151
|
Schwabe MR, Taxier LR, Frick KM. It takes a neural village: Circuit-based approaches for estrogenic regulation of episodic memory. Front Neuroendocrinol 2020; 59:100860. [PMID: 32781195 PMCID: PMC7669700 DOI: 10.1016/j.yfrne.2020.100860] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/24/2020] [Accepted: 08/04/2020] [Indexed: 02/07/2023]
Abstract
Cognitive behaviors, such as episodic memory formation, are complex processes involving coordinated activity in multiple brain regions. However, much of the research on hormonal regulation of cognition focuses on manipulation of one region at a time or provides a single snapshot of how a systemic treatment affects multiple brain regions without investigating how these regions might interact to mediate hormone effects. Here, we use estrogenic regulation of episodic memory as an example of how circuit-based approaches may be incorporated into future studies of hormones and cognition. We first review basic episodic memory circuitry, rapid mechanisms by which 17β-estradiol can alter circuit activity, and current knowledge about 17β-estradiol's effects on episodic memory. Next, we outline approaches that researchers can employ to consider circuit effects in their estrogen research and provide examples of how these methods have been used to examine hormonal regulation of memory and other behaviors.
Collapse
Affiliation(s)
- Miranda R Schwabe
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, United States
| | - Lisa R Taxier
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, United States
| | - Karyn M Frick
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, United States.
| |
Collapse
|
152
|
Agonistic behaviors and neuronal activation in sexually naïve female Mongolian gerbils. Behav Brain Res 2020; 395:112860. [PMID: 32798594 DOI: 10.1016/j.bbr.2020.112860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/01/2020] [Accepted: 08/10/2020] [Indexed: 10/23/2022]
Abstract
Agonistic interaction is important for establishing social hierarchy and determining access to limited resources. Although there are substantial studies investigating the neural mechanisms of aggressive or defensive behavior in male rodents, little attention has been paid to the mechanisms underlying agonistic behaviors in females. In the present study, we depicted patterns of agonistic behaviors in sexually naïve female Mongolian gerbils (Meriones unguiculatus) and examined the neuronal activation in the brain by Fos-immunoreactive (Fos-ir) staining. We found that the winner-loser relationship was established rapidly. Winners displayed higher levels of aggression, environmental exploration, scent marking, and self-grooming, but less defensive behavior, in comparison to losers. Several patterns of Fos-ir expression emerged following agonistic interactions. Winners had the number of Fos-ir cells in the ventrolateral subnucleus of the ventromedial hypothalamus (VMHvl) and dorsal periaqueductal grey (PAGd) more than the controls but less than the losers. Losers also had more Fos-ir cells in the paraventricular nucleus of the hypothalamus (PVN), anterior medial (BSTam) and anteriolateral (BSTal) subnuclei of the bed nucleus of the stria terminalis (BST), and the ventral subnucleus of the lateral septum (LSv), as well as less Fos-ir cells in the dentate gyrus of the hippocampus (DG), compared to the controls. In addition, the number of Fos-ir cells showed similar increases in the principal nucleus (BSTpr) and interfascicular nucleus (BSTif) of the BST and amygdala (AMYG) in both the winners and losers, compared to the controls. Together, these data illustrate the patterns of altered neuronal activation in a behavior-, social status-, and brain region-specific manner, implicating potential roles of the brain neural circuit in mediating agonistic interactions in female Mongolian gerbils.
Collapse
|
153
|
Experience-dependent plasticity in an innate social behavior is mediated by hypothalamic LTP. Proc Natl Acad Sci U S A 2020; 117:25789-25799. [PMID: 32973099 PMCID: PMC7568289 DOI: 10.1073/pnas.2011782117] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Modification of instinctive behaviors occurs through experience, yet the mechanisms through which this happens have remained largely unknown. Recent studies have shown that potentiation of aggression, an innate behavior, can occur through repeated winning of aggressive encounters. Here, we show that synaptic plasticity at a specific excitatory input to a hypothalamic cell population is correlated with, and required for, the expression of increasingly higher levels of aggressive behavior following aggressive experience. We additionally show that the amplitude and persistence of long-term potentiation at this synapse are influenced by serum testosterone, administration of which can normalize individual differences in the expression of intermale aggression among genetically identical mice. All animals can perform certain survival behaviors without prior experience, suggesting a “hard wiring” of underlying neural circuits. Experience, however, can alter the expression of innate behaviors. Where in the brain and how such plasticity occurs remains largely unknown. Previous studies have established the phenomenon of “aggression training,” in which the repeated experience of winning successive aggressive encounters across multiple days leads to increased aggressiveness. Here, we show that this procedure also leads to long-term potentiation (LTP) at an excitatory synapse, derived from the posteromedial part of the amygdalohippocampal area (AHiPM), onto estrogen receptor 1-expressing (Esr1+) neurons in the ventrolateral subdivision of the ventromedial hypothalamus (VMHvl). We demonstrate further that the optogenetic induction of such LTP in vivo facilitates, while optogenetic long-term depression (LTD) diminishes, the behavioral effect of aggression training, implying a causal role for potentiation at AHiPM→VMHvlEsr1 synapses in mediating the effect of this training. Interestingly, ∼25% of inbred C57BL/6 mice fail to respond to aggression training. We show that these individual differences are correlated both with lower levels of testosterone, relative to mice that respond to such training, and with a failure to exhibit LTP after aggression training. Administration of exogenous testosterone to such nonaggressive mice restores both behavioral and physiological plasticity. Together, these findings reveal that LTP at a hypothalamic circuit node mediates a form of experience-dependent plasticity in an innate social behavior, and a potential hormone-dependent basis for individual differences in such plasticity among genetically identical mice.
Collapse
|
154
|
Krzywkowski P, Penna B, Gross CT. Dynamic encoding of social threat and spatial context in the hypothalamus. eLife 2020; 9:e57148. [PMID: 32955014 PMCID: PMC7505658 DOI: 10.7554/elife.57148] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 08/12/2020] [Indexed: 11/13/2022] Open
Abstract
Social aggression and avoidance are defensive behaviors expressed by territorial animals in a manner appropriate to spatial context and experience. The ventromedial hypothalamus controls both social aggression and avoidance, suggesting that it may encode a general internal state of threat modulated by space and experience. Here, we show that neurons in the mouse ventromedial hypothalamus are activated both by the presence of a social threat as well as by a chamber where social defeat previously occurred. Moreover, under conditions where the animal could move freely between a home and defeat chamber, firing activity emerged that predicted the animal's position, demonstrating the dynamic encoding of spatial context in the hypothalamus. Finally, we found that social defeat induced a functional reorganization of neural activity as optogenetic activation could elicit avoidance after, but not before social defeat. These findings reveal how the hypothalamus dynamically encodes spatial and sensory cues to drive social behaviors.
Collapse
Affiliation(s)
- Piotr Krzywkowski
- Epigenetics & Neurobiology Unit, EMBL Rome, European Molecular Biology LaboratoryMonterotondoItaly
- EMBL and Heidelberg University, Faculty of BiosciencesHeidelbergGermany
| | - Beatrice Penna
- Epigenetics & Neurobiology Unit, EMBL Rome, European Molecular Biology LaboratoryMonterotondoItaly
- Masters Course in Biomedical Engineering, Faculty of Civil and Industrial Engineering, Sapienza UniversityRomaItaly
| | - Cornelius T Gross
- Epigenetics & Neurobiology Unit, EMBL Rome, European Molecular Biology LaboratoryMonterotondoItaly
| |
Collapse
|
155
|
Chen AX, Yan JJ, Zhang W, Wang L, Yu ZX, Ding XJ, Wang DY, Zhang M, Zhang YL, Song N, Jiao ZL, Xu C, Zhu SJ, Xu XH. Specific Hypothalamic Neurons Required for Sensing Conspecific Male Cues Relevant to Inter-male Aggression. Neuron 2020; 108:763-774.e6. [PMID: 32961129 DOI: 10.1016/j.neuron.2020.08.025] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 07/26/2020] [Accepted: 08/25/2020] [Indexed: 01/12/2023]
Abstract
The hypothalamus regulates innate social interactions, but how hypothalamic neurons transduce sex-related sensory signals emitted by conspecifics to trigger appropriate behaviors remains unclear. Here, we addressed this issue by identifying specific hypothalamic neurons required for sensing conspecific male cues relevant to inter-male aggression. By in vivo recording of neuronal activities in behaving mice, we showed that neurons expressing dopamine transporter (DAT+) in the ventral premammillary nucleus (PMv) of the hypothalamus responded to male urine cues in a vomeronasal organ (VNO)-dependent manner in naive males. Retrograde trans-synaptic tracing further revealed a specific group of neurons in the bed nucleus of the stria terminalis (BNST) that convey male-relevant signals from VNO to PMv. Inhibition of PMvDAT+ neurons abolished the preference for male urine cues and reduced inter-male attacks, while activation of these neurons promoted urine marking and aggression. Thus, PMvDAT+ neurons exemplify a hypothalamic node that transforms sex-related chemo-signals into recognition and behaviors.
Collapse
Affiliation(s)
- Ai-Xiao Chen
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China; Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 200031, China
| | - Jing-Jing Yan
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China; Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 200031, China
| | - Wen Zhang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 200031, China
| | - Lei Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 200031, China
| | - Zi-Xian Yu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China; Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 200031, China
| | - Xiao-Jing Ding
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 200031, China
| | - Dan-Yang Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China; Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 200031, China
| | - Min Zhang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 200031, China
| | - Yan-Li Zhang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 200031, China
| | - Nan Song
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 200031, China
| | - Zhuo-Lei Jiao
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China; Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 200031, China
| | - Chun Xu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 200031, China
| | - Shu-Jia Zhu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 200031, China
| | - Xiao-Hong Xu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 200031, China.
| |
Collapse
|
156
|
Huang D, Grady FS, Peltekian L, Geerling JC. Efferent projections of Vglut2, Foxp2, and Pdyn parabrachial neurons in mice. J Comp Neurol 2020; 529:657-693. [PMID: 32621762 DOI: 10.1002/cne.24975] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 12/16/2022]
Abstract
The parabrachial nucleus (PB) is a complex structure located at the junction of the midbrain and hindbrain. Its neurons have diverse genetic profiles and influence a variety of homeostatic functions. While its cytoarchitecture and overall efferent projections are known, we lack comprehensive information on the projection patterns of specific neuronal subtypes in the PB. In this study, we compared the projection patterns of glutamatergic neurons here with a subpopulation expressing the transcription factor Foxp2 and a further subpopulation expressing the neuropeptide Pdyn. To do this, we injected an AAV into the PB region to deliver a Cre-dependent anterograde tracer (synaptophysin-mCherry) in three different strains of Cre-driver mice. We then analyzed 147 neuroanatomical regions for labeled boutons in every brain (n = 11). Overall, glutamatergic neurons in the PB region project to a wide variety of sites in the cerebral cortex, basal forebrain, bed nucleus of the stria terminalis, amygdala, diencephalon, and brainstem. Foxp2 and Pdyn subpopulations project heavily to the hypothalamus, but not to the cortex, basal forebrain, or amygdala. Among the few differences between Foxp2 and Pdyn cases was a notable lack of Pdyn projections to the ventromedial hypothalamic nucleus. Our results indicate that genetic identity determines connectivity (and therefore, function), providing a framework for mapping all PB output projections based on the genetic identity of its neurons. Using genetic markers to systematically classify PB neurons and their efferent projections will enhance the translation of research findings from experimental animals to humans.
Collapse
Affiliation(s)
- Dake Huang
- Department of Neurology, University of Iowa, Iowa City, Iowa, USA
| | - Fillan S Grady
- Department of Neurology, University of Iowa, Iowa City, Iowa, USA
| | - Lila Peltekian
- Department of Neurology, University of Iowa, Iowa City, Iowa, USA
| | - Joel C Geerling
- Department of Neurology, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
157
|
Sternson SM. Exploring internal state-coding across the rodent brain. Curr Opin Neurobiol 2020; 65:20-26. [PMID: 32950827 DOI: 10.1016/j.conb.2020.08.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/16/2020] [Accepted: 08/21/2020] [Indexed: 12/16/2022]
Abstract
The influence of peripheral physiology on goal-directed behavior involves specialized interoceptive sensory neurons that signal internal state to the brain. Here, we review recent progress to examine the impact of these specialized cell types on neurons and circuits throughout the central nervous system. These new approaches are important for understanding how the needs of the body interact and guide goal-directed behaviors.
Collapse
Affiliation(s)
- Scott M Sternson
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA.
| |
Collapse
|
158
|
MIURA I, OVERTON ET, NAKAI N, KAWAMATA T, SATO M, TAKUMI T. Imaging the Neural Circuit Basis of Social Behavior: Insights from Mouse and Human Studies. Neurol Med Chir (Tokyo) 2020; 60:429-438. [PMID: 32863321 PMCID: PMC7490602 DOI: 10.2176/nmc.ra.2020-0088] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 05/21/2020] [Indexed: 11/20/2022] Open
Abstract
Social behavior includes a variety of behaviors that are expressed between two or more individuals. In humans, impairment of social function (i.e., social behavior and social cognition) is seen in neurodevelopmental and neurological disorders including autism spectrum disorders (ASDs) and stroke, respectively. In basic neuroscience research, fluorescence monitoring of neural activity, such as immediate early gene (IEG)-mediated whole-brain mapping, fiber photometry, and calcium imaging using a miniaturized head-mounted microscope or a two-photon microscope, and non-fluorescence imaging such as functional magnetic resonance imaging (fMRI) are increasingly used to measure the activity of many neurons and multiple brain areas in animals during social behavior. In this review, we overview recent rodent studies that have investigated the dynamics of brain activity during social behavior at the whole-brain and local circuit levels and studies that explored the neural basis of social function in healthy, in brain-injured, and in autistic human subjects. A synthesis of such findings will advance our understanding of brain mechanisms underlying social behavior and facilitate the development of pharmaceutical and functional neurosurgical interventions for brain disorders affecting social function.
Collapse
Affiliation(s)
- Isamu MIURA
- RIKEN Center for Brain Science, Wako, Saitama, Japan
- Department of Neurosurgery, Tokyo Women’s Medical University, Tokyo, Japan
| | | | - Nobuhiro NAKAI
- RIKEN Center for Brain Science, Wako, Saitama, Japan
- Department of Physiology and Cell Biology, Kobe University School of Medicine, Kobe, Hyogo, Japan
| | - Takakazu KAWAMATA
- Department of Neurosurgery, Tokyo Women’s Medical University, Tokyo, Japan
| | - Masaaki SATO
- RIKEN Center for Brain Science, Wako, Saitama, Japan
- Graduate School of Science and Engineering, Saitama University, Saitama, Saitama, Japan
- Department of Neuropharmacology, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan
| | - Toru TAKUMI
- RIKEN Center for Brain Science, Wako, Saitama, Japan
- Department of Physiology and Cell Biology, Kobe University School of Medicine, Kobe, Hyogo, Japan
- Graduate School of Science and Engineering, Saitama University, Saitama, Saitama, Japan
| |
Collapse
|
159
|
Yu ZX, Li XY, Xu XH. Neural Circuit Mechanisms That Underlie Parental Care. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1284:49-62. [PMID: 32852740 DOI: 10.1007/978-981-15-7086-5_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
In mammals, parental care is essential for the survival of the young; therefore, it is vitally important to the propagation of the species. These behaviors, differing between the two sexes, are innate, stereotyped, and are also modified by an individual's reproductive experience. These characteristics suggest that neural mechanisms underlying parental behaviors are genetically hardwired, evolutionarily conserved as well as sexually differentiated and malleable to experiential changes. Classical lesion studies on neural control of parental behaviors, mostly done in rats, date back to the 1950s. Recent developments of new methods and tools in neuroscience, which allow precise targeting and activation/inhibition of specific populations of neurons and their projections to different brain structures, have afforded fresh opportunities to dissect and delineate the detailed neural circuit mechanisms that govern distinct components of parental behaviors in the genetically tractably organism, the laboratory mouse (Mus musculus). In this review, we summarize recent discoveries using modern neurobiological tools within the context of traditional lesion studies. In addition, we discuss interesting cross talk between neural circuits that govern parent care with those that regulate other innate behaviors such as feeding and mating.
Collapse
Affiliation(s)
- Zi-Xian Yu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.,University of the Chinese Academy of Sciences, Beijing, China.,Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, China
| | - Xing-Yu Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.,University of the Chinese Academy of Sciences, Beijing, China.,Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, China
| | - Xiao-Hong Xu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China. .,Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, China.
| |
Collapse
|
160
|
Helmy M, Zhang J, Wang H. Neurobiology and Neural Circuits of Aggression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1284:9-22. [DOI: 10.1007/978-981-15-7086-5_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
161
|
Carvalho VMDA, Nakahara TS, Souza MADA, Cardozo LM, Trintinalia GZ, Pissinato LG, Venancio JO, Stowers L, Papes F. Representation of Olfactory Information in Organized Active Neural Ensembles in the Hypothalamus. Cell Rep 2020; 32:108061. [PMID: 32846119 DOI: 10.1016/j.celrep.2020.108061] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 05/20/2020] [Accepted: 07/31/2020] [Indexed: 11/17/2022] Open
Abstract
The internal representation of sensory information via coherent activation of specific pathways in the nervous system is key to appropriate behavioral responses. Little is known about how chemical stimuli that elicit instinctive behaviors lead to organized patterns of activity in the hypothalamus. Here, we study how a wide range of chemosignals form a discernible map of olfactory information in the ventromedial nucleus of the hypothalamus (VMH) and show that different stimuli entail distinct active neural ensembles. Importantly, we demonstrate that this map depends on functional inputs from the vomeronasal organ. We present evidence that the spatial locations of active VMH ensembles are correlated with activation of distinct vomeronasal receptors and that disjunct VMH ensembles exhibit differential projection patterns. Moreover, active ensembles with distinct spatial locations are not necessarily associated with different behavior categories, such as defensive or social, calling for a revision of the currently accepted model of VMH organization.
Collapse
Affiliation(s)
- Vinicius Miessler de Andrade Carvalho
- Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Rua Monteiro Lobato, 255, Campinas, São Paulo 13083-862, Brazil; Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas, Rua Monteiro Lobato, 255, Campinas, São Paulo 13083-862, Brazil; Department of Cell Biology, Scripps Research, 10550 N. Torrey Pines Rd., La Jolla, CA 92037, USA
| | - Thiago Seike Nakahara
- Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Rua Monteiro Lobato, 255, Campinas, São Paulo 13083-862, Brazil; Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas, Rua Monteiro Lobato, 255, Campinas, São Paulo 13083-862, Brazil
| | - Mateus Augusto de Andrade Souza
- Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Rua Monteiro Lobato, 255, Campinas, São Paulo 13083-862, Brazil; Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas, Rua Monteiro Lobato, 255, Campinas, São Paulo 13083-862, Brazil
| | - Leonardo Minete Cardozo
- Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Rua Monteiro Lobato, 255, Campinas, São Paulo 13083-862, Brazil; Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas, Rua Monteiro Lobato, 255, Campinas, São Paulo 13083-862, Brazil
| | - Guilherme Ziegler Trintinalia
- Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Rua Monteiro Lobato, 255, Campinas, São Paulo 13083-862, Brazil; Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas, Rua Monteiro Lobato, 255, Campinas, São Paulo 13083-862, Brazil
| | - Leonardo Granato Pissinato
- Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Rua Monteiro Lobato, 255, Campinas, São Paulo 13083-862, Brazil; Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas, Rua Monteiro Lobato, 255, Campinas, São Paulo 13083-862, Brazil
| | - José Otávio Venancio
- Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Rua Monteiro Lobato, 255, Campinas, São Paulo 13083-862, Brazil
| | - Lisa Stowers
- Department of Cell Biology, Scripps Research, 10550 N. Torrey Pines Rd., La Jolla, CA 92037, USA
| | - Fabio Papes
- Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Rua Monteiro Lobato, 255, Campinas, São Paulo 13083-862, Brazil.
| |
Collapse
|
162
|
Chang CH, Gean PW. The Ventral Hippocampus Controls Stress-Provoked Impulsive Aggression through the Ventromedial Hypothalamus in Post-Weaning Social Isolation Mice. Cell Rep 2020; 28:1195-1205.e3. [PMID: 31365864 DOI: 10.1016/j.celrep.2019.07.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 05/29/2019] [Accepted: 06/27/2019] [Indexed: 02/02/2023] Open
Abstract
Impulsively aggressive individuals may suddenly attack others when under stress, but the neural circuitry underlying stress-provoked aggression is poorly understood. Here, we report that acute stress activates ventral hippocampus (vHip) neurons to induce attack behavior in post-weaning socially isolated mice. Chemogenetic inhibition of vHip neural activity blunts stress-provoked attack behavior, whereas chemogenetic activation promotes it. The activation of cell bodies in vHip neurons projecting into the ventromedial hypothalamus (VMH) induces attack behavior, suggesting that the vHip-VMH projection contributes to impulsive aggression. Furthermore, optogenetic inhibition of vHip glutamatergic neurons blocks stress-provoked attacks, whereas optogenetic activation of vHip glutamatergic neurons drives attack behavior. These results show direct evidence that vHip-VMH neural circuitry modulates attack behavior in socially isolated mice.
Collapse
Affiliation(s)
- Chih-Hua Chang
- Department of Pharmacology, National Cheng-Kung University, Tainan 701, Taiwan
| | - Po-Wu Gean
- Department of Pharmacology, National Cheng-Kung University, Tainan 701, Taiwan; Department of Biotechnology and Bioindustry Sciences, National Cheng-Kung University, Tainan 701, Taiwan.
| |
Collapse
|
163
|
Abstract
Hypothalamic stimulation can elicit complex behaviors such as aggression, but how discrete motor components of such behaviors are organized at the circuit level remains largely unknown. In this issue of Neuron, Falkner et al. (2020) find that complex neural representations get transformed into a simplified action signal along a hypothalamic-midbrain pathway.
Collapse
|
164
|
Lovett-Barron M, Chen R, Bradbury S, Andalman AS, Wagle M, Guo S, Deisseroth K. Multiple convergent hypothalamus-brainstem circuits drive defensive behavior. Nat Neurosci 2020; 23:959-967. [PMID: 32572237 PMCID: PMC7687349 DOI: 10.1038/s41593-020-0655-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 05/13/2020] [Indexed: 12/17/2022]
Abstract
The hypothalamus is composed of many neuropeptidergic cell populations and directs multiple survival behaviors, including defensive responses to threats. However, the relationship between the peptidergic identity of neurons and their roles in behavior remains unclear. Here, we address this issue by studying the function of multiple neuronal populations in the zebrafish hypothalamus during defensive responses to a variety of homeostatic threats. Cellular registration of large-scale neural activity imaging to multiplexed in situ gene expression revealed that neuronal populations encoding behavioral features encompass multiple overlapping sets of neuropeptidergic cell classes. Manipulations of different cell populations showed that multiple sets of peptidergic neurons play similar behavioral roles in this fast-timescale behavior through glutamate co-release and convergent output to spinal-projecting premotor neurons in the brainstem. Our findings demonstrate that homeostatic threats recruit neurons across multiple hypothalamic cell populations, which cooperatively drive robust defensive behaviors.
Collapse
Affiliation(s)
| | - Ritchie Chen
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Susanna Bradbury
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Aaron S Andalman
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Mahendra Wagle
- Department of Bioengineering and Therapeutic Sciences, Programs in Human Genetics and Biological Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Su Guo
- Department of Bioengineering and Therapeutic Sciences, Programs in Human Genetics and Biological Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Karl Deisseroth
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
- Department of Psychiatry & Behavioral Sciences, Stanford University, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
165
|
Yamaguchi T, Wei D, Song SC, Lim B, Tritsch NX, Lin D. Posterior amygdala regulates sexual and aggressive behaviors in male mice. Nat Neurosci 2020; 23:1111-1124. [PMID: 32719562 PMCID: PMC7483354 DOI: 10.1038/s41593-020-0675-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 06/18/2020] [Indexed: 01/07/2023]
Abstract
Sexual and aggressive behaviors are fundamental to animals’ survival and reproduction. The medial preoptic nucleus (MPN) and ventrolateral part of ventromedial hypothalamus (VMHvl) are essential regions for male sexual and aggressive behaviors, respectively. While key inhibitory inputs to VMHvl and MPN are identified, the extra-hypothalamic excitatory inputs essential for the social behaviors remain elusive. Here we identify estrogen receptor alpha (Esr1) expressing cells in posterior amygdala (PA) as a main source of excitatory inputs to hypothalamus and key mediators for mating and fighting in male mice. We find two largely distinct PA subpopulations that differ in connectivity, gene expression, in vivo responses and social behavior relevance. MPN projecting PAEsr1+ cells are activated during mating and necessary and sufficient for male sexual behaviors, while VMHvl projecting PAEsr1+ are excited during inter-male aggression and promote attacks. These findings place PA as a key node in both male aggression and reproduction circuits.
Collapse
Affiliation(s)
- Takashi Yamaguchi
- Neuroscience Institute, New York University Langone Medical Center, New York, NY, USA.
| | - Dongyu Wei
- Neuroscience Institute, New York University Langone Medical Center, New York, NY, USA
| | - Soomin C Song
- Neuroscience Institute, New York University Langone Medical Center, New York, NY, USA
| | - Byungkook Lim
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Nicolas X Tritsch
- Neuroscience Institute, New York University Langone Medical Center, New York, NY, USA
| | - Dayu Lin
- Neuroscience Institute, New York University Langone Medical Center, New York, NY, USA. .,Department of Psychiatry, New York University Langone Medical Center, New York, NY, USA. .,Center for Neural Science, New York University, New York, NY, USA.
| |
Collapse
|
166
|
Traumatic Stress Induces Prolonged Aggression Increase through Synaptic Potentiation in the Medial Amygdala Circuits. eNeuro 2020; 7:ENEURO.0147-20.2020. [PMID: 32651265 PMCID: PMC7385664 DOI: 10.1523/eneuro.0147-20.2020] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/25/2020] [Accepted: 06/17/2020] [Indexed: 12/28/2022] Open
Abstract
Traumatic stress can lead to heightened aggression which may be a symptom of psychiatric diseases such as PTSD and intermittent explosive disorder. The medial amygdala (MeA) is an evolutionarily conserved subnucleus of the amygdala that regulates attack behavior and behavioral responses to stressors. The precise contribution of the MeA in traumatic stress-induced aggression, however, requires further elucidation. In this study, we used foot shock to induce traumatic stress in mice and examine the mechanisms of prolonged aggression increase associated with it. Foot shock causes a prolonged increase in aggression that lasts at least one week. In vivo electrophysiological recordings revealed that foot shock induces potentiation of synapses formed between the MeA and the ventromedial hypothalamus (VmH) and bed nucleus of the stria terminalis (BNST). This synaptic potentiation lasts at least one week. Induction of synaptic depotentiation with low-frequency photostimulation (LFPS) immediately after foot shock suppresses the prolonged aggression increase without affecting non-aggressive social behavior, anxiety-like and depression-like behaviors, or fear learning. These results show that potentiation of the MeA-VmH and MeA-BNST circuits is essential for traumatic stress to cause a prolonged increase in aggression. These circuits may be potential targets for the development of therapeutic strategies to treat the aggression symptom associated with psychiatric diseases.
Collapse
|
167
|
Tan S, Stowers L. Bespoke behavior: mechanisms that modulate pheromone-triggered behavior. Curr Opin Neurobiol 2020; 64:143-150. [PMID: 32682209 DOI: 10.1016/j.conb.2020.05.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 01/06/2023]
Abstract
What is good for others, may not be in my best interest. Individuals should not, and do not, respond identically in the same environment. Personalized social behavior is particularly important to ultimately ensure reproductive fitness. How and where neural activity is modulated to customize behavior has remained largely unknown. The robust response to pheromones provides a platform to identify the logic of how the brain initiates social behavior. Mouse pheromones engage innate motor actions that underlie social behavior yet are plastic to suit individual needs. Recent study of mouse pheromone behavior, neurocircuit activity, and functional manipulations is beginning to paint a complex, dynamic, and diverse picture of the mechanisms that enable flexible modulation of social behavior.
Collapse
Affiliation(s)
- Shawn Tan
- Department of Neuroscience, Scripps Research, La Jolla, CA, USA
| | - Lisa Stowers
- Department of Neuroscience, Scripps Research, La Jolla, CA, USA.
| |
Collapse
|
168
|
Tran M, Braz JM, Hamel K, Kuhn J, Todd AJ, Basbaum AI. Ablation of spinal cord estrogen receptor α-expressing interneurons reduces chemically induced modalities of pain and itch. J Comp Neurol 2020; 528:1629-1643. [PMID: 31872868 PMCID: PMC7317200 DOI: 10.1002/cne.24847] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/13/2019] [Accepted: 12/16/2019] [Indexed: 11/13/2022]
Abstract
Estrogens are presumed to underlie, at least in part, the greater pain sensitivity and chronic pain prevalence that women experience compared to men. Although previous studies revealed populations of estrogen receptor-expressing neurons in primary afferents and in superficial dorsal horn neurons, there is little to no information as to the contribution of these neurons to the generation of acute and chronic pain. Here we molecularly characterized neurons in the mouse superficial spinal cord dorsal horn that express estrogen receptor α (ERα) and explored the behavioral consequences of their ablation. We found that spinal ERα-positive neurons are largely excitatory interneurons and many coexpress substance P, a marker for a discrete subset of nociceptive, excitatory interneurons. After viral, caspase-mediated ablation of spinal ERα-expressing cells, we observed a significant decrease in the first phase of the formalin test, but in male mice only. ERα-expressing neuron-ablation also reduced pruritogen-induced scratching in both male and female mice. There were no ablation-related changes in mechanical or heat withdrawal thresholds or in capsaicin-induced nocifensive behavior. In chronic pain models, we found no change in Complete Freund's adjuvant-induced thermal or mechanical hypersensitivity, or in partial sciatic nerve injury-induced mechanical allodynia. We conclude that ERα labels a subpopulation of excitatory interneurons that are specifically involved in chemically evoked persistent pain and pruritogen-induced itch.
Collapse
Affiliation(s)
- May Tran
- Department of AnatomyUniversity of CaliforniaSan FranciscoCalifornia
| | - Joao Manuel Braz
- Department of AnatomyUniversity of CaliforniaSan FranciscoCalifornia
| | - Katherine Hamel
- Department of AnatomyUniversity of CaliforniaSan FranciscoCalifornia
| | - Julia Kuhn
- Department of AnatomyUniversity of CaliforniaSan FranciscoCalifornia
| | - Andrew J. Todd
- Spinal Cord Group, Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| | - Allan I. Basbaum
- Department of AnatomyUniversity of CaliforniaSan FranciscoCalifornia
| |
Collapse
|
169
|
Nordman JC, Ma X, Gu Q, Potegal M, Li H, Kravitz AV, Li Z. Potentiation of Divergent Medial Amygdala Pathways Drives Experience-Dependent Aggression Escalation. J Neurosci 2020; 40:4858-4880. [PMID: 32424020 PMCID: PMC7326350 DOI: 10.1523/jneurosci.0370-20.2020] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 03/25/2020] [Accepted: 04/14/2020] [Indexed: 12/20/2022] Open
Abstract
Heightened aggression can be serious concerns for the individual and society at large and are symptoms of many psychiatric illnesses, such as post-traumatic stress disorder. The circuit and synaptic mechanisms underlying experience-induced aggression increase, however, are poorly understood. Here we find that prior attack experience leading to an increase in aggressive behavior, known as aggression priming, activates neurons within the posterior ventral segment of the medial amygdala (MeApv). Optogenetic stimulation of MeApv using a synaptic depression protocol suppresses aggression priming, whereas high-frequency stimulation enhances aggression, mimicking attack experience. Interrogation of the underlying neural circuitry revealed that the MeApv mediates aggression priming via synaptic connections with the ventromedial hypothalamus (VmH) and bed nucleus of the stria terminalis (BNST). These pathways undergo NMDAR-dependent synaptic potentiation after attack. Furthermore, we find that the MeApv-VmH synapses selectively control attack duration, whereas the MeApv-BNST synapses modulate attack frequency, both with no effect on social behavior. Synaptic potentiation of the MeApv-VmH and MeApv-BNST pathways contributes to increased aggression induced by traumatic stress, and weakening synaptic transmission at these synapses blocks the effect of traumatic stress on aggression. These results reveal a circuit and synaptic basis for aggression modulation by experience that can be potentially leveraged toward clinical interventions.SIGNIFICANCE STATEMENT Heightened aggression can have devastating social consequences and may be associated with psychiatric disorders, such as post-traumatic stress disorder. The circuit and synaptic mechanisms underlying experience-induced aggression escalation, however, are poorly understood. Here we identify two aggression pathways between the posterior ventral segment of the medial amygdala and its downstream synaptic partners, the ventromedial hypothalamus and bed nucleus of the stria terminalis that undergo synaptic potentiation after attack and traumatic stress to enhance aggression. Notably, weakening synaptic transmission in these circuits blocks aggression priming, naturally occurring aggression, and traumatic stress-induced aggression increase. These results illustrate a circuit and synaptic basis of aggression modulation by experience, which can be potentially targeted for clinical interventions.
Collapse
Affiliation(s)
- Jacob C Nordman
- Section on Synapse Development and Plasticity, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892
- National Institute of General Medical Sciences, National Institutes of Health, Bethesda, Maryland 20892
| | - Xiaoyu Ma
- Section on Synapse Development and Plasticity, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892
| | - Qinhua Gu
- Section on Synapse Development and Plasticity, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892
| | - Michael Potegal
- Program in Occupational Therapy, Center for Neurobehavioral Development, University of Minnesota, Minneapolis, Minnesota 55455
| | - He Li
- Department of Psychiatry, Uniformed Services University, Bethesda, Maryland 20892
| | - Alexxai V Kravitz
- Eating and Addiction Section, Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - Zheng Li
- Section on Synapse Development and Plasticity, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
170
|
Anpilov S, Shemesh Y, Eren N, Harony-Nicolas H, Benjamin A, Dine J, Oliveira VEM, Forkosh O, Karamihalev S, Hüttl RE, Feldman N, Berger R, Dagan A, Chen G, Neumann ID, Wagner S, Yizhar O, Chen A. Wireless Optogenetic Stimulation of Oxytocin Neurons in a Semi-natural Setup Dynamically Elevates Both Pro-social and Agonistic Behaviors. Neuron 2020; 107:644-655.e7. [PMID: 32544386 PMCID: PMC7447984 DOI: 10.1016/j.neuron.2020.05.028] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/06/2020] [Accepted: 05/20/2020] [Indexed: 12/11/2022]
Abstract
Complex behavioral phenotyping techniques are becoming more prevalent in the field of behavioral neuroscience, and thus methods for manipulating neuronal activity must be adapted to fit into such paradigms. Here, we present a head-mounted, magnetically activated device for wireless optogenetic manipulation that is compact, simple to construct, and suitable for use in group-living mice in an enriched semi-natural arena over several days. Using this device, we demonstrate that repeated activation of oxytocin neurons in male mice can have different effects on pro-social and agonistic behaviors, depending on the social context. Our findings support the social salience hypothesis of oxytocin and emphasize the importance of the environment in the study of social neuromodulators. Our wireless optogenetic device can be easily adapted for use in a variety of behavioral paradigms, which are normally hindered by tethered light delivery or a limited environment. A small, wireless device is used for optogenetic activation in a complex environment PVN oxytocin neurons were activated repeatedly over 2 days in a group setting Repeated activation in a group setting elicited both pro-social and agonistic behavior Findings support the social salience hypothesis of oxytocin neuro-modulation
Collapse
Affiliation(s)
- Sergey Anpilov
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 7610001, Israel; Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich 80804, Germany
| | - Yair Shemesh
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 7610001, Israel; Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich 80804, Germany
| | - Noa Eren
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 7610001, Israel; Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich 80804, Germany
| | - Hala Harony-Nicolas
- Sagol Department of Neurobiology, University of Haifa, Haifa 3498838, Israel
| | - Asaf Benjamin
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 7610001, Israel; Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich 80804, Germany
| | - Julien Dine
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 7610001, Israel; Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich 80804, Germany
| | - Vinícius E M Oliveira
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Regensburg 93053, Germany
| | - Oren Forkosh
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 7610001, Israel; Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich 80804, Germany
| | - Stoyo Karamihalev
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 7610001, Israel; Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich 80804, Germany
| | - Rosa-Eva Hüttl
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 7610001, Israel; Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich 80804, Germany
| | - Noa Feldman
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ryan Berger
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Avi Dagan
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Gal Chen
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Inga D Neumann
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Regensburg 93053, Germany
| | - Shlomo Wagner
- Sagol Department of Neurobiology, University of Haifa, Haifa 3498838, Israel
| | - Ofer Yizhar
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Alon Chen
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 7610001, Israel; Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich 80804, Germany.
| |
Collapse
|
171
|
Thompson RR. An updated field guide for snark hunting: Comparative contributions to behavioral neuroendocrinology in the era of model organisms. Horm Behav 2020; 122:104742. [PMID: 32173444 DOI: 10.1016/j.yhbeh.2020.104742] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 03/07/2020] [Accepted: 03/10/2020] [Indexed: 12/23/2022]
Abstract
Studying neuroendocrine behavioral regulatory mechanisms in a variety of species across vertebrate groups is critical for determining how they work in natural contexts, how they evolved, and ultimately what can be generalized from them, potentially even to humans. All of the above are difficult, at best, if work within our field is exclusively done in traditional laboratory organisms. The importance of comparative approaches for understanding the relationships between hormones and behavior has been recognized and advocated for since our field's inception through a series of papers centered upon a poetic metaphor of Snarks and Boojums, all of which have articulated the benefits that come from studying a diverse range of species and the risks associated with a narrow focus on "model organisms." This mini-review follows in the footsteps of those powerful arguments, highlighting some of the comparative work since the latest interactions of the metaphor that has shaped how we think about three major conceptual frameworks within our field, two of them formalized - the Organization/Activation Model of sexual differentiation and the Social Brain Network - and one, context-dependency, that is generally associated with virtually all modern understandings of how hormones affect behavior. Comparative approaches are broadly defined as those in which the study of mechanism is placed within natural and/or evolutionary contexts, whether they directly compare different species or not. Studies are discussed in relation to how they have either extended or challenged generalities associated with the frameworks, how they have shaped subsequent work in model organisms to further elucidate neuroendocrine behavioral regulatory mechanisms, and how they have stimulated work to determine if and when similar mechanisms influence behavior in our own species.
Collapse
|
172
|
Kim DW, Yao Z, Graybuck LT, Kim TK, Nguyen TN, Smith KA, Fong O, Yi L, Koulena N, Pierson N, Shah S, Lo L, Pool AH, Oka Y, Pachter L, Cai L, Tasic B, Zeng H, Anderson DJ. Multimodal Analysis of Cell Types in a Hypothalamic Node Controlling Social Behavior. Cell 2020; 179:713-728.e17. [PMID: 31626771 DOI: 10.1016/j.cell.2019.09.020] [Citation(s) in RCA: 157] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 07/28/2019] [Accepted: 09/20/2019] [Indexed: 01/08/2023]
Abstract
The ventrolateral subdivision of the ventromedial hypothalamus (VMHvl) contains ∼4,000 neurons that project to multiple targets and control innate social behaviors including aggression and mounting. However, the number of cell types in VMHvl and their relationship to connectivity and behavioral function are unknown. We performed single-cell RNA sequencing using two independent platforms-SMART-seq (∼4,500 neurons) and 10x (∼78,000 neurons)-and investigated correspondence between transcriptomic identity and axonal projections or behavioral activation, respectively. Canonical correlation analysis (CCA) identified 17 transcriptomic types (T-types), including several sexually dimorphic clusters, the majority of which were validated by seqFISH. Immediate early gene analysis identified T-types exhibiting preferential responses to intruder males versus females but only rare examples of behavior-specific activation. Unexpectedly, many VMHvl T-types comprise a mixed population of neurons with different projection target preferences. Overall our analysis revealed that, surprisingly, few VMHvl T-types exhibit a clear correspondence with behavior-specific activation and connectivity.
Collapse
Affiliation(s)
- Dong-Wook Kim
- Program in Computation and Neural Systems, California Institute of Technology, Pasadena, CA, USA; Division of Biology and Biological Engineering 156-29, California Institute of Technology, Pasadena, CA, USA; Tianqiao and Chrissy Chen Institute for Neuroscience, California Institute of Technology, Pasadena, CA 91125, USA
| | - Zizhen Yao
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | - Tae Kyung Kim
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | | | - Olivia Fong
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Lynn Yi
- Division of Biology and Biological Engineering 156-29, California Institute of Technology, Pasadena, CA, USA
| | - Noushin Koulena
- Division of Biology and Biological Engineering 156-29, California Institute of Technology, Pasadena, CA, USA
| | - Nico Pierson
- Division of Biology and Biological Engineering 156-29, California Institute of Technology, Pasadena, CA, USA
| | - Sheel Shah
- Division of Biology and Biological Engineering 156-29, California Institute of Technology, Pasadena, CA, USA
| | - Liching Lo
- Division of Biology and Biological Engineering 156-29, California Institute of Technology, Pasadena, CA, USA; Howard Hughes Medical Institute; Tianqiao and Chrissy Chen Institute for Neuroscience, California Institute of Technology, Pasadena, CA 91125, USA
| | - Allan-Hermann Pool
- Division of Biology and Biological Engineering 156-29, California Institute of Technology, Pasadena, CA, USA
| | - Yuki Oka
- Division of Biology and Biological Engineering 156-29, California Institute of Technology, Pasadena, CA, USA
| | - Lior Pachter
- Division of Biology and Biological Engineering 156-29, California Institute of Technology, Pasadena, CA, USA
| | - Long Cai
- Division of Biology and Biological Engineering 156-29, California Institute of Technology, Pasadena, CA, USA
| | - Bosiljka Tasic
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Hongkui Zeng
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - David J Anderson
- Division of Biology and Biological Engineering 156-29, California Institute of Technology, Pasadena, CA, USA; Howard Hughes Medical Institute; Tianqiao and Chrissy Chen Institute for Neuroscience, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
173
|
Grady F, Peltekian L, Iverson G, Geerling JC. Direct Parabrachial-Cortical Connectivity. Cereb Cortex 2020; 30:4811-4833. [PMID: 32383444 DOI: 10.1093/cercor/bhaa072] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 01/17/2020] [Accepted: 02/17/2020] [Indexed: 02/06/2023] Open
Abstract
The parabrachial nucleus (PB) in the upper brain stem tegmentum includes several neuronal subpopulations with a wide variety of connections and functions. A subpopulation of PB neurons projects axons directly to the cerebral cortex, and limbic areas of the cerebral cortex send a return projection directly to the PB. We used retrograde and Cre-dependent anterograde tracing to identify genetic markers and characterize this PB-cortical interconnectivity in mice. Cortical projections originate from glutamatergic PB neurons that contain Lmx1b (81%), estrogen receptor alpha (26%), and Satb2 (20%), plus mRNA for the neuropeptides cholecystokinin (Cck, 48%) and calcitonin gene-related peptide (Calca, 13%), with minimal contribution from FoxP2+ PB neurons (2%). Axons from the PB produce an extensive terminal field in an unmyelinated region of the insular cortex, extending caudally into the entorhinal cortex, and arcing rostrally through the dorsolateral prefrontal cortex, with a secondary terminal field in the medial prefrontal cortex. In return, layer 5 neurons in the insular cortex and other prefrontal areas, along with a dense cluster of cells dorsal to the claustrum, send a descending projection to subregions of the PB that contain cortically projecting neurons. This information forms the neuroanatomical basis for testing PB-cortical interconnectivity in arousal and interoception.
Collapse
Affiliation(s)
- Fillan Grady
- Department of Neurology, Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52246, USA
| | - Lila Peltekian
- Department of Neurology, Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52246, USA
| | - Gabrielle Iverson
- Department of Neurology, Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52246, USA
| | - Joel C Geerling
- Department of Neurology, Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52246, USA
| |
Collapse
|
174
|
He Y, Xu P, Wang C, Xia Y, Yu M, Yang Y, Yu K, Cai X, Qu N, Saito K, Wang J, Hyseni I, Robertson M, Piyarathna B, Gao M, Khan SA, Liu F, Chen R, Coarfa C, Zhao Z, Tong Q, Sun Z, Xu Y. Estrogen receptor-α expressing neurons in the ventrolateral VMH regulate glucose balance. Nat Commun 2020; 11:2165. [PMID: 32358493 PMCID: PMC7195451 DOI: 10.1038/s41467-020-15982-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 04/06/2020] [Indexed: 12/20/2022] Open
Abstract
Brain glucose-sensing neurons detect glucose fluctuations and prevent severe hypoglycemia, but mechanisms mediating functions of these glucose-sensing neurons are unclear. Here we report that estrogen receptor-α (ERα)-expressing neurons in the ventrolateral subdivision of the ventromedial hypothalamic nucleus (vlVMH) can sense glucose fluctuations, being glucose-inhibited neurons (GI-ERαvlVMH) or glucose-excited neurons (GE-ERαvlVMH). Hypoglycemia activates GI-ERαvlVMH neurons via the anoctamin 4 channel, and inhibits GE-ERαvlVMH neurons through opening the ATP-sensitive potassium channel. Further, we show that GI-ERαvlVMH neurons preferentially project to the medioposterior arcuate nucleus of the hypothalamus (mpARH) and GE-ERαvlVMH neurons preferentially project to the dorsal Raphe nuclei (DRN). Activation of ERαvlVMH to mpARH circuit and inhibition of ERαvlVMH to DRN circuit both increase blood glucose. Thus, our results indicate that ERαvlVMH neurons detect glucose fluctuations and prevent severe hypoglycemia in mice.
Collapse
Affiliation(s)
- Yanlin He
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Pingwen Xu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Chunmei Wang
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Yan Xia
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Meng Yu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Yongjie Yang
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Kaifan Yu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Xing Cai
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Na Qu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Kenji Saito
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Julia Wang
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Ilirjana Hyseni
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Matthew Robertson
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Badrajee Piyarathna
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Min Gao
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Sohaib A Khan
- Department of Cell and Cancer Biology, Vontz Center for Molecular Studies, University of Cincinnati, College of Medicine, Cincinnati, OH, 45267, USA
| | - Feng Liu
- Departments of Pharmacology, University of Texas Health at San Antonio, San Antonio, TX, 78229, USA
| | - Rui Chen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Cristian Coarfa
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Zhongming Zhao
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Qingchun Tong
- Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Zheng Sun
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Yong Xu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA.
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
175
|
Wang L, Talwar V, Osakada T, Kuang A, Guo Z, Yamaguchi T, Lin D. Hypothalamic Control of Conspecific Self-Defense. Cell Rep 2020; 26:1747-1758.e5. [PMID: 30759387 PMCID: PMC6431082 DOI: 10.1016/j.celrep.2019.01.078] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 12/03/2018] [Accepted: 01/19/2019] [Indexed: 12/27/2022] Open
Abstract
Active defense against a conspecific aggressor is essential for survival. Previous studies revealed strong c-Fos expression in the ventrolateral part of the ventromedial hypothalamus (VMHvl) in defeated animals. Here, we examined the functional relevance and in vivo responses of the VMHvl during conspecific defense. We found that VMHvl cells expressing estrogen receptor α (Esr1) are acutely excited during active conspecific defense. Optogenetic inhibition of the cells compromised an animal’s ability to actively defend against an aggressor, whereas activating the cells elicited defense-like behaviors. Furthermore, the VMHvl is known for its role in aggression. In vivo recording and c-Fos mapping revealed differential organization of the defense and aggression-responsive cells in the VMHvl. Specifically, defense-activated cells are concentrated in the anterior part of the VMHvl, which preferentially targets the periaqueductal gray (PAG). Thus, our study identified an essential neural substrate for active conspecific defense and expanded the function of the VMHvl. Active defense against conspecific aggressors is essential for survival, but its underlying neural substrates remain largely unknown. Through a series of in vivo recordings and functional manipulations, Wang et al. demonstrate that cells expressing estrogen receptor α in a small medial hypothalamic nucleus are essential for defense against a bully.
Collapse
Affiliation(s)
- Li Wang
- Neuroscience Institute, New York University School of Medicine, New York, NY 10016, USA
| | - Vaishali Talwar
- Neuroscience Institute, New York University School of Medicine, New York, NY 10016, USA
| | - Takuya Osakada
- Neuroscience Institute, New York University School of Medicine, New York, NY 10016, USA
| | - Amy Kuang
- Neuroscience Institute, New York University School of Medicine, New York, NY 10016, USA
| | - Zhichao Guo
- Neuroscience Institute, New York University School of Medicine, New York, NY 10016, USA; School of Life Sciences, Peking University, Beijing 100871, China
| | - Takashi Yamaguchi
- Neuroscience Institute, New York University School of Medicine, New York, NY 10016, USA
| | - Dayu Lin
- Neuroscience Institute, New York University School of Medicine, New York, NY 10016, USA; Department of Psychiatry, New York University School of Medicine, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10003, USA.
| |
Collapse
|
176
|
Wohl M, Ishii K, Asahina K. Layered roles of fruitless isoforms in specification and function of male aggression-promoting neurons in Drosophila. eLife 2020; 9:e52702. [PMID: 32314957 PMCID: PMC7173971 DOI: 10.7554/elife.52702] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 04/03/2020] [Indexed: 12/20/2022] Open
Abstract
Inter-male aggressive behavior is a prominent sexually dimorphic behavior. Neural circuits that underlie aggressive behavior are therefore likely under the control of sex-determining genes. However, the neurogenetic mechanism that generates sex-specific aggressive behavior remains largely unknown. Here, we found that a neuronal class specified by one of the Drosophila sex determining genes, fruitless (fru), belongs to the neural circuit that generates male-type aggressive behavior. This neuronal class can promote aggressive behavior independent of another sex determining gene, doublesex (dsx), although dsx is involved in ensuring that aggressive behavior is performed only toward males. We also found that three fru isoforms with different DNA binding domains show a division of labor on male aggressive behaviors. A dominant role of fru in specifying sex-specific aggressive behavior may underscore a genetic mechanism that allows male-type aggressive behavior to evolve at least partially independently from courtship behavior, which is under different selective pressures.
Collapse
Affiliation(s)
- Margot Wohl
- Molecular Neurobiology Laboratory, The Salk Institute for Biological StudiesLa JollaUnited States
- Neuroscience Graduate Program, University of CaliforniaSan DiegoUnited States
| | - Kenichi Ishii
- Molecular Neurobiology Laboratory, The Salk Institute for Biological StudiesLa JollaUnited States
- Neuroscience Graduate Program, University of CaliforniaSan DiegoUnited States
| | - Kenta Asahina
- Molecular Neurobiology Laboratory, The Salk Institute for Biological StudiesLa JollaUnited States
| |
Collapse
|
177
|
Ishii K, Wohl M, DeSouza A, Asahina K. Sex-determining genes distinctly regulate courtship capability and target preference via sexually dimorphic neurons. eLife 2020; 9:e52701. [PMID: 32314964 PMCID: PMC7173972 DOI: 10.7554/elife.52701] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 04/03/2020] [Indexed: 11/17/2022] Open
Abstract
For successful mating, a male animal must execute effective courtship behaviors toward a receptive target sex, which is female. Whether the courtship execution capability and upregulation of courtship toward females are specified through separable sex-determining genetic pathways remains uncharacterized. Here, we found that one of the two Drosophila sex-determining genes, doublesex (dsx), specifies a male-specific neuronal component that serves as an execution mechanism for courtship behavior, whereas fruitless (fru) is required for enhancement of courtship behavior toward females. The dsx-dependent courtship execution mechanism includes a specific subclass within a neuronal cluster that co-express dsx and fru. This cluster contains at least another subclass that is specified cooperatively by both dsx and fru. Although these neuronal populations can also promote aggressive behavior toward male flies, this capacity requires fru-dependent mechanisms. Our results uncover how sex-determining genes specify execution capability and female-specific enhancement of courtship behavior through separable yet cooperative neurogenetic mechanisms.
Collapse
Affiliation(s)
- Kenichi Ishii
- Molecular Neurobiology Laboratory, Salk Institute for Biological StudiesLa JollaUnited States
| | - Margot Wohl
- Molecular Neurobiology Laboratory, Salk Institute for Biological StudiesLa JollaUnited States
- Neuroscience Graduate Program, University of California, San DiegoSan DiegoUnited States
| | - Andre DeSouza
- Molecular Neurobiology Laboratory, Salk Institute for Biological StudiesLa JollaUnited States
- Neuroscience Graduate Program, University of California, San DiegoSan DiegoUnited States
| | - Kenta Asahina
- Molecular Neurobiology Laboratory, Salk Institute for Biological StudiesLa JollaUnited States
- Neuroscience Graduate Program, University of California, San DiegoSan DiegoUnited States
| |
Collapse
|
178
|
Chen X, Wyler SC, Li L, Arnold AG, Wan R, Jia L, Landy MA, Lai HC, Xu P, Liu C. Comparative Transcriptomic Analyses of Developing Melanocortin Neurons Reveal New Regulators for the Anorexigenic Neuron Identity. J Neurosci 2020; 40:3165-3177. [PMID: 32213554 PMCID: PMC7159888 DOI: 10.1523/jneurosci.0155-20.2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/28/2020] [Accepted: 03/09/2020] [Indexed: 02/07/2023] Open
Abstract
Despite their opposing actions on food intake, POMC and NPY/AgRP neurons in the arcuate nucleus of the hypothalamus (ARH) are derived from the same progenitors that give rise to ARH neurons. However, the mechanism whereby common neuronal precursors subsequently adopt either the anorexigenic (POMC) or the orexigenic (NPY/AgRP) identity remains elusive. We hypothesize that POMC and NPY/AgRP cell fates are specified and maintained by distinct intrinsic factors. In search of them, we profiled the transcriptomes of developing POMC and NPY/AgRP neurons in mice. Moreover, cell-type-specific transcriptomic analyses revealed transcription regulators that are selectively enriched in either population, but whose developmental functions are unknown in these neurons. Among them, we found the expression of the PR domain-containing factor 12 (Prdm12) was enriched in POMC neurons but absent in NPY/AgRP neurons. To study the role of Prdm12 in vivo, we developed and characterized a floxed Prdm12 allele. Selective ablation of Prdm12 in embryonic POMC neurons led to significantly reduced Pomc expression as well as early-onset obesity in mice of either sex that recapitulates symptoms of human POMC deficiency. Interestingly, however, specific deletion of Prdm12 in adult POMC neurons showed that it is no longer required for Pomc expression or energy balance. Collectively, these findings establish a critical role for Prdm12 in the anorexigenic neuron identity and suggest that it acts developmentally to program body weight homeostasis. Finally, the combination of cell-type-specific genomic and genetic analyses provides a means to dissect cellular and functional diversity in the hypothalamus whose neurodevelopment remains poorly studied.SIGNIFICANCE STATEMENT POMC and NPY/AgRP neurons are derived from the same hypothalamic progenitors but have opposing effects on food intake. We profiled the transcriptomes of genetically labeled POMC and NPY/AgRP neurons in the developing mouse hypothalamus to decipher the transcriptional codes behind the versus orexigenic neuron identity. Our analyses revealed 29 transcription regulators that are selectively enriched in one of the two populations. We generated new mouse genetic models to selective ablate one of POMC-neuron enriched transcription factors Prdm12 in developing and adult POMC neurons. Our studies establish a previously unrecognized role for Prdm12 in the anorexigenic neuron identity and suggest that it acts developmentally to program body weight homeostasis.
Collapse
Affiliation(s)
- Xiameng Chen
- Department of Internal Medicine, Hypothalamic Research Center, Dallas, Texas 75390
| | - Steven C Wyler
- Department of Internal Medicine, Hypothalamic Research Center, Dallas, Texas 75390
| | - Li Li
- Department of Internal Medicine, Hypothalamic Research Center, Dallas, Texas 75390
| | - Amanda G Arnold
- Department of Internal Medicine, Hypothalamic Research Center, Dallas, Texas 75390
| | - Rong Wan
- Department of Internal Medicine, Hypothalamic Research Center, Dallas, Texas 75390
| | - Lin Jia
- Department of Internal Medicine, Hypothalamic Research Center, Dallas, Texas 75390
| | - Mark A Landy
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Helen C Lai
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Pin Xu
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Chen Liu
- Department of Internal Medicine, Hypothalamic Research Center, Dallas, Texas 75390
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| |
Collapse
|
179
|
Zha X, Wang L, Jiao ZL, Yang RR, Xu C, Xu XH. VMHvl-Projecting Vglut1+ Neurons in the Posterior Amygdala Gate Territorial Aggression. Cell Rep 2020; 31:107517. [DOI: 10.1016/j.celrep.2020.03.081] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/18/2020] [Accepted: 03/24/2020] [Indexed: 10/24/2022] Open
|
180
|
van Veen JE, Kammel LG, Bunda PC, Shum M, Reid MS, Massa MG, Arneson D, Park JW, Zhang Z, Joseph AM, Hrncir H, Liesa M, Arnold AP, Yang X, Correa SM. Hypothalamic estrogen receptor alpha establishes a sexually dimorphic regulatory node of energy expenditure. Nat Metab 2020; 2:351-363. [PMID: 32377634 PMCID: PMC7202561 DOI: 10.1038/s42255-020-0189-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 03/12/2020] [Indexed: 12/26/2022]
Abstract
Estrogen receptor a (ERa) signaling in the ventromedial hypothalamus (VMH) contributes to energy homeostasis by modulating physical activity and thermogenesis. However, the precise neuronal populations involved remain undefined. Here, we describe six neuronal populations in the mouse VMH by using single-cell RNA transcriptomics and in situ hybridization. ERa is enriched in populations showing sex biased expression of reprimo (Rprm), tachykinin 1 (Tac1), and prodynorphin (Pdyn). Female biased expression of Tac1 and Rprm is patterned by ERa-dependent repression during male development, whereas male biased expression of Pdyn is maintained by circulating testicular hormone in adulthood. Chemogenetic activation of ERa positive VMH neurons stimulates heat generation and movement in both sexes. However, silencing Rprm gene function increases core temperature selectively in females and ectopic Rprm expression in males is associated with reduced core temperature. Together these findings reveal a role for Rprm in temperature regulation and ERa in the masculinization of neuron populations that underlie energy expenditure.
Collapse
Affiliation(s)
- J Edward van Veen
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA
- Laboratory of Neuroendocrinology of the Brain Research Institute, University of California, Los Angeles, CA, USA
- authors contributed equally
| | - Laura G Kammel
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA
- Laboratory of Neuroendocrinology of the Brain Research Institute, University of California, Los Angeles, CA, USA
- Molecular, Cellular, and Integrative Physiology Graduate Program, University of California, Los Angeles, CA, USA
- authors contributed equally
| | - Patricia C Bunda
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA
| | - Michael Shum
- Division of Endocrinology, Department of Medicine, and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Molecular Biology Institute, University of California, Los Angeles, CA, USA
| | - Michelle S Reid
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA
| | - Megan G Massa
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA
- Laboratory of Neuroendocrinology of the Brain Research Institute, University of California, Los Angeles, CA, USA
- Neuroscience Interdepartmental Doctoral Program, University of California, Los Angeles, CA, USA
| | - Douglas Arneson
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA
| | - Jae W Park
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA
| | - Zhi Zhang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA
- Laboratory of Neuroendocrinology of the Brain Research Institute, University of California, Los Angeles, CA, USA
| | - Alexia M Joseph
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA
| | - Haley Hrncir
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA
| | - Marc Liesa
- Division of Endocrinology, Department of Medicine, and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Molecular Biology Institute, University of California, Los Angeles, CA, USA
| | - Arthur P Arnold
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA
- Laboratory of Neuroendocrinology of the Brain Research Institute, University of California, Los Angeles, CA, USA
| | - Xia Yang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA
| | - Stephanie M Correa
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA
- Laboratory of Neuroendocrinology of the Brain Research Institute, University of California, Los Angeles, CA, USA
| |
Collapse
|
181
|
Falkner AL, Wei D, Song A, Watsek LW, Chen I, Chen P, Feng JE, Lin D. Hierarchical Representations of Aggression in a Hypothalamic-Midbrain Circuit. Neuron 2020; 106:637-648.e6. [PMID: 32164875 DOI: 10.1016/j.neuron.2020.02.014] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 12/20/2019] [Accepted: 02/10/2020] [Indexed: 12/13/2022]
Abstract
Although the ventromedial hypothalamus ventrolateral area (VMHvl) is now well established as a critical locus for the generation of conspecific aggression, its role is complex, with neurons responding during multiple phases of social interactions with both males and females. It has been previously unclear how the brain uses this complex multidimensional signal and coordinates a discrete action: the attack. Here, we find a hypothalamic-midbrain circuit that represents hierarchically organized social signals during aggression. Optogenetic-assisted circuit mapping reveals a preferential projection from VMHvlvGlut2 to lPAGvGlut2 cells, and inactivation of downstream lPAGvGlut2 populations results in aggression-specific deficits. lPAG neurons are selective for attack action and exhibit short-latency, time-locked spiking relative to the activity of jaw muscles during biting. Last, we find that this projection conveys male-biased signals from the VMHvl to downstream lPAGvGlut2 neurons that are sensitive to features of ongoing activity, suggesting that action selectivity is generated by a combination of pre- and postsynaptic mechanisms.
Collapse
Affiliation(s)
- Annegret L Falkner
- Princeton Neuroscience Institute, Princeton, NJ 08540, USA; Neuroscience Institute, New York University School of Medicine, New York, NY 10016, USA.
| | - Dongyu Wei
- Neuroscience Institute, New York University School of Medicine, New York, NY 10016, USA
| | - Anjeli Song
- Boston University School of Medicine, Boston, MA 02118, USA
| | - Li W Watsek
- Neuroscience Institute, New York University School of Medicine, New York, NY 10016, USA
| | - Irene Chen
- Neuroscience Institute, New York University School of Medicine, New York, NY 10016, USA
| | - Patricia Chen
- Princeton Neuroscience Institute, Princeton, NJ 08540, USA
| | - James E Feng
- Neuroscience Institute, New York University School of Medicine, New York, NY 10016, USA
| | - Dayu Lin
- Neuroscience Institute, New York University School of Medicine, New York, NY 10016, USA; Department of Psychiatry, New York University School of Medicine, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10003, USA
| |
Collapse
|
182
|
Abstract
Tears contain pheromones that trigger specific behavioral responses. In the mouse, male tear fluid is involved in long and short-term effects such as the receptive behavior and pregnancy block in females and the aggression in males. In contrast, pup tears exert an inhibitory effect on male mating behavior, also promoting sexual rejection in females. In the rat, a male lacrimal protein acts as an intraspecific and heterospecific signal enhancing sexual behavior in females and evoking avoidance behavior in mouse. However, behavioral effects of female tears on male behavior have yet to be described. Here, we report that female lacrimal fluid of different mouse strains contains a relatively small and involatile factor that abolishes inter-male aggression switching it into a copulatory behavior. The production of this molecule by the lacrimal glands is not affected by the estrous cycle but it is sensitive to ovariectomy, thus suggesting a control mediated by hormones. Moreover, this lacrimal anti-aggression pheromone modulates the activity of the lateral habenula, a brain area responsible for the valence of the aggressive interactions.
Collapse
|
183
|
Lenschow C, Lima SQ. In the mood for sex: neural circuits for reproduction. Curr Opin Neurobiol 2020; 60:155-168. [DOI: 10.1016/j.conb.2019.12.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 12/01/2019] [Accepted: 12/04/2019] [Indexed: 12/31/2022]
|
184
|
Kohl J. Parenting - a paradigm for investigating the neural circuit basis of behavior. Curr Opin Neurobiol 2020; 60:84-91. [PMID: 31830690 PMCID: PMC7005672 DOI: 10.1016/j.conb.2019.11.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/11/2019] [Accepted: 11/12/2019] [Indexed: 02/06/2023]
Abstract
Parenting is essential for survival and wellbeing in many species. Since it can be performed with little prior experience and entails considerable sacrifices without immediate benefits for the caregiver, this behavior is likely orchestrated by evolutionarily shaped, hard-wired neural circuits. At the same time, experience, environmental factors and internal state also make parenting highly malleable. These characteristics have made parenting an attractive paradigm for linking complex, naturalistic behavior to its underlying neural mechanisms. Recent work - based on the identification of critical neuronal populations and improved tools for dissecting neural circuits - has uncovered novel functional principles and challenged simplistic models of parenting control. A better understanding of the neural basis of parenting will provide crucial clues to how complex behaviors are organized at the level of cells, circuits and computations. Here I review recent progress, discuss emerging functional principles of parental circuits, and outline future opportunities and challenges.
Collapse
Affiliation(s)
- Johannes Kohl
- The Francis Crick Institute, 1 Midland Rd., London NW1 1AT, UK.
| |
Collapse
|
185
|
Abstract
It remains unclear how hormonally mediated internal states affect specific brain circuits to modify behaviour. A new study reveals that a hypothalamic projection pathway critical for female sexual receptivity is extensively remodelled during the estrous cycle.
Collapse
Affiliation(s)
| | - Johannes Kohl
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|
186
|
Kammel LG, Correa SM. Selective sexual differentiation of neurone populations may contribute to sex-specific outputs of the ventromedial nucleus of the hypothalamus. J Neuroendocrinol 2020; 32:e12801. [PMID: 31605642 PMCID: PMC6982598 DOI: 10.1111/jne.12801] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 09/26/2019] [Accepted: 10/08/2019] [Indexed: 12/11/2022]
Abstract
Sex differences among neurones in the ventrolateral region of the ventromedial hypothalamic nucleus (VMHvl) allow for the display of a diversity of sex-typical behaviours and physiological responses, ranging from mating behaviour to metabolism. Here, we review recent studies that interrogate the relationship between sex-typical responses and changes in cellular phenotypes. We discuss technologies that increase the resolution of molecular profiling or targeting of cell populations, including single-cell transcriptional profiling and conditional viral genetic approaches to manipulate neurone survival or activity. Overall, emerging studies indicate that sex-typical functions of the VMH may be mediated by phenotypically distinct and sexually differentiated neurone populations within the VMHvl. Future studies in this and other brain regions could exploit cell-type-specific tools to reveal the cell populations and molecular mediators that modulate sex-typical responses. Furthermore, cell-type-specific analyses of the effects of sexually differentiating factors, including sex hormones, can test the hypothesis that distinct cell types within a single brain region vary with respect to sexual differentiation.
Collapse
Affiliation(s)
- Laura G Kammel
- Department of Integrative Biology and Physiology, Laboratory of Neuroendocrinology of the Brain Research Institute, University of California, Los Angeles, CA, USA
- Molecular, Cellular, Integrative Physiology Graduate Program, University of California, Los Angeles, CA, USA
| | - Stephanie M Correa
- Department of Integrative Biology and Physiology, Laboratory of Neuroendocrinology of the Brain Research Institute, University of California, Los Angeles, CA, USA
| |
Collapse
|
187
|
Neubert da Silva G, Zauer Curi T, Lima Tolouei SE, Tapias Passoni M, Sari Hey GB, Marino Romano R, Martino-Andrade AJ, Dalsenter PR. Effects of diisopentyl phthalate exposure during gestation and lactation on hormone-dependent behaviours and hormone receptor expression in rats. J Neuroendocrinol 2019; 31:e12816. [PMID: 31758603 DOI: 10.1111/jne.12816] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 12/28/2022]
Abstract
Phthalates are found in different plastic materials, such as packaging, toys and medical devices. Some of these compounds are endocrine disruptors, comprising substances that are able to induce multiple hormonal disturbances and downstream developmental effects, including the disruption of androgen-dependent differentiation of the male reproductive tract and changes in pathways that regulate hormone-dependent behaviours. In a previous study, metabolites of diisopentyl phthalate (DiPeP), a potent anti-androgenic phthalate, were found in the urine of Brazilian pregnant women. Therefore, the present study aimed to evaluate the effects of DiPeP exposure during critical developmental periods on behaviours controlled by sex hormones in rats. Pregnant Wistar rats were treated with DiPeP (1, 10 or 100 mg kg day-1 ) or canola oil by oral gavage between gestational day 10 and post-natal day (PND) 21. Male offspring were tested in a behavioural battery, including the elevated plus maze task, play behaviour, partner preference and sexual behaviour. After the behavioural tests, the hypothalamus and pituitary of these animals were removed on PND 60-65 and PND 145-160 to quantify gene expression for aromatase, androgen receptor (Ar) and oestrogen receptors α (Esr1) and β (Esr2). Male rats exposed to 1 and 10 mg kg day-1 DiPeP displayed no preference for the female stimulus rat in the partner preference test and 1 mg kg day-1 DiPeP rats also showed a significant increase in mount and penetration latencies when mated with receptive females. A decrease in pituitary Esr1 expression was observed in all DiPeP treated groups regardless of age. A reduction in hypothalamic Esr1 expression in rats exposed to 10 mg kg day-1 DiPeP was also observed. No significant changes were found with respect to Ar, Esr2 and aromatase expression in the hypothalamus. These results suggest that DiPeP exposure during critical windows of development in rats may induce changes in behaviours related to mating and the sexual motivation of males.
Collapse
|
188
|
Inoue S, Yang R, Tantry A, Davis CH, Yang T, Knoedler JR, Wei Y, Adams EL, Thombare S, Golf SR, Neve RL, Tessier-Lavigne M, Ding JB, Shah NM. Periodic Remodeling in a Neural Circuit Governs Timing of Female Sexual Behavior. Cell 2019; 179:1393-1408.e16. [PMID: 31735496 PMCID: PMC7096331 DOI: 10.1016/j.cell.2019.10.025] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 07/12/2019] [Accepted: 10/21/2019] [Indexed: 01/03/2023]
Abstract
Behaviors are inextricably linked to internal state. We have identified a neural mechanism that links female sexual behavior with the estrus, the ovulatory phase of the estrous cycle. We find that progesterone-receptor (PR)-expressing neurons in the ventromedial hypothalamus (VMH) are active and required during this behavior. Activating these neurons, however, does not elicit sexual behavior in non-estrus females. We show that projections of PR+ VMH neurons to the anteroventral periventricular (AVPV) nucleus change across the 5-day mouse estrous cycle, with ∼3-fold more termini and functional connections during estrus. This cyclic increase in connectivity is found in adult females, but not males, and regulated by estrogen signaling in PR+ VMH neurons. We further show that these connections are essential for sexual behavior in receptive females. Thus, estrogen-regulated structural plasticity of behaviorally salient connections in the adult female brain links sexual behavior to the estrus phase of the estrous cycle.
Collapse
Affiliation(s)
- Sayaka Inoue
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Renzhi Yang
- Biology Program, Stanford University, Stanford, CA 94305, USA
| | - Adarsh Tantry
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Chung-Ha Davis
- Neurosciences Program, Stanford University, Stanford, CA 94305, USA
| | - Taehong Yang
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Joseph R Knoedler
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Yichao Wei
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Eliza L Adams
- Neurosciences Program, Stanford University, Stanford, CA 94305, USA
| | - Shivani Thombare
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Samantha R Golf
- Neurosciences Program, Stanford University, Stanford, CA 94305, USA
| | - Rachael L Neve
- Gene Delivery Technology Core, Massachusetts General Hospital, Cambridge, MA 02139, USA
| | | | - Jun B Ding
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA; Department of Neurology, Stanford University, Stanford, CA 94305, USA
| | - Nirao M Shah
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA; Department of Neurobiology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
189
|
Li S, Kendall J, Park S, Wang Z, Alexander J, Moffitt A, Ranade N, Danyko C, Gegenhuber B, Fischer S, Robinson BD, Lepor H, Tollkuhn J, Gillis J, Brouzes E, Krasnitz A, Levy D, Wigler M. Copolymerization of single-cell nucleic acids into balls of acrylamide gel. Genome Res 2019; 30:49-61. [PMID: 31727682 PMCID: PMC6961581 DOI: 10.1101/gr.253047.119] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 11/13/2019] [Indexed: 01/06/2023]
Abstract
We show the use of 5′-Acrydite oligonucleotides to copolymerize single-cell DNA or RNA into balls of acrylamide gel (BAGs). Combining this step with split-and-pool techniques for creating barcodes yields a method with advantages in cost and scalability, depth of coverage, ease of operation, minimal cross-contamination, and efficient use of samples. We perform DNA copy number profiling on mixtures of cell lines, nuclei from frozen prostate tumors, and biopsy washes. As applied to RNA, the method has high capture efficiency of transcripts and sufficient consistency to clearly distinguish the expression patterns of cell lines and individual nuclei from neurons dissected from the mouse brain. By using varietal tags (UMIs) to achieve sequence error correction, we show extremely low levels of cross-contamination by tracking source-specific SNVs. The method is readily modifiable, and we will discuss its adaptability and diverse applications.
Collapse
Affiliation(s)
- Siran Li
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Jude Kendall
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Sarah Park
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Zihua Wang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Joan Alexander
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Andrea Moffitt
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Nissim Ranade
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Cassidy Danyko
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Bruno Gegenhuber
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Stephan Fischer
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Brian D Robinson
- Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York, New York 10021, USA
| | - Herbert Lepor
- Department of Urology, New York University Langone Medical Center, New York, New York 10017, USA
| | - Jessica Tollkuhn
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Jesse Gillis
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Eric Brouzes
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York 11794, USA
| | - Alex Krasnitz
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Dan Levy
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Michael Wigler
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| |
Collapse
|
190
|
Insular Cortex Projections to Nucleus Accumbens Core Mediate Social Approach to Stressed Juvenile Rats. J Neurosci 2019; 39:8717-8729. [PMID: 31591155 DOI: 10.1523/jneurosci.0316-19.2019] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 08/30/2019] [Accepted: 09/18/2019] [Indexed: 02/07/2023] Open
Abstract
Social interactions are shaped by features of the interactants, including age, emotion, sex, and familiarity. Age-specific responses to social affect are evident when an adult male rat is presented with a pair of unfamiliar male conspecifics, one of which is stressed via two foot shocks and the other naive to treatment. Adult test rats prefer to interact with stressed juvenile (postnatal day 30, PN30) conspecifics but avoid stressed adult (PN50) conspecifics. This pattern depends upon the insular cortex (IC), which is anatomically connected to the nucleus accumbens core (NAc). The goal of this work was to test the necessity of IC projections to NAc during social affective behavior. Here, bilateral pharmacological inhibition of the NAc with tetrodotoxin (1 μm; 0.5 μl/side) abolished the preference for stressed PN30, but did not alter interactions with PN50 conspecifics. Using a combination of retrograding tracing and c-Fos immunohistochemistry, we report that social interactions with stressed PN30 conspecifics elicit greater Fos immunoreactivity in IC → NAc neurons than interactions with naive PN30 conspecifics. Chemogenetic stimulation of IC terminals in the NAc increased social exploration with juvenile, but not adult, conspecifics, whereas chemogenetic inhibition of this tract blocked the preference to investigate stressed PN30 conspecifics, which expands upon our previous finding that optogenetic inhibition of IC projection neurons mediated approach and avoidance. These new findings suggest that outputs of IC to the NAc modulate social approach, which provides new insight to the neural circuitry underlying social decision-making.SIGNIFICANCE STATEMENT Social decision-making underlies an animal's behavioral response to others in a range of social contexts. Previous findings indicate the insular cortex (IC) and the nucleus accumbens (NAc) play important roles in social behaviors, and human neuroimaging implicates both IC and NAc in autism and other psychiatric disorders characterized by aberrant social cognition. To test whether IC projections to the NAc are involved in social decision-making, circuit-specific chemogenetic manipulations demonstrated that the IC → NAc pathway mediates social approach toward distressed juvenile, but not adult, conspecifics. This finding is the first to implicate this circuit in rodent socioemotional behaviors and may be a neuroanatomical substrate for integration of emotion with social reward.
Collapse
|
191
|
Aggressive behavior and brain neuronal activation in sexually naïve male Mongolian gerbils. Behav Brain Res 2019; 378:112276. [PMID: 31589893 DOI: 10.1016/j.bbr.2019.112276] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 09/25/2019] [Accepted: 10/01/2019] [Indexed: 12/18/2022]
Abstract
Aggressive behavior plays an important role in animal's survival and reproductive success. Although there has been growing interests in studying neural mechanisms underlying aggressive behavior using traditional laboratory animal models, little is known about mechanisms controlling naturally occurring aggression in sexually naïve animals. In the present study, we characterized aggressive behavior displayed by sexually naïve male Mongolian gerbils (Meriones unguiculatus) and examined the subsequent neuronal activation in the brain measured by Fos-immunoreactive (Fos-ir) staining. We found that resident males initiated attacks and showed intense levels of aggression (including chase, bite, offensive sideway, lunge and on-top) towards a conspecific male intruder. Furthermore, attacks from the resident males towards the intruder produced a nonrandom distribution of bites, with the most on the rump, flank, back and tail and few on the limbs, ventrum and head. In contrast, control males that were exposed to a woodblock (control for novelty) never attacked the woodblock and showed higher levels of object/environmental investigation. Male gerbils exposed to an intruder had significantly higher levels of Fos-ir density in the medial (MeA) and anterior cortical (ACo) subnuclei of the amygdala, principal nucleus (BSTpr) and interfascicular nucleus (BSTif) of the bed nucleus of the stria terminalis, ventrolateral subdivision of the ventromedial hypothalamus (VMHvl), and paraventricular nucleus of the hypothalamus (PVN), compared to control males. Together, our results indicate that sexually naïve, group housed male gerbils naturally display aggression towards conspecific strangers, and such aggressive behavior is associated with special patterns of neuronal activation in the brain.
Collapse
|
192
|
Krishnan K, Hasbum A, Morales D, Thompson LM, Crews D, Gore AC. Endocrine-disrupting chemicals alter the neuromolecular phenotype in F2 generation adult male rats. Physiol Behav 2019; 211:112674. [PMID: 31491443 DOI: 10.1016/j.physbeh.2019.112674] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 07/28/2019] [Accepted: 09/01/2019] [Indexed: 01/23/2023]
Abstract
Endocrine-disrupting chemical (EDC) exposures to the fetus have long-lasting effects on health and disease in adulthood. Such EDC exposure to the F1 fetuses also reaches the germ cells that become the F2 generation. Previously, we demonstrated that adult social and communicative behaviors such as ultrasonic vocalizations and mating behaviors were altered by EDCs in F2 rats, especially males. In the current study, we used the brains of these F2 males to ascertain the underlying molecular changes in the hypothalamus related to these behavioral outcomes. Their progenitors were Sprague-Dawley rat dams, treated on pregnancy days 8 to 18 with one of three treatments: a polychlorinated biphenyl (PCB) mixture, Aroclor 1221, selected because it is weakly estrogenic; the anti-androgenic fungicide vinclozolin (VIN); or the vehicle, 6% dimethylsulfoxide in sesame oil (VEH). In adulthood, F1 male and female offspring were bred with untreated partners to generate paternal or maternal lineages of the F2 offspring, the subjects of molecular work. Quantitative real-time PCR was conducted in the medial preoptic area (POA) and the ventromedial nucleus (VMN) of the hypothalamus, selected for their roles in social and sexual behaviors. Of the genes assessed, steroid hormone receptors (estrogen receptor α, androgen receptor, progesterone receptor) but not dopamine receptors 1 and 2 or DNA methyltransferase 3a expression were altered, particularly in the VIN males. Several significant correlations between behavior and gene expression were also detected. These results suggest that preconceptional exposure of male rats to EDCs at the germ cell stage alters the neuromolecular phenotype in adulthood in a lineage-dependent manner.
Collapse
Affiliation(s)
- Krittika Krishnan
- Department of Psychology, The University of Texas at Austin, Austin, TX 78712, United States of America
| | - Asbiel Hasbum
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, United States of America
| | - Daniel Morales
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, United States of America
| | - Lindsay M Thompson
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, United States of America
| | - David Crews
- Department of Psychology, The University of Texas at Austin, Austin, TX 78712, United States of America; Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712, United States of America
| | - Andrea C Gore
- Department of Psychology, The University of Texas at Austin, Austin, TX 78712, United States of America; Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, United States of America.
| |
Collapse
|
193
|
Abdel-Aleem GA, Shafik NM, El-Magd MA, Mohamed DA. Soya bean rich diet is associated with adult male rat aggressive behavior: relation to RF amide-related peptide 3-aromatase-neuroestrogen pathway in the brain. Metab Brain Dis 2019; 34:1103-1115. [PMID: 31134480 DOI: 10.1007/s11011-019-00431-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 05/13/2019] [Indexed: 12/19/2022]
Abstract
Relation between soya bean (SB) consumption and aggressive behavior has not been elucidated yet. Thus, this study was conducted to investigate the effect of large amount of SB consumption on adult male rats' aggressive behavior through investigating changes in the expression of gonadotropin-inhibitory hormone/ RF amide-related peptide 3 (GnIH/RFRP3), neuropeptide FF receptor, cytochrome P450, family 19, subfamily A, polypeptide 1 (Cyp19A1), estrogen receptors α and β and the levels of neuroestrogen, dopamine, glutamate and testosterone as well as aromatase activity in the brain. Adult male rats were divided into three equal groups: group I, control group, received standard diet; group II and group III received 25% and 50% SB of their standard diet contents, respectively, for 12 weeks. The obtained results showed that feeding male rats with large amount of SB could induce aggressive behavior in a dose dependant manner possibly through inhibition of brain GnIH/RFRP-aromatase-neuroestrogen pathway. These effects may be through decreasing aromatase activity, neuroestrogen concentration, Cyp19A1 and ER β mRNA levels and increasing ER α mRNA levels and immunostaining as well as testosterone, dopamine and glutamate levels in the brain. These findings also provide further support for the inhibitory role of RFRP3 on aggressive behavior of male rats. These data may open new avenues for the potential harmful effects of consumption large amounts of SB rich food on humans.
Collapse
Affiliation(s)
- Ghada A Abdel-Aleem
- Department of Medical Biochemistry, Faculty of Medicine, Tanta University, Egypt, Tanta, Egypt
| | - Noha M Shafik
- Department of Medical Biochemistry, Faculty of Medicine, Tanta University, Egypt, Tanta, Egypt.
| | - Mohammed A El-Magd
- Department of Anatomy, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt.
| | - Darin A Mohamed
- Department of Histopathology, Faculty of Medicine, Tanta University, Egypt, Tanta, Egypt
| |
Collapse
|
194
|
Rogers-Carter MM, Christianson JP. An insular view of the social decision-making network. Neurosci Biobehav Rev 2019; 103:119-132. [PMID: 31194999 PMCID: PMC6699879 DOI: 10.1016/j.neubiorev.2019.06.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 05/24/2019] [Accepted: 06/08/2019] [Indexed: 12/11/2022]
Abstract
Social animals must detect, evaluate and respond to the emotional states of other individuals in their group. A constellation of gestures, vocalizations, and chemosignals enable animals to convey affect and arousal to others in nuanced, multisensory ways. Observers integrate social information with environmental and internal factors to select behavioral responses to others via a process call social decision-making. The Social Decision Making Network (SDMN) is a system of brain structures and neurochemicals that are conserved across species (mammals, reptiles, amphibians, birds) that are the proximal mediators of most social behaviors. However, how sensory information reaches the SDMN to shape behavioral responses during a social encounter is not well known. Here we review the empirical data that demonstrate the necessity of sensory systems in detecting social stimuli, as well as the anatomical connectivity of sensory systems with each node of the SDMN. We conclude that the insular cortex is positioned to link integrated social sensory cues to this network to produce flexible and appropriate behavioral responses to socioemotional cues.
Collapse
Affiliation(s)
- Morgan M Rogers-Carter
- Department of Psychology, McGuinn Rm 300, Boston College, 140 Commonwealth Ave, Chestnut Hill, MA, 02467, USA.
| | - John P Christianson
- Department of Psychology, McGuinn Rm 300, Boston College, 140 Commonwealth Ave, Chestnut Hill, MA, 02467, USA.
| |
Collapse
|
195
|
Xu Y, Lu Y, Cassidy RM, Mangieri LR, Zhu C, Huang X, Jiang Z, Justice NJ, Xu Y, Arenkiel BR, Tong Q. Identification of a neurocircuit underlying regulation of feeding by stress-related emotional responses. Nat Commun 2019; 10:3446. [PMID: 31371721 PMCID: PMC6671997 DOI: 10.1038/s41467-019-11399-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 07/13/2019] [Indexed: 12/12/2022] Open
Abstract
Feeding is known to be profoundly affected by stress-related emotional states and eating disorders are comorbid with psychiatric symptoms and altered emotional responses. The neural basis underlying feeding regulation by stress-related emotional changes is poorly understood. Here, we identify a novel projection from the paraventricular hypothalamus (PVH) to the ventral lateral septum (LSv) that shows a scalable regulation on feeding and behavioral changes related to emotion. Weak photostimulation of glutamatergic PVH→LSv terminals elicits stress-related self-grooming and strong photostimulation causes fear-related escape jumping associated with respective weak and strong inhibition on feeding. In contrast, inhibition of glutamatergic inputs to LSv increases feeding with signs of reduced anxiety. LSv-projecting neurons are concentrated in rostral PVH. LSv and LSv-projecting PVH neurons are activated by stressors in vivo, whereas feeding bouts were associated with reduced activity of these neurons. Thus, PVH→LSv neurotransmission underlies dynamic feeding by orchestrating emotional states, providing a novel neural circuit substrate underlying comorbidity between eating abnormalities and psychiatric disorders.
Collapse
Affiliation(s)
- Yuanzhong Xu
- Brown Foundation Institute of Molecular Medicine, University of Texas McGovern Medical School, Houston, TX, 77030, USA
| | - Yungang Lu
- Brown Foundation Institute of Molecular Medicine, University of Texas McGovern Medical School, Houston, TX, 77030, USA
| | - Ryan M Cassidy
- Brown Foundation Institute of Molecular Medicine, University of Texas McGovern Medical School, Houston, TX, 77030, USA.,Graduate Program in Neuroscience of the University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX, 77030, USA
| | - Leandra R Mangieri
- Brown Foundation Institute of Molecular Medicine, University of Texas McGovern Medical School, Houston, TX, 77030, USA.,Graduate Program in Neuroscience of the University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX, 77030, USA
| | - Canjun Zhu
- Brown Foundation Institute of Molecular Medicine, University of Texas McGovern Medical School, Houston, TX, 77030, USA
| | - Xugen Huang
- Brown Foundation Institute of Molecular Medicine, University of Texas McGovern Medical School, Houston, TX, 77030, USA
| | - Zhiying Jiang
- Brown Foundation Institute of Molecular Medicine, University of Texas McGovern Medical School, Houston, TX, 77030, USA
| | - Nicholas J Justice
- Brown Foundation Institute of Molecular Medicine, University of Texas McGovern Medical School, Houston, TX, 77030, USA.,Graduate Program in Neuroscience of the University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX, 77030, USA
| | - Yong Xu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Benjamin R Arenkiel
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.,Department of Neuroscience and Jan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA
| | - Qingchun Tong
- Brown Foundation Institute of Molecular Medicine, University of Texas McGovern Medical School, Houston, TX, 77030, USA. .,Graduate Program in Neuroscience of the University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX, 77030, USA. .,Department of Neurobiology and Anatomy, University of Texas McGovern Medical School, Houston, TX, 77030, USA.
| |
Collapse
|
196
|
Fang YY, Yamaguchi T, Song SC, Tritsch NX, Lin D. A Hypothalamic Midbrain Pathway Essential for Driving Maternal Behaviors. Neuron 2019; 98:192-207.e10. [PMID: 29621487 DOI: 10.1016/j.neuron.2018.02.019] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 01/11/2018] [Accepted: 02/21/2018] [Indexed: 01/03/2023]
Abstract
Maternal behaviors are essential for the survival of the young. Previous studies implicated the medial preoptic area (MPOA) as an important region for maternal behaviors, but details of the maternal circuit remain incompletely understood. Here we identify estrogen receptor alpha (Esr1)-expressing cells in the MPOA as key mediators of pup approach and retrieval. Reversible inactivation of MPOAEsr1+ cells impairs those behaviors, whereas optogenetic activation induces immediate pup retrieval. In vivo recordings demonstrate preferential activation of MPOAEsr1+ cells during maternal behaviors and changes in MPOA cell responses across reproductive states. Furthermore, channelrhodopsin-assisted circuit mapping reveals a strong inhibitory projection from MPOAEsr1+ cells to ventral tegmental area (VTA) non-dopaminergic cells. Pathway-specific manipulations reveal that this projection is essential for driving pup approach and retrieval and that VTA dopaminergic cells are reliably activated during those behaviors. Altogether, this study provides new insight into the neural circuit that generates maternal behaviors.
Collapse
Affiliation(s)
- Yi-Ya Fang
- Neuroscience Institute, New York University School of Medicine, 522 First Avenue, New York, NY 10016, USA
| | - Takashi Yamaguchi
- Neuroscience Institute, New York University School of Medicine, 522 First Avenue, New York, NY 10016, USA
| | - Soomin C Song
- Neuroscience Institute, New York University School of Medicine, 522 First Avenue, New York, NY 10016, USA
| | - Nicolas X Tritsch
- Neuroscience Institute, New York University School of Medicine, 522 First Avenue, New York, NY 10016, USA
| | - Dayu Lin
- Neuroscience Institute, New York University School of Medicine, 522 First Avenue, New York, NY 10016, USA; Department of Psychiatry, New York University School of Medicine, 1 Park Avenue, New York, NY 10016, USA; Center for Neural Science, New York University, 4 Washington Place, New York, NY 10003, USA.
| |
Collapse
|
197
|
Chen P, Hong W. Neural Circuit Mechanisms of Social Behavior. Neuron 2019; 98:16-30. [PMID: 29621486 DOI: 10.1016/j.neuron.2018.02.026] [Citation(s) in RCA: 272] [Impact Index Per Article: 54.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 02/11/2018] [Accepted: 02/26/2018] [Indexed: 12/31/2022]
Abstract
We live in a world that is largely socially constructed, and we are constantly involved in and fundamentally influenced by a broad array of complex social interactions. Social behaviors among conspecifics, either conflictive or cooperative, are exhibited by all sexually reproducing animal species and are essential for the health, survival, and reproduction of animals. Conversely, impairment in social function is a prominent feature of several neuropsychiatric disorders, such as autism spectrum disorders and schizophrenia. Despite the importance of social behaviors, many fundamental questions remain unanswered. How is social sensory information processed and integrated in the nervous system? How are different social behavioral decisions selected and modulated in brain circuits? Here we discuss conceptual issues and recent advances in our understanding of brain regions and neural circuit mechanisms underlying the regulation of social behaviors.
Collapse
Affiliation(s)
- Patrick Chen
- Department of Biological Chemistry and Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Weizhe Hong
- Department of Biological Chemistry and Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
198
|
Schiffino FL, Siemian JN, Petrella M, Laing BT, Sarsfield S, Borja CB, Gajendiran A, Zuccoli ML, Aponte Y. Activation of a lateral hypothalamic-ventral tegmental circuit gates motivation. PLoS One 2019; 14:e0219522. [PMID: 31291348 PMCID: PMC6619795 DOI: 10.1371/journal.pone.0219522] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 06/25/2019] [Indexed: 02/06/2023] Open
Abstract
Across species, motivated states such as food-seeking and consumption are essential for survival. The lateral hypothalamus (LH) is known to play a fundamental role in regulating feeding and reward-related behaviors. However, the contributions of neuronal subpopulations in the LH have not been thoroughly identified. Here we examine how lateral hypothalamic leptin receptor-expressing (LHLEPR) neurons, a subset of GABAergic cells, regulate motivation in mice. We find that LHLEPR neuronal activation significantly increases progressive ratio (PR) performance, while inhibition decreases responding. Moreover, we mapped LHLEPR axonal projections and demonstrated that they target the ventral tegmental area (VTA), form functional inhibitory synapses with non-dopaminergic VTA neurons, and their activation promotes motivation for food. Finally, we find that LHLEPR neurons also regulate motivation to obtain water, suggesting that they may play a generalized role in motivation. Together, these results identify LHLEPR neurons as modulators within a hypothalamic-ventral tegmental circuit that gates motivation.
Collapse
Affiliation(s)
- Felipe L. Schiffino
- National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Justin N. Siemian
- National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Michele Petrella
- National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, Maryland, United States of America
- Pharmacology Unit, School of Pharmacy, University of Camerino, Camerino (MC), Italy
| | - Brenton T. Laing
- National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Sarah Sarsfield
- National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Cara B. Borja
- National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Anjali Gajendiran
- National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Maria Laura Zuccoli
- National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Yeka Aponte
- National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, Maryland, United States of America
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
199
|
Romanov RA, Alpár A, Hökfelt T, Harkany T. Unified Classification of Molecular, Network, and Endocrine Features of Hypothalamic Neurons. Annu Rev Neurosci 2019; 42:1-26. [DOI: 10.1146/annurev-neuro-070918-050414] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Peripheral endocrine output relies on either direct or feed-forward multi-order command from the hypothalamus. Efficient coding of endocrine responses is made possible by the many neuronal cell types that coexist in intercalated hypothalamic nuclei and communicate through extensive synaptic connectivity. Although general anatomical and neurochemical features of hypothalamic neurons were described during the past decades, they have yet to be reconciled with recently discovered molecular classifiers and neurogenetic function determination. By interrogating magnocellular as well as parvocellular dopamine, GABA, glutamate, and phenotypically mixed neurons, we integrate available information at the molecular, cellular, network, and endocrine output levels to propose a framework for the comprehensive classification of hypothalamic neurons. Simultaneously, we single out putative neuronal subclasses for which future research can fill in existing gaps of knowledge to rationalize cellular diversity through function-determinant molecular marks in the hypothalamus.
Collapse
Affiliation(s)
- Roman A. Romanov
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, 1090 Vienna, Austria
| | - Alán Alpár
- Department of Anatomy, Histology, and Embryology, and SE NAP Research Group of Experimental Neuroanatomy and Developmental Biology, Semmelweis University, H-1085 Budapest, Hungary
| | - Tomas Hökfelt
- Department of Neuroscience, Biomedicum, Karolinska Institutet, SE-17165 Stockholm, Sweden
| | - Tibor Harkany
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, 1090 Vienna, Austria
- Department of Neuroscience, Biomedicum, Karolinska Institutet, SE-17165 Stockholm, Sweden
| |
Collapse
|
200
|
Locci A, Pinna G. Social isolation as a promising animal model of PTSD comorbid suicide: neurosteroids and cannabinoids as possible treatment options. Prog Neuropsychopharmacol Biol Psychiatry 2019; 92:243-259. [PMID: 30586627 DOI: 10.1016/j.pnpbp.2018.12.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 12/18/2018] [Accepted: 12/21/2018] [Indexed: 02/07/2023]
Abstract
Post-traumatic stress disorder (PTSD) is a psychiatric condition characterized by drastic alterations in mood, emotions, social abilities and cognition. Notably, one aspect of PTSD, particularly in veterans, is its comorbidity with suicide. Elevated aggressiveness predicts high-risk to suicide in humans and despite the difficulty in reproducing a complex human suicidal behavior in rodents, aggressive behavior is a well reproducible behavioral trait of suicide. PTSD animal models are based on a peculiar phenotype, including exaggerated fear memory and impaired fear extinction associated with neurochemical dysregulations in the brain circuitry regulating emotion. The endocannabinoid and the neurosteroid systems regulate emotions and stress responses, and recent evidence shows these two systems are interrelated and critically compromised in neuropsychiatric disorders. For instance, levels of the neurosteroid, allopregnanolone, as well as those of the endocannabinoids, anandamide and its congener, palmitoylethanolamide are decreased in PTSD. Similarly, the endocannabinoid system and neurosteroid biosynthesis are altered in suicidal individuals. Selective serotonin reuptake inhibitors (SSRIs), the only FDA-approved treatments for PTSD, fail to help half of the treatment-seeking patients. This highlights the need for developing biomarker-based efficient therapies. One promising alternative to SSRIs points to stimulation of allopregnanolone biosynthesis as a treatment and a valid end-point to predict treatment response in PTSD patients. This review highlights running findings on the role of the endocannabinoid and neurosteroid systems in PTSD and suicidal behavior both in a preclinical and clinical perspective. A specific focus is given to predictive PTSD/suicide animal models. Ultimately, we discuss the idea that disruption of neurosteroid and endocannabinoid biosynthesis may offer a novel promising biomarker axis to develop new treatments for PTSD and, perhaps, suicidal behavior.
Collapse
Affiliation(s)
- Andrea Locci
- The Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, 1601 W. Taylor St., Chicago, IL 60612, USA
| | - Graziano Pinna
- The Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, 1601 W. Taylor St., Chicago, IL 60612, USA.
| |
Collapse
|