151
|
Abstract
Much of the current understanding about the pathogenesis of altered mood, impaired concentration and neurovegetative symptoms in major depression has come from animal models. However, because of the unique and complex features of human depression, the generation of valid and insightful depression models has been less straightforward than modeling other disabling diseases like cancer or autoimmune conditions. Today's popular depression models creatively merge ethologically valid behavioral assays with the latest technological advances in molecular biology and automated video-tracking. This chapter reviews depression assays involving acute stress (e.g., forced swim test), models consisting of prolonged physical or social stress (e.g., social defeat), models of secondary depression, genetic models, and experiments designed to elucidate the mechanisms of antidepressant action. These paradigms are critically evaluated in relation to their ease, validity and replicability, the molecular insights that they have provided, and their capacity to offer the next generation of therapeutics for depression.
Collapse
|
152
|
Freund N, Thompson BS, Sonntag K, Meda S, Andersen SL. When the party is over: depressive-like states in rats following termination of cortical D1 receptor overexpression. Psychopharmacology (Berl) 2016; 233:1191-201. [PMID: 26762379 PMCID: PMC4915915 DOI: 10.1007/s00213-015-4200-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 12/29/2015] [Indexed: 11/29/2022]
Abstract
RATIONALE Increased activity of prefrontal D1 dopamine receptors (D1R) is involved in reward-related behavior found in bipolar disorder and drug addiction. While the effects of elevated D1R are known, depressive-like behaviors also occur in these disorders after reward-seeking ends. OBJECTIVES The goal is to characterize how termination of D1R overexpression influences depressive-like behaviors. METHODS An inducible (Tet.On), lentiviral vector was used to manipulate the expression of the DRD1 gene in glutamate neurons within the prefrontal cortex in male, adult rats. Sexual activity and sucrose preference were studied in both D1R elevated ON and relatively reduced OFF states. Following termination of the D1R ON state, depressive-like behavior was determined in the OFF state. Expression of the transcriptional regulator, cyclic AMP-responsive element-binding protein (CREB), was used as an indication of downstream effects in the nucleus accumbens (NA). RESULTS ON D1R expression increased sexual activity that returned to baseline in the OFF state. Sucrose preferences increased ~6 % in ON state but fell 11 % below control levels when OFF. Consistent with a depressive-like phenotype, D1R OFF decreased activity by 40 %, impaired the ability to control (43 %) and motivation to escape shock (27 % more impaired) relative to dsRed OFF. CREB increased 29 % in the NA in the D1R OFF state relative to the ON state. CONCLUSIONS This novel approach demonstrates that elevated D1R expression increased hedonic behavior, whereas the termination of D1R overexpression often resulted in depressive-like behavior. These observations support a role for D1R expression cycling in bipolar-associated behaviors and addiction.
Collapse
Affiliation(s)
- Nadja Freund
- Laboratory for Developmental Neuropharmacology, McLean Hospital and Harvard Medical School, Belmont, MA, 02478, USA.
- Klinik für Psychiatrie und Psychotherapie, Calwerstr. 14, 72076, Tübingen, Germany.
| | - Britta S Thompson
- Laboratory for Developmental Neuropharmacology, McLean Hospital and Harvard Medical School, Belmont, MA, 02478, USA
| | - Kai Sonntag
- Laboratory for Developmental Neuropharmacology, McLean Hospital and Harvard Medical School, Belmont, MA, 02478, USA
| | - Shirisha Meda
- Laboratory for Developmental Neuropharmacology, McLean Hospital and Harvard Medical School, Belmont, MA, 02478, USA
| | - Susan L Andersen
- Laboratory for Developmental Neuropharmacology, McLean Hospital and Harvard Medical School, Belmont, MA, 02478, USA
| |
Collapse
|
153
|
Segev A, Akirav I. Cannabinoids and Glucocorticoids in the Basolateral Amygdala Modulate Hippocampal-Accumbens Plasticity After Stress. Neuropsychopharmacology 2016; 41:1066-79. [PMID: 26289146 PMCID: PMC4748431 DOI: 10.1038/npp.2015.238] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 08/03/2015] [Accepted: 08/04/2015] [Indexed: 01/19/2023]
Abstract
Acute stress results in release of glucocorticoids, which are potent modulators of learning and plasticity. This process is presumably mediated by the basolateral amygdala (BLA) where cannabinoids CB1 receptors have a key role in regulating the hypothalamic-pituitary-adrenal (HPA) axis. Growing attention has been focused on nucleus accumbens (NAc) plasticity, which regulates mood and motivation. The NAc integrates affective and context-dependent input from the BLA and ventral subiculum (vSub), respectively. As our previous data suggest that the CB1/2 receptor agonist WIN55,212-2 (WIN) and glucocorticoid receptor (GR) antagonist RU-38486 (RU) can prevent the effects of stress on emotional memory, we examined whether intra-BLA WIN and RU can reverse the effects of acute stress on NAc plasticity. Bilateral, ipsilateral, and contralateral BLA administration of RU or WIN reversed the stress-induced impairment in vSub-NAc long-term potentiation (LTP) and the decrease in cAMP response element-binding protein (CREB) activity in the NAc. BLA CB1 receptors were found to mediate the preventing effects of WIN on plasticity, but not the preventing effects of RU, after stress. Inactivating the ipsilateral BLA, but not the contralateral BLA, impaired LTP. The possible mechanisms underlying the effects of BLA on NAc plasticity are discussed; the data suggest that BLA-induced changes in the NAc may be mediated through neural pathways in the brain's stress circuit rather than peripheral pathways. The results suggest that glucocorticoid and cannabinoid systems in the BLA can restore normal function of the NAc and hence may have a central role in the treatment of a variety of stress-related disorders.
Collapse
Affiliation(s)
- Amir Segev
- Department of Psychology, University of Haifa, Haifa, Israel
| | - Irit Akirav
- Department of Psychology, University of Haifa, Haifa, Israel,Department of Psychology, University of Haifa, Mt Carmel, Haifa 31905, Israel, Tel: +972 4 8288268, Fax: +972 4 8263157, E-mail:
| |
Collapse
|
154
|
Yang L, Shi LJ, Yu J, Zhang YQ. Activation of protein kinase A in the amygdala modulates anxiety-like behaviors in social defeat exposed mice. Mol Brain 2016; 9:3. [PMID: 26747511 PMCID: PMC4706664 DOI: 10.1186/s13041-015-0181-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 12/23/2015] [Indexed: 12/15/2022] Open
Abstract
Background Social defeat (SD) stress induces social avoidance and anxiety-like phenotypes. Amygdala is recognized as an emotion-related brain region such as fear, aversion and anxiety. It is conceivable to hypothesize that activation of amygdala is involved in SD-dependent behavioral defects. Results SD model was established using C57BL/6J mice that were physically defeated by different CD-1 mice for 10 days. Stressed mice exhibited decreased social interaction level in social interaction test and significant anxiety-like behaviors in elevated plus maze and open field tests. Meanwhile, a higher phosphorylation of PKA and CREB with a mutually linear correlation, and increased Fos labeled cells in the basolateral amygdala (BLA) were observed. Activation of PKA in the BLA by 8-Br-cAMP, a PKA activitor, significantly upregulated pCREB and Fos expression. To address the role of PKA activation on SD stress-induced social avoidance and anxiety-like behaviors, 8-Br-cAMP or H-89, a PKA inhibitor, was continuously administered into the bilateral BLA by a micro-osmotic pump system during the 10-day SD period. Neither H-89 nor 8-Br-cAMP affected the social behavior. Differently, 8-Br-cAMP significantly relieved anxiety-like behaviors in both general and moderate SD protocols. H-89 per se did not have anxiogenic effect in naïve mice, but aggravated moderate SD stress-induced anxiety-like behaviors. The antidepressant clomipramine reduced SD-induced anxiety and up-regulated pPKA level in the BLA. Conclusions These results suggest that SD-driven PKA activation in the basolateral amygdala is actually a compensatory rather than pathogenic response in the homeostasis, and modulating amygdaloid PKA may exhibit potency in the therapy of social derived disorders. Electronic supplementary material The online version of this article (doi:10.1186/s13041-015-0181-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Liu Yang
- Institute of Neurobiology, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, 1202 Mingdao Building, 131 Dong An Road, Shanghai, 200032, China.
| | - Li-Jun Shi
- Institute of Neurobiology, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, 1202 Mingdao Building, 131 Dong An Road, Shanghai, 200032, China.
| | - Jin Yu
- Department of Integrative Medicine and Neurobiology, Shanghai Medical School, Fudan University, Shanghai, 200032, China.
| | - Yu-Qiu Zhang
- Institute of Neurobiology, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, 1202 Mingdao Building, 131 Dong An Road, Shanghai, 200032, China.
| |
Collapse
|
155
|
Social Isolation Stress Induces Anxious-Depressive-Like Behavior and Alterations of Neuroplasticity-Related Genes in Adult Male Mice. Neural Plast 2016; 2016:6212983. [PMID: 26881124 PMCID: PMC4736811 DOI: 10.1155/2016/6212983] [Citation(s) in RCA: 179] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 11/04/2015] [Accepted: 11/11/2015] [Indexed: 01/21/2023] Open
Abstract
Stress is a major risk factor in the onset of several neuropsychiatric disorders including anxiety and depression. Although several studies have shown that social isolation stress during postweaning period induces behavioral and brain molecular changes, the effects of social isolation on behavior during adulthood have been less characterized. Aim of this work was to investigate the relationship between the behavioral alterations and brain molecular changes induced by chronic social isolation stress in adult male mice. Plasma corticosterone levels and adrenal glands weight were also analyzed. Socially isolated (SI) mice showed higher locomotor activity, spent less time in the open field center, and displayed higher immobility time in the tail suspension test compared to group-housed (GH) mice. SI mice exhibited reduced plasma corticosterone levels and reduced difference between right and left adrenal glands. SI showed lower mRNA levels of the BDNF-7 splice variant, c-Fos, Arc, and Egr-1 in both hippocampus and prefrontal cortex compared to GH mice. Finally, SI mice exhibited selectively reduced mGluR1 and mGluR2 levels in the prefrontal cortex. Altogether, these results suggest that anxious- and depressive-like behavior induced by social isolation stress correlates with reduction of several neuroplasticity-related genes in the hippocampus and prefrontal cortex of adult male mice.
Collapse
|
156
|
Li J, Luo Y, Zhang R, Shi H, Zhu W, Shi J. Neuropeptide Trefoil Factor 3 Reverses Depressive-Like Behaviors by Activation of BDNF-ERK-CREB Signaling in Olfactory Bulbectomized Rats. Int J Mol Sci 2015; 16:28386-400. [PMID: 26633367 PMCID: PMC4691052 DOI: 10.3390/ijms161226105] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 11/16/2015] [Accepted: 11/17/2015] [Indexed: 12/18/2022] Open
Abstract
The trefoil factors (TFFs) are a family of three polypeptides, among which TFF1 and TFF3 are widely distributed in the central nervous system. Our previous study indicated that TFF3 was a potential rapid-onset antidepressant as it reversed the depressive-like behaviors induced by acute or chronic mild stress. In order to further identify the antidepressant-like effect of TFF3, we applied an olfactory bulbectomy (OB), a classic animal model of depression, in the present study. To elucidate the mechanism underlying the antidepressant-like activity of TFF3, we tested the role of brain-derived neurotrophic factor (BDNF)-extracellular signal-related kinase (ERK)-cyclic adenosine monophosphate response element binding protein (CREB) signaling in the hippocampus in the process. Chronic systemic administration of TFF3 (0.1 mg/kg, i.p.) for seven days not only produced a significant antidepressant-like efficacy in the OB paradigm, but also restored the expression of BDNF, pERK, and pCREB in the hippocampal CA3. Inhibition of BDNF or extracellular signal-related kinase (ERK) signaling in CA3 blocked the antidepressant-like activity of TFF3 in OB rats. Our findings further confirmed the therapeutic effect of TFF3 against depression and suggested that the normalization of the BDNF-ERK-CREB pathway was involved in the behavioral response of TFF3 for the treatment of depression.
Collapse
Affiliation(s)
- Jiali Li
- National Institute on Drug Dependence, Peking University, Beijing 100191, China.
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.
- Beijing Key Laboratory on Drug Dependence Research, Beijing 100191, China.
| | - Yixiao Luo
- National Institute on Drug Dependence, Peking University, Beijing 100191, China.
| | - Ruoxi Zhang
- National Institute on Drug Dependence, Peking University, Beijing 100191, China.
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.
- Beijing Key Laboratory on Drug Dependence Research, Beijing 100191, China.
| | - Haishui Shi
- National Institute on Drug Dependence, Peking University, Beijing 100191, China.
| | - Weili Zhu
- National Institute on Drug Dependence, Peking University, Beijing 100191, China.
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.
- Beijing Key Laboratory on Drug Dependence Research, Beijing 100191, China.
| | - Jie Shi
- National Institute on Drug Dependence, Peking University, Beijing 100191, China.
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.
- Beijing Key Laboratory on Drug Dependence Research, Beijing 100191, China.
- The State Key Laboratory of Natural and Biomimetic Drugs, Beijing 100191, China.
- Key Laboratory for Neuroscience of the Ministry of Education and Ministry of Public Healthy, Beijing 100191, China.
| |
Collapse
|
157
|
Li S, Papale LA, Zhang Q, Madrid A, Chen L, Chopra P, Keleş S, Jin P, Alisch RS. Genome-wide alterations in hippocampal 5-hydroxymethylcytosine links plasticity genes to acute stress. Neurobiol Dis 2015; 86:99-108. [PMID: 26598390 DOI: 10.1016/j.nbd.2015.11.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 11/11/2015] [Indexed: 12/15/2022] Open
Abstract
Environmental stress is among the most important contributors to increased susceptibility to develop psychiatric disorders, including anxiety and post-traumatic stress disorder. While even acute stress alters gene expression, the molecular mechanisms underlying these changes remain largely unknown. 5-hydroxymethylcytosine (5hmC) is a novel environmentally sensitive DNA modification that is highly enriched in post-mitotic neurons and is associated with active transcription of neuronal genes. Recently, we found a hippocampal increase of 5hmC in the glucocorticoid receptor gene (Nr3c1) following acute stress, warranting a deeper investigation of stress-related 5hmC levels. Here we used an established chemical labeling and affinity purification method coupled with high-throughput sequencing technology to generate the first genome-wide profile of hippocampal 5hmC following exposure to acute restraint stress and a one-hour recovery. This approach found a genome-wide disruption in 5hmC associated with acute stress response, primarily in genic regions, and identified known and potentially novel stress-related targets that have a significant enrichment for neuronal ontological functions. Integration of these data with hippocampal gene expression data from these same mice found stress-related hydroxymethylation correlated to altered transcript levels and sequence motif predictions indicated that 5hmC may function by mediating transcription factor binding to these transcripts. Together, these data reveal an environmental impact on this newly discovered epigenetic mark in the brain and represent a critical step toward understanding stress-related epigenetic mechanisms that alter gene expression and can lead to the development of psychiatric disorders.
Collapse
Affiliation(s)
- Sisi Li
- Department of Psychiatry University of Wisconsin, Madison, WI, USA; Neuroscience Training Program, University of Wisconsin, Madison, WI, USA
| | - Ligia A Papale
- Department of Psychiatry University of Wisconsin, Madison, WI, USA
| | - Qi Zhang
- Department Statistics, Biostatistics, and Medical Informatics, University of Wisconsin, Madison, WI, USA
| | - Andy Madrid
- Department of Psychiatry University of Wisconsin, Madison, WI, USA; Endocrinology and Reproductive Physiology Training Program, University of Wisconsin, Madison, WI, USA
| | - Li Chen
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Pankaj Chopra
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Sündüz Keleş
- Department Statistics, Biostatistics, and Medical Informatics, University of Wisconsin, Madison, WI, USA
| | - Peng Jin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Reid S Alisch
- Department of Psychiatry University of Wisconsin, Madison, WI, USA.
| |
Collapse
|
158
|
Soga T, Teo CH, Cham KL, Idris MM, Parhar IS. Early-Life Social Isolation Impairs the Gonadotropin-Inhibitory Hormone Neuronal Activity and Serotonergic System in Male Rats. Front Endocrinol (Lausanne) 2015; 6:172. [PMID: 26617573 PMCID: PMC4639717 DOI: 10.3389/fendo.2015.00172] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 10/26/2015] [Indexed: 12/15/2022] Open
Abstract
Social isolation in early life deregulates the serotonergic system of the brain, compromising reproductive function. Gonadotropin-inhibitory hormone (GnIH) neurons in the dorsomedial hypothalamic nucleus are critical to the inhibitory regulation of gonadotropin-releasing hormone neuronal activity in the brain and release of luteinizing hormone by the pituitary gland. Although GnIH responds to stress, the role of GnIH in social isolation-induced deregulation of the serotonin system and reproductive function remains unclear. We investigated the effect of social isolation in early life on the serotonergic-GnIH neuronal system using enhanced green fluorescent protein (EGFP)-tagged GnIH transgenic rats. Socially isolated rats were observed for anxious and depressive behaviors. Using immunohistochemistry, we examined c-Fos protein expression in EGFP-GnIH neurons in 9-week-old adult male rats after 6 weeks post-weaning isolation or group housing. We also inspected serotonergic fiber juxtapositions in EGFP-GnIH neurons in control and socially isolated male rats. Socially isolated rats exhibited anxious and depressive behaviors. The total number of EGFP-GnIH neurons was the same in control and socially isolated rats, but c-Fos expression in GnIH neurons was significantly reduced in socially isolated rats. Serotonin fiber juxtapositions on EGFP-GnIH neurons were also lower in socially isolated rats. In addition, levels of tryptophan hydroxylase mRNA expression in the dorsal raphe nucleus were significantly attenuated in these rats. These results suggest that social isolation in early-life results in lower serotonin levels, which reduce GnIH neuronal activity and may lead to reproductive failure.
Collapse
Affiliation(s)
- Tomoko Soga
- Brain Research Institute, School of Medicine and Health Sciences, Monash University, Selangor, Malaysia
| | - Chuin Hau Teo
- Brain Research Institute, School of Medicine and Health Sciences, Monash University, Selangor, Malaysia
| | - Kai Lin Cham
- Brain Research Institute, School of Medicine and Health Sciences, Monash University, Selangor, Malaysia
| | - Marshita Mohd Idris
- Brain Research Institute, School of Medicine and Health Sciences, Monash University, Selangor, Malaysia
| | - Ishwar S. Parhar
- Brain Research Institute, School of Medicine and Health Sciences, Monash University, Selangor, Malaysia
| |
Collapse
|
159
|
RGS9-2--controlled adaptations in the striatum determine the onset of action and efficacy of antidepressants in neuropathic pain states. Proc Natl Acad Sci U S A 2015; 112:E5088-97. [PMID: 26305935 DOI: 10.1073/pnas.1504283112] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The striatal protein Regulator of G-protein signaling 9-2 (RGS9-2) plays a key modulatory role in opioid, monoamine, and other G-protein-coupled receptor responses. Here, we use the murine spared-nerve injury model of neuropathic pain to investigate the mechanism by which RGS9-2 in the nucleus accumbens (NAc), a brain region involved in mood, reward, and motivation, modulates the actions of tricyclic antidepressants (TCAs). Prevention of RGS9-2 action in the NAc increases the efficacy of the TCA desipramine and dramatically accelerates its onset of action. By controlling the activation of effector molecules by G protein α and βγ subunits, RGS9-2 affects several protein interactions, phosphoprotein levels, and the function of the epigenetic modifier histone deacetylase 5, which are important for TCA responsiveness. Furthermore, information from RNA-sequencing analysis reveals that RGS9-2 in the NAc affects the expression of many genes known to be involved in nociception, analgesia, and antidepressant drug actions. Our findings provide novel information on NAc-specific cellular mechanisms that mediate the actions of TCAs in neuropathic pain states.
Collapse
|
160
|
Role of the Brain's Reward Circuitry in Depression: Transcriptional Mechanisms. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2015; 124:151-70. [PMID: 26472529 DOI: 10.1016/bs.irn.2015.07.003] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
Abstract
Increasing evidence supports an important role for the brain's reward circuitry in controlling mood under normal conditions and contributing importantly to the pathophysiology and symptomatology of a range of mood disorders, such as depression. Here we focus on the nucleus accumbens (NAc), a critical component of the brain's reward circuitry, in depression and other stress-related disorders. The prominence of anhedonia, reduced motivation, and decreased energy level in most individuals with depression supports the involvement of the NAc in these conditions. We concentrate on several transcription factors (CREB, ΔFosB, SRF, NFκB, and β-catenin), which are altered in the NAc in rodent depression models--and in some cases in the NAc of depressed humans, and which produce robust depression- or antidepressant-like effects when manipulated in the NAc in animal models. These studies of the NAc have established novel approaches toward modeling key symptoms of depression in animals and could enable the development of antidepressant medications with fundamentally new mechanisms of action.
Collapse
|
161
|
The change of spatial cognition ability in depression rat model and the possible association with down-regulated protein expression of TRPC6. Behav Brain Res 2015; 294:186-93. [PMID: 26248296 DOI: 10.1016/j.bbr.2015.07.062] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 07/30/2015] [Accepted: 07/31/2015] [Indexed: 11/24/2022]
Abstract
An increasing number of researches have focused on the cognitive changes in depression patients. Here, we observed impaired cognitive ability in a rat depression model along with down-regulated expression of canonical transient receptor potential 6 (TRPC6) protein. The cognitive defect could be rescued by treatment with hyperforin, which can invoke TRPC6 activation. This study was designed as following: rats were randomly divided into control, stressed and stressed+hyperforin groups. Chronic unpredictable stress combined with isolation rearing was applied on rats for three weeks, except for control group. Morris water maze was applied to evaluate spatial cognitive ability while long-term potentiation (LTP) was recorded to test the synaptic plasticity. Results showed that both spatial cognition and synaptic plasticity were impaired in stress group while improved after hyperforin treatment in stressed+hyperforin group, meanwhile, Western blot assay showed that TRPC6 expression was decreased in stressed group. The histological data also presented the decline of dendritic length, dendritic spine density and the number of excitatory synapses in stress group while they were increased in stressed+hyperforin group. These results suggest that there is a well potential of TRPC6 to become a new target for selecting promising new candidates as antidepressants with therapeutically effect on impaired cognition.
Collapse
|
162
|
Friedman AK, Han MH. The Use of Herpes Simplex Virus in Ex Vivo Slice Culture. CURRENT PROTOCOLS IN NEUROSCIENCE 2015; 72:4.36.1-4.36.7. [PMID: 26131662 PMCID: PMC4514517 DOI: 10.1002/0471142301.ns0436s72] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Herpes simplex virus (HSV) can be used for a wide range of genetic manipulations in ex vivo slices of central nervous system tissue from both young and adult rodents. The fast expression of the HSV viral-mediated gene transfer, which can be engineered to produce cell-type specificity, can be utilized in slice cultures for a variety of purposes over a 1- to 4-day period with spatial and temporal specificity. This protocol exploits the rapid expression of HSV viral vectors by utilizing slice culture for electrophysiological recordings, avoiding the need to do intracranial viral injections. Brain slice cultures maintain many aspects of in vivo biology, including functional local synaptic circuitry with preserved brain architecture, while allowing good experimental access and precise control of the extracellular environment, making them ideal platforms for quick access to evaluate expression effects of HSV viral-mediated gene transfer on the molecular and cellular properties of specific neurons. This protocol provides an easy way to study neuronal function following viral expression of a gene of interest.
Collapse
Affiliation(s)
- Allyson K. Friedman
- Department of Pharmacology and Systems Therapeutics, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave, New York, NY 10029
| | - Ming-Hu Han
- Department of Pharmacology and Systems Therapeutics, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave, New York, NY 10029, (212)-659-1729
| |
Collapse
|
163
|
Bagot RC, Labonté B, Peña CJ, Nestler EJ. Epigenetic signaling in psychiatric disorders: stress and depression. DIALOGUES IN CLINICAL NEUROSCIENCE 2015. [PMID: 25364280 PMCID: PMC4214172 DOI: 10.31887/dcns.2014.16.3/rbagot] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Psychiatric disorders are complex multifactorial disorders involving chronic alterations in neural circuit structure and function. While genetic factors play a role in the etiology of disorders such as depression, addiction, and schizophrenia, relatively high rates of discordance among identical twins clearly point to the importance of additional factors. Environmental factors, such as stress, play a major role in the psychiatric disorders by inducing stable changes in gene expression, neural circuit function, and ultimately behavior. Insults at the developmental stage and in adulthood appear to induce distinct maladaptations. Increasing evidence indicates that these sustained abnormalities are maintained by epigenetic modifications in specific brain regions. Indeed, transcriptional dysregulation and associated aberrant epigenetic regulation is a unifying theme in psychiatric disorders. Aspects of depression can be modeled in animals by inducing disease-like states through environmental manipulations, and these studies can provide a more general understanding of epigenetic mechanisms in psychiatric disorders. Understanding how environmental factors recruit the epigenetic machinery in animal models is providing new insights into disease mechanisms in humans.
Collapse
Affiliation(s)
- Rosemary C Bagot
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Benoit Labonté
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Catherine J Peña
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Eric J Nestler
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
164
|
Ménard C, Hodes GE, Russo SJ. Pathogenesis of depression: Insights from human and rodent studies. Neuroscience 2015; 321:138-162. [PMID: 26037806 DOI: 10.1016/j.neuroscience.2015.05.053] [Citation(s) in RCA: 368] [Impact Index Per Article: 40.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 05/14/2015] [Accepted: 05/21/2015] [Indexed: 12/30/2022]
Abstract
Major depressive disorder (MDD) will affect one out of every five people in their lifetime and is the leading cause of disability worldwide. Nevertheless, mechanisms associated with the pathogenesis of MDD have yet to be completely understood and current treatments remain ineffective in a large subset of patients. In this review, we summarize the most recent discoveries and insights for which parallel findings have been obtained in human depressed subjects and rodent models of mood disorders in order to examine the potential etiology of depression. These mechanisms range from synaptic plasticity mechanisms to epigenetics and the immune system where there is strong evidence to support a functional role in the development of specific depression symptomology. Ultimately we conclude by discussing how novel therapeutic strategies targeting central and peripheral processes might ultimately aid in the development of effective new treatments for MDD and related stress disorders.
Collapse
Affiliation(s)
- C Ménard
- Fishberg Department of Neuroscience and the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - G E Hodes
- Fishberg Department of Neuroscience and the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - S J Russo
- Fishberg Department of Neuroscience and the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
165
|
Shannonhouse JL, Grater DM, York D, Wellman PJ, Morgan C. Sex differences in motivational responses to dietary fat in Syrian hamsters. Physiol Behav 2015; 147:102-16. [PMID: 25896879 DOI: 10.1016/j.physbeh.2015.04.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 04/13/2015] [Accepted: 04/16/2015] [Indexed: 12/25/2022]
Abstract
Women are more likely than men to exhibit motivational disorders (e.g., anhedonia and anxiety) with limited treatment options, and to overconsume high-fat "comfort foods" to improve motivational disruptions. Unfortunately, neurobiological underpinnings for sex differences in motivational disruptions and their responses to dietary fat are poorly understood. To help bridge these fundamental knowledge gaps, we assessed behavioral and neurobiological responses to dietary fat in a hamster model of female-biased motivational lability. Relative to social housing, social separation reduced hedonic drive in a new behavioral assay, the reward investigational preference (RIP) test. Fluoxetine or desipramine treatment for 21, but not 7, days improved RIP test performance. Pharmacologic specificity in this test was shown by non-responsiveness to diazepam, tracazolate, propranolol, or naltrexone. In the anxiety-related feeding/exploration conflict (AFEC) test, social separation worsened latency to eat highly palatable food under anxiogenic conditions, but not in home cages. Social separation also reduced weight gain, food intake, and adiposity while elevating energy expenditure, assessed by caloric efficiency and indirect calorimetry. Furthermore, chronic high-fat feeding improved anhedonic and anxious responses to separation, particularly in females. In the motivation-influencing nucleus accumbens, females, but not males, exhibited a separation-induced anxiety-related decrease in Creb1 mRNA levels and an anhedonia-related decrease in ΔFosb mRNA levels. Consistent with its antidepressant- and anxiolytic-like effects on behavior, high-fat feeding elevated accumbal Creb1 and ΔFosb mRNA levels in females only. Another accumbal reward marker, Tlr4 mRNA, was elevated in females by high-fat feeding. These results show that social separation of hamsters provides a novel model of sex-dependent comorbid anhedonia, anxiety, and anorexia, and implicate accumbal CREB, ΔFosB, and TLR4. Moreover, the results validate a new assay for chronic antidepressant efficacy.
Collapse
Affiliation(s)
- John L Shannonhouse
- Institute for Neuroscience, Texas A&M University, College Station, TX 77843, United States
| | - Danielle M Grater
- Department of Psychiatry, Weill Cornell Medical College, New York, NY 10021, United States
| | - Daniel York
- Department of Psychiatry, Weill Cornell Medical College, New York, NY 10021, United States
| | - Paul J Wellman
- Department of Psychology, Texas A&M University, College Station, TX 77843, United States
| | - Caurnel Morgan
- Institute for Neuroscience, Texas A&M University, College Station, TX 77843, United States; Department of Psychiatry, Weill Cornell Medical College, New York, NY 10021, United States; Department of Nutrition & Food Science, Texas A&M University, College Station, TX 77843, United States; Intercollegiate Faculty of Nutrition, Texas A&M University, College Station, TX 77843, United States.
| |
Collapse
|
166
|
Venna VR, McCullough LD. Role of social factors on cell death, cerebral plasticity and recovery after stroke. Metab Brain Dis 2015; 30:497-506. [PMID: 24748365 PMCID: PMC4206683 DOI: 10.1007/s11011-014-9544-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 04/04/2014] [Indexed: 12/27/2022]
Abstract
Stroke is a serious global health care problem. It is now is the fourth leading cause of death and the primary cause of adult disability in the United States. Substantial evidence from both experimental and clinical studies has demonstrated that social isolation (SI) can increase stroke incidence and impair recovery. Epidemiological studies demonstrate that an increasing number of patients are living alone, and as the aging population increases, loneliness will only increase in prevalence. SI is increasingly identified as an independent risk factor for all-cause mortality. In contrast, individuals with high levels of social support exhibit more rapid and extensive functional and cognitive recovery after a wide variety of pathological insults, including stroke. Clinical data suggests that SI is an important risk factor for increased mortality and delayed functional recovery following ischemic stroke. Attesting to the importance of mortality and behavioral factors in stroke outcome is that these same effects can be reproduced in animal models of experimental stroke. This has allowed researchers to identify several mechanistic changes that occur with affiliative interactions. These include decreased systemic inflammation, elaboration of growth factors including brain derived neurotropic factor (BDNF), enhanced neurogenesis, and improved neuroimmune responsiveness in group housed animals. These may mediate the beneficial effects of social interaction on improving stroke recovery and reducing neuronal death. In this review we provide an overview of the effects of SI on ischemic injury and recovery and discuss their clinical and therapeutic implications.
Collapse
Affiliation(s)
- Venugopal Reddy Venna
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut 06030, USA
| | - Louise D. McCullough
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut 06030, USA
- Department of Neurology, 263 Farmington Avenue, Farmington, Connecticut 06030, USA
- The Stroke Center at Hartford Hospital, 85 Jefferson Street, Hartford Connecticut 06102, USA
| |
Collapse
|
167
|
Neuhofer D, Henstridge CM, Dudok B, Sepers M, Lassalle O, Katona I, Manzoni OJ. Functional and structural deficits at accumbens synapses in a mouse model of Fragile X. Front Cell Neurosci 2015; 9:100. [PMID: 25859182 PMCID: PMC4374460 DOI: 10.3389/fncel.2015.00100] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 03/07/2015] [Indexed: 12/26/2022] Open
Abstract
Fragile X is the most common cause of inherited intellectual disability and a leading cause of autism. The disease is caused by mutation of a single X-linked gene called fmr1 that codes for the Fragile X mental retardation protein (FMRP), a 71 kDa protein, which acts mainly as a translation inhibitor. Fragile X patients suffer from cognitive and emotional deficits that coincide with abnormalities in dendritic spines. Changes in spine morphology are often associated with altered excitatory transmission and long-term plasticity, the most prominent deficit in fmr1-/y mice. The nucleus accumbens, a central part of the mesocortico-limbic reward pathway, is now considered as a core structure in the control of social behaviors. Although the socio-affective impairments observed in Fragile X suggest dysfunctions in the accumbens, the impact of the lack of FMRP on accumbal synapses has scarcely been studied. Here we report for the first time a new spike timing-dependent plasticity paradigm that reliably triggers NMDAR-dependent long-term potentiation (LTP) of excitatory afferent inputs of medium spiny neurons (MSN) in the nucleus accumbens core region. Notably, we discovered that this LTP was completely absent in fmr1-/y mice. In the fmr1-/y accumbens intrinsic membrane properties of MSNs and basal excitatory neurotransmission remained intact in the fmr1-/y accumbens but the deficit in LTP was accompanied by an increase in evoked AMPA/NMDA ratio and a concomitant reduction of spontaneous NMDAR-mediated currents. In agreement with these physiological findings, we found significantly more filopodial spines in fmr1-/y mice by using an ultrastructural electron microscopic analysis of accumbens core medium spiny neuron spines. Surprisingly, spine elongation was specifically due to the longer longitudinal axis and larger area of spine necks, whereas spine head morphology and postsynaptic density size on spine heads remained unaffected in the fmr1-/y accumbens. These findings together reveal new structural and functional synaptic deficits in Fragile X.
Collapse
Affiliation(s)
- Daniela Neuhofer
- INSERM U901 Marseille, France ; INMED Marseille, France ; Université de Aix-Marseille, UMR S901 Marseille, France
| | - Christopher M Henstridge
- Momentum Laboratory of Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences Budapest, Hungary
| | - Barna Dudok
- Momentum Laboratory of Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences Budapest, Hungary ; School of Ph.D. Studies, Semmelweis University Budapest, Hungary
| | - Marja Sepers
- Department of Psychiatry, University of British Columbia Vancouver, Canada
| | - Olivier Lassalle
- INSERM U901 Marseille, France ; INMED Marseille, France ; Université de Aix-Marseille, UMR S901 Marseille, France
| | - István Katona
- Momentum Laboratory of Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences Budapest, Hungary
| | - Olivier J Manzoni
- INSERM U901 Marseille, France ; INMED Marseille, France ; Université de Aix-Marseille, UMR S901 Marseille, France
| |
Collapse
|
168
|
Cacioppo JT, Cacioppo S, Cole SW, Capitanio JP, Goossens L, Boomsma DI. Loneliness across phylogeny and a call for comparative studies and animal models. PERSPECTIVES ON PSYCHOLOGICAL SCIENCE 2015; 10:202-12. [PMID: 25910390 PMCID: PMC5090712 DOI: 10.1177/1745691614564876] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Loneliness typically refers to the feelings of distress and dysphoria resulting from a discrepancy between a person's desired and achieved levels of social relations, and there is now considerable evidence that loneliness is a risk factor for poor psychological and physical health. Loneliness has traditionally been conceptualized as a uniquely human phenomenon. However, over millions of years of evolution, efficient and manifold neural, hormonal, and molecular mechanisms have evolved for promoting companionship and mutual protection/assistance and for organizing adaptive responses when there is a significant discrepancy between the preferred and realized levels of social connection. We review evidence suggesting that loneliness is not a uniquely human phenomenon, but, instead, as a scientific construct, it represents a generally adaptive predisposition that can be found across phylogeny. Central to this argument is the premise that the brain is the key organ of social connections and processes. Comparative studies and animal models, particularly when integrated with human studies, have much to contribute to the understanding of loneliness and its underlying principles, mechanisms, consequences, and potential treatments.
Collapse
Affiliation(s)
- John T Cacioppo
- Center for Cognitive and Social Neuroscience, University of Chicago
| | - Stephanie Cacioppo
- Center for Cognitive and Social Neuroscience, University of Chicago Division of Biological Sciences, University of Chicago Pritzker School of Medicine
| | - Steven W Cole
- David Geffen School of Medicine, University of California, Los Angeles
| | | | - Luc Goossens
- School Psychology and Child and Adolescent Development, Katholieke Universiteit Leuven
| | | |
Collapse
|
169
|
Neuroplasticity underlying the comorbidity of pain and depression. Neural Plast 2015; 2015:504691. [PMID: 25810926 PMCID: PMC4355564 DOI: 10.1155/2015/504691] [Citation(s) in RCA: 160] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 02/10/2015] [Indexed: 02/07/2023] Open
Abstract
Acute pain induces depressed mood, and chronic pain is known to cause depression. Depression, meanwhile, can also adversely affect pain behaviors ranging from symptomology to treatment response. Pain and depression independently induce long-term plasticity in the central nervous system (CNS). Comorbid conditions, however, have distinct patterns of neural activation. We performed a review of the changes in neural circuitry and molecular signaling pathways that may underlie this complex relationship between pain and depression. We also discussed some of the current and future therapies that are based on this understanding of the CNS plasticity that occurs with pain and depression.
Collapse
|
170
|
Das SK, Barhwal K, Hota SK, Thakur MK, Srivastava RB. Disrupting monotony during social isolation stress prevents early development of anxiety and depression like traits in male rats. BMC Neurosci 2015; 16:2. [PMID: 25880744 PMCID: PMC4336522 DOI: 10.1186/s12868-015-0141-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 01/21/2015] [Indexed: 01/11/2023] Open
Abstract
Background Although there have been several reports on social isolation induced mood alterations, the independent contribution of monotonous environment in mediating mood alterations has been less studied. In view of the above, the present study is aimed at investigating the relative contribution of monotony towards mood alterations during isolation stress. Monotony was induced in a specially designed isolation chamber in male Sprague-Dawley rats in the presence or absence of isolation by housing animals singly (SH) or in pairs (PH). Novel objects were introduced to disrupt monotony in singly housed animals (SHNO) or paired housed animals (PHNO). Behavioural alterations were assessed using Open field test (OFT), Elevated Plus Maze (EPM) and Forced Swim Test (FST). Neuro-morphological changes in the CA3 region of hippocampus were studied by cresyl violet and golgi-cox staining. Hippocampal serotonin and 5-hydroxy indole acetic acid (5-HIAA) levels were estimated along with the expression of phospho-insulin like growth factor-1 receptor (pIGF-1R) and phospho cyclic AMP response-element binding protein (pCREB). Serotonin was depleted by administering Para-chlorophenylalanine (PCPA) to a separate PH group (PHPCPA), PHNO group (PHNOPCPA) and SHNO group (SHNOPCPA) to determine the role of serotonin in mediating monotony induced emotional mal-adaptations. Results The results showed anxiety and depression like traits in both PH and SH groups during behavioural test such as OFT, EPM and FST. Pyknosis along with decrease in apical dendritic arborization was observed in the CA3 region of SH group along with decrease in serotonin and reduced expression of pIGF-1R and pCREB. Disrupting monotony through intervention of novel objects in PHNO and SHNO groups ameliorated anxiety and depression like traits and augmented pIGF-1R along with increase in serotonin level. Depletion of hippocampal serotonin level by PCPA administration in PHNOPCPA and SHNOPCPA groups on the other hand resulted in altered mood state despite disruption of monotony by novel objects intervention. Conclusion The findings of our study suggest that monotonous environment independently contributes to impairment in mood state and disrupting monotony by intervention of novel objects during social isolation prevents mood disorders and emotional maladaptation through up regulation of hippocampal pIGF-1R and increase in serotonin.
Collapse
Affiliation(s)
- Saroj Kumar Das
- Experimental Biology Division, Defence Institute of High Altitude Research, Defence Research Development Organisation, Leh-Ladakh, C/O- 56 APO, Jammu and Kashmir, 901205, India.
| | - Kalpana Barhwal
- Experimental Biology Division, Defence Institute of High Altitude Research, Defence Research Development Organisation, Leh-Ladakh, C/O- 56 APO, Jammu and Kashmir, 901205, India.
| | - Sunil Kumar Hota
- Experimental Biology Division, Defence Institute of High Altitude Research, Defence Research Development Organisation, Leh-Ladakh, C/O- 56 APO, Jammu and Kashmir, 901205, India.
| | | | - Ravi Bihari Srivastava
- Experimental Biology Division, Defence Institute of High Altitude Research, Defence Research Development Organisation, Leh-Ladakh, C/O- 56 APO, Jammu and Kashmir, 901205, India.
| |
Collapse
|
171
|
Crofton EJ, Zhang Y, Green TA. Inoculation stress hypothesis of environmental enrichment. Neurosci Biobehav Rev 2015; 49:19-31. [PMID: 25449533 PMCID: PMC4305384 DOI: 10.1016/j.neubiorev.2014.11.017] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 10/28/2014] [Accepted: 11/21/2014] [Indexed: 01/28/2023]
Abstract
One hallmark of psychiatric conditions is the vast continuum of individual differences in susceptibility vs. resilience resulting from the interaction of genetic and environmental factors. The environmental enrichment paradigm is an animal model that is useful for studying a range of psychiatric conditions, including protective phenotypes in addiction and depression models. The major question is how environmental enrichment, a non-drug and non-surgical manipulation, can produce such robust individual differences in such a wide range of behaviors. This paper draws from a variety of published sources to outline a coherent hypothesis of inoculation stress as a factor producing the protective enrichment phenotypes. The basic tenet suggests that chronic mild stress from living in a complex environment and interacting non-aggressively with conspecifics can inoculate enriched rats against subsequent stressors and/or drugs of abuse. This paper reviews the enrichment phenotypes, mulls the fundamental nature of environmental enrichment vs. isolation, discusses the most appropriate control for environmental enrichment, and challenges the idea that cortisol/corticosterone equals stress. The intent of the inoculation stress hypothesis of environmental enrichment is to provide a scaffold with which to build testable hypotheses for the elucidation of the molecular mechanisms underlying these protective phenotypes and thus provide new therapeutic targets to treat psychiatric/neurological conditions.
Collapse
Affiliation(s)
- Elizabeth J Crofton
- Center for Addiction Research, Mitchell Center for Neurodegenerative Diseases, Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555, United States
| | - Yafang Zhang
- Center for Addiction Research, Mitchell Center for Neurodegenerative Diseases, Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555, United States
| | - Thomas A Green
- Center for Addiction Research, Mitchell Center for Neurodegenerative Diseases, Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555, United States.
| |
Collapse
|
172
|
Sominsky L, Fuller EA, Hodgson DM. Factors in Early-Life Programming of Reproductive Fitness. Neuroendocrinology 2015; 102:216-25. [PMID: 26043876 DOI: 10.1159/000431378] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 05/14/2015] [Indexed: 11/19/2022]
Abstract
Fertility rates have been declining worldwide, with a growing number of young women suffering from infertility. Infectious and inflammatory diseases are important causes of infertility, and recent evidence points to the critical role of the early-life microbial environment in developmental programming of adult reproductive fitness. Our laboratory and others have demonstrated that acute exposure to an immunological challenge early in life has a profound and prolonged impact on male and female reproductive development. This review presents evidence that perinatal exposure to immunological challenge by a bacterial endotoxin, lipopolysaccharide, acts at all levels of the hypothalamic-pituitary-gonadal axis, resulting in long-lasting changes in reproductive function, suggesting that disposition to infertility may begin early in life.
Collapse
Affiliation(s)
- Luba Sominsky
- Laboratory of Neuroimmunology, School of Psychology, Faculty of Science and IT, The University of Newcastle, Newcastle, N.S.W., Australia
| | | | | |
Collapse
|
173
|
Martynhak BJ, Kanazawa LKS, Messias do Nascimento G, Andreatini R. Social interaction with rat exposed to constant light during lactation prevents depressive-like behavior induced by constant light in adulthood. Neurosci Lett 2014; 588:7-11. [PMID: 25545554 DOI: 10.1016/j.neulet.2014.12.042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 12/02/2014] [Accepted: 12/19/2014] [Indexed: 11/17/2022]
Abstract
Circadian rhythm disruptions are often observed in depressed patients, and changes in the light/dark cycle promote depressive-like behavior in animal models. Prolonged exposure to constant light (LL) is known to lead to arrhythmicity of circadian locomotor activity and depressive-like behavior in rats. Interestingly, neonatal exposure to LL prevents both arrhythmicity and depressive behavior in adulthood. Arrhythmic rats under LL conditions that cohabitate with a rhythmic rat exhibit improvement in circadian rhythms. We tested whether such cohabitation also protects against LL-induced depressive-like behavior. Wistar rats were assigned to conditions of either neonatal constant light (neonatal-LL) on postnatal days 10-22 or a regular light/dark cycle (neonatal-LD). On day 45, the animals were assigned to three possible pair combinations. After a baseline sucrose preference test, half of the pairs were placed under LL conditions. Weekly sucrose preference tests were conducted to evaluate depressive-like behavior. The animals were isolated by an aluminum wall on the test day. At week 2 of LL, sucrose preference was reduced in neonatal-LD/neonatal-LD pairs of animals. At week 5, neonatal-LD/neonatal-LD pairs exhibited anhedonic-like behavior, but the pairs with at least one neonatal-LL rat did not. The LL cycle was returned to an LD cycle, and the neonatal-LD/neonatal-LD pairs exhibited a restoration of sucrose preference 2 weeks later. We conclude that social interaction can prevent depressive-like behavior induced by circadian rhythm disruption as long as one of the animals is more prone to present a strong rhythm.
Collapse
Affiliation(s)
- Bruno Jacson Martynhak
- Departamento de Farmacologia, Universidade Federal do Paraná Cel. Francisco H. dos Santos, Centro Politécnico, Curitiba, Paraná 81530-900, Brazil.
| | - Luiz Kae Sales Kanazawa
- Departamento de Farmacologia, Universidade Federal do Paraná Cel. Francisco H. dos Santos, Centro Politécnico, Curitiba, Paraná 81530-900, Brazil
| | - Guilherme Messias do Nascimento
- Departamento de Farmacologia, Universidade Federal do Paraná Cel. Francisco H. dos Santos, Centro Politécnico, Curitiba, Paraná 81530-900, Brazil
| | - Roberto Andreatini
- Departamento de Farmacologia, Universidade Federal do Paraná Cel. Francisco H. dos Santos, Centro Politécnico, Curitiba, Paraná 81530-900, Brazil
| |
Collapse
|
174
|
Citalopram Attenuates Tau Hyperphosphorylation and Spatial Memory Deficit Induced by Social Isolation Rearing in Middle-Aged Rats. J Mol Neurosci 2014; 56:145-53. [DOI: 10.1007/s12031-014-0475-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Accepted: 11/21/2014] [Indexed: 12/29/2022]
|
175
|
Gorshkov K, Zhang J. Visualization of cyclic nucleotide dynamics in neurons. Front Cell Neurosci 2014; 8:395. [PMID: 25538560 PMCID: PMC4255612 DOI: 10.3389/fncel.2014.00395] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 11/04/2014] [Indexed: 12/22/2022] Open
Abstract
The second messengers cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) transduce many neuromodulatory signals from hormones and neurotransmitters into specific functional outputs. Their production, degradation and signaling are spatiotemporally regulated to achieve high specificity in signal transduction. The development of genetically encodable fluorescent biosensors has provided researchers with useful tools to study these versatile second messengers and their downstream effectors with unparalleled spatial and temporal resolution in cultured cells and living animals. In this review, we introduce the general design of these fluorescent biosensors and describe several of them in more detail. Then we discuss a few examples of using cyclic nucleotide fluorescent biosensors to study regulation of neuronal function and finish with a discussion of advances in the field. Although there has been significant progress made in understanding how the specific signaling of cyclic nucleotide second messengers is achieved, the mechanistic details in complex cell types like neurons are only just beginning to surface. Current and future fluorescent protein reporters will be essential to elucidate the role of cyclic nucleotide signaling dynamics in the functions of individual neurons and their networks.
Collapse
Affiliation(s)
- Kirill Gorshkov
- Laboratory of Dr. Jin Zhang, Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine Baltimore, Maryland, USA
| | - Jin Zhang
- Laboratory of Dr. Jin Zhang, Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine Baltimore, Maryland, USA
| |
Collapse
|
176
|
Abstract
Social isolation has been recognized as a major risk factor for morbidity and mortality in humans for more than a quarter century. The brain is the key organ of social connections and processes, however, and the same objective social relationship can be experienced as caring and protective or as exploitive and isolating. We review evidence that the perception of social isolation (i.e., loneliness) impacts brain and behavior and is a risk factor for broad-based morbidity and mortality. However, the causal role of loneliness on neural mechanisms and mortality is difficult to test conclusively in humans. Mechanistic animal studies provide a lens through which to evaluate the neurological effects of a member of a social species living chronically on the social perimeter. Experimental studies show that social isolation produces significant changes in brain structures and processes in adult social animals. These effects are not uniform across the brain or across species but instead are most evident in brain regions that reflect differences in the functional demands of solitary versus social living for a particular species. The human and animal literatures have developed independently, however, and significant gaps also exist. The current review underscores the importance of integrating human and animal research to delineate the mechanisms through which social relationships impact the brain, health, and well-being.
Collapse
Affiliation(s)
- Stephanie Cacioppo
- High Performance Electrical NeuroImaging (HPEN) Laboratory of the Center for Cognitive and Social Neuroscience, and Department of Psychiatry and Behavioral Neuroscience, University of Chicago
| | - John P Capitanio
- California National Primate Research Center and Department of Psychology, University of California-Davis
| | - John T Cacioppo
- High Performance Electrical NeuroImaging (HPEN) Laboratory of the Center for Cognitive and Social Neuroscience, and Department of Psychiatry and Behavioral Neuroscience, University of Chicago
| |
Collapse
|
177
|
Donahue RJ, Muschamp JW, Russo SJ, Nestler EJ, Carlezon WA. Effects of striatal ΔFosB overexpression and ketamine on social defeat stress-induced anhedonia in mice. Biol Psychiatry 2014; 76:550-8. [PMID: 24495460 PMCID: PMC4087093 DOI: 10.1016/j.biopsych.2013.12.014] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 12/19/2013] [Accepted: 12/30/2013] [Indexed: 12/27/2022]
Abstract
BACKGROUND Chronic social defeat stress (CSDS) produces persistent behavioral adaptations in mice. In many behavioral assays, it can be difficult to determine if these adaptations reflect core signs of depression. We designed studies to characterize the effects of CSDS on sensitivity to reward because anhedonia (reduced sensitivity to reward) is a defining characteristic of depressive disorders in humans. We also examined the effects of striatal ΔFosB overexpression and the N-methyl-D-aspartate receptor antagonist ketamine, both of which promote resilience, on CSDS-induced alterations in reward function and social interaction. METHODS Intracranial self-stimulation (ICSS) was used to quantify CSDS-induced changes in reward function. Mice were implanted with lateral hypothalamic electrodes, and ICSS thresholds were measured after each of 10 daily CSDS sessions and during a 5-day recovery period. We also examined if acute intraperitoneal administration of ketamine (2.5-20 mg/kg) reverses CSDS-induced effects on reward or, in separate mice, social interaction. RESULTS ICSS thresholds were increased by CSDS, indicating decreases in the rewarding impact of lateral hypothalamic stimulation (anhedonia). This effect was attenuated in mice overexpressing ∆FosB in striatum, consistent with pro-resilient actions of this transcription factor. High, but not low, doses of ketamine administered after completion of the CSDS regimen attenuated social avoidance in defeated mice, although this effect was transient. Ketamine did not block CSDS-induced anhedonia in the ICSS test. CONCLUSIONS This study found that CSDS triggers persistent anhedonia and confirms that ΔFosB overexpression produces stress resilience. The findings of this study also indicate that acute administration of ketamine fails to attenuate CSDS-induced anhedonia despite reducing other depression-related behavioral abnormalities.
Collapse
Affiliation(s)
- Rachel J. Donahue
- Behavioral Genetics Laboratory, Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA 02478
| | - John W. Muschamp
- Behavioral Genetics Laboratory, Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA 02478
| | - Scott J. Russo
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029
| | - Eric J. Nestler
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029
| | - William A. Carlezon
- Behavioral Genetics Laboratory, Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA 02478
| |
Collapse
|
178
|
Wang H, Zhang Y, Qiao M. Mechanisms of extracellular signal-regulated kinase/cAMP response element-binding protein/brain-derived neurotrophic factor signal transduction pathway in depressive disorder. Neural Regen Res 2014; 8:843-52. [PMID: 25206732 PMCID: PMC4146087 DOI: 10.3969/j.issn.1673-5374.2013.09.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 01/20/2013] [Indexed: 01/05/2023] Open
Abstract
The extracellular signal-regulated kinase/cAMP response element-binding protein/brain-derived neurotrophic factor signal transduction pathway plays an important role in the mechanism of action of antidepressant drugs and has dominated recent studies on the pathogenesis of depression. In the present review we summarize the known roles of extracellular signal-regulated kinase, cAMP response element-binding protein and brain-derived neurotrophic factor in the pathogenesis of depression and in the mechanism of action of antidepressant medicines. The extracellular signal-regulated kinase/cAMP response element-binding protein/brain-derived neurotrophic factor pathway has potential to be used as a biological index to help diagnose depression, and as such it is considered as an important new target in the treatment of depression.
Collapse
Affiliation(s)
- Hongyan Wang
- Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong Province, China ; Taishan Medical University, Taian 271000, Shandong Province, China
| | - Yingquan Zhang
- Taian Hospital of Traditional Chinese Medicine, Taian 271000, Shandong Province, China
| | - Mingqi Qiao
- Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong Province, China
| |
Collapse
|
179
|
Müller I, Obata K, Richter-Levin G, Stork O. GAD65 haplodeficiency conveys resilience in animal models of stress-induced psychopathology. Front Behav Neurosci 2014; 8:265. [PMID: 25147515 PMCID: PMC4124590 DOI: 10.3389/fnbeh.2014.00265] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 07/17/2014] [Indexed: 12/19/2022] Open
Abstract
GABAergic mechanisms are critically involved in the control of fear and anxiety, but their role in the development of stress-induced psychopathologies, including post-traumatic stress disorder (PTSD) and mood disorders is not sufficiently understood. We studied these functions in two established mouse models of risk factors for stress-induced psychopathologies employing variable juvenile stress and/or social isolation. A battery of emotional tests in adulthood revealed the induction of contextually generalized fear, anxiety, hyperarousal and depression-like symptoms in these paradigms. These reflect the multitude and complexity of stress effects in human PTSD patients. With factor analysis we were able to identify parameters that reflect these different behavioral domains in stressed animals and thus provide a basis for an integrated scoring of affectedness more closely resembling the clinical situation than isolated parameters. To test the applicability of these models to genetic approaches we further tested the role of GABA using heterozygous mice with targeted mutation of the GABA synthesizing enzyme GAD65 [GAD65(+/−) mice], which show a delayed postnatal increase in tissue GABA content in limbic and cortical brain areas. Unexpectedly, GAD65(+/−) mice did not show changes in exploratory activity regardless of the stressor type and were after the variable juvenile stress procedure protected from the development of contextual generalization in an auditory fear conditioning experiment. Our data demonstrate the complex nature of behavioral alterations in rodent models of stress-related psychopathologies and suggest that GAD65 haplodeficiency, likely through its effect on the postnatal maturation of GABAergic transmission, conveys resilience to some of these stress-induced effects.
Collapse
Affiliation(s)
- Iris Müller
- Department of Genetics and Molecular Neurobiology, Institute of Biology, Otto-von-Guericke University Magdeburg, Germany
| | - Kunihiko Obata
- National Institute for Physiological Sciences Okazaki, Aichi, Japan
| | - Gal Richter-Levin
- Department of Neurobiology and Ethology and Department of Psychology, Institute for the Study of Affective Neuroscience, University of Haifa Haifa, Israel
| | - Oliver Stork
- Department of Genetics and Molecular Neurobiology, Institute of Biology, Otto-von-Guericke University Magdeburg, Germany ; Center for Behavioural Brain Sciences Magdeburg, Germany
| |
Collapse
|
180
|
Urbach YK, Raber KA, Canneva F, Plank AC, Andreasson T, Ponten H, Kullingsjö J, Nguyen HP, Riess O, von Hörsten S. Automated phenotyping and advanced data mining exemplified in rats transgenic for Huntington's disease. J Neurosci Methods 2014; 234:38-53. [PMID: 25020253 DOI: 10.1016/j.jneumeth.2014.06.017] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 06/13/2014] [Accepted: 06/16/2014] [Indexed: 02/05/2023]
Abstract
BACKGROUND The need for improving throughput, validity, and reliability in the behavioral characterization of rodents may benefit from integrating automated intra-home-cage-screening systems allowing the simultaneous detection of multiple behavioral and physiological parameters in parallel. NEW METHOD To test this hypothesis, transgenic Huntington's disease (tgHD) rats were repeatedly screened within phenotyping home-cages (PhenoMaster and IntelliCage for rats), where spontaneous activity, feeding, drinking, temperature, and metabolic performance were continuously measured. Cognition and emotionality were evaluated within the same environment by means of operant learning procedures and refined analysis of the behavioral display under conditions of novelty. This investigator-independent approach was further correlated with behavioral display of the animals in classical behavioral assays. Multivariate analysis (MVA) including Principle Component Analysis (PCA) and Partial Least Squares Discriminant Analysis (PLS-DA) was used to explore correlation patterns of variables within and across the two genotypes. RESULTS The automated systems traced previously undetected aspects in the phenotype of tgHD rats (circadian activity, energy metabolism, rearing), and out of those spontaneous free rearing correlated with individual performance in the accelerod test. PCA revealed a segregation by genotype in juvenile tgHD rats that differed from adult animals, being further resolved by PLS-DA detecting "temperature" (juvenile) and "rearing" (adult) as phenotypic key variables in the tgHD model. CONCLUSIONS Intra-home-cage phenotyping in combination with MVA, is capable of characterizing a complex phenotype by detecting novel physiological and behavioral markers with high sensitivity and standardization using fewer human resources. A broader application of automated systems for large-scale screening is encouraged.
Collapse
Affiliation(s)
- Yvonne K Urbach
- Experimental Therapy, Preclinical Experimental Center, Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Kerstin A Raber
- Experimental Therapy, Preclinical Experimental Center, Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Fabio Canneva
- Experimental Therapy, Preclinical Experimental Center, Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Anne-C Plank
- Experimental Therapy, Preclinical Experimental Center, Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Theresa Andreasson
- NeuroSearch Sweden AB, Arvid Wallgrens Backe 20, 41346 Gothenburg, Sweden
| | - Henrik Ponten
- NeuroSearch Sweden AB, Arvid Wallgrens Backe 20, 41346 Gothenburg, Sweden
| | - Johan Kullingsjö
- NeuroSearch Sweden AB, Arvid Wallgrens Backe 20, 41346 Gothenburg, Sweden
| | - Huu Phuc Nguyen
- Department of Medical Genetics, University of Tübingen, 72076 Tübingen, Germany
| | - Olaf Riess
- Department of Medical Genetics, University of Tübingen, 72076 Tübingen, Germany
| | - Stephan von Hörsten
- Experimental Therapy, Preclinical Experimental Center, Universitätsklinikum Erlangen, 91054 Erlangen, Germany.
| |
Collapse
|
181
|
Cyclin-dependent kinase 5 in the ventral tegmental area regulates depression-related behaviors. J Neurosci 2014; 34:6352-66. [PMID: 24790206 DOI: 10.1523/jneurosci.3673-13.2014] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Dopamine neurons in the ventral tegmental area (VTA) govern reward and motivation and dysregulated dopaminergic transmission may account for anhedonia and other symptoms of depression. Cyclin-dependent kinase 5 (Cdk5) is a proline-directed serine/threonine kinase that regulates a broad range of brain functions through phosphorylation of a myriad of substrates, including tyrosine hydroxylase (TH), the rate-limiting enzyme for dopamine synthesis. We investigated whether and how Cdk5 activity in VTA dopamine neurons regulated depression-related behaviors in mice. Using the Cre/LoxP system to selectively delete Cdk5 in the VTA or in midbrain dopamine neurons in Cdk5(loxP/loxP) mice, we showed that Cdk5 loss of function in the VTA induced anxiety- and depressive-like behaviors that were associated with decreases in TH phosphorylation at Ser31 and Ser40 in the VTA and dopamine release in its target region, the nucleus accumbens. The decreased phosphorylation of TH at Ser31 was a direct effect of Cdk5 deletion, whereas decreased phosphorylation of TH at Ser40 was likely caused by impaired cAMP/protein kinase A (PKA) signaling, because Cdk5 deletion decreased cAMP and phosphorylated cAMP response element-binding protein (p-CREB) levels in the VTA. Using Designer Receptors Exclusively Activated by Designer Drugs (DREADD) technology, we showed that selectively increasing cAMP levels in VTA dopamine neurons increased phosphorylation of TH at Ser40 and CREB at Ser133 and reversed behavioral deficits induced by Cdk5 deletion. The results suggest that Cdk5 in the VTA regulates cAMP/PKA signaling, dopaminergic neurotransmission, and depression-related behaviors.
Collapse
|
182
|
Koshiba M, Senoo A, Mimura K, Shirakawa Y, Karino G, Obara S, Ozawa S, Sekihara H, Fukushima Y, Ueda T, Kishino H, Tanaka T, Ishibashi H, Yamanouchi H, Yui K, Nakamura S. A cross-species socio-emotional behaviour development revealed by a multivariate analysis. Sci Rep 2014; 3:2630. [PMID: 24022241 PMCID: PMC6505395 DOI: 10.1038/srep02630] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 08/22/2013] [Indexed: 01/08/2023] Open
Abstract
Recent progress in affective neuroscience and social neurobiology has been propelled by neuro-imaging technology and epigenetic approach in neurobiology of animal behaviour. However, quantitative measurements of socio-emotional development remains lacking, though sensory-motor development has been extensively studied in terms of digitised imaging analysis. Here, we developed a method for socio-emotional behaviour measurement that is based on the video recordings under well-defined social context using animal models with variously social sensory interaction during development. The behaviour features digitized from the video recordings were visualised in a multivariate statistic space using principal component analysis. The clustering of the behaviour parameters suggested the existence of species- and stage-specific as well as cross-species behaviour modules. These modules were used to characterise the behaviour of children with or without autism spectrum disorders (ASDs). We found that socio-emotional behaviour is highly dependent on social context and the cross-species behaviour modules may predict neurobiological basis of ASDs.
Collapse
Affiliation(s)
- Mamiko Koshiba
- 1] Tokyo University of Agriculture and Technology, Tokyo, Japan [2] National Institute of Neuroscience, NCNP, Tokyo, Japan [3] Saitama Medical University, Saitama, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
183
|
Warren BL, Sial OK, Alcantara LF, Greenwood MA, Brewer JS, Rozofsky JP, Parise EM, Bolaños-Guzmán CA. Altered gene expression and spine density in nucleus accumbens of adolescent and adult male mice exposed to emotional and physical stress. Dev Neurosci 2014; 36:250-60. [PMID: 24943326 PMCID: PMC4125435 DOI: 10.1159/000362875] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 04/14/2014] [Indexed: 12/16/2022] Open
Abstract
Stressful early life experiences are implicated in lifelong health. However, little is known about the consequences of emotional stress (ES) or physical stress (PS) on neurobiology. Therefore, the following set of experiments was designed to assess changes in transcription and translation of key proteins within the nucleus accumbens (NAc). Male adolescent (postnatal day 35) or adult (8-week-old) mice were exposed to ES or PS using a witness social defeat paradigm. Then, 24 h after the last stress session, we measured levels of specific mRNAs and proteins within the NAc. Spine density was also assessed in separate groups of mice. Exposure to ES or PS disrupted extracellular signal-related kinase 2 (ERK2), reduced transcription of ΔFosB and had no effect on cAMP response element-binding protein (CREB) mRNA. Western blots revealed that exposure to ES or PS decreased ERK2 phosphorylation in adolescents, whereas the same stress regimen increased ERK2 phosphorylation in adults. Exposure to ES or PS had no effect on ΔFosB or CREB phosphorylation. ES and PS increased spine density in the NAc of adolescent exposed mice, but only exposure to PS increased spine density in adults. Together, these findings demonstrate that exposure to ES or PS is a potent stressor in adolescent and adult mice and can disturb the integrity of the NAc by altering transcription and translation of important signaling molecules in an age-dependent manner. Furthermore, exposure to ES and PS induces substantial synaptic plasticity of the NAc.
Collapse
Affiliation(s)
- Brandon L Warren
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL, 32306-4301
| | - Omar K. Sial
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL, 32306-4301
| | - Lyonna F. Alcantara
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL, 32306-4301
| | - Maria A. Greenwood
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL, 32306-4301
| | - Jacob S. Brewer
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL, 32306-4301
| | - John P. Rozofsky
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL, 32306-4301
| | - Eric M. Parise
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL, 32306-4301
| | - Carlos A. Bolaños-Guzmán
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL, 32306-4301
| |
Collapse
|
184
|
Shannonhouse JL, Fong LA, Clossen BL, Hairgrove RE, York DC, Walker BB, Hercules GW, Mertesdorf LM, Patel M, Morgan C. Female-biased anorexia and anxiety in the Syrian hamster. Physiol Behav 2014; 133:141-51. [DOI: 10.1016/j.physbeh.2014.05.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 05/07/2014] [Accepted: 05/16/2014] [Indexed: 01/26/2023]
|
185
|
Rodent models for compulsive alcohol intake. Alcohol 2014; 48:253-64. [PMID: 24731992 DOI: 10.1016/j.alcohol.2014.03.001] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 03/07/2014] [Accepted: 03/12/2014] [Indexed: 11/22/2022]
Abstract
Continued seeking and drinking of alcohol despite adverse legal, health, economic, and societal consequences is a central hallmark of human alcohol use disorders. This compulsive drive for alcohol, defined by resistance to adverse and deleterious consequences, represents a major challenge when attempting to treat alcoholism clinically. Thus, there has long been interest in developing pre-clinical rodent models for the compulsive drug use that characterizes drug addiction. Here, we review recent studies that have attempted to model compulsive aspects of alcohol and cocaine intake in rodents, and consider technical and conceptual issues that need to be addressed when trying to recapitulate compulsive aspects of human addiction. Aversion-resistant alcohol intake has been examined by pairing intake or seeking with the bitter tastant quinine or with footshock, and exciting recent work has used these models to identify neuroadaptations in the amygdala, cortex, and striatal regions that promote compulsive intake. Thus, rodent models do seem to reflect important aspects of compulsive drives that sustain human addiction, and will likely provide critical insights into the molecular and circuit underpinnings of aversion-resistant intake as well as novel therapeutic interventions for compulsive aspects of addiction.
Collapse
|
186
|
Friedman AK, Walsh JJ, Juarez B, Ku SM, Chaudhury D, Wang J, Li X, Dietz DM, Pan N, Vialou VF, Neve RL, Yue Z, Han MH. Enhancing depression mechanisms in midbrain dopamine neurons achieves homeostatic resilience. Science 2014; 344:313-9. [PMID: 24744379 PMCID: PMC4334447 DOI: 10.1126/science.1249240] [Citation(s) in RCA: 332] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Typical therapies try to reverse pathogenic mechanisms. Here, we describe treatment effects achieved by enhancing depression-causing mechanisms in ventral tegmental area (VTA) dopamine (DA) neurons. In a social defeat stress model of depression, depressed (susceptible) mice display hyperactivity of VTA DA neurons, caused by an up-regulated hyperpolarization-activated current (I(h)). Mice resilient to social defeat stress, however, exhibit stable normal firing of these neurons. Unexpectedly, resilient mice had an even larger I(h), which was observed in parallel with increased potassium (K(+)) channel currents. Experimentally further enhancing Ih or optogenetically increasing the hyperactivity of VTA DA neurons in susceptible mice completely reversed depression-related behaviors, an antidepressant effect achieved through resilience-like, projection-specific homeostatic plasticity. These results indicate a potential therapeutic path of promoting natural resilience for depression treatment.
Collapse
Affiliation(s)
- Allyson K. Friedman
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jessica J. Walsh
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Neuroscience Program, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Barbara Juarez
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Neuroscience Program, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Stacy M. Ku
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Neuroscience Program, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Dipesh Chaudhury
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jing Wang
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Xianting Li
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - David M. Dietz
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Nina Pan
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Vincent F. Vialou
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Rachael L. Neve
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Zhenyu Yue
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ming-Hu Han
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
187
|
Epigenetic signaling in psychiatric disorders. J Mol Biol 2014; 426:3389-412. [PMID: 24709417 DOI: 10.1016/j.jmb.2014.03.016] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 03/28/2014] [Accepted: 03/31/2014] [Indexed: 01/10/2023]
Abstract
Psychiatric disorders are complex multifactorial illnesses involving chronic alterations in neural circuit structure and function. While genetic factors are important in the etiology of disorders such as depression and addiction, relatively high rates of discordance among identical twins clearly indicate the importance of additional mechanisms. Environmental factors such as stress or prior drug exposure are known to play a role in the onset of these illnesses. Such exposure to environmental insults induces stable changes in gene expression, neural circuit function, and ultimately behavior, and these maladaptations appear distinct between developmental and adult exposures. Increasing evidence indicates that these sustained abnormalities are maintained by epigenetic modifications in specific brain regions. Indeed, transcriptional dysregulation and associated aberrant epigenetic regulation is a unifying theme in psychiatric disorders. Aspects of depression and addiction can be modeled in animals by inducing disease-like states through environmental manipulations (e.g., chronic stress, drug administration). Understanding how environmental factors recruit the epigenetic machinery in animal models reveals new insight into disease mechanisms in humans.
Collapse
|
188
|
Alcantara LF, Warren BL, Parise EM, Iñiguez SD, Bolaños-Guzmán CA. Effects of psychotropic drugs on second messenger signaling and preference for nicotine in juvenile male mice. Psychopharmacology (Berl) 2014; 231:1479-92. [PMID: 24452697 PMCID: PMC5534174 DOI: 10.1007/s00213-014-3434-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 12/30/2013] [Indexed: 01/18/2023]
Abstract
RATIONALE A common treatment strategy for pediatric attention deficit/hyperactivity disorder (ADHD) and major depressive disorder (MDD) is combined methylphenidate (MPH) and fluoxetine (FLX). This has raised concerns because MPH + FLX treatment may have pharmacodynamic properties similar to cocaine, potentially increasing drug abuse liability. OBJECTIVES To examine the short- and long-term consequences of repeated vehicle, MPH, FLX, MPH + FLX, and cocaine treatment on gene expression in juvenile (postnatal days [PD] 20-34) and adult (PD 70-84) male mice. We further assessed whether juvenile drug treatment influenced subsequent sensitivity for nicotine in adulthood. METHODS Juvenile and adult C57BL/6J mice received vehicle, MPH, FLX, MPH + FLX, or cocaine twice-daily for 15 consecutive days. Mice were sacrificed 24 h or 2 months after the last drug injection to assess drug-induced effects on the extracellular signal-regulated protein kinase-1/2 (ERK) pathway within the ventral tegmental area. Subsequent sensitivity for nicotine (0.05, 0.07, and 0.09 mg/kg) was measured using the place-conditioning paradigm (CPP) 24 h and 2 months after juvenile drug exposure. RESULTS MPH + FLX, or cocaine exposure in juvenile mice increased mRNA expression of ERK2 and its downstream targets (CREB, cFos, and Zif268), and increased protein phosphorylation of ERK2 and CREB 2 months after drug exposure. Similar mRNA findings were observed in the adult-treated mice. Findings on gene expression 24 h following drug treatment were variable. Juvenile drug exposure increased preference for nicotine when tested in adulthood. CONCLUSIONS Early-life MPH + FLX, or cocaine exposure similarly disrupts the ERK pathway, a signaling cascade implicated in motivation and mood regulation, and increases sensitivity for nicotine in adulthood.
Collapse
Affiliation(s)
- Lyonna F Alcantara
- Department of Psychology and Program in Neuroscience, Florida State University, 1107 West Call Street, Tallahassee, FL, 32306, USA
| | | | | | | | | |
Collapse
|
189
|
Abstract
INTRODUCTION The success of antidepressant research has long been challenged by a limited mechanistic understanding of depression pathogenesis and antidepressant treatment response. Progress in this field has thereby consistently been hindered by a lack of novel conceptual approaches and sophisticated experimental techniques to dissect the highly intricate neurobiology of depression. Using fresh approaches to investigate the cellular and molecular mechanisms underlying depression will thus be vital for discovery of novel antidepressant targets. AREAS COVERED This article provides an overview of some fundamental problems that depression research is currently facing and critically evaluates how these issues could be addressed by future research. It also discusses novel conceptual and technological advances in the field of neuroscience, particularly in regard to how they may help in providing unprecedented insight into the molecular mechanisms of depression pathogenesis. EXPERT OPINION Although progress in antidepressant drug discovery has been limited over recent years, modern innovations in neuroscience, molecular biology, genetics and bioinformatics are just beginning to revolutionize depression research and to reveal novel and promising treatment targets. Integrating findings from a range of relevant experimental models and using the most advanced technology will be vital for the future success of antidepressant drug discovery.
Collapse
Affiliation(s)
- Christoph Anacker
- McGill University, Douglas Mental Health University Institute , 6875 Boulevard La Salle, Montreal, Quebec, H4H 1R3 , Canada +1 514 761 6131 - 2503 ;
| |
Collapse
|
190
|
Kim KS, Kang YM, Kang Y, Park TS, Park HY, Kim YJ, Han BS, Kim CH, Lee CH, Ardayfio PA, Han PL, Jung BH, Kim KS. Pitx3 deficient mice as a genetic animal model of co-morbid depressive disorder and parkinsonism. Brain Res 2014; 1552:72-81. [DOI: 10.1016/j.brainres.2014.01.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 12/17/2013] [Accepted: 01/15/2014] [Indexed: 11/16/2022]
|
191
|
Iñiguez SD, Alcantara LF, Warren BL, Riggs LM, Parise EM, Vialou V, Wright KN, Dayrit G, Nieto SJ, Wilkinson MB, Lobo MK, Neve RL, Nestler EJ, Bolaños-Guzmán CA. Fluoxetine exposure during adolescence alters responses to aversive stimuli in adulthood. J Neurosci 2014; 34:1007-21. [PMID: 24431458 PMCID: PMC3891944 DOI: 10.1523/jneurosci.5725-12.2014] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 11/30/2013] [Accepted: 12/06/2013] [Indexed: 11/21/2022] Open
Abstract
The mechanisms underlying the enduring neurobiological consequences of antidepressant exposure during adolescence are poorly understood. Here, we assessed the long-term effects of exposure to fluoxetine (FLX), a selective serotonin reuptake inhibitor, during adolescence on behavioral reactivity to emotion-eliciting stimuli. We administered FLX (10 mg/kg, bi-daily, for 15 d) to male adolescent [postnatal day 35 (P35) to P49] C57BL/6 mice. Three weeks after treatment (P70), reactivity to aversive stimuli (i.e., social defeat stress, forced swimming, and elevated plus maze) was assessed. We also examined the effects of FLX on the expression of extracellular signal-regulated kinase (ERK) 1/2-related signaling within the ventral tegmental area (VTA) of adolescent mice and Sprague Dawley rats. Adolescent FLX exposure suppressed depression-like behavior, as measured by the social interaction and forced swim tests, while enhancing anxiety-like responses in the elevated plus maze in adulthood. This complex behavioral profile was accompanied by decreases in ERK2 mRNA and protein phosphorylation within the VTA, while stress alone resulted in opposite neurobiological effects. Pharmacological (U0126) inhibition, as well as virus-mediated downregulation of ERK within the VTA mimicked the antidepressant-like profile observed after juvenile FLX treatment. Conversely, overexpression of ERK2 induced a depressive-like response, regardless of FLX pre-exposure. These findings demonstrate that exposure to FLX during adolescence modulates responsiveness to emotion-eliciting stimuli in adulthood, at least partially, via long-lasting adaptations in ERK-related signaling within the VTA. Our results further delineate the role ERK plays in regulating mood-related behaviors across the lifespan.
Collapse
Affiliation(s)
- Sergio D. Iñiguez
- Department of Psychology, California State University, San Bernardino, California 92407
| | - Lyonna F. Alcantara
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, Florida 32306
| | - Brandon L. Warren
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, Florida 32306
| | - Lace M. Riggs
- Department of Psychology, California State University, San Bernardino, California 92407
| | - Eric M. Parise
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, Florida 32306
| | - Vincent Vialou
- Fishberg Department of Neuroscience, Mount Sinai School of Medicine, New York, New York 10029
| | - Katherine N. Wright
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, Florida 32306
| | - Genesis Dayrit
- Department of Psychology, California State University, San Bernardino, California 92407
| | - Steven J. Nieto
- Department of Psychology, California State University, San Bernardino, California 92407
| | - Matthew B. Wilkinson
- Fishberg Department of Neuroscience, Mount Sinai School of Medicine, New York, New York 10029
| | - Mary K. Lobo
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201, and
| | - Rachael L. Neve
- Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Eric J. Nestler
- Fishberg Department of Neuroscience, Mount Sinai School of Medicine, New York, New York 10029
| | - Carlos A. Bolaños-Guzmán
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, Florida 32306
| |
Collapse
|
192
|
Greenberg GD, Laman-Maharg A, Campi KL, Voigt H, Orr VN, Schaal L, Trainor BC. Sex differences in stress-induced social withdrawal: role of brain derived neurotrophic factor in the bed nucleus of the stria terminalis. Front Behav Neurosci 2014; 7:223. [PMID: 24409132 PMCID: PMC3885825 DOI: 10.3389/fnbeh.2013.00223] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 12/22/2013] [Indexed: 12/03/2022] Open
Abstract
Depression and anxiety disorders are more common in women than men, and little is known about the neurobiological mechanisms that contribute to this disparity. Recent data suggest that stress-induced changes in neurotrophins have opposing effects on behavior by acting in different brain networks. Social defeat has been an important approach for understanding neurotrophin action, but low female aggression levels in rats and mice have limited the application of these methods primarily to males. We examined the effects of social defeat in monogamous California mice (Peromyscus californicus), a species in which both males and females defend territories. We demonstrate that defeat stress increases mature brain-derived neurotrophic factor (BDNF) protein but not mRNA in the bed nucleus of the stria terminalis (BNST) in females but not males. Changes in BDNF protein were limited to anterior subregions of the BNST, and there were no changes in the adjacent nucleus accumbens (NAc). The effects of defeat on social withdrawal behavior and BDNF were reversed by chronic, low doses of the antidepressant sertraline. However, higher doses of sertraline restored social withdrawal and elevated BDNF levels. Acute treatment with a low dose of sertraline failed to reverse the effects of defeat. Infusions of the selective tyrosine-related kinase B receptor (TrkB) antagonist ANA-12 into the anterior BNST specifically increased social interaction in stressed females but had no effect on behavior in females naïve to defeat. These results suggest that stress-induced increases in BDNF in the anterior BNST contribute to the exaggerated social withdrawal phenotype observed in females.
Collapse
Affiliation(s)
- Gian D Greenberg
- Neuroscience Graduate Group, University of California Davis, CA, USA ; Department of Psychology, University of California Davis, CA, USA ; Center for Neuroscience, University of California Davis, CA, USA
| | - Abigail Laman-Maharg
- Neuroscience Graduate Group, University of California Davis, CA, USA ; Center for Neuroscience, University of California Davis, CA, USA
| | | | - Heather Voigt
- Department of Psychology, University of California Davis, CA, USA
| | - Veronica N Orr
- Department of Psychology, University of California Davis, CA, USA
| | - Leslie Schaal
- Department of Psychology, University of California Davis, CA, USA
| | - Brian C Trainor
- Neuroscience Graduate Group, University of California Davis, CA, USA ; Department of Psychology, University of California Davis, CA, USA ; Center for Neuroscience, University of California Davis, CA, USA
| |
Collapse
|
193
|
Regulator of calcineurin 1 modulates expression of innate anxiety and anxiogenic responses to selective serotonin reuptake inhibitor treatment. J Neurosci 2013; 33:16930-44. [PMID: 24155299 DOI: 10.1523/jneurosci.3513-12.2013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Regulator of calcineurin 1 (RCAN1) controls the activity of calcium/calmodulin-dependent phosphatase calcineurin (CaN), which has been implicated in human anxiety disorders. Previously, we reported that RCAN1 functioned as an inhibitor of CaN activity in the brain. However, we now find enhanced phosphorylation of a CaN substrate, cAMP response element-binding protein (CREB), in the brains of Rcan1 knock-out (KO) mice. Consistent with enhanced CREB activation, we also observe enhanced expression of a CREB transcriptional target, brain-derived neurotrophic factor (BDNF) in Rcan1 KO mice. We also discovered that RCAN1 deletion or blockade of RCAN1-CaN interaction reduced CaN and protein phosphatase-1 localization to nuclear-enriched protein fractions and promoted CREB activation. Because of the potential links between CREB, BDNF, and anxiety, we examined the role of RCAN1 in the expression of innate anxiety. Rcan1 KO mice displayed reduced anxiety in several tests of unconditioned anxiety. Acute pharmacological inhibition of CaN rescued these deficits while transgenic overexpression of human RCAN1 increased anxiety. Finally, we found that Rcan1 KO mice lacked the early anxiogenic response to the selective serotonin reuptake inhibitor (SSRI) fluoxetine and had improved latency for its therapeutic anxiolytic effects. Together, our study suggests that RCAN1 plays an important role in the expression of anxiety-related and SSRI-related behaviors through CaN-dependent signaling pathways. These results identify RCAN1 as a mediator of innate emotional states and possible therapeutic target for anxiety.
Collapse
|
194
|
Dynamic proteomics of nucleus accumbens in response to acute psychological stress in environmentally enriched and isolated rats. PLoS One 2013; 8:e73689. [PMID: 24040027 PMCID: PMC3767735 DOI: 10.1371/journal.pone.0073689] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 07/25/2013] [Indexed: 11/19/2022] Open
Abstract
Our prior research has shown that environmental enrichment (i.e. rats reared in an environment with novel objects, social contact with conspecifics) produces a protective antidepressant-like phenotype in rats and decreases neurobiological effects of acute psychological stress. Although CREB activity has been identified as a major player, the downstream molecular mechanisms remain largely unexplored. Thus, the current study investigates proteomic differences in the accumbens of rats raised in an enriched condition (EC) versus those raised in an isolated control condition (IC) under basal conditions and after 30 min of acute restraint stress. Results showed that under basal conditions, EC rats generally expressed less mitochondria-related proteins, particularly those involved in TCA cycle and electron transport compared to IC rats. After 30 min of acute stress, EC rats displayed increased expression of energy metabolism enzymes (among others) while IC rats exhibited decreased expression of similar proteins. Further, network and pathway analyses also identified links to AKT signaling proteins, 14-3-3 family proteins, heat-shock proteins, and ubiquitin-interacting proteins. The protein ENO1 showed marked differential expression and regulation; EC rats expressed higher levels under basal conditions that increased subsequent to stress, while the basal IC expression was lower and decreased further still after stress. The results of this study define differential protein expression in a protective rat model for major depression and additionally identify a dynamic and coordinated differential response to acute stress between the two groups. These results provide new avenues for exploration of the molecular determinants of depression and the response to acute stress.
Collapse
|
195
|
Stankiewicz AM, Swiergiel AH, Lisowski P. Epigenetics of stress adaptations in the brain. Brain Res Bull 2013; 98:76-92. [DOI: 10.1016/j.brainresbull.2013.07.003] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 07/04/2013] [Accepted: 07/06/2013] [Indexed: 02/07/2023]
|
196
|
Abstract
Mood disorders are common and debilitating conditions characterized in part by profound deficits in reward-related behavioural domains. A recent literature has identified important structural and functional alterations within the brain's reward circuitry--particularly in the ventral tegmental area-nucleus accumbens pathway--that are associated with symptoms such as anhedonia and aberrant reward-associated perception and memory. This Review synthesizes recent data from human and rodent studies from which emerges a circuit-level framework for understanding reward deficits in depression. We also discuss some of the molecular and cellular underpinnings of this framework, ranging from adaptations in glutamatergic synapses and neurotrophic factors to transcriptional and epigenetic mechanisms.
Collapse
Affiliation(s)
- Scott J Russo
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA. scott.russo@mssm. edu
| | | |
Collapse
|
197
|
Venzala E, García-García AL, Elizalde N, Tordera RM. Social vs. environmental stress models of depression from a behavioural and neurochemical approach. Eur Neuropsychopharmacol 2013; 23:697-708. [PMID: 22743048 DOI: 10.1016/j.euroneuro.2012.05.010] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 04/25/2012] [Accepted: 05/29/2012] [Indexed: 01/02/2023]
Abstract
Major depression is a mental disorder often preceded by exposure to chronic stress or stressful life events. Recently, animal models based on social conflict such as chronic social defeat stress (CSDS) are proposed to be more relevant to stress-induced human psychopathology compared to environmental models like the chronic mild stress (CMS). However, while CMS reproduces specifically core depressive symptoms such as anhedonia and helplessness, CSDS studies rely on the analysis of stress-induced social avoidance, addressing different neuropsychiatric disorders. Here, we study comparatively the two models from a behavioural and neurochemical approach and their possible relevance to human depression. Mice (C57BL/6) were exposed to CMS or CSDS for six weeks and ten days. Anhedonia was periodically evaluated. A battery of test applied during the fourth week after the stress procedure included motor activity, memory, anxiety, social interaction and helplessness. Subsequently, we examined glutamate, GABA, 5-HT and dopamine levels in the prefrontal cortex, hippocampus and brainstem. CMS induced a clear depressive-like profile including anhedonia, helplessness and memory impairment. CSDS induced anhedonia, hyperactivity, anxiety and social avoidance, signs also common to anxiety and posttraumatic stress disorders. While both models disrupted the excitatory inhibitory balance in the prefrontal cortex, CMS altered importantly this balance in the brainstem. Moreover, CSDS decreased dopamine in the prefrontal cortex and brainstem. We suggests that while depressive-like behaviours might be associated to altered aminoacid neurotransmission in cortical and brain stem areas, CSDS induced anxiety behaviours might be linked to specific alteration of dopaminergic pathways involved in rewarding processes.
Collapse
Affiliation(s)
- E Venzala
- Department of Pharmacology, University of Navarra, 31080 Pamplona, Spain
| | | | | | | |
Collapse
|
198
|
Abstract
CREB-responsive transcription has an important role in adaptive responses in all cells and tissue. In the nervous system, it has an essential and well established role in long-term memory formation throughout a diverse set of organisms. Activation of this transcription factor correlates with long-term memory formation and disruption of its activity interferes with this process. Most convincingly, augmenting CREB activity in a number of different systems enhances memory formation. In Drosophila, a sequence rearrangement in the original transgene used to enhance memory formation has been a source of confusion. This rearrangement prematurely terminates translation of the full-length protein, leaving the identity of the "enhancing molecule" unclear. In this report, we show that a naturally occurring, downstream, in-frame initiation codon is used to make a dCREB2 protein off of both transgenic and chromosomal substrates. This protein is a transcriptional activator and is responsible for memory enhancement. A number of parameters can affect enhancement, including the short-lived activity of the activator protein, and the time-of-day when induction and behavioral training occur. Our results reaffirm that overexpression of a dCREB2 activator can enhance memory formation and illustrate the complexity of this behavioral enhancement.
Collapse
|
199
|
Lammel S, Tye KM, Warden MR. Progress in understanding mood disorders: optogenetic dissection of neural circuits. GENES BRAIN AND BEHAVIOR 2013; 13:38-51. [PMID: 23682971 DOI: 10.1111/gbb.12049] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 04/22/2013] [Accepted: 05/14/2013] [Indexed: 12/13/2022]
Abstract
Major depression is characterized by a cluster of symptoms that includes hopelessness, low mood, feelings of worthlessness and inability to experience pleasure. The lifetime prevalence of major depression approaches 20%, yet current treatments are often inadequate both because of associated side effects and because they are ineffective for many people. In basic research, animal models are often used to study depression. Typically, experimental animals are exposed to acute or chronic stress to generate a variety of depression-like symptoms. Despite its clinical importance, very little is known about the cellular and neural circuits that mediate these symptoms. Recent advances in circuit-targeted approaches have provided new opportunities to study the neuropathology of mood disorders such as depression and anxiety. We review recent progress and highlight some studies that have begun tracing a functional neuronal circuit diagram that may prove essential in establishing novel treatment strategies in mood disorders. First, we shed light on the complexity of mesocorticolimbic dopamine (DA) responses to stress by discussing two recent studies reporting that optogenetic activation of midbrain DA neurons can induce or reverse depression-related behaviors. Second, we describe the role of the lateral habenula circuitry in the pathophysiology of depression. Finally, we discuss how the prefrontal cortex controls limbic and neuromodulatory circuits in mood disorders.
Collapse
Affiliation(s)
- S Lammel
- Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | | | | |
Collapse
|
200
|
Mimura K, Nakamura S, Koshiba M. A flexion period for attachment formation in isolated chicks to unfamiliar peers visualized in a developmental trajectory space through behavioral multivariate correlation analysis. Neurosci Lett 2013; 547:70-5. [PMID: 23689249 DOI: 10.1016/j.neulet.2013.05.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 03/02/2013] [Accepted: 05/01/2013] [Indexed: 11/18/2022]
Abstract
Attachment formation is crucial for social animals to survive in natural environments. Predisposition and imprinting mechanisms have been well documented as a process of con-specific affiliation development. However, it is unclear how neonatal stage attachment formation leads to juvenile peer sociality. Here we have developed an animal model (Gallus gallus domesticus) and a method of quantitative behavioral analysis, to study the developmental trajectory from postnatal day (P) 3 through to P21. Domestic chicks were raised in either group or isolated conditions and we focused on social behavior during a two-minute meeting context with unfamiliar group peers at P3, 7, 13, 16, and 21. Results showed that relative to isolated chicks, group reared chicks were more active behaviorally, when facing peers at P3 and that this activity declined slightly over development, up to P13. Isolated chicks that had not met any animals except humans, exhibited a major change in social behavior around P7, in particular, with increasing activity (head moving velocity and rotation velocity) and distress calls. This modulation disappeared after P13, suggesting the existence of a sensitive window for behavior toward peers around P7. These findings in isolated chicks suggest the maturation of new neuronal substrates for peer-social emotion and cognition, resulting in a new combination of behavioral modules.
Collapse
Affiliation(s)
- Koki Mimura
- Tokyo University of Agriculture and Technology, Tokyo, Japan
| | | | | |
Collapse
|