nucleic acids, supports the EVs' inter-cellular communication. The role of EVs in many cellular processes is now well documented both in physiological and pathological conditions. In this review, we focus on the role of EVs in the central nervous system (CNS) in physiological as well as pathological conditions such as neurodegenerative diseases or brain cancers. We also discuss the future of EVs in clinical research, in particular, their value as biomarkers as well as innovative therapeutic agents. While an increasing number of studies reveal EV research as a promising field, progress in the standardization of protocols and innovation in analysis as well as in research tools is needed to make a breakthrough in our understanding of their impact in the pathophysiology of the brain.
Collapse
Affiliation(s)
- Yadaly Gassama
- Univ. Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, Bordeaux, France
| | - Alexandre Favereaux
- Univ. Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, Bordeaux, France
| |
Collapse
|
158
|
Zhao S, Sheng S, Wang Y, Ding L, Xu X, Xia X, Zheng JC. Astrocyte-derived extracellular vesicles: A double-edged sword in central nervous system disorders. Neurosci Biobehav Rev 2021; 125:148-159. [PMID: 33626395 DOI: 10.1016/j.neubiorev.2021.02.027] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 12/28/2020] [Accepted: 02/16/2021] [Indexed: 12/14/2022]
Abstract
Recent studies suggest that astrocytes released a great quantity of extracellular vesicles (AEVs) to communicate with other brain cells. Under pathological conditions, AEVs are widely associated with the pathogenesis of neurobiological diseases by horizontally transferring pathogenic factors to neighboring cells or peripheral immune cells. Their beneficial role is also evident by the fact that they are involved in neuroprotection and neuroregeneration through alleviating apoptosis, maintaining neuronal function, and repairing neural injuries. The strong association of AEVswith neurological disorders makes AEVs a promising target for disease diagnosis, treatment, and prevention. The identification of disease-specific cargos in AEVs isolated from the patients' biofluids suggests AEVs as an attractive platform for biomarker development. Furthermore, the inhibition of inflammatory/toxic AEV release and the preservation of neuroprotective AEV release have been considered as potential therapeutic strategies in CNS disorder treatment and prevention, respectively. Here, we summarize the biological roles of AEVs as pathological contributors, protective/regenerative factors, and potential diagnostic biomarkers and therapeutic targets for neurological disorders, with a focus on recent progresses and emerging concepts.
Collapse
Affiliation(s)
- Shu Zhao
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital affiliated to Tongji University School of Medicine, Shanghai 200072, China
| | - Shiyang Sheng
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital affiliated to Tongji University School of Medicine, Shanghai 200072, China
| | - Yi Wang
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital affiliated to Tongji University School of Medicine, Shanghai 200072, China
| | - Lu Ding
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital affiliated to Tongji University School of Medicine, Shanghai 200072, China
| | - Xiaonan Xu
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital affiliated to Tongji University School of Medicine, Shanghai 200072, China
| | - Xiaohuan Xia
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital affiliated to Tongji University School of Medicine, Shanghai 200072, China; Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital affiliated to Tongji University School of Medicine, Shanghai 200434, China.
| | - Jialin C Zheng
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital affiliated to Tongji University School of Medicine, Shanghai 200072, China; Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital affiliated to Tongji University School of Medicine, Shanghai 200434, China; Collaborative Innovation Center for Brain Science, Tongji University, Shanghai 200092, China; Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5930, USA.
| |
Collapse
|
159
|
Brennan GP, Garcia-Curran MM, Patterson KP, Luo R, Baram TZ. Multiple Disruptions of Glial-Neuronal Networks in Epileptogenesis That Follows Prolonged Febrile Seizures. Front Neurol 2021; 12:615802. [PMID: 33679583 PMCID: PMC7930821 DOI: 10.3389/fneur.2021.615802] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 01/25/2021] [Indexed: 12/26/2022] Open
Abstract
Background and Rationale: Bi-directional neuronal-glial communication is a critical mediator of normal brain function and is disrupted in the epileptic brain. The potential role of aberrant microglia and astrocyte function during epileptogenesis is important because the mediators involved provide tangible targets for intervention and prevention of epilepsy. Glial activation is intrinsically involved in the generation of childhood febrile seizures (FS), and prolonged FS (febrile status epilepticus, FSE) antecede a proportion of adult temporal lobe epilepsy (TLE). Because TLE is often refractory to treatment and accompanied by significant memory and emotional difficulties, we probed the role of disruptions of glial-neuronal networks in the epileptogenesis that follows experimental FSE (eFSE). Methods: We performed a multi-pronged examination of neuronal-glia communication and the resulting activation of molecular signaling cascades in these cell types following eFSE in immature mice and rats. Specifically, we examined pathways involving cytokines, microRNAs, high mobility group B-1 (HMGB1) and the prostaglandin E2 signaling. We aimed to block epileptogenesis using network-specific interventions as well as via a global anti-inflammatory approach using dexamethasone. Results: (A) eFSE elicited a strong inflammatory response with rapid and sustained upregulation of pro-inflammatory cytokines. (B) Within minutes of the end of the eFSE, HMGB1 translocated from neuronal nuclei to dendrites, en route to the extracellular space and glial Toll-like receptors. Administration of an HMGB1 blocker to eFSE rat pups did not decrease expression of downstream inflammatory cascades and led to unacceptable side effects. (C) Prolonged seizure-like activity caused overall microRNA-124 (miR-124) levels to plunge in hippocampus and release of this microRNA from neurons via extra-cellular vesicles. (D) Within hours of eFSE, structural astrocyte and microglia activation was associated not only with cytokine production, but also with activation of the PGE2 cascade. However, administration of TG6-10-1, a blocker of the PGE2 receptor EP2 had little effect on spike-series provoked by eFSE. (E) In contrast to the failure of selective interventions, a 3-day treatment of eFSE–experiencing rat pups with the broad anti-inflammatory drug dexamethasone attenuated eFSE-provoked pro-epileptogenic EEG changes. Conclusions: eFSE, a provoker of TLE-like epilepsy in rodents leads to multiple and rapid disruptions of interconnected glial-neuronal networks, with a likely important role in epileptogenesis. The intricate, cell-specific and homeostatic interplays among these networks constitute a serious challenge to effective selective interventions that aim to prevent epilepsy. In contrast, a broad suppression of glial-neuronal dysfunction holds promise for mitigating FSE-induced hyperexcitability and epileptogenesis in experimental models and in humans.
Collapse
Affiliation(s)
- Gary P Brennan
- Departments of Anatomy/Neurobiology, Pediatrics, and Neurology, University of California, Irvine, Irvine, CA, United States.,School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland.,FutureNeuro Research Centre, Royal College of Surgeons Ireland, Dublin, Ireland
| | - Megan M Garcia-Curran
- Departments of Anatomy/Neurobiology, Pediatrics, and Neurology, University of California, Irvine, Irvine, CA, United States
| | - Katelin P Patterson
- Departments of Anatomy/Neurobiology, Pediatrics, and Neurology, University of California, Irvine, Irvine, CA, United States
| | - Renhao Luo
- Departments of Anatomy/Neurobiology, Pediatrics, and Neurology, University of California, Irvine, Irvine, CA, United States
| | - Tallie Z Baram
- Departments of Anatomy/Neurobiology, Pediatrics, and Neurology, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
160
|
Wang X, HuangFu C, Zhu X, Liu J, Gong X, Pan Q, Ma X. Exosomes and Exosomal MicroRNAs in Age-Associated Stroke. Curr Vasc Pharmacol 2021; 19:587-600. [PMID: 33563154 DOI: 10.2174/1570161119666210208202621] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/04/2021] [Accepted: 01/18/2021] [Indexed: 11/22/2022]
Abstract
Aging has been considered to be the most important non-modifiable risk factor for stroke and death. Changes in circulation factors in the systemic environment, cellular senescence and artery hypertension during human ageing have been investigated. Exosomes are nanosize membrane vesicles that can regulate target cell functions via delivering their carried bioactive molecules (e.g. protein, mRNA, and microRNAs). In the central nervous system, exosomes and exosomal microRNAs play a critical role in regulating neurovascular function, and are implicated in the initiation and progression of stroke. MicroRNAs are small non-coding RNAs that have been reported to play critical roles in various biological processes. Recently, evidence has shown that microRNAs are packaged into exosomes and can be secreted into the systemic and tissue environment. Circulating microRNAs participate in cellular senescence and contribute to age-associated stroke. Here, we provide an overview of current knowledge on exosomes and their carried microRNAs in the regulation of cellular and organismal ageing processes, demonstrating the potential role of exosomes and their carried microRNAs in age-associated stroke.
Collapse
Affiliation(s)
- Xiang Wang
- Department of Neurology, Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, . China
| | - Changmei HuangFu
- Department of Geriatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, . China
| | - Xiudeng Zhu
- Department of Neurology, Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, . China
| | - Jiehong Liu
- Department of Neurology, Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, . China
| | - Xinqin Gong
- Department of Neurology, Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, . China
| | - Qunwen Pan
- Department of Neurology, Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, . China
| | - Xiaotang Ma
- Department of Neurology, Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, . China
| |
Collapse
|
161
|
Li H, Luo Y, Liu P, Liu P, Hua W, Zhang Y, Zhang L, Li Z, Xing P, Zhang Y, Hong B, Yang P, Liu J. Exosomes containing miR-451a is involved in the protective effect of cerebral ischemic preconditioning against cerebral ischemia and reperfusion injury. CNS Neurosci Ther 2021; 27:564-576. [PMID: 33533575 PMCID: PMC8025619 DOI: 10.1111/cns.13612] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 12/30/2020] [Accepted: 01/04/2021] [Indexed: 12/23/2022] Open
Abstract
Aim To study the role of exosomes in the protective effect of cerebral ischemic preconditioning (cerebral‐IPC) against cerebral I/R injury. Method Mouse models of cerebral‐IPC and MCAO/R were established as described previously, and their behavioral, pathological, and proteomic changes were analyzed. Neuro‐2a subjected to OGD/R were treated with exosomes isolated from the plasma of sham‐operated and cerebral‐IPC mice. The differentially expressed miRNAs between exosomes derived from sham‐operated (S‐exosomes) and preconditioned (IPC‐exosomes) mice were identified through miRNA array, and their targets were identified through database search. The control and OGD/R cells were treated with the IPC‐exosomes, miRNA mimic or target protein inhibitor, and their viability, oxidative, stress and apoptosis rates were measured. The activated pathways were identified by analyzing the levels of relevant proteins. Results Cerebral‐IPC mitigated the cerebral injury following ischemia and reperfusion, and increased the number of plasma exosomes. IPC‐exosomes increased the survival of Neuro‐2a cells after OGD/R. The miR‐451a targeting Rac1 was upregulated in the IPC‐exosomes relative to S‐exosomes. The miR‐451a mimic and the Rac1 inhibitor NSC23766 reversed OGD/R‐mediated activation of Rac1 and its downstream pathways. Conclusion Cerebral‐IPC ameliorated cerebral I/R injury by inducing the release of exosomes containing miR‐451a.
Collapse
Affiliation(s)
- He Li
- Stroke Center, Changhai Hospital, Shanghai, China.,Department of neurosurgery, Changhai Hospital, Shanghai, China
| | - Yin Luo
- Department of neurosurgery, Changhai Hospital, Shanghai, China.,Department of Biomedical Engineering, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Liu
- Stroke Center, Changhai Hospital, Shanghai, China.,Department of neurosurgery, Changhai Hospital, Shanghai, China
| | - Pei Liu
- Stroke Center, Changhai Hospital, Shanghai, China.,Department of neurosurgery, Changhai Hospital, Shanghai, China
| | - Weilong Hua
- Stroke Center, Changhai Hospital, Shanghai, China.,Department of neurosurgery, Changhai Hospital, Shanghai, China
| | - Yongxin Zhang
- Stroke Center, Changhai Hospital, Shanghai, China.,Department of neurosurgery, Changhai Hospital, Shanghai, China
| | - Lei Zhang
- Stroke Center, Changhai Hospital, Shanghai, China
| | - Zifu Li
- Stroke Center, Changhai Hospital, Shanghai, China.,Department of neurosurgery, Changhai Hospital, Shanghai, China
| | - Pengfei Xing
- Stroke Center, Changhai Hospital, Shanghai, China
| | | | - Bo Hong
- Stroke Center, Changhai Hospital, Shanghai, China.,Department of neurosurgery, Changhai Hospital, Shanghai, China
| | - Pengfei Yang
- Stroke Center, Changhai Hospital, Shanghai, China.,Department of neurosurgery, Changhai Hospital, Shanghai, China
| | - Jianmin Liu
- Stroke Center, Changhai Hospital, Shanghai, China.,Department of neurosurgery, Changhai Hospital, Shanghai, China
| |
Collapse
|
162
|
Liu L, Wu FY, Zhu CY, Zou HY, Kong RQ, Ma YK, Su D, Song GQ, Zhang Y, Liu KC. Involvement of dopamine signaling pathway in neurodevelopmental toxicity induced by isoniazid in zebrafish. CHEMOSPHERE 2021; 265:129109. [PMID: 33280847 DOI: 10.1016/j.chemosphere.2020.129109] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/02/2020] [Accepted: 11/22/2020] [Indexed: 06/12/2023]
Abstract
AIMS This study evaluated the neurodevelopmental toxicity of isoniazid (INH) in zebrafish embryos and the underlying mechanism. METHODS Zebrafish embryos were exposed to different concentrations (2 mM, 4 mM, 8 mM, 16 mM, 32 mM) INH for 120 hpf. During the exposure period, the percentage of embryo/larva mortality, hatching, and morphological malformation were checked every 24 h until 120 hpf. The development of blood vessels in the brain was observed at 72 hpf and 120 hpf, and behavioral capacity and acridine orange (AO) staining were measured at 120 hpf. Alterations in the mRNA expression of apoptosis and dopamine signaling pathway related genes were assessed by real-time quantitative PCR (qPCR). RESULTS INH considerably inhibited zebrafish embryo hatching and caused zebrafish larval malformation (such as brain malformation, delayed yolk sac absorption, spinal curvature, pericardial edema, and swim bladder defects). High concentration of INH (16 mM, 32 mM) even induced death of zebrafish. In addition, INH exposure markedly restrained the ability of the zebrafish autonomous movement, shortened the length of dopamine neurons and inhibited vascular development in the brain. No obvious apoptotic cells were observed in the control group, whereas considerable numbers of apoptotic cells appeared in the head of INH-treated larvae at 120 hpf. PCR results indicated that INH significantly raised the transcription levels of caspase-3, -8, -9, and bax and significantly decreased bcl-2 and bcl-2/bax in the zebrafish apoptotic signaling pathway. INH also markedly decreased the genes related to dopamine signaling pathway (th1, dat, drd1, drd2a, drd3, and drd4b). CONCLUSIONS Experimental results indicated that INH had obvious neurodevelopmental toxicity in zebrafish. Persistent exposure to INH for 120 h caused apoptosis, decreased dopaminergic gene expression, altered vasculature, and reduced behaviors.
Collapse
Affiliation(s)
- Li Liu
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu Province, PR China
| | - Fang-Yan Wu
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu Province, PR China; Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong Province, PR China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, Shandong Province, PR China
| | - Cheng-Yue Zhu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong Province, PR China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, Shandong Province, PR China
| | - Hong-Yuan Zou
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong Province, PR China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, Shandong Province, PR China
| | - Rui-Qi Kong
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong Province, PR China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, Shandong Province, PR China
| | - Yu-Kui Ma
- Shandong Academy of Pharmaceutical Sciences, Jinan, Shandong Province, PR China
| | - Dan Su
- Department of Pharmacy, Changzhou No.2 People's Hospital, The Affiliated Hospital of Nanjing Medical University, Changzhou, Jiangsu Province, PR China
| | - Guo-Qiang Song
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu Province, PR China
| | - Yun Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong Province, PR China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, Shandong Province, PR China.
| | - Ke-Chun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong Province, PR China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, Shandong Province, PR China.
| |
Collapse
|
163
|
Elliott RO, He M. Unlocking the Power of Exosomes for Crossing Biological Barriers in Drug Delivery. Pharmaceutics 2021; 13:pharmaceutics13010122. [PMID: 33477972 PMCID: PMC7835896 DOI: 10.3390/pharmaceutics13010122] [Citation(s) in RCA: 126] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 12/25/2022] Open
Abstract
Since the 2013 Nobel Prize was awarded for the discovery of vesicle trafficking, a subgroup of nanovesicles called exosomes has been driving the research field to a new regime for understanding cellular communication. This exosome-dominated traffic control system has increased understanding of many diseases, including cancer metastasis, diabetes, and HIV. In addition to the important diagnostic role, exosomes are particularly attractive for drug delivery, due to their distinctive properties in cellular information transfer and uptake. Compared to viral and non-viral synthetic systems, the natural, cell-derived exosomes exhibit intrinsic payload and bioavailability. Most importantly, exosomes easily cross biological barriers, obstacles that continue to challenge other drug delivery nanoparticle systems. Recent emerging studies have shown numerous critical roles of exosomes in many biological barriers, including the blood–brain barrier (BBB), blood–cerebrospinal fluid barrier (BCSFB), blood–lymph barrier (BlyB), blood–air barrier (BAB), stromal barrier (SB), blood–labyrinth barrier (BLaB), blood–retinal barrier (BRB), and placental barrier (PB), which opens exciting new possibilities for using exosomes as the delivery platform. However, the systematic reviews summarizing such discoveries are still limited. This review covers state-of-the-art exosome research on crossing several important biological barriers with a focus on the current, accepted models used to explain the mechanisms of barrier crossing, including tight junctions. The potential to design and engineer exosomes to enhance delivery efficacy, leading to future applications in precision medicine and immunotherapy, is discussed.
Collapse
Affiliation(s)
- Rebekah Omarkhail Elliott
- Department of Chemical and Petroleum Engineering, Bioengineering Program, University of Kansas, Lawrence, KS 66045, USA;
| | - Mei He
- Department of Chemical and Petroleum Engineering, Bioengineering Program, University of Kansas, Lawrence, KS 66045, USA;
- Department of Chemistry, University of Kansas, Lawrence, KS 66045, USA
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
- Correspondence:
| |
Collapse
|
164
|
Yang J, Cao LL, Wang XP, Guo W, Guo RB, Sun YQ, Xue TF, Cai ZY, Ji J, Cheng H, Sun XL. Neuronal extracellular vesicle derived miR-98 prevents salvageable neurons from microglial phagocytosis in acute ischemic stroke. Cell Death Dis 2021; 12:23. [PMID: 33414461 PMCID: PMC7791117 DOI: 10.1038/s41419-020-03310-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 12/01/2020] [Accepted: 12/03/2020] [Indexed: 12/21/2022]
Abstract
Extracellular vesicles (EVs), as a novel intercellular communication carrier transferring cargo microRNAs (miRNAs), could play important roles in the brain remodeling process after ischemic stroke. However, the detailed mechanisms involved in EVs derived miRNAs-mediated cellular interactions in the brain remain unclear. Several studies indicated that microRNA-98 (miR-98) might participate in the pathogenesis of ischemic stroke. Here, we showed that expression of miR-98 in penumbra field kept up on the first day but dropped sharply on the 3rd day after ischemic stroke in rats, indicating that miR-98 could function as an endogenous protective factor post-ischemia. Overexpression of miR-98 targeted inhibiting platelet activating factor receptor-mediated microglial phagocytosis to attenuate neuronal death. Furthermore, we showed that neurons transferred miR-98 to microglia via EVs secretion after ischemic stroke, to prevent the stress-but-viable neurons from microglial phagocytosis. Therefore, we reveal that EVs derived miR-98 act as an intercellular signal mediating neurons and microglia communication during the brain remodeling after ischemic stroke. The present work provides a novel insight into the roles of EVs in the stroke pathogenesis and a new EVs-miRNAs-based therapeutic strategy for stroke.
Collapse
Affiliation(s)
- Jin Yang
- Department of Pharmacology, Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Lu-Lu Cao
- Department of Pharmacology, Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, Center for Global Health, Nanjing Medical University, Nanjing, China
- Zhongda Hospital, Southeast University, Nanjing, China
| | - Xi-Peng Wang
- Department of Pharmacology, Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Wei Guo
- Department of Pharmacology, Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Ruo-Bing Guo
- Department of Pharmacology, Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Yu-Qin Sun
- Department of Pharmacology, Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Teng-Fei Xue
- Department of Pharmacology, Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Zhen-Yu Cai
- Department of Pharmacology, Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Juan Ji
- Department of Pharmacology, Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Hong Cheng
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiu-Lan Sun
- Department of Pharmacology, Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, Center for Global Health, Nanjing Medical University, Nanjing, China.
- Nanjing University of Chinese Medicine, the Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
165
|
Zhang J, Sun P, Zhou C, Zhang X, Ma F, Xu Y, Hamblin MH, Yin K. Regulatory microRNAs and vascular cognitive impairment and dementia. CNS Neurosci Ther 2020; 26:1207-1218. [PMID: 33459504 PMCID: PMC7702235 DOI: 10.1111/cns.13472] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 12/11/2022] Open
Abstract
Vascular cognitive impairment and dementia (VCID) is defined as a progressive dementia disease related to cerebrovascular injury and often occurs in aged populations. Despite decades of research, effective treatment for VCID is still absent. The pathological processes of VCID are mediated by the molecular mechanisms that are partly modulated at the post-transcriptional level. As small endogenous non-coding RNAs, microRNAs (miRs) can regulate target gene expression through post-transcriptional gene silencing. miRs have been reported to play an important role in the pathology of VCID and have recently been suggested as potential novel pharmacological targets for the development of new diagnosis and treatment strategies in VCID. In this review, we summarize the current understanding of VCID, the possible role of miRs in the regulation of VCID and attempt to envision future therapeutic strategies. Since manipulation of miR levels by either pharmacological or genetic approaches has shown therapeutic effects in experimental VCID models, we also emphasize the potential therapeutic value of miRs in clinical settings.
Collapse
Affiliation(s)
- Jing Zhang
- Department of NeurologyPittsburgh Institute of Brain Disorders & RecoveryUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | - Ping Sun
- Department of NeurologyPittsburgh Institute of Brain Disorders & RecoveryUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | - Chao Zhou
- Department of NeurologyPittsburgh Institute of Brain Disorders & RecoveryUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | - Xuejing Zhang
- Department of NeurologyPittsburgh Institute of Brain Disorders & RecoveryUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | - Feifei Ma
- Department of NeurologyPittsburgh Institute of Brain Disorders & RecoveryUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | - Yang Xu
- Department of NeurologyPittsburgh Institute of Brain Disorders & RecoveryUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | - Milton H. Hamblin
- Department of PharmacologyTulane University School of MedicineNew OrleansLAUSA
| | - Ke‐Jie Yin
- Department of NeurologyPittsburgh Institute of Brain Disorders & RecoveryUniversity of Pittsburgh School of MedicinePittsburghPAUSA
- Geriatric ResearchEducation and Clinical CenterVeterans Affairs Pittsburgh Healthcare SystemPittsburghPAUSA
| |
Collapse
|
166
|
RNA and Oxidative Stress in Alzheimer's Disease: Focus on microRNAs. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:2638130. [PMID: 33312335 PMCID: PMC7721489 DOI: 10.1155/2020/2638130] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/21/2020] [Accepted: 10/29/2020] [Indexed: 01/31/2023]
Abstract
Oxidative stress (OS) is one of the major pathomechanisms of Alzheimer's disease (AD), which is closely associated with other key events in neurodegeneration such as mitochondrial dysfunction, inflammation, metal dysregulation, and protein misfolding. Oxidized RNAs are identified in brains of AD patients at the prodromal stage. Indeed, oxidized mRNA, rRNA, and tRNA lead to retarded or aberrant protein synthesis. OS interferes with not only these translational machineries but also regulatory mechanisms of noncoding RNAs, especially microRNAs (miRNAs). MiRNAs can be oxidized, which causes misrecognizing target mRNAs. Moreover, OS affects the expression of multiple miRNAs, and conversely, miRNAs regulate many genes involved in the OS response. Intriguingly, several miRNAs embedded in upstream regulators or downstream targets of OS are involved also in neurodegenerative pathways in AD. Specifically, seven upregulated miRNAs (miR-125b, miR-146a, miR-200c, miR-26b, miR-30e, miR-34a, miR-34c) and three downregulated miRNAs (miR-107, miR-210, miR-485), all of which are associated with OS, are found in vulnerable brain regions of AD at the prodromal stage. Growing evidence suggests that altered miRNAs may serve as targets for developing diagnostic or therapeutic tools for early-stage AD. Focusing on a neuroprotective transcriptional repressor, REST, and the concept of hormesis that are relevant to the OS response may provide clues to help us understand the role of the miRNA system in cellular and organismal adaptive mechanisms to OS.
Collapse
|
167
|
Jiang W, Liu C, Deng M, Wang F, Ren X, Fan Y, Du J, Wang Y. H 2S promotes developmental brain angiogenesis via the NOS/NO pathway in zebrafish. Stroke Vasc Neurol 2020; 6:244-251. [PMID: 33246971 PMCID: PMC8258041 DOI: 10.1136/svn-2020-000584] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 10/19/2020] [Accepted: 10/28/2020] [Indexed: 01/04/2023] Open
Abstract
Background Hydrogen sulphide (H2S) is considered as the third member of the gasotransmitter family, along with nitric oxide (NO) and carbon monoxide. H2S has been reported to induce angiogenesis by promoting the growth, migration and tube-like structure formation of endothelial cells. Those studies were conducted in conditions of cell culture, mouse Matrigel plug assay model, rat wound healing model or rat hindlimb ischaemia model. Recent in vivo studies showed the physiological importance of H2S in muscle angiogenesis. However, the importance of endogenous H2S for brain angiogenesis during development remains unknown. We therefore aimed at determining the role of H2S in brain vascular development. Methods and results Both knockdown and knockout of H2S-producing enzymes, cystathionine β-synthase (cbs) and cystathionine γ-lyase (cth), using morpholino oligonucleotides and clustered regularly interspaced short palindromic repeats/Cas9-mediated mutation, impaired brain vascular development of larval zebrafish. Incubation with the slow-releasing H2S donor GYY4137 alleviated the defects of brain vascular development in cbs and cth morphants. Quantitative analysis of the midbrain vascular network showed that H2S enhances angiogenesis without affecting the topological structure of the brain vasculature. Mechanically, nitric oxide synthase 2a (nos2a) expression and NO production were decreased in both cbs and cth morphants. Overexpression of nos2a by coinjection of cbs or cth MO with full-length zebrafish nos2a mRNA alleviated the brain vascular developmental defects in cbs and cth morphants. Conclusion We conclude that H2S promotes brain developmental angiogenesis via the NOS/NO pathway in zebrafish.
Collapse
Affiliation(s)
- Weiqing Jiang
- Department of Neurology, Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital, Shanghai, China
| | - Chen Liu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mingzhu Deng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Fei Wang
- Department of Neurology, Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital, Shanghai, China
| | - Xiao Ren
- Department of Neurology, Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital, Shanghai, China
| | - Yilin Fan
- Department of Neurology, Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital, Shanghai, China
| | - Jiulin Du
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Yonggang Wang
- Department of Neurology, Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital, Shanghai, China
| |
Collapse
|
168
|
Xu C, Zhao J, Li Q, Hou L, Wang Y, Li S, Jiang F, Zhu Z, Tian L. Exosomes derived from three-dimensional cultured human umbilical cord mesenchymal stem cells ameliorate pulmonary fibrosis in a mouse silicosis model. Stem Cell Res Ther 2020; 11:503. [PMID: 33239075 PMCID: PMC7687745 DOI: 10.1186/s13287-020-02023-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/10/2020] [Indexed: 02/06/2023] Open
Abstract
Background Silicosis is an occupational respiratory disease caused by long-term excessive silica inhalation, which is most commonly encountered in industrial settings. Unfortunately, there is no effective therapy to delay and cure the progress of silicosis. In the recent years, stem cell therapy has emerged as an attractive tool against pulmonary fibrosis (PF) owing to its unique biological characteristics. However, the direct use of stem cells remains limitation by many risk factors for therapeutic purposes. The exclusive utility of exosomes secreted from stem cells, rather than cells, has been considered a promising alternative to overcome the limitations of cell-based therapy while maintaining its advantages. Methods and results In this study, we first employed a three-dimensional (3D) dynamic system to culture human umbilical cord mesenchymal stem cell (hucMSC) spheroids in a microcarrier suspension to yield exosomes from serum-free media. Experimental silicosis was induced in C57BL/6J mice by intratracheal instillation of a silica suspension, with/without exosomes derived from hucMSC (hucMSC-Exos), injection via the tail vein afterwards. The results showed that the gene expression of collagen I (COL1A1) and fibronectin (FN) was upregulated in the silica group as compared to that in the control group; however, this change decreased with hucMSC-Exo treatment. The value of FEV0.1 decreased in the silica group as compared to that in the control group, and this change diminished with hucMSC-Exo treatment. These findings suggested that hucMSC-Exos could inhibit silica-induced PF and regulate pulmonary function. We also performed in vitro experiments to confirm these findings; the results revealed that hucMSC-Exos decreased collagen deposition in NIH-3T3 cells exposed to silica. Conclusions Taken together, these studies support a potential role for hucMSC-Exos in ameliorating pulmonary fibrosis and provide new evidence for improving clinical treatment induced by silica. Supplementary information The online version contains supplementary material available at 10.1186/s13287-020-02023-9.
Collapse
Affiliation(s)
- Chunjie Xu
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, No. 10, Xitoutiao Youanmen Street, Beijing, 100069, China.,Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Jing Zhao
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, No. 10, Xitoutiao Youanmen Street, Beijing, 100069, China.,Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Qiuyue Li
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, No. 10, Xitoutiao Youanmen Street, Beijing, 100069, China.,Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Lin Hou
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, No. 10, Xitoutiao Youanmen Street, Beijing, 100069, China.,Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Yan Wang
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, No. 10, Xitoutiao Youanmen Street, Beijing, 100069, China.,Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Siling Li
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, No. 10, Xitoutiao Youanmen Street, Beijing, 100069, China.,Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Fuyang Jiang
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, No. 10, Xitoutiao Youanmen Street, Beijing, 100069, China.,Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Zhonghui Zhu
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, No. 10, Xitoutiao Youanmen Street, Beijing, 100069, China. .,Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China.
| | - Lin Tian
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, No. 10, Xitoutiao Youanmen Street, Beijing, 100069, China. .,Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
169
|
Losurdo M, Grilli M. Extracellular Vesicles, Influential Players of Intercellular Communication within Adult Neurogenic Niches. Int J Mol Sci 2020; 21:E8819. [PMID: 33233420 PMCID: PMC7700666 DOI: 10.3390/ijms21228819] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 12/14/2022] Open
Abstract
Adult neurogenesis, involving the generation of functional neurons from adult neural stem cells (NSCs), occurs constitutively in discrete brain regions such as hippocampus, sub-ventricular zone (SVZ) and hypothalamus. The intrinsic structural plasticity of the neurogenic process allows the adult brain to face the continuously changing external and internal environment and requires coordinated interplay between all cell types within the specialized microenvironment of the neurogenic niche. NSC-, neuronal- and glia-derived factors, originating locally, regulate the balance between quiescence and self-renewal of NSC, their differentiation programs and the survival and integration of newborn cells. Extracellular Vesicles (EVs) are emerging as important mediators of cell-to-cell communication, representing an efficient way to transfer the biologically active cargos (nucleic acids, proteins, lipids) by which they modulate the function of the recipient cells. Current knowledge of the physiological role of EVs within adult neurogenic niches is rather limited. In this review, we will summarize and discuss EV-based cross-talk within adult neurogenic niches and postulate how EVs might play a critical role in the regulation of the neurogenic process.
Collapse
Affiliation(s)
| | - Mariagrazia Grilli
- Laboratory of Neuroplasticity, Department of Pharmaceutical Sciences, University of Piemonte Orientale, 28100 Novara, Italy;
| |
Collapse
|
170
|
Exosomes and exosomal microRNA in non-targeted radiation bystander and abscopal effects in the central nervous system. Cancer Lett 2020; 499:73-84. [PMID: 33160002 DOI: 10.1016/j.canlet.2020.10.049] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/24/2020] [Accepted: 10/29/2020] [Indexed: 12/11/2022]
Abstract
Localized cranial radiotherapy is a dominant treatment for brain cancers. After being subjected to radiation, the central nervous system (CNS) exhibits targeted effects as well as non-targeted radiation bystander effects (RIBE) and abscopal effects (RIAE). Radiation-induced targeted effects in the CNS include autophagy and various changes in tumor cells due to radiation sensitivity, which can be regulated by microRNAs. Non-targeted radiation effects are mainly induced by gap junctional communication between cells, exosomes containing microRNAs can be transduced by intracellular endocytosis to regulate RIBE and RIAE. In this review, we discuss the involvement of microRNAs in radiation-induced targeted effects, as well as exosomes and/or exosomal microRNAs in non-targeted radiation effects in the CNS. As a target pathway, we also discuss the Akt pathway which is regulated by microRNAs, exosomes, and/or exosomal microRNAs in radiation-induced targeted effects and RIBE in CNS tumor cells. As the CNS-derived exosomes can cross the blood-brain-barrier (BBB) into the bloodstream and be isolated from peripheral blood, exosomes and exosomal microRNAs can emerge as promising minimally invasive biomarkers and therapeutic targets for radiation-induced targeted and non-targeted effects in the CNS.
Collapse
|
171
|
Duică F, Condrat CE, Dănila CA, Boboc AE, Radu MR, Xiao J, Li X, Creţoiu SM, Suciu N, Creţoiu D, Predescu DV. MiRNAs: A Powerful Tool in Deciphering Gynecological Malignancies. Front Oncol 2020; 10:591181. [PMID: 33194751 PMCID: PMC7646292 DOI: 10.3389/fonc.2020.591181] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/01/2020] [Indexed: 12/14/2022] Open
Abstract
Accumulated evidence on the clinical roles of microRNAs (miRNAs) in cancer prevention and control has revealed the emergence of new genetic techniques that have improved the understanding of the mechanisms essential for pathology induction and progression. Comprehension of the modifications and individual differences of miRNAs and their interactions in the pathogenesis of gynecological malignancies, together with an understanding of the phenotypic variations have considerably improved the management of the diagnosis and personalized treatment for different forms of cancer. In recent years, miRNAs have emerged as signaling molecules in biological pathways involved in different categories of cancer and it has been demonstrated that these molecules could regulate cancer-relevant processes, our focus being on malignancies of the gynecologic tract. The aim of this paper is to summarize novel research findings in the literature regarding the parts that miRNAs play in cancer-relevant processes, specifically regarding gynecological malignancy, while emphasizing their pivotal role in the disruption of cancer-related signaling pathways.
Collapse
Affiliation(s)
- Florentina Duică
- Fetal Medicine Excellence Research Center, Alessandrescu-Rusescu National Institute for Mother and Child Health, Bucharest, Romania
| | - Carmen Elena Condrat
- Fetal Medicine Excellence Research Center, Alessandrescu-Rusescu National Institute for Mother and Child Health, Bucharest, Romania
| | - Cezara Alina Dănila
- Fetal Medicine Excellence Research Center, Alessandrescu-Rusescu National Institute for Mother and Child Health, Bucharest, Romania
| | - Andreea Elena Boboc
- Fetal Medicine Excellence Research Center, Alessandrescu-Rusescu National Institute for Mother and Child Health, Bucharest, Romania
| | - Mihaela Raluca Radu
- Fetal Medicine Excellence Research Center, Alessandrescu-Rusescu National Institute for Mother and Child Health, Bucharest, Romania
| | - Junjie Xiao
- Institute of Cardiovascular Sciences, Shanghai University, Shanghai, China
| | - Xinli Li
- Department of Cardiology, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, China
| | - Sanda Maria Creţoiu
- Cellular and Molecular Biology and Histology Department, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Nicolae Suciu
- Fetal Medicine Excellence Research Center, Alessandrescu-Rusescu National Institute for Mother and Child Health, Bucharest, Romania.,Department of Obstetrics and Gynecology, Polizu Clinical Hospital, Alessandrescu-Rusescu National Institute for Mother and Child Health, Bucharest, Romania.,Obstetrics, Gynecology and Neonatology Department, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Dragoş Creţoiu
- Fetal Medicine Excellence Research Center, Alessandrescu-Rusescu National Institute for Mother and Child Health, Bucharest, Romania.,Cellular and Molecular Biology and Histology Department, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Dragoş-Valentin Predescu
- Department of General Surgery, Sf. Maria Clinical Hospital, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
172
|
Ohgo S, Sakamoto T, Nakajima W, Matsunaga S, Wada N. Visualization of extracellular vesicles in the regenerating caudal fin blastema of zebrafish using in vivo electroporation. Biochem Biophys Res Commun 2020; 533:1371-1377. [PMID: 33077180 DOI: 10.1016/j.bbrc.2020.10.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 10/10/2020] [Indexed: 01/03/2023]
Abstract
Zebrafish have high regenerative ability in several organs including the fin. Although various mechanisms underlying fin regeneration have been revealed, some mechanisms remain to be elucidated. Recently, extracellular vesicles (EVs) have been the focus of research with regard to their role in cell-to-cell communication. It has been suggested that cells in regenerating tissues communicate using EVs. In this study, we examined the involvement of EVs in the caudal fin regeneration of zebrafish using an in vivo electroporation method. The process of regeneration appeared normal after in vivo electroporation, and the transferred plasmid showed mosaic expression in the blastema. We took advantage of this mosaic expression to observe the distribution of exosomal markers in the blastema. We transferred exosomal markers by in vivo electroporation and identified EVs in the regenerating caudal fin. The results suggest that blastemal cells communicate with other cells via EVs during caudal fin regeneration.
Collapse
Affiliation(s)
- Shiro Ohgo
- Department of Applied Biological Science, Tokyo University of Science, Noda, Japan.
| | - Takuya Sakamoto
- Department of Applied Biological Science, Tokyo University of Science, Noda, Japan
| | - Wataru Nakajima
- Department of Applied Biological Science, Tokyo University of Science, Noda, Japan
| | - Sachihiro Matsunaga
- Department of Applied Biological Science, Tokyo University of Science, Noda, Japan
| | - Naoyuki Wada
- Department of Applied Biological Science, Tokyo University of Science, Noda, Japan
| |
Collapse
|
173
|
Pericyte-Endothelial Interactions in the Retinal Microvasculature. Int J Mol Sci 2020; 21:ijms21197413. [PMID: 33049983 PMCID: PMC7582747 DOI: 10.3390/ijms21197413] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/25/2020] [Accepted: 09/30/2020] [Indexed: 12/12/2022] Open
Abstract
Retinal microvasculature is crucial for the visual function of the neural retina. Pericytes and endothelial cells (ECs) are the two main cellular constituents in the retinal microvessels. Formation, maturation, and stabilization of the micro-vasculatures require pericyte-endothelial interactions, which are perturbed in many retinal vascular disorders, such as retinopathy of prematurity, retinal vein occlusion, and diabetic retinopathy. Understanding the cellular and molecular mechanisms of pericyte-endothelial interaction and perturbation can facilitate the design of therapeutic intervention for the prevention and treatment of retinal vascular disorders. Pericyte-endothelial interactions are indispensable for the integrity and functionality of retinal neurovascular unit (NVU), including vascular cells, retinal neurons, and glial cells. The essential autocrine and paracrine signaling pathways, such as Vascular endothelial growth factor (VEGF), Platelet-derived growth factor subunit B (PDGFB), Notch, Angipointein, Norrin, and Transforming growth factor-beta (TGF-β), have been well characterized for the regulation of pericyte-endothelial interactions in the neo-vessel formation processes (vasculogenesis and angiogenesis) during embryonic development. They also play a vital role in stabilizing and remodeling mature vasculature under pathological conditions. Awry signals, aberrant metabolisms, and pathological conditions, such as oxidative stress and inflammation, can disrupt the communication between pericytes and endothelial cells, thereby resulting in the breakdown of the blood-retinal barrier (BRB) and other microangiopathies. The emerging evidence supports extracellular exosomes' roles in the (mis)communications between the two cell types. This review summarizes the essential knowledge and updates about new advancements in pericyte-EC interaction and communication, emphasizing the retinal microvasculature.
Collapse
|
174
|
Sun Y, Wen Y, Ruan Q, Yang L, Huang S, Xu X, Cai Y, Li H, Wu S. Exploring the association of long noncoding RNA expression profiles with intracranial aneurysms, based on sequencing and related bioinformatics analysis. BMC Med Genomics 2020; 13:147. [PMID: 33023605 PMCID: PMC7542138 DOI: 10.1186/s12920-020-00805-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 09/29/2020] [Indexed: 12/23/2022] Open
Abstract
Background The present study aims to investigate the complete long non-coding RNA (lncRNA) and messenger RNA (mRNA) expression profiles in Intracranial aneurysm (IA) patients and controls by RNA sequencing, which reveals the lncRNA with predictive value for IA risk. Methods The comprehensive lncRNA and mRNA expression profiles were detected by RNA-Seq in human IA walls and superficial temporal arteries (STAs), followed by bioinformatics analyses, such as GO analysis, KEGG pathway analysis, and CNC network construction. Subsequently, qRT-PCR was used to profile the expression levels of selected lncRNA (lncRNA ENST000000576153, lncRNA ENST00000607042, lncRNA ENST00000471220, lncRNA ENST00000478738, lncRNA MALAT1, lncRNA ENST00000508090 and lncRNA ENST00000579688) in 30 (small) or 130 (large) peripheral blood leukocytes, respectively. Multivariate logistic regression was utilized to analyze the effects of lncRNA on IA. Receiver operating characteristic (ROC) curve was further drawn to explore the value of lncRNA in predicting IA. Results Totally 900 up-regulated and 293 down-regulated lncRNAs, as well as 1297 up-regulated and 831 down-regulated mRNAs were discovered in sequencing. Enrichment analyses revealed that they were actively involved in immune/inflammatory response and cell adhesion/extracellular matrix. Co-expression analysis and further enrichment analyses showed that five candidate lncRNAs might participate in IA’s inflammatory response. Besides, after controlling other conventional risk factors, multivariate logistic regression analysis disclosed that low expression of lncRNA ENST00000607042, lncRNA ENST00000471220, lncRNA ENST00000478738, lncRNA MALAT1 in peripheral blood leukocytes were independent risk factors for IA. LncRNA ENST00000607042 has superior diagnostic value for IA. Conclusions This study reveals the complete lncRNAs expression profiles in IA. The inflammatory response was closely related to IA. Besides, lncRNA ENST00000607042 might be a novel biomarker for IA risk.
Collapse
Affiliation(s)
- Yi Sun
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Minhou County, Fuzhou, 350122, China
| | - Yeying Wen
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Minhou County, Fuzhou, 350122, China
| | - Qishuang Ruan
- Department of Orthopedics, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Le Yang
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Minhou County, Fuzhou, 350122, China
| | - Shuna Huang
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Minhou County, Fuzhou, 350122, China
| | - Xingyan Xu
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Minhou County, Fuzhou, 350122, China
| | - Yingying Cai
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Minhou County, Fuzhou, 350122, China
| | - Huangyuan Li
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Minhou County, Fuzhou, 350122, China.
| | - Siying Wu
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Minhou County, Fuzhou, 350122, China.
| |
Collapse
|
175
|
Piezo1-Mediated Ca2+ Activities Regulate Brain Vascular Pathfinding during Development. Neuron 2020; 108:180-192.e5. [DOI: 10.1016/j.neuron.2020.07.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 06/26/2020] [Accepted: 07/21/2020] [Indexed: 12/17/2022]
|
176
|
Miceli V, Russelli G, Iannolo G, Gallo A, Lo Re V, Agnese V, Sparacia G, Conaldi PG, Bulati M. Role of non-coding RNAs in age-related vascular cognitive impairment: An overview on diagnostic/prognostic value in Vascular Dementia and Vascular Parkinsonism. Mech Ageing Dev 2020; 191:111332. [PMID: 32805261 DOI: 10.1016/j.mad.2020.111332] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/23/2020] [Accepted: 07/28/2020] [Indexed: 02/07/2023]
Abstract
Age is the pivotal risk factor for different common medical conditions such as cardiovascular diseases, cancer and dementia. Among age-related disorders, cardiovascular and cerebrovascular diseases, represent the leading causes of premature mortality strictly related to vascular ageing, a pathological condition characterized by endothelial dysfunction, atherosclerosis, hypertension, heart disease and stroke. These features negatively impact on the brain, owing to altered cerebral blood flow, neurovascular coupling and impaired endothelial permeability leading to cerebrovascular diseases (CVDs) as Vascular Dementia (VD) and Parkinsonism (VP). It is an increasing opinion that neurodegenerative disorders and cerebrovascular diseases are associated from a pathogenetic point of view, and in this review, we discuss how cerebrovascular dysfunctions, due to epigenetic alterations, are linked with neuronal degeneration/dysfunction that lead to cognitive impairment. The relation between neurodegenerative and cerebrovascular diseases are reviewed with a focus on role of ncRNAs in age-related vascular diseases impairing the endothelium in the blood-brain barrier with consequent dysfunction of cerebral blood flow. In this review we dissert about different regulatory mechanisms of gene expression implemented by ncRNAs in the pathogenesis of age-related neurovascular impairment, aiming to highlight the potential use of ncRNAs as biomarkers for diagnostic/prognostic purposes as well as novel therapeutic targets.
Collapse
Affiliation(s)
- V Miceli
- Research Department, Mediterranean Institute for Transplantation and Advanced Specialized Therapies (IRCCS ISMETT), Palermo, Italy
| | - G Russelli
- Research Department, Mediterranean Institute for Transplantation and Advanced Specialized Therapies (IRCCS ISMETT), Palermo, Italy
| | - G Iannolo
- Research Department, Mediterranean Institute for Transplantation and Advanced Specialized Therapies (IRCCS ISMETT), Palermo, Italy
| | - A Gallo
- Research Department, Mediterranean Institute for Transplantation and Advanced Specialized Therapies (IRCCS ISMETT), Palermo, Italy
| | - V Lo Re
- Neurology Service, Department of Diagnostic and Therapeutic Services, Mediterranean Institute for Transplantation and Advanced Specialized Therapies (IRCCS ISMETT), Palermo, Italy
| | - V Agnese
- Research Department, Mediterranean Institute for Transplantation and Advanced Specialized Therapies (IRCCS ISMETT), Palermo, Italy
| | - G Sparacia
- Radiology Service, Department of Diagnostic and Therapeutic Services, Mediterranean Institute for Transplantation and Advanced Specialized Therapies (IRCCS ISMETT), Palermo, Italy
| | - P G Conaldi
- Research Department, Mediterranean Institute for Transplantation and Advanced Specialized Therapies (IRCCS ISMETT), Palermo, Italy
| | - M Bulati
- Research Department, Mediterranean Institute for Transplantation and Advanced Specialized Therapies (IRCCS ISMETT), Palermo, Italy.
| |
Collapse
|
177
|
Chen W, Wang H, Zhu Z, Feng J, Chen L. Exosome-Shuttled circSHOC2 from IPASs Regulates Neuronal Autophagy and Ameliorates Ischemic Brain Injury via the miR-7670-3p/SIRT1 Axis. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 22:657-672. [PMID: 33230464 PMCID: PMC7581834 DOI: 10.1016/j.omtn.2020.09.027] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/21/2020] [Indexed: 02/07/2023]
Abstract
The aim of the present study was to investigate the neuroprotective roles and mechanisms of the circular RNA circSHOC2 in ischemic-preconditioned astrocyte-derived exosomes (IPAS-EXOs) against ischemic stroke. We established an ischemia model based on oxygen glucose deprivation (OGD) in vitro and isolated resultant exosomes from astrocytes. Neuronal viability and apoptosis were determined by Cell Counting Kit-8 (CCK-8) assays and TUNEL (terminal deoxynucleotidyltransferase-mediated deoxyuridine triphosphate nick end labeling) staining, respectively. Autophagy-related proteins were analyzed by western blotting. We found that exosomes derived from IPAS-preconditioned medium (IPAS-CM) exerted neuroprotection. Furthermore, circSHOC2 expression was significantly upregulated in exosomes released from IPAS-CM. Overexpression of circSHOC2 in neurons yielded the same protective effects as those from IPAS-EXOs in vitro, and similar results were also observed in the middle cerebral artery occlusion (MCAO) mouse model. Mechanistically, circSHOC2 reduced neuronal apoptosis via regulating autophagy. Furthermore, circSHOC2 was found to sponge miR-7670-3p, which regulated SIRT1 expression. Transfection with an miR-7670-3p small interfering RNA (siRNA) (siRNA-7670-3p) and incubation with circSHOC2 extracellular vesicles attenuated ischemia-induced neuronal apoptosis in vivo and in vitro, while silencing of SIRT1 reversed the protective effects of exosomal circSHOC2 on hypoxic cerebral neurons. Taken together, our findings indicate that circSHOC2 in IPAS-EXOs suppressed neuronal apoptosis and ameliorated neuronal damage by regulating autophagy and acting on the miR-7670-3p/SIRT1 axis, which might contribute to a therapeutic strategy for ischemic stroke treatment.
Collapse
Affiliation(s)
- Wanghao Chen
- Medical School of Southeast University, Nanjing 210009, P.R. China
| | - Hong Wang
- Medical School of Southeast University, Nanjing 210009, P.R. China
| | - Zhihan Zhu
- Medical School of Southeast University, Nanjing 210009, P.R. China
| | - Jia Feng
- Medical School of Southeast University, Nanjing 210009, P.R. China
| | - Lukui Chen
- Medical School of Southeast University, Nanjing 210009, P.R. China.,Department of Neurosurgery, Neuroscience Center, Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, P.R. China
| |
Collapse
|
178
|
Wang G, Wen Y, Faleti OD, Zhao Q, Liu J, Zhang G, Li M, Qi S, Feng W, Lyu X. A Panel of Exosome-Derived miRNAs of Cerebrospinal Fluid for the Diagnosis of Moyamoya Disease. Front Neurosci 2020; 14:548278. [PMID: 33100957 PMCID: PMC7546773 DOI: 10.3389/fnins.2020.548278] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 09/04/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Moyamoya disease (MMD) is an important cause of stroke in children and young adults in Asia. To date, diagnosis remains challenging due to varying clinical manifestations and unknown pathogenesis. The study aims to identify cerebrospinal fluid (CSF) exosomal microRNAs (exomiRs) that can serve as a novel diagnostic biomarker for diagnosis and assess its clinical applications. METHODS CSF samples were taken from 31 MMD patients and 31 healthy controls. Initial screening of miRNA expression was performed on samples pooled from MMD patients and controls using microarray and validated using quantitative reverse transcription polymerase chain reaction (qRT-PCR). The diagnostic accuracy of the potential exosomal miRNAs was evaluated using receiver operating characteristic curve analyses in an independent patient cohort. The potential pathways regulated by the miRNAs was also determined using bioinformatics analysis. RESULTS The microarray results demonstrated that six exomiRs were dysregulated in the MMD patients compared to the controls. Using qRT-PCR, we validated four of the miRNAs (miR-3679-5p, miR-6165, miR-6760-5p, and miR-574-5p) as a biomarker for MMD diagnosis. The four exomiRs showed enhanced sensitivity (75%) and specificity (93.75%) in terms of differentiating MMD patients from healthy subjects [area under the curve (AUC) = 0.9453]. Pathway enrichment analysis for potential targets of six exomiRs identified proteins involved in cell adhesion and junction formation in the brain. CONCLUSIONS We identified a novel and highly sensitive exomiRs signature for MMD detection and explored its potential targets using bioinformatics analysis.
Collapse
Affiliation(s)
- Gang Wang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yunyu Wen
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Oluwasijibomi Damola Faleti
- Department of Laboratory Medicine, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Qingshun Zhao
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jingping Liu
- Department of Laboratory Medicine, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Guozhong Zhang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mingzhou Li
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Songtao Qi
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wenfeng Feng
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoming Lyu
- Department of Laboratory Medicine, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
179
|
Shen M, Shen Y, Fan X, Men R, Ye T, Yang L. Roles of Macrophages and Exosomes in Liver Diseases. Front Med (Lausanne) 2020; 7:583691. [PMID: 33072790 PMCID: PMC7542243 DOI: 10.3389/fmed.2020.583691] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 08/13/2020] [Indexed: 02/05/2023] Open
Abstract
Exosomes are small discoid extracellular vesicles (EVs) originating from endosomes that are 30-150 nm in diameter and have a double lipid layer. They participate in the immune response, cell migration, cell differentiation, and tumor invasion and mediate intercellular communication, regulating the biological activity of receptor cells through the proteins, nucleic acids, and lipids that they carry. Exosomes also play vital roles in the diagnosis and treatment of liver diseases. Macrophages, which show unique phenotypes and functions in complex microenvironments, can be divided into M1 and M2 subtypes. M1 macrophages function in immune surveillance, and M2 macrophages downregulate the immune response. Recent studies have shown that macrophages are involved in non-alcoholic fatty liver disease, liver fibrosis, and hepatocellular carcinoma. Moreover, several studies have demonstrated that liver diseases are associated with exosomes derived from or transferred to macrophages. This review focuses on the participation of macrophages and exosomes in liver diseases.
Collapse
Affiliation(s)
- Mengyi Shen
- Department of Gastroenterology and Hepatology, Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Shen
- Department of Gastroenterology and Hepatology, Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoli Fan
- Department of Gastroenterology and Hepatology, Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Ruoting Men
- Department of Gastroenterology and Hepatology, Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Tinghong Ye
- Laboratory of Liver Surgery, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Li Yang
- Department of Gastroenterology and Hepatology, Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
180
|
Tang J, Jin L, Liu Y, Li L, Ma Y, Lu L, Ma J, Ding P, Yang X, Liu J, Yang J. Exosomes Derived from Mesenchymal Stem Cells Protect the Myocardium Against Ischemia/Reperfusion Injury Through Inhibiting Pyroptosis. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:3765-3775. [PMID: 32982181 PMCID: PMC7505733 DOI: 10.2147/dddt.s239546] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 07/25/2020] [Indexed: 12/19/2022]
Abstract
Objective Mesenchymal stem cells (MSCs) show unique advantages in cardiomyocyte repairment. Exosomes derived from MSCs can enhance the viability of myocardial cells after ischemia/reperfusion (I/R) injury and regulate inflammation response. The study was designed to ascertain whether MSCs-exo protect the myocardium against I/R injury through inhibiting pyroptosis, and the underlying mechanisms. Methods and Results Experiments were carried out in H/R and I/R model. Cell viability was inhibited and NLRP3 and caspase1 protein levels were upregulated in H/R model. However, MSCs could inhibit cell apoptosis and pyroptosis in H/R model. Moreover, we used MSCs-exo to treated H/R model, and flow cytometric analysis results showed the inhibition function of MSCs-exo on cell apoptosis, and Western blot data suggested that NLRP3 and Caspase-1 expressions were downregulated in H/R model. Furthermore, exosomal miR-320b targeted NLRP3 protein, and MSCs-exo OE could inhibit NLRP3 expression and pyroptosis in H/R. In addition, the inhibition function of MSCs-exo on pyroptosis also was found in I/R model, and HE and Tunel staining also got similar results. Conclusion Exosomes derived from mesenchymal stem cells could protect the myocardium against ischemia/reperfusion injury through inhibiting pyroptosis.
Collapse
Affiliation(s)
- Jiayou Tang
- Department of Cardiovascular Surgery, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi Province, People's Republic of China
| | - Lu Jin
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Maxillofacial Plastic Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi Province, People's Republic of China
| | - Yang Liu
- Department of Cardiovascular Surgery, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi Province, People's Republic of China
| | - Lanlan Li
- Department of Cardiovascular Surgery, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi Province, People's Republic of China
| | - Yanyan Ma
- Department of Cardiovascular Surgery, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi Province, People's Republic of China
| | - Linhe Lu
- Department of Cardiovascular Surgery, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi Province, People's Republic of China
| | - Jipeng Ma
- Department of Cardiovascular Surgery, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi Province, People's Republic of China
| | - Peng Ding
- Department of Cardiovascular Surgery, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi Province, People's Republic of China
| | - Xiuling Yang
- Department of Cardiovascular Surgery, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi Province, People's Republic of China
| | - Jincheng Liu
- Department of Cardiovascular Surgery, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi Province, People's Republic of China
| | - Jian Yang
- Department of Cardiovascular Surgery, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi Province, People's Republic of China
| |
Collapse
|
181
|
Jiang D, Gong F, Ge X, Lv C, Huang C, Feng S, Zhou Z, Rong Y, Wang J, Ji C, Chen J, Zhao W, Fan J, Liu W, Cai W. Neuron-derived exosomes-transmitted miR-124-3p protect traumatically injured spinal cord by suppressing the activation of neurotoxic microglia and astrocytes. J Nanobiotechnology 2020; 18:105. [PMID: 32711535 PMCID: PMC7382861 DOI: 10.1186/s12951-020-00665-8] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/20/2020] [Indexed: 12/22/2022] Open
Abstract
Background Spinal cord injury (SCI) is a catastrophic injury that can cause irreversible motor dysfunction with high disability. Exosomes participate in the transport of miRNAs and play an essential role in intercellular communication via transfer of genetic material. However, the miRNAs in exosomes which derived from neurons, and the underlying mechanisms by which they contribute to SCI remain unknown. Methods A contusive in vivo SCI model and a series of in vitro experiments were carried out to explore the therapeutic effects of exosomes. Then, a miRNA microarray analysis and rescue experiments were performed to confirm the role of neuron-derived exosomal miRNA in SCI. Western blot, luciferase activity assay, and RNA-ChIP were used to investigate the underlying mechanisms. Results The results indicated that neuron-derived exosomes promoted functional behavioral recovery by suppressing the activation of M1 microglia and A1 astrocytes in vivo and in vitro. A miRNA array showed miR-124-3p to be the most enriched in neuron-derived exosomes. MYH9 was identified as the target downstream gene of miR-124-3p. A series of experiments were used to confirm the miR-124-3p/MYH9 axis. Finally, it was found that PI3K/AKT/NF-κB signaling cascades may be involved in the modulation of microglia by exosomal miR-124-3p. Conclusion A combination of miRNAs and neuron-derived exosomes may be a promising, minimally invasive approach for the treatment of SCI.
Collapse
Affiliation(s)
- Dongdong Jiang
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Fangyi Gong
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Xuhui Ge
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Chengtang Lv
- Department of Orthopaedics, Yancheng Third People's Hospital, Yancheng, 224000, Jiangsu, China
| | - Chenyu Huang
- Department of Orthopaedics, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, Jiangsu, China
| | - Shuang Feng
- Department of Encephalopathy, The Third Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210001, Jiangsu, China
| | - Zheng Zhou
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Yuluo Rong
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Jiaxing Wang
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Chengyue Ji
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Jian Chen
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Wene Zhao
- Department of Analytical & Testing Center, Nanjing Medical University, Nanjing, 211666, Jiangsu, China
| | - Jin Fan
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China.
| | - Wei Liu
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China.
| | - Weihua Cai
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China.
| |
Collapse
|
182
|
The Emerging Role of Extracellular Vesicles in the Glioma Microenvironment: Biogenesis and Clinical Relevance. Cancers (Basel) 2020; 12:cancers12071964. [PMID: 32707733 PMCID: PMC7409063 DOI: 10.3390/cancers12071964] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/07/2020] [Accepted: 07/16/2020] [Indexed: 02/07/2023] Open
Abstract
Gliomas are a diverse group of brain tumors comprised of malignant cells ('tumor' cells) and non-malignant 'normal' cells, including neural (neurons, glia), inflammatory (microglia, macrophage) and vascular cells. Tumor heterogeneity arises in part because, within the glioma mass, both 'tumor' and 'normal' cells secrete factors that form a unique microenvironment to influence tumor progression. Extracellular vesicles (EVs) are critical mediators of intercellular communication between immediate cellular neighbors and distantly located cells in healthy tissues/organs and in tumors, including gliomas. EVs mediate cell-cell signaling as carriers of nucleic acid, lipid and protein cargo, and their content is unique to cell types and physiological states. EVs secreted by non-malignant neural cells have important physiological roles in the healthy brain, which can be altered or co-opted to promote tumor progression and metastasis, acting in combination with glioma-secreted EVs. The cell-type specificity of EV content means that 'vesiculome' data can potentially be used to trace the cell of origin. EVs may also serve as biomarkers to be exploited for disease diagnosis and to assess therapeutic progress. In this review, we discuss how EVs mediate intercellular communication in glioma, and their potential role as biomarkers and readouts of a therapeutic response.
Collapse
|
183
|
Zheng D, Zhang J, Zhang Z, Kuang L, Zhu Y, Wu Y, Xue M, Zhao H, Duan C, Liu L, Li T. Endothelial Microvesicles Induce Pulmonary Vascular Leakage and Lung Injury During Sepsis. Front Cell Dev Biol 2020; 8:643. [PMID: 32766250 PMCID: PMC7379030 DOI: 10.3389/fcell.2020.00643] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 06/26/2020] [Indexed: 12/29/2022] Open
Abstract
Sepsis is a prevalent severe syndrome in clinic. Vascular leakage and lung injury are important pathophysiological processes during sepsis, but the mechanism remains obscure. Microvesicles (MVs) play an essential role in many diseases, while whether MVs participate in vascular leakage and lung injury during sepsis is unknown. Using cecal ligation and puncture induced sepsis rats and lipopolysaccharide stimulated vascular endothelial cells (VECs), the role and the underlying mechanism of endothelial microvesicles (EMVs) in pulmonary vascular leakage and lung injury were observed. The role of MVs from sepsis patients was verified. The results showed that the concentration of MVs in blood was significantly increased after sepsis. MVs from sepsis rats and patients induced apparent pulmonary vascular leakage and lung injury, among which EMVs played the dominant role, in which miR-23b was the key inducing factor in vascular leakage. Furthermore, downregulation and upregulation of miR-23b in EMVs showed that miR-23b mainly targeted on ZO-1 to induce vascular leakage. MVs from sepsis patients induced pulmonary vascular leakage and lung injury in normal rats. Application of classic antidepressants amitriptyline reduced the secretion of EMVs, and alleviated vascular leakage and lung injury. The study suggests that EMVs play an important role in pulmonary vascular leakage and lung injury during sepsis by transferring functional miR-23b. Antagonizing the secretion of EMVs and the miR-23b might be a potential target for the treatment of severe sepsis.
Collapse
Affiliation(s)
- Danyang Zheng
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Jie Zhang
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Zisen Zhang
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Lei Kuang
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Yu Zhu
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Yue Wu
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Mingying Xue
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Hongliang Zhao
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Chenyang Duan
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Liangming Liu
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Tao Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
184
|
Xia B, Gao J, Li S, Huang L, Zhu L, Ma T, Zhao L, Yang Y, Luo K, Shi X, Mei L, Zhang H, Zheng Y, Lu L, Luo Z, Huang J. Mechanical stimulation of Schwann cells promote peripheral nerve regeneration via extracellular vesicle-mediated transfer of microRNA 23b-3p. Theranostics 2020; 10:8974-8995. [PMID: 32802175 PMCID: PMC7415818 DOI: 10.7150/thno.44912] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 06/09/2020] [Indexed: 12/14/2022] Open
Abstract
Rationale: Peripheral nerves are unique in their remarkable elasticity. Schwann cells (SCs), important components of the peripheral nervous system (PNS), are constantly subjected to physiological and mechanical stresses from dynamic stretching and compression forces during movement. So far, it is not clear if SCs sense and respond to mechanical signals. It is also unknown whether mechanical stimuli can interfere with the intercellular communications between neurons and SCs, and what role extracellular vesicles (EVs) play in this process. The present study aimed to examine the effect of mechanical stimuli on the EV-mediated intercellular communication between neurons and SCs, explore their effect on axonal regeneration, and investigate the underlying mechanism. Methods: Purified SCs were stimulated using a magnetic force-based mechanical stimulation (MS) system and EVs were purified from mechanically stimulated SCs (MS-SCs-EVs) and non-stimulated SCs (SCs-EVs). The effect of MS-SCs-EVs on axonal elongation was examined in vitro and in vivo. High throughput miRNA sequencing was performed to compare the differential miRNA profiles between MS-SCs-EVs and SCs-EVs. The functional role of differentially expressed miRNAs on neurite extension in MS-SCs-EVs was examined. Also, the putative target genes of differentially expressed miRNAs in MS-SCs-EVs were predicted by bioinformatics tools, and the regulatory effect of those miRNAs on putative target genes was validated both in vitro and in vivo. Results: The MS-SCs-EVs showed an average size of 137.52±1.77 nm, and could be internalized by dorsal root ganglion (DRG) neurons. Compared to SCs-EVs, MS-SCs-EVs showed a stronger ability to enhance neurite outgrowth in vitro and nerve regeneration in vivo. High throughput miRNA sequencing identified a number of differentially expressed miRNAs in MS-SCs-EVs. Further analysis of those EV-miRNAs demonstrated that miR-23b-3p played a predominant role in MS-SCs-EVs since its deprivation abolished their enhanced axonal elongation. Furthermore, we identified neuropilin 1 (Nrp1) in neurons as the target gene of miR-23b-3p in MS-SCs-EVs. This observation was supported by the evidence that miR-23b-3p could decrease Nrp1-3'-UTR-WT luciferase activity in vitro and down-regulate Nrp1 expression in neurons. Conclusion: Our findings suggested that mechanical stimuli are capable of modulating the intercellular communication between neurons and SCs by altering miRNA composition in MS-SCs-EVs. Transfer of miR-23b-3p by MS-SCs-EVs from mechanically stimulated SCs to neurons decreased neuronal Nrp1 expression, which was responsible, at least in part, for the beneficial effect of MS-SCs-EVs on axonal regeneration. Our results highlighted the potential therapeutic value of MS-SCs-EVs and miR-23b-3p-enriched EVs in peripheral nerve injury repair.
Collapse
Affiliation(s)
- Bing Xia
- Department of Orthopedics, Xijing Hospital, the Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Jianbo Gao
- Department of Orthopedics, Xijing Hospital, the Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Shengyou Li
- Department of Orthopedics, Xijing Hospital, the Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Liangliang Huang
- Department of Orthopedics, the General Hospital of Central Theater Command of People's Liberation Army, Wuhan, 430070, People's Republic of China
| | - Lei Zhu
- Department of Spine Surgery, Honghui Hospital Affiliated to Medical School of Xi'an Jiaotong University, Xi'an Shaanxi, 710054, People's Republic of China
| | - Teng Ma
- Department of Orthopedics, Xijing Hospital, the Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Laihe Zhao
- Department of Orthopedics, Xijing Hospital, the Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Yujie Yang
- Department of Orthopedics, Xijing Hospital, the Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Kai Luo
- Department of Orthopedics, the 985th Hospital People's Liberation Army Joint Logistics Support Force, Taiyuan, 030000, People's Republic of China
| | - Xiaowei Shi
- Department of Orthopedics, Xijing Hospital, the Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Liangwei Mei
- Department of Orthopedics, Xijing Hospital, the Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Hao Zhang
- Department of Spinal Surgery, the People's Hospital of Longhua District, Shenzhen, 518109, People's Republic of China
| | - Yi Zheng
- Department of Orthopedics, Xijing Hospital, the Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Lei Lu
- Department of Oral Anatomy and Physiology, State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, the Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Zhuojing Luo
- Department of Orthopedics, Xijing Hospital, the Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Jinghui Huang
- Department of Orthopedics, Xijing Hospital, the Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| |
Collapse
|
185
|
de la Fuente Jiménez JL, Sharma A, Paul S. Characterization of miRNAs from sardine ( Sardina pilchardus Walbaum, 1792) and their tissue-specific expression analysis in brain and liver. 3 Biotech 2020; 10:318. [PMID: 32617252 PMCID: PMC7320087 DOI: 10.1007/s13205-020-02298-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 06/09/2020] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs are endogenous highly conserved short (~ 21 nucleotides) non-coding RNA molecules that play key roles in post-transcriptional gene regulation by translational inhibition or by target mRNA cleavage. In this report, using high stringent computational-based methods, a total of 101 putative miRNAs were identified from European sardine fish (Sardina pilchardus Walbaum, 1792). All the precursors of identified sardine miRNAs formed stable stem-loop structures and displayed high minimum free energy index (MFEI) values. For the experimental validation of the computationally predicted miRNAs, a tissue-specific quantitative study of eight randomly selected putative sardine miRNAs (spi-miR9, spi-miR26, spi-miR128, spi-miR129, spi-miR132, spi-miR212, spi-miR219, and spi-miR338) was performed in brain and liver and all the selected miRNAs were found to be overexpressed in brain tissue. Moreover, using RNAhybrid, a total of 83 potential target proteins of the characterized sardine miRNAs were identified those are involved in transcription, cellular development, defense mechanism, and various signaling pathways. To the best of our knowledge, this is the first report of sardine microRNAs and their targets.
Collapse
Affiliation(s)
- Juan Luis de la Fuente Jiménez
- School of Engineering and Sciences, Tecnologico de Monterrey, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, 76130 Queretaro, Mexico
| | - Ashutosh Sharma
- School of Engineering and Sciences, Tecnologico de Monterrey, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, 76130 Queretaro, Mexico
| | - Sujay Paul
- School of Engineering and Sciences, Tecnologico de Monterrey, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, 76130 Queretaro, Mexico
| |
Collapse
|
186
|
miR-132-3p priming enhances the effects of mesenchymal stromal cell-derived exosomes on ameliorating brain ischemic injury. Stem Cell Res Ther 2020; 11:260. [PMID: 32600449 PMCID: PMC7322840 DOI: 10.1186/s13287-020-01761-0] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 05/28/2020] [Accepted: 06/08/2020] [Indexed: 02/07/2023] Open
Abstract
Backgrounds/aims Mesenchymal stromal cell-derived exosomes (MSC-EXs) could exert protective effects on recipient cells by transferring the contained microRNAs (miRs), and miR-132-3p is one of angiogenic miRs. However, whether the combination of MSC-EXs and miR-132-3p has better effects in ischemic cerebrovascular disease remains unknown. Methods Mouse MSCs transfected with scrambler control or miR-132-3p mimics were used to generate MSC-EXs and miR-132-3p-overexpressed MSC-EXs (MSC-EXsmiR-132-3p). The effects of EXs on hypoxia/reoxygenation (H/R)-injured ECs in ROS generation, apoptosis, and barrier function were analyzed. The levels of RASA1, Ras, phosphorylations of PI3K, Akt and endothelial nitric oxide synthesis (eNOS), and tight junction proteins (Claudin-5 and ZO-1) were measured. Ras and PI3K inhibitors were used for pathway analysis. In transient middle cerebral artery occlusion (tMCAO) mouse model, the effects of MSC-EXs on the cerebral vascular ROS production and apoptosis, cerebral vascular density (cMVD), Evans blue extravasation, brain water content, neurological deficit score (NDS), and infarct volume were determined. Results MSC-EXs could deliver their carried miR-132-3p into target ECs, which functionally downregulated the target protein RASA1, while upregulated the expression of Ras and the downstream PI3K phosphorylation. Compared to MSC-EXs, MSC-EXsmiR-132-3p were more effective in decreasing ROS production, apoptosis, and tight junction disruption in H/R-injured ECs. These effects were associated with increased levels of phosphorylated Akt and eNOS, which could be abolished by PI3K inhibitor (LY294002) or Ras inhibitor (NSC 23766). In the tMCAO mouse model, the infusion of MSC-EXsmiR-132-3p was more effective than MSC-EXs in reducing cerebral vascular ROS production, BBB dysfunction, and brain injury. Conclusion Our results suggest that miR-132-3p promotes the beneficial effects of MSC-EXs on brain ischemic injury through protecting cerebral EC functions.
Collapse
|
187
|
MicroRNAs as regulators of brain function and targets for treatment of epilepsy. Nat Rev Neurol 2020; 16:506-519. [DOI: 10.1038/s41582-020-0369-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2020] [Indexed: 02/07/2023]
|
188
|
Extracellular Vesicles miRNA Cargo for Microglia Polarization in Traumatic Brain Injury. Biomolecules 2020; 10:biom10060901. [PMID: 32545705 PMCID: PMC7356143 DOI: 10.3390/biom10060901] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/06/2020] [Accepted: 06/09/2020] [Indexed: 02/07/2023] Open
Abstract
Traumatic brain injury (TBI) is one of the major causes of death and disability worldwide, and despite its high dissemination, effective pharmacotherapies are lacking. TBI can be divided into two phases: the instantaneous primary mechanical injury, which occurs at the moment of insult, and the delayed secondary injury, which involves a cascade of biological processes that lead to neuroinflammation. Neuroinflammation is a hallmark of both acute and chronic TBI, and it is considered to be one of the major determinants of the outcome and progression of disease. In TBI one of the emerging mechanisms for cell–cell communication involved in the immune response regulation is represented by Extracellular Vesicles (EVs). These latter are produced by all cell types and are considered a fingerprint of their generating cells. Exosomes are the most studied nanosized vesicles and can carry a variety of molecular constituents of their cell of origin, including microRNAs (miRNAs). Several miRNAs have been shown to target key neuropathophysiological pathways involved in TBI. The focus of this review is to analyze exosomes and their miRNA cargo to modulate TBI neuroinflammation providing new strategies for prevent long-term progression of disease.
Collapse
|
189
|
Wang MM, Feng YS, Tan ZX, Xing Y, Dong F, Zhang F. The role of exosomes in stroke. Mol Biol Rep 2020; 47:6217-6228. [PMID: 32514999 DOI: 10.1007/s11033-020-05569-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 06/05/2020] [Indexed: 12/15/2022]
Abstract
Stroke is induced by a partial disruption of cerebral blood flow to the brain and is related to high morbidity and mortality. In the central nervous system, exosomes have been proven to exert neuroprotective effects, reducing brain damage following a stroke. This review was performed by searching the relevant articles in the SCIENCEDIRECT, PUBMED, and Web of Science databases from respective inception to November 2018. We review the relationship between exosomes and angiogenesis, neurogenesis, antiapoptosis, autophagy, and the blood-brain barrier in stroke. Moreover, exosomes are found to be a promising tool for the diagnosis and treatment of stroke. In summary, exosomes provide a novel way to alleviate brain damage following a stroke.
Collapse
Affiliation(s)
- Man-Man Wang
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, Shijiazhuang, 050051, Hebei, People's Republic of China
| | - Ya-Shuo Feng
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, Shijiazhuang, 050051, Hebei, People's Republic of China
| | - Zi-Xuan Tan
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, Shijiazhuang, 050051, Hebei, People's Republic of China
| | - Ying Xing
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, Shijiazhuang, 050051, Hebei, People's Republic of China
| | - Fang Dong
- Department of Clinical Laboratory Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, 050051, People's Republic of China
| | - Feng Zhang
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, Shijiazhuang, 050051, Hebei, People's Republic of China. .,Hebei Provincial Orthopedic Biomechanics Key Laboratory, The Third Hospital of Hebei Medical University, Shijiazhuang, 050051, People's Republic of China.
| |
Collapse
|
190
|
Li J, Zhao Y, Choi J, Ting KK, Coleman P, Chen J, Cogger VC, Wan L, Shi Z, Moller T, Zheng X, Vadas MA, Gamble JR. Targeting miR-27a/VE-cadherin interactions rescues cerebral cavernous malformations in mice. PLoS Biol 2020; 18:e3000734. [PMID: 32502201 PMCID: PMC7299406 DOI: 10.1371/journal.pbio.3000734] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/17/2020] [Accepted: 05/20/2020] [Indexed: 12/13/2022] Open
Abstract
Cerebral cavernous malformations (CCMs) are vascular lesions predominantly developing in the central nervous system (CNS), with no effective treatments other than surgery. Loss-of-function mutation in CCM1/krev interaction trapped 1 (KRIT1), CCM2, or CCM3/programmed cell death 10 (PDCD10) causes lesions that are characterized by abnormal vascular integrity. Vascular endothelial cadherin (VE-cadherin), a major regulator of endothelial cell (EC) junctional integrity is strongly disorganized in ECs lining the CCM lesions. We report here that microRNA-27a (miR-27a), a negative regulator of VE-cadherin, is elevated in ECs isolated from mouse brains developing early CCM lesions and in cultured ECs with CCM1 or CCM2 depletion. Furthermore, we show miR-27a acts downstream of kruppel-like factor (KLF)2 and KLF4, two known key transcription factors involved in CCM lesion development. Using CD5-2 (a target site blocker [TSB]) to prevent the miR-27a/VE-cadherin mRNA interaction, we present a potential therapy to increase VE-cadherin expression and thus rescue the abnormal vascular integrity. In CCM1- or CCM2-depleted ECs, CD5-2 reduces monolayer permeability, and in Ccm1 heterozygous mice, it restores dermal vessel barrier function. In a neonatal mouse model of CCM disease, CD5-2 normalizes vasculature and reduces vascular leakage in the lesions, inhibits the development of large lesions, and significantly reduces the size of established lesions in the hindbrain. Furthermore, CD5-2 limits the accumulation of inflammatory cells in the lesion area. Our work has established that VE-cadherin is a potential therapeutic target for normalization of the vasculature and highlights that targeting miR-27a/VE-cadherin interaction by CD5-2 is a potential novel therapy for the devastating disease, CCM. Cerebral cavernous malformation (CCM) is a disease for which, hitherto, surgery has been the only option. This study shows that a potential therapeutic, CD5-2, inhibits lesion development and vascular leak in the brains of CCM neonatal mice by targeting the endothelial cell–specific adhesion molecule VE-cadherin and restoring the vascular integrity of CCM lesions.
Collapse
Affiliation(s)
- Jia Li
- Centre for the Endothelium, Vascular Biology Program, Centenary Institute, The University of Sydney, Sydney, Australia
- Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia
| | - Yang Zhao
- Centre for the Endothelium, Vascular Biology Program, Centenary Institute, The University of Sydney, Sydney, Australia
| | - Jaesung Choi
- Laboratory of Cardiovascular Signaling, Vascular Biology Program, Centenary Institute, The University of Sydney, Sydney, Australia
| | - Ka Ka Ting
- Centre for the Endothelium, Vascular Biology Program, Centenary Institute, The University of Sydney, Sydney, Australia
| | - Paul Coleman
- Centre for the Endothelium, Vascular Biology Program, Centenary Institute, The University of Sydney, Sydney, Australia
| | - Jinbiao Chen
- Liver Injury and Cancer Program, Centenary Institute, The University of Sydney, Sydney, Australia
| | - Victoria C. Cogger
- Aging and Alzheimers Institute and ANZAC Research Institute and Concord Hospital, Charles Perkins Centre, The University of Sydney, Sydney, Australia
| | - Li Wan
- Centre for the Endothelium, Vascular Biology Program, Centenary Institute, The University of Sydney, Sydney, Australia
| | - Zhongsong Shi
- Department of Neurosurgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | | | - Xiangjian Zheng
- Laboratory of Cardiovascular Signaling, Vascular Biology Program, Centenary Institute, The University of Sydney, Sydney, Australia
| | - Mathew A. Vadas
- Centre for the Endothelium, Vascular Biology Program, Centenary Institute, The University of Sydney, Sydney, Australia
| | - Jennifer R. Gamble
- Centre for the Endothelium, Vascular Biology Program, Centenary Institute, The University of Sydney, Sydney, Australia
- * E-mail:
| |
Collapse
|
191
|
Bache S, Rasmussen R, Wolcott Z, Rossing M, Møgelvang R, Tolnai D, Hassager C, Forman JL, Køber L, Nielsen FC, Kimberly WT, Møller K. Elevated miR-9 in Cerebrospinal Fluid Is Associated with Poor Functional Outcome After Subarachnoid Hemorrhage. Transl Stroke Res 2020; 11:1243-1252. [PMID: 32248435 DOI: 10.1007/s12975-020-00793-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 01/10/2020] [Accepted: 02/19/2020] [Indexed: 12/13/2022]
Abstract
This study evaluated microRNA (miRNA) changes in cerebrospinal fluid (CSF) and their association with the occurrence of delayed cerebral ischemia (DCI) and poor functional outcome after SAH. Forty-three selected miRNAs were measured in daily CSF samples from a discovery cohort of SAH patients admitted to Rigshospitalet, Copenhagen, Denmark, and compared with neurologically healthy patients. Findings were validated in CSF from a replication cohort of SAH patients admitted to Massachusetts General Hospital, Boston, Massachusetts. The CSF levels of miRNA over time were compared with the occurrence of DCI, and functional outcome after 3 months. miRNAs were quantified in 427 CSF samples from 63 SAH patients in the discovery cohort, in 104 CSF samples from 63 SAH patients in the replication cohort, and in 11 CSF samples from 11 neurologically healthy patients. The miRNA profile changed remarkably immediately after SAH. Elevated miR-9-3p was associated with a poor functional outcome in the discovery cohort (p < 0.0001) after correction for multiple testing (q < 0.01) and in the replication cohort (p < 0.01). Furthermore, elevated miR-9-5p was associated with a poor functional outcome in the discovery cohort (p < 0.01) after correction for multiple testing (q < 0.05). No miRNA was associated with DCI in both cohorts. miR-9-3p and miR-9-5p are elevated in the CSF following SAH and this elevation is associated with a poor functional outcome. These elevations have potential roles in the progression of cerebral injury and could add to early prognostication.
Collapse
Affiliation(s)
- Søren Bache
- Department of Neuroanaesthesiology, The Neuroscience Centre, Rigshospitalet, Copenhagen, Denmark. .,Centre for Genomic Medicine, Rigshospitalet, Copenhagen, Denmark. .,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.
| | - Rune Rasmussen
- Department of Neurosurgery, The Neuroscience Centre, Rigshospitalet, Copenhagen, Denmark
| | - Zoe Wolcott
- Department of Neurology & Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Maria Rossing
- Centre for Genomic Medicine, Rigshospitalet, Copenhagen, Denmark
| | - Rasmus Møgelvang
- Department of Cardiology, The Heart Centre, Rigshospitalet, Copenhagen, Denmark
| | - Daniel Tolnai
- Department of Radiology, The Diagnostic Centre, Rigshospitalet, Copenhagen, Denmark
| | - Christian Hassager
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.,Department of Cardiology, The Heart Centre, Rigshospitalet, Copenhagen, Denmark
| | - Julie L Forman
- Section of Biostatistics, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Lars Køber
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.,Department of Cardiology, The Heart Centre, Rigshospitalet, Copenhagen, Denmark
| | - Finn Cilius Nielsen
- Centre for Genomic Medicine, Rigshospitalet, Copenhagen, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - William T Kimberly
- Department of Neurology & Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Kirsten Møller
- Department of Neuroanaesthesiology, The Neuroscience Centre, Rigshospitalet, Copenhagen, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
192
|
Saint-Pol J, Gosselet F, Duban-Deweer S, Pottiez G, Karamanos Y. Targeting and Crossing the Blood-Brain Barrier with Extracellular Vesicles. Cells 2020; 9:cells9040851. [PMID: 32244730 PMCID: PMC7226770 DOI: 10.3390/cells9040851] [Citation(s) in RCA: 271] [Impact Index Per Article: 67.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/23/2020] [Accepted: 03/31/2020] [Indexed: 12/18/2022] Open
Abstract
The blood–brain barrier (BBB) is one of the most complex and selective barriers in the human organism. Its role is to protect the brain and preserve the homeostasis of the central nervous system (CNS). The central elements of this physical and physiological barrier are the endothelial cells that form a monolayer of tightly joined cells covering the brain capillaries. However, as endothelial cells regulate nutrient delivery and waste product elimination, they are very sensitive to signals sent by surrounding cells and their environment. Indeed, the neuro-vascular unit (NVU) that corresponds to the assembly of extracellular matrix, pericytes, astrocytes, oligodendrocytes, microglia and neurons have the ability to influence BBB physiology. Extracellular vesicles (EVs) play a central role in terms of communication between cells. The NVU is no exception, as each cell can produce EVs that could help in the communication between cells in short or long distances. Studies have shown that EVs are able to cross the BBB from the brain to the bloodstream as well as from the blood to the CNS. Furthermore, peripheral EVs can interact with the BBB leading to changes in the barrier’s properties. This review focuses on current knowledge and potential applications regarding EVs associated with the BBB.
Collapse
Affiliation(s)
- Julien Saint-Pol
- Laboratoire de la Barrière Hémato-Encéphalique (LBHE), UR 2465, University Artois, F-62300 Lens, France; (F.G.); (S.D.-D.); (Y.K.)
- Correspondence: ; Tel.: +33-3-2179-1746
| | - Fabien Gosselet
- Laboratoire de la Barrière Hémato-Encéphalique (LBHE), UR 2465, University Artois, F-62300 Lens, France; (F.G.); (S.D.-D.); (Y.K.)
| | - Sophie Duban-Deweer
- Laboratoire de la Barrière Hémato-Encéphalique (LBHE), UR 2465, University Artois, F-62300 Lens, France; (F.G.); (S.D.-D.); (Y.K.)
| | - Gwënaël Pottiez
- Caprion Biosciences Inc., 141, Avenue du Président-Kennedy Suite 5650, Montréal, QC H2X3Y7, Canada;
| | - Yannis Karamanos
- Laboratoire de la Barrière Hémato-Encéphalique (LBHE), UR 2465, University Artois, F-62300 Lens, France; (F.G.); (S.D.-D.); (Y.K.)
| |
Collapse
|
193
|
Galley JD, Besner GE. The Therapeutic Potential of Breast Milk-Derived Extracellular Vesicles. Nutrients 2020; 12:nu12030745. [PMID: 32168961 PMCID: PMC7146576 DOI: 10.3390/nu12030745] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/04/2020] [Accepted: 03/08/2020] [Indexed: 12/21/2022] Open
Abstract
In the past few decades, interest in the therapeutic benefits of exosomes and extracellular vesicles (EVs) has grown exponentially. Exosomes/EVs are small particles which are produced and exocytosed by cells throughout the body. They are loaded with active regulatory and stimulatory molecules from the parent cell including miRNAs and enzymes, making them prime targets in therapeutics and diagnostics. Breast milk, known for years to have beneficial health effects, contains a population of EVs which may mediate its therapeutic effects. This review offers an update on the therapeutic potential of exosomes/EVs in disease, with a focus on EVs present in human breast milk and their remedial effect in the gastrointestinal disease necrotizing enterocolitis. Additionally, the relationship between EV miRNAs, health, and disease will be examined, along with the potential for EVs and their miRNAs to be engineered for targeted treatments.
Collapse
|
194
|
Amoah SK, Rodriguez BA, Logothetis CN, Chander P, Sellgren CM, Weick JP, Sheridan SD, Jantzie LL, Webster MJ, Mellios N. Exosomal secretion of a psychosis-altered miRNA that regulates glutamate receptor expression is affected by antipsychotics. Neuropsychopharmacology 2020; 45:656-665. [PMID: 31775160 PMCID: PMC7021900 DOI: 10.1038/s41386-019-0579-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 10/24/2019] [Accepted: 11/19/2019] [Indexed: 12/19/2022]
Abstract
The ability of small secretory microvesicles known as exosomes to influence neuronal and glial function via their microRNA (miRNA) cargo has positioned them as a novel and effective method of cell-to-cell communication. However, little is known about the role of exosome-secreted miRNAs in the regulation of glutamate receptor gene expression and their relevance for schizophrenia (SCZ) and bipolar disorder (BD). Using mature miRNA profiling and quantitative real-time PCR (qRT-PCR) in the orbitofrontal cortex (OFC) of SCZ (N = 29; 20 male and 9 female), BD (N = 26; 12 male and 14 female), and unaffected control (N = 25; 21 male and 4 female) subjects, we uncovered that miR-223, an exosome-secreted miRNA that targets glutamate receptors, was increased at the mature miRNA level in the OFC of SCZ and BD patients with positive history of psychosis at the time of death and was inversely associated with deficits in the expression of its targets glutamate ionotropic receptor NMDA-type subunit 2B (GRIN2B) and glutamate ionotropic receptor AMPA-type subunit 2 (GRIA2). Furthermore, changes in miR-223 levels in the OFC were positively and negatively correlated with inflammatory and GABAergic gene expression, respectively. Moreover, miR-223 was found to be enriched in astrocytes and secreted via exosomes, and antipsychotics were shown to control its cellular and exosomal localization in a cell-specific manner. Furthermore, addition of astrocytic exosomes in neuronal cultures resulted in a significant increase in miR-223 expression and a notable reduction in Grin2b and Gria2 mRNA levels, which was strongly inversely associated with miR-223 expression. Lastly, inhibition of astrocytic miR-223 abrogated the exosomal-mediated reduction in neuronal Grin2b expression. Taken together, our results demonstrate that the exosomal secretion of a psychosis-altered and glial-enriched miRNA that controls neuronal gene expression is regulated by antipsychotics.
Collapse
Affiliation(s)
- Stephen K. Amoah
- 0000 0001 2188 8502grid.266832.bDepartment of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM USA ,Autophagy inflammation and metabolism (AIM) center, Albuquerque, NM USA
| | - Brian A. Rodriguez
- 0000 0001 2188 8502grid.266832.bDepartment of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM USA
| | - Constantine N. Logothetis
- 0000 0001 2188 8502grid.266832.bDepartment of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM USA
| | - Praveen Chander
- 0000 0001 2188 8502grid.266832.bDepartment of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM USA
| | - Carl M. Sellgren
- 0000 0004 1937 0626grid.4714.6Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Jason P. Weick
- 0000 0001 2188 8502grid.266832.bDepartment of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM USA
| | - Steven D. Sheridan
- 0000 0004 0386 9924grid.32224.35Center for Genomic Medicine, Chemical Neurobiology Laboratory, Departments of Neurology and Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA USA ,0000 0004 0386 9924grid.32224.35Center for Experimental Drugs and Diagnostics, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA USA ,000000041936754Xgrid.38142.3cDepartment of Psychiatry, Harvard Medical School, Boston, MA USA
| | - Lauren L. Jantzie
- 0000 0001 2171 9311grid.21107.35Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD USA
| | - Maree J. Webster
- 0000 0004 0473 2858grid.453353.7Laboratory of Brain Research, Stanley Medical Research Institute, Chevy Chase, MD USA
| | - Nikolaos Mellios
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, USA. .,Autophagy inflammation and metabolism (AIM) center, Albuquerque, NM, USA.
| |
Collapse
|
195
|
Mégret L, Nair SS, Dancourt J, Aaronson J, Rosinski J, Neri C. Combining feature selection and shape analysis uncovers precise rules for miRNA regulation in Huntington's disease mice. BMC Bioinformatics 2020; 21:75. [PMID: 32093602 PMCID: PMC7041117 DOI: 10.1186/s12859-020-3418-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 02/17/2020] [Indexed: 12/12/2022] Open
Abstract
Background MicroRNA (miRNA) regulation is associated with several diseases, including neurodegenerative diseases. Several approaches can be used for modeling miRNA regulation. However, their precision may be limited for analyzing multidimensional data. Here, we addressed this question by integrating shape analysis and feature selection into miRAMINT, a methodology that we used for analyzing multidimensional RNA-seq and proteomic data from a knock-in mouse model (Hdh mice) of Huntington’s disease (HD), a disease caused by CAG repeat expansion in huntingtin (htt). This dataset covers 6 CAG repeat alleles and 3 age points in the striatum and cortex of Hdh mice. Results Remarkably, compared to previous analyzes of this multidimensional dataset, the miRAMINT approach retained only 31 explanatory striatal miRNA-mRNA pairs that are precisely associated with the shape of CAG repeat dependence over time, among which 5 pairs with a strong change of target expression levels. Several of these pairs were previously associated with neuronal homeostasis or HD pathogenesis, or both. Such miRNA-mRNA pairs were not detected in cortex. Conclusions These data suggest that miRNA regulation has a limited global role in HD while providing accurately-selected miRNA-target pairs to study how the brain may compute molecular responses to HD over time. These data also provide a methodological framework for researchers to explore how shape analysis can enhance multidimensional data analytics in biology and disease.
Collapse
Affiliation(s)
- Lucile Mégret
- Sorbonne Université, CNRS UMR8256, INSERM ERL U1164, Brain-C Lab, Paris, France.
| | | | - Julia Dancourt
- Sorbonne Université, CNRS UMR8256, INSERM ERL U1164, Brain-C Lab, Paris, France
| | | | | | - Christian Neri
- Sorbonne Université, CNRS UMR8256, INSERM ERL U1164, Brain-C Lab, Paris, France.
| |
Collapse
|
196
|
PRDM16 orchestrates angiogenesis via neural differentiation in the developing brain. Cell Death Differ 2020; 27:2313-2329. [PMID: 32015502 DOI: 10.1038/s41418-020-0504-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 01/17/2020] [Accepted: 01/21/2020] [Indexed: 02/07/2023] Open
Abstract
Angiogenesis plays crucial roles in maintaining the complex operation of central nervous system (CNS) development. The architecture of communication between neurogenesis and angiogenesis is essential to maintain normal brain development and function. Hence, any disruption of neuron-vascular communications may lead to the pathophysiology of cerebrovascular diseases and blood-brain barrier (BBB) dysfunction. Here we demonstrate that neural differentiation and communication are required for vascular development. Regarding the cellular and molecular mechanism, our results show that PRDM16 activity determines the production of mature neurons and their specific positions in the neocortex. In the cortical plate (CP), aberrant neurons fail to secrete modular calcium-binding protein 1 (SMOC1), an important neuronal signal that participates in neurovascular communication to regulate CNS angiogenesis. Neuronal SMOC1 interacts with TGFBR1 by activating the transcription factors phospho-Smad2/3 to convey intercellular signals to endothelial cells (ECs) in the TGF-β-Smad signaling pathway. Together, our results highlight a crucial coordinated neurovascular development process orchestrated by PRDM16 and reveal the importance of intimate communication for building the neurovascular network during brain development.
Collapse
|
197
|
Cao C, Zhou J, Wu X, Qian Y, Hong Y, Mu J, Jin L, Zhu C, Li S. Activation of CRHR1 contributes to cerebral endothelial barrier impairment via cPLA2 phosphorylation in experimental ischemic stroke. Cell Signal 2020; 66:109467. [DOI: 10.1016/j.cellsig.2019.109467] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/06/2019] [Accepted: 11/08/2019] [Indexed: 11/27/2022]
|
198
|
van den Berg M, Krauskopf J, Ramaekers J, Kleinjans J, Prickaerts J, Briedé J. Circulating microRNAs as potential biomarkers for psychiatric and neurodegenerative disorders. Prog Neurobiol 2020; 185:101732. [DOI: 10.1016/j.pneurobio.2019.101732] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/25/2019] [Accepted: 12/03/2019] [Indexed: 12/21/2022]
|
199
|
Chakraborty C, Sharma AR, Sharma G, Bhattacharya M, Lee SS. MicroRNAs: Possible Regulatory Molecular Switch Controlling the BBB Microenvironment. MOLECULAR THERAPY-NUCLEIC ACIDS 2020; 19:933-936. [PMID: 32004864 PMCID: PMC6994820 DOI: 10.1016/j.omtn.2019.12.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 11/12/2019] [Accepted: 12/02/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Barasat-Barrackpore Road, Jagannathpur, Kolkata, West Bengal 700126, India; Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, Gangwon-Do 24252, Republic of Korea.
| | - Ashish Ranjan Sharma
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, Gangwon-Do 24252, Republic of Korea
| | - Garima Sharma
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Manojit Bhattacharya
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, Gangwon-Do 24252, Republic of Korea
| | - Sang-Soo Lee
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, Gangwon-Do 24252, Republic of Korea.
| |
Collapse
|
200
|
Yekula A, Yekula A, Muralidharan K, Kang K, Carter BS, Balaj L. Extracellular Vesicles in Glioblastoma Tumor Microenvironment. Front Immunol 2020; 10:3137. [PMID: 32038644 PMCID: PMC6990128 DOI: 10.3389/fimmu.2019.03137] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 12/23/2019] [Indexed: 12/19/2022] Open
Abstract
Glioblastomas (GBM) are highly aggressive primary brain tumors. Complex and dynamic tumor microenvironment (TME) plays a crucial role in the sustained growth, proliferation, and invasion of GBM. Several means of intercellular communication have been documented between glioma cells and the TME, including growth factors, cytokines, chemokines as well as extracellular vesicles (EVs). EVs carry functional genomic and proteomic cargo from their parental cells and deliver that information to surrounding and distant recipient cells to modulate their behavior. EVs are emerging as crucial mediators of establishment and maintenance of the tumor by modulating the TME into a tumor promoting system. Herein we review recent literature in the context of GBM TME and the means by which EVs modulate tumor proliferation, reprogram metabolic activity, induce angiogenesis, escape immune surveillance, acquire drug resistance and undergo invasion. Understanding the multifaceted roles of EVs in the niche of GBM TME will provide invaluable insights into understanding the biology of GBM and provide functional insights into the dynamic EV-mediated intercellular communication during gliomagenesis, creating new opportunities for GBM diagnostics and therapeutics.
Collapse
Affiliation(s)
- Anuroop Yekula
- Government General Hospital, Guntur Medical College, Guntur, India
| | - Anudeep Yekula
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Koushik Muralidharan
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Keiko Kang
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Bob S. Carter
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Leonora Balaj
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|