151
|
Baaziz H, Baker ZR, Franklin HC, Hsu BB. Rehabilitation of a misbehaving microbiome: phages for the remodeling of bacterial composition and function. iScience 2022; 25:104146. [PMID: 35402871 PMCID: PMC8991392 DOI: 10.1016/j.isci.2022.104146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The human gut microbiota is considered an adjunct metabolic organ owing to its health impact. Recent studies have shown correlations between gut phage composition and host health. Whereas phage therapy has popularized virulent phages as antimicrobials, both virulent and temperate phages have a natural ecological relationship with their cognate bacteria. Characterization of this evolutionary coadaptation has led to other emergent therapeutic phage applications that do not necessarily rely on bacterial eradication or target pathogens. Here, we present an overview of the tripartite relationship between phages, bacteria, and the mammalian host, and highlight applications of the wildtype and genetically engineered phage for gut microbiome remodeling. In light of new and varied strategies, we propose to categorize phage applications aiming to modulate bacterial composition or function as "phage rehabilitation." By delineating phage rehab from phage therapy, we believe it will enable greater nuance and understanding of these new phage-based technologies.
Collapse
Affiliation(s)
- Hiba Baaziz
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Zachary Robert Baker
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Hollyn Claire Franklin
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Bryan Boen Hsu
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| |
Collapse
|
152
|
Grant-Beurmann S, Jumare J, Ndembi N, Matthew O, Shutt A, Omoigberale A, Martin OA, Fraser CM, Charurat M. Dynamics of the infant gut microbiota in the first 18 months of life: the impact of maternal HIV infection and breastfeeding. MICROBIOME 2022; 10:61. [PMID: 35414043 PMCID: PMC9004197 DOI: 10.1186/s40168-022-01230-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Access to antiretroviral therapy (ART) during pregnancy and breastfeeding for mothers with HIV has resulted in fewer children acquiring HIV peri- and postnatally, resulting in an increase in the number of children who are exposed to the virus but are not infected (HEU). HEU infants have an increased likelihood of childhood infections and adverse growth outcomes, as well as increased mortality compared to their HIV-unexposed (HUU) peers. We explored potential differences in the gut microbiota in a cohort of 272 Nigerian infants born to HIV-positive and negative mothers in this study during the first 18 months of life. RESULTS The taxonomic composition of the maternal vaginal and gut microbiota showed no significant differences based on HIV status, and the composition of the infant gut microbiota at birth was similar between HUU and HEU. Longitudinal taxonomic composition of the infant gut microbiota and weight-for-age z-scores (WAZ) differed depending on access to breast milk. HEU infants displayed overall lower WAZ than HUU infants at all time points. We observed a significantly lower relative abundance of Bifidobacterium in HEU infants at 6 months postpartum. Breast milk composition also differed by time point and HIV infection status. The antiretroviral therapy drugs, lamivudine and nevirapine, as well as kynurenine, were significantly more abundant in the breast milk of mothers with HIV. Levels of tiglyl carnitine (C5) were significantly lower in the breast milk of mothers without HIV. ART drugs in the breast milk of mothers with HIV were associated with a lower relative abundance of Bifidobacterium longum. CONCLUSIONS Maternal HIV infection was associated with adverse growth outcomes of HEU infants in this study, and these differences persist from birth through at least 18 months, which is a critical window for the development of the immune and central nervous systems. We observed that the relative abundance of Bifidobacterium spp. was significantly lower in the gut microbiota of all HEU infants over the first 6 months postpartum, even if HEU infants were receiving breast milk. Breastfeeding was of benefit in our HEU infant cohort in the first weeks postpartum; however, ART drug metabolites in breast milk were associated with a lower abundance of Bifidobacterium. Video abstract.
Collapse
Affiliation(s)
- Silvia Grant-Beurmann
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jibreel Jumare
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | | | - Ashley Shutt
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | - Olivia A Martin
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Claire M Fraser
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA.
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Man Charurat
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
153
|
Adiliaghdam F, Amatullah H, Digumarthi S, Saunders TL, Rahman RU, Wong LP, Sadreyev R, Droit L, Paquette J, Goyette P, Rioux J, Hodin R, Mihindukulasuriya KA, Handley SA, Jeffrey KL. Human enteric viruses autonomously shape inflammatory bowel disease phenotype through divergent innate immunomodulation. Sci Immunol 2022; 7:eabn6660. [PMID: 35394816 PMCID: PMC9416881 DOI: 10.1126/sciimmunol.abn6660] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Altered enteric microorganisms in concert with host genetics shape inflammatory bowel disease (IBD) phenotypes. However, insight is limited to bacteria and fungi. We found that eukaryotic viruses and bacteriophages (collectively, the virome), enriched from non-IBD, noninflamed human colon resections, actively elicited atypical anti-inflammatory innate immune programs. Conversely, ulcerative colitis or Crohn's disease colon resection viromes provoked inflammation, which was successfully dampened by non-IBD viromes. The IBD colon tissue virome was perturbed, including an increase in the enterovirus B species of eukaryotic picornaviruses, not previously detected in fecal virome studies. Mice humanized with non-IBD colon tissue viromes were protected from intestinal inflammation, whereas IBD virome mice exhibited exacerbated inflammation in a nucleic acid sensing-dependent fashion. Furthermore, there were detrimental consequences for IBD patient-derived intestinal epithelial cells bearing loss-of-function mutations within virus sensor MDA5 when exposed to viromes. Our results demonstrate that innate recognition of IBD or non-IBD human viromes autonomously influences intestinal homeostasis and disease phenotypes. Thus, perturbations in the intestinal virome, or an altered ability to sense the virome due to genetic variation, contribute to the induction of IBD. Harnessing the virome may offer therapeutic and biomarker potential.
Collapse
Affiliation(s)
- Fatemeh Adiliaghdam
- Department of Medicine, Division of Gastroenterology and the Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Hajera Amatullah
- Department of Medicine, Division of Gastroenterology and the Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Sreehaas Digumarthi
- Department of Medicine, Division of Gastroenterology and the Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Tahnee L. Saunders
- Department of Medicine, Division of Gastroenterology and the Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Raza-Ur Rahman
- Department of Medicine, Division of Gastroenterology and the Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Lai Ping Wong
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Department of Genetics, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Ruslan Sadreyev
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Lindsay Droit
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Jean Paquette
- Montreal Heart Institute, Montreal Quebec Canada H1T 1C8
| | | | - John Rioux
- Montreal Heart Institute, Montreal Quebec Canada H1T 1C8
- Université de Montréal, Montreal Quebec Canada H3C 3J7
| | - Richard Hodin
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | | | - Scott A. Handley
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Kate L. Jeffrey
- Department of Medicine, Division of Gastroenterology and the Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
154
|
Zhang X, Wang S, Zhang Q, Zhang K, Liu W, Zhang R, Zhang Z. The Expansion of a Single Bacteriophage Leads to Bacterial Disturbance in Gut and Reduction of Larval Growth in Musca domestica. Front Immunol 2022; 13:885722. [PMID: 35464464 PMCID: PMC9019163 DOI: 10.3389/fimmu.2022.885722] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 03/16/2022] [Indexed: 11/30/2022] Open
Abstract
The housefly larvae gut microbiota influences larval health and has become an important model to study the ecology and evolution of microbiota-host interactions. However, little is known about the phage community associated with the housefly larval gut, although bacteriophages are the most abundant members of the microbiota and have the potential to shape gut bacterial communities. Changes to bacteriophage composition are associated with disease, but how phages impact insect health remains unclear. We noticed that treating 1-day-old housefly larvae with ~107, ~109, and ~1011 phage particles per ml of bacteriophages led to changes in the growth and development of housefly larvae. Additionally, treating housefly larvae with bacteriophages led to bacterial composition changes in the gut. Changes in the compositions of these gut bacteria are mainly manifested in the increase in harmful bacteria, including Pseudomonas and Providencia and the decrease in beneficial bacteria, including Enterobacter and Klebsiella, after different growth and development periods. The alterations in gut microbiota further influenced the larval growth and development. Collectively, these results indicate that bacteriophages can perturb the intestinal microbiome and impact insect health.
Collapse
Affiliation(s)
- Xinyu Zhang
- Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Shandong First Medical University (Shandong Academy of Medical Sciences), Taian, China
- School of Basic Medical Science, Shandong First Medical University (Shandong Academy of Medical Sciences), Taian, China
| | - Shumin Wang
- School of Basic Medical Science, Shandong First Medical University (Shandong Academy of Medical Sciences), Taian, China
| | - Qian Zhang
- Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Shandong First Medical University (Shandong Academy of Medical Sciences), Taian, China
- School of Basic Medical Science, Shandong First Medical University (Shandong Academy of Medical Sciences), Taian, China
| | - Kexin Zhang
- Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Shandong First Medical University (Shandong Academy of Medical Sciences), Taian, China
- School of Basic Medical Science, Shandong First Medical University (Shandong Academy of Medical Sciences), Taian, China
| | - Wenjuan Liu
- Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Shandong First Medical University (Shandong Academy of Medical Sciences), Taian, China
- School of Basic Medical Science, Shandong First Medical University (Shandong Academy of Medical Sciences), Taian, China
| | - Ruiling Zhang
- Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Shandong First Medical University (Shandong Academy of Medical Sciences), Taian, China
- School of Basic Medical Science, Shandong First Medical University (Shandong Academy of Medical Sciences), Taian, China
| | - Zhong Zhang
- Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Shandong First Medical University (Shandong Academy of Medical Sciences), Taian, China
- School of Basic Medical Science, Shandong First Medical University (Shandong Academy of Medical Sciences), Taian, China
| |
Collapse
|
155
|
Wang H, Li J, Wu G, Zhang F, Yin J, He Y. The effect of intrinsic factors and mechanisms in shaping human gut microbiota. MEDICINE IN MICROECOLOGY 2022. [DOI: 10.1016/j.medmic.2022.100054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
156
|
Gutierrez MW, van Tilburg Bernardes E, Changirwa D, McDonald B, Arrieta MC. "Molding" immunity-modulation of mucosal and systemic immunity by the intestinal mycobiome in health and disease. Mucosal Immunol 2022; 15:573-583. [PMID: 35474360 DOI: 10.1038/s41385-022-00515-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/24/2022] [Accepted: 04/04/2022] [Indexed: 02/04/2023]
Abstract
Fungi are important yet understudied contributors to the microbial communities of the gastrointestinal tract. Starting at birth, the intestinal mycobiome undergoes a period of dynamic maturation under the influence of microbial, host, and extrinsic influences, with profound functional implications for immune development in early life, and regulation of immune homeostasis throughout life. Candida albicans serves as a model organism for understanding the cross-talk between fungal colonization dynamics and immunity, and exemplifies unique mechanisms of fungal-immune interactions, including fungal dimorphism, though our understanding of other intestinal fungi is growing. Given the prominent role of the gut mycobiome in promoting immune homeostasis, emerging evidence points to fungal dysbiosis as an influential contributor to immune dysregulation in a variety of inflammatory and infectious diseases. Here we review current knowledge on the factors that govern host-fungi interactions in the intestinal tract and immunological outcomes in both mucosal and systemic compartments.
Collapse
Affiliation(s)
- Mackenzie W Gutierrez
- Immunology Research Group, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Pediatrics, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada.,Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,International Microbiome Centre, University of Calgary, Calgary, AB, Canada
| | - Erik van Tilburg Bernardes
- Immunology Research Group, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Pediatrics, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada.,Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,International Microbiome Centre, University of Calgary, Calgary, AB, Canada
| | - Diana Changirwa
- Immunology Research Group, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,International Microbiome Centre, University of Calgary, Calgary, AB, Canada.,Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Braedon McDonald
- Immunology Research Group, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,International Microbiome Centre, University of Calgary, Calgary, AB, Canada.,Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Marie-Claire Arrieta
- Immunology Research Group, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada. .,Department of Pediatrics, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada. .,Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada. .,International Microbiome Centre, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
157
|
Beller L, Deboutte W, Vieira-Silva S, Falony G, Yhossef Tito R, Rymenans L, Yinda CK, Vanmechelen B, Van Espen L, Jansen D, Shi C, Zeller M, Maes P, Faust K, Van Ranst M, Raes J, Matthijnssens J. The virota and its transkingdom interactions in the healthy infant gut. Proc Natl Acad Sci U S A 2022; 119:e2114619119. [PMID: 35320047 PMCID: PMC9060457 DOI: 10.1073/pnas.2114619119] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 02/08/2022] [Indexed: 02/07/2023] Open
Abstract
SignificanceMicrobes colonizing the infant gut during the first year(s) of life play an important role in immune system development. We show that after birth the (nearly) sterile gut is rapidly colonized by bacteria and their viruses (phages), which often show a strong cooccurrence. Most viruses infecting the infant do not cause clinical signs and their numbers strongly increase after day-care entrance. The infant diet is clearly reflected by identification of plant-infecting viruses, whereas fungi and parasites are not part of a stable gut microbiota. These temporal high-resolution baseline data about the gut colonization process will be valuable for further investigations of pathogenic viruses, dynamics between phages and their bacterial host, as well as studies investigating infants with a disturbed microbiota.
Collapse
Affiliation(s)
- Leen Beller
- Laboratory of Viral Metagenomics, Department of Microbiology, Immunology and Transplantation, Rega Institute, University of Leuven, 3000 Leuven, Belgium
| | - Ward Deboutte
- Laboratory of Viral Metagenomics, Department of Microbiology, Immunology and Transplantation, Rega Institute, University of Leuven, 3000 Leuven, Belgium
| | - Sara Vieira-Silva
- Laboratory of Molecular Bacteriology, Department of Microbiology, Immunology and Transplantation, Rega Institute, University of Leuven, 3000 Leuven, Belgium
- Center for Microbiology, Flemish Institute for Biotechnology (VIB), 3000 Leuven, Belgium
| | - Gwen Falony
- Laboratory of Molecular Bacteriology, Department of Microbiology, Immunology and Transplantation, Rega Institute, University of Leuven, 3000 Leuven, Belgium
- Center for Microbiology, Flemish Institute for Biotechnology (VIB), 3000 Leuven, Belgium
| | - Raul Yhossef Tito
- Laboratory of Molecular Bacteriology, Department of Microbiology, Immunology and Transplantation, Rega Institute, University of Leuven, 3000 Leuven, Belgium
- Center for Microbiology, Flemish Institute for Biotechnology (VIB), 3000 Leuven, Belgium
| | - Leen Rymenans
- Laboratory of Molecular Bacteriology, Department of Microbiology, Immunology and Transplantation, Rega Institute, University of Leuven, 3000 Leuven, Belgium
- Center for Microbiology, Flemish Institute for Biotechnology (VIB), 3000 Leuven, Belgium
| | - Claude Kwe Yinda
- Virus Ecology Unit, Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Hamilton, MT 59840
| | - Bert Vanmechelen
- Laboratory of Clinical and Epidemiological Virology, Department of Microbiology, Immunology and Transplantation, Rega Institute, University of Leuven, 3000 Leuven, Belgium
| | - Lore Van Espen
- Laboratory of Viral Metagenomics, Department of Microbiology, Immunology and Transplantation, Rega Institute, University of Leuven, 3000 Leuven, Belgium
| | - Daan Jansen
- Laboratory of Viral Metagenomics, Department of Microbiology, Immunology and Transplantation, Rega Institute, University of Leuven, 3000 Leuven, Belgium
| | - Chenyan Shi
- Laboratory of Viral Metagenomics, Department of Microbiology, Immunology and Transplantation, Rega Institute, University of Leuven, 3000 Leuven, Belgium
- Center Lab of Longhua Branch, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
- Department of Infectious Disease, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen Guangdong, 518020, China
| | - Mark Zeller
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037
| | - Piet Maes
- Laboratory of Clinical and Epidemiological Virology, Department of Microbiology, Immunology and Transplantation, Rega Institute, University of Leuven, 3000 Leuven, Belgium
| | - Karoline Faust
- Laboratory of Molecular Bacteriology, Department of Microbiology, Immunology and Transplantation, Rega Institute, University of Leuven, 3000 Leuven, Belgium
| | - Marc Van Ranst
- Laboratory of Clinical and Epidemiological Virology, Department of Microbiology, Immunology and Transplantation, Rega Institute, University of Leuven, 3000 Leuven, Belgium
| | - Jeroen Raes
- Laboratory of Molecular Bacteriology, Department of Microbiology, Immunology and Transplantation, Rega Institute, University of Leuven, 3000 Leuven, Belgium
- Center for Microbiology, Flemish Institute for Biotechnology (VIB), 3000 Leuven, Belgium
| | - Jelle Matthijnssens
- Laboratory of Viral Metagenomics, Department of Microbiology, Immunology and Transplantation, Rega Institute, University of Leuven, 3000 Leuven, Belgium
| |
Collapse
|
158
|
Spencer L, Olawuni B, Singh P. Gut Virome: Role and Distribution in Health and Gastrointestinal Diseases. Front Cell Infect Microbiol 2022; 12:836706. [PMID: 35360104 PMCID: PMC8960297 DOI: 10.3389/fcimb.2022.836706] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/10/2022] [Indexed: 12/11/2022] Open
Abstract
The study of the intestinal microbiome is an evolving field of research that includes comprehensive analysis of the vast array of microbes – bacterial, archaeal, fungal, and viral. Various gastrointestinal (GI) diseases, such as Crohn’s disease and ulcerative colitis, have been associated with instability of the gut microbiota. Many studies have focused on importance of bacterial communities with relation to health and disease in humans. The role of viruses, specifically bacteriophages, have recently begin to emerge and have profound impact on the host. Here, we comprehensively review the importance of viruses in GI diseases and summarize their influence in the complex intestinal environment, including their biochemical and genetic activities. We also discuss the distribution of the gut virome as it relates with treatment and immunological advantages. In conclusion, we suggest the need for further studies on this critical component of the intestinal microbiome to decipher the role of the gut virome in human health and disease.
Collapse
|
159
|
Mayneris-Perxachs J, Castells-Nobau A, Arnoriaga-Rodríguez M, Garre-Olmo J, Puig J, Ramos R, Martínez-Hernández F, Burokas A, Coll C, Moreno-Navarrete JM, Zapata-Tona C, Pedraza S, Pérez-Brocal V, Ramió-Torrentà L, Ricart W, Moya A, Martínez-García M, Maldonado R, Fernández-Real JM. Caudovirales bacteriophages are associated with improved executive function and memory in flies, mice, and humans. Cell Host Microbe 2022; 30:340-356.e8. [PMID: 35176247 DOI: 10.1016/j.chom.2022.01.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/12/2021] [Accepted: 01/21/2022] [Indexed: 12/13/2022]
Abstract
Growing evidence implicates the gut microbiome in cognition. Viruses, the most abundant life entities on the planet, are a commonly overlooked component of the gut virome, dominated by the Caudovirales and Microviridae bacteriophages. Here, we show in a discovery (n = 114) and a validation cohort (n = 942) that subjects with increased Caudovirales and Siphoviridae levels in the gut microbiome had better performance in executive processes and verbal memory. Conversely, increased Microviridae levels were linked to a greater impairment in executive abilities. Microbiota transplantation from human donors with increased specific Caudovirales (>90% from the Siphoviridae family) levels led to increased scores in the novel object recognition test in mice and up-regulated memory-promoting immediate early genes in the prefrontal cortex. Supplementation of the Drosophila diet with the 936 group of lactococcal Siphoviridae bacteriophages resulted in increased memory scores and upregulation of memory-involved brain genes. Thus, bacteriophages warrant consideration as novel actors in the microbiome-brain axis.
Collapse
Affiliation(s)
- Jordi Mayneris-Perxachs
- Department of Diabetes, Endocrinology, and Nutrition, Dr. Josep Trueta University Hospital, Girona, Spain; Nutrition, Eumetabolism, and Health Group, Girona Biomedical Research Institute (IdibGi), Girona, Spain; Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain.
| | - Anna Castells-Nobau
- Department of Diabetes, Endocrinology, and Nutrition, Dr. Josep Trueta University Hospital, Girona, Spain; Nutrition, Eumetabolism, and Health Group, Girona Biomedical Research Institute (IdibGi), Girona, Spain; Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain
| | - María Arnoriaga-Rodríguez
- Department of Diabetes, Endocrinology, and Nutrition, Dr. Josep Trueta University Hospital, Girona, Spain; Nutrition, Eumetabolism, and Health Group, Girona Biomedical Research Institute (IdibGi), Girona, Spain; Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain; Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain
| | - Josep Garre-Olmo
- Research Group on Aging, Disability, and Health, Girona Biomedical Research Institute (IdibGi), Girona, Spain; Serra-Hunter Fellow. Department of Nursing, University of Girona, Girona, Spain
| | - Josep Puig
- Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain; Institute of Diagnostic Imaging (IDI)-Research Unit (IDIR), Parc Sanitari Pere Virgili, Barcelona, Spain; Medical Imaging, Girona Biomedical Research Institute (IdibGi), Girona, Spain; Department of Radiology (IDI), Dr. Josep Trueta University Hospital, Girona, Spain
| | - Rafael Ramos
- Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain; Vascular Health Research Group of Girona (ISV-Girona), Jordi Gol Institute for Primary Care Research, (Institut Universitari per a la Recerca en Atenció Primària Jordi Gol I Gorina-IDIAPJGol), Girona Biomedical Research Institute, (IDIBGI), Dr. Josep Trueta University Hospital, Catalonia, Spain; Girona Biomedical Research Institute (IDIBGI), Dr. Josep Trueta University Hospital, Catalonia, Spain
| | | | - Aurelijus Burokas
- Laboratory of Neuropharmacology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain; Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Clàudia Coll
- Neuroimmunology and Multiple Sclerosis Unit, Department of Neurology, Dr. Josep Trueta University Hospital, Girona, Spain
| | - José Maria Moreno-Navarrete
- Department of Diabetes, Endocrinology, and Nutrition, Dr. Josep Trueta University Hospital, Girona, Spain; Nutrition, Eumetabolism, and Health Group, Girona Biomedical Research Institute (IdibGi), Girona, Spain; Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain; Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain
| | - Cristina Zapata-Tona
- Department of Diabetes, Endocrinology, and Nutrition, Dr. Josep Trueta University Hospital, Girona, Spain; Nutrition, Eumetabolism, and Health Group, Girona Biomedical Research Institute (IdibGi), Girona, Spain; Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain; Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain
| | - Salvador Pedraza
- Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain; Medical Imaging, Girona Biomedical Research Institute (IdibGi), Girona, Spain; Department of Radiology (IDI), Dr. Josep Trueta University Hospital, Girona, Spain
| | - Vicente Pérez-Brocal
- Area of Genomics and Health, Foundation for the Promotion of Sanitary and Biomedical Research of Valencia Region (FISABIO-Public Health), Valencia, Spain; Biomedical Research Networking Center for Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Lluís Ramió-Torrentà
- Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain; Neuroimmunology and Multiple Sclerosis Unit, Department of Neurology, Dr. Josep Trueta University Hospital, Girona, Spain; Neurodegeneration and Neuroinflammation research group. Girona Biomedical Research Institute (IdibGi), Girona, Spain
| | - Wifredo Ricart
- Department of Diabetes, Endocrinology, and Nutrition, Dr. Josep Trueta University Hospital, Girona, Spain; Nutrition, Eumetabolism, and Health Group, Girona Biomedical Research Institute (IdibGi), Girona, Spain; Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain; Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain
| | - Andrés Moya
- Area of Genomics and Health, Foundation for the Promotion of Sanitary and Biomedical Research of Valencia Region (FISABIO-Public Health), Valencia, Spain; Biomedical Research Networking Center for Epidemiology and Public Health (CIBERESP), Madrid, Spain; Institute for Integrative Systems Biology (I2SysBio), University of Valencia and Spanish National Research Council (CSIC), Valencia, Spain
| | - Manuel Martínez-García
- Department of Physiology, Genetics, and Microbiology, University of Alicante, Alicante, Spain
| | - Rafael Maldonado
- Laboratory of Neuropharmacology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain; Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain.
| | - José-Manuel Fernández-Real
- Department of Diabetes, Endocrinology, and Nutrition, Dr. Josep Trueta University Hospital, Girona, Spain; Nutrition, Eumetabolism, and Health Group, Girona Biomedical Research Institute (IdibGi), Girona, Spain; Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain; Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain.
| |
Collapse
|
160
|
Duan Y, Young R, Schnabl B. Bacteriophages and their potential for treatment of gastrointestinal diseases. Nat Rev Gastroenterol Hepatol 2022; 19:135-144. [PMID: 34782783 PMCID: PMC8966578 DOI: 10.1038/s41575-021-00536-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/04/2021] [Indexed: 02/08/2023]
Abstract
Although bacteriophages have been overshadowed as therapeutic agents by antibiotics for decades, the emergence of multidrug-resistant bacteria and a better understanding of the role of the gut microbiota in human health and disease have brought them back into focus. In this Perspective, we briefly introduce basic phage biology and summarize recent discoveries about phages in relation to their role in the gut microbiota and gastrointestinal diseases, such as inflammatory bowel disease and chronic liver disease. In addition, we review preclinical studies and clinical trials of phage therapy for enteric disease and explore current challenges and potential future directions.
Collapse
Affiliation(s)
- Yi Duan
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Medicine, VA San Diego Healthcare System, San Diego, CA, USA
| | - Ry Young
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
- Center for Phage Technology, Texas A&M AgriLife Research and Texas A&M University, College Station, TX, USA
- Center for Innovative Phage Applications and Therapeutics, University of California San Diego, La Jolla, CA, USA
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, CA, USA.
- Department of Medicine, VA San Diego Healthcare System, San Diego, CA, USA.
- Center for Innovative Phage Applications and Therapeutics, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
161
|
Wirusanti NI, Baldridge MT, Harris VC. Microbiota regulation of viral infections through interferon signaling. Trends Microbiol 2022; 30:778-792. [PMID: 35135717 PMCID: PMC9344482 DOI: 10.1016/j.tim.2022.01.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 12/22/2022]
Abstract
The interferon (IFN) response is the major early innate immune response against invading viral pathogens and is even capable of mediating sterilizing antiviral immunity without the support of the adaptive immune system. Cumulative evidence suggests that the gut microbiota can modulate IFN responses, indirectly determining virological outcomes. This review outlines our current knowledge of the interactions between the gut microbiota and IFN responses and dissects the different mechanisms by which the gut microbiota may alter IFN expression to diverse viral infections. This knowledge offers a basis for translating experimental evidence from animal studies into the human context and identifies avenues for leveraging the gut microbiota–IFN–virus axis to improve control of viral infections and performance of viral vaccines.
Collapse
|
162
|
George S, Aguilera X, Gallardo P, Farfán M, Lucero Y, Torres JP, Vidal R, O'Ryan M. Bacterial Gut Microbiota and Infections During Early Childhood. Front Microbiol 2022; 12:793050. [PMID: 35069488 PMCID: PMC8767011 DOI: 10.3389/fmicb.2021.793050] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/10/2021] [Indexed: 12/12/2022] Open
Abstract
Gut microbiota composition during the first years of life is variable, dynamic and influenced by both prenatal and postnatal factors, such as maternal antibiotics administered during labor, delivery mode, maternal diet, breastfeeding, and/or antibiotic consumption during infancy. Furthermore, the microbiota displays bidirectional interactions with infectious agents, either through direct microbiota-microorganism interactions or indirectly through various stimuli of the host immune system. Here we review these interactions during childhood until 5 years of life, focusing on bacterial microbiota, the most common gastrointestinal and respiratory infections and two well characterized gastrointestinal diseases related to dysbiosis (necrotizing enterocolitis and Clostridioides difficile infection). To date, most peer-reviewed studies on the bacterial microbiota in childhood have been cross-sectional and have reported patterns of gut dysbiosis during infections as compared to healthy controls; prospective studies suggest that most children progressively return to a "healthy microbiota status" following infection. Animal models and/or studies focusing on specific preventive and therapeutic interventions, such as probiotic administration and fecal transplantation, support the role of the bacterial gut microbiota in modulating both enteric and respiratory infections. A more in depth understanding of the mechanisms involved in the establishment and maintenance of the early bacterial microbiota, focusing on specific components of the microbiota-immunity-infectious agent axis is necessary in order to better define potential preventive or therapeutic tools against significant infections in children.
Collapse
Affiliation(s)
- Sergio George
- Host-Pathogen Interaction Laboratory, Microbiology and Mycology Program, ICBM, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Ximena Aguilera
- School of Medicine, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Pablo Gallardo
- Department of Pediatrics and Pediatric Surgery, Dr. Luis Calvo Mackenna Hospital, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Mauricio Farfán
- Department of Pediatrics and Pediatric Surgery, Dr. Luis Calvo Mackenna Hospital, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Yalda Lucero
- Host-Pathogen Interaction Laboratory, Microbiology and Mycology Program, ICBM, Faculty of Medicine, University of Chile, Santiago, Chile.,Department of Pediatrics and Pediatric Surgery, Dr. Roberto del Río Hospital, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Juan Pablo Torres
- Host-Pathogen Interaction Laboratory, Microbiology and Mycology Program, ICBM, Faculty of Medicine, University of Chile, Santiago, Chile.,Department of Pediatrics and Pediatric Surgery, Dr. Luis Calvo Mackenna Hospital, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Roberto Vidal
- Microbiology and Mycology Program, ICBM, Faculty of Medicine, University of Chile, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, University of Chile, Santiago, Chile.,ANID - Millennium Science Initiative Program - Millennium Nucleus in the Biology of Intestinal Microbiota, Santiago, Chile
| | - Miguel O'Ryan
- Host-Pathogen Interaction Laboratory, Microbiology and Mycology Program, ICBM, Faculty of Medicine, University of Chile, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, University of Chile, Santiago, Chile
| |
Collapse
|
163
|
Zuppi M, Hendrickson HL, O’Sullivan JM, Vatanen T. Phages in the Gut Ecosystem. Front Cell Infect Microbiol 2022; 11:822562. [PMID: 35059329 PMCID: PMC8764184 DOI: 10.3389/fcimb.2021.822562] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 12/10/2021] [Indexed: 12/23/2022] Open
Abstract
Phages, short for bacteriophages, are viruses that specifically infect bacteria and are the most abundant biological entities on earth found in every explored environment, from the deep sea to the Sahara Desert. Phages are abundant within the human biome and are gaining increasing recognition as potential modulators of the gut ecosystem. For example, they have been connected to gastrointestinal diseases and the treatment efficacy of Fecal Microbiota Transplant. The ability of phages to modulate the human gut microbiome has been attributed to the predation of bacteria or the promotion of bacterial survival by the transfer of genes that enhance bacterial fitness upon infection. In addition, phages have been shown to interact with the human immune system with variable outcomes. Despite the increasing evidence supporting the importance of phages in the gut ecosystem, the extent of their influence on the shape of the gut ecosystem is yet to be fully understood. Here, we discuss evidence for phage modulation of the gut microbiome, postulating that phages are pivotal contributors to the gut ecosystem dynamics. We therefore propose novel research questions to further elucidate the role(s) that they have within the human ecosystem and its impact on our health and well-being.
Collapse
Affiliation(s)
- Michele Zuppi
- The Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Heather L. Hendrickson
- The School of Natural and Computational Sciences, Massey University, Auckland, New Zealand
| | - Justin M. O’Sullivan
- The Liggins Institute, University of Auckland, Auckland, New Zealand
- The Maurice Wilkins Centre, The University of Auckland, Auckland, New Zealand
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, United Kingdom
| | - Tommi Vatanen
- The Liggins Institute, University of Auckland, Auckland, New Zealand
- The Broad Institute of MIT and Harvard, Cambridge, MA, United States
| |
Collapse
|
164
|
Fang X, Dong S, Xin Z, He W, Zhang Y, Xiong J, Wang J, Zhenlin L, Wang L, Zhong Q, Hong W. Correlation between green tea polyphenols regulating intestinal bacteriophage and flora diversity in SPF mice. Food Funct 2022; 13:2952-2965. [DOI: 10.1039/d1fo03694g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Green tea polyphenols (GTP) play an important role in shaping the gut microbiome, comprising of a range of densely colonizing microorganisms, including bacteriophages. Previous studies focused on the effect of...
Collapse
|
165
|
Qv L, Mao S, Li Y, Zhang J, Li L. Roles of Gut Bacteriophages in the Pathogenesis and Treatment of Inflammatory Bowel Disease. Front Cell Infect Microbiol 2021; 11:755650. [PMID: 34900751 PMCID: PMC8656360 DOI: 10.3389/fcimb.2021.755650] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/09/2021] [Indexed: 12/12/2022] Open
Abstract
Inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis, are chronic, relapsing intestinal inflammatory disorders. Although the molecular mechanisms governing the pathogenesis of IBD are not completely clear, the main factors are presumed to be a complex interaction between genetic predisposition, host immune response and environmental exposure, especially the intestinal microbiome. Currently, most studies have focused on the role of gut bacteria in the onset and development of IBD, whereas little attention has been paid to the enteroviruses. Among of them, viruses that infect prokaryotes, called bacteriophages (phages) occupy the majority (90%) in population. Moreover, several recent studies have reported the capability of regulating the bacterial population in the gut, and the direct and indirect influence on host immune response. The present review highlights the roles of gut phages in IBD pathogenesis and explores the potentiality of phages as a therapeutic target for IBD treatment.
Collapse
Affiliation(s)
- Lingling Qv
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Sunbing Mao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yongjun Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jia Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
166
|
Kim AH, Armah G, Dennis F, Wang L, Rodgers R, Droit L, Baldridge MT, Handley SA, Harris VC. Enteric virome negatively affects seroconversion following oral rotavirus vaccination in a longitudinally sampled cohort of Ghanaian infants. Cell Host Microbe 2021; 30:110-123.e5. [PMID: 34932985 PMCID: PMC8763403 DOI: 10.1016/j.chom.2021.12.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 10/22/2021] [Accepted: 11/29/2021] [Indexed: 01/04/2023]
Abstract
Rotavirus vaccines (RVVs) have substantially diminished mortality from severe rotavirus (RV) gastroenteritis but are significantly less effective in low- and middle-income countries (LMICs), limiting their life-saving potential. The etiology of RVV’s diminished effectiveness remains incompletely understood, but the enteric microbiota has been implicated in modulating immunity to RVVs. Here, we analyze the enteric microbiota in a longitudinal cohort of 122 Ghanaian infants, evaluated over the course of 3 Rotarix vaccinations between 6 and 15 weeks of age, to assess whether bacterial and viral populations are distinct between non-seroconverted and seroconverted infants. We identify bacterial taxa including Streptococcus and a poorly classified taxon in Enterobacteriaceae as positively correlating with seroconversion. In contrast, both bacteriophage diversity and detection of Enterovirus B and multiple novel cosaviruses are negatively associated with RVV seroconversion. These findings suggest that virome-RVV interference is an underappreciated cause of poor vaccine performance in LMICs. Longitudinal analysis of microbiota of Ghanaian infants receiving rotavirus vaccine Streptococcus and Enterobacteriaceae taxa positively associate with RVV seroconversion Enterovirus B, Cosavirus A, and phage richness negatively associate with RVV serostatus
Collapse
|
167
|
Abstract
Purpose of Review Observations of differing bacterial, intestinal microbiomes in people living with HIV have propelled interest in contributions of the microbiome to HIV disease. Non-human primate (NHP) models of HIV infection provide a controlled setting for assessing contributions of the microbiome by standardizing environmental confounders. We provide an overview of the findings of microbiome contributions to aspects of HIV disease derived from these animal models. Recent Findings Observations of differing bacterial, intestinal microbiomes are inconsistently observed in the NHP model following SIV infection. Differences in lentiviral susceptibility and vaccine efficacy have been attributed to variations in the intestinal microbiome; however, by-and-large, these differences have not been experimentally assessed. Summary Although compelling associations exist, clearly defined contributions of the microbiome to HIV and SIV disease are lacking. The empirical use of comprehensive multi-omics assessments and longitudinal and interventional study designs in NHP models is necessary to define this contribution more clearly.
Collapse
Affiliation(s)
- Jason M Brenchley
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institutes of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, USA
| | - Alexandra M Ortiz
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institutes of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, USA.
| |
Collapse
|
168
|
Stockdale SR, Hill C. Progress and prospects of the healthy human gut virome. Curr Opin Virol 2021; 51:164-171. [PMID: 34742036 DOI: 10.1016/j.coviro.2021.10.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/30/2021] [Accepted: 10/08/2021] [Indexed: 12/26/2022]
Abstract
Not all viruses associated with humans cause disease. Non-pathogenic human-infecting viruses are predicted as important for immune system induction and preparation. Phages that infect bacteria are the most abundant predators of the human microbial ecosystem, promoting and maintaining bacterial diversity. Metagenomic analyses of the human gut virome and microbiome are unravelling the intricate predator-prey dynamics of phage-bacteria co-existence, co-evolution, and their interplay with the human host. While most adults harbour a distinctly individualistic and persistent community of virulent phages, new-borns are dominated by temperate phages heavily influenced by environmental exposures. The future development of microbiome-based interventions, therapeutics, and manipulation, will require a greater understanding of the human microbiome and the virome.
Collapse
Affiliation(s)
| | - Colin Hill
- APC Microbiome Ireland, University College Cork, T12 YT20, Ireland; School of Microbiology, University College Cork, T12 YT20, Ireland.
| |
Collapse
|
169
|
Van Espen L, Bak EG, Beller L, Close L, Deboutte W, Juel HB, Nielsen T, Sinar D, De Coninck L, Frithioff-Bøjsøe C, Fonvig CE, Jacobsen S, Kjærgaard M, Thiele M, Fullam A, Kuhn M, Holm JC, Bork P, Krag A, Hansen T, Arumugam M, Matthijnssens J. A Previously Undescribed Highly Prevalent Phage Identified in a Danish Enteric Virome Catalog. mSystems 2021; 6:e0038221. [PMID: 34665009 PMCID: PMC8525569 DOI: 10.1128/msystems.00382-21] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 09/02/2021] [Indexed: 01/06/2023] Open
Abstract
Gut viruses are important, yet often neglected, players in the complex human gut microbial ecosystem. Recently, the number of human gut virome studies has been increasing; however, we are still only scratching the surface of the immense viral diversity. In this study, 254 virus-enriched fecal metagenomes from 204 Danish subjects were used to generate the Danish Enteric Virome Catalog (DEVoC) containing 12,986 nonredundant viral scaffolds, of which the majority was previously undescribed, encoding 190,029 viral genes. The DEVoC was used to compare 91 healthy DEVoC gut viromes from children, adolescents, and adults that were used to create the DEVoC. Gut viromes of healthy Danish subjects were dominated by phages. While most phage genomes (PGs) only occurred in a single subject, indicating large virome individuality, 39 PGs were present in more than 10 healthy subjects. Among these 39 PGs, the prevalences of three PGs were associated with age. To further study the prevalence of these 39 prevalent PGs, 1,880 gut virome data sets of 27 studies from across the world were screened, revealing several age-, geography-, and disease-related prevalence patterns. Two PGs also showed a remarkably high prevalence worldwide-a crAss-like phage (20.6% prevalence), belonging to the tentative AlphacrAssvirinae subfamily, and a previously undescribed circular temperate phage infecting Bacteroides dorei (14.4% prevalence), called LoVEphage because it encodes lots of viral elements. Due to the LoVEphage's high prevalence and novelty, public data sets in which the LoVEphage was detected were de novo assembled, resulting in an additional 18 circular LoVEphage-like genomes (67.9 to 72.4 kb). IMPORTANCE Through generation of the DEVoC, we added numerous previously uncharacterized viral genomes and genes to the ever-increasing worldwide pool of human gut viromes. The DEVoC, the largest human gut virome catalog generated from consistently processed fecal samples, facilitated the analysis of the 91 healthy Danish gut viromes. Characterizing the biggest cohort of healthy gut viromes from children, adolescents, and adults to date confirmed the previously established high interindividual variation in human gut viromes and demonstrated that the effect of age on the gut virome composition was limited to the prevalence of specific phage (groups). The identification of a previously undescribed prevalent phage illustrates the usefulness of developing virome catalogs, and we foresee that the DEVoC will benefit future analysis of the roles of gut viruses in human health and disease.
Collapse
Affiliation(s)
- Lore Van Espen
- KU Leuven, Department of Microbiology, Immunology, & Transplantation, Rega Institute, Division of Clinical & Epidemiological Virology, Laboratory of Viral Metagenomics, Leuven, Belgium
| | - Emilie Glad Bak
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Leen Beller
- KU Leuven, Department of Microbiology, Immunology, & Transplantation, Rega Institute, Division of Clinical & Epidemiological Virology, Laboratory of Viral Metagenomics, Leuven, Belgium
| | - Lila Close
- KU Leuven, Department of Microbiology, Immunology, & Transplantation, Rega Institute, Division of Clinical & Epidemiological Virology, Laboratory of Viral Metagenomics, Leuven, Belgium
| | - Ward Deboutte
- KU Leuven, Department of Microbiology, Immunology, & Transplantation, Rega Institute, Division of Clinical & Epidemiological Virology, Laboratory of Viral Metagenomics, Leuven, Belgium
| | - Helene Bæk Juel
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Trine Nielsen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Deniz Sinar
- KU Leuven, Department of Microbiology, Immunology, & Transplantation, Rega Institute, Division of Clinical & Epidemiological Virology, Laboratory of Viral Metagenomics, Leuven, Belgium
| | - Lander De Coninck
- KU Leuven, Department of Microbiology, Immunology, & Transplantation, Rega Institute, Division of Clinical & Epidemiological Virology, Laboratory of Viral Metagenomics, Leuven, Belgium
| | - Christine Frithioff-Bøjsøe
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- The Children’s Obesity Clinic, accredited European Centre for Obesity Management, Department of Paediatrics, Copenhagen University Hospital Holbaek, Holbaek, Denmark
| | - Cilius Esmann Fonvig
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- The Children’s Obesity Clinic, accredited European Centre for Obesity Management, Department of Paediatrics, Copenhagen University Hospital Holbaek, Holbaek, Denmark
| | - Suganya Jacobsen
- Department of Gastroenterology and Hepatology, Centre for Liver Research, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Maria Kjærgaard
- Department of Gastroenterology and Hepatology, Centre for Liver Research, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Maja Thiele
- Department of Gastroenterology and Hepatology, Centre for Liver Research, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Anthony Fullam
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Michael Kuhn
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Jens-Christian Holm
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- The Children’s Obesity Clinic, accredited European Centre for Obesity Management, Department of Paediatrics, Copenhagen University Hospital Holbaek, Holbaek, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Peer Bork
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Max Delbrück Centre for Molecular Medicine, Berlin, Germany
- Yonsei Frontier Lab (YFL), Yonsei University, Seoul, South Korea
- Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Aleksander Krag
- Department of Gastroenterology and Hepatology, Centre for Liver Research, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Torben Hansen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Manimozhiyan Arumugam
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jelle Matthijnssens
- KU Leuven, Department of Microbiology, Immunology, & Transplantation, Rega Institute, Division of Clinical & Epidemiological Virology, Laboratory of Viral Metagenomics, Leuven, Belgium
| |
Collapse
|
170
|
Metagenomic detection and characterisation of multiple viruses in apparently healthy Australian Neophema birds. Sci Rep 2021; 11:20915. [PMID: 34686748 PMCID: PMC8536680 DOI: 10.1038/s41598-021-00440-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/13/2021] [Indexed: 12/21/2022] Open
Abstract
Emerging viral pathogens are a significant concern, with potential consequences for human, animal and environmental health. Over the past several decades, many novel viruses have been found in animals, including birds, and often pose a significant threat to vulnerable species. However, despite enormous interest in virus research, little is known about virus communities (viromes) in Australian Neophema birds. Therefore, this study was designed to characterise the viromes of Neophema birds and track the evolutionary relationships of recently emerging psittacine siadenovirus F (PsSiAdV-F) circulating in the critically endangered, orange-bellied parrot (OBP, Neophema chrysogaster), using a viral metagenomic approach. This study identified 16 viruses belonging to the families Adenoviridae, Circoviridae, Endornaviridae, Picobirnaviridae and Picornaviridae. In addition, this study demonstrated a potential evolutionary relationship of a PsSiAdV-F sequenced previously from the critically endangered OBP. Strikingly, five adenoviral contigs identified in this study show the highest identities with human adenovirus 2 and human mastadenovirus C. This highlights an important and unexpected aspects of the avian virome and warrants further studies dedicated to this subject. Finally, the findings of this study emphasise the importance of testing birds used for trade or in experimental settings for potential pathogens to prevent the spread of infections.
Collapse
|
171
|
Sultan S, El-Mowafy M, Elgaml A, Ahmed TAE, Hassan H, Mottawea W. Metabolic Influences of Gut Microbiota Dysbiosis on Inflammatory Bowel Disease. Front Physiol 2021; 12:715506. [PMID: 34646151 PMCID: PMC8502967 DOI: 10.3389/fphys.2021.715506] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/18/2021] [Indexed: 12/12/2022] Open
Abstract
Inflammatory bowel diseases (IBD) are chronic medical disorders characterized by recurrent gastrointestinal inflammation. While the etiology of IBD is still unknown, the pathogenesis of the disease results from perturbations in both gut microbiota and the host immune system. Gut microbiota dysbiosis in IBD is characterized by depleted diversity, reduced abundance of short chain fatty acids (SCFAs) producers and enriched proinflammatory microbes such as adherent/invasive E. coli and H2S producers. This dysbiosis may contribute to the inflammation through affecting either the immune system or a metabolic pathway. The immune responses to gut microbiota in IBD are extensively discussed. In this review, we highlight the main metabolic pathways that regulate the host-microbiota interaction. We also discuss the reported findings indicating that the microbial dysbiosis during IBD has a potential metabolic impact on colonocytes and this may underlie the disease progression. Moreover, we present the host metabolic defectiveness that adds to the impact of symbiont dysbiosis on the disease progression. This will raise the possibility that gut microbiota dysbiosis associated with IBD results in functional perturbations of host-microbiota interactions, and consequently modulates the disease development. Finally, we shed light on the possible therapeutic approaches of IBD through targeting gut microbiome.
Collapse
Affiliation(s)
- Salma Sultan
- Faculty of Health Sciences, School of Nutrition Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Mohammed El-Mowafy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Abdelaziz Elgaml
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt.,Department of Microbiology and Immunology, Faculty of Pharmacy, Horus University, New Damietta, Egypt
| | - Tamer A E Ahmed
- Faculty of Health Sciences, School of Nutrition Sciences, University of Ottawa, Ottawa, ON, Canada.,Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Hebatoallah Hassan
- Faculty of Health Sciences, School of Nutrition Sciences, University of Ottawa, Ottawa, ON, Canada.,Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Walid Mottawea
- Faculty of Health Sciences, School of Nutrition Sciences, University of Ottawa, Ottawa, ON, Canada.,Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
172
|
Bruland T, Østvik AE, Sandvik AK, Hansen MD. Host-Viral Interactions in the Pathogenesis of Ulcerative Colitis. Int J Mol Sci 2021; 22:ijms221910851. [PMID: 34639191 PMCID: PMC8509287 DOI: 10.3390/ijms221910851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 12/12/2022] Open
Abstract
Ulcerative colitis is characterized by relapsing and remitting colonic mucosal inflammation. During the early stages of viral infection, innate immune defenses are activated, leading to the rapid release of cytokines and the subsequent initiation of downstream responses including inflammation. Previously, intestinal viruses were thought to be either detrimental or neutral to the host. However, persisting viruses may have a role as resident commensals and confer protective immunity during inflammation. On the other hand, the dysregulation of gut mucosal immune responses to viruses can trigger excessive, pathogenic inflammation. The purpose of this review is to discuss virus-induced innate immune responses that are at play in ulcerative colitis.
Collapse
Affiliation(s)
- Torunn Bruland
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, 7491 Trondheim, Norway; (T.B.); (A.E.Ø.); (A.K.S.)
- Department of Gastroenterology and Hepatology, Clinic of Medicine, St. Olav’s University Hospital, 7030 Trondheim, Norway
| | - Ann Elisabet Østvik
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, 7491 Trondheim, Norway; (T.B.); (A.E.Ø.); (A.K.S.)
- Department of Gastroenterology and Hepatology, Clinic of Medicine, St. Olav’s University Hospital, 7030 Trondheim, Norway
| | - Arne Kristian Sandvik
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, 7491 Trondheim, Norway; (T.B.); (A.E.Ø.); (A.K.S.)
- Department of Gastroenterology and Hepatology, Clinic of Medicine, St. Olav’s University Hospital, 7030 Trondheim, Norway
- Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Marianne Doré Hansen
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, 7491 Trondheim, Norway; (T.B.); (A.E.Ø.); (A.K.S.)
- Department of Medical Microbiology, Clinic of Laboratory Medicine, St. Olav’s University Hospital, 7030 Trondheim, Norway
- Correspondence:
| |
Collapse
|
173
|
Mihindukulasuriya KA, Mars RAT, Johnson AJ, Ward T, Priya S, Lekatz HR, Kalari KR, Droit L, Zheng T, Blekhman R, D'Amato M, Farrugia G, Knights D, Handley SA, Kashyap PC. Multi-Omics Analyses Show Disease, Diet, and Transcriptome Interactions With the Virome. Gastroenterology 2021; 161:1194-1207.e8. [PMID: 34245762 PMCID: PMC8463486 DOI: 10.1053/j.gastro.2021.06.077] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/21/2021] [Accepted: 06/30/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS The gut virome includes eukaryotic viruses and bacteriophages that can shape the gut bacterial community and elicit host responses. The virome can be implicated in diseases, such as irritable bowel syndrome (IBS), where gut bacteria play an important role in pathogenesis. We provide a comprehensive and longitudinal characterization of the virome, including DNA and RNA viruses and paired multi-omics data in a cohort of healthy subjects and patients with IBS. METHODS We selected 2 consecutive stool samples per subject from a longitudinal study cohort and performed metagenomic sequencing on DNA and RNA viruses after enriching for viral-like particles. Viral sequence abundance was evaluated over time, as well as in the context of diet, bacterial composition and function, metabolite levels, colonic gene expression, host genetics, and IBS subsets. RESULTS We found that the gut virome was temporally stable and correlated with the colonic transcriptome. We identified IBS-subset-specific changes in phage populations; Microviridae, Myoviridae, and Podoviridae species were elevated in diarrhea-predominant IBS, and other Microviridae and Myoviridae species were elevated in constipation-predominant IBS compared to healthy controls. We identified correlations between subsets of the virome and bacterial composition (unclassifiable "dark matter" and phages) and diet (eukaryotic viruses). CONCLUSIONS We found that the gut virome is stable over time but varies among subsets of patients with IBS. It can be affected by diet and potentially influences host function via interactions with gut bacteria and/or altering host gene expression.
Collapse
Affiliation(s)
| | - Ruben A T Mars
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Abigail J Johnson
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, Minnesota
| | - Tonya Ward
- BioTechnology Institute, College of Biological Sciences, University of Minnesota, Minneapolis, Minnesota
| | - Sambhawa Priya
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota
| | - Heather R Lekatz
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Krishna R Kalari
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Lindsay Droit
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri
| | - Tenghao Zheng
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - Ran Blekhman
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota
| | - Mauro D'Amato
- Gastrointestinal Genetics Laboratory, CIC bioGUNE, Basque Research and Technology Alliance, Derio, Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Gianrico Farrugia
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Dan Knights
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, Minnesota; Department of Computer Science and Engineering, University of Minnesota, Minneapolis, Minnesota.
| | - Scott A Handley
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri.
| | - Purna C Kashyap
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota; Department of Medicine and Physiology, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
174
|
Brunse A, Deng L, Pan X, Hui Y, Castro-Mejía JL, Kot W, Nguyen DN, Secher JBM, Nielsen DS, Thymann T. Fecal filtrate transplantation protects against necrotizing enterocolitis. ISME JOURNAL 2021; 16:686-694. [PMID: 34552194 PMCID: PMC8857206 DOI: 10.1038/s41396-021-01107-5] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 08/20/2021] [Accepted: 09/02/2021] [Indexed: 12/12/2022]
Abstract
Necrotizing enterocolitis (NEC) is a life-threatening gastrointestinal disorder afflicting preterm infants, which is currently unpreventable. Fecal microbiota transplantation (FMT) is a promising preventive therapy, but the transfer of pathogenic microbes or toxic compounds raise concern. Removal of bacteria from donor feces by micropore filtering may reduce this risk of bacterial infection, while residual bacteriophages could maintain the NEC-preventive effects. We aimed to assess preclinical efficacy and safety of fecal filtrate transplantation (FFT). Using fecal material from healthy suckling piglets, we compared rectal FMT administration (FMT, n = 16) with cognate FFT by either rectal (FFTr, n = 14) or oro-gastric administration (FFTo, n = 13) and saline (CON, n = 16) in preterm, cesarean-delivered piglets as models for preterm infants. We assessed gut pathology and analyzed mucosal and luminal bacterial and viral composition using 16S rRNA gene amplicon and meta-virome sequencing. Finally, we used isolated ileal mucosa, coupled with RNA-Seq, to gauge the host response to the different treatments. Oro-gastric FFT completely prevented NEC, which was confirmed by microscopy, whereas FMT did not perform better than control. Oro-gastric FFT increased viral diversity and reduced Proteobacteria relative abundance in the ileal mucosa relative to control. An induction of mucosal immunity was observed in response to FMT but not FFT. As preterm infants are extremely vulnerable to infections, rational NEC-preventive strategies need incontestable safety profiles. We show in a clinically relevant animal model that FFT, as opposed to FMT, efficiently prevents NEC without any recognizable side effects.
Collapse
Affiliation(s)
- Anders Brunse
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ling Deng
- Department of Food Science, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Xiaoyu Pan
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Yan Hui
- Department of Food Science, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Josué L Castro-Mejía
- Department of Food Science, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Witold Kot
- Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Duc Ninh Nguyen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jan Bojsen-Møller Secher
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Dennis Sandris Nielsen
- Department of Food Science, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Thymann
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
175
|
Mohanty S, Paul S, Ahmad Y. Understanding the SARS-CoV-2 virus to mitigate current and future pandemic(s). Virusdisease 2021; 32:390-399. [PMID: 34109260 PMCID: PMC8178034 DOI: 10.1007/s13337-021-00696-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 05/20/2021] [Indexed: 11/25/2022] Open
Abstract
Micro-organisms form the first pioneer community in the history of biological life, thought to be present in the primordial soup and evolving later with more complex life-forms. Among micro-organisms, viruses form a separate taxon of organisms. Viruses are obligate parasites, being inactive without a host and becoming active once in contact with specific hosts. Viruses, with an inherent ability to infect and hijack cellular structures, have been utilised as vectors to introduce foreign genetic material in a variety of biological species, e.g. adenoviral vectors. However, viruses have also been the root cause of many infectious diseases, most notable being HIV-AIDS, for its resistance to treatment and omnipresent occurrence. There are many families of viruses like retroviridae, picornaviridae and poxviridae. This review focuses on a specific member of the coronaviridae, the SARS-CoV-2. This virus is responsible for the current COVID-19 pandemic. This review summarises its transmission, molecular mechanism by which it causes disease, associated clinical symptoms and the strategies available to control it from sources like PubMed, Google Scholar, webservers of National Institute of Health (NIH), European Molecular Biology Laboratory (EMBL), World Health Organisation (WHO), United States Food and Drug Administration (USFDA) and Centers for Disease Control and Prevention (CDC) available as on 1st May 2021.
Collapse
Affiliation(s)
- Swaraj Mohanty
- Peptide and Proteomics Division, Defence Institute of Physiology and Allied Sciences (DIPAS), Defence R&D Organization (DRDO), Lucknow Road, Timarpur, Delhi 110054 India
| | - Subhojit Paul
- Peptide and Proteomics Division, Defence Institute of Physiology and Allied Sciences (DIPAS), Defence R&D Organization (DRDO), Lucknow Road, Timarpur, Delhi 110054 India
| | - Yasmin Ahmad
- Peptide and Proteomics Division, Defence Institute of Physiology and Allied Sciences (DIPAS), Defence R&D Organization (DRDO), Lucknow Road, Timarpur, Delhi 110054 India
| |
Collapse
|
176
|
Neurath MF, Überla K, Ng SC. Gut as viral reservoir: lessons from gut viromes, HIV and COVID-19. Gut 2021; 70:1605-1608. [PMID: 33903146 PMCID: PMC8076629 DOI: 10.1136/gutjnl-2021-324622] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 02/06/2023]
Affiliation(s)
- Markus F Neurath
- First Department of Medicine & Deutsches Zentrum Immuntherapie DZI, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Klaus Überla
- Institute of Clinical and Molecular Virology & Deutsches Zentrum für Immuntherapie (DZI), University of Erlangen-Nürnberg, Erlangen, Germany
| | - Siew C Ng
- Medicine and Therapeutics, Chinese University of Hong Kong, Hong Kong, Hong Kong
| |
Collapse
|
177
|
Chen J, Li H, Hird SM, Chen MH, Xu W, Maas K, Cong X. Sex Differences in Gut Microbial Development of Preterm Infant Twins in Early Life: A Longitudinal Analysis. Front Cell Infect Microbiol 2021; 11:671074. [PMID: 34458157 PMCID: PMC8387566 DOI: 10.3389/fcimb.2021.671074] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 07/23/2021] [Indexed: 12/12/2022] Open
Abstract
Infant gut microbiota plays a vital role in immune response, mediates neurobehavioral development and health maintenance. Studies of twins’ gut microbiota found that gut microbiota composition and diversity tend to be mature and stable with increasing postnatal age (PNA). Preterm infant gut microbiome shifts dramatically when they were staying in the neonatal intensive care unit (NICU). Compositions and shifting characteristics of gut microbiota among neonatal preterm twins and triplets during their early life are still unknown, which impedes a better understanding of the mechanism underpinning neurobehavioral development and precise intervention/health of preterm neonates. This longitudinal cohort study used a twins/triplets design to investigate the interaction of genetic (e.g., male vs. female) and environmental factors influencing the development of the gut microbiome in early life. We included 39 preterm infants, 12 were Female twins/triplets (Female T/T) including 3 twins pairs and 2 triplets, 12 were male twins (Male T) including 6 twins pairs, and 15 were mixed-sex twins/triplets (Mix T/T) including 6 twins pairs and 1 triplet (8 females and 7 males) during the first four weeks of NICU stay. Weekly gut microbiota patterns between females and males were compared by linear discriminant analysis (LDA) effect size (LEfSe). Metagenomics function of gut microbiota was predicted by using Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt). Weekly function (KEGG pathways) differences between females and males were detected by using Statistical Analysis of Metagenomic Profiles (STAMP). Results found that female pairs and male pairs were significantly different in gut microbiome diversity, compositions, and predicted metabolic profiles, importantly, females and males were also significantly dissimilar within their co-twin/triplet pairs of the mixed-sex group, infants of co-twins/triplets shared more similar features than un-related infants from different twins’ pair. Future research developing personalized interventions for vulnerable high-risk infants should consider sex, and the interaction of sex and environmental factors.
Collapse
Affiliation(s)
- Jie Chen
- School of Nursing, University of Connecticut, Storrs, CT, United States
| | - Hongfei Li
- Department of Statistics, University of Connecticut, Storrs, CT, United States
| | - Sarah M Hird
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, United States
| | - Ming-Hui Chen
- Department of Statistics, University of Connecticut, Storrs, CT, United States
| | - Wanli Xu
- School of Nursing, University of Connecticut, Storrs, CT, United States
| | - Kendra Maas
- Microbial Analysis, Resources, and Services (MARS), University of Connecticut, Storrs, CT, United States
| | - Xiaomei Cong
- School of Nursing, University of Connecticut, Storrs, CT, United States.,Institute for Systems Genomics, University of Connecticut, Farmington, CT, United States
| |
Collapse
|
178
|
Phages in the infant gut: a framework for virome development during early life. ISME JOURNAL 2021; 16:323-330. [PMID: 34417565 PMCID: PMC8776839 DOI: 10.1038/s41396-021-01090-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 08/04/2021] [Accepted: 08/09/2021] [Indexed: 01/21/2023]
|
179
|
Pathogenic Escherichia coli-Specific Bacteriophages and Polyvalent Bacteriophages in Piglet Guts with Increasing Coliphage Numbers after Weaning. Appl Environ Microbiol 2021; 87:e0096621. [PMID: 34160270 DOI: 10.1128/aem.00966-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Postweaning diarrhea in pigs is mainly caused by pathogenic Escherichia coli and is a major source of revenue loss to the livestock industry. Bacteriophages dominate the gut virome and have the potential to regulate bacterial communities and thus influence the intestinal physiology. To determine the biological characterization of intestinal coliphages, we isolated and identified the fecal coliphages of healthy preweaned and postweaned piglets from the Nanjing and Chuzhou pig farms. First, ahead of coliphage isolation, 87 E. coli strains were isolated from healthy or diarrheal fecal samples from three pig farms, of which 8 were pathogenic strains, including enterotoxigenic E. coli (ETEC) and enteropathogenic E. coli (EPEC). Of the E. coli strains, 87.3% possessed drug resistance to three antibiotics. Using these 87 E. coli strains as indicator hosts, we isolated 45 coliphages and found a higher abundance in the postweaning stage than in the preweaning stage (24 versus 17 in the Nanjing and 13 versus 4 in the Chuzhou farm). Furthermore, each farm had a single most-prevalent coliphage strain. Pathogenic E. coli-specific bacteriophages were commonly detected (9/10 samples in the Nanjing farm and 7/10 in the Chuzhou farm) in guts of sampled piglets, and most had significant bacteriostatic effects (P < 0.05) on pathogenic E. coli strains. Three polyvalent bacteriophages (N24, N30, and C5) were identified. The N30 and C5 strains showed a genetic identity of 89.67%, with mild differences in infection characteristics. Our findings suggest that pathogenic E. coli-specific bacteriophages as well as polyvalent bacteriophages are commonly present in piglet guts and that weaning is an important event that affects coliphage numbers. IMPORTANCE Previous studies based on metagenomic sequencing reported that gut bacteriophages profoundly influence gut physiology but did not provide information regarding the host range and biological significance. Here, we screened coliphages from the guts of preweaned and postweaned piglets against indicator hosts, which allowed us to identify the pathogenic E. coli-specific bacteriophages and polyvalent bacteriophages in pig farms and quantify their abundance. Our approach complements sequencing methods and provides new insights into the biological characterizations of bacteriophage in the gut along with the ecological effects of intestinal bacteriophages.
Collapse
|
180
|
Chevallereau A, Pons BJ, van Houte S, Westra ER. Interactions between bacterial and phage communities in natural environments. Nat Rev Microbiol 2021; 20:49-62. [PMID: 34373631 DOI: 10.1038/s41579-021-00602-y] [Citation(s) in RCA: 198] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 06/28/2021] [Indexed: 12/20/2022]
Abstract
We commonly acknowledge that bacterial viruses (phages) shape the composition and evolution of bacterial communities in nature and therefore have important roles in ecosystem functioning. This view stems from studies in the 1990s to the first decade of the twenty-first century that revealed high viral abundance, high viral diversity and virus-induced microbial death in aquatic ecosystems as well as an association between collapses in bacterial density and peaks in phage abundance. The recent surge in metagenomic analyses has provided deeper insight into the abundance, genomic diversity and spatio-temporal dynamics of phages in a wide variety of ecosystems, ranging from deep oceans to soil and the mammalian digestive tract. However, the causes and consequences of variations in phage community compositions remain poorly understood. In this Review, we explore current knowledge of the composition and evolution of phage communities, as well as their roles in controlling the population and evolutionary dynamics of bacterial communities. We discuss the need for greater ecological realism in laboratory studies to capture the complexity of microbial communities that thrive in natural environments.
Collapse
Affiliation(s)
- Anne Chevallereau
- Environment and Sustainability Institute, Biosciences, University of Exeter, Penryn, UK. .,Department of Infection, Immunity and Inflammation, Institut Cochin, INSERM U1016, CNRS UMR8104, Université de Paris, Paris, France.
| | - Benoît J Pons
- Environment and Sustainability Institute, Biosciences, University of Exeter, Penryn, UK
| | - Stineke van Houte
- Environment and Sustainability Institute, Biosciences, University of Exeter, Penryn, UK
| | - Edze R Westra
- Environment and Sustainability Institute, Biosciences, University of Exeter, Penryn, UK.
| |
Collapse
|
181
|
Microbiome analysis, the immune response and transplantation in the era of next generation sequencing. Hum Immunol 2021; 82:883-901. [PMID: 34364710 DOI: 10.1016/j.humimm.2021.07.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 07/01/2021] [Accepted: 07/14/2021] [Indexed: 12/14/2022]
Abstract
The human gastrointestinal tract, skin and mucosal surfaces are inhabited by a complex system of bacteria, viruses, fungi, archaea, protists, and eukaryotic parasites with predominance of bacteria and bacterial viruses (bacteriophages). Collectively these microbes form the microbiota of the microecosystem of humans. Recent advancement in technologies for nucleic acid isolation from various environmental samples, feces and body secretions and advancements in shotgun throughput massive parallel DNA and RNA sequencing along with 16S ribosomal gene sequencing have unraveled the identity of otherwise unknown microbial entities constituting the human microecosystem. The improved transcriptome analysis, technological developments in biochemical analytical methods and availability of complex bioinformatics tools have allowed us to begin to understand the metabolome of the microbiome and the biochemical pathways and potential signal transduction pathways in human cells in response to microbial infections and their products. Also, developments in human whole genome sequencing, targeted gene sequencing of histocompatibility genes and other immune response associated genes by Next Generation Sequencing (NGS) have allowed us to have a better conceptualization of immune responses, and alloimmune responses. These modern technologies have enabled us to dive into the intricate relationship between commensal symbiotic and pathogenic microbiome and immune system. For the most part, the commensal symbiotic microbiota helps to maintain normal immune homeostasis besides providing healthy nutrients, facilitating digestion, and protecting the skin, mucosal and intestinal barriers. However, changes in diets, administration of therapeutic agents like antibiotics, chemotherapeutic agents, immunosuppressants etc. along with certain host factors including human histocompatibility antigens may alter the microbial ecosystem balance by causing changes in microbial constituents, hierarchy of microbial species and even dysbiosis. Such alterations may cause immune dysregulation, breach of barrier protection and lead to immunopathogenesis rather than immune homeostasis. The effects of human microbiome on immunity, health and disease are currently under intense research with cutting edge technologies in molecular biology, biochemistry, and bioinformatics along with tremendous ability to characterize immune response at single cell level. This review will discuss the contemporary status on human microbiome immune system interactions and their potential effects on health, immune homeostasis and allograft transplantation.
Collapse
|
182
|
Neurotransmitter Profiles Are Altered in the Gut and Brain of Mice Mono-Associated with Bifidobacterium dentium. Biomolecules 2021; 11:biom11081091. [PMID: 34439760 PMCID: PMC8392031 DOI: 10.3390/biom11081091] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/29/2021] [Accepted: 07/18/2021] [Indexed: 12/16/2022] Open
Abstract
Background: Accumulating evidence indicates that the gut microbiota can synthesize neurotransmitters as well as impact host-derived neurotransmitter levels. In the past, it has been challenging to decipher which microbes influence neurotransmitters due to the complexity of the gut microbiota. Methods: To address whether a single microbe, Bifidobacterium dentium, could regulate important neurotransmitters, we examined Bifidobacteria genomes and explored neurotransmitter pathways in secreted cell-free supernatant using LC-MS/MS. To determine if B. dentium could impact neurotransmitters in vivo, we mono-associated germ-free mice with B. dentium ATCC 27678 and examined fecal and brain neurotransmitter concentrations. Results: We found that B. dentium possessed the enzymatic machinery to generate γ-aminobutyric acid (GABA) from glutamate, glutamine, and succinate. Consistent with the genome analysis, we found that B. dentium secreted GABA in a fully defined microbial media and elevated fecal GABA in B. dentium mono-associated mice compared to germ-free controls. We also examined the tyrosine/dopamine pathway and found that B. dentium could synthesize tyrosine, but could not generate L-dopa, dopamine, norepinephrine, or epinephrine. In vivo, we found that B. dentium mono-associated mice had elevated levels of tyrosine in the feces and brain. Conclusions: These data indicate that B. dentium can contribute to in vivo neurotransmitter regulation.
Collapse
|
183
|
Isaacs SR, Foskett DB, Maxwell AJ, Ward EJ, Faulkner CL, Luo JYX, Rawlinson WD, Craig ME, Kim KW. Viruses and Type 1 Diabetes: From Enteroviruses to the Virome. Microorganisms 2021; 9:microorganisms9071519. [PMID: 34361954 PMCID: PMC8306446 DOI: 10.3390/microorganisms9071519] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/12/2021] [Accepted: 07/14/2021] [Indexed: 12/15/2022] Open
Abstract
For over a century, viruses have left a long trail of evidence implicating them as frequent suspects in the development of type 1 diabetes. Through vigorous interrogation of viral infections in individuals with islet autoimmunity and type 1 diabetes using serological and molecular virus detection methods, as well as mechanistic studies of virus-infected human pancreatic β-cells, the prime suspects have been narrowed down to predominantly human enteroviruses. Here, we provide a comprehensive overview of evidence supporting the hypothesised role of enteroviruses in the development of islet autoimmunity and type 1 diabetes. We also discuss concerns over the historical focus and investigation bias toward enteroviruses and summarise current unbiased efforts aimed at characterising the complete population of viruses (the “virome”) contributing early in life to the development of islet autoimmunity and type 1 diabetes. Finally, we review the range of vaccine and antiviral drug candidates currently being evaluated in clinical trials for the prevention and potential treatment of type 1 diabetes.
Collapse
Affiliation(s)
- Sonia R. Isaacs
- Faculty of Medicine and Health, School of Women’s and Children’s Health, University of New South Wales, Sydney, NSW 2031, Australia; (S.R.I.); (D.B.F.); (A.J.M.); (E.J.W.); (C.L.F.); (J.Y.X.L.); (W.D.R.); (M.E.C.)
- Virology Research Laboratory, Serology and Virology Division, NSW Health Pathology, Prince of Wales Hospital, Sydney, NSW 2031, Australia
| | - Dylan B. Foskett
- Faculty of Medicine and Health, School of Women’s and Children’s Health, University of New South Wales, Sydney, NSW 2031, Australia; (S.R.I.); (D.B.F.); (A.J.M.); (E.J.W.); (C.L.F.); (J.Y.X.L.); (W.D.R.); (M.E.C.)
- Virology Research Laboratory, Serology and Virology Division, NSW Health Pathology, Prince of Wales Hospital, Sydney, NSW 2031, Australia
| | - Anna J. Maxwell
- Faculty of Medicine and Health, School of Women’s and Children’s Health, University of New South Wales, Sydney, NSW 2031, Australia; (S.R.I.); (D.B.F.); (A.J.M.); (E.J.W.); (C.L.F.); (J.Y.X.L.); (W.D.R.); (M.E.C.)
- Virology Research Laboratory, Serology and Virology Division, NSW Health Pathology, Prince of Wales Hospital, Sydney, NSW 2031, Australia
| | - Emily J. Ward
- Faculty of Medicine and Health, School of Women’s and Children’s Health, University of New South Wales, Sydney, NSW 2031, Australia; (S.R.I.); (D.B.F.); (A.J.M.); (E.J.W.); (C.L.F.); (J.Y.X.L.); (W.D.R.); (M.E.C.)
- Faculty of Medicine and Health, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Clare L. Faulkner
- Faculty of Medicine and Health, School of Women’s and Children’s Health, University of New South Wales, Sydney, NSW 2031, Australia; (S.R.I.); (D.B.F.); (A.J.M.); (E.J.W.); (C.L.F.); (J.Y.X.L.); (W.D.R.); (M.E.C.)
- Virology Research Laboratory, Serology and Virology Division, NSW Health Pathology, Prince of Wales Hospital, Sydney, NSW 2031, Australia
| | - Jessica Y. X. Luo
- Faculty of Medicine and Health, School of Women’s and Children’s Health, University of New South Wales, Sydney, NSW 2031, Australia; (S.R.I.); (D.B.F.); (A.J.M.); (E.J.W.); (C.L.F.); (J.Y.X.L.); (W.D.R.); (M.E.C.)
- Virology Research Laboratory, Serology and Virology Division, NSW Health Pathology, Prince of Wales Hospital, Sydney, NSW 2031, Australia
| | - William D. Rawlinson
- Faculty of Medicine and Health, School of Women’s and Children’s Health, University of New South Wales, Sydney, NSW 2031, Australia; (S.R.I.); (D.B.F.); (A.J.M.); (E.J.W.); (C.L.F.); (J.Y.X.L.); (W.D.R.); (M.E.C.)
- Virology Research Laboratory, Serology and Virology Division, NSW Health Pathology, Prince of Wales Hospital, Sydney, NSW 2031, Australia
- Faculty of Medicine and Health, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
- Faculty of Science, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Maria E. Craig
- Faculty of Medicine and Health, School of Women’s and Children’s Health, University of New South Wales, Sydney, NSW 2031, Australia; (S.R.I.); (D.B.F.); (A.J.M.); (E.J.W.); (C.L.F.); (J.Y.X.L.); (W.D.R.); (M.E.C.)
- Virology Research Laboratory, Serology and Virology Division, NSW Health Pathology, Prince of Wales Hospital, Sydney, NSW 2031, Australia
- Institute of Endocrinology and Diabetes, Children’s Hospital at Westmead, Sydney, NSW 2145, Australia
- Faculty of Medicine and Health, Discipline of Child and Adolescent Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Ki Wook Kim
- Faculty of Medicine and Health, School of Women’s and Children’s Health, University of New South Wales, Sydney, NSW 2031, Australia; (S.R.I.); (D.B.F.); (A.J.M.); (E.J.W.); (C.L.F.); (J.Y.X.L.); (W.D.R.); (M.E.C.)
- Virology Research Laboratory, Serology and Virology Division, NSW Health Pathology, Prince of Wales Hospital, Sydney, NSW 2031, Australia
- Correspondence: ; Tel.: +61-2-9382-9096
| |
Collapse
|
184
|
Kirsch JM, Brzozowski RS, Faith D, Round JL, Secor PR, Duerkop BA. Bacteriophage-Bacteria Interactions in the Gut: From Invertebrates to Mammals. Annu Rev Virol 2021; 8:95-113. [PMID: 34255542 DOI: 10.1146/annurev-virology-091919-101238] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bacteria and their viruses (bacteriophages or phages) interact antagonistically and beneficially in polymicrobial communities such as the guts of animals. These interactions are multifaceted and are influenced by environmental conditions. In this review, we discuss phage-bacteria interactions as they relate to the complex environment of the gut. Within the mammalian and invertebrate guts, phages and bacteria engage in diverse interactions including genetic coexistence through lysogeny, and phages directly modulate microbiota composition and the immune system with consequences that are becoming recognized as potential drivers of health and disease. With greater depth of understanding of phage-bacteria interactions in the gut and the outcomes, future phage therapies become possible. Expected final online publication date for the Annual Review of Virology, Volume 8 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Joshua M Kirsch
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado 80045, USA;
| | - Robert S Brzozowski
- Division of Biological Sciences, University of Montana, Missoula, Montana 59812, USA;
| | - Dominick Faith
- Division of Biological Sciences, University of Montana, Missoula, Montana 59812, USA;
| | - June L Round
- Department of Pathology, Division of Microbiology and Immunology, University of Utah School of Medicine, Salt Lake City, Utah 84113, USA;
| | - Patrick R Secor
- Division of Biological Sciences, University of Montana, Missoula, Montana 59812, USA;
| | - Breck A Duerkop
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado 80045, USA;
| |
Collapse
|
185
|
Schwierzeck V, Hülpüsch C, Reiger M. Microbiome of Barrier Organs in Allergy: Who Runs the World? Germs! Handb Exp Pharmacol 2021; 268:53-65. [PMID: 34228203 DOI: 10.1007/164_2021_478] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Over the last few decades, allergic diseases have been steadily increasing worldwide, a phenomenon that is not yet completely understood. Recent evidence, however, suggests that alterations in the microbiome may be a contributing factor. The microbiome refers to all microorganisms in a habitat including bacteria, fungi, and viruses. Using modern sequencing technologies, we are now capable of detecting and analyzing the human microbiome in more detail than ever before. Epidemiological and experimental studies have indicated that a complex intestinal microbiome supports the development of the immune system during childhood, thus providing protection from allergic diseases, including food allergy. The microbiome becomes an important part of human physiology and forms dynamic relationships with our various barrier systems. For example, bacterial dysbiosis is a hallmark of atopic eczema and correlates with disease progression. Similarly, the lung and nasopharyngeal microbiome is altered in patients with asthma and allergic rhinitis. While these results are interesting, the underlying mechanisms are still unclear and need to be investigated with functional studies. This review gives a short overview of the terminology and methods used in microbiome research before highlighting results concerning the lung, skin, and intestinal microbiome in allergic diseases.
Collapse
Affiliation(s)
- Vera Schwierzeck
- Institute of Hygiene, University Hospital Muenster, Munster, Germany
| | - Claudia Hülpüsch
- Department of Environmental Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany.,Institute of Environmental Medicine, Helmholtz Zentrum Muenchen, Augsburg, Germany.,CK CARE - Christine Kuehne Center for Allergy Research and Education, Davos, Switzerland
| | - Matthias Reiger
- Department of Environmental Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany. .,Institute of Environmental Medicine, Helmholtz Zentrum Muenchen, Augsburg, Germany. .,CK CARE - Christine Kuehne Center for Allergy Research and Education, Davos, Switzerland.
| |
Collapse
|
186
|
Abstract
Bacteria acquire novel DNA through horizontal gene transfer (HGT), a process that enables an organism to rapidly adapt to changing environmental conditions, provides a competitive edge and potentially alters its relationship with its host. Although the HGT process is routinely exploited in laboratories, there is a surprising disconnect between what we know from laboratory experiments and what we know from natural environments, such as the human gut microbiome. Owing to a suite of newly available computational algorithms and experimental approaches, we have a broader understanding of the genes that are being transferred and are starting to understand the ecology of HGT in natural microbial communities. This Review focuses on these new technologies, the questions they can address and their limitations. As these methods are applied more broadly, we are beginning to recognize the full extent of HGT possible within a microbiome and the punctuated dynamics of HGT, specifically in response to external stimuli. Furthermore, we are better characterizing the complex selective pressures on mobile genetic elements and the mechanisms by which they interact with the bacterial host genome.
Collapse
Affiliation(s)
- Ilana Lauren Brito
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
187
|
王 展, 徐 开, 周 宏. [Characteristics of gut virome and microbiome in patients with stroke]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2021; 41:862-869. [PMID: 34238738 PMCID: PMC8267978 DOI: 10.12122/j.issn.1673-4254.2021.06.08] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To explore the differences in gut virome and microbiome between patients with stroke and healthy volunteers. OBJECTIVE Fifteen patients with acute ischemic stroke treated in the Department of Neurology of Nanfang Hospital between February, 2014 and February, 2016 and 15 healthy volunteers matched for age and sex were enrolled in this study. Virome sequencing and 16S rRNA sequencing were performed on stool samples of all the participants, and the composition and structures of the virome and microbiome were compared between the two groups. OBJECTIVE No significant difference was found in the overall diversity of virome between the stroke patients and the healthy volunteers (alpha diversity: P=0.320; beta diversity: P=0.169, R2=0.037), but virome composition differed significantly between the two groups. The relative abundance of Bacteroides phage B40_8 and Cronobacter phage CS01 increased significantly in patients with stroke. The structures and composition of the microbiome in patients with stroke also differed significantly from those of the healthy volunteers (alpha diversity: P=0.950; beta diversity: P=0.005, R2=0.117). The relative abundance of Megasphaera increased while that of Bifidobacterium decreased in patients with stroke. Correlation analysis showed that in the virome of stroke patients, the relative abundance of the phage preying Streptococcus was positively correlated with that of their hosts (r=0.550, P=0.036), while in the virome of healthy volunteers, the relative abundance of the phage preying Faecalibacterium (r=0.520, P=0.049), Bilophila (r=0.541, P=0.040) and Roseburia (r=0.526, P=0.046) were positively correlated with that of their respective hosts. OBJECTIVE Stroke patients have similar overall diversity of the virome to healthy volunteers but different virome composition and interaction patterns between the virome and microbiome. The gut microbiome also differs between stroke patients and healthy volunteers. The relative abundance of opportunistic pathogens increases but that of symbiotic bacteria decreases in stroke patients.
Collapse
Affiliation(s)
- 展强 王
- />南方医科大学珠江医院检验医学部,广东 广州 510280Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - 开宇 徐
- />南方医科大学珠江医院检验医学部,广东 广州 510280Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - 宏伟 周
- />南方医科大学珠江医院检验医学部,广东 广州 510280Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| |
Collapse
|
188
|
Pratama AA, Bolduc B, Zayed AA, Zhong ZP, Guo J, Vik DR, Gazitúa MC, Wainaina JM, Roux S, Sullivan MB. Expanding standards in viromics: in silico evaluation of dsDNA viral genome identification, classification, and auxiliary metabolic gene curation. PeerJ 2021; 9:e11447. [PMID: 34178438 PMCID: PMC8210812 DOI: 10.7717/peerj.11447] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 04/22/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Viruses influence global patterns of microbial diversity and nutrient cycles. Though viral metagenomics (viromics), specifically targeting dsDNA viruses, has been critical for revealing viral roles across diverse ecosystems, its analyses differ in many ways from those used for microbes. To date, viromics benchmarking has covered read pre-processing, assembly, relative abundance, read mapping thresholds and diversity estimation, but other steps would benefit from benchmarking and standardization. Here we use in silico-generated datasets and an extensive literature survey to evaluate and highlight how dataset composition (i.e., viromes vs bulk metagenomes) and assembly fragmentation impact (i) viral contig identification tool, (ii) virus taxonomic classification, and (iii) identification and curation of auxiliary metabolic genes (AMGs). RESULTS The in silico benchmarking of five commonly used virus identification tools show that gene-content-based tools consistently performed well for long (≥3 kbp) contigs, while k-mer- and blast-based tools were uniquely able to detect viruses from short (≤3 kbp) contigs. Notably, however, the performance increase of k-mer- and blast-based tools for short contigs was obtained at the cost of increased false positives (sometimes up to ∼5% for virome and ∼75% bulk samples), particularly when eukaryotic or mobile genetic element sequences were included in the test datasets. For viral classification, variously sized genome fragments were assessed using gene-sharing network analytics to quantify drop-offs in taxonomic assignments, which revealed correct assignations ranging from ∼95% (whole genomes) down to ∼80% (3 kbp sized genome fragments). A similar trend was also observed for other viral classification tools such as VPF-class, ViPTree and VIRIDIC, suggesting that caution is warranted when classifying short genome fragments and not full genomes. Finally, we highlight how fragmented assemblies can lead to erroneous identification of AMGs and outline a best-practices workflow to curate candidate AMGs in viral genomes assembled from metagenomes. CONCLUSION Together, these benchmarking experiments and annotation guidelines should aid researchers seeking to best detect, classify, and characterize the myriad viruses 'hidden' in diverse sequence datasets.
Collapse
Affiliation(s)
- Akbar Adjie Pratama
- Department of Microbiology, Ohio State University, Columbus, OH, United States of America
- Center of Microbiome Science, Ohio State University, Columbus, OH, United States of America
| | - Benjamin Bolduc
- Department of Microbiology, Ohio State University, Columbus, OH, United States of America
- Center of Microbiome Science, Ohio State University, Columbus, OH, United States of America
| | - Ahmed A. Zayed
- Department of Microbiology, Ohio State University, Columbus, OH, United States of America
- Center of Microbiome Science, Ohio State University, Columbus, OH, United States of America
| | - Zhi-Ping Zhong
- Department of Microbiology, Ohio State University, Columbus, OH, United States of America
- Center of Microbiome Science, Ohio State University, Columbus, OH, United States of America
- Byrd Polar and Climate Research Center, Ohio State University, Columbus, OH, United States of America
| | - Jiarong Guo
- Department of Microbiology, Ohio State University, Columbus, OH, United States of America
- Center of Microbiome Science, Ohio State University, Columbus, OH, United States of America
| | - Dean R. Vik
- Department of Microbiology, Ohio State University, Columbus, OH, United States of America
- Center of Microbiome Science, Ohio State University, Columbus, OH, United States of America
| | | | - James M. Wainaina
- Department of Microbiology, Ohio State University, Columbus, OH, United States of America
- Center of Microbiome Science, Ohio State University, Columbus, OH, United States of America
- Infectious Diseases Institute at The Ohio State University, Ohio State University, Columbus, OH, United States of America
| | - Simon Roux
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, United States of America
| | - Matthew B. Sullivan
- Department of Microbiology, Ohio State University, Columbus, OH, United States of America
- Center of Microbiome Science, Ohio State University, Columbus, OH, United States of America
- Environmental and Geodetic Engineering, Ohio State University, Department of Civil, Columbus, OH, United States of America
| |
Collapse
|
189
|
Dallari S, Heaney T, Rosas-Villegas A, Neil JA, Wong SY, Brown JJ, Urbanek K, Herrmann C, Depledge DP, Dermody TS, Cadwell K. Enteric viruses evoke broad host immune responses resembling those elicited by the bacterial microbiome. Cell Host Microbe 2021; 29:1014-1029.e8. [PMID: 33894129 PMCID: PMC8192460 DOI: 10.1016/j.chom.2021.03.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 02/04/2021] [Accepted: 03/23/2021] [Indexed: 02/08/2023]
Abstract
The contributions of the viral component of the microbiome-the virome-to the development of innate and adaptive immunity are largely unknown. Here, we systematically defined the host response in mice to a panel of eukaryotic enteric viruses representing six different families. Infections with most of these viruses were asymptomatic in the mice, the magnitude and duration of which was dependent on the microbiota. Flow cytometric and transcriptional profiling of mice mono-associated with these viruses unveiled general adaptations by the host, such as lymphocyte differentiation and IL-22 signatures in the intestine, as well as numerous viral-strain-specific responses that persisted. Comparison with a dataset derived from analogous bacterial mono-association in mice identified bacterial species that evoke an immune response comparable with the viruses we examined. These results expand an understanding of the immune space occupied by the enteric virome and underscore the importance of viral exposure events.
Collapse
Affiliation(s)
- Simone Dallari
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Thomas Heaney
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Adriana Rosas-Villegas
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Jessica A Neil
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Serre-Yu Wong
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University Grossman School of Medicine, New York, NY, USA; Department of Medicine, Henry D. Janowitz Division of Gastroenterology, Susan and Leonard Feinstein Inflammatory Bowel Disease Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Judy J Brown
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA; Department of Biology, Trevecca Nazarene University, Nashville, TN, USA
| | - Kelly Urbanek
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Christin Herrmann
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Daniel P Depledge
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Terence S Dermody
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Ken Cadwell
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA; Division of Gastroenterology and Hepatology, Department of Medicine, New York University Langone Health, New York, NY, USA.
| |
Collapse
|
190
|
Viral Metagenome-Based Precision Surveillance of Pig Population at Large Scale Reveals Viromic Signatures of Sample Types and Influence of Farming Management on Pig Virome. mSystems 2021; 6:e0042021. [PMID: 34100634 PMCID: PMC8269232 DOI: 10.1128/msystems.00420-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pigs are a major meat source worldwide and a pillar of Chinese animal husbandry; hence, their health and safety are a prioritized concern of the national economy. Although pig viruses have been continuously investigated, the full extent of the pig virome has remained unknown and emerging viruses are still a major threat to the pig industry. Here, we report a comprehensive study to delineate the pig virome of 1,841 healthy weaned pigs from 45 commercial farms collected from 25 major pig-producing regions across China. A viromic sequence data set, named Pigs_VIRES, which matched 96,586 viral genes from at least 249 genera within 66 families and which almost tripled the number of previously published pig viromic genes, was established. The majority of the mammalian viruses were closely related to currently known ones. A comparison with previously published viromes of bovines, avians, and humans has revealed the distinct composition of Pigs_VIRES, which has provided characteristic viromic signatures of serum, pharyngeal, and anal samples that were significantly influenced by farming management and disease control measures. Taken together, Pigs_VIRES has revealed the most complete viromic data set of healthy pigs to date. The compiled data also provide useful guidance to pig viral disease control and prevention and the biosafety management of pig farms. Especially, the established viromic protocol has created a precision surveillance strategy to potentially innovate currently used surveillance methods of animal infectious diseases, particularly by making precision surveillance available to other animal species on a large scale or even during a nationwide surveillance campaign. IMPORTANCE Pigs are deeply involved in human lives; hence, their viruses are associated with public health. Here, we established the most comprehensive virome of healthy piglets to date, which provides a viromic baseline of weaned pigs for disease prevention and control, highlighting that longitudinal viromic monitoring is needed to better understand the dynamics of the virome in pig development and disease occurrence. The present study also shows how high standards of animal farm management with strict biosafety measures can significantly minimize the risk of introduction of pathogenic viruses into pig farms. Particularly, the viromic strategy established, i.e., high-throughput detection and analyses of various known and unknown pathogenic viruses in a single test at large scale, has completely innovated current surveillance measures in provision of timely and precise detection of all potentially existing pathogenic viruses and can be widely applied in other animal species.
Collapse
|
191
|
Townsend EM, Kelly L, Muscatt G, Box JD, Hargraves N, Lilley D, Jameson E. The Human Gut Phageome: Origins and Roles in the Human Gut Microbiome. Front Cell Infect Microbiol 2021; 11:643214. [PMID: 34150671 PMCID: PMC8213399 DOI: 10.3389/fcimb.2021.643214] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 05/19/2021] [Indexed: 12/14/2022] Open
Abstract
The investigation of the microbial populations of the human body, known as the microbiome, has led to a revolutionary field of science, and understanding of its impacts on human development and health. The majority of microbiome research to date has focussed on bacteria and other kingdoms of life, such as fungi. Trailing behind these is the interrogation of the gut viruses, specifically the phageome. Bacteriophages, viruses that infect bacterial hosts, are known to dictate the dynamics and diversity of bacterial populations in a number of ecosystems. However, the phageome of the human gut, while of apparent importance, remains an area of many unknowns. In this paper we discuss the role of bacteriophages within the human gut microbiome. We examine the methods used to study bacteriophage populations, how this evolved over time and what we now understand about the phageome. We review the phageome development in infancy, and factors that may influence phage populations in adult life. The role and action of the phageome is then discussed at both a biological-level, and in the broader context of human health and disease.
Collapse
Affiliation(s)
- Eleanor M Townsend
- School of Life Sciences, The University of Warwick, Coventry, United Kingdom
| | - Lucy Kelly
- School of Life Sciences, The University of Warwick, Coventry, United Kingdom
| | - George Muscatt
- School of Life Sciences, The University of Warwick, Coventry, United Kingdom
| | - Joshua D Box
- School of Life Sciences, The University of Warwick, Coventry, United Kingdom
| | - Nicole Hargraves
- School of Life Sciences, The University of Warwick, Coventry, United Kingdom
| | - Daniel Lilley
- Warwick Medical School, The University of Warwick, Coventry, United Kingdom
| | - Eleanor Jameson
- School of Life Sciences, The University of Warwick, Coventry, United Kingdom
| |
Collapse
|
192
|
Bushman F, Liang G. Assembly of the virome in newborn human infants. Curr Opin Virol 2021; 48:17-22. [PMID: 33813257 PMCID: PMC8187319 DOI: 10.1016/j.coviro.2021.03.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/08/2021] [Accepted: 03/10/2021] [Indexed: 12/22/2022]
Abstract
Healthy human infants are typically born without high concentrations of viral particles in their intestines, but after a few weeks of life particle counts typically reach a billion per gram of stool. Where do these vast populations come from? Recent studies support the idea that colonization is stepwise. First pioneer bacteria seed the infant gut. Bacteria commonly harbor prophage sequences integrated in their genomes, which periodically induce to make particles, providing a first wave of viral particles. Later more viruses infecting human cells are detected. Analysis showed that lower accumulation of viruses that grow in human cells is associated with breastfeeding. Thus these studies emphasize the environmental influences on formation of the early life virome, and begin to point the way toward modulating viral colonization to optimize health.
Collapse
Affiliation(s)
- Frederic Bushman
- Department of Microbiology, Perelman School of Medicinse, University of Pennsylvania, Philadelphia, PA 19104-6076, USA.
| | - Guanxiang Liang
- Department of Microbiology, Perelman School of Medicinse, University of Pennsylvania, Philadelphia, PA 19104-6076, USA.
| |
Collapse
|
193
|
Cieślik M, Bagińska N, Jończyk-Matysiak E, Węgrzyn A, Węgrzyn G, Górski A. Temperate Bacteriophages-The Powerful Indirect Modulators of Eukaryotic Cells and Immune Functions. Viruses 2021; 13:v13061013. [PMID: 34071422 PMCID: PMC8228536 DOI: 10.3390/v13061013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/22/2021] [Accepted: 05/27/2021] [Indexed: 12/11/2022] Open
Abstract
Bacteriophages are natural biological entities that limit the growth and amplification of bacteria. They are important stimulators of evolutionary variability in bacteria, and currently are considered a weapon against antibiotic resistance of bacteria. Nevertheless, apart from their antibacterial activity, phages may act as modulators of mammalian immune responses. In this paper, we focus on temperate phages able to execute the lysogenic development, which may shape animal or human immune response by influencing various processes, including phagocytosis of bacterial invaders and immune modulation of mammalian host cells.
Collapse
Affiliation(s)
- Martyna Cieślik
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland; (M.C.); (N.B.); (E.J.-M.)
| | - Natalia Bagińska
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland; (M.C.); (N.B.); (E.J.-M.)
| | - Ewa Jończyk-Matysiak
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland; (M.C.); (N.B.); (E.J.-M.)
| | - Alicja Węgrzyn
- Laboratory of Phage Therapy, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Kładki 24, 80-822 Gdańsk, Poland;
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland;
| | - Andrzej Górski
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland; (M.C.); (N.B.); (E.J.-M.)
- Phage Therapy Unit, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland
- Infant Jesus Hospital, The Medical University of Warsaw, 02-006 Warsaw, Poland
- Correspondence:
| |
Collapse
|
194
|
Iorio A, Biazzo M, Gardini S, Muda AO, Perno CF, Dallapiccola B, Putignani L. Cross-correlation of virome-bacteriome-host-metabolome to study respiratory health. Trends Microbiol 2021; 30:34-46. [PMID: 34052095 DOI: 10.1016/j.tim.2021.04.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 12/13/2022]
Abstract
A comprehensive understanding of the microbiome-host relationship in respiratory diseases can be elucidated by exploring the landscape of virome-bacteriome-host metabolome data through unsupervised 'multi-omics' approaches. Here, we describe how the composition and function of airway and gut virome and bacteriome may contribute to pathogen establishment and propagation in airway districts and how the virome-bacteriome communities may react to respiratory diseases. A new systems medicine approach, including the characterization of respiratory and gut microbiome, may be crucial to demonstrate the likelihood and odds of respiratory disease pathophysiology, opening new avenues to the discovery of a chain of causation for key bacteria and viruses in disease severity.
Collapse
Affiliation(s)
- Andrea Iorio
- Department of Diagnostic and Laboratory Medicine, Unit of Parasitology and Multimodal Laboratory Medicine Research Area, Unit of Human Microbiome, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Manuele Biazzo
- The BioArte Ltd, The Victoria Centre, Mosta, Malta; SienaBioActive, University of Siena, Siena, Italy
| | | | - Andrea Onetti Muda
- Department of Diagnostic and Laboratory Medicine, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Carlo Federico Perno
- Unit of Microbiology and Immunology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Bruno Dallapiccola
- Scientific Directorate, Children's Hospital and Research Institute 'Bambino Gesù', IRCCS, Rome
| | - Lorenza Putignani
- Department of Diagnostic and Laboratory Medicine, Unit of Parasitology and Multimodal Laboratory Medicine Research Area, Unit of Human Microbiome, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.
| |
Collapse
|
195
|
Dinleyici M, Pérez-Brocal V, Arslanoglu S, Aydemir O, Sevuk Ozumut S, Tekin N, Vandenplas Y, Moya A, Dinleyici EC. Human Milk Virome Analysis: Changing Pattern Regarding Mode of Delivery, Birth Weight, and Lactational Stage. Nutrients 2021; 13:nu13061779. [PMID: 34071061 PMCID: PMC8224552 DOI: 10.3390/nu13061779] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/15/2021] [Accepted: 05/17/2021] [Indexed: 02/07/2023] Open
Abstract
The human milk (HM) microbiota is a significant source of microbes that colonize the infant gut early in life. The aim of this study was to compare transient and mature HM virome compositions, and also possible changes related to the mode of delivery, gestational age, and weight for gestational age. Overall, in the 81 samples analyzed in this study, reads matching bacteriophages accounted for 79.5% (mainly Podoviridae, Myoviridae, and Siphoviridae) of the reads, far more abundant than those classified as eukaryotic viruses (20.5%, mainly Herpesviridae). In the whole study group of transient human milk, the most abundant families were Podoviridae and Myoviridae. In mature human milk, Podoviridae decreased, and Siphoviridae became the most abundant family. Bacteriophages were predominant in transient HM samples (98.4% in the normal spontaneous vaginal delivery group, 92.1% in the premature group, 89.9% in the C-section group, and 68.3% in the large for gestational age group), except in the small for gestational age group (only ~45% bacteriophages in transient HM samples). Bacteriophages were also predominant in mature HM; however, they were lower in mature HM than in transient HM (71.7% in the normal spontaneous vaginal delivery group, 60.8% in the C-section group, 56% in the premature group, and 80.6% in the large for gestational age group). Bacteriophages still represented 45% of mature HM in the small for gestational age group. In the transient HM of the normal spontaneous vaginal delivery group, the most abundant family was Podoviridae; however, in mature HM, Podoviridae became less prominent than Siphoviridae. Myoviridae was predominant in both transient and mature HM in the premature group (all C-section), and Podoviridae was predominant in transient HM, while Siphoviridae and Herpesviridae were predominant in mature HM. In the small for gestational age group, the most abundant taxa in transient HM were the family Herpesviridae and a species of the genus Roseolovirus. Bacteriophages constituted the major component of the HM virome, and we showed changes regarding the lactation period, preterm birth, delivery mode, and birth weight. Early in life, the HM virome may influence the composition of an infant's gut microbiome, which could have short- and long-term health implications. Further longitudinal mother-newborn pair studies are required to understand the effects of these variations on the composition of the HM and the infant gut virome.
Collapse
Affiliation(s)
- Meltem Dinleyici
- Department of Social Pediatrics, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir 26040, Turkey;
| | - Vicente Pérez-Brocal
- Genomics and Health Area, Foundation for the Promotion of Sanitary and Biomedical Research of Valencia Region (FISABIO-Public Health), 46020 Valencia, Spain; (V.P.-B.); (A.M.)
- CIBER in Epidemiology and Public Health (CIBEResp), 28029 Madrid, Spain
| | - Sertac Arslanoglu
- Division of Neonatology, Faculty of Medicine, Medeniyet University, Istanbul 34720, Turkey; (S.A.); (S.S.O.)
| | - Ozge Aydemir
- Division of Neonatology, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir 26040, Turkey; (O.A.); (N.T.)
| | - Sibel Sevuk Ozumut
- Division of Neonatology, Faculty of Medicine, Medeniyet University, Istanbul 34720, Turkey; (S.A.); (S.S.O.)
| | - Neslihan Tekin
- Division of Neonatology, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir 26040, Turkey; (O.A.); (N.T.)
| | - Yvan Vandenplas
- Department of Pediatrics, KidZ Health Castle, UZ Brussel, Vrije Unversiteit Brussel, 1050 Brussels, Belgium;
| | - Andrés Moya
- Genomics and Health Area, Foundation for the Promotion of Sanitary and Biomedical Research of Valencia Region (FISABIO-Public Health), 46020 Valencia, Spain; (V.P.-B.); (A.M.)
- CIBER in Epidemiology and Public Health (CIBEResp), 28029 Madrid, Spain
- Institute for Integrative Systems Biology (I2SysBio), The University of Valencia and The Spanish National Research Council (CSIC-UVEG), 46010 Valencia, Spain
| | - Ener Cagri Dinleyici
- Department of Pediatrics, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir 26040, Turkey
- Correspondence: ; Tel.: +90-222-239-29-79 (ext. 2722)
| |
Collapse
|
196
|
Song Y, Li F, Fischer-Tlustos AJ, Neves ALA, He Z, Steele MA, Guan LL. Metagenomic analysis revealed the individualized shift in ileal microbiome of neonatal calves in response to delaying the first colostrum feeding. J Dairy Sci 2021; 104:8783-8797. [PMID: 34024606 DOI: 10.3168/jds.2020-20068] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 04/13/2021] [Indexed: 01/14/2023]
Abstract
The aim of this study was to explore the effect of colostrum feeding time on the ileal microbiome of neonatal calves. In this study, 22 male Holstein calves were randomly assigned to different colostrum feeding time treatments: after birth (at 45 min, n = 7); at 6 h after birth (n = 8); and at 12 h after birth (TRT12h; n = 7). At 51 h after birth, calves were killed and ileum digesta was collected for microbiome analysis using shotgun metagenomic sequencing. Bacteria, archaea, eukaryotes, and viruses were identified from the ileum microbiome. For the bacteriome, Firmicutes and Proteobacteria were the predominant phyla, and Escherichia, Streptococcus, Lactobacillus were the 3 most abundant genera. For the archaeal community, Euryarchaeota and Crenarchaeota were the 2 major phyla, and Methanosarcina, Methanobrevibacter, and Methanocorpusculum were the 3 most abundant genera. In total, 116 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were identified from the ileal microbiome, with "biosynthesis of vancomycin group antibiotics," "biosynthesis of ansamycins," "valine, leucine, and isoleucine biosynthesis," "ribosome," and "d-alanine metabolism" as the top 5 functions. When the ileal microbiomes were compared among the 3 treatments, the relative abundance of Enterococcus was higher in TRT12h calves, suggesting that calves may have a higher abundance of opportunistic pathogens when the feeding of colostrum is delayed for 12 h. Moreover, among all KEGG pathways, the enriched "taurine and hypotaurine metabolism" (KO00430) pathway was identified in the ileal microbiome of TRT12h calves; however, future studies are needed to understand the effect on the host. Additionally, 2 distinct ileal microbial profiles were identified across all samples, indicating that that host factors may play a significant role in driving varied microbiome changes in response to colostrum feeding time. Whether such microbiome shifts affect long-term gut function and calf performance warrants future studies.
Collapse
Affiliation(s)
- Y Song
- College of Animal Science and Technology, Inner Mongolia University for the Nationalities, Tongliao, P. R. China 028000; Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada T6G2P5; Brucellosis Prevention and Treatment Engineering Research Center of Inner Mongolia Autonomous region, Tongliao, P. R. China 028000
| | - F Li
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada T6G2P5
| | - A J Fischer-Tlustos
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada N1G2W1
| | - A L A Neves
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada T6G2P5; Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Gr⊘nnegårdsvej 3, DK-1870 Frederiksberg C, Denmark
| | - Z He
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; Changsha, Hunan, P. R. China 410125
| | - M A Steele
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada N1G2W1.
| | - L L Guan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada T6G2P5.
| |
Collapse
|
197
|
Stinson LF, Sindi ASM, Cheema AS, Lai CT, Mühlhäusler BS, Wlodek ME, Payne MS, Geddes DT. The human milk microbiome: who, what, when, where, why, and how? Nutr Rev 2021; 79:529-543. [PMID: 32443154 DOI: 10.1093/nutrit/nuaa029] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Human milk (HM) contains an incredible array of microorganisms. These likely contribute to the seeding of the infant gastrointestinal microbiome, thereby influencing infant immune and metabolic development and later-life health. Given the importance of the HM microbiota in this context, there has been an increase in research efforts to characterize this in different populations and in relation to different maternal and infant characteristics. However, despite a decade of intensive research, there remain several unanswered questions in this field. In this review, the "5 W+H" approach (who, what, when, where, why, and how) is used to comprehensively describe the composition, function, and origin of the HM microbiome. Here, existing evidence will be drawn together and critically appraised to highlight avenues for further research, both basic and applied. Perhaps the most interesting of these is the potential to modulate the HM microbiome using pre/probiotics or dietary interventions. Another exciting possibility is the personalization of donor milk for women with insufficient supply. By gaining a deeper understanding of the HM microbiome, opportunities to intervene to optimize infant and lifelong health may be identified.
Collapse
Affiliation(s)
- Lisa F Stinson
- School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Azhar S M Sindi
- Division of Obstetrics and Gynaecology, The University of Western Australia, Perth, Western Australia, Australia
| | - Ali S Cheema
- School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Ching Tat Lai
- School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Beverly S Mühlhäusler
- CSIRO, Adelaide, South Australia, Australia, and School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, South Australia, Australia
| | - Mary E Wlodek
- Department of Physiology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Matthew S Payne
- Division of Obstetrics and Gynaecology, The University of Western Australia, Perth, Western Australia, Australia
| | - Donna T Geddes
- School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
198
|
Li Y, Handley SA, Baldridge MT. The dark side of the gut: Virome-host interactions in intestinal homeostasis and disease. J Exp Med 2021; 218:e20201044. [PMID: 33760921 PMCID: PMC8006857 DOI: 10.1084/jem.20201044] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/23/2020] [Accepted: 11/25/2020] [Indexed: 12/19/2022] Open
Abstract
The diverse enteric viral communities that infect microbes and the animal host collectively constitute the gut virome. Although recent advances in sequencing and analysis of metaviromes have revealed the complexity of the virome and facilitated discovery of new viruses, our understanding of the enteric virome is still incomplete. Recent studies have uncovered how virome-host interactions can contribute to beneficial or detrimental outcomes for the host. Understanding the complex interactions between enteric viruses and the intestinal immune system is a prerequisite for elucidating their role in intestinal diseases. In this review, we provide an overview of the enteric virome composition and summarize recent findings about how enteric viruses are sensed by and, in turn, modulate host immune responses during homeostasis and disease.
Collapse
Affiliation(s)
- Yuhao Li
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO
- Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO
| | - Scott A. Handley
- Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO
| | - Megan T. Baldridge
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO
- Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
199
|
Tan X, Chai T, Duan J, Wu J, Zhang H, Li Y, Huang Y, Hu X, Zheng P, Song J, Ji P, Jin X, Zhang H, Xie P. Dynamic changes occur in the DNA gut virome of female cynomolgus macaques during aging. Microbiologyopen 2021; 10:e1186. [PMID: 33970533 PMCID: PMC8087919 DOI: 10.1002/mbo3.1186] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 12/17/2022] Open
Abstract
Aging is a critical factor affecting physical health and disease in mammals. Emerging evidence indicates that aging may affect the gut bacteriome in cynomolgus macaques, but little is known about whether or how the gut virome changes with age. Here, we compared the DNA gut viral composition of 16 female cynomolgus monkeys (Macaca fascicularis) at three life stages (young, adult, and old) using the shotgun metagenome sequencing method. We found that the DNA gut virome from these monkeys differed substantially among the three groups. The gut viruses were dominated by bacteriophages, the most abundant of which was the Caudovirales order (i.e., Siphoviridae, Myoviridae, and Podoviridae families). Additionally, the co‐occurrence analysis revealed that the age‐related bacteriophages were correlated in an extensive and complex manner with the main intestinal bacteria (i.e., Firmicutes, Bacteroidetes, Proteobacteria, and Actinobacteria phyla). Furthermore, the age‐related DNA gut viral functions were enriched for genetic information processing, nucleotide, and folate metabolism. Our gut virome analysis provides new insight into how aging influences the gut virome of non‐human primates.
Collapse
Affiliation(s)
- Xunmin Tan
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, Chongqing Medical University, Chongqing, China
| | - Tingjia Chai
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, Chongqing Medical University, Chongqing, China.,State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Jiajia Duan
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, Chongqing Medical University, Chongqing, China.,The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Jing Wu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, Chongqing Medical University, Chongqing, China.,The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Hanping Zhang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, Chongqing Medical University, Chongqing, China
| | - Yifan Li
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, Chongqing Medical University, Chongqing, China
| | - Yu Huang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, Chongqing Medical University, Chongqing, China
| | - Xi Hu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Peng Zheng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, Chongqing Medical University, Chongqing, China
| | - Jinlin Song
- College of Stomatology, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Ping Ji
- College of Stomatology, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, China
| | - Xin Jin
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, China.,Key Laboratory of Psychoseomadsy, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Hongmei Zhang
- College of Stomatology, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, China
| | - Peng Xie
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, Chongqing Medical University, Chongqing, China
| |
Collapse
|
200
|
Garmaeva S, Gulyaeva A, Sinha T, Shkoporov AN, Clooney AG, Stockdale SR, Spreckels JE, Sutton TDS, Draper LA, Dutilh BE, Wijmenga C, Kurilshikov A, Fu J, Hill C, Zhernakova A. Stability of the human gut virome and effect of gluten-free diet. Cell Rep 2021; 35:109132. [PMID: 34010651 DOI: 10.1016/j.celrep.2021.109132] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 01/12/2021] [Accepted: 04/23/2021] [Indexed: 02/07/2023] Open
Abstract
The human gut microbiome consists of bacteria, archaea, eukaryotes, and viruses. The gut viruses are relatively underexplored. Here, we longitudinally analyzed the gut virome composition in 11 healthy adults: its stability, variation, and the effect of a gluten-free diet. Using viral enrichment and a de novo assembly-based approach, we demonstrate the quantitative dynamics of the gut virome, including dsDNA, ssDNA, dsRNA, and ssRNA viruses. We observe highly divergent individual viral communities, carrying on an average 2,143 viral genomes, 13.1% of which were present at all 3 time points. In contrast to previous reports, the Siphoviridae family dominates over Microviridae in studied individual viromes. We also show individual viromes to be stable at the family level but to vary substantially at the genera and species levels. Finally, we demonstrate that lower initial diversity of the human gut virome leads to a more pronounced effect of the dietary intervention on its composition.
Collapse
Affiliation(s)
- Sanzhima Garmaeva
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen 9713GZ, the Netherlands
| | - Anastasia Gulyaeva
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen 9713GZ, the Netherlands
| | - Trishla Sinha
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen 9713GZ, the Netherlands
| | - Andrey N Shkoporov
- APC Microbiome Ireland and School of Microbiology, University College Cork, Cork T12 YT20, Ireland
| | - Adam G Clooney
- APC Microbiome Ireland and School of Microbiology, University College Cork, Cork T12 YT20, Ireland
| | - Stephen R Stockdale
- APC Microbiome Ireland and School of Microbiology, University College Cork, Cork T12 YT20, Ireland
| | - Johanne E Spreckels
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen 9713GZ, the Netherlands
| | - Thomas D S Sutton
- APC Microbiome Ireland and School of Microbiology, University College Cork, Cork T12 YT20, Ireland
| | - Lorraine A Draper
- APC Microbiome Ireland and School of Microbiology, University College Cork, Cork T12 YT20, Ireland
| | - Bas E Dutilh
- Theoretical Biology and Bioinformatics, Science for Life, Utrecht University, Utrecht 3584 CH, the Netherlands
| | - Cisca Wijmenga
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen 9713GZ, the Netherlands
| | - Alexander Kurilshikov
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen 9713GZ, the Netherlands
| | - Jingyuan Fu
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen 9713GZ, the Netherlands; Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen 9713GZ, the Netherlands
| | - Colin Hill
- APC Microbiome Ireland and School of Microbiology, University College Cork, Cork T12 YT20, Ireland
| | - Alexandra Zhernakova
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen 9713GZ, the Netherlands.
| |
Collapse
|