151
|
Onuma TA, Nakanishi R, Sasakura Y, Ogasawara M. Nkx2-1 and FoxE regionalize glandular (mucus-producing) and thyroid-equivalent traits in the endostyle of the chordate Oikopleura dioica. Dev Biol 2021; 477:219-231. [PMID: 34107272 DOI: 10.1016/j.ydbio.2021.05.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 05/29/2021] [Accepted: 05/31/2021] [Indexed: 11/19/2022]
Abstract
The endostyle is a ventral pharyngeal organ used for internal filter feeding of basal chordates and is considered homologous to the follicular thyroid of vertebrates. It contains mucus-producing (glandular) and thyroid-equivalent regions organized along the dorsoventral (DV) axis. Although thyroid-related genes (Nkx2-1, FoxE, and thyroid peroxidase (TPO)) are known to be expressed in the endostyle, their roles in establishing regionalization within the organ have not been demonstrated. We report that Nkx2-1 and FoxE are essential for establishing DV axial identity in the endostyle of Oikopleura dioica. Genome and expression analyses showed von Willebrand factor-like (vWFL) and TPO/dual oxidase (Duox)/Nkx2-1/FoxE as orthologs of glandular and thyroid-related genes, respectively. Knockdown experiments showed that Nkx2-1 is necessary for the expression of glandular and thyroid-related genes, whereas FoxE is necessary only for thyroid-related genes. Moreover, Nkx2-1 expression is necessary for FoxE expression in larvae during organogenesis. The results demonstrate the essential roles of Nkx2-1 and FoxE in establishing regionalization in the endostyle, including (1) the Nkx2-1-dependent glandular region, and (2) the Nkx2-1/FoxE-dependent thyroid-equivalent region. DV axial regionalization may be responsible for organizing glandular and thyroid-equivalent traits of the pharynx along the DV axis.
Collapse
Affiliation(s)
- Takeshi A Onuma
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka, 560-0043, Japan.
| | - Rina Nakanishi
- Department of Biology, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
| | - Yasunori Sasakura
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1 Shimoda, Shizuoka, 415-0025, Japan
| | - Michio Ogasawara
- Department of Biology, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan.
| |
Collapse
|
152
|
Marquardt S, Pavlopoulou A, Takan I, Dhar P, Pützer BM, Logotheti S. A Systems-Based Key Innovation-Driven Approach Infers Co-option of Jaw Developmental Programs During Cancer Progression. Front Cell Dev Biol 2021; 9:682619. [PMID: 34150777 PMCID: PMC8207138 DOI: 10.3389/fcell.2021.682619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/11/2021] [Indexed: 11/17/2022] Open
Abstract
Cancer acquires metastatic potential and evolves via co-opting gene regulatory networks (GRN) of embryonic development and tissue homeostasis. Such GRNs are encoded in the genome and frequently conserved among species. Considering that all metazoa have evolved from a common ancestor via major macroevolutionary events which shaped those GRNs and increased morphogenetic complexity, we sought to examine whether there are any key innovations that may be consistently and deterministically linked with metastatic potential across the metazoa clades. To address tumor evolution relative to organismal evolution, we revisited and retrospectively juxtaposed seminal laboratory and field cancer studies across taxa that lie on the evolutionary lineage from cnidaria to humans. We subsequently applied bioinformatics to integrate species-specific cancer phenotypes, multiomics data from up to 42 human cancer types, developmental phenotypes of knockout mice, and molecular phylogenetics. We found that the phenotypic manifestations of metastasis appear to coincide with agnatha-to-gnathostome transition. Genes indispensable for jaw development, a key innovation of gnathostomes, undergo mutations or methylation alterations, are aberrantly transcribed during tumor progression and are causatively associated with invasion and metastasis. There is a preference for deregulation of gnathostome-specific versus pre-gnathostome genes occupying hubs of the jaw development network. According to these data, we propose our systems-based model as an in silico tool the prediction of likely tumor evolutionary trajectories and therapeutic targets for metastasis prevention, on the rationale that the same genes which are essential for key innovations that catalyzed vertebrate evolution, such as jaws, are also important for tumor evolution.
Collapse
Affiliation(s)
- Stephan Marquardt
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, Rostock, Germany
| | - Athanasia Pavlopoulou
- İzmir Biomedicine and Genome Center, İzmir, Turkey
- İzmir International Biomedicine and Genome Institute, Dokuz Eylül University, İzmir, Turkey
| | - Işıl Takan
- İzmir Biomedicine and Genome Center, İzmir, Turkey
- İzmir International Biomedicine and Genome Institute, Dokuz Eylül University, İzmir, Turkey
| | - Prabir Dhar
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, Rostock, Germany
| | - Brigitte M. Pützer
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, Rostock, Germany
- Department Life, Light & Matter, University of Rostock, Rostock, Germany
| | - Stella Logotheti
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
153
|
Rosner A, Armengaud J, Ballarin L, Barnay-Verdier S, Cima F, Coelho AV, Domart-Coulon I, Drobne D, Genevière AM, Jemec Kokalj A, Kotlarska E, Lyons DM, Mass T, Paz G, Pazdro K, Perić L, Ramšak A, Rakers S, Rinkevich B, Spagnuolo A, Sugni M, Cambier S. Stem cells of aquatic invertebrates as an advanced tool for assessing ecotoxicological impacts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 771:144565. [PMID: 33736145 DOI: 10.1016/j.scitotenv.2020.144565] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/10/2020] [Accepted: 12/13/2020] [Indexed: 06/12/2023]
Abstract
Environmental stressors are assessed through methods that quantify their impacts on a wide range of metrics including species density, growth rates, reproduction, behaviour and physiology, as on host-pathogen interactions and immunocompetence. Environmental stress may induce additional sublethal effects, like mutations and epigenetic signatures affecting offspring via germline mediated transgenerational inheritance, shaping phenotypic plasticity, increasing disease susceptibility, tissue pathologies, changes in social behaviour and biological invasions. The growing diversity of pollutants released into aquatic environments requires the development of a reliable, standardised and 3R (replacement, reduction and refinement of animals in research) compliant in vitro toolbox. The tools have to be in line with REACH regulation 1907/2006/EC, aiming to improve strategies for potential ecotoxicological risks assessment and monitoring of chemicals threatening human health and aquatic environments. Aquatic invertebrates' adult stem cells (ASCs) are numerous and can be pluripotent, as illustrated by high regeneration ability documented in many of these taxa. This is of further importance as in many aquatic invertebrate taxa, ASCs are able to differentiate into germ cells. Here we propose that ASCs from key aquatic invertebrates may be harnessed for applicable and standardised new tests in ecotoxicology. As part of this approach, a battery of modern techniques and endpoints are proposed to be tested for their ability to correctly identify environmental stresses posed by emerging contaminants in aquatic environments. Consequently, we briefly describe the current status of the available toxicity testing and biota-based monitoring strategies in aquatic environmental ecotoxicology and highlight some of the associated open issues such as replicability, consistency and reliability in the outcomes, for understanding and assessing the impacts of various chemicals on organisms and on the entire aquatic environment. Following this, we describe the benefits of aquatic invertebrate ASC-based tools for better addressing ecotoxicological questions, along with the current obstacles and possible overhaul approaches.
Collapse
Affiliation(s)
- Amalia Rosner
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, P.O. Box 8030, Tel Shikmona, Haifa 3108001, Israel.
| | - Jean Armengaud
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, F-30200 Bagnols-sur-Cèze, France.
| | - Loriano Ballarin
- Department of Biology, University of Padova, via Ugo Bassi 58/B, 35121 Padova, Italy.
| | - Stéphanie Barnay-Verdier
- Sorbonne Université; CNRS, INSERM, Université Côte d'Azur, Institute for Research on Cancer and Aging Nice, F-06107 Nice, France.
| | - Francesca Cima
- Department of Biology, University of Padova, via Ugo Bassi 58/B, 35121 Padova, Italy.
| | - Ana Varela Coelho
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal.
| | - Isabelle Domart-Coulon
- Muséum National d'Histoire Naturelle, CNRS, Microorganism Communication and Adaptation Molecules MCAM, Paris F-75005, France.
| | - Damjana Drobne
- University of Ljubljana, Biotechnical Faculty, Department of Biology, Večna pot 111,D, 1000 Ljubljana, Slovenia.
| | - Anne-Marie Genevière
- Sorbonne Université, CNRS, Integrative Biology of Marine Organisms, BIOM, F-6650 Banyuls-sur-mer, France.
| | - Anita Jemec Kokalj
- University of Ljubljana, Biotechnical Faculty, Department of Biology, Večna pot 111,D, 1000 Ljubljana, Slovenia.
| | - Ewa Kotlarska
- Institute of Oceanology of the Polish Academy of Sciences, Powstańców Warszawy 55, 81-712 Sopot, Poland.
| | - Daniel Mark Lyons
- Center for Marine Research, Ruđer Bošković Institute, G. Paliaga 5, HR-52210 Rovinj, Croatia.
| | - Tali Mass
- Marine Biology Department, Leon H. Charney School of Marine Sciences, 199 Aba Khoushy Ave, University of Haifa, 3498838, Israel.
| | - Guy Paz
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, P.O. Box 8030, Tel Shikmona, Haifa 3108001, Israel.
| | - Ksenia Pazdro
- Institute of Oceanology of the Polish Academy of Sciences, Powstańców Warszawy 55, 81-712 Sopot, Poland
| | - Lorena Perić
- Rudjer Boskovic Institute, Laboratory for Aquaculture and Pathology of Aquaculture Organisms, Bijenička cesta 54, HR-10000 Zagreb, Croatia.
| | - Andreja Ramšak
- National Institute of Biology, Marine Biology Station, Fornače 41, 6330 Piran, Slovenia.
| | | | - Baruch Rinkevich
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, P.O. Box 8030, Tel Shikmona, Haifa 3108001, Israel.
| | - Antonietta Spagnuolo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy.
| | - Michela Sugni
- Department of Environmental Science and Policy, University of Milan, Via Celoria 2, 20133 Milano, Italy.
| | - Sébastien Cambier
- Luxembourg Institute of Science and Technology, 5, avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg.
| |
Collapse
|
154
|
Benito-Gutiérrez È, Gattoni G, Stemmer M, Rohr SD, Schuhmacher LN, Tang J, Marconi A, Jékely G, Arendt D. The dorsoanterior brain of adult amphioxus shares similarities in expression profile and neuronal composition with the vertebrate telencephalon. BMC Biol 2021; 19:110. [PMID: 34020648 PMCID: PMC8139002 DOI: 10.1186/s12915-021-01045-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 05/06/2021] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND The evolutionary origin of the telencephalon, the most anterior part of the vertebrate brain, remains obscure. Since no obvious counterpart to the telencephalon has yet been identified in invertebrate chordates, it is difficult to trace telencephalic origins. One way to identify homologous brain parts between distantly related animal groups is to focus on the combinatorial expression of conserved regionalisation genes that specify brain regions. RESULTS Here, we report the combined expression of conserved transcription factors known to specify the telencephalon in the vertebrates in the chordate amphioxus. Focusing on adult specimens, we detect specific co-expression of these factors in the dorsal part of the anterior brain vesicle, which we refer to as Pars anterodorsalis (PAD). As in vertebrates, expression of the transcription factors FoxG1, Emx and Lhx2/9 overlaps that of Pax4/6 dorsally and of Nkx2.1 ventrally, where we also detect expression of the Hedgehog ligand. This specific pattern of co-expression is not observed prior to metamorphosis. Similar to the vertebrate telencephalon, the amphioxus PAD is characterised by the presence of GABAergic neurons and dorsal accumulations of glutamatergic as well as dopaminergic neurons. We also observe sustained proliferation of neuronal progenitors at the ventricular zone of the amphioxus brain vesicle, as observed in the vertebrate brain. CONCLUSIONS Our findings suggest that the PAD in the adult amphioxus brain vesicle and the vertebrate telencephalon evolved from the same brain precursor region in ancestral chordates, which would imply homology of these structures. Our comparative data also indicate that this ancestral brain already contained GABA-, glutamatergic and dopaminergic neurons, as is characteristic for the olfactory bulb of the vertebrate telencephalon. We further speculate that the telencephalon might have evolved in vertebrates via a heterochronic shift in developmental timing.
Collapse
Affiliation(s)
- Èlia Benito-Gutiérrez
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK.
| | - Giacomo Gattoni
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
| | - Manuel Stemmer
- Developmental Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117, Heidelberg, Germany
- Present Address: Max-Planck Institute for Neurobiology in Martinsried, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Silvia D Rohr
- Developmental Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117, Heidelberg, Germany
| | - Laura N Schuhmacher
- Developmental Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117, Heidelberg, Germany
- Present Address: Department of Cell & Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Jocelyn Tang
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
| | - Aleksandra Marconi
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
| | - Gáspár Jékely
- Living Systems Institute, University of Exeter, Exeter, EX4 4QD, UK
| | - Detlev Arendt
- Developmental Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117, Heidelberg, Germany.
| |
Collapse
|
155
|
Caccavale F, Osca D, D’Aniello S, Crocetta F. Molecular taxonomy confirms that the northeastern Atlantic and Mediterranean Sea harbor a single lancelet, Branchiostoma lanceolatum (Pallas, 1774) (Cephalochordata: Leptocardii: Branchiostomatidae). PLoS One 2021; 16:e0251358. [PMID: 33956890 PMCID: PMC8101936 DOI: 10.1371/journal.pone.0251358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/23/2021] [Indexed: 12/02/2022] Open
Abstract
Branchiostomatidae (lancelets or amphioxus) comprises about 30 species, several of which are well-established models in evolutionary development. Our zoological and ecological knowledge of the family is nonetheless limited. Despite evident differences can be found among known populations, the taxonomy of Branchiostoma lanceolatum (type species of the genus Branchiostoma) has never been investigated with modern methods through its range in the northeastern Atlantic and Mediterranean Sea. We address this via a multilocus molecular approach and comparing specimens collected from different European populations. Results obtained here confirm the presence of a single species inhabiting the range between the topotypical localities of B. lanceolatum (Atlantic Ocean) and of its junior synonym B. lubricum (Mediterranean Sea), without evincing geographical structure between populations. This suggests that environment most likely drives the characteristics observed in different geographic areas. The long larval phase and the slow mutation rate in lancelets may have played a key role in the evolutionary history of this iconic species.
Collapse
Affiliation(s)
- Filomena Caccavale
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn Napoli, Naples, Italy
| | - David Osca
- Department of Integrated Marine Ecology, Stazione Zoologica Anton Dohrn Napoli, Naples, Italy
| | - Salvatore D’Aniello
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn Napoli, Naples, Italy
| | - Fabio Crocetta
- Department of Integrated Marine Ecology, Stazione Zoologica Anton Dohrn Napoli, Naples, Italy
| |
Collapse
|
156
|
Mercurio S, Moni L, Scarì G, Manenti R, Riva R, Pennati R. Fluorescence Properties of a Novel Isoquinoline Derivative Tested in an Invertebrate Chordate, Ciona intestinalis. Chembiochem 2021; 22:2140-2145. [PMID: 33871133 PMCID: PMC8251550 DOI: 10.1002/cbic.202100058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 04/13/2021] [Indexed: 12/14/2022]
Abstract
3‐Hydroxyisoquinolines (ISOs) and their tautomeric isoquinolin‐3‐ones are heterocycles with attractive biological properties. Here we reported the revisited synthesis of a highly functionalized ISO that showed blue fluorescence and the characterization of its biological properties in an invertebrate animal model, the ascidian Ciona intestinalis. Larvae exposed to ISO at concentrations higher than 1 μM showed an intense fluorescence localized in the cell nuclei of all tissues. Moreover, exposure to ISO interfered with larval ability to swim; this neuromuscular effect was reversible. Overall, these results suggested that ISOs can have promising applications as novel fluorescent dyes of the cell nuclei.
Collapse
Affiliation(s)
- Silvia Mercurio
- Department of Environmental Science and Policy, Università degli Studi di Milano, via Celoria 10, 20133, Milano, Italy
| | - Lisa Moni
- Department of Chemistry and Industrial Chemistry, Università degli Studi di Genova, via Dodecaneso 31, 16146, Genova, Italy
| | - Giorgio Scarì
- Department of Biosciences, Università degli Studi di Milano, via Celoria 26, 20133, Milano, Italy
| | - Raoul Manenti
- Department of Environmental Science and Policy, Università degli Studi di Milano, via Celoria 10, 20133, Milano, Italy
| | - Renata Riva
- Department of Chemistry and Industrial Chemistry, Università degli Studi di Genova, via Dodecaneso 31, 16146, Genova, Italy
| | - Roberta Pennati
- Department of Environmental Science and Policy, Università degli Studi di Milano, via Celoria 10, 20133, Milano, Italy
| |
Collapse
|
157
|
Laura D, Anna P, Nicola F, Loriano B, Rigers B, Gianfranco S. Stress granules in Ciona robusta: First evidences of TIA-1-related nucleolysin and tristetraprolin gene expression under metal exposure. Comp Biochem Physiol C Toxicol Pharmacol 2021; 243:108977. [PMID: 33465518 DOI: 10.1016/j.cbpc.2021.108977] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/04/2021] [Accepted: 01/09/2021] [Indexed: 12/17/2022]
Abstract
Stress granules are non-membranous cytoplasmic foci, composed of non-translating messenger ribonucleoproteins, translational initiation factors and other additional proteins. They represent a primary mechanism to rapidly modulate gene expression when cells are subjected to adverse environmental conditions. Very few works have been devoted to study the presence of the molecular components of stress granules in invertebrates. In this work, we characterized the transcript sequences for two important protein components of stress granules, TIA-1-related nucleolysin (TIAR) and tristetraprolin (TTP), in the solitary ascidian Ciona robusta, an invertebrate chordate, and carried out the first studies on their gene expression under stress conditions induced by metals (Cu, Zn and Cd). Data on mRNA expression levels, provided by qRT-PCR analyses, show a generalized decrease at the second day of metal-exposure for both tiar and ttp, suggesting that metal accumulation induces acute stress and the inhibition of the transcription for the two studied proteins. In-situ hybridization analyses demonstrate that TIAR and TTP antisense riboprobes recognize circulating granular amoebocytes in the hemolymph, in both blood lacunae and tunic. The results obtained in this work increase our knowledge on the evolution of anti-stress proteins in metazoans and emphasize the importance of the transcription of tiar and ttp, which represents an efficient physiological response allowing organisms to survive in the environment under stress conditions.
Collapse
Affiliation(s)
- Drago Laura
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Peronato Anna
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Franchi Nicola
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Ballarin Loriano
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy.
| | - Bakiu Rigers
- Department of Aquaculture and Fisheries, Agricultural University of Tirana, Tirana, Albania
| | - Santovito Gianfranco
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
| |
Collapse
|
158
|
Martins RST, Sousa C, Andrade AR, Molés G, Zanuy S, Gómez A, Canário AVM, Pinto PIS. Galanin isoforms by alternative splicing: Structure, expression, and immunohistochemical location in the gonads of European sea bass. Gen Comp Endocrinol 2021; 305:113730. [PMID: 33545062 DOI: 10.1016/j.ygcen.2021.113730] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 01/15/2021] [Accepted: 01/26/2021] [Indexed: 11/21/2022]
Abstract
Galanin (Gal) is a neuropeptide with multiple functions that is widely expressed in the central and peripheral nervous systems of vertebrates. Anatomical and functional evidence suggests a possible role in regulating reproduction in fishes. To test this possibility, we have isolated and characterized two gal alternative transcripts in European sea bass (Dicentrarchus labrax) that encode two prepropeptides, respectively of 29 (gal_MT853221) and 53 (gal_MT853222) amino acids. The two gal transcripts are highly expressed in brain, pituitary and gonads, and appear to be differentially regulated in males and females. In males, gal_MT853222 in the hypothalamus and gal_MT853221 in the pituitary were downregulated with the progression of spermatogenesis (stages I-III). Both transcripts are downregulated in testicles of 1-year (precocious) and 2-year spermiating males compared to immature fish of the same age. Gal peptides and receptors are expressed throughout ovarian development in the hypothalamic-pituitary-gonadal (HPG) axis of females. In the testis, immunoreactive Gal-29 and Gal-53 peptides were detected in blood vessels and Leydig cells during the spermatogenesis stages I-III but Gal immunostaining was barely undetected in more advanced stages. In the ovary, both peptides localized in interstitial cells and blood vessels and in theca cells surrounding the maturing oocytes. The immunolocalization of galanin in Leydig and theca cells suggests a possible role in steroid production regulation. The different pattern of gal expression and Gal localization in the testis and ovary may suggest the possibility that androgens and estrogens may also regulate Gal gene transcription and translation. Altogether, this study showed evidence for the possible involvement of locally produced Gal in gametogenesis and that its production is differentially regulated in male and female gonads.
Collapse
Affiliation(s)
- Rute S T Martins
- Laboratory of Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences (CCMAR), Faro, Portugal
| | - Carmen Sousa
- Laboratory of Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences (CCMAR), Faro, Portugal
| | - André R Andrade
- Laboratory of Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences (CCMAR), Faro, Portugal
| | - Gregorio Molés
- Institute of Aquaculture Torre de la Sal (IATS-CSIC), Castellon, Spain
| | - Silvia Zanuy
- Institute of Aquaculture Torre de la Sal (IATS-CSIC), Castellon, Spain
| | - Ana Gómez
- Institute of Aquaculture Torre de la Sal (IATS-CSIC), Castellon, Spain
| | - Adelino V M Canário
- Laboratory of Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences (CCMAR), Faro, Portugal
| | - Patrícia I S Pinto
- Laboratory of Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences (CCMAR), Faro, Portugal.
| |
Collapse
|
159
|
Detection of the First Epoxyalcohol Synthase/Allene Oxide Synthase (CYP74 Clan) in the Lancelet ( Branchiostoma belcheri, Chordata). Int J Mol Sci 2021; 22:ijms22094737. [PMID: 33947016 PMCID: PMC8124189 DOI: 10.3390/ijms22094737] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 12/04/2022] Open
Abstract
The CYP74 clan cytochromes (P450) are key enzymes of oxidative metabolism of polyunsaturated fatty acids in plants, some Proteobacteria, brown and green algae, and Metazoa. The CYP74 enzymes, including the allene oxide synthases (AOSs), hydroperoxide lyases, divinyl ether synthases, and epoxyalcohol synthases (EASs) transform the fatty acid hydroperoxides to bioactive oxylipins. A novel CYP74 clan enzyme CYP440A18 of the Asian (Belcher’s) lancelet (Branchiostoma belcheri, Chordata) was biochemically characterized in the present work. The recombinant CYP440A18 enzyme was active towards all substrates used: linoleate and α-linolenate 9- and 13-hydroperoxides, as well as with eicosatetraenoate and eicosapentaenoate 15-hydroperoxides. The enzyme specifically converted α-linolenate 13-hydroperoxide (13-HPOT) to the oxiranyl carbinol (9Z,11R,12R,13S,15Z)-11-hydroxy-12,13-epoxy-9,15-octadecadienoic acid (EAS product), α-ketol, 12-oxo-13-hydroxy-9,15-octadecadienoic acid (AOS product), and cis-12-oxo-10,15-phytodienoic acid (AOS product) at a ratio of around 35:5:1. Other hydroperoxides were converted by this enzyme to the analogous products. In contrast to other substrates, the 13-HPOT and 15-HPEPE yielded higher proportions of α-ketols, as well as the small amounts of cyclopentenones, cis-12-oxo-10,15-phytodienoic acid and its higher homologue, dihomo-cis-12-oxo-3,6,10,15-phytotetraenoic acid, respectively. Thus, the CYP440A18 enzyme exhibited dual EAS/AOS activity. The obtained results allowed us to ascribe a name “B. belcheri EAS/AOS” (BbEAS/AOS) to this enzyme. BbEAS/AOS is a first CYP74 clan enzyme of Chordata species possessing AOS activity.
Collapse
|
160
|
Kraus A, Buckley KM, Salinas I. Sensing the world and its dangers: An evolutionary perspective in neuroimmunology. eLife 2021; 10:66706. [PMID: 33900197 PMCID: PMC8075586 DOI: 10.7554/elife.66706] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/09/2021] [Indexed: 12/14/2022] Open
Abstract
Detecting danger is key to the survival and success of all species. Animal nervous and immune systems cooperate to optimize danger detection. Preceding studies have highlighted the benefits of bringing neurons into the defense game, including regulation of immune responses, wound healing, pathogen control, and survival. Here, we summarize the body of knowledge in neuroimmune communication and assert that neuronal participation in the immune response is deeply beneficial in each step of combating infection, from inception to resolution. Despite the documented tight association between the immune and nervous systems in mammals or invertebrate model organisms, interdependence of these two systems is largely unexplored across metazoans. This review brings a phylogenetic perspective of the nervous and immune systems in the context of danger detection and advocates for the use of non-model organisms to diversify the field of neuroimmunology. We identify key taxa that are ripe for investigation due to the emergence of key evolutionary innovations in their immune and nervous systems. This novel perspective will help define the primordial principles that govern neuroimmune communication across taxa.
Collapse
Affiliation(s)
- Aurora Kraus
- Department of Biology, University of New Mexico, Albuquerque, United States
| | | | - Irene Salinas
- Department of Biology, University of New Mexico, Albuquerque, United States
| |
Collapse
|
161
|
Biodiversity-based development and evolution: the emerging research systems in model and non-model organisms. SCIENCE CHINA-LIFE SCIENCES 2021; 64:1236-1280. [PMID: 33893979 DOI: 10.1007/s11427-020-1915-y] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 03/16/2021] [Indexed: 02/07/2023]
Abstract
Evolutionary developmental biology, or Evo-Devo for short, has become an established field that, broadly speaking, seeks to understand how changes in development drive major transitions and innovation in organismal evolution. It does so via integrating the principles and methods of many subdisciplines of biology. Although we have gained unprecedented knowledge from the studies on model organisms in the past decades, many fundamental and crucially essential processes remain a mystery. Considering the tremendous biodiversity of our planet, the current model organisms seem insufficient for us to understand the evolutionary and physiological processes of life and its adaptation to exterior environments. The currently increasing genomic data and the recently available gene-editing tools make it possible to extend our studies to non-model organisms. In this review, we review the recent work on the regulatory signaling of developmental and regeneration processes, environmental adaptation, and evolutionary mechanisms using both the existing model animals such as zebrafish and Drosophila, and the emerging nonstandard model organisms including amphioxus, ascidian, ciliates, single-celled phytoplankton, and marine nematode. In addition, the challenging questions and new directions in these systems are outlined as well.
Collapse
|
162
|
Hudson C, Yasuo H. Neuromesodermal Lineage Contribution to CNS Development in Invertebrate and Vertebrate Chordates. Genes (Basel) 2021; 12:genes12040592. [PMID: 33920662 PMCID: PMC8073528 DOI: 10.3390/genes12040592] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 12/12/2022] Open
Abstract
Ascidians are invertebrate chordates and the closest living relative to vertebrates. In ascidian embryos a large part of the central nervous system arises from cells associated with mesoderm rather than ectoderm lineages. This seems at odds with the traditional view of vertebrate nervous system development which was thought to be induced from ectoderm cells, initially with anterior character and later transformed by posteriorizing signals, to generate the entire anterior-posterior axis of the central nervous system. Recent advances in vertebrate developmental biology, however, show that much of the posterior central nervous system, or spinal cord, in fact arises from cells that share a common origin with mesoderm. This indicates a conserved role for bi-potential neuromesoderm precursors in chordate CNS formation. However, the boundary between neural tissue arising from these distinct neural lineages does not appear to be fixed, which leads to the notion that anterior-posterior patterning and neural fate formation can evolve independently.
Collapse
|
163
|
Gordon T, Upadhyay AK, Manni L, Huchon D, Shenkar N. And Then There Were Three…: Extreme Regeneration Ability of the Solitary Chordate Polycarpa mytiligera. Front Cell Dev Biol 2021; 9:652466. [PMID: 33937252 PMCID: PMC8083962 DOI: 10.3389/fcell.2021.652466] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/15/2021] [Indexed: 12/19/2022] Open
Abstract
Extensive regenerative ability is a common trait of animals capable of asexual development. The current study reveals the extraordinary regeneration abilities of the solitary ascidian Polycarpa mytiligera. Dissection of a single individual into separate fragments along two body axes resulted in the complete regeneration of each fragment into an independent, functional individual. The ability of a solitary ascidian, incapable of asexual development, to achieve bidirectional regeneration and fully regenerate all body structures and organs is described here for the first time. Amputation initiated cell proliferation in proximity to the amputation line. Phylogenetic analysis demonstrated the close affinity of P. mytiligera to colonial species. This evolutionary proximity suggests the ability for regeneration as an exaptation feature for colonial lifestyle. P. mytiligera’s exceptional regenerative abilities and phylogenetic position highlight its potential to serve as a new comparative system for studies seeking to uncover the evolution of regeneration and coloniality among the chordates.
Collapse
Affiliation(s)
- Tal Gordon
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Arnav Kumar Upadhyay
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Lucia Manni
- Department of Biology, University of Padua, Padua, Italy
| | - Dorothée Huchon
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel.,The Steinhardt Museum of Natural History, Israel National Center for Biodiversity Studies, Tel-Aviv University, Tel-Aviv, Israel
| | - Noa Shenkar
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel.,The Steinhardt Museum of Natural History, Israel National Center for Biodiversity Studies, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
164
|
Hernandez AM, Ryan JF. Six-state Amino Acid Recoding is not an Effective Strategy to Offset Compositional Heterogeneity and Saturation in Phylogenetic Analyses. Syst Biol 2021; 70:1200-1212. [PMID: 33837789 PMCID: PMC8513762 DOI: 10.1093/sysbio/syab027] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 04/02/2021] [Accepted: 04/05/2021] [Indexed: 01/25/2023] Open
Abstract
Six-state amino acid recoding strategies are commonly applied to combat the effects of compositional heterogeneity and substitution saturation in phylogenetic analyses. While these methods have been endorsed from a theoretical perspective, their performance has never been extensively tested. Here, we test the effectiveness of six-state recoding approaches by comparing the performance of analyses on recoded and non-recoded data sets that have been simulated under gradients of compositional heterogeneity or saturation. In our simulation analyses, non-recoding approaches consistently outperform six-state recoding approaches. Our results suggest that six-state recoding strategies are not effective in the face of high saturation. Furthermore, while recoding strategies do buffer the effects of compositional heterogeneity, the loss of information that accompanies six-state recoding outweighs its benefits. In addition, we evaluate recoding schemes with 9, 12, 15, and 18 states and show that these consistently outperform six-state recoding. Our analyses of other recoding schemes suggest that under conditions of very high compositional heterogeneity, it may be advantageous to apply recoding using more than six states, but we caution that applying any recoding should include sufficient justification. Our results have important implications for the more than 90 published papers that have incorporated six-state recoding, many of which have significant bearing on relationships across the tree of life. [Compositional heterogeneity; Dayhoff 6-state recoding; S&R 6-state recoding; six-state amino acid recoding; substitution saturation.]
Collapse
Affiliation(s)
- Alexandra M Hernandez
- Whitney Laboratory for Marine Bioscience, 9505 Ocean Shore Boulevard, St. Augustine, FL, 32080, USA.,Department of Biology, University of Florida, 220 Bartram Hall, P.O. Box 118525, Gainesville, FL, 32611, USA
| | - Joseph F Ryan
- Whitney Laboratory for Marine Bioscience, 9505 Ocean Shore Boulevard, St. Augustine, FL, 32080, USA.,Department of Biology, University of Florida, 220 Bartram Hall, P.O. Box 118525, Gainesville, FL, 32611, USA
| |
Collapse
|
165
|
Dieris M, Kowatschew D, Korsching SI. Olfactory function in the trace amine-associated receptor family (TAARs) evolved twice independently. Sci Rep 2021; 11:7807. [PMID: 33833329 PMCID: PMC8032801 DOI: 10.1038/s41598-021-87236-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/18/2021] [Indexed: 11/23/2022] Open
Abstract
Olfactory receptor families have arisen independently several times during evolution. The origin of taar genes, one of the four major vertebrate olfactory receptor families, is disputed. We performed a phylogenetic analysis making use of 96 recently available genomes, and report that olfactory functionality has arisen twice independently within the TAAR family, once in jawed and once in jawless fish. In lamprey, an ancestral gene expanded to generate a large family of olfactory receptors, while the sister gene in jawed vertebrates did not expand and is not expressed in olfactory sensory neurons. Both clades do not exhibit the defining TAAR motif, and we suggest naming them taar-like receptors (tarl). We have identified the evolutionary origin of both taar and tarl genes in a duplication of the serotonergic receptor 4 that occurred in the most recent common ancestor of vertebrates. We infer two ancestral genes in bony fish (TAAR12, TAAR13) which gave rise to the complete repertoire of mammalian olfactory taar genes and to class II of the taar repertoire of teleost fish. We follow their evolution in seventy-one bony fish genomes and report a high evolutionary dynamic, with many late gene birth events and both early and late gene death events.
Collapse
Affiliation(s)
- Milan Dieris
- Institute for Genetics, University At Cologne, Zülpicher Str. 47A, 50674, Cologne, Germany
| | - Daniel Kowatschew
- Institute for Genetics, University At Cologne, Zülpicher Str. 47A, 50674, Cologne, Germany
| | - Sigrun I Korsching
- Institute for Genetics, University At Cologne, Zülpicher Str. 47A, 50674, Cologne, Germany.
| |
Collapse
|
166
|
Rodriguez D, Taketa DA, Madhu R, Kassmer S, Loerke D, Valentine MT, Tomaso AWD. Vascular Aging in the Invertebrate Chordate, Botryllus schlosseri. Front Mol Biosci 2021; 8:626827. [PMID: 33898513 PMCID: PMC8060491 DOI: 10.3389/fmolb.2021.626827] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 03/03/2021] [Indexed: 12/13/2022] Open
Abstract
Vascular diseases affect over 1 billion people worldwide and are highly prevalent among the elderly, due to a progressive deterioration of the structure of vascular cells. Most of our understanding of these age-related cellular changes comes from in vitro studies on human cell lines. Further studies of the mechanisms underlying vascular aging in vivo are needed to provide insight into the pathobiology of age-associated vascular diseases, but are difficult to carry out on vertebrate model organisms. We are studying the effects of aging on the vasculature of the invertebrate chordate, Botryllus schlosseri. This extracorporeal vascular network of Botryllus is transparent and particularly amenable to imaging and manipulation. Here we use a combination of transcriptomics, immunostaining and live-imaging, as well as in vivo pharmacological treatments and regeneration assays to show that morphological, transcriptional, and functional age-associated changes within vascular cells are key hallmarks of aging in B. schlosseri, and occur independent of genotype. We show that age-associated changes in the cytoskeleton and the extracellular matrix reshape vascular cells into a flattened and elongated form and there are major changes in the structure of the basement membrane over time. The vessels narrow, reducing blood flow, and become less responsive to stimuli inducing vascular regression. The extracorporeal vasculature is highly regenerative following injury, and while age does not affect the regeneration potential, newly regenerated vascular cells maintain the same aged phenotype, suggesting that aging of the vasculature is a result of heritable epigenetic changes.
Collapse
Affiliation(s)
- Delany Rodriguez
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Daryl A. Taketa
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Roopa Madhu
- Department of Physics and Astronomy, University of Denver, Denver, CO, United States
| | - Susannah Kassmer
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Dinah Loerke
- Department of Physics and Astronomy, University of Denver, Denver, CO, United States
| | - Megan T. Valentine
- Department of Mechanical Engineering, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Anthony W. De Tomaso
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, United States
| |
Collapse
|
167
|
Helou L, Beauclair L, Dardente H, Piégu B, Tsakou-Ngouafo L, Lecomte T, Kentsis A, Pontarotti P, Bigot Y. The piggyBac-derived protein 5 (PGBD5) transposes both the closely and the distantly related piggyBac-like elements Tcr-pble and Ifp2. J Mol Biol 2021; 433:166839. [PMID: 33539889 PMCID: PMC8404143 DOI: 10.1016/j.jmb.2021.166839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 12/21/2020] [Accepted: 01/14/2021] [Indexed: 12/16/2022]
Abstract
The vertebrate piggyBac derived transposase 5 (PGBD5) encodes a domesticated transposase, which is active and able to transpose its distantly related piggyBac-like element (pble), Ifp2. This raised the question whether PGBD5 would be more effective at mobilizing a phylogenetically closely related pble element. We aimed to identify the pble most closely related to the pgbd5 gene. We updated the landscape of vertebrate pgbd genes to develop efficient filters and identify the most closely related pble to each of these genes. We found that Tcr-pble is phylogenetically the closest pble to the pgbd5 gene. Furthermore, we evaluated the capacity of two murine and human PGBD5 isoforms, Mm523 and Hs524, to transpose both Tcr-pble and Ifp2 elements. We found that both pbles could be transposed by Mm523 with similar efficiency. However, integrations of both pbles occurred through both proper transposition and improper PGBD5-dependent recombination. This suggested that the ability of PGBD5 to bind both pbles may not be based on the primary sequence of element ends, but may involve recognition of inner DNA motifs, possibly related to palindromic repeats. In agreement with this hypothesis, we identified internal palindromic repeats near the end of 24 pble sequences, which display distinct sequences.
Collapse
Affiliation(s)
- Laura Helou
- UMR INRAE 0085, CNRS 7247, Physiologie de la Reproduction et des Comportements, Centre INRA Val de Loire, 37380 Nouzilly, France
| | - Linda Beauclair
- UMR INRAE 0085, CNRS 7247, Physiologie de la Reproduction et des Comportements, Centre INRA Val de Loire, 37380 Nouzilly, France
| | - Hugues Dardente
- UMR INRAE 0085, CNRS 7247, Physiologie de la Reproduction et des Comportements, Centre INRA Val de Loire, 37380 Nouzilly, France
| | - Benoît Piégu
- UMR INRAE 0085, CNRS 7247, Physiologie de la Reproduction et des Comportements, Centre INRA Val de Loire, 37380 Nouzilly, France
| | - Louis Tsakou-Ngouafo
- UMR MEPHI D-258, I, IRD, Aix Marseille Université, 19-21 Boulevard Jean Moulin, 13005 Marseille, France; CNRS SNC 5039, 13005 Marseille, France
| | | | - Alex Kentsis
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Weill Cornell Medical College, Cornell University, New York, NY, USA; Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Pierre Pontarotti
- UMR INRAE 0085, CNRS 7247, Physiologie de la Reproduction et des Comportements, Centre INRA Val de Loire, 37380 Nouzilly, France; CNRS SNC 5039, 13005 Marseille, France
| | - Yves Bigot
- UMR INRAE 0085, CNRS 7247, Physiologie de la Reproduction et des Comportements, Centre INRA Val de Loire, 37380 Nouzilly, France.
| |
Collapse
|
168
|
Vizzini A, Dumas F, Di Falco F, Arizza V. Evolutionary and transcriptional analyses of a pentraxin-like component family involved in the LPS inflammatory response of Ciona robusta. FISH & SHELLFISH IMMUNOLOGY 2021; 111:94-101. [PMID: 33513439 DOI: 10.1016/j.fsi.2021.01.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 12/31/2020] [Accepted: 01/22/2021] [Indexed: 06/12/2023]
Abstract
Pentraxins (PTXs) are a superfamily of conserved proteins which are components of the humoral arm of innate immunity. They are considered to be functional ancestors of antibodies and are classified into short and long types. In this study, we show that a pentraxin-like component (Ptx-like) with a C-terminal PTX domain, highly homologous to the short PTX of H. sapiens CRP, and a long N-terminal domain typical of long PTXs, is involved in the inflammatory response of Ciona robusta under LPS exposure in vivo. Analyses of protein domains as well as 3D modelling and phylogenetic tree supported the close relationship of Ptx-like with mammalian CRP, suggesting that C. robusta Ptx-like shares a common ancestor in the chordate lineages. qRT-PCR analysis showed that Ptx-like was transcriptionally upregulated during the inflammatory process induced by LPS inoculation and that it is involved in the initial phase as well as the secondary phase of the inflammatory response in which matrix remodelling and the achievement of homeostasis occur. In situ hybridisation assays revealed that gene transcription was upregulated in the pharynx post-LPS challenge in vivo, and that Ptx-like was expressed by clusters of haemocytes, mainly granulocytes, inside the pharynx vessels. We also found transcript-expressing granulocytes flowing in the musculature and in the lacunae of the circulatory system. These data supported that Ptx-like is a potential molecule of the acute-phase response in C. robusta immune defence systems against bacterial infection.
Collapse
Affiliation(s)
- Aiti Vizzini
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche - Università di Palermo, Via Archirafi 18, Palermo, Italy.
| | - Francesca Dumas
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche - Università di Palermo, Via Archirafi 18, Palermo, Italy
| | - Felicia Di Falco
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche - Università di Palermo, Via Archirafi 18, Palermo, Italy
| | - Vincenzo Arizza
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche - Università di Palermo, Via Archirafi 18, Palermo, Italy
| |
Collapse
|
169
|
Bliznina A, Masunaga A, Mansfield MJ, Tan Y, Liu AW, West C, Rustagi T, Chien HC, Kumar S, Pichon J, Plessy C, Luscombe NM. Telomere-to-telomere assembly of the genome of an individual Oikopleura dioica from Okinawa using Nanopore-based sequencing. BMC Genomics 2021; 22:222. [PMID: 33781200 PMCID: PMC8008620 DOI: 10.1186/s12864-021-07512-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 03/05/2021] [Indexed: 11/10/2022] Open
Abstract
Background The larvacean Oikopleura dioica is an abundant tunicate plankton with the smallest (65–70 Mbp) non-parasitic, non-extremophile animal genome identified to date. Currently, there are two genomes available for the Bergen (OdB3) and Osaka (OSKA2016) O. dioica laboratory strains. Both assemblies have full genome coverage and high sequence accuracy. However, a chromosome-scale assembly has not yet been achieved. Results Here, we present a chromosome-scale genome assembly (OKI2018_I69) of the Okinawan O. dioica produced using long-read Nanopore and short-read Illumina sequencing data from a single male, combined with Hi-C chromosomal conformation capture data for scaffolding. The OKI2018_I69 assembly has a total length of 64.3 Mbp distributed among 19 scaffolds. 99% of the assembly is contained within five megabase-scale scaffolds. We found telomeres on both ends of the two largest scaffolds, which represent assemblies of two fully contiguous autosomal chromosomes. Each of the other three large scaffolds have telomeres at one end only and we propose that they correspond to sex chromosomes split into a pseudo-autosomal region and X-specific or Y-specific regions. Indeed, these five scaffolds mostly correspond to equivalent linkage groups in OdB3, suggesting overall agreement in chromosomal organization between the two populations. At a more detailed level, the OKI2018_I69 assembly possesses similar genomic features in gene content and repetitive elements reported for OdB3. The Hi-C map suggests few reciprocal interactions between chromosome arms. At the sequence level, multiple genomic features such as GC content and repetitive elements are distributed differently along the short and long arms of the same chromosome. Conclusions We show that a hybrid approach of integrating multiple sequencing technologies with chromosome conformation information results in an accurate de novo chromosome-scale assembly of O. dioica’s highly polymorphic genome. This genome assembly opens up the possibility of cross-genome comparison between O. dioica populations, as well as of studies of chromosomal evolution in this lineage. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07512-6.
Collapse
Affiliation(s)
- Aleksandra Bliznina
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan.
| | - Aki Masunaga
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Michael J Mansfield
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Yongkai Tan
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Andrew W Liu
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Charlotte West
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan.,Francis Crick Institute, London, UK
| | - Tanmay Rustagi
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Hsiao-Chiao Chien
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Saurabh Kumar
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Julien Pichon
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Charles Plessy
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan.
| | - Nicholas M Luscombe
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan.,Francis Crick Institute, London, UK.,Department of Genetics, Evolution and Environment, UCL Genetics Institute, University College London, London, UK
| |
Collapse
|
170
|
Vizzini A, Bonura A, La Paglia L, Fiannaca A, La Rosa M, Urso A, Arizza V. ceRNA Network Regulation of TGF-β, WNT, FOXO, Hedgehog Pathways in the Pharynx of Ciona robusta. Int J Mol Sci 2021; 22:ijms22073497. [PMID: 33800649 PMCID: PMC8037537 DOI: 10.3390/ijms22073497] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/22/2021] [Accepted: 03/25/2021] [Indexed: 12/19/2022] Open
Abstract
The transforming growth factor-β (TGF-β) family of cytokines performs a multifunctional signaling, which is integrated and coordinated in a signaling network that involves other pathways, such as Wintless, Forkhead box-O (FOXO) and Hedgehog and regulates pivotal functions related to cell fate in all tissues. In the hematopoietic system, TGF-β signaling controls a wide spectrum of biological processes, from immune system homeostasis to the quiescence and self-renewal of hematopoietic stem cells (HSCs). Recently an important role in post-transcription regulation has been attributed to two type of ncRNAs: microRNAs and pseudogenes. Ciona robusta, due to its philogenetic position close to vertebrates, is an excellent model to investigate mechanisms of post-transcriptional regulation evolutionarily highly conserved in immune homeostasis. The combined use of NGS and bioinformatic analyses suggests that in the pharynx, the hematopoietic organ of Ciona robusta, the Tgf-β, Wnt, Hedgehog and FoxO pathways are involved in tissue homeostasis, as they are in human. Furthermore, ceRNA network interactions and 3'UTR elements analyses of Tgf-β, Wnt, Hedgehog and FoxO pathways genes suggest that different miRNAs conserved (cin-let-7d, cin-mir-92c, cin-mir-153), species-specific (cin-mir-4187, cin-mir-4011a, cin-mir-4056, cin-mir-4150, cin-mir-4189, cin-mir-4053, cin-mir-4016, cin-mir-4075), pseudogenes (ENSCING00000011392, ENSCING00000018651, ENSCING00000007698) and mRNA 3'UTR elements are involved in post-transcriptional regulation in an integrated way in C. robusta.
Collapse
Affiliation(s)
- Aiti Vizzini
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche–Università di Palermo, via Archirafi 18, 90100 Palermo, Italy;
- Correspondence:
| | - Angela Bonura
- Istituto per La Ricerca e l’Innovazione Biomedica–Consiglio Nazionale Delle Ricerche, via Ugo La Malfa 153, 90100 Palermo, Italy;
| | - Laura La Paglia
- Istituto di Calcolo e Reti ad Alte Prestazioni–Consiglio Nazionale Delle Ricerche, via Ugo La Malfa 153, 90100 Palermo, Italy; (L.L.P.); (A.F.); (M.L.R.); (A.U.)
| | - Antonino Fiannaca
- Istituto di Calcolo e Reti ad Alte Prestazioni–Consiglio Nazionale Delle Ricerche, via Ugo La Malfa 153, 90100 Palermo, Italy; (L.L.P.); (A.F.); (M.L.R.); (A.U.)
| | - Massimo La Rosa
- Istituto di Calcolo e Reti ad Alte Prestazioni–Consiglio Nazionale Delle Ricerche, via Ugo La Malfa 153, 90100 Palermo, Italy; (L.L.P.); (A.F.); (M.L.R.); (A.U.)
| | - Alfonso Urso
- Istituto di Calcolo e Reti ad Alte Prestazioni–Consiglio Nazionale Delle Ricerche, via Ugo La Malfa 153, 90100 Palermo, Italy; (L.L.P.); (A.F.); (M.L.R.); (A.U.)
| | - Vincenzo Arizza
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche–Università di Palermo, via Archirafi 18, 90100 Palermo, Italy;
| |
Collapse
|
171
|
Brandi V, Polticelli F. In Silico Analysis of Huntingtin Homologs in Lower Eukaryotes. Int J Mol Sci 2021; 22:3214. [PMID: 33809947 PMCID: PMC8004120 DOI: 10.3390/ijms22063214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/09/2021] [Accepted: 03/17/2021] [Indexed: 12/11/2022] Open
Abstract
Huntington's disease is a rare neurodegenerative and autosomal dominant disorder. HD is caused by a mutation in the gene coding for huntingtin (Htt). The result is the production of a mutant Htt with an abnormally long polyglutamine repeat that leads to pathological Htt aggregates. Although the structure of human Htt has been determined, albeit at low resolution, its functions and how they are performed are largely unknown. Moreover, there is little information on the structure and function of Htt in other organisms. The comparison of Htt homologs can help to understand if there is a functional conservation of domains in the evolution of Htt in eukaryotes. In this work, through a computational approach, Htt homologs from lower eukaryotes have been analysed, identifying ordered domains and modelling their structure. Based on the structural models, a putative function for most of the domains has been predicted. A putative C. elegans Htt-like protein has also been analysed following the same approach. The results obtained support the notion that this protein is a orthologue of human Htt.
Collapse
Affiliation(s)
| | - Fabio Polticelli
- Department of Sciences, Roma Tre University, 00146 Rome, Italy;
- National Institute of Nuclear Physics, Roma Tre Section, 00146 Rome, Italy
| |
Collapse
|
172
|
Miyashita T, Gess RW, Tietjen K, Coates MI. Non-ammocoete larvae of Palaeozoic stem lampreys. Nature 2021; 591:408-412. [PMID: 33692547 DOI: 10.1038/s41586-021-03305-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 01/28/2021] [Indexed: 11/09/2022]
Abstract
Ammocoetes-the filter-feeding larvae of modern lampreys-have long influenced hypotheses of vertebrate ancestry1-7. The life history of modern lampreys, which develop from a superficially amphioxus-like ammocoete to a specialized predatory adult, appears to recapitulate widely accepted scenarios of vertebrate origin. However, no direct evidence has validated the evolutionary antiquity of ammocoetes, and their status as models of primitive vertebrate anatomy is uncertain. Here we report larval and juvenile forms of four stem lampreys from the Palaeozoic era (Hardistiella, Mayomyzon, Pipiscius, and Priscomyzon), including a hatchling-to-adult growth series of the genus Priscomyzon from Late Devonian Gondwana. Larvae of all four genera lack the defining traits of ammocoetes. They instead display features that are otherwise unique to adult modern lampreys, including prominent eyes, a cusped feeding apparatus, and posteriorly united branchial baskets. Notably, phylogenetic analyses find that these non-ammocoete larvae occur in at least three independent lineages of stem lamprey. This distribution strongly implies that ammocoetes are specializations of modern-lamprey life history rather than relics of vertebrate ancestry. These phylogenetic insights also suggest that the last common ancestor of hagfishes and lampreys was a macrophagous predator that did not have a filter-feeding larval phase. Thus, the armoured 'ostracoderms' that populate the cyclostome and gnathostome stems might serve as better proxies than living cyclostomes for the last common ancestor of all living vertebrates.
Collapse
Affiliation(s)
- Tetsuto Miyashita
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, USA. .,Canadian Museum of Nature, Ottawa, Ontario, Canada. .,Department of Biology, University of Ottawa, Ottawa, Ontario, Canada. .,Department of Earth Sciences, Carleton University, Ottawa, Ontario, Canada.
| | - Robert W Gess
- Albany Museum and the Department of Geology, Rhodes University, Makhanda, South Africa
| | - Kristen Tietjen
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, USA.,Biodiversity Institute & Natural History Museum, University of Kansas, Lawrence, KS, USA
| | - Michael I Coates
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, USA
| |
Collapse
|
173
|
Assessing the Ecotoxicity of Copper and Polycyclic Aromatic Hydrocarbons: Comparison of Effects on Paracentrotus lividus and Botryllus schlosseri, as Alternative Bioassay Methods. WATER 2021. [DOI: 10.3390/w13050711] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Adult sea urchins and their embryos are ideal targets to investigate the medium- and long-term effects of various toxic agents, such as organic and inorganic pollutants, to forecast and mitigate their environmental effects. Similarly, small colonial tunicates such as Botryllid ascidians may reveal acute toxicity processes and permit quick responses for the management of contaminants impacting coastal waters, to preserve the functional integrity of marine ecosystems. This investigation compares the functional responses of two model invertebrates, the sea urchin Paracentrotus lividus and the sea squirt Botryllus schlosseri, to chronic and acute exposures to organic and inorganic toxic agents. Such heavy metals as copper produce both acute and chronic effects on marine biota, while polycyclic aromatic hydrocarbons (PAHs) mainly produce chronic effects at the concentrations ordinarily measured in marine coastal waters. Both models were tested over a range of concentrations of copper and PAHs. Copper triggered a clear effect in both species, producing a delay in the embryo development of P. lividus and a rapid death of sea squirts. B. schlosseri was less sensitive to PAHs than P. lividus. The results on both species may synergistically contribute to assess the toxicity of organic and inorganic compounds at various concentrations and different physiologic levels.
Collapse
|
174
|
Lowe EK, Racioppi C, Peyriéras N, Ristoratore F, Christiaen L, Swalla BJ, Stolfi A. A cis-regulatory change underlying the motor neuron-specific loss of Ebf expression in immotile tunicate larvae. Evol Dev 2021; 23:72-85. [PMID: 33355999 PMCID: PMC7920938 DOI: 10.1111/ede.12364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 10/23/2020] [Accepted: 12/06/2020] [Indexed: 11/26/2022]
Abstract
Many species in the tunicate family Molgulidae have independently lost their swimming larval form and instead develop as tailless, immotile larvae. These larvae do not develop structures that are essential for swimming such as the notochord, otolith, and tail muscles. However, little is known about neural development in these nonswimming larvae. Here, we studied the patterning of the Motor Ganglion (MG) of Molgula occulta, a nonswimming species. We found that spatial patterns of MG neuron regulators in this species are conserved, compared with species with swimming larvae, suggesting that the gene networks regulating their expression are intact despite the loss of swimming. However, expression of the key motor neuron regulatory gene Ebf (Collier/Olf/EBF) was reduced in the developing MG of M. occulta when compared with molgulid species with swimming larvae. This was corroborated by measuring allele-specific expression of Ebf in hybrid embryos from crosses of M. occulta with the swimming species M. oculata. Heterologous reporter construct assays in the model tunicate species Ciona robusta revealed a specific cis-regulatory sequence change that reduces expression of Ebf in the MG, but not in other cells. Taken together, these data suggest that MG neurons are still specified in M. occulta larvae, but their differentiation might be impaired due to reduction of Ebf expression levels.
Collapse
Affiliation(s)
- Elijah K. Lowe
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- Station Biologique de Roscoff, Roscoff, France
| | - Claudia Racioppi
- Station Biologique de Roscoff, Roscoff, France
- Center for Developmental Genetics, Department of Biology, New York University, New York, NY, USA
| | - Nadine Peyriéras
- Station Biologique de Roscoff, Roscoff, France
- UPS3611 Complex Systems Institute Paris Ile-de-France (ISC-PIF), CNRS, Paris, France
- USR3695 BioEmergences, CNRS, Paris-Saclay University, Gif-sur-Yvette, France
| | - Filomena Ristoratore
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Lionel Christiaen
- Station Biologique de Roscoff, Roscoff, France
- Center for Developmental Genetics, Department of Biology, New York University, New York, NY, USA
| | - Billie J. Swalla
- Station Biologique de Roscoff, Roscoff, France
- Department of Biology, University of Washington, Seattle, WA, USA
- Friday Harbor Laboratories, University of Washington, Friday Harbor, WA, USA
| | - Alberto Stolfi
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- Station Biologique de Roscoff, Roscoff, France
| |
Collapse
|
175
|
Liberti A, Natarajan O, Atkinson CGF, Sordino P, Dishaw LJ. Reflections on the Use of an Invertebrate Chordate Model System for Studies of Gut Microbial Immune Interactions. Front Immunol 2021; 12:642687. [PMID: 33717199 PMCID: PMC7947342 DOI: 10.3389/fimmu.2021.642687] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 01/20/2021] [Indexed: 12/11/2022] Open
Abstract
The functional ecology of the gastrointestinal tract impacts host physiology, and its dysregulation is at the center of various diseases. The immune system, and specifically innate immunity, plays a fundamental role in modulating the interface of host and microbes in the gut. While humans remain a primary focus of research in this field, the use of diverse model systems help inform us of the fundamental principles legislating homeostasis in the gut. Invertebrates, which lack vertebrate-style adaptive immunity, can help define conserved features of innate immunity that shape the gut ecosystem. In this context, we previously proposed the use of a marine invertebrate, the protochordate Ciona robusta, as a novel tractable model system for studies of host-microbiome interactions. Significant progress, reviewed herein, has been made to fulfill that vision. We examine and review discoveries from Ciona that include roles for a secreted immune effector interacting with elements of the microbiota, as well as chitin-rich mucus lining the gut epithelium, the gut-associated microbiome of adults, and the establishment of a large catalog of cultured isolates with which juveniles can be colonized. Also discussed is the establishment of methods to rear the animals germ-free, an essential technology for dissecting the symbiotic interactions at play. As the foundation is now set to extend these studies into the future, broadening our comprehension of how host effectors shape the ecology of these microbial communities in ways that establish and maintain homeostasis will require full utilization of "multi-omics" approaches to merge computational sciences, modeling, and experimental biology in hypothesis-driven investigations.
Collapse
Affiliation(s)
- Assunta Liberti
- Biology and Evolution of Marine Organisms (BEOM), Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Ojas Natarajan
- Morsani College of Medicine, Department of Pediatrics, University of South Florida, Tampa, FL, United States
- Division of Molecular Genetics, Children’s Research Institute, St. Petersburg, FL, United States
| | - Celine Grace F. Atkinson
- Division of Molecular Genetics, Children’s Research Institute, St. Petersburg, FL, United States
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL, United States
| | - Paolo Sordino
- Biology and Evolution of Marine Organisms (BEOM), Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Larry J. Dishaw
- Morsani College of Medicine, Department of Pediatrics, University of South Florida, Tampa, FL, United States
- Division of Molecular Genetics, Children’s Research Institute, St. Petersburg, FL, United States
| |
Collapse
|
176
|
Bozzo M, Lacalli TC, Obino V, Caicci F, Marcenaro E, Bachetti T, Manni L, Pestarino M, Schubert M, Candiani S. Amphioxus neuroglia: Molecular characterization and evidence for early compartmentalization of the developing nerve cord. Glia 2021; 69:1654-1678. [PMID: 33624886 DOI: 10.1002/glia.23982] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/02/2021] [Accepted: 02/09/2021] [Indexed: 12/19/2022]
Abstract
Glial cells play important roles in the development and homeostasis of metazoan nervous systems. However, while their involvement in the development and function in the central nervous system (CNS) of vertebrates is increasingly well understood, much less is known about invertebrate glia and the evolutionary history of glial cells more generally. An investigation into amphioxus glia is therefore timely, as this organism is the best living proxy for the last common ancestor of all chordates, and hence provides a window into the role of glial cell development and function at the transition of invertebrates and vertebrates. We report here our findings on amphioxus glia as characterized by molecular probes correlated with anatomical data at the transmission electron microscopy (TEM) level. The results show that amphioxus glial lineages express genes typical of vertebrate astroglia and radial glia, and that they segregate early in development, forming what appears to be a spatially separate cell proliferation zone positioned laterally, between the dorsal and ventral zones of neural cell proliferation. Our study provides strong evidence for the presence of vertebrate-type glial cells in amphioxus, while highlighting the role played by segregated progenitor cell pools in CNS development. There are implications also for our understanding of glial cells in a broader evolutionary context, and insights into patterns of precursor cell deployment in the chordate nerve cord.
Collapse
Affiliation(s)
- Matteo Bozzo
- Department of Earth, Environment and Life Sciences, University of Genoa, Genoa, Italy
| | - Thurston C Lacalli
- Biology Department, University of Victoria, Victoria, British Columbia, Canada
| | - Valentina Obino
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | | | - Emanuela Marcenaro
- Department of Experimental Medicine, University of Genoa, Genoa, Italy.,Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Tiziana Bachetti
- Department of Earth, Environment and Life Sciences, University of Genoa, Genoa, Italy
| | - Lucia Manni
- Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Mario Pestarino
- Department of Earth, Environment and Life Sciences, University of Genoa, Genoa, Italy
| | - Michael Schubert
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-Mer, Villefranche-sur-Mer, France
| | - Simona Candiani
- Department of Earth, Environment and Life Sciences, University of Genoa, Genoa, Italy
| |
Collapse
|
177
|
An elongated COI fragment to discriminate botryllid species and as an improved ascidian DNA barcode. Sci Rep 2021; 11:4078. [PMID: 33603059 PMCID: PMC7892571 DOI: 10.1038/s41598-021-83127-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 01/27/2021] [Indexed: 01/31/2023] Open
Abstract
Botryllids are colonial ascidians widely studied for their potential invasiveness and as model organisms, however the morphological description and discrimination of these species is very problematic, leading to frequent specimen misidentifications. To facilitate species discrimination and detection of cryptic/new species, we developed new barcoding primers for the amplification of a COI fragment of about 860 bp (860-COI), which is an extension of the common Folmer's barcode region. Our 860-COI was successfully amplified in 177 worldwide-sampled botryllid colonies. Combined with morphological analyses, 860-COI allowed not only discriminating known species, but also identifying undescribed and cryptic species, resurrecting old species currently in synonymy, and proposing the assignment of clade D of the model organism Botryllus schlosseri to Botryllus renierii. Importantly, within clade A of B. schlosseri, 860-COI recognized at least two candidate species against only one recognized by the Folmer's fragment, underlining the need of further genetic investigations on this clade. This result also suggests that the 860-COI could have a greater ability to diagnose cryptic/new species than the Folmer's fragment at very short evolutionary distances, such as those observed within clade A. Finally, our new primers simplify the amplification of 860-COI even in non-botryllid ascidians, suggesting their wider usefulness in ascidians.
Collapse
|
178
|
Davey PA, Power AM, Santos R, Bertemes P, Ladurner P, Palmowski P, Clarke J, Flammang P, Lengerer B, Hennebert E, Rothbächer U, Pjeta R, Wunderer J, Zurovec M, Aldred N. Omics-based molecular analyses of adhesion by aquatic invertebrates. Biol Rev Camb Philos Soc 2021; 96:1051-1075. [PMID: 33594824 DOI: 10.1111/brv.12691] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 12/15/2022]
Abstract
Many aquatic invertebrates are associated with surfaces, using adhesives to attach to the substratum for locomotion, prey capture, reproduction, building or defence. Their intriguing and sophisticated biological glues have been the focus of study for decades. In all but a couple of specific taxa, however, the precise mechanisms by which the bioadhesives stick to surfaces underwater and (in many cases) harden have proved to be elusive. Since the bulk components are known to be based on proteins in most organisms, the opportunities provided by advancing 'omics technologies have revolutionised bioadhesion research. Time-consuming isolation and analysis of single molecules has been either replaced or augmented by the generation of massive data sets that describe the organism's translated genes and proteins. While these new approaches have provided resources and opportunities that have enabled physiological insights and taxonomic comparisons that were not previously possible, they do not provide the complete picture and continued multi-disciplinarity is essential. This review covers the various ways in which 'omics have contributed to our understanding of adhesion by aquatic invertebrates, with new data to illustrate key points. The associated challenges are highlighted and priorities are suggested for future research.
Collapse
Affiliation(s)
- Peter A Davey
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, U.K
| | - Anne Marie Power
- Ryan Institute, School of Natural Sciences, National University of Ireland Galway, Room 226, Galway, H91 TK33, Ireland
| | - Romana Santos
- Departamento de Biologia Animal, Faculdade de Ciências, Centro de Ciências do Mar e do Ambiente (MARE), Universidade de Lisboa, Lisbon, 1749-016, Portugal
| | - Philip Bertemes
- Institute of Zoology and Center of Molecular Biosciences Innsbruck, University of Innsbruck, Technikerstrasse 25, Innsbruck, 6020, Austria
| | - Peter Ladurner
- Institute of Zoology and Center of Molecular Biosciences Innsbruck, University of Innsbruck, Technikerstrasse 25, Innsbruck, 6020, Austria
| | - Pawel Palmowski
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, U.K
| | - Jessica Clarke
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, U.K
| | - Patrick Flammang
- Biology of Marine Organisms and Biomimetics Unit, Research Institute for Biosciences, University of Mons, Place du Parc 23, Mons, 7000, Belgium
| | - Birgit Lengerer
- Institute of Zoology and Center of Molecular Biosciences Innsbruck, University of Innsbruck, Technikerstrasse 25, Innsbruck, 6020, Austria
| | - Elise Hennebert
- Laboratory of Cell Biology, Research Institute for Biosciences, University of Mons, Place du Parc 23, Mons, 7000, Belgium
| | - Ute Rothbächer
- Institute of Zoology and Center of Molecular Biosciences Innsbruck, University of Innsbruck, Technikerstrasse 25, Innsbruck, 6020, Austria
| | - Robert Pjeta
- Institute of Zoology and Center of Molecular Biosciences Innsbruck, University of Innsbruck, Technikerstrasse 25, Innsbruck, 6020, Austria
| | - Julia Wunderer
- Institute of Zoology and Center of Molecular Biosciences Innsbruck, University of Innsbruck, Technikerstrasse 25, Innsbruck, 6020, Austria
| | - Michal Zurovec
- Biology Centre of the Czech Academy of Sciences and Faculty of Sciences, University of South Bohemia, České Budějovice, 370 05, Czech Republic
| | - Nick Aldred
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, U.K
| |
Collapse
|
179
|
Stundl J, Bertucci PY, Lauri A, Arendt D, Bronner ME. Evolution of new cell types at the lateral neural border. Curr Top Dev Biol 2021; 141:173-205. [PMID: 33602488 DOI: 10.1016/bs.ctdb.2020.11.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
During the course of evolution, animals have become increasingly complex by the addition of novel cell types and regulatory mechanisms. A prime example is represented by the lateral neural border, known as the neural plate border in vertebrates, a region of the developing ectoderm where presumptive neural and non-neural tissue meet. This region has been intensively studied as the source of two important embryonic cell types unique to vertebrates-the neural crest and the ectodermal placodes-which contribute to diverse differentiated cell types including the peripheral nervous system, pigment cells, bone, and cartilage. How did these multipotent progenitors originate in animal evolution? What triggered the elaboration of the border during the course of chordate evolution? How is the lateral neural border patterned in various bilaterians and what is its fate? Here, we review and compare the development and fate of the lateral neural border in vertebrates and invertebrates and we speculate about its evolutionary origin. Taken together, the data suggest that the lateral neural border existed in bilaterian ancestors prior to the origin of vertebrates and became a developmental source of exquisite evolutionary change that frequently enabled the acquisition of new cell types.
Collapse
Affiliation(s)
- Jan Stundl
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | | | | | - Detlev Arendt
- European Molecular Biology Laboratory, Heidelberg, Germany.
| | - Marianne E Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States.
| |
Collapse
|
180
|
Mikalsen SO, í Kongsstovu S, Tausen M. Connexins during 500 Million Years-From Cyclostomes to Mammals. Int J Mol Sci 2021; 22:1584. [PMID: 33557313 PMCID: PMC7914757 DOI: 10.3390/ijms22041584] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 12/27/2022] Open
Abstract
It was previously shown that the connexin gene family had relatively similar subfamily structures in several vertebrate groups. Still, many details were left unclear. There are essentially no data between tunicates, which have connexins that cannot be divided into the classic subfamilies, and teleosts, where the subfamilies are easily recognized. There are also relatively few data for the groups that diverged between the teleosts and mammals. As many of the previously analyzed genomes have been improved, and many more genomes are available, we reanalyzed the connexin gene family and included species from all major vertebrate groups. The major results can be summarized as follows: (i) The same connexin subfamily structures are found in all Gnathostomata (jawed vertebrates), with some variations due to genome duplications, gene duplications and gene losses. (ii) In contrast to previous findings, birds do not have a lower number of connexins than other tetrapods. (iii) The cyclostomes (lampreys and hagfishes) possess genes in the alpha, beta, gamma and delta subfamilies, but only some of the genes show a phylogenetic affinity to specific genes in jawed vertebrates. Thus, two major evolutionary transformations have occurred in this gene family, from tunicates to cyclostomes and from cyclostomes to jawed vertebrates.
Collapse
Affiliation(s)
- Svein-Ole Mikalsen
- Faculty of Science and Technology, University of Faroe Islands, FO-100 Tórshavn, Faroe Islands; (S.í.K.); (M.T.)
| | | | | |
Collapse
|
181
|
Gazo I, Gomes IDL, Savy T, Besnardeau L, Hebras C, Benaicha S, Brunet M, Shaliutina O, McDougall A, Peyrieras N, Dumollard R. High-content analysis of larval phenotypes for the screening of xenobiotic toxicity using Phallusia mammillata embryos. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 232:105768. [PMID: 33592501 DOI: 10.1016/j.aquatox.2021.105768] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 01/12/2021] [Accepted: 01/23/2021] [Indexed: 06/12/2023]
Abstract
In recent years, pollution of surface waters with xenobiotic compounds became an issue of concern in society and has been the object of numerous studies. Most of these xenobiotic compounds are man-made molecules and some of them are qualified as endocrine disrupting chemicals (EDCs) when they interfere with hormones actions. Several studies have investigated the teratogenic impacts of EDCs in vertebrates (including marine vertebrates). However, the impact of such EDCs on marine invertebrates is much debated and still largely obscure. In addition, DNA-altering genotoxicants can induce embryonic malformations. The goal of this study is to develop a reliable and effective test for assessing toxicity of chemicals using embryos of the ascidian (Phallusia mammillata) in order to find phenotypic signatures associated with xenobiotics. We evaluated embryonic malformations with high-content analysis of larval phenotypes by scoring several quantitative and qualitative morphometric endpoints on a single image of Phallusia tadpole larvae with semi-automated image analysis. Using this approach we screened different classes of toxicants including genotoxicants, known or suspected EDCs and nuclear receptors (NRs) ligands. The screen presented here reveals a specific phenotypic signature for ligands of retinoic acid receptor/retinoid X receptor. Analysis of larval morphology combined with DNA staining revealed that embryos with DNA aberrations displayed severe malformations affecting multiple aspects of embryonic development. In contrast EDCs exposure induced no or little DNA aberrations and affected mainly neural development. Therefore the ascidian embryo/larval assay presented here can allow to distinguish the type of teratogenicity induced by different classes of toxicants.
Collapse
Affiliation(s)
- Ievgeniia Gazo
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), Observatoire Océanologique, 06230 Villefranche sur-mer, France; University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Zátiší 728/II, 389 25, Vodňany, Czech Republic.
| | - Isa D L Gomes
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), Observatoire Océanologique, 06230 Villefranche sur-mer, France
| | - Thierry Savy
- BioEmergences Laboratory, CNRS USR 3695, 91190, Gif-sur-Yvette, France
| | - Lydia Besnardeau
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), Observatoire Océanologique, 06230 Villefranche sur-mer, France
| | - Celine Hebras
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), Observatoire Océanologique, 06230 Villefranche sur-mer, France
| | - Sameh Benaicha
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), Observatoire Océanologique, 06230 Villefranche sur-mer, France
| | - Manon Brunet
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), Observatoire Océanologique, 06230 Villefranche sur-mer, France
| | - Olena Shaliutina
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| | - Alex McDougall
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), Observatoire Océanologique, 06230 Villefranche sur-mer, France
| | - Nadine Peyrieras
- BioEmergences Laboratory, CNRS USR 3695, 91190, Gif-sur-Yvette, France
| | - Rémi Dumollard
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), Observatoire Océanologique, 06230 Villefranche sur-mer, France
| |
Collapse
|
182
|
Mercurio S, Messinetti S, Manenti R, Ficetola GF, Pennati R. Embryotoxicity characterization of the flame retardant tris(1-chloro-2-propyl)phosphate (TCPP) in the invertebrate chordate Ciona intestinalis. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2021; 335:339-347. [PMID: 33503327 DOI: 10.1002/jez.2446] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/27/2020] [Accepted: 01/05/2021] [Indexed: 12/22/2022]
Abstract
Tris(1-chloro-2-propyl)phosphate (TCPP) is the most common chlorinated organophosphorus flame retardant in seawater. Due to its chemical features and abundance, TCPP has been classified as a high hazard, and restrictions of use have been set in multiple countries. Despite TCPP being highly present in the marine environment, only a few studies have explored the TCPP impact on the development of marine invertebrates. Ascidians are important invertebrate members of benthic marine communities and reliable model systems for ecotoxicological research. The aim of this study was to assess the adverse effects of TCPP exposure on the embryogenesis of the ascidian Ciona intestinalis. Our results showed that this pollutant affected both muscles and nervous system development. Malformations appeared similar to those reported in other animal models for other flame retardants, suggesting that these molecules could share a common mechanism of action and induce a mixture effect when simultaneously present in the aquatic environment even at sub-teratogenic concentrations.
Collapse
Affiliation(s)
- Silvia Mercurio
- Department of Environmental Science and Policy, Università degli Studi di Milano, Milan, Italy
| | - Silvia Messinetti
- Department of Environmental Science and Policy, Università degli Studi di Milano, Milan, Italy
| | - Raoul Manenti
- Department of Environmental Science and Policy, Università degli Studi di Milano, Milan, Italy
| | | | - Roberta Pennati
- Department of Environmental Science and Policy, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
183
|
Abstract
Hemichordates, along with echinoderms and chordates, belong to the lineage of bilaterians called the deuterostomes. Their phylogenetic position as an outgroup to chordates provides an opportunity to investigate the evolutionary origins of the chordate body plan and reconstruct ancestral deuterostome characters. The body plans of the hemichordates and chordates are organizationally divergent making anatomical comparisons very challenging. The developmental underpinnings of animal body plans are often more conservative than the body plans they regulate, and offer a novel data set for making comparisons between morphologically divergent body architectures. Here I review the hemichordate developmental data generated over the past 20 years that further test hypotheses of proposed morphological affinities between the two taxa, but also compare the conserved anteroposterior, dorsoventral axial patterning programs and germ layer specification programs. These data provide an opportunity to determine which developmental programs are ancestral deuterostome or bilaterian innovations, and which ones occurred in stem chordates or vertebrates representing developmental novelties of the chordate body plan.
Collapse
|
184
|
Mathavarajah S, VanIderstine C, Dellaire G, Huber RJ. Cancer and the breakdown of multicellularity: What Dictyostelium discoideum, a social amoeba, can teach us. Bioessays 2021; 43:e2000156. [PMID: 33448043 DOI: 10.1002/bies.202000156] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 12/11/2020] [Accepted: 12/17/2020] [Indexed: 01/01/2023]
Abstract
Ancient pathways promoting unicellularity and multicellularity are associated with cancer, the former being pro-oncogenic and the latter acting to suppress oncogenesis. However, there are only a limited number of non-vertebrate models for studying these pathways. Here, we review Dictyostelium discoideum and describe how it can be used to understand these gene networks. D. discoideum has a unicellular and multicellular life cycle, making it possible to study orthologs of cancer-associated genes in both phases. During development, differentiated amoebae form a fruiting body composed of a mass of spores that are supported atop a stalk. A portion of the cells sacrifice themselves to become non-reproductive stalk cells. Cheating disrupts the principles of multicellularity, as cheater cells alter their cell fate to preferentially become spores. Importantly, D. discoideum has gene networks and several strategies for maintaining multicellularity. Therefore, D. discoideum can help us better understand how conserved genes and pathways involved in multicellularity also influence cancer development, potentially identifying new therapeutic avenues.
Collapse
Affiliation(s)
- Sabateeshan Mathavarajah
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Carter VanIderstine
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Graham Dellaire
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Biochemistry and Molecular Biology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Robert J Huber
- Department of Biology, Trent University, Peterborough, Ontario, Canada
| |
Collapse
|
185
|
Abstract
Cephalochordates (amphioxus) are invertebrate chordates closely related to vertebrates. As they are evolving very slowly, they are proving to be very appropriate for developmental genetics studies aimed at understanding how vertebrates evolved from their invertebrate ancestors. To date, techniques for gene knockdown and overexpression have been developed, but methods for continuous breeding cultures and generating germline mutants have been developed only recently. Here we describe methods for continuous laboratory breeding cultures of the cephalochordate Branchiostoma floridae and the TALEN and Tol2 methods for mutagenesis. Included are strategies for analyzing the mutants and raising successive generations to obtain homozygotes. These methods should be applicable to any warm water species of cephalochordates with a relatively short generation time of 3-4 months and a life span of 3 years or more.
Collapse
|
186
|
Lu Q, Gao Y, Fu Y, Peng H, Shi W, Li B, Lv Z, Feng XQ, Dong B. Ciona embryonic tail bending is driven by asymmetrical notochord contractility and coordinated by epithelial proliferation. Development 2020; 147:147/24/dev185868. [DOI: 10.1242/dev.185868] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 11/16/2020] [Indexed: 02/05/2023]
Abstract
ABSTRACT
Ventral bending of the embryonic tail within the chorion is an evolutionarily conserved morphogenetic event in both invertebrates and vertebrates. However, the complexity of the anatomical structure of vertebrate embryos makes it difficult to experimentally identify the mechanisms underlying embryonic folding. This study investigated the mechanisms underlying embryonic tail bending in chordates. To further understand the mechanical role of each tissue, we also developed a physical model with experimentally measured parameters to simulate embryonic tail bending. Actomyosin asymmetrically accumulated at the ventral side of the notochord, and cell proliferation of the dorsal tail epidermis was faster than that in the ventral counterpart during embryonic tail bending. Genetic disruption of actomyosin activity and inhibition of cell proliferation dorsally caused abnormal tail bending, indicating that both asymmetrical actomyosin contractility in the notochord and the discrepancy of epidermis cell proliferation are required for tail bending. In addition, asymmetrical notochord contractility was sufficient to drive embryonic tail bending, whereas differential epidermis proliferation was a passive response to mechanical forces. These findings showed that asymmetrical notochord contractility coordinates with differential epidermis proliferation mechanisms to drive embryonic tail bending.
This article has an associated ‘The people behind the papers’ interview.
Collapse
Affiliation(s)
- Qiongxuan Lu
- Sars-Fang Centre, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Yuan Gao
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Yuanyuan Fu
- Sars-Fang Centre, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Hongzhe Peng
- Sars-Fang Centre, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Wenjie Shi
- Sars-Fang Centre, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Bo Li
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Zhiyi Lv
- Sars-Fang Centre, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Xi-Qiao Feng
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Bo Dong
- Sars-Fang Centre, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
187
|
Roa-Varón A, Dikow RB, Carnevale G, Tornabene L, Baldwin CC, Li C, Hilton EJ. Confronting Sources of Systematic Error to Resolve Historically Contentious Relationships: A Case Study Using Gadiform Fishes (Teleostei, Paracanthopterygii, Gadiformes). Syst Biol 2020; 70:739-755. [PMID: 33346841 PMCID: PMC8561434 DOI: 10.1093/sysbio/syaa095] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/27/2020] [Accepted: 12/02/2020] [Indexed: 11/14/2022] Open
Abstract
Reliable estimation of phylogeny is central to avoid inaccuracy in downstream macroevolutionary inferences. However, limitations exist in the implementation of concatenated and summary coalescent approaches, and Bayesian and full coalescent inference methods may not yet be feasible for computation of phylogeny using complicated models and large data sets. Here, we explored methodological (e.g., optimality criteria, character sampling, model selection) and biological (e.g., heterotachy, branch length heterogeneity) sources of systematic error that can result in biased or incorrect parameter estimates when reconstructing phylogeny by using the gadiform fishes as a model clade. Gadiformes include some of the most economically important fishes in the world (e.g., Cods, Hakes, and Rattails). Despite many attempts, a robust higher-level phylogenetic framework was lacking due to limited character and taxonomic sampling, particularly from several species-poor families that have been recalcitrant to phylogenetic placement. We compiled the first phylogenomic data set, including 14,208 loci (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
}{}$>$\end{document}2.8 M bp) from 58 species representing all recognized gadiform families, to infer a time-calibrated phylogeny for the group. Data were generated with a gene-capture approach targeting coding DNA sequences from single-copy protein-coding genes. Species-tree and concatenated maximum-likelihood (ML) analyses resolved all family-level relationships within Gadiformes. While there were a few differences between topologies produced by the DNA and the amino acid data sets, most of the historically unresolved relationships among gadiform lineages were consistently well resolved with high support in our analyses regardless of the methodological and biological approaches used. However, at deeper levels, we observed inconsistency in branch support estimates between bootstrap and gene and site coefficient factors (gCF, sCF). Despite numerous short internodes, all relationships received unequivocal bootstrap support while gCF and sCF had very little support, reflecting hidden conflict across loci. Most of the gene-tree and species-tree discordance in our study is a result of short divergence times, and consequent lack of informative characters at deep levels, rather than incomplete lineage sorting. We use this phylogeny to establish a new higher-level classification of Gadiformes as a way of clarifying the evolutionary diversification of the order. We recognize 17 families in five suborders: Bregmacerotoidei, Gadoidei, Ranicipitoidei, Merluccioidei, and Macrouroidei (including two subclades). A time-calibrated analysis using 15 fossil taxa suggests that Gadiformes evolved \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
}{}$\sim $\end{document}79.5 Ma in the late Cretaceous, but that most extant lineages diverged after the Cretaceous–Paleogene (K-Pg) mass extinction (66 Ma). Our results reiterate the importance of examining phylogenomic analyses for evidence of systematic error that can emerge as a result of unsuitable modeling of biological factors and/or methodological issues, even when data sets are large and yield high support for phylogenetic relationships. [Branch length heterogeneity; Codfishes; commercial fish species; Cretaceous-Paleogene (K-Pg); heterotachy; systematic error; target enrichment.]
Collapse
Affiliation(s)
- Adela Roa-Varón
- National Systematics Laboratory of the National Oceanic Atmospheric Administration Fisheries Service, 10th St. & Constitution Ave. NW, Washington, DC 20560, USA.,Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, 10th St. & Constitution Ave. NW, Washington, DC 20560, USA.,Virginia Institute of Marine Science, William & Mary, Gloucester Point, VA 23062, USA
| | - Rebecca B Dikow
- Data Science Lab, Office of the Chief Information Officer, Smithsonian Institution, 10th St. & Constitution Ave. NW, Washington, DC 20560, USA
| | - Giorgio Carnevale
- Dipartimento di Scienze della Terra, Università degli Studi di Torino, Via Valperga Caluso, 35, 10125 Torino, Italy
| | - Luke Tornabene
- School of Aquatic and Fishery Sciences, University of Washington, 1122 NE Boat Street, Seattle, WA 98105, USA.,Burke Museum of Natural History and Culture, 4300 15th Ave NE, Seattle, WA 98105, USA
| | - Carole C Baldwin
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, 10th St. & Constitution Ave. NW, Washington, DC 20560, USA
| | - Chenhong Li
- Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, 999 Hucheng Ring Rd, Pudong, Shanghai, China
| | - Eric J Hilton
- Virginia Institute of Marine Science, William & Mary, Gloucester Point, VA 23062, USA
| |
Collapse
|
188
|
Elsaid R, Soares-da-Silva F, Peixoto M, Amiri D, Mackowski N, Pereira P, Bandeira A, Cumano A. Hematopoiesis: A Layered Organization Across Chordate Species. Front Cell Dev Biol 2020; 8:606642. [PMID: 33392196 PMCID: PMC7772317 DOI: 10.3389/fcell.2020.606642] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/19/2020] [Indexed: 12/12/2022] Open
Abstract
The identification of distinct waves of progenitors during development, each corresponding to a specific time, space, and function, provided the basis for the concept of a "layered" organization in development. The concept of a layered hematopoiesis was established by classical embryology studies in birds and amphibians. Recent progress in generating reliable lineage tracing models together with transcriptional and proteomic analyses in single cells revealed that, also in mammals, the hematopoietic system evolves in successive waves of progenitors with distinct properties and fate. During embryogenesis, sequential waves of hematopoietic progenitors emerge at different anatomic sites, generating specific cell types with distinct functions and tissue homing capacities. The first progenitors originate in the yolk sac before the emergence of hematopoietic stem cells, some giving rise to progenies that persist throughout life. Hematopoietic stem cell-derived cells that protect organisms against environmental pathogens follow the same sequential strategy, with subsets of lymphoid cells being only produced during embryonic development. Growing evidence indicates that fetal immune cells contribute to the proper development of the organs they seed and later ensure life-long tissue homeostasis and immune protection. They include macrophages, mast cells, some γδ T cells, B-1 B cells, and innate lymphoid cells, which have "non-redundant" functions, and early perturbations in their development or function affect immunity in the adult. These observations challenged the view that all hematopoietic cells found in the adult result from constant and monotonous production from bone marrow-resident hematopoietic stem cells. In this review, we evaluate evidence for a layered hematopoietic system across species. We discuss mechanisms and selective pressures leading to the temporal generation of different cell types. We elaborate on the consequences of disturbing fetal immune cells on tissue homeostasis and immune development later in life.
Collapse
Affiliation(s)
- Ramy Elsaid
- Unit of Lymphocytes and Immunity, Immunology Department, Institut Pasteur, Paris, France
- INSERM U1223, Paris, France
- Université de Paris, Céllule Pasteur, Paris, France
| | - Francisca Soares-da-Silva
- Unit of Lymphocytes and Immunity, Immunology Department, Institut Pasteur, Paris, France
- INSERM U1223, Paris, France
- Université de Paris, Céllule Pasteur, Paris, France
- I3S—Instituto de Investigação e Inovação em Saúde and INEB—Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
- Graduate Program in Areas of Basic and Applied Biology, Instituto de Ciências Biomeìdicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Marcia Peixoto
- Unit of Lymphocytes and Immunity, Immunology Department, Institut Pasteur, Paris, France
- INSERM U1223, Paris, France
- Université de Paris, Céllule Pasteur, Paris, France
- I3S—Instituto de Investigação e Inovação em Saúde and INEB—Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Dali Amiri
- Unit of Lymphocytes and Immunity, Immunology Department, Institut Pasteur, Paris, France
- INSERM U1223, Paris, France
- Université de Paris, Céllule Pasteur, Paris, France
| | - Nathan Mackowski
- Unit of Lymphocytes and Immunity, Immunology Department, Institut Pasteur, Paris, France
- INSERM U1223, Paris, France
- Université de Paris, Céllule Pasteur, Paris, France
| | - Pablo Pereira
- Unit of Lymphocytes and Immunity, Immunology Department, Institut Pasteur, Paris, France
- INSERM U1223, Paris, France
- Université de Paris, Céllule Pasteur, Paris, France
| | - Antonio Bandeira
- Unit of Lymphocytes and Immunity, Immunology Department, Institut Pasteur, Paris, France
- INSERM U1223, Paris, France
- Université de Paris, Céllule Pasteur, Paris, France
| | - Ana Cumano
- Unit of Lymphocytes and Immunity, Immunology Department, Institut Pasteur, Paris, France
- INSERM U1223, Paris, France
- Université de Paris, Céllule Pasteur, Paris, France
| |
Collapse
|
189
|
Behavioural Responses of the Colonial Sea Squirt Botrylloides violaceus Oka to Suspended Food Micro-Particles in Laboratory Cultures. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2020. [DOI: 10.3390/jmse8121021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Violet sea squirts are noteworthy model organisms, because they provide insights into various physiologic processes, including cell senescence, ageing, apoptosis and allorecognition. Consequently, their culture is critical to permit experimental studies. Most papers refer to short periods of rearing using various feeds, both living and conserved, missing a formal justification for their use or indications of their actual nutritional value. Here, we use two behavioural responses—the percentage of open siphons and the frequency of zooid contractions—as compared to the abundance of suspended microparticles during feeding tests, to identify feeds able to promote filter-feeding. The results will enable to formulate compound diets that maximise positive physiological responses. Our tests demonstrated that plant items, such as dry microalgae and cyanobacteria (Arthrospira platensis, commercially known as Spirulina), along with living planktonic Haptophyta (Isochrysis galbana), trigger clear positive reactions, represented by a higher frequency of zooid contractions and larger proportions of open siphons. These responses correspond to decreases in the concentrations of suspended microparticles during the experiment and indicate higher filter-feeding activity. In contrast, feeds commonly administered to colonies, such as milk powder, dried eggs and artificial plankton, triggered negative behavioural responses, and their intake was lower during the feeding trials.
Collapse
|
190
|
Cain JW, He L, Waldrop L. Modeling action potential reversals in tunicate hearts. Phys Rev E 2020; 102:062421. [PMID: 33466064 DOI: 10.1103/physreve.102.062421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 11/30/2020] [Indexed: 11/07/2022]
Abstract
Tunicates are small invertebrates which possess a unique ability to reverse flow in their hearts. Scientists have debated various theories regarding how and why flow reversals occur. Here we explore the electrophysiological basis for reversals by simulating action potential propagation in an idealized model of the tubelike tunicate heart. Using asymptotic formulas for action potential duration and conduction velocity, we propose tunicate-specific parameters for a two-current ionic model of the action potential. Then, using a kinematic model, we derive analytical criteria for reversals to occur. These criteria inform subsequent numerical simulations of action potential propagation in a fiber paced at both ends. In particular, we explore the role that variability of pacemaker firing rates plays in generating reversals, and we identify various favorable conditions for triggering retrograde propagation. Our analytical framework extends to other species; for instance, it can be used to model competition between the sinoatrial node and abnormal ectopic foci in human heart tissue.
Collapse
Affiliation(s)
- John W Cain
- Department of Mathematics, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Luran He
- Department of Mathematics, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Lindsay Waldrop
- Department of Biological Sciences, Chapman University, Orange, California 92866, USA
| |
Collapse
|
191
|
Eliso MC, Bergami E, Manfra L, Spagnuolo A, Corsi I. Toxicity of nanoplastics during the embryogenesis of the ascidian Ciona robusta (Phylum Chordata). Nanotoxicology 2020; 14:1415-1431. [PMID: 33186509 DOI: 10.1080/17435390.2020.1838650] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Nanoplastics are considered contaminants of emerging concern at the global scale. The recent evidence of their occurrence in seawater from the Mediterranean Sea calls for a thorough evaluation of their impact on marine life and in particular on vulnerable life stages such as planktonic embryos. Here, we investigated the impact of increasing nominal concentrations of 50 nm amino-modified (PS-NH2) and 60 nm carboxy-modified (PS-COOH) polystyrene nanoparticles (PS NPs) on the embryonic development of the ascidian Ciona robusta (phylum Chordata), a common benthic invertebrate living in Mediterranean coastal areas with the peculiarity of being an early chordate developmental model. A strong agglomeration of PS-COOH (approx. 1 µm) was observed in natural sea water (NSW) already at time 0, while PS-NH2 resulted still monodispersed (approx. 130 nm) but largely aggregated after 22 h with a microscale dimension similar to those negatively charged. However, their effect on C. robusta embryos development largely differed at 22 h: PS-COOH did not affect larvae phenotypes nor their development, while PS-NH2 caused a dose-dependent effect (EC50 (22 h) of 7.52 μg mL-1) with various degrees of phenotype malformations (from mild to severe) and impairment of larval swimming. Embryos (up to 30%) exposed to 15 µg mL-1 PS-NH2 resulted not developed and the majority was unable to hatch. Calculated PS-NH2 EC50 resulted higher than those available for other marine invertebrate species, suggesting a protective role of the egg envelopes surrounding C. robusta embryos toward nanoplastics exposure.
Collapse
Affiliation(s)
- Maria Concetta Eliso
- Department of Physical, Earth and Environmental Sciences, University of Siena, Siena, Italy.,Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Elisa Bergami
- Department of Physical, Earth and Environmental Sciences, University of Siena, Siena, Italy
| | - Loredana Manfra
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Naples, Italy.,Institute for Environmental Protection and Research (ISPRA), Rome, Italy
| | - Antonietta Spagnuolo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Ilaria Corsi
- Department of Physical, Earth and Environmental Sciences, University of Siena, Siena, Italy
| |
Collapse
|
192
|
Marín I. Tumor Necrosis Factor Superfamily: Ancestral Functions and Remodeling in Early Vertebrate Evolution. Genome Biol Evol 2020; 12:2074-2092. [PMID: 33210144 PMCID: PMC7674686 DOI: 10.1093/gbe/evaa140] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2020] [Indexed: 01/01/2023] Open
Abstract
The evolution of the tumor necrosis factor superfamily (TNFSF) in early vertebrates is inferred by comparing the TNFSF genes found in humans and nine fishes: three agnathans, two chondrichthyans, three actinopterygians, and the sarcopterygian Latimeria chalumnae. By combining phylogenetic and synteny analyses, the TNFSF sequences detected are classified into five clusters of genes and 24 orthology groups. A model for their evolution since the origin of vertebrates is proposed. Fifteen TNFSF genes emerged from just three progenitors due to the whole-genome duplications (WGDs) that occurred before the agnathan/gnathostome split. Later, gnathostomes not only kept most of the genes emerged in the WGDs but soon added several tandem duplicates. More recently, complex, lineage-specific patterns of duplications and losses occurred in different gnathostome lineages. In agnathan species only seven to eight TNFSF genes are detected, because this lineage soon lost six of the genes emerged in the ancestral WGDs and additional losses in both hagfishes and lampreys later occurred. The orthologs of many of these lost genes are, in mammals, ligands of death-domain-containing TNFSF receptors, indicating that the extrinsic apoptotic pathway became simplified in the agnathan lineage. From the patterns of emergence of these genes, it is deduced that both the regulation of apoptosis and the control of the NF-κB pathway that depends in modern mammals on TNFSF members emerged before the ancestral vertebrate WGDs.
Collapse
Affiliation(s)
- Ignacio Marín
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (IBV-CSIC), Valencia, Spain
| |
Collapse
|
193
|
Swann JB, Nusser A, Morimoto R, Nagakubo D, Boehm T. Retracing the evolutionary emergence of thymopoiesis. SCIENCE ADVANCES 2020; 6:6/48/eabd9585. [PMID: 33246964 PMCID: PMC7695478 DOI: 10.1126/sciadv.abd9585] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/08/2020] [Indexed: 05/09/2023]
Abstract
The onset of lymphocyte development in the vertebrate primordial thymus, about 500 million years ago, represents one of the foundational events of the emerging adaptive immune system. Here, we retrace the evolutionary trajectory of thymopoiesis, from early vertebrates to mammals, guided by members of the Foxn1/4 transcription factor gene family, which direct the differentiation of the thymic microenvironment. Molecular engineering in transgenic mice recapitulated a gene duplication event, exon replacements, and altered expression patterns. These changes predictably modified the lymphopoietic characteristics of the thymus, identifying molecular features contributing to conversion of a primordial bipotent lymphoid organ to a tissue specializing in T cell development. The phylogenetic reconstruction associates increasing efficiency of T cell generation with diminishing B cell-generating capacity of the thymus during jawed vertebrate evolution.
Collapse
Affiliation(s)
- Jeremy B Swann
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Stuebeweg 51, 79108 Freiburg, Germany
| | - Anja Nusser
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Stuebeweg 51, 79108 Freiburg, Germany
| | - Ryo Morimoto
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Stuebeweg 51, 79108 Freiburg, Germany
| | - Daisuke Nagakubo
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Stuebeweg 51, 79108 Freiburg, Germany
| | - Thomas Boehm
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Stuebeweg 51, 79108 Freiburg, Germany.
| |
Collapse
|
194
|
Peronato A, Franchi N, Loriano B. BsTLR1: A new member of the TLR family of recognition proteins from the colonial ascidian Botryllus schlosseri. FISH & SHELLFISH IMMUNOLOGY 2020; 106:967-974. [PMID: 32919053 DOI: 10.1016/j.fsi.2020.09.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 08/11/2020] [Accepted: 09/06/2020] [Indexed: 06/11/2023]
Abstract
Toll-like receptors (TLRs) represent a well-known family of conserved pattern recognition receptors the importance of which, in non-self recognition, was demonstrated in both vertebrates and invertebrates. Tunicates represent the vertebrate sister group and, as invertebrates, they rely only on innate immunity for their defence. As regards TLRs, two transcripts have been described and characterised in the solitary species Ciona intestinalis, referred to as CiTLR1 and CiTLR2. Using the Ciona TLR nucleotide sequences, we mined our available transcriptome of the colonial ascidian Botryllus schlosseri looking for similar sequences. We were able to identify a sequence, with similarity to CiTLR2 and, through in silico transduction and subsequent sequence analysis, we studied the domain content of the putative protein. The sequence, called BsTLR1, has a TIR and a transmembrane domain, four LLR and two LRR-CT domains. It is actively transcribed by both phagocytes and morula cells, the two circulating immunocyte types. In addition, we analysed bstlr1 transcription in vivo and in vitro, in different phases of the Botryllus blastogenetic cycle and under various experimental conditions. Our data show that there is a change in gene expression and mRNA location, according to the blastogenetic phase. Furthermore, we used a commercial antibody raised against the ectodomain of hTLR5 to study the possible functional role of Botryllus TLR(s). We observed that anti-hTLR5 significantly decreased in vitro phagocytosis and morula cell degranulation, two typical responses to the recognition of nonself. Collectively, our data add new information on the mechanisms of nonself recognition in a colonial ascidian.
Collapse
|
195
|
Zhang Z, Wei J, Ren R, Zhang X. Anti-virus effects of interferon regulatory factors (IRFs) identified in ascidian Ciona savignyi. FISH & SHELLFISH IMMUNOLOGY 2020; 106:273-282. [PMID: 32750546 DOI: 10.1016/j.fsi.2020.07.059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 06/11/2023]
Abstract
Interferon regulatory factors (IRFs) are key transcription factors that function in the immune system via the interferon (IFN) pathway. In the current study, we identified and characterized three IRFs (CsIRFL1, CsIRFL2, and CsIRFL3) from ascidian Ciona savignyi. Phylogenetic analysis showed that CsIRFL1 was clustered with two IRFs from Ciona robusta and shrimp IRF apart from the vertebrate IRFs, whereas CsIRFL2 and CsIRFL3 were grouped with an unnamed protein from Oikopleura dioica into a sub-branch highly identifying with the vertebrate IRF4, IRF8, and IRF9. Gene expression analysis revealed that CsIRFL1 and CsIRFL2 expressed in all the examined adult tissues (stomach, intestines, eggs, hemocytes, gonad, heart, and pharynx) and predominantly in hemocytes. However, the expression of CsIRFL3 was undetectable in the tested adult tissues. Furthermore, in situ hybridization showed that CsIRFL1 and CsIRFL2 mainly expressed in immunocytes within hemolymph, including phagocytes, macrophage-like cells, morula cells, and amoebocytes, suggesting CsIRFL1 and CsIRFL2 were involved in ascidian immune responses. We then performed LPS and poly(I:C) challenge assay and found that CsIRFL1 highly expressed in the cultured hemocytes following LPS infection for 24 h. After viral analogue poly(I:C) stimulation, the expression of CsIRFL2 was dramatically upregulated from 12 to 24 h. Meanwhile, two critical components of the IFN signaling pathways, STAT and TBK1, showed the increased expression as well after poly(I:C) induction, indicating that CsIRFL2 and IFN pathways genes were activated under the infection of viral analogue. Thus, our findings suggested that CsIRFL2 was a potential transcriptional regulatory factor that participated in regulating the ascidian anti-virus immune response.
Collapse
Affiliation(s)
- Zhaoxuan Zhang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Jiankai Wei
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Ruimei Ren
- Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China.
| | - Xiaoming Zhang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
196
|
Cellular identity and Ca 2+ signaling activity of the non-reproductive GnRH system in the Ciona intestinalis type A (Ciona robusta) larva. Sci Rep 2020; 10:18590. [PMID: 33122709 PMCID: PMC7596717 DOI: 10.1038/s41598-020-75344-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 10/12/2020] [Indexed: 12/14/2022] Open
Abstract
Tunicate larvae have a non-reproductive gonadotropin-releasing hormone (GnRH) system with multiple ligands and receptor heterodimerization enabling complex regulation. In Ciona intestinalis type A larvae, one of the gnrh genes, gnrh2, is conspicuously expressed in the motor ganglion and nerve cord, which are homologous structures to the hindbrain and spinal cord, respectively, of vertebrates. The gnrh2 gene is also expressed in the proto-placodal sensory neurons, which are the proposed homologue of vertebrate olfactory neurons. Tunicate larvae occupy a non-reproductive dispersal stage, yet the role of their GnRH system remains elusive. In this study, we investigated neuronal types of gnrh2-expressing cells in Ciona larvae and visualized the activity of these cells by fluorescence imaging using a calcium sensor protein. Some cholinergic neurons and dopaminergic cells express gnrh2, suggesting that GnRH plays a role in controlling swimming behavior. However, none of the gnrh2-expressing cells overlap with glycinergic or GABAergic neurons. A role in motor control is also suggested by a relationship between the activity of gnrh2-expressing cells and tail movements. Interestingly, gnrh2-positive ependymal cells in the nerve cord, known as a kind of glia cells, actively produced Ca2+ transients, suggesting that active intercellular signaling occurs in the glia cells of the nerve cord.
Collapse
|
197
|
Transcription Factors of the bHLH Family Delineate Vertebrate Landmarks in the Nervous System of a Simple Chordate. Genes (Basel) 2020; 11:genes11111262. [PMID: 33114624 PMCID: PMC7693978 DOI: 10.3390/genes11111262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 10/12/2020] [Indexed: 02/07/2023] Open
Abstract
Tunicates are marine invertebrates whose tadpole-like larvae feature a highly simplified version of the chordate body plan. Similar to their distant vertebrate relatives, tunicate larvae develop a regionalized central nervous system and form distinct neural structures, which include a rostral sensory vesicle, a motor ganglion, and a caudal nerve cord. The sensory vesicle contains a photoreceptive complex and a statocyst, and based on the comparable expression patterns of evolutionarily conserved marker genes, it is believed to include proto-hypothalamic and proto-retinal territories. The evolutionarily conserved molecular fingerprints of these landmarks of the vertebrate brain consist of genes encoding for different transcription factors, and of the gene batteries that they control, and include several members of the bHLH family. Here we review the complement of bHLH genes present in the streamlined genome of the tunicate Ciona robusta and their current classification, and summarize recent studies on proneural bHLH transcription factors and their expression territories. We discuss the possible roles of bHLH genes in establishing the molecular compartmentalization of the enticing nervous system of this unassuming chordate.
Collapse
|
198
|
Hotta K, Dauga D, Manni L. The ontology of the anatomy and development of the solitary ascidian Ciona: the swimming larva and its metamorphosis. Sci Rep 2020; 10:17916. [PMID: 33087765 PMCID: PMC7578030 DOI: 10.1038/s41598-020-73544-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 09/14/2020] [Indexed: 02/07/2023] Open
Abstract
Ciona robusta (Ciona intestinalis type A), a model organism for biological studies, belongs to ascidians, the main class of tunicates, which are the closest relatives of vertebrates. In Ciona, a project on the ontology of both development and anatomy is ongoing for several years. Its goal is to standardize a resource relating each anatomical structure to developmental stages. Today, the ontology is codified until the hatching larva stage. Here, we present its extension throughout the swimming larva stages, the metamorphosis, until the juvenile stages. For standardizing the developmental ontology, we acquired different time-lapse movies, confocal microscope images and histological serial section images for each developmental event from the hatching larva stage (17.5 h post fertilization) to the juvenile stage (7 days post fertilization). Combining these data, we defined 12 new distinct developmental stages (from Stage 26 to Stage 37), in addition to the previously defined 26 stages, referred to embryonic development. The new stages were grouped into four Periods named: Adhesion, Tail Absorption, Body Axis Rotation, and Juvenile. To build the anatomical ontology, 203 anatomical entities were identified, defined according to the literature, and annotated, taking advantage from the high resolution and the complementary information obtained from confocal microscopy and histology. The ontology describes the anatomical entities in hierarchical levels, from the cell level (cell lineage) to the tissue/organ level. Comparing the number of entities during development, we found two rounds on entity increase: in addition to the one occurring after fertilization, there is a second one during the Body Axis Rotation Period, when juvenile structures appear. Vice versa, one-third of anatomical entities associated with the embryo/larval life were significantly reduced at the beginning of metamorphosis. Data was finally integrated within the web-based resource "TunicAnatO", which includes a number of anatomical images and a dictionary with synonyms. This ontology will allow the standardization of data underpinning an accurate annotation of gene expression and the comprehension of mechanisms of differentiation. It will help in understanding the emergence of elaborated structures during both embryogenesis and metamorphosis, shedding light on tissue degeneration and differentiation occurring at metamorphosis.
Collapse
Affiliation(s)
- Kohji Hotta
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Kouhoku-ku, Yokohama, 223-8522, Japan.
| | - Delphine Dauga
- Bioself Communication, 28 rue de la bibliotheque, 13001, Marseille, France
| | - Lucia Manni
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35121, Padova, Italy.
| |
Collapse
|
199
|
Ferrario C, Sugni M, Somorjai IML, Ballarin L. Beyond Adult Stem Cells: Dedifferentiation as a Unifying Mechanism Underlying Regeneration in Invertebrate Deuterostomes. Front Cell Dev Biol 2020; 8:587320. [PMID: 33195242 PMCID: PMC7606891 DOI: 10.3389/fcell.2020.587320] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 09/25/2020] [Indexed: 12/15/2022] Open
Abstract
The diversity of regenerative phenomena seen in adult metazoans, as well as their underlying mechanistic bases, are still far from being comprehensively understood. Reviewing both ultrastructural and molecular data, the present work aims to showcase the increasing relevance of invertebrate deuterostomes, i.e., echinoderms, hemichordates, cephalochordates and tunicates, as invaluable models to study cellular aspects of adult regeneration. Our comparative approach suggests a fundamental contribution of local dedifferentiation -rather than mobilization of resident undifferentiated stem cells- as an important cellular mechanism contributing to regeneration in these groups. Thus, elucidating the cellular origins, recruitment and fate of cells, as well as the molecular signals underpinning tissue regrowth in regeneration-competent deuterostomes, will provide the foundation for future research in tackling the relatively limited regenerative abilities of vertebrates, with clear applications in regenerative medicine.
Collapse
Affiliation(s)
- Cinzia Ferrario
- Department of Environmental Science and Policy, University of Milan, Milan, Italy
- Center for Complexity and Biosystems, Department of Physics, University of Milan, Milan, Italy
| | - Michela Sugni
- Department of Environmental Science and Policy, University of Milan, Milan, Italy
- Center for Complexity and Biosystems, Department of Physics, University of Milan, Milan, Italy
- GAIA 2050 Center, Department of Environmental Science and Policy, University of Milan, Milan, Italy
| | - Ildiko M. L. Somorjai
- The Willie Russel Laboratories, Biomedical Sciences Research Complex, North Haugh, University of St Andrews, St Andrews, United Kingdom
| | | |
Collapse
|
200
|
Bracegirdle J, Keyzers RA. Marine-derived Polyaromatic Butenolides - Isolation, Synthesis and Biological Evaluations. Curr Pharm Des 2020; 26:4351-4361. [DOI: 10.2174/1381612826666200518110617] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 04/16/2020] [Indexed: 11/22/2022]
Abstract
Marine invertebrates, especially tunicates, are a lucrative resource for the discovery of new lead compounds
for the development of clinically utilized drugs. This review describes the isolation, synthesis and biological
activities of several classes of marine-derived butenolide natural products, namely rubrolides and related
cadiolides and prunolides. All relevant studies pertaining to these compounds up to the end of 2019 are included.
Collapse
Affiliation(s)
- Joe Bracegirdle
- School of Chemical and Physical Sciences, and Centre for Biodiscovery, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Robert A. Keyzers
- School of Chemical and Physical Sciences, and Centre for Biodiscovery, Victoria University of Wellington, Wellington 6012, New Zealand
| |
Collapse
|