151
|
Abstract
B-Raf is a protein kinase participating to the regulation of many biological processes in cells. Several studies have demonstrated that this protein is frequently upregulated in human cancers, especially when it bears activating mutations. In the last years, few ATP-competitive inhibitors of B-Raf have been marketed for the treatment of melanoma and are currently under clinical evaluation on a variety of other types of cancer. Although the introduction of drugs targeting B-Raf has provided significant advances in cancer treatment, responses to ATP-competitive inhibitors remain limited, mainly due to selectivity issues, side effects, narrow therapeutic windows, and the insurgence of drug resistance. Impressive research efforts have been made so far towards the identification of novel ATP-competitive modulators with improved efficacy against cancers driven by mutant Raf monomers and dimers, some of them showing good promises. However, several limitations could still be envisioned for these compounds, according to literature data. Besides, increased attentions have arisen around approaches based on the design of allosteric modulators, polypharmacology, proteolysis targeting chimeras (PROTACs) and drug repurposing for the targeting of B-Raf proteins. The design of compounds acting through such innovative mechanisms is rather challenging. However, valuable therapeutic opportunities can be envisioned on these drugs, as they act through innovative mechanisms in which limitations typically observed for approved ATP-competitive B-Raf inhibitors are less prone to emerge. In this article, current approaches adopted for the design of non-ATP competitive inhibitors targeting B-Raf are described, discussing also on the possibilities, ligands acting through such innovative mechanisms could provide for the obtainment of more effective therapies.
Collapse
Affiliation(s)
- Luca Pinzi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Giuseppe Campi 103, 41125, Modena, Italy
| |
Collapse
|
152
|
Phase I Targeted Combination Trial of Sorafenib and GW5074 in Patients with Advanced Refractory Solid Tumors. J Clin Med 2022; 11:jcm11082183. [PMID: 35456276 PMCID: PMC9031611 DOI: 10.3390/jcm11082183] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/07/2022] [Accepted: 04/12/2022] [Indexed: 12/10/2022] Open
Abstract
Background: Combination therapy with the administration of GW5074 and sorafenib significantly induced necrotic death in various cancer cells in vivo, as well as prolonging the survival of an animal disease model due to significant suppression of the primary and metastatic lesions. We sought to determine the safety, tolerability, pharmacokinetics, and anti-tumor activity of this co-administration therapy in patients with refractory advanced solid cancers. Methods: Twelve patients were enrolled. Eligible subjects received different dosages of GW5074 in one of the three dose cohorts (Cohort 1: 750 mg daily, Cohort 2: 1500 mg daily, Cohort 3: 750 mg twice daily) plus 200 mg of sorafenib daily to determine the maximum tolerated dose (MTD) and dose limiting toxicities (DLT) at phase 1. Furthermore, the expression level of phosphorylated DAPKS308 in primary tumor, metastatic tumor, and circulating tumor cells (CTC) were evaluated to investigate the relationship between biomarker and the efficacy profile. Results: Among the 12 enrolled patients in this phase 1 trial, most adverse effects (AE) were grade 1, with two being grade 3. The most frequent AE of all grades were weight loss and hypertension, occurring in 16.7% of participants. Eight patients (66.7%) had the disease controlled by receiving co-administration therapy of GW5074 and sorafenib. GW5074 was found to have poor absorption, as increasing the dosage did not result in a significant increase in the bioavailability of GW5074 in subjects. Furthermore, the expression level of phosphorylated DAPKS308 in tumor and CTCs were correlated with the disease control rate (DCR) and duration of response (DOR). Conclusions: Co-administration therapy of GW5074 and sorafenib demonstrated a favorable safety profile and showed anti-tumor activity in a variety of tumor types. However, the solubility of GW5074 is not satisfactory. A future phase 2a trial will be carried out using the new salted form that has been proven to be more effective.
Collapse
|
153
|
Negri F, Bottarelli L, de’Angelis GL, Gnetti L. KRAS: A Druggable Target in Colon Cancer Patients. Int J Mol Sci 2022; 23:ijms23084120. [PMID: 35456940 PMCID: PMC9027058 DOI: 10.3390/ijms23084120] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 12/18/2022] Open
Abstract
Mutations in KRAS are among the most frequent aberrations in cancer, including colon cancer. KRAS direct targeting is daunting due to KRAS protein resistance to small molecule inhibition. Moreover, its elevated affinity to cellular guanosine triphosphate (GTP) has made the design of specific drugs challenging. Indeed, KRAS was considered ‘undruggable’. KRASG12C is the most commonly mutated variant of KRAS in non-small cell lung cancer. Currently, the achievements obtained with covalent inhibitors of this variant have given the possibility to assess the best therapeutic approach to KRAS-driven tumors. Mutation-related biochemical assets and the tissue of origin are expected to influence responses to treatment. Further attempts to obtain mutant-specific KRAS (KRASG12C) switch-II covalent inhibitors are ongoing and the results are promising. Drugs targeted to block KRAS effector pathways could be combined with direct KRAS inhibitors, immunotherapy or T cell-targeting approaches in KRAS-mutant tumors. The development of valuable combination regimens will be essential against potential mechanisms of resistance that may arise during treatment.
Collapse
Affiliation(s)
- Francesca Negri
- Gastroenterology and Endoscopy Unit, Azienda Ospedaliero-Universitaria di Parma, 43126 Parma, Italy;
- Correspondence:
| | - Lorena Bottarelli
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy;
| | - Gian Luigi de’Angelis
- Gastroenterology and Endoscopy Unit, Azienda Ospedaliero-Universitaria di Parma, 43126 Parma, Italy;
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy;
| | - Letizia Gnetti
- Pathology Unit, Azienda Ospedaliero-Universitaria di Parma, 43126 Parma, Italy;
| |
Collapse
|
154
|
Narkar AR, Tong Z, Soman P, Henderson JH. Smart biomaterial platforms: Controlling and being controlled by cells. Biomaterials 2022; 283:121450. [PMID: 35247636 PMCID: PMC8977253 DOI: 10.1016/j.biomaterials.2022.121450] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/23/2022] [Accepted: 02/26/2022] [Indexed: 02/07/2023]
Abstract
Across diverse research and application areas, dynamic functionality-such as programmable changes in biochemical property, in mechanical property, or in microscopic or macroscopic architecture-is an increasingly common biomaterials design criterion, joining long-studied criteria such as cytocompatibility and biocompatibility, drug release kinetics, and controlled degradability or long-term stability in vivo. Despite tremendous effort, achieving dynamic functionality while simultaneously maintaining other desired design criteria remains a significant challenge. Reversible dynamic functionality, rather than one-time or one-way dynamic functionality, is of particular interest but has proven especially challenging. Such reversible functionality could enable studies that address the current gap between the dynamic nature of in vivo biological and biomechanical processes, such as cell traction, cell-extracellular matrix (ECM) interactions, and cell-mediated ECM remodeling, and the static nature of the substrates and ECM constructs used to study the processes. This review assesses dynamic materials that have traditionally been used to control cell activity and static biomaterial constructs, experimental and computational techniques, with features that may inform continued advances in reversible dynamic materials. Taken together, this review presents a perspective on combining the reversibility of smart materials and the in-depth dynamic cell behavior probed by static polymers to design smart bi-directional ECM platforms that can reversibly and repeatedly communicate with cells.
Collapse
Affiliation(s)
- Ameya R Narkar
- BioInspired Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, NY, 13244, United States; Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY, 13244, United States.
| | - Zhuoqi Tong
- BioInspired Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, NY, 13244, United States; Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY, 13244, United States.
| | - Pranav Soman
- BioInspired Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, NY, 13244, United States; Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY, 13244, United States.
| | - James H Henderson
- BioInspired Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, NY, 13244, United States; Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY, 13244, United States.
| |
Collapse
|
155
|
Al Shahrani M, Rajagopalan P, Abohassan M, Alshahrani M, Alraey Y. CB-RAF600E-1 exerts efficacy in vemurafenib-resistant and non-resistant-melanoma cells via dual inhibition of RAS/RAF/MEK/ERK and PI3K/Akt signaling pathways. Saudi J Biol Sci 2022; 29:103285. [PMID: 35592740 PMCID: PMC9112009 DOI: 10.1016/j.sjbs.2022.103285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 03/21/2022] [Accepted: 04/17/2022] [Indexed: 11/29/2022] Open
Abstract
Background and Aim Predicting novel dual inhibitors to combat adverse effects such as the development of resistance to vemurafenib in melanoma treatment due to the reactivation of MAPK and PI3K/AKT signaling pathways is studied to help in reversal of cancer symptoms. Reversal of cancer symptoms in melanoma associated with vemurafenib resistance is driven by reactivation of MAPK and PI3K/Akt signaling pathways. Novel dual inhibitors targeting these proteins would be beneficial to combat resistance. Methods High-throughput virtual screening of the ChemBridge library against B-RAFV600E and Akt was performed using an automated protocol with the AutoDock VINA program. Luminescence and time-resolved fluorescence kits were used to measure enzyme activities. The MTT assay was used to determine proliferation in normal and vemurafenib-resistant A375 cells. Flow cytometry was used to examine apoptosis, cell cycle, and phosphorylation of ERK/Akt signaling pathway. Results High-throughput screening from the ChemBridge library identified 15 compounds with high binding energy towards B-RAFV600E; among these, CB-RAF600E-1 had the highest ΔGbinding score −11.9 kcal/mol. The compound also had a high affinity towards Akt, with a ΔGbinding score of −11.5 kcal/mol. CB-RAF600E-1 dose-dependently inhibited both B-RAFV600E and Akt with IC50 values of 635 nM and 154.3 nM, respectively. The compound effectively controlled the proliferations of normal and vemurafenib-resistant A375 cells, with GI50 values of 222.3 nM and 230.5 nM, respectively. A dose-dependent increase in the sub G0/G1 phase of the cell cycle and total apoptosis was observed following compound treatment in both normal and vemurafenib-resistant melanoma cells. Treatment with CB-RAF600E-1 decreased the pERK/pAkt dual-positive populations in normal and vemurafenib-resistant A375 cells. Conclusion CB-RAF600E-1, identified as a novel dual inhibitor effective against normal and vemurafenib-resistant melanoma cells, requires further attention for development as an effective chemotherapeutic agent for melanoma management.
Collapse
Affiliation(s)
- Mesfer Al Shahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
- Corresponding author.
| | - Prasanna Rajagopalan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
- Central Research Laboratory, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Mohammad Abohassan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Mohammad Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Yasser Alraey
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
156
|
Tham M, Stark HJ, Jauch A, Harwood C, Pavez Lorie E, Boukamp P. Adverse Effects of Vemurafenib on Skin Integrity: Hyperkeratosis and Skin Cancer Initiation Due to Altered MEK/ERK-Signaling and MMP Activity. Front Oncol 2022; 12:827985. [PMID: 35174094 PMCID: PMC8842679 DOI: 10.3389/fonc.2022.827985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/03/2022] [Indexed: 11/24/2022] Open
Abstract
The BRAF inhibitor vemurafenib, approved for treating patients with BRAF V600E-mutant and unresectable or metastatic melanomas, rapidly induces cutaneous adverse events, including hyperkeratotic skin lesions and cutaneous squamous cell carcinomas (cSCC). To determine, how vemurafenib would provoke these adverse events, we utilized long-term in vitro skin equivalents (SEs) comprising epidermal keratinocytes and dermal fibroblasts in their physiological environment. We inserted keratinocytes with different genetic background [normal keratinocytes: NHEK, HaCaT (p53/mut), and HrasA5 (p53/mut+Hras/mut)] to analyze effects depending on the stage of carcinogenesis. We now show that vemurafenib activates MEK-ERK signaling in both, keratinocytes, and fibroblasts in vitro and in the in vivo-like SEs. As a consequence, vemurafenib does not provide a growth advantage but leads to a differentiation phenotype, causing accelerated differentiation and hyperkeratosis in the NHEK and normalized stratification and cornification in the transformed keratinocytes. Although all keratinocytes responded very similarly to vemurafenib in their expression profile, particularly with a significant induction of MMP1 and MMP3, only the HrasA5 cells revealed a vemurafenib-dependent pathophysiological shift to tumor progression, i.e., the initiation of invasive growth. This was shown by increased proteolytic activity allowing for penetration of the basement membrane and invasion into the disrupted underlying matrix. Blocking MMP activity, by the addition of ilomastat, prevented invasion with all corresponding degradative activities, thus substantiating that the RAS-RAF-MEK-ERK/MMP axis is the most important molecular basis for the rapid switch towards tumorigenic conversion of the HrasA5 keratinocytes upon vemurafenib treatment. Finally, cotreatment with vemurafenib and the MEK inhibitor cobimetinib prevented MEK-ERK hyperactivation and with that abolished both, the epidermal differentiation and the tumor invasion phenotype. This suggests that both cutaneous adverse events are under direct control of vemurafenib-dependent MEK-ERK hyperactivation and confirms the dependence on preexisting genetic alterations of the skin keratinocytes that determine the basis towards induction of tumorigenic progression.
Collapse
Affiliation(s)
- Marius Tham
- Department of Genetics of Skin Carcinogenesis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Hans-Jürgen Stark
- Department of Applied Tumor Biology, Institute of Pathology, University of Heidelberg, Heidelberg, Germany
| | - Anna Jauch
- Institute of Human Genetics, University Heidelberg, Heidelberg, Germany
| | - Catherine Harwood
- Department of Dermatology, Royal London Hospital, Barts Health NHS Trust, London, United Kingdom.,Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | | | - Petra Boukamp
- Department of Genetics of Skin Carcinogenesis, German Cancer Research Center (DKFZ), Heidelberg, Germany.,IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| |
Collapse
|
157
|
Abstract
Activating mutations in RAS genes are the most common genetic driver of human cancers. Yet, drugging this small GTPase has proven extremely challenging and therapeutic strategies targeting these recurrent alterations have long had limited success. To circumvent this difficulty, research has focused on the molecular dissection of the RAS pathway to gain a more-precise mechanistic understanding of its regulation, with the hope to identify new pharmacological approaches. Here, we review the current knowledge on the (dys)regulation of the RAS pathway, using melanoma as a paradigm. We first present a map of the main proteins involved in the RAS pathway, highlighting recent insights into their molecular roles and diverse mechanisms of regulation. We then overview genetic data pertaining to RAS pathway alterations in melanoma, along with insight into other cancers, that inform the biological function of members of the pathway. Finally, we describe the clinical implications of RAS pathway dysregulation in melanoma, discuss past and current approaches aimed at drugging the RAS pathway, and outline future opportunities for therapeutic development. Summary: This Review describes the molecular regulation of the RAS pathway, presents the clinical consequences of its pathological activation in human cancer, and highlights recent advances towards its therapeutic inhibition, using melanoma as an example.
Collapse
Affiliation(s)
- Amira Al Mahi
- Centre de Recherche en Cancérologie de Lyon, Centre Léon Bérard, INSERM U1052 CNRS UMR5286, Tumor Escape, Resistance and Immunity Department, 69008 Lyon, France
| | - Julien Ablain
- Centre de Recherche en Cancérologie de Lyon, Centre Léon Bérard, INSERM U1052 CNRS UMR5286, Tumor Escape, Resistance and Immunity Department, 69008 Lyon, France
| |
Collapse
|
158
|
Tang CP, Clark O, Ferrarone JR, Campos C, Lalani AS, Chodera JD, Intlekofer AM, Elemento O, Mellinghoff IK. GCN2 kinase activation by ATP-competitive kinase inhibitors. Nat Chem Biol 2022; 18:207-215. [PMID: 34949839 PMCID: PMC9549920 DOI: 10.1038/s41589-021-00947-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 10/28/2021] [Indexed: 12/17/2022]
Abstract
Small-molecule kinase inhibitors represent a major group of cancer therapeutics, but tumor responses are often incomplete. To identify pathways that modulate kinase inhibitor response, we conducted a genome-wide knockout (KO) screen in glioblastoma cells treated with the pan-ErbB inhibitor neratinib. Loss of general control nonderepressible 2 (GCN2) kinase rendered cells resistant to neratinib, whereas depletion of the GADD34 phosphatase increased neratinib sensitivity. Loss of GCN2 conferred neratinib resistance by preventing binding and activation of GCN2 by neratinib. Several other Food and Drug Administration (FDA)-approved inhibitors, such erlotinib and sunitinib, also bound and activated GCN2. Our results highlight the utility of genome-wide functional screens to uncover novel mechanisms of drug action and document the role of the integrated stress response (ISR) in modulating the response to inhibitors of oncogenic kinases.
Collapse
Affiliation(s)
- Colin P Tang
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Pharmacology Program, Weill Cornell Medicine, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine and Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Owen Clark
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Carl Campos
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - John D Chodera
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Andrew M Intlekofer
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Olivier Elemento
- Caryl and Israel Englander Institute for Precision Medicine and Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
- Physics and Biophysics Program, Weill Cornell Medicine, New York, NY, USA
| | - Ingo K Mellinghoff
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Pharmacology Program, Weill Cornell Medicine, New York, NY, USA.
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
159
|
Gaggianesi M, Mangiapane LR, Modica C, Pantina VD, Porcelli G, Di Franco S, Lo Iacono M, D’Accardo C, Verona F, Pillitteri I, Turdo A, Veschi V, Brancato OR, Muratore G, Pistone G, Bongiorno MR, Todaro M, De Maria R, Stassi G. Dual Inhibition of Myc Transcription and PI3K Activity Effectively Targets Colorectal Cancer Stem Cells. Cancers (Basel) 2022; 14:cancers14030673. [PMID: 35158939 PMCID: PMC8833549 DOI: 10.3390/cancers14030673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/16/2021] [Accepted: 01/25/2022] [Indexed: 12/04/2022] Open
Abstract
Simple Summary Compelling evidence has shown that cancer stem cells (CSCs) are responsible for high resistance to conventional anti-cancer therapies. Here, we demonstrate that the tumor microenvironment protects CR-CSCs from EGFR/HER2, BRAF and PI3K targeting, promoting CD44v6 and Myc expression. Alternatively, as a substitution for HER2 and BRAF, the Myc transcription inhibitor can overcome the protective effects of microenvironmental cytokines, impairing the survival of CR-CSCs. These data highlight the targeting of Myc and PI3K activity as a novel therapeutic strategy against advanced colorectal cancer. Abstract Despite advances in the curative approach, the survival rate of advanced colorectal cancer (CRC) patients is still poor, which is likely due to the emergence of cancer cell clones resistant to the available therapeutic options. We have already shown that CD44v6-positive CRC stem cells (CR-CSCs) are refractory toward standard anti-tumor therapeutic agents due to the activation of the PI3K pathway together with high HER2 expression levels. Tumor microenvironmental cytokines confer resistance to CR-CSCs against HER2/PI3K targeting by enhancing activation of the MAPK pathway. Here, we show that the CSC compartment, spared by BRAF inhibitor-based targeted therapy, is associated with increased expression levels of CD44v6 and Myc and retains boosted clonogenic activity along with residual tumorigenic potential. Inhibition of Myc transcription, downstream of the MAPK cascade components, and PI3K pathway activity was able to overcome the protective effects of microenvironmental cytokines, affecting the survival and the clonogenic activity of CR-CSCs, regardless of their mutational background. Likewise, the double targeting induced stabilization of mouse tumor avatars. Altogether, these data outline the rationale for dual kinase targeting of CR-CSCs to prevent their adaptive response, which would lead to disease progression.
Collapse
Affiliation(s)
- Miriam Gaggianesi
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, 90127 Palermo, Italy; (M.G.); (C.M.); (V.D.P.); (S.D.F.); (M.L.I.); (I.P.); (V.V.); (O.R.B.); (G.M.)
| | - Laura Rosa Mangiapane
- Department of Health Promotion Sciences, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy; (L.R.M.); (G.P.); (C.D.); (F.V.); (A.T.); (G.P.); (M.R.B.); (M.T.)
| | - Chiara Modica
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, 90127 Palermo, Italy; (M.G.); (C.M.); (V.D.P.); (S.D.F.); (M.L.I.); (I.P.); (V.V.); (O.R.B.); (G.M.)
| | - Vincenzo Davide Pantina
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, 90127 Palermo, Italy; (M.G.); (C.M.); (V.D.P.); (S.D.F.); (M.L.I.); (I.P.); (V.V.); (O.R.B.); (G.M.)
| | - Gaetana Porcelli
- Department of Health Promotion Sciences, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy; (L.R.M.); (G.P.); (C.D.); (F.V.); (A.T.); (G.P.); (M.R.B.); (M.T.)
| | - Simone Di Franco
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, 90127 Palermo, Italy; (M.G.); (C.M.); (V.D.P.); (S.D.F.); (M.L.I.); (I.P.); (V.V.); (O.R.B.); (G.M.)
| | - Melania Lo Iacono
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, 90127 Palermo, Italy; (M.G.); (C.M.); (V.D.P.); (S.D.F.); (M.L.I.); (I.P.); (V.V.); (O.R.B.); (G.M.)
| | - Caterina D’Accardo
- Department of Health Promotion Sciences, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy; (L.R.M.); (G.P.); (C.D.); (F.V.); (A.T.); (G.P.); (M.R.B.); (M.T.)
| | - Francesco Verona
- Department of Health Promotion Sciences, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy; (L.R.M.); (G.P.); (C.D.); (F.V.); (A.T.); (G.P.); (M.R.B.); (M.T.)
| | - Irene Pillitteri
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, 90127 Palermo, Italy; (M.G.); (C.M.); (V.D.P.); (S.D.F.); (M.L.I.); (I.P.); (V.V.); (O.R.B.); (G.M.)
| | - Alice Turdo
- Department of Health Promotion Sciences, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy; (L.R.M.); (G.P.); (C.D.); (F.V.); (A.T.); (G.P.); (M.R.B.); (M.T.)
| | - Veronica Veschi
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, 90127 Palermo, Italy; (M.G.); (C.M.); (V.D.P.); (S.D.F.); (M.L.I.); (I.P.); (V.V.); (O.R.B.); (G.M.)
| | - Ornella Roberta Brancato
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, 90127 Palermo, Italy; (M.G.); (C.M.); (V.D.P.); (S.D.F.); (M.L.I.); (I.P.); (V.V.); (O.R.B.); (G.M.)
| | - Giampaolo Muratore
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, 90127 Palermo, Italy; (M.G.); (C.M.); (V.D.P.); (S.D.F.); (M.L.I.); (I.P.); (V.V.); (O.R.B.); (G.M.)
| | - Giuseppe Pistone
- Department of Health Promotion Sciences, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy; (L.R.M.); (G.P.); (C.D.); (F.V.); (A.T.); (G.P.); (M.R.B.); (M.T.)
| | - Maria Rita Bongiorno
- Department of Health Promotion Sciences, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy; (L.R.M.); (G.P.); (C.D.); (F.V.); (A.T.); (G.P.); (M.R.B.); (M.T.)
| | - Matilde Todaro
- Department of Health Promotion Sciences, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy; (L.R.M.); (G.P.); (C.D.); (F.V.); (A.T.); (G.P.); (M.R.B.); (M.T.)
| | - Ruggero De Maria
- Dipartimento di Medicina e Chirurgia Traslazionale, Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
- Fondazione Policlinico A Gemelli IRCCS, 00168 Roma, Italy
- Correspondence: (R.D.M.); (G.S.); Tel.: +39-06-3015-4914 (R.D.M.); +39-091-2389-0813 (G.S.)
| | - Giorgio Stassi
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, 90127 Palermo, Italy; (M.G.); (C.M.); (V.D.P.); (S.D.F.); (M.L.I.); (I.P.); (V.V.); (O.R.B.); (G.M.)
- Correspondence: (R.D.M.); (G.S.); Tel.: +39-06-3015-4914 (R.D.M.); +39-091-2389-0813 (G.S.)
| |
Collapse
|
160
|
Liu T, Zhou L, Xiao Y, Andl T, Zhang Y. BRAF Inhibitors Reprogram Cancer-Associated Fibroblasts to Drive Matrix Remodeling and Therapeutic Escape in Melanoma. Cancer Res 2022; 82:419-432. [DOI: 10.1158/0008-5472.can-21-0614] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 10/05/2021] [Accepted: 11/24/2021] [Indexed: 11/16/2022]
|
161
|
Krstic J, Reinisch I, Schindlmaier K, Galhuber M, Riahi Z, Berger N, Kupper N, Moyschewitz E, Auer M, Michenthaler H, Nössing C, Depaoli MR, Ramadani-Muja J, Usluer S, Stryeck S, Pichler M, Rinner B, Deutsch AJA, Reinisch A, Madl T, Chiozzi RZ, Heck AJR, Huch M, Malli R, Prokesch A. Fasting improves therapeutic response in hepatocellular carcinoma through p53-dependent metabolic synergism. SCIENCE ADVANCES 2022; 8:eabh2635. [PMID: 35061544 PMCID: PMC8782451 DOI: 10.1126/sciadv.abh2635] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 11/29/2021] [Indexed: 05/03/2023]
Abstract
Cancer cells voraciously consume nutrients to support their growth, exposing metabolic vulnerabilities that can be therapeutically exploited. Here, we show in hepatocellular carcinoma (HCC) cells, xenografts, and patient-derived organoids that fasting improves sorafenib efficacy and acts synergistically to sensitize sorafenib-resistant HCC. Mechanistically, sorafenib acts noncanonically as an inhibitor of mitochondrial respiration, causing resistant cells to depend on glycolysis for survival. Fasting, through reduction in glucose and impeded AKT/mTOR signaling, prevents this Warburg shift. Regulating glucose transporter and proapoptotic protein expression, p53 is necessary and sufficient for the sorafenib-sensitizing effect of fasting. p53 is also crucial for fasting-mediated improvement of sorafenib efficacy in an orthotopic HCC mouse model. Together, our data suggest fasting and sorafenib as rational combination therapy for HCC with intact p53 signaling. As HCC therapy is currently severely limited by resistance, these results should instigate clinical studies aimed at improving therapy response in advanced-stage HCC.
Collapse
Affiliation(s)
- Jelena Krstic
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Cell Biology, Histology and Embryology, Medical University of Graz, 8010 Graz, Austria
| | - Isabel Reinisch
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Cell Biology, Histology and Embryology, Medical University of Graz, 8010 Graz, Austria
| | - Katharina Schindlmaier
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Cell Biology, Histology and Embryology, Medical University of Graz, 8010 Graz, Austria
| | - Markus Galhuber
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Cell Biology, Histology and Embryology, Medical University of Graz, 8010 Graz, Austria
| | - Zina Riahi
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Cell Biology, Histology and Embryology, Medical University of Graz, 8010 Graz, Austria
| | - Natascha Berger
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Cell Biology, Histology and Embryology, Medical University of Graz, 8010 Graz, Austria
- Department of Obstetrics and Gynecology, Medical University of Graz, 8036 Graz, Austria
| | - Nadja Kupper
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Cell Biology, Histology and Embryology, Medical University of Graz, 8010 Graz, Austria
| | - Elisabeth Moyschewitz
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Cell Biology, Histology and Embryology, Medical University of Graz, 8010 Graz, Austria
| | - Martina Auer
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Cell Biology, Histology and Embryology, Medical University of Graz, 8010 Graz, Austria
| | - Helene Michenthaler
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Cell Biology, Histology and Embryology, Medical University of Graz, 8010 Graz, Austria
| | - Christoph Nössing
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Cell Biology, Histology and Embryology, Medical University of Graz, 8010 Graz, Austria
- Cancer Research UK Beatson Institute, Garscube Estate, Glasgow, UK
| | - Maria R. Depaoli
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
| | - Jeta Ramadani-Muja
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
| | - Sinem Usluer
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
| | - Sarah Stryeck
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
- Institute of Interactive Systems and Data Science, Graz University of Technology, 8010 Graz, Austria
- Know-Center GmbH, 8010 Graz, Austria
| | - Martin Pichler
- Division of Clinical Oncology, Department of Medicine, Comprehensive Cancer Center Graz, Medical University of Graz, 8036 Graz, Austria
| | - Beate Rinner
- Department for Biomedical Research, Medical University of Graz, Graz, Austria
| | - Alexander J. A. Deutsch
- Division of Hematology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Andreas Reinisch
- Division of Hematology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria
- Division of Hematology, Department of Blood Group Serology and Transfusion Medicine Medical University of Graz, 8036 Graz, Austria
| | - Tobias Madl
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria
| | - Riccardo Zenezini Chiozzi
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, 3584CH Utrecht, Netherlands
- Netherlands Proteomics Center, 3584CH Utrecht, Netherlands
| | - Albert J. R. Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, 3584CH Utrecht, Netherlands
- Netherlands Proteomics Center, 3584CH Utrecht, Netherlands
| | - Meritxell Huch
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Roland Malli
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria
| | - Andreas Prokesch
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Cell Biology, Histology and Embryology, Medical University of Graz, 8010 Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria
| |
Collapse
|
162
|
Hostettler KE, Casañas Quintana E, Tamm M, Savic Prince S, Sommer G, Chen WC, Nordmann TM, Lundberg P, Stehle GT, Daikeler T. Case Report: Opposite Effects of BRAF Inhibition on Closely Related Clonal Myeloid Disorders. Front Oncol 2022; 11:779523. [PMID: 35004300 PMCID: PMC8739218 DOI: 10.3389/fonc.2021.779523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 11/23/2021] [Indexed: 01/18/2023] Open
Abstract
Langerhans cell histiocytosis (LCH) commonly co-occurs with additional myeloid malignancies. The introduction of targeted therapies, blocking “driver” mutations (e.g., BRAF V600E), enabled long-term remission in patients with LCH. The effect of BRAF inhibition on the course and the prognosis of co-existing clonal hematopoiesis is poorly understood. We report on a 61-year-old patient with systemic BRAF V600E positive LCH and concomitant BRAF wild-type (wt) clonal cytopenia of unknown significance (CCUS) with unfavorable somatic mutations including loss of function (LOF) of NF1. While manifestations of LCH improved after blocking BRAF by dabrafenib treatment, the BRAF wt CCUS progressed to acute myeloid leukemia (AML). The patient eventually underwent successful allogeneic hematopoietic stem cell transplantation (HSCT). We performed an in-depth analyzes of the clonal relationship of CCUS and the tissue affected by LCH by using next-generation sequencing (NGS). The findings suggest activation of the mitogen-activated protein (MAP) kinase pathway in the CCUS clone due to the presence of the RAS deregulating NF1 mutations and wt BRAF, which is reportedly associated with paradoxical activation of CRAF and hence MEK. Patients with LCH should be carefully screened for potential additional clonal hematological diseases. NGS can help predict outcome of the latter in case of BRAF inhibition. Blocking the MAP kinase pathway further downstream (e.g., by using MEK inhibitors) or allogeneic HSCT may be options for patients at risk.
Collapse
Affiliation(s)
- Katrin E Hostettler
- Clinics of Respiratory Medicine, University Hospital Basel, Basel, Switzerland
| | | | - Michael Tamm
- Clinics of Respiratory Medicine, University Hospital Basel, Basel, Switzerland
| | - Spasenija Savic Prince
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Gregor Sommer
- Clinic of Radiology and Nuclear Medicine, University Hospital of Basel, Basel, Switzerland
| | - Wei-Chih Chen
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | | | - Pontus Lundberg
- Division of Hematology, University Hospital of Basel, Basel, Switzerland
| | | | - Thomas Daikeler
- Department of Rheumatology, University Hospital of Basel, Basel, Switzerland
| |
Collapse
|
163
|
Wang Z, Huang W, Zhou K, Ren X, Ding K. Targeting the Non-Catalytic Functions: a New Paradigm for Kinase Drug Discovery? J Med Chem 2022; 65:1735-1748. [PMID: 35000385 DOI: 10.1021/acs.jmedchem.1c01978] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Protein kinases have been highly fruitful targets for cancer drug discovery in the past two decades, while most of these drugs bind to the "adenosine triphosphate (ATP)-site" and inhibit kinase catalytic activity. Recently, accumulated evidence suggests that kinases possess functions beyond catalysis through their scaffolds, and the scaffolding functions could play critical roles in multiple cellular signaling and cell fate controls. Small molecules modulating the noncatalytic functions of kinases are rarely reported but emerge as new promising therapeutic strategies for various diseases. Herein, we summarize the characterized noncatalytic functions of kinases, and highlight the recent progress on developing small-molecule modulators of the noncatalytic functions of kinases. Mechanisms and characteristics of different kinds of modulators are also discussed. It is also speculated that targeting the noncatalytic functions would represent a new direction for kinase-based drug discovery.
Collapse
Affiliation(s)
- Zhen Wang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, #345 Ling Ling Road, Shanghai 200032, People's Republic of China
| | - Weixue Huang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, #345 Ling Ling Road, Shanghai 200032, People's Republic of China
| | - Kaijie Zhou
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, #345 Ling Ling Road, Shanghai 200032, People's Republic of China
| | - Xiaomei Ren
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MoE) of People's Republic of China, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, People's Republic of China
| | - Ke Ding
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, #345 Ling Ling Road, Shanghai 200032, People's Republic of China.,International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MoE) of People's Republic of China, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, People's Republic of China.,The First Affiliated Hospital (Huaqiao Hospital), Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, People's Republic of China.,Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, People's Republic of China
| |
Collapse
|
164
|
Khan PS, Rajesh P, Rajendra P, Chaskar MG, Rohidas A, Jaiprakash S. Recent advances in B-RAF inhibitors as anticancer agents. Bioorg Chem 2022; 120:105597. [PMID: 35033817 DOI: 10.1016/j.bioorg.2022.105597] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 12/23/2021] [Accepted: 01/01/2022] [Indexed: 12/24/2022]
Abstract
The significance of B-RAF in the promotion of cell proliferation and motility was explored by the researchers in the past. However, in 2002, several researchers found that mutation in B-RAF leads to cancer. Extensive research on B-RAF mutations suggested B-RAF V600E mutation as a critical predictive, prognostic and diagnostic biomarker in numerous cancers such as melanoma, thyroid, and colorectal cancers. Based on the significance of B-RAF kinase and associated mutation, the present review will give a brief overview about structure and functions of B-RAF enzyme, its role in different types of cancer, available drugs in the market for B-RAF inhibition, chemical classification and SAR studies of reported investigational B-RAF inhibitors in patented and non-patented literature during last decade. The SAR provided for all the reported inhibitors will help researchers to gain knowledge about the possible structural features required for selective B-RAF inhibition. This insightful analysis of B-RAF will certainly help researchers to develop novel anticancer agents in the future.
Collapse
Affiliation(s)
- Pathan Shahebaaz Khan
- Y. B. Chavan College of Pharmacy, Dr. Rafiq Zakaria Campus, Rauza Baugh, Aurangabad, MS 431001, India
| | - Patil Rajesh
- Sinhgad Technical Education Society's, Smt. Kashibai Navale College of Pharmacy, Kondhwa (Bk), Pune, India
| | - Patil Rajendra
- Department of Biotechnology, Savitribai Phule Pune University, Pune 411007, M.S., India
| | - Manohar G Chaskar
- Prof Ramkrishna More College, Akurdi, Pune 411044, Maharashtra, India
| | - Arote Rohidas
- Department of Molecular Genetics, School of Dentistry, Seoul National University, Seoul. Republic of Korea
| | - Sangshetti Jaiprakash
- Y. B. Chavan College of Pharmacy, Dr. Rafiq Zakaria Campus, Rauza Baugh, Aurangabad, MS 431001, India.
| |
Collapse
|
165
|
Hou P, Wang YA. Conquering oncogenic KRAS and its bypass mechanisms. Theranostics 2022; 12:5691-5709. [PMID: 35966590 PMCID: PMC9373815 DOI: 10.7150/thno.71260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/05/2022] [Indexed: 11/19/2022] Open
Abstract
Aberrant activation of KRAS signaling is common in cancer, which has catalyzed heroic drug development efforts to target KRAS directly or its downstream signaling effectors. Recent works have yielded novel small molecule drugs with promising preclinical and clinical activities. Yet, no matter how a cancer is addicted to a specific target - cancer's genetic and biological plasticity fashions a variety of resistance mechanisms as a fait accompli, limiting clinical benefit of targeted interventions. Knowledge of these mechanisms may inform combination strategies to attack both oncogenic KRAS and subsequent bypass mechanisms.
Collapse
Affiliation(s)
- Pingping Hou
- Center for Cell Signaling, Rutgers New Jersey Medical School, Newark, New Jersey 07103, USA.,Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, New Jersey 07103, USA.,Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA.,Lead contact
| | - Y Alan Wang
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| |
Collapse
|
166
|
Hanrahan AJ, Solit DB. BRAF Mutations: The Discovery of Allele- and Lineage-Specific Differences. Cancer Res 2022; 82:12-14. [PMID: 34983783 DOI: 10.1158/0008-5472.can-21-3377] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 10/13/2021] [Indexed: 11/16/2022]
Abstract
Cancer treatment is increasingly guided by molecular analyses designed to identify clinically actionable genomic alterations in individual patients. The discovery of BRAF mutations in human cancer, and the subsequent development and FDA authorization of selective BRAF inhibitors highlight the potential clinical impact and current limitations of precision oncology paradigms. In 2002, Brose and colleagues reported that the distribution of BRAF mutations differed in melanoma and lung cancer and that not all BRAF mutations were functionally equivalent. Here, we discuss this landmark paper, which foreshadowed subsequent research elucidating how biochemical differences among mutant alleles within the same gene and lineage-specific differences among cancer types impact drug sensitivity. Such translational studies provided a road map for the development of novel RAF inhibitors and rational combination strategies that promise greater clinical activity and/or more favorable toxicity profiles.See related article by Brose and colleagues, Cancer Res 2002;62:6997-7000.
Collapse
Affiliation(s)
- Aphrothiti J Hanrahan
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - David B Solit
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York. .,Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
167
|
Rajpurohit T, Bhattacharya S. Moving Towards Dawn: KRas Signaling and Treatment in Pancreatic Ductal Adenocarcinoma. Curr Mol Pharmacol 2022; 15:904-928. [PMID: 35088684 DOI: 10.2174/1874467215666220128161647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/20/2021] [Accepted: 11/17/2021] [Indexed: 12/24/2022]
Abstract
"Pancreatic ductal adenocarcinoma (PDAC)" is robust, nearly clueless, and all-around deadly among all tumors. Below 10 %, the general 5-year endurance period has remained adamantly unaltered in the last 30 years, regardless of enormous clinical and therapeutic endeavors. The yearly number of deaths is more than the number of recently analyzed cases. Not a classic one, but "Carbohydrate Antigen CA19- 9" remains the prevailing tool for diagnosis. MicroRNAs and non-invasive techniques are now incorporated for the effective prognosis of PDAC than just CA19-9. Mutated "Rat sarcoma virus Ras" conformation "V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog KRas" is 95 % accountable for PDAC, and its active (GTP-bound) formation activates signaling cascade comprising "Rapidly accelerated fibrosarcoma Raf"/"Mitogen-activated protein kinase MEK"/ "Extracellular signal-regulated kinase ERK" with "Phosphoinositide 3-kinase PI3K"/ "protein kinase B Akt"/ "mammalian target of rapamycin mTOR" pathways. KRas has acquired the label of 'undruggable' since the crosstalk in the nexus of pathways compensates for Raf and PI3K signaling cascade blocking. It is arduous to totally regulate KRascoordinated PDAC with traditional medicaments like "gemcitabine GEM" plus nabpaclitaxel/ FOLFIRINOX. For long-haul accomplishments aiming at KRas, future endeavors should be directed to combinatorial methodologies to adequately block KRas pathways at different standpoints. Currently they are contributing to healing PDAC. In this review article, we outline the function of KRas in carcinogenesis in PDAC, its signaling cascade, former techniques utilized in hindering Kras, current and future possibilities for targeting Kras.
Collapse
Affiliation(s)
- Tarun Rajpurohit
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra 425405, India
| | - Sankha Bhattacharya
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra 425405, India
| |
Collapse
|
168
|
Schneider M, Delfosse V, Gelin M, Grimaldi M, Granell M, Heriaud L, Pons JL, Cohen Gonsaud M, Balaguer P, Bourguet W, Labesse G. Structure-Based and Knowledge-Informed Design of B-Raf Inhibitors Devoid of Deleterious PXR Binding. J Med Chem 2021; 65:1552-1566. [PMID: 34958586 DOI: 10.1021/acs.jmedchem.1c01354] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Dabrafenib is an anticancer drug currently used in the clinics, alone or in combination. However, dabrafenib was recently shown to potently activate the human nuclear receptor pregnane X receptor (PXR). PXR activation increases the clearance of various chemicals and drugs, including dabrafenib itself. It may also enhance cell proliferation and tumor aggressiveness. Therefore, there is a need for rational design of a potent protein kinase B-Raf inhibitor devoid of binding to the secondary target PXR and resisting rapid metabolism. By determining the crystal structure of dabrafenib bound to PXR and analyzing its mode of binding to both PXR and its primary target, B-Raf-V600E, we were able to derive new compounds with nanomolar activity against B-Raf and no detectable affinity for PXR. The crystal structure of B-Raf in complex with our lead compound revealed a subdomain swapping of the activation loop with potentially important functional implications for a prolonged inhibition of B-Raf-V600E.
Collapse
Affiliation(s)
- Melanie Schneider
- Centre de Biologie Structurale (CBS), CNRS, INSERM, Univ Montpellier, F-34090 Montpellier, France
| | - Vanessa Delfosse
- Centre de Biologie Structurale (CBS), CNRS, INSERM, Univ Montpellier, F-34090 Montpellier, France
| | - Muriel Gelin
- Centre de Biologie Structurale (CBS), CNRS, INSERM, Univ Montpellier, F-34090 Montpellier, France
| | - Marina Grimaldi
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM, Univ Montpellier, F-34090 Montpellier, France
| | - Meritxell Granell
- Centre de Biologie Structurale (CBS), CNRS, INSERM, Univ Montpellier, F-34090 Montpellier, France
| | - Laurène Heriaud
- Centre de Biologie Structurale (CBS), CNRS, INSERM, Univ Montpellier, F-34090 Montpellier, France
| | - Jean-Luc Pons
- Centre de Biologie Structurale (CBS), CNRS, INSERM, Univ Montpellier, F-34090 Montpellier, France
| | - Martin Cohen Gonsaud
- Centre de Biologie Structurale (CBS), CNRS, INSERM, Univ Montpellier, F-34090 Montpellier, France
| | - Patrick Balaguer
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM, Univ Montpellier, F-34090 Montpellier, France
| | - William Bourguet
- Centre de Biologie Structurale (CBS), CNRS, INSERM, Univ Montpellier, F-34090 Montpellier, France
| | - Gilles Labesse
- Centre de Biologie Structurale (CBS), CNRS, INSERM, Univ Montpellier, F-34090 Montpellier, France
| |
Collapse
|
169
|
Corrales E, Levit-Zerdoun E, Metzger P, Kowar S, Ku M, Brummer T, Boerries M. Dynamic transcriptome analysis reveals signatures of paradoxical effect of vemurafenib on human dermal fibroblasts. Cell Commun Signal 2021; 19:123. [PMID: 34930313 PMCID: PMC8686565 DOI: 10.1186/s12964-021-00801-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 11/09/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Vemurafenib (PLX4032) is one of the most frequently used treatments for late-stage melanoma patients with the BRAFV600E mutation; however, acquired resistance to the drug poses as a major challenge. It remains to be determined whether off-target effects of vemurafenib on normal stroma components could reshape the tumor microenvironment in a way that contributes to cancer progression and drug resistance. METHODS By using temporally-resolved RNA- and ATAC-seq, we studied the early molecular changes induced by vemurafenib in human dermal fibroblast (HDF), a main stromal component in melanoma and other tumors with high prevalence of BRAFV600 mutations. RESULTS Transcriptomics analyses revealed a stepwise up-regulation of proliferation signatures, together with a down-regulation of autophagy and proteolytic processes. The gene expression changes in HDF strongly correlated in an inverse way with those in BRAFV600E mutant malignant melanoma (MaMel) cell lines, consistent with the observation of a paradoxical effect of vemurafenib, leading to hyperphosphorylation of MEK1/2 and ERK1/2. The transcriptional changes in HDF were not strongly determined by alterations in chromatin accessibility; rather, an already permissive chromatin landscape seemed to facilitate the early accessibility to MAPK/ERK-regulated transcription factor binding sites. Combinatorial treatment with the MEK inhibitor trametinib did not preclude the paradoxical activation of MAPK/ERK signaling in HDF. When administered together, vemurafenib partially compensated for the reduction of cell viability and proliferation induced by trametinib. These paradoxical changes were restrained by using the third generation BRAF inhibitor PLX8394, a so-called paradox breaker compound. However, the advantageous effects on HDF during combination therapies were also lost. CONCLUSIONS Vemurafenib induces paradoxical changes in HDF, enabled by a permissive chromatin landscape. These changes might provide an advantage during combination therapies, by compensating for the toxicity induced in stromal cells by less specific MAPK/ERK inhibitors. Our results highlight the relevance of evaluating the effects of the drugs on non-transformed stromal components, carefully considering the implications of their administration either as mono- or combination therapies. Video Abstract.
Collapse
Affiliation(s)
- Eyleen Corrales
- Institute of Molecular Medicine and Cell Research (IMMZ), University of Freiburg, Stefan-Meier-Str. 17, 79104 Freiburg, Germany
- Institute of Medical Bioinformatics and Systems Medicine (IBSM), Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacherstr. 153, 79110 Freiburg, Germany
- Faculty of Biology, University of Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany
| | - Ella Levit-Zerdoun
- Institute of Molecular Medicine and Cell Research (IMMZ), University of Freiburg, Stefan-Meier-Str. 17, 79104 Freiburg, Germany
- Institute of Medical Bioinformatics and Systems Medicine (IBSM), Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacherstr. 153, 79110 Freiburg, Germany
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Patrick Metzger
- Institute of Medical Bioinformatics and Systems Medicine (IBSM), Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacherstr. 153, 79110 Freiburg, Germany
| | - Silke Kowar
- Institute of Molecular Medicine and Cell Research (IMMZ), University of Freiburg, Stefan-Meier-Str. 17, 79104 Freiburg, Germany
- Institute of Medical Bioinformatics and Systems Medicine (IBSM), Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacherstr. 153, 79110 Freiburg, Germany
| | - Manching Ku
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Mathildenstr. 1, 79106 Freiburg, Germany
| | - Tilman Brummer
- Institute of Molecular Medicine and Cell Research (IMMZ), University of Freiburg, Stefan-Meier-Str. 17, 79104 Freiburg, Germany
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- German Cancer Consortium (DKTK), Freiburg, Germany
- Centre for Biological Signalling Studies (BIOSS), University of Freiburg, Schänzlestr. 18, 79104 Freiburg, Germany
| | - Melanie Boerries
- Institute of Molecular Medicine and Cell Research (IMMZ), University of Freiburg, Stefan-Meier-Str. 17, 79104 Freiburg, Germany
- Institute of Medical Bioinformatics and Systems Medicine (IBSM), Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacherstr. 153, 79110 Freiburg, Germany
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- German Cancer Consortium (DKTK), Freiburg, Germany
- Centre for Biological Signalling Studies (BIOSS), University of Freiburg, Schänzlestr. 18, 79104 Freiburg, Germany
| |
Collapse
|
170
|
Clonal dynamics of BRAF-driven drug resistance in EGFR-mutant lung cancer. NPJ Precis Oncol 2021; 5:102. [PMID: 34921211 PMCID: PMC8683498 DOI: 10.1038/s41698-021-00241-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 11/16/2021] [Indexed: 11/08/2022] Open
Abstract
Activation of MAPK signaling via BRAF mutations may limit the activity of EGFR inhibitors in EGFR-mutant lung cancer patients. However, the impact of BRAF mutations on the selection and fitness of emerging resistant clones during anti-EGFR therapy remains elusive. We tracked the evolution of subclonal mutations by whole-exome sequencing and performed clonal analyses of individual metastases during therapy. Complementary functional analyses of polyclonal EGFR-mutant cell pools showed a dose-dependent enrichment of BRAFV600E and a loss of EGFR inhibitor susceptibility. The clones remain stable and become vulnerable to combined EGFR, RAF, and MEK inhibition. Moreover, only osimertinib/trametinib combination treatment, but not monotherapy with either of these drugs, leads to robust tumor shrinkage in EGFR-driven xenograft models harboring BRAFV600E mutations. These data provide insights into the dynamics of clonal evolution of EGFR-mutant tumors and the therapeutic implications of BRAF co-mutations that may facilitate the development of treatment strategies to improve the prognosis of these patients.
Collapse
|
171
|
Tatli O, Dinler Doganay G. Recent Developments in Targeting RAS Downstream Effectors for RAS-Driven Cancer Therapy. Molecules 2021; 26:molecules26247561. [PMID: 34946644 PMCID: PMC8703923 DOI: 10.3390/molecules26247561] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/09/2021] [Accepted: 10/11/2021] [Indexed: 12/15/2022] Open
Abstract
Aberrant activity of oncogenic rat sarcoma virus (RAS) protein promotes tumor growth and progression. RAS-driven cancers comprise more than 30% of all human cancers and are refractory to frontline treatment strategies. Since direct targeting of RAS has proven challenging, efforts have been centered on the exploration of inhibitors for RAS downstream effector kinases. Two major RAS downstream signaling pathways, including the Raf/MEK/Erk cascade and the phosphatidylinositol-3-kinase (PI3K) pathway, have become compelling targets for RAS-driven cancer therapy. However, the main drawback in the blockade of a single RAS effector is the multiple levels of crosstalk and compensatory mechanisms between these two pathways that contribute to drug resistance against monotherapies. A growing body of evidence reveals that the sequential or synergistic inhibition of multiple RAS effectors is a more convenient route for the efficacy of cancer therapy. Herein, we revisit the recent developments and discuss the most promising modalities targeting canonical RAS downstream effectors for the treatment of RAS-driven cancers.
Collapse
Affiliation(s)
- Ozge Tatli
- Department of Molecular Biology, Genetics-Biotechnology, Graduate School, Istanbul Technical University, Istanbul 34469, Turkey;
- Department of Molecular Biology and Genetics, Istanbul Medeniyet University, Istanbul 34720, Turkey
| | - Gizem Dinler Doganay
- Department of Molecular Biology, Genetics-Biotechnology, Graduate School, Istanbul Technical University, Istanbul 34469, Turkey;
- Department of Molecular Biology and Genetics, Istanbul Technical University, Istanbul 34469, Turkey
- Correspondence: ; Tel.: +90-2122-857-256
| |
Collapse
|
172
|
Zhang M, Maloney R, Jang H, Nussinov R. The mechanism of Raf activation through dimerization. Chem Sci 2021; 12:15609-15619. [PMID: 35003591 PMCID: PMC8654025 DOI: 10.1039/d1sc03444h] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 11/16/2021] [Indexed: 01/07/2023] Open
Abstract
Raf, a threonine/serine kinase in the Raf/MEK/ERK pathway, regulates cell proliferation. Raf's full activation requires dimerization. Aberrant activation through dimerization is an important therapeutic target. Despite its clinical importance, fundamental questions, such as how the side-to-side dimerization promotes the OFF-to-ON transition of Raf's kinase domain and how the fully activated ON-state kinase domain is stabilized in the dimer for Raf signaling, remain unanswered. Herein, we decipher an atomic-level mechanism of Raf activation through dimerization, clarifying this enigma. The mechanism reveals that the replacement of intramolecular π–π stacking by intermolecular π–π stacking at the dimer interface releases the structural constraint of the αC-helix, promoting the OFF-to-ON transition. During the transition, the inhibitory hydrophobic interactions were disrupted, making the phosphorylation sites in A-loop approach the HRD motif for cis-autophosphorylation. Once fully activated, the ON-state kinase domain can be stabilized by a newly identified functional N-terminal basic (NtB) motif in the dimer for Raf signaling. This work provides atomic level insight into critical steps in Raf activation and outlines a new venue for drug discovery against Raf dimerization. We decipher an atomic-level mechanism of Raf activation through dimerization, revealing that the disruption of intramolecular π–π stacking at the dimer interface promotes the OFF-to-ON transition.![]()
Collapse
Affiliation(s)
- Mingzhen Zhang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute Frederick MD 21702 USA +1-301-846-5579
| | - Ryan Maloney
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute Frederick MD 21702 USA +1-301-846-5579
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute Frederick MD 21702 USA +1-301-846-5579
| | - Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute Frederick MD 21702 USA +1-301-846-5579.,Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University Tel Aviv 69978 Israel
| |
Collapse
|
173
|
Errington TM, Denis A, Perfito N, Iorns E, Nosek BA. Challenges for assessing replicability in preclinical cancer biology. eLife 2021. [DOI: 10.10.7554/elife.67995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
We conducted the Reproducibility Project: Cancer Biology to investigate the replicability of preclinical research in cancer biology. The initial aim of the project was to repeat 193 experiments from 53 high-impact papers, using an approach in which the experimental protocols and plans for data analysis had to be peer reviewed and accepted for publication before experimental work could begin. However, the various barriers and challenges we encountered while designing and conducting the experiments meant that we were only able to repeat 50 experiments from 23 papers. Here we report these barriers and challenges. First, many original papers failed to report key descriptive and inferential statistics: the data needed to compute effect sizes and conduct power analyses was publicly accessible for just 4 of 193 experiments. Moreover, despite contacting the authors of the original papers, we were unable to obtain these data for 68% of the experiments. Second, none of the 193 experiments were described in sufficient detail in the original paper to enable us to design protocols to repeat the experiments, so we had to seek clarifications from the original authors. While authors were extremely or very helpful for 41% of experiments, they were minimally helpful for 9% of experiments, and not at all helpful (or did not respond to us) for 32% of experiments. Third, once experimental work started, 67% of the peer-reviewed protocols required modifications to complete the research and just 41% of those modifications could be implemented. Cumulatively, these three factors limited the number of experiments that could be repeated. This experience draws attention to a basic and fundamental concern about replication – it is hard to assess whether reported findings are credible.
Collapse
|
174
|
Errington TM, Denis A, Allison AB, Araiza R, Aza-Blanc P, Bower LR, Campos J, Chu H, Denson S, Donham C, Harr K, Haven B, Iorns E, Kwok J, McDonald E, Pelech S, Perfito N, Pike A, Sampey D, Settles M, Scott DA, Sharma V, Tolentino T, Trinh A, Tsui R, Willis B, Wood J, Young L. Experiments from unfinished Registered Reports in the Reproducibility Project: Cancer Biology. eLife 2021; 10:73430. [PMID: 34874009 PMCID: PMC8651290 DOI: 10.7554/elife.73430] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/14/2021] [Indexed: 12/16/2022] Open
Abstract
As part of the Reproducibility Project: Cancer Biology, we published Registered Reports that described how we intended to replicate selected experiments from 29 high-impact preclinical cancer biology papers published between 2010 and 2012. Replication experiments were completed and Replication Studies reporting the results were submitted for 18 papers, of which 17 were accepted and published by eLife with the rejected paper posted as a preprint. Here, we report the status and outcomes obtained for the remaining 11 papers. Four papers initiated experimental work but were stopped without any experimental outcomes. Two papers resulted in incomplete outcomes due to unanticipated challenges when conducting the experiments. For the remaining five papers only some of the experiments were completed with the other experiments incomplete due to mundane technical or unanticipated methodological challenges. The experiments from these papers, along with the other experiments attempted as part of the Reproducibility Project: Cancer Biology, provides evidence about the challenges of repeating preclinical cancer biology experiments and the replicability of the completed experiments.
Collapse
Affiliation(s)
| | | | - Anne B Allison
- Piedmont Virginia Community College, Charlottesville, United States
| | - Renee Araiza
- University of California, Davis, Davis, United States
| | | | | | | | - Heidi Chu
- Applied Biological Materials, Richmond, Canada
| | - Sarah Denson
- University of California, Davis, Davis, United States
| | | | - Kaitlyn Harr
- University of Virginia, Charlottesville, United States
| | | | | | - Jennie Kwok
- Applied Biological Materials, Richmond, Canada
| | - Elysia McDonald
- Drexel University College of Medicine, Philadelphia, United States
| | - Steven Pelech
- Kinexus Bioinformatics, Vancouver, Canada.,University of British Columbia, Vancouver, United States
| | | | - Amanda Pike
- Applied Biological Materials, Richmond, Canada
| | | | | | - David A Scott
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, United States
| | | | | | | | | | | | - Joshua Wood
- University of California, Davis, Davis, United States
| | - Lisa Young
- Applied Biological Materials, Richmond, Canada
| |
Collapse
|
175
|
Errington TM, Denis A, Perfito N, Iorns E, Nosek BA. Challenges for assessing replicability in preclinical cancer biology. eLife 2021; 10:e67995. [PMID: 34874008 PMCID: PMC8651289 DOI: 10.7554/elife.67995] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 07/20/2021] [Indexed: 02/07/2023] Open
Abstract
We conducted the Reproducibility Project: Cancer Biology to investigate the replicability of preclinical research in cancer biology. The initial aim of the project was to repeat 193 experiments from 53 high-impact papers, using an approach in which the experimental protocols and plans for data analysis had to be peer reviewed and accepted for publication before experimental work could begin. However, the various barriers and challenges we encountered while designing and conducting the experiments meant that we were only able to repeat 50 experiments from 23 papers. Here we report these barriers and challenges. First, many original papers failed to report key descriptive and inferential statistics: the data needed to compute effect sizes and conduct power analyses was publicly accessible for just 4 of 193 experiments. Moreover, despite contacting the authors of the original papers, we were unable to obtain these data for 68% of the experiments. Second, none of the 193 experiments were described in sufficient detail in the original paper to enable us to design protocols to repeat the experiments, so we had to seek clarifications from the original authors. While authors were extremely or very helpful for 41% of experiments, they were minimally helpful for 9% of experiments, and not at all helpful (or did not respond to us) for 32% of experiments. Third, once experimental work started, 67% of the peer-reviewed protocols required modifications to complete the research and just 41% of those modifications could be implemented. Cumulatively, these three factors limited the number of experiments that could be repeated. This experience draws attention to a basic and fundamental concern about replication - it is hard to assess whether reported findings are credible.
Collapse
Affiliation(s)
| | | | | | | | - Brian A Nosek
- Center for Open ScienceCharlottesvilleUnited States
- University of VirginiaCharlottesvilleUnited States
| |
Collapse
|
176
|
Freedy AM, Liau BB. Discovering new biology with drug-resistance alleles. Nat Chem Biol 2021; 17:1219-1229. [PMID: 34799733 PMCID: PMC9530778 DOI: 10.1038/s41589-021-00865-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 07/21/2021] [Indexed: 02/08/2023]
Abstract
Small molecule drugs form the backbone of modern medicine's therapeutic arsenal. Often less appreciated is the role that small molecules have had in advancing basic biology. In this Review, we highlight how resistance mutations have unlocked the potential of small molecule chemical probes to discover new biology. We describe key instances in which resistance mutations and related genetic variants yielded foundational biological insight and categorize these examples on the basis of their role in the discovery of novel molecular mechanisms, protein allostery, physiology and cell signaling. Next, we suggest ways in which emerging technologies can be leveraged to systematically introduce and characterize resistance mutations to catalyze basic biology research and drug discovery. By recognizing how resistance mutations have propelled biological discovery, we can better harness new technologies and maximize the potential of small molecules to advance our understanding of biology and improve human health.
Collapse
Affiliation(s)
- Allyson M. Freedy
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.,Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Brian B. Liau
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.,Broad Institute of Harvard and MIT, Cambridge, MA, USA.,Correspondence should be addressed to Brian B. Liau,
| |
Collapse
|
177
|
Wichmann J, Rynn C, Friess T, Petrig-Schaffland J, Kornacker M, Handl C, Emmenegger J, Eckmann J, Herting F, Frances N, Hunziker D, Krummenacher D, Rüttinger D, Ribeiro A, Bacac M, Brigo A, Hewings DS, Dummer R, Levesque MP, Schnetzler G, Martoglio B, Bischoff JR, Pettazzoni P. Preclinical characterization of a next generation brain permeable, paradox breaker BRAF inhibitor. Clin Cancer Res 2021; 28:770-780. [PMID: 34782366 DOI: 10.1158/1078-0432.ccr-21-2761] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/15/2021] [Accepted: 11/08/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE Disease progression in BRAF V600E/K positive melanomas to approved BRAF/MEK inhibitor therapies is associated with the development of resistance mediated by RAF dimer inducing mechanisms. Moreover, progressing disease after BRAFi/MEKi frequently involves brain metastasis. Here we present the development of a novel BRAF inhibitor (Compound Ia) designed to address the limitations of available BRAFi/MEKi. EXPERIMENTAL DESIGN The novel, brain penetrant, paradox breaker BRAFi is comprehensively characterized in vitro, ex vivo and in several preclinical in vivo models of melanoma mimicking peripheral disease, brain metastatic disease and acquired resistance to first generation BRAFi. RESULTS Compound Ia manifested elevated potency and selectivity, which triggered cytotoxic activity restricted to BRAF-mutated models and did not induce RAF paradoxical activation. In comparison to approved BRAFi at clinical relevant doses, this novel agent showed a substantially improved activity in a number of diverse BRAF V600E models. In addition, as a single agent, it outperformed a currently approved BRAFi/MEKi combination in a model of acquired resistance to clinically available BRAFi. Compound Ia presents high Central Nervous System (CNS) penetration and triggered evident superiority over approved BRAFi in a macro-metastatic and in a disseminated micro-metastatic brain model. Potent inhibition of MAPK by Compound Ia was also demonstrated in patient-derived tumor samples. CONCLUSIONS The novel BRAFi demonstrates preclinically the potential to outperform available targeted therapies for the treatment of BRAF-mutant tumors, thus supporting its clinical investigation.
Collapse
Affiliation(s)
- Jürgen Wichmann
- Roche Pharma Research & Early Development pRED, Roche Innovation Center Basel, Switzerland
| | - Caroline Rynn
- Roche Pharma Research & Early Development pRED, Roche Innovation Center Basel, Switzerland
| | - Thomas Friess
- Roche Pharma Research & Early Development pRED, Roche Innovation Center Munich, Penzberg, Germany
| | | | - Martin Kornacker
- Roche Pharma Research & Early Development pRED, Roche Innovation Center Basel, Switzerland
| | - Cornelia Handl
- Roche Pharma Research & Early Development pRED, Roche Innovation Center Basel, Switzerland
| | - Jasmin Emmenegger
- Roche Pharma Research & Early Development pRED, Roche Innovation Center Basel, Switzerland
| | - Jan Eckmann
- Roche Pharma Research & Early Development pRED, Roche Innovation Center Munich, Penzberg, Germany
| | - Frank Herting
- Roche Pharma Research & Early Development pRED, Roche Innovation Center Munich, Penzberg, Germany
| | - Nicolas Frances
- Roche Pharma Research & Early Development pRED, Roche Innovation Center Basel, Switzerland
| | - Daniel Hunziker
- Roche Pharma Research & Early Development pRED, Roche Innovation Center Basel, Switzerland
| | - Daniela Krummenacher
- Roche Pharma Research & Early Development pRED, Roche Innovation Center Basel, Switzerland
| | - Dominik Rüttinger
- Roche Pharma Research & Early Development pRED, Roche Innovation Center Munich, Penzberg, Germany
| | - Alison Ribeiro
- Roche Pharma Research & Early Development pRED, Roche Innovation Center Zurich, Schlieren Switzerland
| | - Marina Bacac
- Roche Pharma Research & Early Development pRED, Roche Innovation Center Zurich, Schlieren Switzerland
| | - Alessandro Brigo
- Roche Pharma Research & Early Development pRED, Roche Innovation Center Basel, Switzerland
| | - David S Hewings
- Roche Pharma Research & Early Development pRED, Roche Innovation Center Basel, Switzerland
| | - Reinhard Dummer
- Dermatology of Department, University of Zurich, University Hospital Zurich, Zurich, Switzerland
| | - Mitchell P Levesque
- Dermatology of Department, University of Zurich, University Hospital Zurich, Zurich, Switzerland
| | - Gabriel Schnetzler
- Roche Pharma Research & Early Development pRED, Roche Innovation Center Basel, Switzerland
| | - Bruno Martoglio
- Roche Pharma Research & Early Development pRED, Roche Innovation Center Basel, Switzerland
| | - James R Bischoff
- Roche Pharma Research & Early Development pRED, Roche Innovation Center Basel, Switzerland
| | - Piergiorgio Pettazzoni
- Roche Pharma Research & Early Development pRED, Roche Innovation Center Basel, Switzerland
| |
Collapse
|
178
|
Thai AA, Lim AM, Solomon BJ, Rischin D. Biology and Treatment Advances in Cutaneous Squamous Cell Carcinoma. Cancers (Basel) 2021; 13:5645. [PMID: 34830796 PMCID: PMC8615870 DOI: 10.3390/cancers13225645] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/08/2021] [Accepted: 11/08/2021] [Indexed: 12/24/2022] Open
Abstract
Cutaneous squamous cell carcinoma (CSCC) is the second most common skin cancer diagnosed worldwide. CSCC is generally localized and managed with local therapies such as excision and/or radiotherapy. For patients with unresectable or metastatic disease, recent improvements in our understanding of the underlying biology have led to significant advancements in treatment approaches-including the use of immune checkpoint inhibition (ICI)-which have resulted in substantial gains in response and survival compared to traditional cytotoxic approaches. However, there is a lack of understanding of the biology underpinning CSCC in immunocompromised patients, in whom the risk of developing CSCC is hundreds of times higher compared to immunocompetent patients. Furthermore, current ICI approaches are associated with significant risk of graft rejection in organ transplant recipients who make up a significant proportion of immunocompromised patients. Ongoing scientific and clinical research efforts are needed in order to maintain momentum to increase our understanding and refine our therapeutic approaches for patients with CSCC.
Collapse
Affiliation(s)
- Alesha A. Thai
- Department of Medical Oncology, Peter MacCallum Cancer Centre, 305 Grattan St., Parkville, Melbourne, VIC 3000, Australia; (A.M.L.); (B.J.S.); (D.R.)
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Annette M. Lim
- Department of Medical Oncology, Peter MacCallum Cancer Centre, 305 Grattan St., Parkville, Melbourne, VIC 3000, Australia; (A.M.L.); (B.J.S.); (D.R.)
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Benjamin J. Solomon
- Department of Medical Oncology, Peter MacCallum Cancer Centre, 305 Grattan St., Parkville, Melbourne, VIC 3000, Australia; (A.M.L.); (B.J.S.); (D.R.)
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Danny Rischin
- Department of Medical Oncology, Peter MacCallum Cancer Centre, 305 Grattan St., Parkville, Melbourne, VIC 3000, Australia; (A.M.L.); (B.J.S.); (D.R.)
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC 3000, Australia
| |
Collapse
|
179
|
Mathien S, Tesnière C, Meloche S. Regulation of Mitogen-Activated Protein Kinase Signaling Pathways by the Ubiquitin-Proteasome System and Its Pharmacological Potential. Pharmacol Rev 2021; 73:263-296. [PMID: 34732541 DOI: 10.1124/pharmrev.120.000170] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Mitogen-activated protein kinase (MAPK) cascades are evolutionarily conserved signaling pathways that play essential roles in transducing extracellular environmental signals into diverse cellular responses to maintain homeostasis. These pathways are classically organized into an architecture of three sequentially acting protein kinases: a MAPK kinase kinase that phosphorylates and activates a MAPK kinase, which in turn phosphorylates and activates the effector MAPK. The activity of MAPKs is tightly regulated by phosphorylation of their activation loop, which can be modulated by positive and negative feedback mechanisms to control the amplitude and duration of the signal. The signaling outcomes of MAPK pathways are further regulated by interactions of MAPKs with scaffolding and regulatory proteins. Accumulating evidence indicates that, in addition to these mechanisms, MAPK signaling is commonly regulated by ubiquitin-proteasome system (UPS)-mediated control of the stability and abundance of MAPK pathway components. Notably, the biologic activity of some MAPKs appears to be regulated mainly at the level of protein turnover. Recent studies have started to explore the potential of targeted protein degradation as a powerful strategy to investigate the biologic functions of individual MAPK pathway components and as a new therapeutic approach to overcome resistance to current small-molecule kinase inhibitors. Here, we comprehensively review the mechanisms, physiologic importance, and pharmacological potential of UPS-mediated protein degradation in the control of MAPK signaling. SIGNIFICANCE STATEMENT: Accumulating evidence highlights the importance of targeted protein degradation by the ubiquitin-proteasome system in regulating and fine-tuning the signaling output of mitogen-activated protein kinase (MAPK) pathways. Manipulating protein levels of MAPK cascade components may provide a novel approach for the development of selective pharmacological tools and therapeutics.
Collapse
Affiliation(s)
- Simon Mathien
- Institute for Research in Immunology and Cancer, Montreal, Quebec, Canada (S.Ma., C.T., S.Me.); and Molecular Biology Program, Faculty of Medicine (C.T., S.Me.) and Department of Pharmacology and Physiology (S.Me.), Université de Montréal, Montreal, Quebec, Canada
| | - Chloé Tesnière
- Institute for Research in Immunology and Cancer, Montreal, Quebec, Canada (S.Ma., C.T., S.Me.); and Molecular Biology Program, Faculty of Medicine (C.T., S.Me.) and Department of Pharmacology and Physiology (S.Me.), Université de Montréal, Montreal, Quebec, Canada
| | - Sylvain Meloche
- Institute for Research in Immunology and Cancer, Montreal, Quebec, Canada (S.Ma., C.T., S.Me.); and Molecular Biology Program, Faculty of Medicine (C.T., S.Me.) and Department of Pharmacology and Physiology (S.Me.), Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
180
|
Sankarasubramanian S, Pfohl U, Regenbrecht CRA, Reinhard C, Wedeken L. Context Matters-Why We Need to Change From a One Size Fits all Approach to Made-to-Measure Therapies for Individual Patients With Pancreatic Cancer. Front Cell Dev Biol 2021; 9:760705. [PMID: 34805167 PMCID: PMC8599957 DOI: 10.3389/fcell.2021.760705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/18/2021] [Indexed: 12/12/2022] Open
Abstract
Pancreatic cancer is one of the deadliest cancers and remains a major unsolved health problem. While pancreatic ductal adenocarcinoma (PDAC) is associated with driver mutations in only four major genes (KRAS, TP53, SMAD4, and CDKN2A), every tumor differs in its molecular landscape, histology, and prognosis. It is crucial to understand and consider these differences to be able to tailor treatment regimens specific to the vulnerabilities of the individual tumor to enhance patient outcome. This review focuses on the heterogeneity of pancreatic tumor cells and how in addition to genetic alterations, the subsequent dysregulation of multiple signaling cascades at various levels, epigenetic and metabolic factors contribute to the oncogenesis of PDAC and compensate for each other in driving cancer progression if one is tackled by a therapeutic approach. This implicates that besides the need for new combinatorial therapies for PDAC, a personalized approach for treating this highly complex cancer is required. A strategy that combines both a target-based and phenotypic approach to identify an effective treatment, like Reverse Clinical Engineering® using patient-derived organoids, is discussed as a promising way forward in the field of personalized medicine to tackle this deadly disease.
Collapse
Affiliation(s)
| | - Ulrike Pfohl
- CELLphenomics GmbH, Berlin, Germany
- ASC Oncology GmbH, Berlin, Germany
- Institute for Molecular Bio Science, Goethe University Frankfurt Am Main, Frankfurt, Germany
| | - Christian R. A. Regenbrecht
- CELLphenomics GmbH, Berlin, Germany
- ASC Oncology GmbH, Berlin, Germany
- Institute for Pathology, Universitätsklinikum Göttingen, Göttingen, Germany
| | | | - Lena Wedeken
- CELLphenomics GmbH, Berlin, Germany
- ASC Oncology GmbH, Berlin, Germany
| |
Collapse
|
181
|
Pashirzad M, Khorasanian R, Fard MM, Arjmand MH, Langari H, Khazaei M, Soleimanpour S, Rezayi M, Ferns GA, Hassanian SM, Avan A. The Therapeutic Potential of MAPK/ERK Inhibitors in the Treatment of Colorectal Cancer. Curr Cancer Drug Targets 2021; 21:932-943. [PMID: 34732116 DOI: 10.2174/1568009621666211103113339] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/16/2021] [Accepted: 08/24/2021] [Indexed: 11/22/2022]
Abstract
The MAPK/ERK signaling pathway regulates cancer cell proliferation, apoptosis, inflammation, angiogenesis, metastasis and drug resistance. Mutations and up-regulation of components of the MAPK/ERK signaling pathway, as well as over-activation of this critical signaling pathway, are frequently observed in colorectal carcinomas. Targeting the MAPK/ERK signaling pathway, using specific pharmacological inhibitors, elicits potent anti-tumor effects, supporting the therapeutic potential of these inhibitors in the treatment of CRC. Several drugs have recently been developed for the inhibition of the MEK/ERK pathway in preclinical and clinical settings, such as MEK162 and MK-2206. MEK1/2 inhibitors demonstrate promising efficacy and anticancer activity for the treatment of this malignancy. This review summarizes the current knowledge on the role of the MAPK/ERK signaling pathway in the pathogenesis of CRC and the potential clinical value of synthetic inhibitors of this pathway in preventing CRC progression for a better understanding, and hence, better management of colorectal cancer.
Collapse
Affiliation(s)
- Mehran Pashirzad
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad. Iran
| | - Reihaneh Khorasanian
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad. Iran
| | - Maryam Mahmoudi Fard
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad. Iran
| | - Mohammad-Hassan Arjmand
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord. Iran
| | - Hadis Langari
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord. Iran
| | - Majid Khazaei
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad. Iran
| | - Saman Soleimanpour
- Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad. Iran
| | - Majid Rezayi
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord. Iran
| | - Gordon A Ferns
- Division of Pulmonary and Critical Care Medicine, Washington University, School of Medicine, Saint Louis, MO. United States
| | - Seyed Mahdi Hassanian
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad. Iran
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad. Iran
| |
Collapse
|
182
|
Al Shahrani M, Abohassan M, Y Alshahrani M, Hakami AR, Rajagopalan P. High-throughput virtual screening and preclinical analysis identifies CB-1, a novel potent dual B-Raf/c-Raf inhibitor, effective against wild and mutant variants of B-Raf expression in colorectal carcinoma. J Comput Aided Mol Des 2021; 35:1165-1176. [PMID: 34727304 DOI: 10.1007/s10822-021-00426-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 10/20/2021] [Indexed: 01/07/2023]
Abstract
Paradoxical Raf activation via Raf dimerization is a major drawback of wild/mutant B-Raf inhibitors. Herein, we report that CB-1 a novel, potent B-Raf/c-Raf dual inhibitor, effective against colon cancer cells, irrespective of their genetic status. High-throughput virtual screening of the ChemBridge library against wild B-Raf (B-RafWT), mutant B-Raf (B-RafV600E), and c-Raf was performed using an automated protocol with the AutoDock-VINA. Caco-2 and HT-29 cells were used. Of the 23,365 compounds screened computationally, CB-1 showed the highest binding energy towards B-RafWT with a ΔGbinding score of - 13.0 kcal/mol. The compound was also predicted to be effective against B-RafV600E and c-Raf molecules with ΔGbinding energies of - 10.6 and - 10.1 kcal/mol, respectively. The compound inhibited B-RafWT, B-RafV600E and c-Raf kinases with IC50 values of 27.13, 51.70, and 40.23 nM, respectively. The GI50 value of CB-1 was 247.9 nM in B-RafWT-expressing Caco-2 cells and 352.4 nM in B-RafV600E-expressing HT-29 cells. Dose-dependent increases in total apoptosis and G1 cell cycle phase arrest was observed in CB-1-treated colon cancer cells. The compound decreased B-Raf expression in both wild and mutant colon cancer cells. CB-1, a novel, potent dual B-Raf/c-Raf inhibitor was effective against colon cancer cells bearing wild-type and mutant variants of B-Raf expression.
Collapse
Affiliation(s)
- Mesfer Al Shahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
- Central Research Laboratory, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Mohammad Abohassan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Mohammad Y Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Abdulrahim R Hakami
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Prasanna Rajagopalan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia.
- Central Research Laboratory, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia.
| |
Collapse
|
183
|
Hummel M, Hegewisch-Becker S, Neumann JHL, Vogel A. BRAF testing in metastatic colorectal carcinoma and novel, chemotherapy-free therapeutic options. DER PATHOLOGE 2021; 42:98-109. [PMID: 34259881 PMCID: PMC8571135 DOI: 10.1007/s00292-021-00946-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 04/06/2021] [Indexed: 11/25/2022]
Abstract
In the past 25 years, treatment of metastatic colorectal cancer (mCRC) has undergone profound changes. The approval of newer chemotherapeutics such as irinotecan and oxaliplatin was followed in 2005 by the first targeted therapies, for example, monoclonal antibodies directed against the epidermal growth factor receptor (EGFR), as cetuximab and panitumumab, or the angiogenesis inhibitors bevacizumab, ramucirumab, and aflibercept. With the rapidly progressing molecular characterization of mCRC in the last 10 years and the classification of the disease in four consensus subtypes, further changes are emerging, which will promote, among other things, the introduction of protein-kinase inhibitors developed for specific molecular aberrations as well as immune checkpoint inhibitors into the treatment algorithm.Thorough molecular pathologic testing is indispensable today for guideline-compliant treatment of mCRC patients. In addition to RAS testing as a precondition for the therapy decision with regard to cetuximab and panitumumab, BRAF testing is of considerable relevance to allow decision making with regard to the newly approved chemotherapy-free combination of the BRAF inhibitor encorafenib and cetuximab in cases where a BRAF-V600E mutation is detected. Additional diagnostic tests should also include genome instability (microsatellite instability). Overall, more and more molecular alterations need to be investigated simultaneously, so that the use of focused next-generation sequencing is increasingly recommended.This overview describes the prognostic relevance of BRAF testing in the context of molecular pathologic diagnostics of mCRC, presents new treatment options for BRAF-mutated mCRC patients, and explains which modern DNA analytical and immunohistochemical methods are available to detect BRAF mutations in mCRC patients.
Collapse
Affiliation(s)
- Michael Hummel
- Institut für Pathologie der Charité, Universitätsmedizin, Campus Charité Mitte, Virchowweg 16/17a, 10117, Berlin, Germany.
| | | | - Jens H L Neumann
- Pathologisches Institut der Medizinischen Fakultät, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Arndt Vogel
- Klinik für Gastroenterologie, Hepatologie und Endokrinologie, Medizinische Hochschule Hannover, Hannover, Germany
| |
Collapse
|
184
|
Hummel M, Hegewisch-Becker S, Neumann J, Vogel A. [BRAF-V600E testing in metastatic colorectal cancer and new, chemotherapy-free therapy options. German version]. DER PATHOLOGE 2021; 42:578-590. [PMID: 33956173 PMCID: PMC8536591 DOI: 10.1007/s00292-021-00942-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 02/03/2021] [Indexed: 11/24/2022]
Abstract
In the past 25 years, treatment of metastatic colorectal cancer (mCRC) has undergone profound changes. The approval of newer chemotherapeutics such as irinotecan and oxaliplatin was followed in 2005 by the first targeted therapies, for example, monoclonal antibodies directed against the epidermal growth factor receptor (EGFR), as cetuximab and panitumumab, or the angiogenesis inhibitors bevacizumab, ramucirumab, and aflibercept. With the rapidly progressing molecular characterization of mCRC in the last 10 years and the classification of the disease in four consensus subtypes, further changes are emerging, which will promote, among other things, the introduction of protein-kinase inhibitors developed for specific molecular aberrations as well as immune checkpoint inhibitors into the treatment algorithm.Thorough molecular pathologic testing is indispensable today for guideline-compliant treatment of mCRC patients. In addition to RAS testing as a precondition for the therapy decision with regard to cetuximab and panitumumab, BRAF testing is of considerable relevance to allow decision making with regard to the newly approved chemotherapy-free combination of the BRAF inhibitor encorafenib and cetuximab in cases where a BRAF-V600E mutation is detected. Additional diagnostic tests should also include genome instability (microsatellite instability). Overall, more and more molecular alterations need to be investigated simultaneously, so that the use of focused next-generation sequencing is increasingly recommended.This overview describes the prognostic relevance of BRAF testing in the context of molecular pathologic diagnostics of mCRC, presents new treatment options for BRAF-mutated mCRC patients, and explains which modern DNA analytical and immunohistochemical methods are available to detect BRAF mutations in mCRC patients.
Collapse
Affiliation(s)
- Michael Hummel
- Institut für Pathologie, Campus Charité Mitte, Charité - Universitätsmedizin Berlin, Virchowweg 16/17a, 10117, Berlin, Deutschland.
| | | | - Jens Neumann
- Pathologisches Institut, Medizinische Fakultät, Ludwig-Maximilians-Universität München, München, Deutschland
| | - Arndt Vogel
- Klinik für Gastroenterologie, Hepatologie und Endokrinologie, Medizinische Hochschule Hannover, Hannover, Deutschland
| |
Collapse
|
185
|
Honkala A, Malhotra SV, Kummar S, Junttila MR. Harnessing the predictive power of preclinical models for oncology drug development. Nat Rev Drug Discov 2021; 21:99-114. [PMID: 34702990 DOI: 10.1038/s41573-021-00301-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2021] [Indexed: 12/21/2022]
Abstract
Recent progress in understanding the molecular basis of cellular processes, identification of promising therapeutic targets and evolution of the regulatory landscape makes this an exciting and unprecedented time to be in the field of oncology drug development. However, high costs, long development timelines and steep rates of attrition continue to afflict the drug development process. Lack of predictive preclinical models is considered one of the key reasons for the high rate of attrition in oncology. Generating meaningful and predictive results preclinically requires a firm grasp of the relevant biological questions and alignment of the model systems that mirror the patient context. In doing so, the ability to conduct both forward translation, the process of implementing basic research discoveries into practice, as well as reverse translation, the process of elucidating the mechanistic basis of clinical observations, greatly enhances our ability to develop effective anticancer treatments. In this Review, we outline issues in preclinical-to-clinical translatability of molecularly targeted cancer therapies, present concepts and examples of successful reverse translation, and highlight the need to better align tumour biology in patients with preclinical model systems including tracking of strengths and weaknesses of preclinical models throughout programme development.
Collapse
Affiliation(s)
- Alexander Honkala
- Department of Cell Development & Cancer Biology, Oregon Health & Science University, Portland, OR, USA
| | - Sanjay V Malhotra
- Department of Cell Development & Cancer Biology, Oregon Health & Science University, Portland, OR, USA.,Center for Experimental Therapeutics, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Shivaani Kummar
- Center for Experimental Therapeutics, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA. .,Division of Hematology & Medical Oncology, Oregon Health & Science University, Portland, OR, USA.
| | | |
Collapse
|
186
|
Fujii S, Ishibashi T, Kokura M, Fujimoto T, Matsumoto S, Shidara S, Kurppa KJ, Pape J, Caton J, Morgan PR, Heikinheimo K, Kikuchi A, Jimi E, Kiyoshima T. RAF1-MEK/ERK pathway-dependent ARL4C expression promotes ameloblastoma cell proliferation and osteoclast formation. J Pathol 2021; 256:119-133. [PMID: 34622442 DOI: 10.1002/path.5814] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 09/10/2021] [Accepted: 10/05/2021] [Indexed: 12/17/2022]
Abstract
Ameloblastoma is an odontogenic neoplasm characterized by slow intraosseous growth with progressive jaw resorption. Recent reports have revealed that ameloblastoma harbours an oncogenic BRAFV600E mutation with mitogen-activated protein kinase (MAPK) pathway activation and described cases of ameloblastoma harbouring a BRAFV600E mutation in which patients were successfully treated with a BRAF inhibitor. Therefore, the MAPK pathway may be involved in the development of ameloblastoma; however, the precise mechanism by which it induces ameloblastoma is unclear. The expression of ADP-ribosylation factor (ARF)-like 4c (ARL4C), induced by a combination of the EGF-MAPK pathway and Wnt/β-catenin signalling, has been shown to induce epithelial morphogenesis. It was also reported that the overexpression of ARL4C, due to alterations in the EGF/RAS-MAPK pathway and Wnt/β-catenin signalling, promotes tumourigenesis. However, the roles of ARL4C in ameloblastoma are unknown. We investigated the involvement of ARL4C in the development of ameloblastoma. In immunohistochemical analyses of tissue specimens obtained from 38 ameloblastoma patients, ARL4C was hardly detected in non-tumour regions but tumours frequently showed strong expression of ARL4C, along with the expression of both BRAFV600E and RAF1 (also known as C-RAF). Loss-of-function experiments using inhibitors or siRNAs revealed that ARL4C elevation depended on the RAF1-MEK/ERK pathway in ameloblastoma cells. It was also shown that the RAF1-ARL4C and BRAFV600E-MEK/ERK pathways promoted cell proliferation independently. ARL4C-depleted tumour cells (generated by knockdown or knockout) exhibited decreased proliferation and migration capabilities. Finally, when ameloblastoma cells were co-cultured with mouse bone marrow cells and primary osteoblasts, ameloblastoma cells induced osteoclast formation. ARL4C elevation in ameloblastoma further promoted its formation capabilities through the increased RANKL expression of mouse bone marrow cells and/or primary osteoblasts. These results suggest that the RAF1-MEK/ERK-ARL4C axis, which may function in cooperation with the BRAFV600E-MEK/ERK pathway, promotes ameloblastoma development. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Shinsuke Fujii
- Laboratory of Oral Pathology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Takuma Ishibashi
- Laboratory of Oral Pathology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Megumi Kokura
- Laboratory of Oral Pathology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Tatsufumi Fujimoto
- Laboratory of Oral Pathology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Shinji Matsumoto
- Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, Suita, Japan.,Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Japan
| | - Satsuki Shidara
- Laboratory of Oral Pathology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Kari J Kurppa
- Institute of Biomedicine and MediCity Research Laboratories, University of Turku, and Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Judith Pape
- Division of Surgery and Interventional Science, Department of Targeted Intervention, Centre for 3D Models of Health and Disease, University College London, London, UK
| | - Javier Caton
- Department of Anatomy and Embryology, Faculty of Medicine, University Complutense Madrid, Madrid, Spain
| | - Peter R Morgan
- Head & Neck Pathology, King's College London, Guy's Hospital, London, UK
| | - Kristiina Heikinheimo
- Department of Oral and Maxillofacial Surgery, Institute of Dentistry, University of Turku and Turku University Hospital, Turku, Finland
| | - Akira Kikuchi
- Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Eijiro Jimi
- Oral Health/Brain Health/Total Health Research Center, Faculty of Dental Science, Kyushu University, Fukuoka, Japan.,Laboratory of Molecular and Cellular Biochemistry, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Tamotsu Kiyoshima
- Laboratory of Oral Pathology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| |
Collapse
|
187
|
Seervai RNH, Cho WC, Chu EY, Marques-Piubelli ML, Ledesma DA, Richards K, Heberton MM, Nelson KC, Nagarajan P, Torres-Cabala CA, Prieto VG, Curry JL. Diverse landscape of dermatologic toxicities from small-molecule inhibitor cancer therapy. J Cutan Pathol 2021; 49:61-81. [PMID: 34622477 DOI: 10.1111/cup.14145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/29/2021] [Accepted: 10/02/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Advances in molecular biology and genetics have contributed to breakthrough treatments directed at specific pathways associated with the development of cancer. Small-molecule inhibitors (Nibs) aimed at a variety of cellular pathways have been efficacious; however, they are associated with significant dermatologic toxicities. METHODS We conducted a comprehensive review of dermatologic toxicities associated with Nibs categorized into the following five groups: (a) mitogen-activated protein kinase; (b) growth factor/multi-tyrosine kinase; (c) cell division/DNA repair; (d) signaling associated with myeloproliferative neoplasms; and (e) other signaling pathways. Prospective phase I, II, or III clinical trials, retrospective literature reviews, systematic reviews/meta-analyses, and case reviews/reports were included for analysis. RESULTS Dermatologic toxicities reviewed were associated with every class of Nibs and ranged from mild to severe or life-threatening adverse skin reactions. Inflammatory reactions manifesting as maculopapular, papulopustular/acneiform, and eczematous lesions were frequent types of dermatologic toxicities seen with Nibs. Squamous cell carcinoma with keratoacanthoma-like features was associated with a subset of Nibs. Substantial overlap in dermatologic toxicities was found between Nibs. CONCLUSIONS Dermatologic toxicities from Nibs are diverse and may overlap between classes of Nibs. Recognition of the various types of toxicities from Nibs is critical for patient care in the era of "oncodermatology/dermatopathology."
Collapse
Affiliation(s)
- Riyad N H Seervai
- Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas, USA.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA.,Department of Dermatology, Baylor College of Medicine, Houston, Texas, USA
| | - Woo Cheal Cho
- Department of Pathology, Section of Dermatopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Emily Y Chu
- Department of Dermatology, The University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mario L Marques-Piubelli
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Debora A Ledesma
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Kristen Richards
- Department of Dermatology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Meghan M Heberton
- Department of Dermatology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Kelly C Nelson
- Department of Dermatology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Priyadharsini Nagarajan
- Department of Pathology, Section of Dermatopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Carlos A Torres-Cabala
- Department of Pathology, Section of Dermatopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Department of Dermatology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Victor G Prieto
- Department of Pathology, Section of Dermatopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Department of Dermatology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jonathan L Curry
- Department of Pathology, Section of Dermatopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
188
|
RAS Dimers: The Novice Couple at the RAS-ERK Pathway Ball. Genes (Basel) 2021; 12:genes12101556. [PMID: 34680951 PMCID: PMC8535645 DOI: 10.3390/genes12101556] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 02/07/2023] Open
Abstract
Signals conveyed through the RAS-ERK pathway constitute a pivotal regulatory element in cancer-related cellular processes. Recently, RAS dimerization has been proposed as a key step in the relay of RAS signals, critically contributing to RAF activation. RAS clustering at plasma membrane microdomains and endomembranes facilitates RAS dimerization in response to stimulation, promoting RAF dimerization and subsequent activation. Remarkably, inhibiting RAS dimerization forestalls tumorigenesis in cellular and animal models. Thus, the pharmacological disruption of RAS dimers has emerged as an additional target for cancer researchers in the quest for a means to curtail aberrant RAS activity.
Collapse
|
189
|
Jung T, Haist M, Kuske M, Grabbe S, Bros M. Immunomodulatory Properties of BRAF and MEK Inhibitors Used for Melanoma Therapy-Paradoxical ERK Activation and Beyond. Int J Mol Sci 2021; 22:ijms22189890. [PMID: 34576054 PMCID: PMC8469254 DOI: 10.3390/ijms22189890] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 12/21/2022] Open
Abstract
The advent of mitogen-activated protein kinase (MAPK) inhibitors that directly inhibit tumor growth and of immune checkpoint inhibitors (ICI) that boost effector T cell responses have strongly improved the treatment of metastatic melanoma. In about half of all melanoma patients, tumor growth is driven by gain-of-function mutations of BRAF (v-rat fibrosarcoma (Raf) murine sarcoma viral oncogene homolog B), which results in constitutive ERK activation. Patients with a BRAF mutation are regularly treated with a combination of BRAF and MEK (MAPK/ERK kinase) inhibitors. Next to the antiproliferative effects of BRAF/MEKi, accumulating preclinical evidence suggests that BRAF/MEKi exert immunomodulatory functions such as paradoxical ERK activation as well as additional effects in non-tumor cells. In this review, we present the current knowledge on the immunomodulatory functions of BRAF/MEKi as well as the non-intended effects of ICI and discuss the potential synergistic effects of ICI and MAPK inhibitors in melanoma treatment.
Collapse
|
190
|
Rasmussen NR, Reiner DJ. Nuclear translocation of the tagged endogenous MAPK MPK-1 denotes a subset of activation events in C. elegans development. J Cell Sci 2021; 134:272044. [PMID: 34341823 PMCID: PMC8445601 DOI: 10.1242/jcs.258456] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 07/14/2021] [Indexed: 11/20/2022] Open
Abstract
The extracellular signal-regulated kinases (ERKs) are mitogen-activated protein kinases (MAPKs) that are utilized downstream of Ras to Raf to MEK signaling to control activation of a wide array of targets. Activation of ERKs is elevated in Ras-driven tumors and RASopathies, and thus is a target for pharmacological inhibition. Regulatory mechanisms of ERK activation have been studied extensively in vitro and in cultured cells, but little in living animals. In this study, we tagged the Caenorhabditis elegans ERK-encoding gene, mpk-1. MPK-1 is ubiquitously expressed with elevated expression in certain contexts. We detected cytosol-to-nuclear translocation of MPK-1 in maturing oocytes and hence validated nuclear translocation as a reporter of some activation events. During patterning of vulval precursor cells (VPCs), MPK-1 is necessary and sufficient for the central cell, P6.p, to assume the primary fate. Yet MPK-1 translocates to the nuclei of all six VPCs in a temporal and concentration gradient centered on P6.p. This observation contrasts with previous results using the ERK nuclear kinase translocation reporter of substrate activation, raising questions about mechanisms and indicators of MPK-1 activation. This system and reagent promise to provide critical insights into the regulation of MPK-1 activation within a complex intercellular signaling network. Summary: Tagged endogenous C. elegans MPK-1 shows activation-dependent cytosol-to-nuclear translocation. This tool provides novel insights into MPK-1 localization compared with other markers of in vivo ERK activation.
Collapse
Affiliation(s)
- Neal R Rasmussen
- Institute of Biosciences and Technology, College of Medicine, Texas A&M Health Science Center, Texas A&M University, Houston, 77030, USA
| | - David J Reiner
- Institute of Biosciences and Technology, College of Medicine, Texas A&M Health Science Center, Texas A&M University, Houston, 77030, USA
| |
Collapse
|
191
|
Lacouture ME, Wainberg ZA, Patel AB, Anadkat MJ, Stemmer SM, Shacham-Shmueli E, Medina E, Zelinger G, Shelach N, Ribas A. Reducing Skin Toxicities from EGFR Inhibitors with Topical BRAF Inhibitor Therapy. Cancer Discov 2021; 11:2158-2167. [PMID: 33910927 PMCID: PMC8418997 DOI: 10.1158/2159-8290.cd-20-1847] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/14/2021] [Accepted: 04/16/2021] [Indexed: 11/16/2022]
Abstract
Treatment of cancer with EGFR inhibitors is limited by on-target skin toxicities induced by inhibition of the MAPK pathway. BRAF inhibitors are known to paradoxically activate the MAPK downstream of EGFR, which we confirmed using human skin keratinocytes. We then conducted a phase I clinical trial testing the hypothesis that topical therapy with the BRAF inhibitor LUT014 could improve skin toxicities induced by EGFR inhibitors. Ten patients with metastatic colorectal cancer who had developed acneiform rash while being treated with cetuximab or panitumumab were enrolled in three cohorts. LUT014 was well tolerated, and there were no dose-limiting toxicities. The acneiform rash improved in the 6 patients who started with grade 2 rash in the low and intermediate cohorts. We conclude that topical LUT014 is safe and efficacious in improving rash from EGFR inhibitors, consistent with the mechanism of action inducting paradoxical MAPK activation. SIGNIFICANCE: BRAF inhibitor topical therapy could avoid dose reductions of EGFR inhibitors, locally treating the main dose-limiting skin toxicity of this class of agents.This article is highlighted in the In This Issue feature, p. 2113.
Collapse
Affiliation(s)
| | - Zev A Wainberg
- University of California, Los Angeles (UCLA) and Jonsson Comprehensive Cancer Center, Los Angeles, California
| | - Anisha B Patel
- The University of Texas MD Anderson Cancer Center (MDACC), Houston, Texas
| | - Milan J Anadkat
- Washington University School of Medicine, St. Louis, Missouri
| | - Salomon M Stemmer
- Davidoff Center, Rabin Medical Center, Petach Tikva, and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | - Egmidio Medina
- University of California, Los Angeles (UCLA) and Jonsson Comprehensive Cancer Center, Los Angeles, California
| | | | | | - Antoni Ribas
- University of California, Los Angeles (UCLA) and Jonsson Comprehensive Cancer Center, Los Angeles, California.
| |
Collapse
|
192
|
Bannoura SF, Uddin MH, Nagasaka M, Fazili F, Al-Hallak MN, Philip PA, El-Rayes B, Azmi AS. Targeting KRAS in pancreatic cancer: new drugs on the horizon. Cancer Metastasis Rev 2021; 40:819-835. [PMID: 34499267 PMCID: PMC8556325 DOI: 10.1007/s10555-021-09990-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 08/27/2021] [Indexed: 02/07/2023]
Abstract
Kirsten Rat Sarcoma (KRAS) is a master oncogene involved in cellular proliferation and survival and is the most commonly mutated oncogene in all cancers. Activating KRAS mutations are present in over 90% of pancreatic ductal adenocarcinoma (PDAC) cases and are implicated in tumor initiation and progression. Although KRAS is a critical oncogene, and therefore an important therapeutic target, its therapeutic inhibition has been very challenging, and only recently specific mutant KRAS inhibitors have been discovered. In this review, we discuss the activation of KRAS signaling and the role of mutant KRAS in PDAC development. KRAS has long been considered undruggable, and many drug discovery efforts which focused on indirect targeting have been unsuccessful. We discuss the various efforts for therapeutic targeting of KRAS. Further, we explore the reasons behind these obstacles, novel successful approaches to target mutant KRAS including G12C mutation as well as the mechanisms of resistance.
Collapse
Affiliation(s)
- Sahar F Bannoura
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Md Hafiz Uddin
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Misako Nagasaka
- Division of Hematology/Oncology, Department of Medicine, UCI Health, Orange, CA, 92868, USA
| | - Farzeen Fazili
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Mohammed Najeeb Al-Hallak
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Philip A Philip
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Bassel El-Rayes
- Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA
| | - Asfar S Azmi
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
| |
Collapse
|
193
|
Keshishian H, McDonald ER, Mundt F, Melanson R, Krug K, Porter DA, Wallace L, Forestier D, Rabasha B, Marlow SE, Jane‐Valbuena J, Todres E, Specht H, Robinson ML, Jean Beltran PM, Babur O, Olive ME, Golji J, Kuhn E, Burgess M, MacMullan MA, Rejtar T, Wang K, Mani DR, Satpathy S, Gillette MA, Sellers WR, Carr SA. A highly multiplexed quantitative phosphosite assay for biology and preclinical studies. Mol Syst Biol 2021; 17:e10156. [PMID: 34569154 PMCID: PMC8474009 DOI: 10.15252/msb.202010156] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 12/14/2022] Open
Abstract
Reliable methods to quantify dynamic signaling changes across diverse pathways are needed to better understand the effects of disease and drug treatment in cells and tissues but are presently lacking. Here, we present SigPath, a targeted mass spectrometry (MS) assay that measures 284 phosphosites in 200 phosphoproteins of biological interest. SigPath probes a broad swath of signaling biology with high throughput and quantitative precision. We applied the assay to investigate changes in phospho-signaling in drug-treated cancer cell lines, breast cancer preclinical models, and human medulloblastoma tumors. In addition to validating previous findings, SigPath detected and quantified a large number of differentially regulated phosphosites newly associated with disease models and human tumors at baseline or with drug perturbation. Our results highlight the potential of SigPath to monitor phosphoproteomic signaling events and to nominate mechanistic hypotheses regarding oncogenesis, response, and resistance to therapy.
Collapse
Affiliation(s)
- Hasmik Keshishian
- Broad Institute of Massachusetts Institute of Technology and HarvardCambridgeMAUSA
| | | | - Filip Mundt
- Broad Institute of Massachusetts Institute of Technology and HarvardCambridgeMAUSA
- Present address:
Novo Nordisk Foundation Center for Protein ResearchFaculty of Health SciencesUniversity of CopenhagenCopenhagenDenmark
- Present address:
Department of Oncology and PathologyScience for Life LaboratoryKarolinska InstitutetStockholmSweden
| | - Randy Melanson
- Broad Institute of Massachusetts Institute of Technology and HarvardCambridgeMAUSA
| | - Karsten Krug
- Broad Institute of Massachusetts Institute of Technology and HarvardCambridgeMAUSA
| | - Dale A Porter
- Novartis Institute of Biomedical ResearchCambridgeMAUSA
- Present address:
Cedilla TherapeuticsCambridgeMAUSA
| | - Luke Wallace
- Broad Institute of Massachusetts Institute of Technology and HarvardCambridgeMAUSA
| | - Dominique Forestier
- Broad Institute of Massachusetts Institute of Technology and HarvardCambridgeMAUSA
| | - Bokang Rabasha
- Broad Institute of Massachusetts Institute of Technology and HarvardCambridgeMAUSA
| | - Sara E Marlow
- Broad Institute of Massachusetts Institute of Technology and HarvardCambridgeMAUSA
| | - Judit Jane‐Valbuena
- Broad Institute of Massachusetts Institute of Technology and HarvardCambridgeMAUSA
| | - Ellen Todres
- Broad Institute of Massachusetts Institute of Technology and HarvardCambridgeMAUSA
| | - Harrison Specht
- Broad Institute of Massachusetts Institute of Technology and HarvardCambridgeMAUSA
| | | | | | - Ozgun Babur
- Computer Science DepartmentUniversity of Massachusetts BostonBostonMAUSA
| | - Meagan E Olive
- Broad Institute of Massachusetts Institute of Technology and HarvardCambridgeMAUSA
| | - Javad Golji
- Novartis Institute of Biomedical ResearchCambridgeMAUSA
| | - Eric Kuhn
- Broad Institute of Massachusetts Institute of Technology and HarvardCambridgeMAUSA
| | - Michael Burgess
- Broad Institute of Massachusetts Institute of Technology and HarvardCambridgeMAUSA
| | - Melanie A MacMullan
- Broad Institute of Massachusetts Institute of Technology and HarvardCambridgeMAUSA
| | - Tomas Rejtar
- Novartis Institute of Biomedical ResearchCambridgeMAUSA
| | - Karen Wang
- Novartis Institute of Biomedical ResearchCambridgeMAUSA
| | - DR Mani
- Broad Institute of Massachusetts Institute of Technology and HarvardCambridgeMAUSA
| | - Shankha Satpathy
- Broad Institute of Massachusetts Institute of Technology and HarvardCambridgeMAUSA
| | - Michael A Gillette
- Broad Institute of Massachusetts Institute of Technology and HarvardCambridgeMAUSA
- Division of Pulmonary and Critical Care MedicineMassachusetts General HospitalBostonMAUSA
| | - William R Sellers
- Broad Institute of Massachusetts Institute of Technology and HarvardCambridgeMAUSA
- Department of Medical OncologyDana‐Farber Cancer Institute and Harvard Medical SchoolBostonMAUSA
| | - Steven A Carr
- Broad Institute of Massachusetts Institute of Technology and HarvardCambridgeMAUSA
| |
Collapse
|
194
|
Li W, Wang D, Li M, Li B. Emodin inhibits the proliferation of papillary thyroid carcinoma by activating AMPK. Exp Ther Med 2021; 22:1075. [PMID: 34447468 PMCID: PMC8355685 DOI: 10.3892/etm.2021.10509] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 03/25/2021] [Indexed: 01/01/2023] Open
Abstract
Emodin has been demonstrated to serve antitumor roles in a variety of tumor types, but the effect of emodin on papillary thyroid carcinoma and its molecular mechanisms remain unclear. In the current study, the role of emodin on papillary thyroid carcinoma was analyzed in vitro and in vivo. TPC-1 cells were treated with emodin (0, 10, 25 or 50 µM), and cell viability and apoptosis were detected using Cell Counting Kit-8 and flow cytometry, respectively. The expression levels of AMPK-associated proteins were examined using western blot analysis. To study the effect of emodin on the AMPK pathway, AMPK activator, AICAR and an AMPK inhibitor, Dorsomorphin, were used in TPC-1 cells. In vivo, mice were used to confirm the mechanism of emodin on papillary thyroid carcinoma. The results of the current study indicated that emodin treatment induced cell apoptosis and cell cycle arrest in TPC-1 cells. Furthermore, the inhibitory effect increased in a dose dependent manner. Following emodin treatment, the cell viability of TPC-1 cells was significantly decreased, and apoptosis rate increased (P<0.05). Furthermore, the expression levels of AMPK were increased in the emodin group compared with the control group (P<0.05). Similar effects were observed following AMPK activator treatment in TPC-1 cells. Following AMPK activator treatment, cell proliferation and the cell cycle were inhibited. Also, the AMPK inhibitor was demonstrated to mediate the therapeutic effect of emodin. In addition, the results of the present study demonstrated that emodin inhibited the MEK/ERK pathway. Additionally, the in vivo results of the current study were consistent with those in vitro. In conclusion, the current study demonstrated that the administration of Emodin inhibited the proliferation of papillary thyroid cancer cells via activating AMPK pathway activity.
Collapse
Affiliation(s)
- Weilong Li
- Department of Nuclear Medicine, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Dong Wang
- Department of Thyroid, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Meijing Li
- Department of Hepatobiliary, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Baoyuan Li
- Department of Thyroid, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| |
Collapse
|
195
|
Kondo Y, Paul JW, Subramaniam S, Kuriyan J. New insights into Raf regulation from structural analyses. Curr Opin Struct Biol 2021; 71:223-231. [PMID: 34454301 DOI: 10.1016/j.sbi.2021.07.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/06/2021] [Accepted: 07/10/2021] [Indexed: 01/07/2023]
Abstract
BRAF is a highly regulated protein kinase that controls cell fate in animal cells. Recent structural analyses have revealed how active and inactive forms of BRAF bind to dimers of the scaffold protein 14-3-3. Inactive BRAF binds to 14-3-3 as a monomer and is held in an inactive conformation by interactions with ATP and the substrate kinase MEK, a striking example of enzyme inhibition by substrate binding. A change in the phosphorylation state of BRAF shifts the stoichiometry of the BRAF:14-3-3 complex from 1:2 to 2:2, resulting in stabilization of the active dimeric form of the kinase. These new findings uncover unexpected features of the regulatory mechanisms underlying Raf biology and help explain the paradoxical activation of Raf by small-molecule inhibitors.
Collapse
Affiliation(s)
- Yasushi Kondo
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA; California Institute for Quantitative Biosciences, University of California, Berkeley, CA, 94720, USA
| | - Joseph W Paul
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA; California Institute for Quantitative Biosciences, University of California, Berkeley, CA, 94720, USA
| | | | - John Kuriyan
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA; California Institute for Quantitative Biosciences, University of California, Berkeley, CA, 94720, USA; Howard Hughes Medical Institute, University of California, Berkeley, CA, 94720, USA; Department of Chemistry, University of California, Berkeley, CA, 94720, USA; Division of Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| |
Collapse
|
196
|
Wu Y, Huang J, Ivan C, Sun Y, Ma S, Mangala LS, Fellman BM, Urbauer DL, Jennings NB, Ram P, Coleman RL, Hu W, Sood AK. MEK inhibition overcomes resistance to EphA2-targeted therapy in uterine cancer. Gynecol Oncol 2021; 163:181-190. [PMID: 34391578 DOI: 10.1016/j.ygyno.2021.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/28/2021] [Accepted: 08/02/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND Our pilot clinical study of EphA2 inhibitor (dasatinib) plus paclitaxel and carboplatin showed interesting clinical activity in endometrial cancer with manageable toxicity. However, the underlying mechanisms of dasatinib resistance in uterine cancer are unknown. Here, we investigated potential mechanisms underlying resistance to EphA2 inhibitors in uterine cancer and examined the anti-tumor activity of EphA2 inhibitors alone and in combination with a MEK inhibitor. METHODS We evaluated the antitumor activity of EphA2 inhibitors plus a MEK inhibitor using in vitro and in vivo orthotopic models of uterine cancer. RESULTS EphA2 inhibitor induced MAPK in dasatinib-resistant uterine cancer cells (HEC-1A and Ishikawa) and BRAF/CRAF heterodimerization in HEC-1A cells. EphA2 inhibitor and trametinib significantly increased apoptosis in cancer cells resistant to EphA2 inhibitors compared with controls (p < 0.01). An in vivo study with the orthotopic HEC-1A model showed significantly greater antitumor response to combination treatment compared with dasatinib alone (p < 0.01). Combination treatment increased EphrinA1 and BIM along with decreased pMAPK, Jagged 1, and c-MYC expression in dasatinib-resistant cells. In addition, Spearman analysis using the TCGA data revealed that upregulation of EphA2 was significantly correlated with JAG1, MYC, NOTCH1, NOTCH3 and HES1 expression (p < 0.001, r = 0.25-0.43). Specifically, MAP3K15 and the NOTCH family genes were significantly related to poor clinical outcome in patients with uterine cancer. CONCLUSIONS These findings indicate that the MAPK pathway is activated in dasatinib-resistant uterine cancer cells and that EphrinA1-mediated MEK inhibition overcomes dasatinib resistance. Dual targeting of both EphA2 and MEK, combined with chemotherapy, should be considered for future clinical development.
Collapse
Affiliation(s)
- Yutuan Wu
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Jie Huang
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Cristina Ivan
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America; Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Yunjie Sun
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Shaolin Ma
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Lingegowda S Mangala
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Bryan M Fellman
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Diana L Urbauer
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Nicholas B Jennings
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Prahlad Ram
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Robert L Coleman
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Wei Hu
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America.
| | - Anil K Sood
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America; Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America; Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America.
| |
Collapse
|
197
|
Small molecule ERK5 kinase inhibitors paradoxically activate ERK5 signalling: be careful what you wish for…. Biochem Soc Trans 2021; 48:1859-1875. [PMID: 32915196 PMCID: PMC7609025 DOI: 10.1042/bst20190338] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/06/2020] [Accepted: 08/10/2020] [Indexed: 12/15/2022]
Abstract
ERK5 is a protein kinase that also contains a nuclear localisation signal and a transcriptional transactivation domain. Inhibition of ERK5 has therapeutic potential in cancer and inflammation and this has prompted the development of ERK5 kinase inhibitors (ERK5i). However, few ERK5i programmes have taken account of the ERK5 transactivation domain. We have recently shown that the binding of small molecule ERK5i to the ERK5 kinase domain stimulates nuclear localisation and paradoxical activation of its transactivation domain. Other kinase inhibitors paradoxically activate their intended kinase target, in some cases leading to severe physiological consequences highlighting the importance of mitigating these effects. Here, we review the assays used to monitor ERK5 activities (kinase and transcriptional) in cells, the challenges faced in development of small molecule inhibitors to the ERK5 pathway, and classify the molecular mechanisms of paradoxical activation of protein kinases by kinase inhibitors.
Collapse
|
198
|
Abstract
PURPOSE OF REVIEW Although immune checkpoint inhibitors and small molecule inhibitors targeting the MAPK pathway have revolutionized the management of metastatic melanoma, long-term disease control occurs only for a minority of patients because of multiple resistance mechanisms. One way to tackle resistance is to develop the next-generation of RAF, MEK and ERK inhibitors using our understanding of the molecular mechanisms that fine-tune the MAPK pathway. RECENT FINDINGS Studies on the regulation of the MAPK pathway have revealed a dominant role for homo-dimerization and hetero-dimerization of RAF, MEK and ERK. Allosteric inhibitors that break these dimers are, therefore, undergoing various stages of preclinical and clinical evaluation. Novel MEK inhibitors are less susceptible to differences in MEK's activation state and do not drive the compensatory activation of MEK that could limit efficacy. Innovations in targeting ERK originate from dual inhibitors that block MEK-catalyzed ERK phosphorylation, thereby limiting the extent of ERK reactivation following feedback relief. SUMMARY The primary goal in RAF, MEK and ERK inhibitors' development is to produce molecules with less inhibitor paradox and off-target effects, giving robust and sustained MAPK pathway inhibition.
Collapse
|
199
|
Nussinov R, Zhang M, Maloney R, Jang H. Ras isoform-specific expression, chromatin accessibility, and signaling. Biophys Rev 2021; 13:489-505. [PMID: 34466166 PMCID: PMC8355297 DOI: 10.1007/s12551-021-00817-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/29/2021] [Indexed: 12/12/2022] Open
Abstract
The anchorage of Ras isoforms in the membrane and their nanocluster formations have been studied extensively, including their detailed interactions, sizes, preferred membrane environments, chemistry, and geometry. However, the staggering challenge of their epigenetics and chromatin accessibility in distinct cell states and types, which we propose is a major factor determining their specific expression, still awaits unraveling. Ras isoforms are distinguished by their C-terminal hypervariable region (HVR) which acts in intracellular transport, regulation, and membrane anchorage. Here, we review some isoform-specific activities at the plasma membrane from a structural dynamic standpoint. Inspired by physics and chemistry, we recognize that understanding functional specificity requires insight into how biomolecules can organize themselves in different cellular environments. Within this framework, we suggest that isoform-specific expression may largely be controlled by the chromatin density and physical compaction, which allow (or curb) access to "chromatinized DNA." Genes are preferentially expressed in tissues: proteins expressed in pancreatic cells may not be equally expressed in lung cells. It is the rule-not an exception, and it can be at least partly understood in terms of chromatin organization and accessibility state. Genes are expressed when they can be sufficiently exposed to the transcription machinery, and they are less so when they are persistently buried in dense chromatin. Notably, chromatin accessibility can similarly determine expression of drug resistance genes.
Collapse
Affiliation(s)
- Ruth Nussinov
- Computational Structural Biology Section Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism National Cancer Institute, 1050 Boyles St, Frederick, MD 21702 USA
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine Tel Aviv University, 69978 Tel Aviv, Israel
| | - Mingzhen Zhang
- Computational Structural Biology Section Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism National Cancer Institute, 1050 Boyles St, Frederick, MD 21702 USA
| | - Ryan Maloney
- Computational Structural Biology Section Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism National Cancer Institute, 1050 Boyles St, Frederick, MD 21702 USA
| | - Hyunbum Jang
- Computational Structural Biology Section Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism National Cancer Institute, 1050 Boyles St, Frederick, MD 21702 USA
| |
Collapse
|
200
|
Heppner DE, Eck MJ. A structural perspective on targeting the RTK/Ras/MAP kinase pathway in cancer. Protein Sci 2021; 30:1535-1553. [PMID: 34008902 PMCID: PMC8284588 DOI: 10.1002/pro.4125] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 02/06/2023]
Abstract
Precision oncology is premised on identifying and drugging proteins and pathways that drive tumorigenesis or are required for survival of tumor cells. Across diverse cancer types, the signaling pathway emanating from receptor tyrosine kinases on the cell surface to RAS and the MAP kinase pathway is the most frequent target of oncogenic mutations, and key proteins in this signaling axis including EGFR, SHP2, RAS, BRAF, and MEK have long been a focus in cancer drug discovery. In this review, we provide an overview of historical and recent efforts to develop inhibitors targeting these nodes with an emphasis on the role that an understanding of protein structure and regulation has played in inhibitor discovery and characterization. Beyond its well-established role in structure-based drug design, structural biology has revealed mechanisms of allosteric regulation, distinct effects of activating oncogenic mutations, and other vulnerabilities that have opened new avenues in precision cancer drug discovery.
Collapse
Affiliation(s)
- David E. Heppner
- Department of ChemistryUniversity at Buffalo, State University of New YorkBuffaloNew YorkUSA
- Department of Pharmacology and TherapeuticsRoswell Park Comprehensive Cancer CenterBuffaloNew YorkUSA
| | - Michael J. Eck
- Department of Cancer BiologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
- Department of Biological Chemistry and Molecular PharmacologyHarvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|