151
|
Nagavath R, Nukala SK, Sirassu N, Sagam RR, Manchal R, Paidakula S, Thirukovela NS. One-pot synthesis of some new regioselective 4β-pyrazolepodophyllotoxins as DNA topoisomerase-II targeting anticancer agents. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131724] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
152
|
Srinivas Reddy M, Swamy Thirukovela N, Narsimha S, Ravinder M, Kumar Nukala S. Synthesis of fused 1,2,3-triazoles of Clioquinol via sequential CuAAC and C H arylation; in vitro anticancer activity, in silico DNA topoisomerase II inhibitory activity and ADMET. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
153
|
Yeh YH, Tsai CC, Chen TW, Lee CH, Chang WJ, Hsieh MY, Li TK. Activation of multiple proteolysis systems contributes to acute cadmium cytotoxicity. Mol Cell Biochem 2022; 477:927-937. [PMID: 35088369 DOI: 10.1007/s11010-021-04298-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 11/04/2021] [Indexed: 11/29/2022]
Abstract
Cadmium exhibits both toxic and carcinogenic effects, and its cytotoxicity is linked to various cellular pathways, such as oxidative stress, ubiquitin-proteasome, and p53-mediated response pathways. The molecular mechanism(s) underlying cadmium cytotoxicity appears to be complex, but remains largely unclear. Here, we examined the effects of cadmium on the protein catabolism using two surrogate markers, DNA topoisomerases I and II alpha and its contribution to cytotoxicity. We have found that cadmium exposure induced time- and concentration-dependent decreases in the protein level of surrogate markers and therefore suggest that cadmium may be involved in proteolysis system activation. A pharmacological study further revealed the novel role(s) of these proteolytic activities and reactive oxygen species (ROS) in the cadmium-induced acute toxicity: (i) Proteasome inhibition only partially relieved the cadmium-induced proteolysis of topoisomerases; (ii) Moreover, we report for the first time that the activation of metalloproteases, serine proteases, and cysteine proteases contributes to the acute cadmium cytotoxicity; (iii) Consistent with the notion that both ROS generation and proteolysis system activation contribute to the cadmium-induced proteolysis and cytotoxicity, the scavenger N-acetylcysteine and aforementioned protease inhibition not only reduced the cadmium-induced topoisomerase degradation but also alleviated the cadmium-induced cell killing. Taken together, acute cadmium exposure may activate multiple proteolytic systems and ROS formation, subsequently leading to intracellular damage and cytotoxicity. Thus, our results provide a novel insight into potential action mechanism(s) by which cadmium exerts its cytotoxic effect and suggest potential strategies to prevent cadmium-associated acute toxicity.
Collapse
Affiliation(s)
- Yen-Hsiu Yeh
- Department and Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Room 709, No. 1, Section 1, Jen-Ai Road, Taipei, 10051, Taiwan
| | - Chia-Chih Tsai
- Department and Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Room 709, No. 1, Section 1, Jen-Ai Road, Taipei, 10051, Taiwan
| | - Tien-Wen Chen
- Department and Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Room 709, No. 1, Section 1, Jen-Ai Road, Taipei, 10051, Taiwan
| | - Chieh-Hua Lee
- Department and Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Room 709, No. 1, Section 1, Jen-Ai Road, Taipei, 10051, Taiwan
| | - Wei-Jer Chang
- Department and Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Room 709, No. 1, Section 1, Jen-Ai Road, Taipei, 10051, Taiwan
| | - Mei-Yi Hsieh
- Department and Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Room 709, No. 1, Section 1, Jen-Ai Road, Taipei, 10051, Taiwan
| | - Tsai-Kun Li
- Department and Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Room 709, No. 1, Section 1, Jen-Ai Road, Taipei, 10051, Taiwan. .,Centers for Genomic and Precision Medicine, National Taiwan University, Taipei, 10051, Taiwan. .,Center for Biotechnology, National Taiwan University, Taipei, 10051, Taiwan.
| |
Collapse
|
154
|
Zhang J, Yuan HJ, Zhu J, Gong S, Luo MJ, Tan JH. Topoisomerase II dysfunction causes metaphase I arrest by activating aurora B, SAC and MPF and prevents PB1 abscission in mouse oocytes†. Biol Reprod 2022; 106:900-909. [PMID: 35084021 DOI: 10.1093/biolre/ioac011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 11/02/2021] [Accepted: 01/13/2022] [Indexed: 11/14/2022] Open
Abstract
Oocyte aneuploidy is caused mainly by chromosome nondisjunction and/or unbalanced sister chromatid pre-division. Although studies in somatic cells have shown that topoisomerase II (TOP2) plays important roles in chromosome condensation and timely separation of centromeres, little is known about its role during oocyte meiosis. Furthermore, because VP-16, which is a TOP2 inhibitor and induces DNA double strand breaks, is often used for ovarian cancer chemotherapy, its effects on oocytes must be studied for ovarian cancer patients to recover ovarian function following chemotherapy. This study showed that inhibiting TOP2 with either ICRF-193 or VP-16 during meiosis I impaired chromatin condensation, chromosome alignment, TOP2α localization and caused metaphase I (MI) arrest and first polar body (PB1) abscission failure. Inhibiting or neutralizing either spindle assembly checkpoint (SAC), Aurora B or maturation-promoting factor (MPF) significantly abolished the effect of ICRF-193 or VP-16 on MI arrest. Treatment with ICRF-193 or VP-16 significantly activated MPF and SAC but the effect disappeared when Aurora B was inhibited. Most of the oocytes matured in the presence of ICRF-193 or VP-16 were arrested at MI, and only 11% to 27% showed PB1 protrusion. Furthermore, most of the PB1 protrusions formed in the presence of ICRF-193 or VP-16 were retracted after further culture for 7 h. In conclusion, TOP2 dysfunction causes MI arrest by activating Aurora B, SAC and MPF and it prevents PB1 abscission by promoting chromatin bridges.
Collapse
Affiliation(s)
- Jie Zhang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City 271018, P. R. China
| | - Hong-Jie Yuan
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City 271018, P. R. China
| | - Jiang Zhu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City 271018, P. R. China
| | - Shuai Gong
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City 271018, P. R. China
| | - Ming-Jiu Luo
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City 271018, P. R. China
| | - Jing-He Tan
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City 271018, P. R. China
| |
Collapse
|
155
|
Pandey S, Tripathi P, Parashar P, Maurya V, Malik MZ, Singh R, Yadav P, Tandon V. Synthesis and Biological Evaluation of Novel 1 H-Benzo[ d]imidazole Derivatives as Potential Anticancer Agents Targeting Human Topoisomerase I. ACS OMEGA 2022; 7:2861-2880. [PMID: 35097282 PMCID: PMC8793051 DOI: 10.1021/acsomega.1c05743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
Small molecules that modulate biological functions are targets of modern-day drug discovery efforts. A new series of novel 1H-benzo[d]imidazoles (BBZs) were designed and synthesized with different functional groups at the phenyl ring and variable lengths of the alkyl chain at the piperazine end as anticancer agents. We identified human topoisomerase I (Hu Topo I) as a probable target of these molecules through a computational study and DNA relaxation assay, a functional assay of the Hu Topo I enzyme. UV absorption, fluorescence, and circular dichroism spectroscopy were used to study interactions between BBZ and DNA. Out of 16 compounds, 11a, 12a, and 12b showed strong binding affinity and thermal stabilization of AT sequence-specific DNA. BBZs were screened against a panel of 60 human cancer cell lines at National Cancer Institute, USA. Most potent molecules 11a, 12a, and 12b showed 50% growth inhibition (GI50) in a concentration range from 0.16 to 3.6 μM cancer cells. Moreover, 12b showed 50% inhibition of the relaxation of DNA by Hu Topo I at 16 μM. Furthermore, flow cytometry revealed that 11a, 12a, and 12b cause prominent G2M arrest of cancer cells. In view of the above, we propose that 12b deserves to be further evaluated for its therapeutic use as an anticancer agent.
Collapse
Affiliation(s)
- Stuti Pandey
- Department
of Chemistry, University of Delhi, Delhi 110007, India
- Special
Centre for Molecular Medicine, Jawaharlal
Nehru University, New Delhi 110067, India
| | - Pragya Tripathi
- Special
Centre for Molecular Medicine, Jawaharlal
Nehru University, New Delhi 110067, India
| | - Palak Parashar
- Special
Centre for Molecular Medicine, Jawaharlal
Nehru University, New Delhi 110067, India
| | - Vikas Maurya
- Special
Centre for Molecular Medicine, Jawaharlal
Nehru University, New Delhi 110067, India
| | - Md. Zubbair Malik
- Special
Centre for Molecular Medicine, Jawaharlal
Nehru University, New Delhi 110067, India
| | - Raja Singh
- Special
Centre for Molecular Medicine, Jawaharlal
Nehru University, New Delhi 110067, India
| | - Pooja Yadav
- Special
Centre for Molecular Medicine, Jawaharlal
Nehru University, New Delhi 110067, India
| | - Vibha Tandon
- Special
Centre for Molecular Medicine, Jawaharlal
Nehru University, New Delhi 110067, India
| |
Collapse
|
156
|
Carvalhal S, Bader I, Rooimans MA, Oostra AB, Balk JA, Feichtinger RG, Beichler C, Speicher MR, van Hagen JM, Waisfisz Q, van Haelst M, Bruijn M, Tavares A, Mayr JA, Wolthuis RMF, Oliveira RA, de Lange J. Biallelic BUB1 mutations cause microcephaly, developmental delay, and variable effects on cohesion and chromosome segregation. SCIENCE ADVANCES 2022; 8:eabk0114. [PMID: 35044816 PMCID: PMC8769543 DOI: 10.1126/sciadv.abk0114] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 11/24/2021] [Indexed: 05/14/2023]
Abstract
Budding uninhibited by benzimidazoles (BUB1) contributes to multiple mitotic processes. Here, we describe the first two patients with biallelic BUB1 germline mutations, who both display microcephaly, intellectual disability, and several patient-specific features. The identified mutations cause variable degrees of reduced total protein level and kinase activity, leading to distinct mitotic defects. Both patients’ cells show prolonged mitosis duration, chromosome segregation errors, and an overall functional spindle assembly checkpoint. However, while BUB1 levels mostly affect BUBR1 kinetochore recruitment, impaired kinase activity prohibits centromeric recruitment of Aurora B, SGO1, and TOP2A, correlating with anaphase bridges, aneuploidy, and defective sister chromatid cohesion. We do not observe accelerated cohesion fatigue. We hypothesize that unresolved DNA catenanes increase cohesion strength, with concomitant increase in anaphase bridges. In conclusion, BUB1 mutations cause a neurodevelopmental disorder, with clinical and cellular phenotypes that partially resemble previously described syndromes, including autosomal recessive primary microcephaly, mosaic variegated aneuploidy, and cohesinopathies.
Collapse
Affiliation(s)
- Sara Carvalhal
- Instituto Gulbenkian de Ciência, R. Q.ta Grande 6, 2780-156 Oeiras, Portugal
- Algarve Biomedical Center Research Institute, Universidade do Algarve, 8005-139 Faro, Portugal
- Centre for Biomedical Research, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Ingrid Bader
- Unit of Clinical Genetics, Paracelsus Medical University, Salzburg, Austria
| | - Martin A. Rooimans
- Cancer Center Amsterdam, Amsterdam University Medical Centers, Oncogenetics Section, De Boelelaan 1118, 1081 HV Amsterdam, Netherlands
| | - Anneke B. Oostra
- Cancer Center Amsterdam, Amsterdam University Medical Centers, Oncogenetics Section, De Boelelaan 1118, 1081 HV Amsterdam, Netherlands
| | - Jesper A. Balk
- Cancer Center Amsterdam, Amsterdam University Medical Centers, Oncogenetics Section, De Boelelaan 1118, 1081 HV Amsterdam, Netherlands
| | - René G. Feichtinger
- Department of Pediatrics, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Christine Beichler
- Institute of Human Genetics, Diagnostic and Research Center for Molecular BioMedicine, Medical University of Graz, Graz, Austria
| | - Michael R. Speicher
- Institute of Human Genetics, Diagnostic and Research Center for Molecular BioMedicine, Medical University of Graz, Graz, Austria
| | - Johanna M. van Hagen
- Department of Clinical Genetics, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1118, 1081 HV Amsterdam, Netherlands
| | - Quinten Waisfisz
- Department of Clinical Genetics, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1118, 1081 HV Amsterdam, Netherlands
| | - Mieke van Haelst
- Department of Clinical Genetics, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1118, 1081 HV Amsterdam, Netherlands
| | - Martijn Bruijn
- Northwest Clinics, Wilhelminalaan 12, 1815 JD Alkmaar, Netherlands
| | - Alexandra Tavares
- Instituto Gulbenkian de Ciência, R. Q.ta Grande 6, 2780-156 Oeiras, Portugal
| | - Johannes A. Mayr
- Department of Pediatrics, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Rob M. F. Wolthuis
- Cancer Center Amsterdam, Amsterdam University Medical Centers, Oncogenetics Section, De Boelelaan 1118, 1081 HV Amsterdam, Netherlands
| | - Raquel A. Oliveira
- Instituto Gulbenkian de Ciência, R. Q.ta Grande 6, 2780-156 Oeiras, Portugal
| | - Job de Lange
- Cancer Center Amsterdam, Amsterdam University Medical Centers, Oncogenetics Section, De Boelelaan 1118, 1081 HV Amsterdam, Netherlands
| |
Collapse
|
157
|
Hyeraci M, Agnarelli L, Labella L, Marchetti F, Di Paolo ML, Samaritani S, Dalla Via L. trans-Dichloro(triphenylarsino)(N,N-dialkylamino)platinum(II) Complexes: In Search of New Scaffolds to Circumvent Cisplatin Resistance. Molecules 2022; 27:molecules27030644. [PMID: 35163916 PMCID: PMC8838190 DOI: 10.3390/molecules27030644] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/14/2022] [Accepted: 01/15/2022] [Indexed: 02/01/2023] Open
Abstract
The high incidence of the resistance phenomenon represents one of the most important limitations to the clinical usefulness of cisplatin as an anticancer drug. Notwithstanding the considerable efforts to solve this problem, the circumvention of cisplatin resistance remains a challenge in the treatment of cancer. In this work, the synthesis and characterization of two trans-dichloro(triphenylarsino)(N,N-dialkylamino)platinum(II) complexes (1 and 2) were described. The trypan blue exclusion assay demonstrated an interesting antiproliferative effect for complex 1 in ovarian carcinoma-resistant cells, A2780cis. Quantitative analysis performed by ICP-AES demonstrated a scarce ability to platinate DNA, and a significant intracellular accumulation. The investigation of the mechanism of action highlighted the ability of 1 to inhibit the relaxation of supercoiled plasmid DNA mediated by topoisomerase II and to stabilize the cleavable complex. Cytofluorimetric analyses indicated the activation of the apoptotic pathway and the mitochondrial membrane depolarization. Therefore, topoisomerase II and mitochondria could represent possible intracellular targets. The biological properties of 1 and 2 were compared to those of the related trans-dichloro(triphenylphosphino)(N,N-dialkylamino)platinum(II) complexes in order to draw structure–activity relationships useful to face the resistance phenotype.
Collapse
Affiliation(s)
- Mariafrancesca Hyeraci
- Department of Pharmaceutical and Pharmacological Sciences, Università degli Studi di Padova, Via F. Marzolo 5, 35131 Padova, Italy;
| | - Laura Agnarelli
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy; (L.A.); (L.L.); (F.M.); (S.S.)
| | - Luca Labella
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy; (L.A.); (L.L.); (F.M.); (S.S.)
- CISUP—Center for the Integration of Scientific Instruments, University of Pisa, 56126 Pisa, Italy
| | - Fabio Marchetti
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy; (L.A.); (L.L.); (F.M.); (S.S.)
| | - Maria Luisa Di Paolo
- Department of Molecular Medicine, Università degli Studi di Padova, Via G. Colombo 3, 35131 Padova, Italy;
| | - Simona Samaritani
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy; (L.A.); (L.L.); (F.M.); (S.S.)
- CISUP—Center for the Integration of Scientific Instruments, University of Pisa, 56126 Pisa, Italy
| | - Lisa Dalla Via
- Department of Pharmaceutical and Pharmacological Sciences, Università degli Studi di Padova, Via F. Marzolo 5, 35131 Padova, Italy;
- Correspondence: ; Tel.: +39-049-8275712
| |
Collapse
|
158
|
Xia D, Liu H, Cheng X, Maraswami M, Chen Y, Lv X. Recent Developments of Coumarin-based Hybrids in Drug Discovery. Curr Top Med Chem 2022; 22:269-283. [PMID: 34986774 DOI: 10.2174/1568026622666220105105450] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/23/2021] [Accepted: 12/05/2021] [Indexed: 11/22/2022]
Abstract
Coumarin scaffold is a highly significant O-heterocycle, namely benzopyran-2-ones, form an elite class of naturally occurring compounds that possess promising therapeutic perspectives. Based on its broad spectrum of biological activities, the privileged coumarin scaffold is applied to medicinal and pharmacological treatments by several rational design strategies and approaches. Structure-activity relationships of the coumarin-based hybrids with various bioactivity fragments revealed significant information toward the further development of highly potent and selective disorder therapeutic agents. The molecular docking studies between coumarins and critical therapeutic enzymes demonstrated mode of action by forming noncovalent interactions with more than one receptor, further rationally confirm information about structure-activity relationships. This review summarizes recent developments relating to coumarin-based hybrids with other pharmacophores aiming to numerous feasible therapeutic enzymatic targets to combat various therapeutic fields, including anticancer, antimicrobic, anti-Alzheimer, anti-inflammatory activities.
Collapse
Affiliation(s)
- Dongguo Xia
- School of Science, Anhui Agricultural University, 230036, Hefei, China
| | - Hao Liu
- School of Science, Anhui Agricultural University, 230036, Hefei, China
| | - Xiang Cheng
- School of Science, Anhui Agricultural University, 230036, Hefei, China
| | - Manikantha Maraswami
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore
| | - Yiting Chen
- Fujian Provincial University Engineering Research Center of Green Materials and Chemical Engineering, Minjiang University, 350108, Fuzhou, China
| | - Xianhai Lv
- School of Science, Anhui Agricultural University, 230036, Hefei, China
| |
Collapse
|
159
|
Das R, Sakaue T, Shivashankar GV, Prost J, Hiraiwa T. How enzymatic activity is involved in chromatin organization. eLife 2022; 11:79901. [PMID: 36472500 PMCID: PMC9810329 DOI: 10.7554/elife.79901] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 12/06/2022] [Indexed: 12/12/2022] Open
Abstract
Spatial organization of chromatin plays a critical role in genome regulation. Previously, various types of affinity mediators and enzymes have been attributed to regulate spatial organization of chromatin from a thermodynamics perspective. However, at the mechanistic level, enzymes act in their unique ways and perturb the chromatin. Here, we construct a polymer physics model following the mechanistic scheme of Topoisomerase-II, an enzyme resolving topological constraints of chromatin, and investigate how it affects interphase chromatin organization. Our computer simulations demonstrate Topoisomerase-II's ability to phase separate chromatin into eu- and heterochromatic regions with a characteristic wall-like organization of the euchromatic regions. We realized that the ability of the euchromatic regions to cross each other due to enzymatic activity of Topoisomerase-II induces this phase separation. This realization is based on the physical fact that partial absence of self-avoiding interaction can induce phase separation of a system into its self-avoiding and non-self-avoiding parts, which we reveal using a mean-field argument. Furthermore, motivated from recent experimental observations, we extend our model to a bidisperse setting and show that the characteristic features of the enzymatic activity-driven phase separation survive there. The existence of these robust characteristic features, even under the non-localized action of the enzyme, highlights the critical role of enzymatic activity in chromatin organization.
Collapse
Affiliation(s)
- Rakesh Das
- Mechanobiology Institute, National University of SingaporeSingaporeSingapore
| | - Takahiro Sakaue
- Department of Physics and Mathematics, Aoyama Gakuin UniversityKanagawaJapan
| | - GV Shivashankar
- ETH ZurichZurichSwitzerland,Paul Scherrer InstituteVilligenSwitzerland
| | - Jacques Prost
- Mechanobiology Institute, National University of SingaporeSingaporeSingapore,Laboratoire Physico Chimie Curie, Institut Curie, Paris Science et Lettres Research UniversityParisFrance
| | - Tetsuya Hiraiwa
- Mechanobiology Institute, National University of SingaporeSingaporeSingapore
| |
Collapse
|
160
|
Luan S, Gao Y, Liang X, Zhang L, Wu Q, Hu Y, Yin L, He C, Liu S. Aconitine linoleate, a natural lipo-diterpenoid alkaloid, stimulates anti-proliferative activity reversing doxorubicin resistance in MCF-7/ADR breast cancer cells as a selective topoisomerase IIα inhibitor. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2022; 395:65-76. [PMID: 34727218 DOI: 10.1007/s00210-021-02172-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 10/21/2021] [Indexed: 11/27/2022]
Abstract
Aconitine linoleate (1) is a lipo-diterpenoid alkaloid, isolated from Aconitum sinchiangense W. T. Wang. The study aimed at investigating the anti-proliferative efficacy and the underlying mechanisms of 1 against MCF-7 and MCF-7/ADR cells, as well as obvious the safety evaluation in vivo. The cytotoxic activities of 1 were measured in vitro. Also, we investigated the latent mechanism of 1 by cell cycle analysis in MCF-7/ADR cells and topo I and topo IIα inhibition assay. Molecular docking is done by Discovery Studio 3.5 and Autodock vina 1.1.2. Finally, the acute toxicity of 1 was detected on mice. 1 exhibited significant antitumor activity against both MCF-7 and MCF-7/ADR cells, with IC50 values of 7.58 and 7.02 μM, which is 2.38 times and 5.05 times more active, respectively than etoposide in both cell lines, and being 9.63 times more active than Adriamycin in MCF-7/ADR cell lines. The molecular docking and the topo inhibition test found that it is a selective inhibitor of topoisomerase IIα. Moreover, activation of the damage response pathway of the DNA leads to cell cycle arrest at the G0G1 phase. Furthermore, the in vivo acute toxicity of 1 in mice displayed lower toxicity than aconitine, with LD50 of 2.2 × 105 nmol/kg and only slight pathological changes in liver and lung tissue, 489 times safer than aconitine. In conclusion, compared with aconitine, 1 has more significant anti-proliferative activity against MCF-7 and MCF-7/ADR cells and greatly reduces in vivo toxicity, which suggests this kind of lipo-alkaloids is powerful and promising antitumor compounds for breast cancer.
Collapse
Affiliation(s)
- Shangxian Luan
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
| | - Yingying Gao
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
| | - Xiaoxia Liang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China.
| | - Li Zhang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
| | - Qiang Wu
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
| | - Yunkai Hu
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
| | - Lizi Yin
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
| | - Changliang He
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
| | - Shixi Liu
- School of Chemical Science and Technology, Yunnan University, Kunming, People's Republic of China
| |
Collapse
|
161
|
Welty S, Thathiah A, Levine AS. DNA Damage Increases Secreted Aβ40 and Aβ42 in Neuronal Progenitor Cells: Relevance to Alzheimer's Disease. J Alzheimers Dis 2022; 88:177-190. [PMID: 35570488 PMCID: PMC9277680 DOI: 10.3233/jad-220030] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2022] [Indexed: 01/12/2023]
Abstract
BACKGROUND Recent studies suggest a strong association between neuronal DNA damage, elevated levels of amyloid-β (Aβ), and regions of the brain that degenerate in Alzheimer's disease (AD). OBJECTIVE To investigate the nature of this association, we tested the hypothesis that extensive DNA damage leads to an increase in Aβ40 and Aβ42 generation. METHODS We utilized an immortalized human neuronal progenitor cell line (NPCs), ReN VM GA2. NPCs or 20 day differentiated neurons were treated with hydrogen peroxide or etoposide and allowed to recover for designated times. Sandwich ELISA was used to assess secreted Aβ40 and Aβ42. Western blotting, immunostaining, and neutral comet assay were used to evaluate the DNA damage response and processes indicative of AD pathology. RESULTS We determined that global hydrogen peroxide damage results in increased cellular Aβ40 and Aβ42 secretion 24 h after treatment in ReN GA2 NPCs. Similarly, DNA double strand break (DSB)-specific etoposide damage leads to increased Aβ40 and Aβ42 secretion 2 h and 4 h after treatment in ReN GA2 NPCs. In contrast, etoposide damage does not increase Aβ40 and Aβ42 secretion in post-mitotic ReN GA2 neurons. CONCLUSION These findings provide evidence that in our model, DNA damage is associated with an increase in Aβ secretion in neuronal progenitors, which may contribute to the early stages of neuronal pathology in AD.
Collapse
Affiliation(s)
- Starr Welty
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Amantha Thathiah
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- University of Pittsburgh Brain Institute, Pittsburgh, PA, USA
- Pittsburgh Institute of Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, USA
| | - Arthur Samuel Levine
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- University of Pittsburgh Brain Institute, Pittsburgh, PA, USA
| |
Collapse
|
162
|
Singh I, Luxami V, Choudhury D, Paul K. Synthesis and photobiological applications of naphthalimide-benzothiazole conjugates: cytotoxicity and topoisomerase IIα inhibition. RSC Adv 2021; 12:483-497. [PMID: 35424470 PMCID: PMC8694140 DOI: 10.1039/d1ra04148g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 11/01/2021] [Indexed: 12/14/2022] Open
Abstract
Conjugates of naphthalimide, benzothiazole, and indole moieties are synthesized that show excellent cytotoxicity against A549 (lung), MCF7 (breast), and HeLa (cervix) cancer cell lines with IC50 values in the range of 0.14–8.59 μM. Compounds 12 and 13 substituted with ethanolamine and propargyl groups reveal potent cytotoxicity towards A549 cancer cells with IC50 values of 140 and 310 nM, respectively. These compounds are further evaluated as potent inhibitors of human type IIα topoisomerase. These conjugates also reveal strong interaction towards human serum albumin (HSA) with binding constant values of 1.75 × 105 M−1 and 1.88 × 105 M−1, respectively, and formation of the stable complex at ground state with static quenching. Docking studies also confirm the effective interactions between conjugates and topoisomerase. Conjugates of naphthalimide, benzothiazole, and indole moieties are synthesized that show excellent cytotoxicity against A549 (lung), MCF7 (breast), and HeLa (cervix) cancer cell lines with IC50 values in the range of 0.14–8.59 μM.![]()
Collapse
Affiliation(s)
- Iqubal Singh
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology Patiala-147001 India
| | - Vijay Luxami
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology Patiala-147001 India
| | - Diptiman Choudhury
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology Patiala-147001 India
| | - Kamaldeep Paul
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology Patiala-147001 India
| |
Collapse
|
163
|
Porazzi P, Petruk S, Pagliaroli L, De Dominici M, Deming D, Puccetti MV, Kushinsky S, Kumar G, Minieri V, Barbieri E, Deliard S, Grande A, Trizzino M, Gardini A, Canaani E, Palmisiano N, Porcu P, Ertel A, Fortina PM, Eischen CM, Mazo A, Calabretta B. Targeting chemotherapy to de-condensed H3K27me3-marked chromatin of AML cells enhances leukemia suppression. Cancer Res 2021; 82:458-471. [PMID: 34903608 DOI: 10.1158/0008-5472.can-21-1297] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 09/15/2021] [Accepted: 12/03/2021] [Indexed: 11/16/2022]
Abstract
Despite treatment with intensive chemotherapy, acute myeloid leukemia (AML) remains an aggressive malignancy with a dismal outcome in most patients. We found that AML cells exhibit an unusually rapid accumulation of the repressive histone mark H3K27me3 on nascent DNA. In cell lines, primary cells and xenograft mouse models, inhibition of the H3K27 histone methyltransferase EZH2 to de-condense the H3K27me3-marked chromatin of AML cells enhanced chromatin accessibility and chemotherapy-induced DNA damage, apoptosis, and leukemia suppression. These effects were further promoted when chromatin de-condensation of AML cells was induced upon S-phase entry after release from a transient G1 arrest mediated by CDK4/6 inhibition. In the p53-null KG-1 and THP-1 AML cell lines, EZH2 inhibitor and doxorubicin co-treatment induced transcriptional reprogramming that was, in part, dependent on de-repression of H3K27me3-marked gene promoters and led to increased expression of cell death-promoting and growth-inhibitory genes. In conclusion, decondensing H3K27me3-marked chromatin by EZH2 inhibition represents a promising approach to improve the efficacy of DNA-damaging cytotoxic agents in AML patients. This strategy might allow for a lowering of chemotherapy doses with a consequent reduction of treatment-related side effects in elderly AML patients or those with significant comorbidities.
Collapse
Affiliation(s)
- Patrizia Porazzi
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University
| | - Svetlana Petruk
- Department of Biochemistry and Molecular Biology and Kimmel Cancer Center,, Thomas Jefferson University
| | - Luca Pagliaroli
- Department of Biochemistry and Molecular Biology and Sidney Kimmel Cancer Center,, Thomas Jefferson University
| | | | - David Deming
- Department of Biochemistry and Molecular Biology and Kimmel Cancer Center,, Thomas Jefferson University
| | - Matthew V Puccetti
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University
| | - Saul Kushinsky
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University
| | - Gaurav Kumar
- Department of Cancer Biology, Thomas Jefferson University
| | - Valentina Minieri
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University
| | - Elisa Barbieri
- Gene Expression and Regulation Program, The Wistar Institute
| | - Sandra Deliard
- Gene Expression and Regulation Program, The Wistar Institute
| | - Alexis Grande
- Department of Life Sciences, University of Modena and Reggio Emilia
| | - Marco Trizzino
- Department of Biochemistry and Molecular Biology and Kimmel Cancer Center,, Thomas Jefferson University
| | | | - Eli Canaani
- The Department of Molecular Cell Biology, Weizmann Institute of Science
| | | | | | - Adam Ertel
- Department of Cancer Biology, Thomas Jefferson University
| | | | | | - Alexander Mazo
- Department of Biochemistry and Molecular Biology and Kimmel Cancer Center,, Thomas Jefferson University
| | - Bruno Calabretta
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University
| |
Collapse
|
164
|
Zhang S, Liu X, Abdulmomen Ali Mohammed S, Li H, Cai W, Guan W, Liu D, Wei Y, Rong D, Fang Y, Haider F, Lv H, Jin Z, Chen X, Mo Z, Li L, Yang S, Wang H. Adaptor SH3BGRL drives autophagy-mediated chemoresistance through promoting PIK3C3 translation and ATG12 stability in breast cancers. Autophagy 2021; 18:1822-1840. [PMID: 34870550 PMCID: PMC9450985 DOI: 10.1080/15548627.2021.2002108] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Acquired chemotherapy resistance is one of the main culprits in the relapse of breast cancer. But the underlying mechanism of chemotherapy resistance remains elusive. Here, we demonstrate that a small adaptor protein, SH3BGRL, is not only elevated in the majority of breast cancer patients but also has relevance with the relapse and poor prognosis of breast cancer patients. Functionally, SH3BGRL upregulation enhances the chemoresistance of breast cancer cells to the first-line doxorubicin treatment through macroautophagic/autophagic protection. Mechanistically, SH3BGRL can unexpectedly bind to ribosomal subunits to enhance PIK3C3 translation efficiency and sustain ATG12 stability. Therefore, inhibition of autophagy or silence of PIK3C3 or ATG12 can effectively block the driving effect of SH3BGRL on doxorubicin resistance of breast cancer cells in vitro and in vivo. We also validate that SH3BGRL expression is positively correlated with that of PIK3C3 or ATG12, as well as the constitutive occurrence of autophagy in clinical breast cancer tissues. Taken together, our data reveal that SH3BGRL upregulation would be a key driver to the acquired chemotherapy resistance through autophagy enhancement in breast cancer while targeting SH3BGRL could be a potential therapeutic strategy against breast cancer. Abbreviations: ABCs: ATP-binding cassette transporters; Act D: actinomycin D; ACTB/β-actin: actin beta; ATG: autophagy-related; Baf A1: bafilomycin A1; CASP3: caspase 3; CHX: cycloheximide; CQ: chloroquine; Dox: doxorubicin; FBS: fetal bovine serum; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GEO: gene expression omnibus; GFP: green fluorescent protein; G6PD: glucose-6-phosphate dehydrogenase; GSEA: gene set enrichment analysis; IHC: immunochemistry; KEGG: Kyoto Encyclopedia of Genes and Genomes; MAP1LC3B/LC3B: microtubule-associated protein 1 light chain 3 beta; 3-MA: 3-methyladenine; mRNA: messenger RNA; PIK3C3: phosphatidylinositol 3-kinase catalytic subunit type 3; SH3BGRL: SH3 domain binding glutamate-rich protein-like; SQSTM1/p62: sequestosome 1; ULK1: unc-51 like autophagy activating kinase 1
Collapse
Affiliation(s)
- Shaoyang Zhang
- Centers for Translational Medicine Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xiufeng Liu
- Centers for Translational Medicine Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | | | - Hui Li
- Reproductive Medical Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wanhua Cai
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Wen Guan
- Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Daiyun Liu
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yanli Wei
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Dade Rong
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Ying Fang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Farhan Haider
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Haimei Lv
- Centers for Translational Medicine Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ziwei Jin
- Centers for Translational Medicine Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xiaomin Chen
- Department of Hematology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhuomao Mo
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory of Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Lujie Li
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Shulan Yang
- Centers for Translational Medicine Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Haihe Wang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Center for Stem Cell Biology and Tissue Engineering, Key Laboratory of Ministry of Education, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
165
|
Soltan OM, Shoman ME, Abdel-Aziz SA, Narumi A, Konno H, Abdel-Aziz M. Molecular hybrids: A five-year survey on structures of multiple targeted hybrids of protein kinase inhibitors for cancer therapy. Eur J Med Chem 2021; 225:113768. [PMID: 34450497 DOI: 10.1016/j.ejmech.2021.113768] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/23/2021] [Accepted: 08/08/2021] [Indexed: 02/07/2023]
Abstract
Protein kinases have grown over the past few years as a crucial target for different cancer types. With the multifactorial nature of cancer, and the fast development of drug resistance for conventional chemotherapeutics, a strategy for designing multi-target agents was suggested to potentially increase drug efficacy, minimize side effects and retain the proper pharmacokinetic properties. Kinase inhibitors were used extensively in such strategy. Different kinase inhibitor agents which target EGFR, VEGFR, c-Met, CDK, PDK and other targets were merged into hybrids with conventional chemotherapeutics such as tubulin polymerization and topoisomerase inhibitors. Other hybrids were designed gathering kinase inhibitors with targeted cancer therapy such as HDAC, PARP, HSP 90 inhibitors. Nitric oxide donor molecules were also merged with kinase inhibitors for cancer therapy. The current review presents the hybrids designed in the past five years discussing their design principles, results and highlights their future perspectives.
Collapse
Affiliation(s)
- Osama M Soltan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | - Mai E Shoman
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, 61519, Minia, Egypt.
| | - Salah A Abdel-Aziz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Deraya University, 61111, Minia, Egypt
| | - Atsushi Narumi
- Department of Organic Materials Science, Graduate School of Organic Materials Science, Yamagata University, Jonan 4-3-16, Yonezawa, 992-8510, Japan
| | - Hiroyuki Konno
- Department of Biological Engineering, Graduate School of Science and Engineering, Yamagata University, Jonan 4-3-16, Yonezawa, 992-8510, Japan
| | - Mohamed Abdel-Aziz
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, 61519, Minia, Egypt.
| |
Collapse
|
166
|
Dong Y, Sun X, Zhang K, He X, Zhang Q, Song H, Xu M, Lu H, Ren R. Type IIA topoisomerase (TOP2A) triggers epithelial-mesenchymal transition and facilitates HCC progression by regulating Snail expression. Bioengineered 2021; 12:12967-12979. [PMID: 34939898 PMCID: PMC8810028 DOI: 10.1080/21655979.2021.2012069] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 01/22/2023] Open
Abstract
Type IIA topoisomerase (TOP2A) is upregulated in hepatocellular carcinoma (HCC) and its expression is positively correlated with poor prognosis. However, the underlying molecular mechanism of this connection are poorly understood. Hence, the present work aimed to examine the possible mechanisms which may be useful in identifying a potential therapeutic strategy. The differential expression of TOP2A mRNA in HCC as compared with adjacent normal tissue was analyzed using the Oncomine database. The expression levels of TOP2A in HCC specimens and cell lines were assessed by Western blot and RT-qPCR. Stable cell lines were generated to knockdown or overexpress TOP2A, and then cell growth, migration, and invasion were analyzed. Furthermore, this study examined epithelial-mesenchymal transition (EMT) as well as the activation of related pathways. Additionally, the correlation between TOP2A levels and E-cadherin/Snail expression was determined in 72 HCC specimens. Higher expression levels of TOP2A were observed in HCC in Oncomine datasets, and the results were verified using 40 pairs of HCC specimens and peritumoral tissues. TOP2A expression levels were remarkably elevated in cells with great metastatic capacity. In addition, HCC cell growth, migration, and invasion were suppressed after TOP2A knockdown in MHCC97H cells (MHCC97H-shRNA-TOP2A), while these capabilities were promoted in TOP2A-overexpressing Hep3B cells (Hep3B-TOP2A). Furthermore, EMT was inhibited in MHCC97H-shRNA-TOP2A cells, but induced in Hep3B-TOP2A cells. The induction of EMT by TOP2A was shown to be mediated by Snail, as TOP2A promoted Snail expression through the p-ERK1/2/p-SMAD2 signaling pathway. TOP2A level showed a negative correlation with E-cadherin, whereas a positive correlation with that of vimentin and Snail in human HCC specimens by immunohistochemistry analyses. Kaplan-Meier survival curves revealed that TOP2A upregulation showed a positive correlation with poor prognosis patients. Taken together, TOP2A possibly enhances the metastasis of HCC by promoting EMT through the mediation of the p-ERK1/2/p-SMAD2/Snail pathway. This indicates that TOP2A maybe a potential factor to predict the prognosis of HCC.
Collapse
Affiliation(s)
- Yinying Dong
- Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao,PR China
| | - Xiangyin Sun
- Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao,PR China
| | - Kong Zhang
- Department of Intensive-care Unit, The Affiliated Hospital of Qingdao University, Qingdao, PR China
| | - Xinjia He
- Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao,PR China
| | - Qian Zhang
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao,PR China
| | - Hao Song
- Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao,PR China
| | - Mingjin Xu
- Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao,PR China
| | - Haijun Lu
- Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao,PR China
| | - Ruimei Ren
- Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao,PR China
| |
Collapse
|
167
|
Parra-Nunez P, Cooper C, Sanchez-Moran E. The Role of DNA Topoisomerase Binding Protein 1 (TopBP1) in Genome Stability in Arabidopsis. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10122568. [PMID: 34961037 PMCID: PMC8706423 DOI: 10.3390/plants10122568] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/19/2021] [Accepted: 11/23/2021] [Indexed: 05/17/2023]
Abstract
DNA topoisomerase II (TOPII) plays a very important role in DNA topology and in different biological processes such as DNA replication, transcription, repair, and chromosome condensation in higher eukaryotes. TOPII has been found to interact directly with a protein called topoisomerase II binding protein 1 (TopBP1) which also seems to have important roles in DNA replication and repair. In this study, we conducted different experiments to assess the roles of TopBP1 in DNA repair, mitosis, and meiosis, exploring the relationship between TOPII activity and TopBP1. We found that topbp1 mutant seedlings of Arabidopsis thaliana were hypersensitive to cisplatin treatment and the inhibition of TOPII with etoposide produced similar hypersensitivity levels. Furthermore, we recognised that there were no significant differences between the WT and topbp1 seedlings treated with cisplatin and etoposide together, suggesting that the hypersensitivity to cisplatin in the topbp1 mutant could be related to the functional interaction between TOPII and TopBP1. Somatic and meiotic anaphase bridges appeared in the topbp1 mutant at similar frequencies to those when TOPII was inhibited with merbarone, etoposide, or ICFR-187. The effects on meiosis of TOPII inhibition were produced at S phase/G2 stage, suggesting that catenanes could be produced at the onset of meiosis. Thus, if the processing of the catenanes is impaired, some anaphase bridges can be formed. Also, the appearance of anaphase bridges at first and second division is discussed.
Collapse
|
168
|
Yadav UP, Ansari AJ, Arora S, Joshi G, Singh T, Kaur H, Dogra N, Kumar R, Kumar S, Sawant DM, Singh S. Design, synthesis and anticancer activity of 2-arylimidazo[1,2-a]pyridinyl-3-amines. Bioorg Chem 2021; 118:105464. [PMID: 34785441 DOI: 10.1016/j.bioorg.2021.105464] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 12/13/2022]
Abstract
A series of imido-heterocycle compounds were designed, synthesized, characterized, and evaluated for the anticancer potential using breast (MCF-7 and MDA-MB-231), pancreatic (PANC-1), and colon (HCT-116 and HT-29) cancer cell lines and normal cells, while normal cells showed no toxicity. Among the screened compounds, 4h exhibited the best anticancer potential with IC50 values ranging from 1 to 5.5 μM. Compound 4h caused G2/M phase arrest and apoptosis in all the cell lines except MDA-MB-231 mammosphere formation was inhibited. In-vitro enzyme assay showed selective topoisomerase IIα inhibition by compound 4h, leading to DNA damage as observed by fluorescent staining. Cell signalling studies showed decreased expression of cell cycle promoting related proteins while apoptotic proteins were upregulated. Interestingly MDA-MB-231 cells showed only cytostatic effects upon treatment with compound 4h due to defective p53 status. Toxicity study using overexpression of dominant-negative mutant p53 in MCF-7 cells (which have wild type functional p53) showed that anticancer potential of compound 4h is positively correlated with p53 expression.
Collapse
Affiliation(s)
- Umesh Prasad Yadav
- Department of Human Genetics and Molecular Medicine, School of Health Sciences Central University of Punjab, Bathinda 151401, India; Department of Biochemistry, All India Institute of Medical Sciences, Patna, India
| | - Arshad J Ansari
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Ajmer 305817, India
| | - Sahil Arora
- Department of Pharmaceutical Sciences and Natural Products, School of Pharmaceutical Sciences, Central University of Punjab, Bathinda 151401, India
| | - Gaurav Joshi
- Department of Pharmaceutical Sciences and Natural Products, School of Pharmaceutical Sciences, Central University of Punjab, Bathinda 151401, India
| | - Tashvinder Singh
- Department of Human Genetics and Molecular Medicine, School of Health Sciences Central University of Punjab, Bathinda 151401, India
| | - Harsimrat Kaur
- Department of Human Genetics and Molecular Medicine, School of Health Sciences Central University of Punjab, Bathinda 151401, India
| | - Nilambra Dogra
- Centre for Systems Biology & Bioinformatics, Panjab University, Chandigarh 160014, India
| | - Raj Kumar
- Department of Pharmaceutical Sciences and Natural Products, School of Pharmaceutical Sciences, Central University of Punjab, Bathinda 151401, India.
| | - Santosh Kumar
- Department of Biochemistry, All India Institute of Medical Sciences, Patna, India.
| | - Devesh M Sawant
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Ajmer 305817, India.
| | - Sandeep Singh
- Department of Human Genetics and Molecular Medicine, School of Health Sciences Central University of Punjab, Bathinda 151401, India.
| |
Collapse
|
169
|
TOP2B's contributions to transcription. Biochem Soc Trans 2021; 49:2483-2493. [PMID: 34747992 DOI: 10.1042/bst20200454] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/07/2021] [Accepted: 10/11/2021] [Indexed: 12/23/2022]
Abstract
Transcription is regulated and mediated by multiprotein complexes in a chromatin context. Transcription causes changes in DNA topology which is modulated by DNA topoisomerases, enzymes that catalyse changes in DNA topology via transient breaking and re-joining of one or both strands of the phosphodiester backbone. Mammals have six DNA topoisomerases, this review focuses on one, DNA topoisomerase II beta (TOP2B). In the absence of TOP2B transcription of many developmentally regulated genes is altered. Long genes seem particularly susceptible to the lack of TOP2B. Biochemical studies of the role of TOP2B in transcription regulated by ligands such as nuclear hormones, growth factors and insulin has revealed PARP1 associated with TOP2B and also PRKDC, XRCC5 and XRCC6. Analysis of publicly available databases of protein interactions confirms these interactions and illustrates interactions with other key transcriptional regulators including TRIM28. TOP2B has been shown to interact with proteins involved in chromosome organisation including CTCF and RAD21. Comparison of publicly available Chip-seq datasets reveals the location at which these proteins interact with genes. The availability of resources such as large datasets of protein-protein interactions, e.g. BioGrid and IntAct and protein-DNA interactions such as Chip-seq in GEO enables scientists to extend models and propose new hypotheses.
Collapse
|
170
|
Repurposing of the ALK Inhibitor Crizotinib for Acute Leukemia and Multiple Myeloma Cells. Pharmaceuticals (Basel) 2021; 14:ph14111126. [PMID: 34832908 PMCID: PMC8617756 DOI: 10.3390/ph14111126] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 10/28/2021] [Accepted: 11/02/2021] [Indexed: 12/18/2022] Open
Abstract
Crizotinib was a first generation of ALK tyrosine kinase inhibitor approved for the treatment of ALK-positive non-small-cell lung carcinoma (NSCLC) patients. COMPARE and cluster analyses of transcriptomic data of the NCI cell line panel indicated that genes with different cellular functions regulated the sensitivity or resistance of cancer cells to crizotinib. Transcription factor binding motif analyses in gene promoters divulged two transcription factors possibly regulating the expression of these genes, i.e., RXRA and GATA1, which are important for leukemia and erythroid development, respectively. COMPARE analyses also implied that cell lines of various cancer types displayed varying degrees of sensitivity to crizotinib. Unexpectedly, leukemia but not lung cancer cells were the most sensitive cells among the different types of NCI cancer cell lines. Re-examining this result in another panel of cell lines indeed revealed that crizotinib exhibited potent cytotoxicity towards acute myeloid leukemia and multiple myeloma cells. P-glycoprotein-overexpressing CEM/ADR5000 leukemia cells were cross-resistant to crizotinib. NCI-H929 multiple myeloma cells were the most sensitive cells. Hence, we evaluated the mode of action of crizotinib on these cells. Although crizotinib is a TKI, it showed highest correlation rates with DNA topoisomerase II inhibitors and tubulin inhibitors. The altered gene expression profiles after crizotinib treatment predicted several networks, where TOP2A and genes related to cell cycle were downregulated. Cell cycle analyses showed that cells incubated with crizotinib for 24 h accumulated in the G2M phase. Crizotinib also increased the number of p-H3(Ser10)-positive NCI-H929 cells illustrating crizotinib's ability to prevent mitotic exit. However, cells accumulated in the sub-G0G1 fraction with longer incubation periods, indicating apoptosis induction. Additionally, crizotinib disassembled the tubulin network of U2OS cells expressing an α-tubulin-GFP fusion protein, preventing migration of cancer cells. This result was verified by in vitro tubulin polymerization assays. In silico molecular docking also revealed a strong binding affinity of crizotinib to the colchicine and Vinca alkaloid binding sites. Taken together, these results demonstrate that crizotinib destabilized microtubules. Additionally, the decatenation assay showed that crizotinib partwise inhibited the catalytic activity of DNA topoisomerase II. In conclusion, crizotinib exerted kinase-independent cytotoxic effects through the dual inhibition of tubulin polymerization and topoisomerase II and might be used to treat not only NSCLC but also multiple myeloma.
Collapse
|
171
|
Nucleolar translocation of human DNA topoisomerase II by ATP depletion and its disruption by the RNA polymerase I inhibitor BMH-21. Sci Rep 2021; 11:21533. [PMID: 34728715 PMCID: PMC8563764 DOI: 10.1038/s41598-021-00958-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 10/19/2021] [Indexed: 12/12/2022] Open
Abstract
DNA topoisomerase II (TOP2) is a nuclear protein that resolves DNA topological problems and plays critical roles in multiple nuclear processes. Human cells have two TOP2 proteins, TOP2A and TOP2B, that are localized in both the nucleoplasm and nucleolus. Previously, ATP depletion was shown to augment the nucleolar localization of TOP2B, but the molecular details of subnuclear distributions, particularly of TOP2A, remained to be fully elucidated in relation to the status of cellular ATP. Here, we analyzed the nuclear dynamics of human TOP2A and TOP2B in ATP-depleted cells. Both proteins rapidly translocated from the nucleoplasm to the nucleolus in response to ATP depletion. FRAP analysis demonstrated that they were highly mobile in the nucleoplasm and nucleolus. The nucleolar retention of both proteins was sensitive to the RNA polymerase I inhibitor BMH-21, and the TOP2 proteins in the nucleolus were immediately dispersed into the nucleoplasm by BMH-21. Under ATP-depleted conditions, the TOP2 poison etoposide was less effective, indicating the therapeutic relevance of TOP2 subnuclear distributions. These results give novel insights into the subnuclear dynamics of TOP2 in relation to cellular ATP levels and also provide discussions about its possible mechanisms and biological significance.
Collapse
|
172
|
Gonzalez-Buendia E, Zhao J, Wang L, Mukherjee S, Zhang D, Arrieta VA, Feldstein E, Kane JR, Kang SJ, Lee-Chang C, Mahajan A, Chen L, Realubit R, Karan C, Magnuson L, Horbinski C, Marshall SA, Sarkaria JN, Mohyeldin A, Nakano I, Bansal M, James CD, Brat DJ, Ahmed A, Canoll P, Rabadan R, Shilatifard A, Sonabend AM. TOP2B Enzymatic Activity on Promoters and Introns Modulates Multiple Oncogenes in Human Gliomas. Clin Cancer Res 2021; 27:5669-5680. [PMID: 34433651 PMCID: PMC8818263 DOI: 10.1158/1078-0432.ccr-21-0312] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/07/2021] [Accepted: 07/28/2021] [Indexed: 01/07/2023]
Abstract
PURPOSE The epigenetic mechanisms involved in transcriptional regulation leading to malignant phenotype in gliomas remains poorly understood. Topoisomerase IIB (TOP2B), an enzyme that decoils and releases torsional forces in DNA, is overexpressed in a subset of gliomas. Therefore, we investigated its role in epigenetic regulation in these tumors. EXPERIMENTAL DESIGN To investigate the role of TOP2B in epigenetic regulation in gliomas, we performed paired chromatin immunoprecipitation sequencing for TOP2B and RNA-sequencing analysis of glioma cell lines with and without TOP2B inhibition and in human glioma specimens. These experiments were complemented with assay for transposase-accessible chromatin using sequencing, gene silencing, and mouse xenograft experiments to investigate the function of TOP2B and its role in glioma phenotypes. RESULTS We discovered that TOP2B modulates transcription of multiple oncogenes in human gliomas. TOP2B regulated transcription only at sites where it was enzymatically active, but not at all native binding sites. In particular, TOP2B activity localized in enhancers, promoters, and introns of PDGFRA and MYC, facilitating their expression. TOP2B levels and genomic localization was associated with PDGFRA and MYC expression across glioma specimens, which was not seen in nontumoral human brain tissue. In vivo, TOP2B knockdown of human glioma intracranial implants prolonged survival and downregulated PDGFRA. CONCLUSIONS Our results indicate that TOP2B activity exerts a pleiotropic role in transcriptional regulation of oncogenes in a subset of gliomas promoting a proliferative phenotype.
Collapse
Affiliation(s)
- Edgar Gonzalez-Buendia
- Department of Neurosurgery, Feinberg School of Medicine, Northwestern University and Northwestern Medicine Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Junfei Zhao
- Department of Systems Biology, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York
| | - Lu Wang
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Subhas Mukherjee
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Daniel Zhang
- Department of Neurosurgery, Feinberg School of Medicine, Northwestern University and Northwestern Medicine Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Víctor A Arrieta
- Department of Neurosurgery, Feinberg School of Medicine, Northwestern University and Northwestern Medicine Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
- PECEM, Facultad de Medicina, Universidad Nacional Autónoma de México, México
| | - Eric Feldstein
- Department of Neurosurgery, Feinberg School of Medicine, Northwestern University and Northwestern Medicine Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - J Robert Kane
- Department of Neurosurgery, Feinberg School of Medicine, Northwestern University and Northwestern Medicine Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Seong Jae Kang
- Department of Neurosurgery, Feinberg School of Medicine, Northwestern University and Northwestern Medicine Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Catalina Lee-Chang
- Department of Neurosurgery, Feinberg School of Medicine, Northwestern University and Northwestern Medicine Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Aayushi Mahajan
- Department of Pathology and Cell Biology, Columbia University, New York, New York
| | - Li Chen
- Department of Neurosurgery, Feinberg School of Medicine, Northwestern University and Northwestern Medicine Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Ronald Realubit
- High-Throughput Screening Genome Center, Columbia University, New York, New York
| | - Charles Karan
- High-Throughput Screening Genome Center, Columbia University, New York, New York
| | - Lisa Magnuson
- Department of Neurosurgery, Feinberg School of Medicine, Northwestern University and Northwestern Medicine Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Craig Horbinski
- Department of Neurosurgery, Feinberg School of Medicine, Northwestern University and Northwestern Medicine Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Stacy A Marshall
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Jann N Sarkaria
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | - Ahmed Mohyeldin
- Department of Neurosurgery, Ohio State University, Columbus, Ohio
| | - Ichiro Nakano
- Department of Neurosurgery, University of Alabama, Birmingham, Alabama
| | - Mukesh Bansal
- Department of Systems Biology, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York
| | - Charles D James
- Department of Neurosurgery, Feinberg School of Medicine, Northwestern University and Northwestern Medicine Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Daniel J Brat
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Atique Ahmed
- Department of Neurosurgery, Feinberg School of Medicine, Northwestern University and Northwestern Medicine Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Peter Canoll
- Department of Pathology and Cell Biology, Columbia University, New York, New York
| | - Raul Rabadan
- Department of Systems Biology, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York
| | - Ali Shilatifard
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Adam M Sonabend
- Department of Neurosurgery, Feinberg School of Medicine, Northwestern University and Northwestern Medicine Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.
| |
Collapse
|
173
|
Dougherty A, Hawaz MG, Hoang KG, Trac J, Keck JM, Ayes C, Deweese JE. Exploration of the Role of the C-Terminal Domain of Human DNA Topoisomerase IIα in Catalytic Activity. ACS OMEGA 2021; 6:25892-25903. [PMID: 34660952 PMCID: PMC8515377 DOI: 10.1021/acsomega.1c02083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 09/15/2021] [Indexed: 06/13/2023]
Abstract
Human topoisomerase IIα (TOP2A) is a vital nuclear enzyme involved in resolving knots and tangles in DNA during replication and cell division. TOP2A is a homodimer with a symmetrical, multidomain structure. While the N-terminal and core regions of the protein are well-studied, the C-terminal domain is poorly understood but is involved in enzyme regulation and is predicted to be intrinsically disordered. In addition, it appears to be a major region of post-translational modification and includes several Ser and Thr residues, many of which have not been studied for biochemical effects. Therefore, we generated a series of human TOP2A mutants where we changed specific Ser and Thr residues in the C-terminal domain to Ala, Gly, or Ile residues. We designed, purified, and examined 11 mutant TOP2A enzymes. The amino acid changes were made between positions 1272 and 1525 with 1-7 residues changed per mutant. Several mutants displayed increased levels of DNA cleavage without displaying any change in plasmid DNA relaxation or DNA binding. For example, mutations in the regions 1272-1279, 1324-1343, 1351-1365, and 1374-1377 produced 2-3 times more DNA cleavage in the presence of etoposide than wild-type TOP2A. Further, several mutants displayed changes in relaxation and/or decatenation activity. Together, these results support previous findings that the C-terminal domain of TOP2A influences catalytic activity and interacts with the substrate DNA. Furthermore, we hypothesize that it may be possible to regulate the enzyme by targeting positions in the C-terminal domain. Because the C-terminal domain differs between the two human TOP2 isoforms, this strategy may provide a means for selectively targeting TOP2A for therapeutic inhibition. Additional studies are warranted to explore these results in more detail.
Collapse
Affiliation(s)
- Ashley
C. Dougherty
- Department
of Pharmaceutical Sciences, Lipscomb University
College of Pharmacy and Health Sciences, One University Park Drive, Nashville, Tennessee 37204-3951, United States
| | - Mariam G. Hawaz
- Department
of Pharmaceutical Sciences, Lipscomb University
College of Pharmacy and Health Sciences, One University Park Drive, Nashville, Tennessee 37204-3951, United States
| | - Kristine G. Hoang
- Department
of Pharmaceutical Sciences, Lipscomb University
College of Pharmacy and Health Sciences, One University Park Drive, Nashville, Tennessee 37204-3951, United States
| | - Judy Trac
- Department
of Pharmaceutical Sciences, Lipscomb University
College of Pharmacy and Health Sciences, One University Park Drive, Nashville, Tennessee 37204-3951, United States
| | - Jacob M. Keck
- Department
of Pharmaceutical Sciences, Lipscomb University
College of Pharmacy and Health Sciences, One University Park Drive, Nashville, Tennessee 37204-3951, United States
| | - Carmen Ayes
- Department
of Pharmaceutical Sciences, Lipscomb University
College of Pharmacy and Health Sciences, One University Park Drive, Nashville, Tennessee 37204-3951, United States
| | - Joseph E. Deweese
- Department
of Pharmaceutical Sciences, Lipscomb University
College of Pharmacy and Health Sciences, One University Park Drive, Nashville, Tennessee 37204-3951, United States
- Department
of Biochemistry, Vanderbilt University School
of Medicine, 2215 Garland
Avenue, Nashville, Tennessee 37232-0146, United States
| |
Collapse
|
174
|
Abstract
Topoisomerases are enzymes that play essential roles in DNA replication, transcription, chromosome segregation, and recombination. All cells have two major forms of DNA topoisomerases: type I enzymes, which make single-stranded cuts in DNA, and type II enzymes, which cut and decatenate double-stranded DNA. DNA topoisomerases are important targets of approved and experimental anti-cancer agents. Provided in this article are protocols to assess activities of topoisomerases and their inhibitors. Included are an assay for topoisomerase I activity based on relaxation of supercoiled DNA; an assay for topoisomerase II based on the decatenation of double-stranded DNA; and approaches for enriching and quantifying DNA-protein covalent complexes formed as obligatory intermediates in the reactions of type I and II topoisomerases with DNA; and assays for measuring DNA cleavage in vitro. Topoisomerases are not the only proteins that form covalent adducts with DNA in living cells, and the approaches described here are likely to find use in characterizing other protein-DNA adducts and exploring their utility as targets for therapy. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Assay of topoisomerase I activity Basic Protocol 2: Assay of topoisomerase II activity Basic Protocol 3: In vivo determination of topoisomerase covalent complexes using the in vivo complex of enzyme (ICE) assay Support Protocol 1: Preparation of mouse tissue for determination of topoisomerase covalent complexes using the ICE assay Support Protocol 2: Using recombinant topoisomerase standard for absolute quantification of cellular TOP2CC Basic Protocol 4: Quantification of topoisomerase-DNA covalent complexes by RADAR/ELISA: The rapid approach to DNA adduct recovery (RADAR) combined with the enzyme-linked immunosorbent assay (ELISA) Basic Protocol 5: Analysis of protein-DNA covalent complexes by RADAR/Western Support Protocol 3: Adduct-Seq to characterize adducted DNA Support Protocol 4: Nuclear fractionation and RNase treatment to reduce sample complexity Basic Protocol 6: Determination of DNA cleavage by purified topoisomerase I Basic Protocol 7: Determination of inhibitor effects on DNA cleavage by topoisomerase II using a plasmid linearization assay Alternate Protocol: Gel electrophoresis determination of topoisomerase II cleavage.
Collapse
Affiliation(s)
- John L Nitiss
- Pharmaceutical Sciences Department, University of Illinois College of Pharmacy, Rockford, Illinois
| | - Kostantin Kiianitsa
- Departments of Immunology and Biochemistry, University of Washington, Seattle, Washington
| | - Yilun Sun
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Karin C Nitiss
- Pharmaceutical Sciences Department, University of Illinois College of Pharmacy, Rockford, Illinois.,Biomedical Sciences Department, University of Illinois College of Medicine, Rockford, Illinois
| | - Nancy Maizels
- Departments of Immunology and Biochemistry, University of Washington, Seattle, Washington
| |
Collapse
|
175
|
Ibrahim SS, Abo Elseoud OG, Mohamedy MH, Amer MM, Mohamed YY, Elmansy SA, Kadry MM, Attia AA, Fanous RA, Kamel MS, Solyman YA, Shehata MS, George MY. Nose-to-brain delivery of chrysin transfersomal and composite vesicles in doxorubicin-induced cognitive impairment in rats: Insights on formulation, oxidative stress and TLR4/NF-kB/NLRP3 pathways. Neuropharmacology 2021; 197:108738. [PMID: 34339751 DOI: 10.1016/j.neuropharm.2021.108738] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/12/2022]
Abstract
Many cancer survivors suffer from chemotherapy-induced cognitive impairment known as 'Chemobrain'. Doxorubicin -topoisomerase II inhibitor- is widely used in breast cancer, hematological cancers and other neoplasms. However, it is reported to precipitate cognitive impairment in cancer patients via inducing oxidative stress and inflammatory response. Chrysin -5,7 dihydroxyflavone- has promising antioxidant, anti-inflammatory and anticancer properties, but suffers low bioavailability owing to its poor solubility and extensive metabolism. In the present study, chrysin was successfully formulated as transfersomal lipid vesicles and chitosan composite vesicles (CCV) exhibiting a nanometric size range, high drug entrapment efficiency, and controlled release over a 72h period. Intranasal administration of optimized chrysin formulations at a reduced dose of 0.5 mg/kg improved doxorubicin-induced memory impairment in rats evidenced by behavioral testing, inhibition of acetylcholinesterase activity and oxidative stress markers; catalase, reduced glutathione, lipid peroxidation and hydrogen peroxide. This could reduce caspase-3 expression inhibiting apoptosis. Moreover, chrysin formulations were able to inhibit doxorubicin-induced Tol-like receptor 4 (TLR4) and p65 subunit of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB) protein expression which in turn, reduced procaspase-1, Cysteinyl Aspartate Protease-1 (caspase-1) and Interleukin-1β (IL-1β) protein expression via inhibiting Nod-like receptor pyrin containing 3 (NLRP3) inflammasome. Collectively, our findings suggest the enhanced therapeutic potential of chrysin when formulated as transfersomes and CCV against chemotherapy-induced chemobrain via hindering acetylcholinesterase, oxidative stress and TLR4-NF-kB(p65)-NLRP3 pathways.
Collapse
Affiliation(s)
- Shaimaa S Ibrahim
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, 11566, Cairo, Egypt
| | - Omar G Abo Elseoud
- Drug Design Program, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Mohamed H Mohamedy
- Drug Design Program, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Mohamed M Amer
- Drug Design Program, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Youssef Y Mohamed
- Drug Design Program, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Shehab A Elmansy
- Drug Design Program, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Mohamed M Kadry
- Drug Design Program, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Ahmed A Attia
- Drug Design Program, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Ragy A Fanous
- Drug Design Program, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Mahmoud S Kamel
- Drug Design Program, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Youssef A Solyman
- Drug Design Program, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Mazen S Shehata
- Drug Design Program, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Mina Y George
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, 11566, Cairo, Egypt.
| |
Collapse
|
176
|
The Epstein-Barr virus deubiquitinating enzyme BPLF1 regulates the activity of topoisomerase II during productive infection. PLoS Pathog 2021; 17:e1009954. [PMID: 34543352 PMCID: PMC8483405 DOI: 10.1371/journal.ppat.1009954] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/30/2021] [Accepted: 09/11/2021] [Indexed: 12/12/2022] Open
Abstract
Topoisomerases are essential for the replication of herpesviruses but the mechanisms by which the viruses hijack the cellular enzymes are largely unknown. We found that topoisomerase-II (TOP2) is a substrate of the Epstein-Barr virus (EBV) ubiquitin deconjugase BPLF1. BPLF1 co-immunoprecipitated and deubiquitinated TOP2, and stabilized SUMOylated TOP2 trapped in cleavage complexes (TOP2ccs), which halted the DNA damage response to TOP2-induced double strand DNA breaks and promoted cell survival. Induction of the productive virus cycle in epithelial and lymphoid cell lines carrying recombinant EBV encoding the active enzyme was accompanied by TOP2 deubiquitination, accumulation of TOP2ccs and resistance to Etoposide toxicity. The protective effect of BPLF1 was dependent on the expression of tyrosyl-DNA phosphodiesterase 2 (TDP2) that releases DNA-trapped TOP2 and promotes error-free DNA repair. These findings highlight a previously unrecognized function of BPLF1 in supporting a non-proteolytic pathway for TOP2ccs debulking that favors cell survival and virus production. The N-terminal domains of the herpesvirus large tegument proteins encode a conserved cysteine protease with ubiquitin- and NEDD8-specific deconjugase activity. Members of the viral enzyme family regulate different aspects of the virus life cycle including virus replication, the assembly of infectious virus particles and the host innate anti-viral response. However, only few substrates have been validated under physiological conditions of expression and very little is known on the mechanisms by which the enzymes contribute to the reprograming of cellular functions that are required for efficient infection and virus production. Cellular type I and type II topoisomerases (TOP1 and TOP2) resolve topological problems that arise during DNA replication and transcription and are therefore essential for herpesvirus replication. We report that the Epstein-Barr virus (EBV) ubiquitin deconjugase BPLF1 selectively regulates the activity of TOP2 in cells treated with the TOP2 poison Etoposide and during productive infection. Using transiently transfected and stable cell lines that express catalytically active or inactive BPLF1, we found that BPLF1 interacts with both TOP2α and TOP2β in co-immunoprecipitation and in vitro pull-down assays and the active enzyme stabilizes TOP2 trapped in TOP2ccs, promoting a shift towards TOP2 SUMOylation. This hinders the activation of DNA-damage responses and reduces the toxicity of Etoposide. The physiological relevance of this finding was validated using pairs of EBV carrying HEK-293T cells and EBV immortalized lymphoblastoid cell lines (LCLs) expressing the wild type or catalytic mutant enzyme. Using knockout LCLs we found that the capacity of BPLF1 to rescue of Etoposide toxicity is dependent on the expression of tyrosyl-DNA phosphodiesterase 2 (TDP2) that releases DNA-trapped TOP2 and promotes error-free DNA repair.
Collapse
|
177
|
Fitzgerald DM, Rosenberg SM. Biology before the SOS Response-DNA Damage Mechanisms at Chromosome Fragile Sites. Cells 2021; 10:2275. [PMID: 34571923 PMCID: PMC8465572 DOI: 10.3390/cells10092275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/13/2021] [Accepted: 08/13/2021] [Indexed: 01/03/2023] Open
Abstract
The Escherichia coli SOS response to DNA damage, discovered and conceptualized by Evelyn Witkin and Miroslav Radman, is the prototypic DNA-damage stress response that upregulates proteins of DNA protection and repair, a radical idea when formulated in the late 1960s and early 1970s. SOS-like responses are now described across the tree of life, and similar mechanisms of DNA-damage tolerance and repair underlie the genome instability that drives human cancer and aging. The DNA damage that precedes damage responses constitutes upstream threats to genome integrity and arises mostly from endogenous biology. Radman's vision and work on SOS, mismatch repair, and their regulation of genome and species evolution, were extrapolated directly from bacteria to humans, at a conceptual level, by Radman, then many others. We follow his lead in exploring bacterial molecular genomic mechanisms to illuminate universal biology, including in human disease, and focus here on some events upstream of SOS: the origins of DNA damage, specifically at chromosome fragile sites, and the engineered proteins that allow us to identify mechanisms. Two fragility mechanisms dominate: one at replication barriers and another associated with the decatenation of sister chromosomes following replication. DNA structures in E. coli, additionally, suggest new interpretations of pathways in cancer evolution, and that Holliday junctions may be universal molecular markers of chromosome fragility.
Collapse
Affiliation(s)
- Devon M. Fitzgerald
- Departments of Molecular and Human Genetics, Biochemistry and Molecular Biology, Molecular Virology and Microbiology, and Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Susan M. Rosenberg
- Departments of Molecular and Human Genetics, Biochemistry and Molecular Biology, Molecular Virology and Microbiology, and Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
178
|
Mahmud KM, Niloy MS, Shakil MS, Islam MA. Ruthenium Complexes: An Alternative to Platinum Drugs in Colorectal Cancer Treatment. Pharmaceutics 2021; 13:1295. [PMID: 34452256 PMCID: PMC8398452 DOI: 10.3390/pharmaceutics13081295] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/13/2021] [Accepted: 08/16/2021] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is one of the intimidating causes of death around the world. CRC originated from mutations of tumor suppressor genes, proto-oncogenes and DNA repair genes. Though platinum (Pt)-based anticancer drugs have been widely used in the treatment of cancer, their toxicity and CRC cells' resistance to Pt drugs has piqued interest in the search for alternative metal-based drugs. Ruthenium (Ru)-based compounds displayed promising anticancer activity due to their unique chemical properties. Ru-complexes are reported to exert their anticancer activities in CRC cells by regulating different cell signaling pathways that are either directly or indirectly associated with cell growth, division, proliferation, and migration. Additionally, some Ru-based drug candidates showed higher potency compared to commercially available Pt-based anticancer drugs in CRC cell line models. Meanwhile Ru nanoparticles coupled with photosensitizers or anticancer agents have also shown theranostic potential towards CRC. Ru-nanoformulations improve drug efficacy, targeted drug delivery, immune activation, and biocompatibility, and therefore may be capable of overcoming some of the existing chemotherapeutic limitations. Among the potential Ru-based compounds, only Ru (III)-based drug NKP-1339 has undergone phase-Ib clinical trials in CRC treatment.
Collapse
Affiliation(s)
- Kazi Mustafa Mahmud
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh; (K.M.M.); (M.S.N.)
| | - Mahruba Sultana Niloy
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh; (K.M.M.); (M.S.N.)
| | - Md Salman Shakil
- Department of Pharmacology & Toxicology, University of Otago, Dunedin 9016, New Zealand
- Department of Biochemistry, Primeasia University, Banani, Dhaka 1213, Bangladesh
| | - Md Asiful Islam
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia
| |
Collapse
|
179
|
Ismail MA, El‐Shafeai HM, Arafa RK, Abdel‐Rhman MH, Abdel‐Latif E, El‐Sayed WM. Synthesis, Antiproliferative Activity, Apoptotic Profiling, and In‐silico ADME of New Thienylbenzamidine Derivatives. ChemistrySelect 2021; 6:7644-7653. [DOI: 10.1002/slct.202101435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/30/2021] [Indexed: 11/10/2022]
Abstract
AbstractTwelve new thienylbenzamidines and their analogues 4 a–i, 7, and 12 a, b were synthesized and their anti‐proliferative activity was evaluated against 60 cancer cell lines. The tested compounds showed potent anticancer activity against most cancer cell lines with median growth inhibition (GI50)<2 μM. Leukemia and renal cancer cell lines were the most responsive. Compound 12 a was the most active exhibiting GI50, total growth inhibition (TGI), and median lethal concentration (LC50) at 1.65, 3.71, and 9.3 μM, respectively. The benzamidine derivatives exerted their anti‐proliferative activity without causing any toxicity in normal human lung fibroblast (WI‐38) cells. The selectivity index (SI) ranged from 5.6 to 59.0 fold. Compound 4 h was the most selective compound (SI=59), and it was the least cytotoxic to WI‐38 cells. The cationic compounds 4 c, 4 h, 4 i, 7, and 12 b with high SI were selected for further mechanistic studies. Compounds 4 c, 4 h, and 4 i exerted their antiproliferative activity by inducing the cell cycle arrest (elevated p53 and downregulated cyclin‐dependent kinase 1 (cdk1)) and inducing apoptosis (elevated caspase 3). Compounds 7 and 12 b exerted their activity by inhibiting the growth and proliferation of cancer cells through inhibiting both topoisomerase II (topoII) and thioredoxin reductase1 (txnrd1). Finally, in silico predictions of the physicochemical, pharmacokinetic and drug‐likeness profiles of these new derivatives proved the oral availability and the inability to cross the blood‐brain barrier.
Collapse
Affiliation(s)
- Mohamed A. Ismail
- Department of Chemistry Faculty of Science Mansoura University Mansoura 35516 Egypt
| | - Heba M. El‐Shafeai
- Department of Chemistry Faculty of Science Mansoura University Mansoura 35516 Egypt
| | - Reem K. Arafa
- Biomedical Sciences Program University of Science and Technology Zewail City of Science and Technology Cairo 12578 Egypt
| | | | - Ehab Abdel‐Latif
- Department of Chemistry Faculty of Science Mansoura University Mansoura 35516 Egypt
| | - Wael M. El‐Sayed
- Department of Zoology Faculty of Science University of Ain Shams, Abbassia 11566 Cairo Egypt
| |
Collapse
|
180
|
Xuan J, Gitareja K, Brajanovski N, Sanij E. Harnessing the Nucleolar DNA Damage Response in Cancer Therapy. Genes (Basel) 2021; 12:genes12081156. [PMID: 34440328 PMCID: PMC8393943 DOI: 10.3390/genes12081156] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/20/2021] [Accepted: 07/26/2021] [Indexed: 12/19/2022] Open
Abstract
The nucleoli are subdomains of the nucleus that form around actively transcribed ribosomal RNA (rRNA) genes. They serve as the site of rRNA synthesis and processing, and ribosome assembly. There are 400-600 copies of rRNA genes (rDNA) in human cells and their highly repetitive and transcribed nature poses a challenge for DNA repair and replication machineries. It is only in the last 7 years that the DNA damage response and processes of DNA repair at the rDNA repeats have been recognized to be unique and distinct from the classic response to DNA damage in the nucleoplasm. In the last decade, the nucleolus has also emerged as a central hub for coordinating responses to stress via sequestering tumor suppressors, DNA repair and cell cycle factors until they are required for their functional role in the nucleoplasm. In this review, we focus on features of the rDNA repeats that make them highly vulnerable to DNA damage and the mechanisms by which rDNA damage is repaired. We highlight the molecular consequences of rDNA damage including activation of the nucleolar DNA damage response, which is emerging as a unique response that can be exploited in anti-cancer therapy. In this review, we focus on CX-5461, a novel inhibitor of Pol I transcription that induces the nucleolar DNA damage response and is showing increasing promise in clinical investigations.
Collapse
Affiliation(s)
- Jiachen Xuan
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; (J.X.); (K.G.); (N.B.)
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Kezia Gitareja
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; (J.X.); (K.G.); (N.B.)
| | - Natalie Brajanovski
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; (J.X.); (K.G.); (N.B.)
| | - Elaine Sanij
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; (J.X.); (K.G.); (N.B.)
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC 3010, Australia
- Department of Clinical Pathology, University of Melbourne, Melbourne, VIC 3010, Australia
- St Vincent’s Institute of Medical Research, Fitzroy, VIC 3065, Australia
- Department of Medicine -St Vincent’s Hospital, University of Melbourne, Melbourne, VIC 3010, Australia
- Correspondence: ; Tel.: +61-3-8559-5279
| |
Collapse
|
181
|
Matias-Barrios VM, Radaeva M, Ho CH, Lee J, Adomat H, Lallous N, Cherkasov A, Dong X. Optimization of New Catalytic Topoisomerase II Inhibitors as an Anti-Cancer Therapy. Cancers (Basel) 2021; 13:cancers13153675. [PMID: 34359577 PMCID: PMC8345109 DOI: 10.3390/cancers13153675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/26/2021] [Accepted: 06/29/2021] [Indexed: 01/03/2023] Open
Abstract
Simple Summary DNA topoisomerase II (TOP2) is a drug target for many types of cancers. However, clinically used TOP2 inhibitors not only kill cancer cells, but also damage normal cells, and can even give rise to other types of cancers. To discover new TOP2 inhibitors to more effectively treat cancer patients, we have applied computer-aided drug design technology to develop several TOP2 inhibitors that can strongly inhibit cancer cell growth but exert low side effects. Results of one exemplary compound are presented in this study. It shows several promising drug-like properties that can be potentially developed into anticancer drugs. Abstract Clinically used topoisomerase II (TOP2) inhibitors are poison inhibitors that induce DNA damage to cause cancer cell death. However, they can also destroy benign cells and thereby show serious side effects, including cardiotoxicity and drug-induced secondary malignancy. New TOP2 inhibitors with a different mechanism of action (MOA), such as catalytic TOP2 inhibitors, are needed to more effectively control tumor growth. We have applied computer-aided drug design to develop a new group of small molecule inhibitors that are derivatives of our previously identified lead compound T60. Particularly, the compound T638 has shown improved solubility and microsomal stability. It is a catalytic TOP2 inhibitor that potently suppresses TOP2 activity. T638 has a novel MOA by which it binds TOP2 proteins and blocks TOP2–DNA interaction. T638 strongly inhibits cancer cell growth, but exhibits limited genotoxicity to cells. These results indicate that T638 is a promising drug candidate that warrants further development into clinically used anticancer drugs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xuesen Dong
- Correspondence: ; Tel.: +1-(604)-875-4111; Fax: +1-(604)-875-5654
| |
Collapse
|
182
|
Topoisomerase II deficiency leads to a postreplicative structural shift in all Saccharomyces cerevisiae chromosomes. Sci Rep 2021; 11:14940. [PMID: 34294749 PMCID: PMC8298500 DOI: 10.1038/s41598-021-93875-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 07/01/2021] [Indexed: 02/06/2023] Open
Abstract
The key role of Topoisomerase II (Top2) is the removal of topological intertwines between sister chromatids. In yeast, inactivation of Top2 brings about distinct cell cycle responses. In the case of the conditional top2-5 allele, interphase and mitosis progress on schedule but cells suffer from a chromosome segregation catastrophe. We here show that top2-5 chromosomes fail to enter a Pulsed-Field Gel Electrophoresis (PFGE) in the first cell cycle, a behavior traditionally linked to the presence of replication and recombination intermediates. We distinguished two classes of affected chromosomes: the rDNA-bearing chromosome XII, which fails to enter a PFGE at the beginning of S-phase, and all the other chromosomes, which fail at a postreplicative stage. In synchronously cycling cells, this late PFGE retention is observed in anaphase; however, we demonstrate that this behavior is independent of cytokinesis, stabilization of anaphase bridges, spindle pulling forces and, probably, anaphase onset. Strikingly, once the PFGE retention has occurred it becomes refractory to Top2 re-activation. DNA combing, two-dimensional electrophoresis, genetic analyses, and GFP-tagged DNA damage markers suggest that neither recombination intermediates nor unfinished replication account for the postreplicative PFGE shift, which is further supported by the fact that the shift does not trigger the G2/M checkpoint. We propose that the absence of Top2 activity leads to a general chromosome structural/topological change in mitosis.
Collapse
|
183
|
Pettenuzzo A, Vezzù K, Di Paolo ML, Fotopoulou E, Marchiò L, Via LD, Ronconi L. Design, physico-chemical characterization and in vitro biological activity of organogold(III) glycoconjugates. Dalton Trans 2021; 50:8963-8979. [PMID: 34110336 DOI: 10.1039/d1dt01100f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
To develop new metal-based glycoconjugates as potential anticancer agents, four organometallic gold(iii)-dithiocarbamato glycoconjugates of the type [AuIII(2-Bnpy)(SSC-Inp-GlcN)](PF6) (2-Bnpy: 2-benzylpyridine; Inp: isonipecotic moiety; GlcN: amino-glucose scaffold; Au3-Au6) and the corresponding model non-glycosylated counterparts [AuIII(2-Bnpy)(SSC-Inp-R)](PF6) (R: OEt (Au1), NH2 (Au2)) have been generated and characterized by means of several analytical techniques (elemental analysis, FT-IR, 1H-/13C-NMR, ESI-MS, UV-Vis, X-ray crystallography). Their stability under physiologically-relevant conditions (PBS solution) and n-octanol/PBS distribution coefficient (D7.4) have also been evaluated. Gold(iii) glycoconjugates showed an antiproliferative effect against ovarian carcinoma A2780 cells, with GI50 values in the low micromolar range. Remarkably, their cell growth inhibitory effect increases upon the addition of a glucose transporter 1 (GLUT1) inhibitor, thus ruling out the involvement of GLUT1 in their transport inside the cell. Additional mechanistic studies have been carried out in A2780 cells, supporting the hypothesis of a facilitated diffusion mechanism (possibly mediated by glucose transporters other than GLUT1), and revealing their capability to act as topoisomerase I and II inhibitors and to disrupt mitochondrial membrane integrity, leading to the generation of ROS, thus resulting in the promotion of oxidative stress and, eventually, cell death.
Collapse
Affiliation(s)
- Andrea Pettenuzzo
- National University of Ireland Galway, School of Chemistry, University Road, H91 TK33 Galway, Co. Galway, Ireland.
| | - Keti Vezzù
- University of Padova, Department of Industrial Engineering, Via F. Marzolo 8, 35131 Padova, Italy
| | - Maria Luisa Di Paolo
- University of Padova, Department of Molecular Medicine, Via G. Colombo 3, 35131 Padova, Italy
| | - Eirini Fotopoulou
- National University of Ireland Galway, School of Chemistry, University Road, H91 TK33 Galway, Co. Galway, Ireland.
| | - Luciano Marchiò
- University of Parma, Department of Chemistry, Life Sciences and Environmental Sustainability, Parco Area delle Scienze 11/a, 43124 Parma, Italy
| | - Lisa Dalla Via
- University of Padova, Department of Pharmaceutical and Pharmacological Sciences, Via F. Marzolo 5, 35131 Padova, Italy.
| | - Luca Ronconi
- National University of Ireland Galway, School of Chemistry, University Road, H91 TK33 Galway, Co. Galway, Ireland.
| |
Collapse
|
184
|
Bossaert M, Pipier A, Riou JF, Noirot C, Nguyên LT, Serre RF, Bouchez O, Defrancq E, Calsou P, Britton S, Gomez D. Transcription-associated topoisomerase 2α (TOP2A) activity is a major effector of cytotoxicity induced by G-quadruplex ligands. eLife 2021; 10:65184. [PMID: 34180392 PMCID: PMC8279764 DOI: 10.7554/elife.65184] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 06/16/2021] [Indexed: 12/11/2022] Open
Abstract
G-quadruplexes (G4) are non-canonical DNA structures found in the genome of most species including human. Small molecules stabilizing these structures, called G4 ligands, have been identified and, for some of them, shown to induce cytotoxic DNA double-strand breaks. Through the use of an unbiased genetic approach, we identify here topoisomerase 2α (TOP2A) as a major effector of cytotoxicity induced by two clastogenic G4 ligands, pyridostatin and CX-5461, the latter molecule currently undergoing phase I/II clinical trials in oncology. We show that both TOP2 activity and transcription account for DNA break production following G4 ligand treatments. In contrast, clastogenic activity of these G4 ligands is countered by topoisomerase 1 (TOP1), which limits co-transcriptional G4 formation, and by factors promoting transcriptional elongation. Altogether our results support that clastogenic G4 ligands act as DNA structure-driven TOP2 poisons at transcribed regions bearing G4 structures.
Collapse
Affiliation(s)
- Madeleine Bossaert
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France.,Equipe Labellisée Ligue Contre le Cancer 2018, Toulouse, France
| | - Angélique Pipier
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France.,Equipe Labellisée Ligue Contre le Cancer 2018, Toulouse, France
| | - Jean-Francois Riou
- Structure et Instabilité des Génomes, Muséum National d'Histoire Naturelle, CNRS, INSERM, Paris, France
| | - Céline Noirot
- INRAE, UR 875, Unité de Mathématique et Informatique Appliquées, Genotoul Bioinfo, Castanet-Tolosan, France
| | - Linh-Trang Nguyên
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | | | - Olivier Bouchez
- INRAE, US 1426, GeT-PlaGe, Genotoul, Castanet-Tolosan, France
| | - Eric Defrancq
- Département de Chimie Moléculaire, UMR CNRS 5250, Université Grenoble Alpes, Grenoble, France
| | - Patrick Calsou
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France.,Equipe Labellisée Ligue Contre le Cancer 2018, Toulouse, France
| | - Sébastien Britton
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France.,Equipe Labellisée Ligue Contre le Cancer 2018, Toulouse, France
| | - Dennis Gomez
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France.,Equipe Labellisée Ligue Contre le Cancer 2018, Toulouse, France
| |
Collapse
|
185
|
Cristini A, Géraud M, Sordet O. Transcription-associated DNA breaks and cancer: A matter of DNA topology. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 364:195-240. [PMID: 34507784 DOI: 10.1016/bs.ircmb.2021.05.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Transcription is an essential cellular process but also a major threat to genome integrity. Transcription-associated DNA breaks are particularly detrimental as their defective repair can induce gene mutations and oncogenic chromosomal translocations, which are hallmarks of cancer. The past few years have revealed that transcriptional breaks mainly originate from DNA topological problems generated by the transcribing RNA polymerases. Defective removal of transcription-induced DNA torsional stress impacts on transcription itself and promotes secondary DNA structures, such as R-loops, which can induce DNA breaks and genome instability. Paradoxically, as they relax DNA during transcription, topoisomerase enzymes introduce DNA breaks that can also endanger genome integrity. Stabilization of topoisomerases on chromatin by various anticancer drugs or by DNA alterations, can interfere with transcription machinery and cause permanent DNA breaks and R-loops. Here, we review the role of transcription in mediating DNA breaks, and discuss how deregulation of topoisomerase activity can impact on transcription and DNA break formation, and its connection with cancer.
Collapse
Affiliation(s)
- Agnese Cristini
- Cancer Research Center of Toulouse, INSERM, Université de Toulouse, Université Toulouse III Paul Sabatier, CNRS, Toulouse, France.
| | - Mathéa Géraud
- Cancer Research Center of Toulouse, INSERM, Université de Toulouse, Université Toulouse III Paul Sabatier, CNRS, Toulouse, France
| | - Olivier Sordet
- Cancer Research Center of Toulouse, INSERM, Université de Toulouse, Université Toulouse III Paul Sabatier, CNRS, Toulouse, France.
| |
Collapse
|
186
|
de Franca MNF, Isidório RG, Bonifacio JHO, Dos Santos EWP, Santos JF, Ottoni FM, de Lucca Junior W, Scher R, Alves RJ, Corrêa CB. Anti-proliferative and pro-apoptotic activity of glycosidic derivatives of lawsone in melanoma cancer cell. BMC Cancer 2021; 21:662. [PMID: 34078316 PMCID: PMC8173884 DOI: 10.1186/s12885-021-08404-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 05/24/2021] [Indexed: 01/16/2023] Open
Abstract
Background Melanoma is a malignant cancer that affects melanocytes and is considered the most aggressive skin-type cancer. The prevalence for melanoma cancer for the last five year is about one million cases. The impact caused of this and other types of cancer, revel the importance of research into potential active compounds. The natural products are an important source of compounds with biological activity and research with natural products may enable the discovery of compounds with potential activity in tumor cells. Methods The Sulforhodamine B was used to determine cell density after treatment with lawsone derivatives. Apoptosis and necrosis were analyzed by flow cytometer. Morphological changes were observed by fluorescence using the Phalloidin/FITC and DAPI stains. The clonogenic and wound healing assays were used to analyze reduction of colonies formation and migratory capacity of melanoma cells, respectability. Results In pharmacological screening, seven compounds derived from lawsone were considered to have high cytotoxic activity (GI > 75%). Three compounds were selected to assess the inhibitory concentration for 50% of cells (IC50), and the compound 9, that has IC50 5.3 μM in melanoma cells, was selected for further analyses in this cell line. The clonogenic assay showed that the compound is capable of reducing the formation of melanoma colonies at 10.6 μM concentration. The compound induced apoptotic morphological changes in melanoma cells and increased by 50% the cells dying from apoptosis. Also, this compound reduced the migratory capacity of melanoma cells. Conclusions The results of this study showed that the evaluated lawsone derivatives have potential activity on tumor cells. The compound 9 is capable of inducing cell death by apoptosis in melanoma cells (B16F10). Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08404-4.
Collapse
Affiliation(s)
- Mariana Nobre Farias de Franca
- Laboratory of Biology and Immunology of Cancer and Leishmania, Department of Morphology, Federal University of Sergipe, São Cristóvão, Sergipe, Brasil.,Graduate program in health sciences, Federal University of Sergipe, Aracaju, Sergipe, Brazil
| | - Raquel Geralda Isidório
- Laboratory of Pharmaceutical Chemistry, Department of Pharmaceutical Products, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - João Henrique Oliveira Bonifacio
- Laboratory of Biology and Immunology of Cancer and Leishmania, Department of Morphology, Federal University of Sergipe, São Cristóvão, Sergipe, Brasil
| | - Edmilson Willian Propheta Dos Santos
- Laboratory of Biology and Immunology of Cancer and Leishmania, Department of Morphology, Federal University of Sergipe, São Cristóvão, Sergipe, Brasil.,Graduate program in health sciences, Federal University of Sergipe, Aracaju, Sergipe, Brazil
| | - Jileno Ferreira Santos
- Laboratory of Biology and Immunology of Cancer and Leishmania, Department of Morphology, Federal University of Sergipe, São Cristóvão, Sergipe, Brasil
| | - Flaviano Melo Ottoni
- Laboratory of Pharmaceutical Chemistry, Department of Pharmaceutical Products, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Waldecy de Lucca Junior
- Laboratory of Molecular Neuroscience of Sergipe, Department of Morphology, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Ricardo Scher
- Laboratory of Biology and Immunology of Cancer and Leishmania, Department of Morphology, Federal University of Sergipe, São Cristóvão, Sergipe, Brasil
| | - Ricardo José Alves
- Laboratory of Pharmaceutical Chemistry, Department of Pharmaceutical Products, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Cristiane Bani Corrêa
- Laboratory of Biology and Immunology of Cancer and Leishmania, Department of Morphology, Federal University of Sergipe, São Cristóvão, Sergipe, Brasil. .,Graduate program in health sciences, Federal University of Sergipe, Aracaju, Sergipe, Brazil.
| |
Collapse
|
187
|
Vann KR, Oviatt AA, Osheroff N. Topoisomerase II Poisons: Converting Essential Enzymes into Molecular Scissors. Biochemistry 2021; 60:1630-1641. [PMID: 34008964 PMCID: PMC8209676 DOI: 10.1021/acs.biochem.1c00240] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The extensive length, compaction, and interwound nature of DNA, together with its controlled and restricted movement in eukaryotic cells, create a number of topological issues that profoundly affect all of the functions of the genetic material. Topoisomerases are essential enzymes that modulate the topological structure of the double helix, including the regulation of DNA under- and overwinding and the removal of tangles and knots from the genome. Type II topoisomerases alter DNA topology by generating a transient double-stranded break in one DNA segment and allowing another segment to pass through the DNA gate. These enzymes are involved in a number of critical nuclear processes in eukaryotic cells, such as DNA replication, transcription, and recombination, and are required for proper chromosome structure and segregation. However, because type II topoisomerases generate double-stranded breaks in the genetic material, they also are intrinsically dangerous enzymes that have the capacity to fragment the genome. As a result of this dualistic nature, type II topoisomerases are the targets for a number of widely prescribed anticancer drugs. This article will describe the structure and catalytic mechanism of eukaryotic type II topoisomerases and will go on to discuss the actions of topoisomerase II poisons, which are compounds that stabilize DNA breaks generated by the type II enzyme and convert these essential enzymes into "molecular scissors." Topoisomerase II poisons represent a broad range of structural classes and include anticancer drugs, dietary components, and environmental chemicals.
Collapse
Affiliation(s)
- Kendra R Vann
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Alexandria A Oviatt
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Neil Osheroff
- Departments of Biochemistry and Medicine (Hematology/Oncology), Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- VA Tennessee Valley Healthcare System, Nashville, Tennessee 37212, United States
| |
Collapse
|
188
|
Rourke CK, Murat D, Hansen TJ, Jaramillo-Lambert A. Endogenous localization of TOP-2 in C. elegans using a C-terminal GFP-tag. MICROPUBLICATION BIOLOGY 2021; 2021:10.17912/micropub.biology.000402. [PMID: 34095779 PMCID: PMC8170510 DOI: 10.17912/micropub.biology.000402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
To investigate the dynamic localization of Topoisomerase II in live C. elegans we have generated a C-terminally GFP-tagged version of TOP-2 at the endogenous locus. We found that TOP-2::GFP localizes in a similar pattern to the previously published TOP-2::3XFLAG strain and does not disrupt the meiotic chromosome segregation functions of this enzyme.
Collapse
Affiliation(s)
- Christine K. Rourke
- Department of Biological Sciences, University of Delaware, Newark, Delaware 19716
| | - Darline Murat
- Department of Biological Sciences, University of Delaware, Newark, Delaware 19716
| | - Tyler J. Hansen
- Currently-Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37205
| | - Aimee Jaramillo-Lambert
- Department of Biological Sciences, University of Delaware, Newark, Delaware 19716,
Correspondence to: Aimee Jaramillo-Lambert ()
| |
Collapse
|
189
|
Rodríguez JM, Diez MJ, Sierra M, Garcia JJ, Fernandez N, Diez R, Sahagun AM. Distribution of Flumequine in Intestinal Contents and Colon Tissue in Pigs after Its Therapeutic Use in the Drinking Water. Animals (Basel) 2021; 11:1514. [PMID: 34071041 PMCID: PMC8224771 DOI: 10.3390/ani11061514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/17/2021] [Accepted: 05/21/2021] [Indexed: 11/30/2022] Open
Abstract
Flumequine concentrations in plasma, colon tissue and intestinal contents were evaluated in 12 healthy pigs after oral administration (12 mg/kg every 24 h for 5 consecutive days in drinking water). Plasma, colon tissue and intestinal content samples were collected from animals sacrificed on days 3, 6 and 7. Concentrations were measured by high performance liquid chromatography after having validated the method, following the European Medicines Agency (EMA) requirements. The drug was not detected in any plasma sample. In colon tissue, concentrations were higher on day 3 (0.230 ± 0.033 µg/g, descending colon; 0.156 ± 0.093 µg/g, ascending colon) than on day 6 (0.187 ± 0.123 µg/g, descending colon; 0.107 ± 0.007 µg/g, ascending colon). Concentrations were considerably higher in intestinal contents, again on day 3 (1.349 ± 1.401 µg/g, descending colon; 0.591 ± 0.209 µg/g, ascending colon) than on days 6 (0.979 ± 0.346 µg/g, descending colon; 0.595 ± 0.075 µg/g, ascending colon) and 7 (0.247 ± 0.172 µg/g, descending colon; 0.172 ± 0.086 µg/g, ascending colon). Measured concentrations were lower than those effective against the most common intestinal pathogenic microorganisms in swine and, more specifically, Brachyspira hyodysenteriae.
Collapse
Affiliation(s)
| | | | | | | | | | - Raquel Diez
- Pharmacology, Department of Biomedical Sciences, Institute of Biomedicine (IBIOMED), Veterinary Faculty, University of Leon, 24071 Leon, Spain; (J.M.R.); (M.J.D.); (M.S.); (J.J.G.); (N.F.); (A.M.S.)
| | | |
Collapse
|
190
|
Mollaei M, Hassan ZM, Khorshidi F, Langroudi L. Chemotherapeutic drugs: Cell death- and resistance-related signaling pathways. Are they really as smart as the tumor cells? Transl Oncol 2021; 14:101056. [PMID: 33684837 PMCID: PMC7938256 DOI: 10.1016/j.tranon.2021.101056] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/05/2021] [Accepted: 02/22/2021] [Indexed: 02/07/2023] Open
Abstract
Chemotherapeutic drugs kill cancer cells or control their progression all over the patient's body, while radiation- and surgery-based treatments perform in a particular site. Based on their mechanisms of action, they are classified into different groups, including alkylating substrates, antimetabolite agents, anti-tumor antibiotics, inhibitors of topoisomerase I and II, mitotic inhibitors, and finally, corticosteroids. Although chemotherapeutic drugs have brought about more life expectancy, two major and severe complications during chemotherapy are chemoresistance and tumor relapse. Therefore, we aimed to review the underlying intracellular signaling pathways involved in cell death and resistance in different chemotherapeutic drug families to clarify the shortcomings in the conventional single chemotherapy applications. Moreover, we have summarized the current combination chemotherapy applications, including numerous combined-, and encapsulated-combined-chemotherapeutic drugs. We further discussed the possibilities and applications of precision medicine, machine learning, next-generation sequencing (NGS), and whole-exome sequencing (WES) in promoting cancer immunotherapies. Finally, some of the recent clinical trials concerning the application of immunotherapies and combination chemotherapies were included as well, in order to provide a practical perspective toward the future of therapies in cancer cases.
Collapse
Affiliation(s)
- Mojtaba Mollaei
- Department of Immunology, School of Medicine, Tarbiat Modares University, Tehran, Iran.
| | | | - Fatemeh Khorshidi
- Department of Immunology, School of Medicine, Tarbiat Modares University, Tehran, Iran; Department of Immunology, Pasteur Institute of Iran, Tehran, Iran
| | - Ladan Langroudi
- Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
191
|
Trac J, Keck JM, Deweese JE. Cannabidiol oxidation product HU-331 is a potential anticancer cannabinoid-quinone: a narrative review. J Cannabis Res 2021; 3:11. [PMID: 33892826 PMCID: PMC8067350 DOI: 10.1186/s42238-021-00067-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 04/13/2021] [Indexed: 12/15/2022] Open
Abstract
Cannabidiol and related cannabinoids are under exploration for the treatment of a number of disease states. The cannabinoid-quinone HU-331 has been studied as a potential anticancer therapeutic. Previous studies provide evidence that HU-331 displays anticancer activity without some of the known adverse events associated with traditional anticancer agents. In this brief review, we will explore the literature related to the activity of HU-331 in purified systems, cancer cell lines, and animal models. For example, HU-331 displays inhibitory activity against human topoisomerase IIα, a known anticancer drug target. Further, in multiple cell model systems, the IC50 value for HU-331 was less than 10 μM. In addition, mouse model systems demonstrate the ability of HU-331 to shrink tumors without causing cardiotoxicity. In addition, we will briefly review the activity of some key analogs and derivatives of HU-331 for various disease states. Taken together, the published studies support further exploration of HU-331 for the treatment of cancer and possibly other disease states.
Collapse
Affiliation(s)
- Judy Trac
- Department of Pharmaceutical Sciences, Lipscomb University College of Pharmacy and Health Sciences, One University Park Drive, Nashville, TN, 37204-3951, USA
| | - J Myles Keck
- Department of Pharmaceutical Sciences, Lipscomb University College of Pharmacy and Health Sciences, One University Park Drive, Nashville, TN, 37204-3951, USA
| | - Joseph E Deweese
- Department of Pharmaceutical Sciences, Lipscomb University College of Pharmacy and Health Sciences, One University Park Drive, Nashville, TN, 37204-3951, USA. .,Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232-0146, USA.
| |
Collapse
|
192
|
Abstract
1,2-Naphthoquinone, a secondary metabolite of naphthalene, is an environmental pollutant found in diesel exhaust particles that displays cytotoxic and genotoxic properties. Because many quinones have been shown to act as topoisomerase II poisons, the effects of this compound on DNA cleavage mediated by human topoisomerase IIα and IIβ were examined. The compound increased the levels of double-stranded DNA breaks generated by both enzyme isoforms and did so better than a series of naphthoquinone derivatives. Furthermore, 1,2-naphthoquinone was a more efficacious poison against topoisomerase IIα than IIβ. Topoisomerase II poisons can be classified as interfacial (which interact noncovalently at the enzyme-DNA interface and increase DNA cleavage by blocking ligation) or covalent (which adduct the protein and increase DNA cleavage by closing the N-terminal gate of the enzyme). Therefore, experiments were performed to determine the mechanistic basis for the actions of 1,2-naphthoquinone. In contrast to results with etoposide (an interfacial poison), the activity of 1,2-naphthoquinone against topoisomerase IIα was abrogated in the presence of sulfhydryl and reducing agents. Moreover, the compound inhibited cleavage activity when incubated with the enzyme prior to the addition of DNA and induced virtually no cleavage with the catalytic core of the enzyme. It also induced stable covalent topoisomerase IIα-DNA cleavage complexes and was a partial inhibitor of DNA ligation. Findings were also consistent with 1,2-naphthoquinone acting as a covalent poison of topoisomerase IIβ; however, mechanistic studies with this isoform were less conclusive. Whereas the activity of 1,2-naphthoquinone was blocked in the presence of a sulfhydryl reagent, it was much less sensitive to the presence of a reducing agent. Furthermore, the reduced form of 1,2-naphthoquinone, 1,2-dihydroxynaphthalene, displayed high activity against the β isoform. Taken together, results suggest that 1,2-naphthoquinone increases topoisomerase II-mediated double-stranded DNA scission (at least in part) by acting as a covalent poison of the human type II enzymes.
Collapse
Affiliation(s)
- Jessica A. Collins
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Neil Osheroff
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Department of Medicine (Hematology/Oncology), Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- VA Tennessee Valley Healthcare System, Nashville, Tennessee 37212, United States
| |
Collapse
|
193
|
Mengoli V, Jonak K, Lyzak O, Lamb M, Lister LM, Lodge C, Rojas J, Zagoriy I, Herbert M, Zachariae W. Deprotection of centromeric cohesin at meiosis II requires APC/C activity but not kinetochore tension. EMBO J 2021; 40:e106812. [PMID: 33644894 PMCID: PMC8013787 DOI: 10.15252/embj.2020106812] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 01/03/2023] Open
Abstract
Genome haploidization involves sequential loss of cohesin from chromosome arms and centromeres during two meiotic divisions. At centromeres, cohesin's Rec8 subunit is protected from separase cleavage at meiosis I and then deprotected to allow its cleavage at meiosis II. Protection of centromeric cohesin by shugoshin-PP2A seems evolutionarily conserved. However, deprotection has been proposed to rely on spindle forces separating the Rec8 protector from cohesin at metaphase II in mammalian oocytes and on APC/C-dependent destruction of the protector at anaphase II in yeast. Here, we have activated APC/C in the absence of sister kinetochore biorientation at meiosis II in yeast and mouse oocytes, and find that bipolar spindle forces are dispensable for sister centromere separation in both systems. Furthermore, we show that at least in yeast, protection of Rec8 by shugoshin and inhibition of separase by securin are both required for the stability of centromeric cohesin at metaphase II. Our data imply that related mechanisms preserve the integrity of dyad chromosomes during the short metaphase II of yeast and the prolonged metaphase II arrest of mammalian oocytes.
Collapse
Affiliation(s)
- Valentina Mengoli
- Laboratory of Chromosome BiologyMax Planck Institute of BiochemistryMartinsriedGermany
- Present address:
Institute for Research in BiomedicineUniversità della Svizzera ItalianaBellinzonaSwitzerland
| | - Katarzyna Jonak
- Laboratory of Chromosome BiologyMax Planck Institute of BiochemistryMartinsriedGermany
| | - Oleksii Lyzak
- Laboratory of Chromosome BiologyMax Planck Institute of BiochemistryMartinsriedGermany
| | - Mahdi Lamb
- Biosciences InstituteCentre for LifeTimes SquareNewcastle UniversityNewcastle upon TyneUK
| | - Lisa M Lister
- Biosciences InstituteCentre for LifeTimes SquareNewcastle UniversityNewcastle upon TyneUK
| | - Chris Lodge
- Biosciences InstituteCentre for LifeTimes SquareNewcastle UniversityNewcastle upon TyneUK
| | - Julie Rojas
- Laboratory of Chromosome BiologyMax Planck Institute of BiochemistryMartinsriedGermany
| | - Ievgeniia Zagoriy
- Laboratory of Chromosome BiologyMax Planck Institute of BiochemistryMartinsriedGermany
- Present address:
EMBL HeidelbergHeidelbergGermany
| | - Mary Herbert
- Biosciences InstituteCentre for LifeTimes SquareNewcastle UniversityNewcastle upon TyneUK
| | - Wolfgang Zachariae
- Laboratory of Chromosome BiologyMax Planck Institute of BiochemistryMartinsriedGermany
| |
Collapse
|
194
|
Bansal Y, Minhas R, Singhal A, Arora RK, Bansal G. Benzimidazole: A Multifacted Nucelus for Anticancer Agents. CURR ORG CHEM 2021. [DOI: 10.2174/1385272825666210208141107] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cancer is characterized by an uncontrolled proliferation of cells, dedifferentiation,
invasiveness and metastasis. Endothelial growth factor (eGF), insulin-like growth factor
(IGF), platelet-derived growth factor (PDGF), Fibroblast growth factor (FGF), Vascular endothelial
growth factor (VEGF), checkpoint kinase 1 & 2 ( Chk1 & Chk2), aurora kinases,
topoisomerases, histone deacetylators (HDAC), poly(ADP-Ribose)polymerase (PARP), farnesyl
transferases, RAS-MAPK pathway and PI3K-Akt-mTOR pathway, are some of the
prominent mediators implicated in the proliferation of tumor cells. Huge artillery of natural
and synthetic compounds as anticancer, which act by inhibiting one or more of the enzymes
and/or pathways responsible for the progression of tumor cells, is reported in the literature.
The major limitations of anticancer agents used in clinics as well as of those under development
in literature are normal cell toxicity and other side effects due to lack of specificity.
Hence, medicinal chemists across the globe have been working for decades to develop potent and safe anticancer
agents from natural sources as well as from different classes of heterocycles. Benzimidazole is one of the most important
and explored heteronucelus because of their versatility in biological actions as well as synthetic applications
in medicinal chemistry. The structural similarity of amino derivatives of benzimidazole with purines makes it a fascinating
nucleus for the development of anticancer, antimicrobial and anti-HIV agents. This review article is an attempt
to critically analyze various reports on benzimidazole derivatives acting on different targets to act as anticancer so as
to understand the structural requirements around benzimidazole nucleus for each target and enable medicinal chemists
to promote rational development of antitumor agents.
Collapse
Affiliation(s)
- Yogita Bansal
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala - 147002, India
| | - Richa Minhas
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala - 147002, India
| | - Ankit Singhal
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala - 147002, India
| | - Radhey Krishan Arora
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala - 147002, India
| | - Gulshan Bansal
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala - 147002, India
| |
Collapse
|
195
|
Sun M, Chen Z, Wu X, Yu Y, Wang L, Lu A, Zhang G, Li F. The Roles of Sclerostin in Immune System and the Applications of Aptamers in Immune-Related Research. Front Immunol 2021; 12:602330. [PMID: 33717084 PMCID: PMC7946814 DOI: 10.3389/fimmu.2021.602330] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 01/14/2021] [Indexed: 12/19/2022] Open
Abstract
Wnt signaling is one of the fundamental pathways that play a major role in almost every aspect of biological systems. In addition to the well-known influence of Wnt signaling on bone formation, its essential role in the immune system also attracted increasing attention. Sclerostin, a confirmed Wnt antagonist, is also proven to modulate the development and differentiation of normal immune cells, particularly B cells. Aptamers, single-stranded (ss) oligonucleotides, are capable of specifically binding to a variety of target molecules by virtue of their unique three-dimensional structures. With in-depth study of those functional nucleic acids, they have been gradually applied to diagnostic and therapeutic area in immune diseases due to their various advantages over antibodies. In this review, we focus on several issues including the roles of Wnt signaling and Wnt antagonist sclerostin in the immune system. For the sake of understanding, current examples of aptamers applications for the immune diseases are also discussed. At the end of this review, we propose our ideas for the future research directions.
Collapse
Affiliation(s)
- Meiheng Sun
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.,Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.,Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute for Research and Continuing Education, Shenzhen, China
| | - Zihao Chen
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiaoqiu Wu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.,Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.,Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute for Research and Continuing Education, Shenzhen, China
| | - Yuanyuan Yu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.,Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.,Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute for Research and Continuing Education, Shenzhen, China
| | - Luyao Wang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.,Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.,Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute for Research and Continuing Education, Shenzhen, China
| | - Aiping Lu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.,Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.,Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute for Research and Continuing Education, Shenzhen, China.,Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China.,Institute of Arthritis Research, Shanghai Academy of Chinese Medical Sciences, Shanghai, China
| | - Ge Zhang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.,Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.,Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute for Research and Continuing Education, Shenzhen, China
| | - Fangfei Li
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.,Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.,Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute for Research and Continuing Education, Shenzhen, China
| |
Collapse
|
196
|
Kubalová I, Němečková A, Weisshart K, Hřibová E, Schubert V. Comparing Super-Resolution Microscopy Techniques to Analyze Chromosomes. Int J Mol Sci 2021; 22:ijms22041903. [PMID: 33672992 PMCID: PMC7917581 DOI: 10.3390/ijms22041903] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/04/2021] [Accepted: 02/10/2021] [Indexed: 12/21/2022] Open
Abstract
The importance of fluorescence light microscopy for understanding cellular and sub-cellular structures and functions is undeniable. However, the resolution is limited by light diffraction (~200–250 nm laterally, ~500–700 nm axially). Meanwhile, super-resolution microscopy, such as structured illumination microscopy (SIM), is being applied more and more to overcome this restriction. Instead, super-resolution by stimulated emission depletion (STED) microscopy achieving a resolution of ~50 nm laterally and ~130 nm axially has not yet frequently been applied in plant cell research due to the required specific sample preparation and stable dye staining. Single-molecule localization microscopy (SMLM) including photoactivated localization microscopy (PALM) has not yet been widely used, although this nanoscopic technique allows even the detection of single molecules. In this study, we compared protein imaging within metaphase chromosomes of barley via conventional wide-field and confocal microscopy, and the sub-diffraction methods SIM, STED, and SMLM. The chromosomes were labeled by DAPI (4′,6-diamidino-2-phenylindol), a DNA-specific dye, and with antibodies against topoisomerase IIα (Topo II), a protein important for correct chromatin condensation. Compared to the diffraction-limited methods, the combination of the three different super-resolution imaging techniques delivered tremendous additional insights into the plant chromosome architecture through the achieved increased resolution.
Collapse
Affiliation(s)
- Ivona Kubalová
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, D-06466 Seeland, Germany;
| | - Alžběta Němečková
- Centre of the Region Hana for Biotechnological and Agricultural Research, Institute of Experimental Botany of the Czech Academy of Sciences, 77900 Olomouc, Czech Republic; (A.N.); (E.H.)
| | | | - Eva Hřibová
- Centre of the Region Hana for Biotechnological and Agricultural Research, Institute of Experimental Botany of the Czech Academy of Sciences, 77900 Olomouc, Czech Republic; (A.N.); (E.H.)
| | - Veit Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, D-06466 Seeland, Germany;
- Correspondence: ; Tel.: +49-394-825-212
| |
Collapse
|
197
|
Cyclin A2/cyclin-dependent kinase 1-dependent phosphorylation of Top2a is required for S phase entry during retinal development in zebrafish. J Genet Genomics 2021; 48:63-74. [PMID: 33832859 DOI: 10.1016/j.jgg.2021.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/31/2020] [Accepted: 01/05/2021] [Indexed: 12/26/2022]
Abstract
Cyclin-dependent kinase 1 (CDK1) plays an essential role in cell cycle regulation. However, as mouse Cdk1 embryos die early, the role of CDK1 in regulating the cell cycle and embryo development remains unclear. Here, we showed that zebrafish cdk1-/- embryos exhibit severe microphthalmia accompanied by multiple defects in S phase entry, M phase progression, and cell differentiation but not in interkinetic nuclear migration. We identified Top2a as a potential downstream target and cyclin A2 and cyclin B1 as partners of Cdk1 in cell cycle regulation via an in silico analysis. While depletion of either cyclin A2 or Top2a led to the decreased S phase entry in zebrafish retinal cells, the depletion of cyclin B1 led to M phase arrest. Moreover, phosphorylation of Top2a at serine 1213 (S1213) was nearly abolished in both cdk1 and ccna2 mutants, but not in ccnb1 mutants. Furthermore, overexpression of TOP2AS1213D, the phosphomimetic form of human TOP2A, rescued S phase entry and alleviated the microphthalmia defects in both cdk1-/- and ccna2-/- embryos. Taken together, our data suggest that Cdk1 interacts with cyclin A2 to regulate S phase entry partially through Top2a phosphorylation and interacts with cyclin B1 to regulate M phase progression.
Collapse
|
198
|
D’yakonov VA, Dzhemileva LU, Dzhemilev UM. Natural compounds with bis-methylene-interrupted Z-double bonds: plant sources, strategies of total synthesis, biological activity, and perspectives. PHYTOCHEMISTRY REVIEWS 2021; 20:325-342. [DOI: 10.1007/s11101-020-09685-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 05/19/2020] [Indexed: 01/03/2025]
|
199
|
Martínez-García PM, García-Torres M, Divina F, Terrón-Bautista J, Delgado-Sainz I, Gómez-Vela F, Cortés-Ledesma F. Genome-wide prediction of topoisomerase IIβ binding by architectural factors and chromatin accessibility. PLoS Comput Biol 2021; 17:e1007814. [PMID: 33465072 PMCID: PMC7845959 DOI: 10.1371/journal.pcbi.1007814] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 01/29/2021] [Accepted: 11/13/2020] [Indexed: 12/28/2022] Open
Abstract
DNA topoisomerase II-β (TOP2B) is fundamental to remove topological problems linked to DNA metabolism and 3D chromatin architecture, but its cut-and-reseal catalytic mechanism can accidentally cause DNA double-strand breaks (DSBs) that can seriously compromise genome integrity. Understanding the factors that determine the genome-wide distribution of TOP2B is therefore not only essential for a complete knowledge of genome dynamics and organization, but also for the implications of TOP2-induced DSBs in the origin of oncogenic translocations and other types of chromosomal rearrangements. Here, we conduct a machine-learning approach for the prediction of TOP2B binding using publicly available sequencing data. We achieve highly accurate predictions, with accessible chromatin and architectural factors being the most informative features. Strikingly, TOP2B is sufficiently explained by only three features: DNase I hypersensitivity, CTCF and cohesin binding, for which genome-wide data are widely available. Based on this, we develop a predictive model for TOP2B genome-wide binding that can be used across cell lines and species, and generate virtual probability tracks that accurately mirror experimental ChIP-seq data. Our results deepen our knowledge on how the accessibility and 3D organization of chromatin determine TOP2B function, and constitute a proof of principle regarding the in silico prediction of sequence-independent chromatin-binding factors.
Collapse
Affiliation(s)
- Pedro Manuel Martínez-García
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), CSIC-Universidad de Sevilla-Universidad Pablo de Olavide, Seville, Spain
- * E-mail: (PMMG); (FCL)
| | | | - Federico Divina
- Division of Computer Science, Universidad Pablo de Olavide, Seville, Spain
| | - José Terrón-Bautista
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), CSIC-Universidad de Sevilla-Universidad Pablo de Olavide, Seville, Spain
| | - Irene Delgado-Sainz
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), CSIC-Universidad de Sevilla-Universidad Pablo de Olavide, Seville, Spain
| | | | - Felipe Cortés-Ledesma
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), CSIC-Universidad de Sevilla-Universidad Pablo de Olavide, Seville, Spain
- Topology and DNA breaks Group, Spanish National Cancer Centre (CNIO), Madrid, Spain
- * E-mail: (PMMG); (FCL)
| |
Collapse
|
200
|
Johansson M, Azuma Y, Clarke DJ. Role of Aurora B and Haspin kinases in the metaphase Topoisomerase II checkpoint. Cell Cycle 2021; 20:345-352. [PMID: 33459116 DOI: 10.1080/15384101.2021.1875671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
DNA Topoisomerase II (TopoII) uses ATP hydrolysis to decatenate chromosomes so that sister chromatids can faithfully segregate in mitosis. When the TopoII enzyme cycle stalls due to failed ATP hydrolysis, the onset of anaphase is delayed, presumably to allow extra time for decatenation to be completed. Recent evidence revealed that, unlike the spindle assembly checkpoint, this TopoII checkpoint response requires Aurora B and Haspin kinases and is triggered by SUMOylation of the C-terminal domain of TopoII.
Collapse
Affiliation(s)
- M Johansson
- Department of Genetics, Cell Biology & Development, University of Minnesota , Minneapolis, MN, USA
| | - Y Azuma
- Department of Molecular Biosciences, University of Kansas , Lawrence, KS, USA
| | - D J Clarke
- Department of Genetics, Cell Biology & Development, University of Minnesota , Minneapolis, MN, USA
| |
Collapse
|