151
|
Zailaie SA, Siddiqui JJ, Al Saadi RM, Anbari DM, S Alomari A, Cupler EJ. Serum Based miRNA as a Diagnostic Biomarker for Multiple Sclerosis: a Systematic Review and Meta-Analysis. Immunol Invest 2021; 51:947-962. [PMID: 33660581 DOI: 10.1080/08820139.2021.1887888] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This systematic review and meta-analysis aimed to identify deferentially expressed serum miRNAs in multiple sclerosis patients and to evaluate their diagnostic value in multiple sclerosis diagnosis. Studies were identified on PubMed, Google scholar and Saudi digital library up to 30 September 2019. Articles that examined miRNA expression level in MS patients compared to healthy control group were included in the review and the data were extracted by three independent author. The comprehensive Meta-Analysis version 3 software was used for meta-analysis and heterogeneity of studies was identified according to I2 value. Our literatures search identified 9 eligible articles concerning the serum miRNA as a diagnostic biomarker for multiple sclerosis in comparison to healthy control group. 19 serum miRNAs differentially expressed in MS patients were identified (8 downregulated, 11 upregulated and 1 with discordant result). In publications that provided information on specific miRNA diagnostic value, the pooled AUC was 72% (95% CI 0.65-0.78, p-value 0.00) for the overall multiple sclerosis patients and primary progressive MS (PPMS) (95% CI 0.66-0.78 p-value 0.00). A miRNA panel of four miRNAs showed high sensitivity (73%) and specificity (68%) in distinguishing multiple sclerosis from control groups. When using single miRNA (miR-145), the sensitivity increased to 79% and the specificity to 87%. The available data from the literature and this meta-analysis suggests the potential use of serum miRNA as biomarkers for early diagnosis of MS with high sensitivity and specificity in distinguishing multiple sclerosis subtypes from healthy controls.Abbreviation: MS: Multiple sclerosis; IDD: inflammatory demyelinating diseases; RRMS: relapsing-remitting Multiple sclerosis; PPMS: primary progressive Multiple sclerosis; SPMS: secondary progressive Multiple sclerosis; NMO: Neuromyelitis optica; miRNA: microRNA; ECmiRNA: extracellular microRNA; AUC: Area Under the Curve; ROC: Receiver Operator Characteristic.
Collapse
Affiliation(s)
- Samar A Zailaie
- Research Center Department, King Faisal Specialist Hospital and Research Center, Jeddah, Kingdom of Saudi Arabia
| | - Jumana Jamal Siddiqui
- Research Center Department, King Faisal Specialist Hospital and Research Center, Jeddah, Kingdom of Saudi Arabia
| | - Rawan Mansour Al Saadi
- Research Center Department, King Faisal Specialist Hospital and Research Center, Jeddah, Kingdom of Saudi Arabia
| | - Dalia Mohammad Anbari
- Research Center Department, King Faisal Specialist Hospital and Research Center, Jeddah, Kingdom of Saudi Arabia.,Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Amani S Alomari
- Research Center Department, King Faisal Specialist Hospital and Research Center, Jeddah, Kingdom of Saudi Arabia.,Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Edward James Cupler
- Research Center Department, King Faisal Specialist Hospital and Research Center, Jeddah, Kingdom of Saudi Arabia.,Neuroscience Department, King Faisal Specialist Hospital and Research Center, Jeddah, Kingdom of Saudi Arabia
| |
Collapse
|
152
|
Chen L, Bai J, Peng D, Gao Y, Cai X, Zhang J, Tang S, Niu L, Sun Y, Lou F, Zhou H, Yin Q, Wang Z, Sun L, Du X, Xu Z, Wang H, Li Q, Wang H. SZB120 Exhibits Immunomodulatory Effects by Targeting eIF2α to Suppress Th17 Cell Differentiation. THE JOURNAL OF IMMUNOLOGY 2021; 206:953-962. [PMID: 33483349 DOI: 10.4049/jimmunol.2000036] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 12/11/2020] [Indexed: 11/19/2022]
Abstract
IL-17-secreting Th17 cells play an important role in the pathogenesis of various inflammatory and autoimmune diseases. IL-17-targeted biologics and small molecules are becoming promising treatments for these diseases. In this study, we report that SZB120, a derivative of the natural compound 3-acetyl-β-boswellic acid, inhibits murine Th17 cell differentiation by interacting with the α-subunit of eukaryotic initiation factor 2 (eIF2α). We showed that SZB120 directly interacts with eIF2α and contributes to serine 51 phosphorylation of eIF2α. The suppressive effect of SZB120 on Th17 cell differentiation was reversed by GSK2606414, an inhibitor of eIF2α phosphokinase. Phosphorylation of eIF2α induced by SZB120 decreased the protein expression of IκBζ, which is important for Th17 cell differentiation. Notably, interaction with eIF2α by SZB120 also impaired glucose uptake and glycolysis in T cells. In vivo, SZB120 treatment of C57BL/6 mice significantly attenuated IL-17/Th17-mediated autoimmune disease. Our study indicates that SZB120 is a promising drug candidate for IL-17/Th17-mediated inflammatory diseases.
Collapse
Affiliation(s)
- Linjiao Chen
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.,Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis, Shanghai Institute of Immunology, Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jing Bai
- Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis, Shanghai Institute of Immunology, Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Danhong Peng
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.,Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis, Shanghai Institute of Immunology, Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yuanyuan Gao
- Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis, Shanghai Institute of Immunology, Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiaojie Cai
- Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis, Shanghai Institute of Immunology, Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Junxun Zhang
- Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis, Shanghai Institute of Immunology, Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Sibei Tang
- Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis, Shanghai Institute of Immunology, Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Liman Niu
- Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis, Shanghai Institute of Immunology, Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yang Sun
- Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis, Shanghai Institute of Immunology, Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.,Institute of Translational Medicine, Shanghai Institute of Immunology Center for Microbiota and Immune Related Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Fangzhou Lou
- Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis, Shanghai Institute of Immunology, Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Hong Zhou
- Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis, Shanghai Institute of Immunology, Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.,Institute of Translational Medicine, Shanghai Institute of Immunology Center for Microbiota and Immune Related Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Qianqian Yin
- Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis, Shanghai Institute of Immunology, Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zhikai Wang
- Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis, Shanghai Institute of Immunology, Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Libo Sun
- Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis, Shanghai Institute of Immunology, Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xuemei Du
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Pharmaceutical Co., Ltd., Nanjing 210042, China; and
| | - Zhenyao Xu
- Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis, Shanghai Institute of Immunology, Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.,Institute of Translational Medicine, Shanghai Institute of Immunology Center for Microbiota and Immune Related Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Hong Wang
- Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis, Shanghai Institute of Immunology, Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Qun Li
- Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Ruijin Hospital, Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Honglin Wang
- Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis, Shanghai Institute of Immunology, Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; .,Institute of Translational Medicine, Shanghai Institute of Immunology Center for Microbiota and Immune Related Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| |
Collapse
|
153
|
Non-Musculoskeletal Benefits of Vitamin D beyond the Musculoskeletal System. Int J Mol Sci 2021; 22:ijms22042128. [PMID: 33669918 PMCID: PMC7924658 DOI: 10.3390/ijms22042128] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/13/2021] [Accepted: 02/17/2021] [Indexed: 02/06/2023] Open
Abstract
Vitamin D, a fat-soluble prohormone, is endogenously synthesized in response to sunlight or taken from dietary supplements. Since vitamin D receptors are present in most tissues and cells in the body, the mounting understanding of the role of vitamin D in humans indicates that it does not only play an important role in the musculoskeletal system, but has beneficial effects elsewhere as well. This review summarizes the metabolism of vitamin D, the research regarding the possible risk factors leading to vitamin D deficiency, and the relationships between vitamin D deficiency and numerous illnesses, including rickets, osteoporosis and osteomalacia, muscle weakness and falls, autoimmune disorders, infectious diseases, cardiovascular diseases (CVDs), cancers, and neurological disorders. The system-wide effects of vitamin D and the mechanisms of the diseases are also discussed. Although accumulating evidence supports associations of vitamin D deficiency with physical and mental disorders and beneficial effects of vitamin D with health maintenance and disease prevention, there continue to be controversies over the beneficial effects of vitamin D. Thus, more well-designed and statistically powered trials are required to enable the assessment of vitamin D’s role in optimizing health and preventing disease.
Collapse
|
154
|
Wasser B, Luchtman D, Löffel J, Robohm K, Birkner K, Stroh A, Vogelaar CF, Zipp F, Bittner S. CNS-localized myeloid cells capture living invading T cells during neuroinflammation. J Exp Med 2021; 217:151587. [PMID: 32219436 PMCID: PMC7971133 DOI: 10.1084/jem.20190812] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 09/20/2019] [Accepted: 01/17/2020] [Indexed: 11/28/2022] Open
Abstract
To study the role of myeloid cells in the central nervous system (CNS) in the pathogenesis of multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE), we used intravital microscopy, assessing local cellular interactions in vivo in EAE animals and ex vivo in organotypic hippocampal slice cultures. We discovered that myeloid cells actively engulf invading living Th17 lymphocytes, a process mediated by expression of activation-dependent lectin and its T cell–binding partner, N-acetyl-D-glucosamine (GlcNAc). Stable engulfment resulted in the death of the engulfed cells, and, remarkably, enhancement of GlcNAc exposure on T cells in the CNS ameliorated clinical EAE symptoms. These findings demonstrate the ability of myeloid cells to directly react to pathogenic T cell infiltration by engulfing living T cells. Amelioration of EAE via GlcNAc treatment suggests a novel first-defense pathway of myeloid cells as an initial response to CNS invasion and demonstrates that T cell engulfment by myeloid cells can be therapeutically exploited in vivo.
Collapse
Affiliation(s)
- Beatrice Wasser
- Department of Neurology, Focus Program Translational Neuroscience and Immunotherapy, Rhine Main Neuroscience Network, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Dirk Luchtman
- Department of Neurology, Focus Program Translational Neuroscience and Immunotherapy, Rhine Main Neuroscience Network, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Julian Löffel
- Department of Neurology, Focus Program Translational Neuroscience and Immunotherapy, Rhine Main Neuroscience Network, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Kerstin Robohm
- Department of Neurology, Focus Program Translational Neuroscience and Immunotherapy, Rhine Main Neuroscience Network, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Katharina Birkner
- Department of Neurology, Focus Program Translational Neuroscience and Immunotherapy, Rhine Main Neuroscience Network, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Albrecht Stroh
- Focus Program Translational Neurosciences, Institute for Microscopic Anatomy and Neurobiology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Christina Francisca Vogelaar
- Department of Neurology, Focus Program Translational Neuroscience and Immunotherapy, Rhine Main Neuroscience Network, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Frauke Zipp
- Department of Neurology, Focus Program Translational Neuroscience and Immunotherapy, Rhine Main Neuroscience Network, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Stefan Bittner
- Department of Neurology, Focus Program Translational Neuroscience and Immunotherapy, Rhine Main Neuroscience Network, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
155
|
Uchida N, Mori K, Fujita-Nakata M, Nakanishi M, Sanada M, Nagayama S, Sugiyama H, Matsui M. Systemic cellular immunity and neuroinflammation during acute flare-up in multiple sclerosis and neuromyelitis optica spectrum disorder patients. J Neuroimmunol 2021; 353:577500. [PMID: 33592574 DOI: 10.1016/j.jneuroim.2021.577500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/23/2021] [Accepted: 01/24/2021] [Indexed: 11/24/2022]
Abstract
Twenty-seven treatment-naïve patients with relapsing-remitting multiple sclerosis (MS) and 13 with neuromyelitis optica spectrum disorder (NMOSD) were enrolled during a time of acute flare-up. Common cerebrospinal fluid (CSF) features were increased CD29- and/or CD45RO-positive helper T cells capable of propagating inflammation in the central nervous system (CNS). B cell activation in the CSF was unique to MS, while an increase in CD4+CD192 (CCR2)+ cells in blood and breakdown of the blood-brain barrier (BBB) characterized NMOSD. Intravenous corticosteroid therapy suppressed neuroinflammation via modulation of cellular immunity in MS, as opposed to restoration of the BBB in NMOSD.
Collapse
Affiliation(s)
- Nobuaki Uchida
- Department of Neurology, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Kahoku-gun, Ishikawa 920-0293, Japan
| | - Kentaro Mori
- Department of Neurology, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Kahoku-gun, Ishikawa 920-0293, Japan
| | - Michiyo Fujita-Nakata
- Department of Neurology, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Kahoku-gun, Ishikawa 920-0293, Japan
| | - Megumi Nakanishi
- Department of Neurology, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Kahoku-gun, Ishikawa 920-0293, Japan
| | - Mitsuru Sanada
- Department of Neurology, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Kahoku-gun, Ishikawa 920-0293, Japan
| | - Shigemi Nagayama
- Department of Neurology, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Kahoku-gun, Ishikawa 920-0293, Japan
| | - Hiroshi Sugiyama
- Department of Neurology, National Hospital Organization Utano National Hospital, 8 Narutaki-Ondoyama-cho, Ukyo-ku, Kyoto 616-8255, Japan
| | - Makoto Matsui
- Department of Neurology, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Kahoku-gun, Ishikawa 920-0293, Japan.
| |
Collapse
|
156
|
LncRNAs and Immunity: Coding the Immune System with Noncoding Oligonucleotides. Int J Mol Sci 2021; 22:ijms22041741. [PMID: 33572313 PMCID: PMC7916124 DOI: 10.3390/ijms22041741] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/03/2021] [Accepted: 02/05/2021] [Indexed: 02/06/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) represent key regulators of gene transcription during the inflammatory response. Recent findings showed lncRNAs to be dysregulated in human diseases, such as inflammatory bowel disease, diabetes, allergies, asthma, and cancer. These noncoding RNAs are crucial for immune mechanism, as they are involved in differentiation, cell migration and in the production of inflammatory mediators through regulating protein–protein interactions or their ability to assemble with RNA and DNA. The last interaction can occur in cis or trans and is responsible for all the possible lncRNAs biological effects. Our proposal is to provide an overview on lncRNAs roles and functions related to immunity and immune mediated diseases, since these elucidations could be beneficial to untangle the complex bond between them.
Collapse
|
157
|
Casale GP, Thompson JR, Carpenter LC, Kim J, Lackner TJ, Mietus CJ, Ha DM, Myers SA, Brunette KE, Li S, Shields C, Willcockson G, Pipinos II. Cytokine signature of inflammation mediated by autoreactive Th-cells, in calf muscle of claudicating patients with Fontaine stage II peripheral artery disease. Transl Res 2021; 228:94-108. [PMID: 32835907 PMCID: PMC7779738 DOI: 10.1016/j.trsl.2020.08.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/21/2020] [Accepted: 08/20/2020] [Indexed: 02/06/2023]
Abstract
Peripheral artery disease (PAD), a severe atherosclerotic condition primarily of the elderly, afflicts 200 million individuals, worldwide, and is associated with lower extremity myopathy. Circulating markers of inflammation have been linked to risk and severity of PAD but the contribution of local inflammation to myopathy remains unknown. We evaluated, by ELISA, calf muscle of PAD patients (N = 23) and control subjects (N = 18) for local expression of inflammatory cytokines including Granulocyte/Monocyte Colony-Stimulating Factor (GM-CSF), Interleukin 17A (IL-17A), Interferon ϒ (IFN-ϒ), tumor necrosis factor α (TNF-α), and Interleukin 6 (IL-6). One or more of these cytokines were expressed in nineteen patients and 2 controls and coordinated expression of GM-CSF, IL-17A, IFN-ϒ, and TNF-α, a signature of activated, MHC Class II dependent autoreactive Th-cells, was unique to 11 patients. GM-CSF is the central driver of tissue-damaging myeloid macrophages. Patients with this cytokine signature had a shorter (P= 0.017) Claudication Onset Distance (17 m) compared with patients lacking the signature (102 m). Transforming Growth Factor β1 (TGFβ1) and Chemokine Ligand 5 (CCL5) were expressed coordinately in all PAD and control muscles, independently of GM-CSF, IL-17A, IFN-ϒ, TNF-α, or IL-6. TGFβ1 and CCL5 and their gene transcripts were increased in PAD muscle, consistent with increased age-associated inflammation in these patients. Serum cytokines were not informative of muscle cytokine expression. We have identified a cytokine profile of autoimmune inflammation in calf muscles of a significant proportion of claudicating PAD patients, in association with decreased limb function, and a second independent profile consistent with increased "inflammaging" in all PAD patients.
Collapse
Affiliation(s)
- George P Casale
- Department of Surgery, University of Nebraska Medical Center, Omaha, Nebraska.
| | - Jonathan R Thompson
- Department of Surgery, University of Nebraska Medical Center, Omaha, Nebraska
| | - Lauren C Carpenter
- Department of Surgery, University of Nebraska Medical Center, Omaha, Nebraska
| | - Julian Kim
- Department of Surgery, University of Nebraska Medical Center, Omaha, Nebraska
| | - Timothy J Lackner
- Department of Surgery, University of Nebraska Medical Center, Omaha, Nebraska
| | - Constance J Mietus
- Department of Surgery, University of Nebraska Medical Center, Omaha, Nebraska
| | - Duy M Ha
- Department of Surgery, University of Nebraska Medical Center, Omaha, Nebraska
| | - Sara A Myers
- Department of Biomechanics, University of Nebraska at Omaha, Omaha, Nebraska
| | | | - Shuai Li
- Department of Surgery, University of Nebraska Medical Center, Omaha, Nebraska
| | - Christina Shields
- Department of Surgery, University of Nebraska Medical Center, Omaha, Nebraska
| | - Gregory Willcockson
- Department of Surgery, University of Nebraska Medical Center, Omaha, Nebraska
| | - Iraklis I Pipinos
- Department of Surgery, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
158
|
Prado DS, Damasceno LEA, Sonego AB, Rosa MH, Martins TV, Fonseca MDM, Cunha TM, Cunha FQ, Alves-Filho JC. Pitavastatin ameliorates autoimmune neuroinflammation by regulating the Treg/Th17 cell balance through inhibition of mevalonate metabolism. Int Immunopharmacol 2021; 91:107278. [PMID: 33341737 DOI: 10.1016/j.intimp.2020.107278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/02/2020] [Accepted: 12/02/2020] [Indexed: 12/16/2022]
Abstract
While Treg cells are responsible for self-tolerance and immune homeostasis, pathogenic autoreactive Th17 cells produce pro-inflammatory cytokines that lead to tissue damage associated with autoimmunity, as observed in multiple sclerosis. Therefore, the immunological balance between Th17 and Treg cells may represent a promising option for immune therapy. Statin drugs are used to treat dyslipidemia; however, besides their effects on preventing cardiovascular diseases, statins also have anti-inflammatory effects. Here, we investigated the role of pitavastatin on experimental autoimmune encephalomyelitis (EAE) and the differentiation of Treg and Th17 cells. EAE was induced by immunizing C57BL/6 mice with MOG35-55. EAE severity was determined by analyzing the clinical score and inflammatory parameters in the spinal cord. Naive CD4 T cells were cultured under Treg and Th17-skewing conditions in vitro in the presence of pitavastatin. We found that pitavastatin decreased EAE development, which was accompanied by a reduction of all parameters investigated. Pitavastatin also reduced the expression of IBA1 and pSTAT3 (Y705 and S727) in the spinal cords of EAE mice. Interestingly, the reduction of Th17 cell frequency in the draining lymph nodes of EAE mice treated with pitavastatin was followed by an increase of Treg cells. Indeed, pitavastatin directly affects T cell differentiation in vitro by decreasing Th17 and increasing Treg cell differentiation. Mechanistically, pitavastatin effects are dependent on mevalonate synthesis. Thus, our data show the potential anti-inflammatory effect of pitavastatin on the pathogenesis of the experimental neuroinflammation by modulating the Th17/Treg axis.
Collapse
MESH Headings
- Animals
- Anti-Inflammatory Agents/pharmacology
- Cell Differentiation/drug effects
- Cells, Cultured
- Cytokines/genetics
- Cytokines/metabolism
- Disease Models, Animal
- Encephalomyelitis, Autoimmune, Experimental/chemically induced
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/prevention & control
- Inflammation Mediators/metabolism
- Lymph Nodes/drug effects
- Lymph Nodes/immunology
- Lymph Nodes/metabolism
- Male
- Mevalonic Acid/metabolism
- Mice, Inbred C57BL
- Myelin-Oligodendrocyte Glycoprotein
- Peptide Fragments
- Quinolines/pharmacology
- Spinal Cord/drug effects
- Spinal Cord/immunology
- Spinal Cord/metabolism
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Th17 Cells/drug effects
- Th17 Cells/immunology
- Th17 Cells/metabolism
- Mice
Collapse
Affiliation(s)
- D S Prado
- Center for Research in Inflammatory Diseases, CRID, Ribeirão Preto Medical School, University of São Paulo, SP, Brazil; Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - L E A Damasceno
- Center for Research in Inflammatory Diseases, CRID, Ribeirão Preto Medical School, University of São Paulo, SP, Brazil; Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - A B Sonego
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - M H Rosa
- Center for Research in Inflammatory Diseases, CRID, Ribeirão Preto Medical School, University of São Paulo, SP, Brazil; Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - T V Martins
- Center for Research in Inflammatory Diseases, CRID, Ribeirão Preto Medical School, University of São Paulo, SP, Brazil; Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - M D M Fonseca
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - T M Cunha
- Center for Research in Inflammatory Diseases, CRID, Ribeirão Preto Medical School, University of São Paulo, SP, Brazil; Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - F Q Cunha
- Center for Research in Inflammatory Diseases, CRID, Ribeirão Preto Medical School, University of São Paulo, SP, Brazil; Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - J C Alves-Filho
- Center for Research in Inflammatory Diseases, CRID, Ribeirão Preto Medical School, University of São Paulo, SP, Brazil; Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.
| |
Collapse
|
159
|
Role of Peripheral Immune Cells in Multiple Sclerosis and Experimental Autoimmune Encephalomyelitis. SCI 2021. [DOI: 10.3390/sci3010012] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disease that affects the myelination of the neurons present in the central nervous system (CNS). The exact etiology of MS development is unclear, but various environmental and genetic factors might play a role in initiating the disease. Experimental autoimmune encephalomyelitis (EAE) is a mouse model that is used to study the pathophysiology of MS disease as well as the effects of possible therapeutic agents. In addition, autoreactive immune cells trigger an inflammatory process upon the recognition of CNS antigens, which leads to destruction of the neurons. These include innate immune cells such as macrophages, dendritic cells, and natural killer cells. Additionally, the activation and extravasation of adaptive immune cells such as CD4+ T cells into the CNS may lead to further exacerbation of the disease. However, many studies revealed that immune cells could have either a protective or pathological role in MS. In this review, we highlight the roles of innate and adaptive immune cellular and soluble players that contribute to the pathogenesis of MS and EAE, which may be used as potential targets for therapy.
Collapse
|
160
|
Chou WC, Guo Z, Guo H, Chen L, Zhang G, Liang K, Xie L, Tan X, Gibson SA, Rampanelli E, Wang Y, Montgomery SA, Brickey WJ, Deng M, Freeman L, Zhang S, Su MA, Chen X, Wan YY, Ting JPY. AIM2 in regulatory T cells restrains autoimmune diseases. Nature 2021; 591:300-305. [PMID: 33505023 PMCID: PMC8080937 DOI: 10.1038/s41586-021-03231-w] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 12/14/2020] [Indexed: 11/30/2022]
Abstract
The inflammasome initiates innate defense and inflammatory response by activating caspase-1 and pyroptotic cell death in myeloid cells1,2. It is comprised of an innate immune receptor/sensor, pro-caspase-1, and a common adaptor molecule, ASC (apoptotic speck-containing protein with a CARD). Consistent with their pro-inflammatory function, caspase-1, ASC and NLRP3 exacerbate autoimmunity during experimental autoimmune encephalomyelitis (EAE) by enhancing IL-1β and IL-18 secretion in myeloid cells3–6. Here we reveal an unexpected function of a DNA-binding inflammasome receptor, AIM2 (Absent in Melanoma 2)7–10, in T regulatory cells (Tregs) to restrain two models of autoimmunity (experimental autoimmune encephalomyelitis and T cell-mediated colitis) by studying whole-body and Treg-specific Aim2–/– mice. AIM2 is highly expressed by human and mouse Tregs, with its expression induced by TGF-β and its promoter occupied by transcription factors associated with Tregs, including Runx1, Ets1, Bcl11b and CREB. RNA-seq, biochemical and metabolic analyses revealed that AIM2 attenuates Akt-phosphorylation, mTOR, c-Myc and glycolysis, but promotes lipid oxidative phosphorylation in Tregs. Mechanistically, AIM2 interacts with the RACK1/PP2A-phosphatase complex to restrain Akt-phosphorylation. Lineage tracing demonstrates that AIM2 promotes the stability of Tregs during inflammation. While AIM2 is generally accepted as an inflammasome effector in myeloid cells, this report reveals a T cell-intrinsic role of AIM2 in restraining autoimmunity by diminishing Akt-mTOR signaling and altering immune-metabolism to enhance Treg stability.
Collapse
Affiliation(s)
- Wei-Chun Chou
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Zengli Guo
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Hao Guo
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Liang Chen
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ge Zhang
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kaixin Liang
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Oral and Craniofacial Biomedicine Program, School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ling Xie
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Xianming Tan
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sara A Gibson
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Elena Rampanelli
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yan Wang
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Stephanie A Montgomery
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - W June Brickey
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Meng Deng
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Oral and Craniofacial Biomedicine Program, School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Leslie Freeman
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Song Zhang
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Maureen A Su
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Department of Microbiology Immunology and Medical Genetics and Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Xian Chen
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yisong Y Wan
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA. .,Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Jenny P-Y Ting
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA. .,Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA. .,Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA. .,Oral and Craniofacial Biomedicine Program, School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
161
|
Islam SMT, Won J, Kim J, Qiao F, Singh AK, Khan M, Singh I. Detoxification of Reactive Aldehydes by Alda-1 Treatment Ameliorates Experimental Autoimmune Encephalomyelitis in Mice. Neuroscience 2021; 458:31-42. [PMID: 33493617 DOI: 10.1016/j.neuroscience.2021.01.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 12/12/2020] [Accepted: 01/12/2021] [Indexed: 11/28/2022]
Abstract
Reactive aldehydes are generated as a toxic end-product of lipid peroxidation under inflammatory oxidative stress condition which is a well-established phenomenon in the pathogenesis of multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE). Alda-1, a selective agonist of mitochondrial aldehyde dehydrogenase 2 (ALDH2), is known to detoxify the reactive aldehydes. In this study, we investigated the effect of Alda-1 on CNS myelin pathology associated with reactive aldehydes and mitochondrial/peroxisomal dysfunctions in a mouse model of EAE. Daily treatment of EAE mice with Alda-1, starting at the peak of disease, ameliorated the clinical manifestation of disease along with the improvement of motor functions. Accordingly, Alda-1 treatment improved demyelination and neuroaxonal degeneration in EAE mice. EAE mice had increased levels of reactive aldehyde species, such as 4-hydroxynonenal (4-HNE), malondialdehyde (MDA), and acrolein (ACL) in the spinal cords and these levels were significantly reduced in Alda-1-treated EAE mice. Furthermore, Alda-1 treatment improved the loss of mitochondrial (OXPHOS) and peroxisomal (PMP70 and catalase) proteins as well as mitochondrial/peroxisomal proliferation factors (PGC-1α and PPARs) in the spinal cords of EAE mice. Taken together, this study demonstrates the therapeutic efficacy of ALDH2-agonist Alda-1 in the abatement of EAE disease through the detoxification of reactive aldehydes, thus suggesting Alda-1 as a potential therapeutic intervention for MS.
Collapse
Affiliation(s)
- S M Touhidul Islam
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA
| | - Jeseong Won
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA.
| | - Judong Kim
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA
| | - Fei Qiao
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Avtar K Singh
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA; Pathology and Laboratory Medicine Service, Ralph H. Johnson Veterans Administration Medical Center, Charleston, SC, USA
| | - Mushfiquddin Khan
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA
| | - Inderjit Singh
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA; Research Service, Ralph H. Johnson Veterans Administration Medical Center, Charleston, SC, USA.
| |
Collapse
|
162
|
Davalos L, Nowacek D, Elsheikh B, Reynolds EL, Maher Stino A. Cerebrospinal Fluid Protein Level and Mechanical Ventilation in Guillain-Barré Syndrome patients. J Neuromuscul Dis 2021; 8:299-303. [PMID: 33459659 DOI: 10.3233/jnd-200581] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The prognostic value of cerebrospinal fluid (CSF) protein in Guillain Barré Syndrome (GBS) is unclear. We aimed to explore the potential association between CSF protein level and mechanical ventilation in GBS. We undertook a retrospective study of GBS patients from January 2000 to November 2019 at the University of Michigan. 94 patients were ultimately included for evaluation. After adjusting for the Erasmus GBS Respiratory Insufficiency Scale (EGRIS), we did not find a significant difference in CSF protein between ventilated and non-ventilated patients. Elevated CSF protein level does not appear to portend an increased likelihood of mechanical ventilation in GBS patients.
Collapse
Affiliation(s)
- Long Davalos
- University of Michigan School of Medicine, Department of Neurology, Division of Neuromuscular Medicine, Ann Arbor, MI, USA
| | - Dustin Nowacek
- University of Michigan School of Medicine, Department of Neurology, Division of Neuromuscular Medicine, Ann Arbor, MI, USA
| | - Bakri Elsheikh
- Ohio State University Wexner Medical Center, Department of Neurology, Division of Neuromuscular Medicine, Columbus, OH, USA
| | - Evan L Reynolds
- University of Michigan School of Medicine, Department of Neurology, Division of Neuromuscular Medicine, Ann Arbor, MI, USA
| | - Amro Maher Stino
- University of Michigan School of Medicine, Department of Neurology, Division of Neuromuscular Medicine, Ann Arbor, MI, USA
| |
Collapse
|
163
|
Sex differences in EAE reveal common and distinct cellular and molecular components. Cell Immunol 2021; 359:104242. [PMID: 33190849 PMCID: PMC7770093 DOI: 10.1016/j.cellimm.2020.104242] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 09/27/2020] [Indexed: 12/27/2022]
Abstract
Experimental autoimmune encephalomyelitis (EAE) is commonly used as an animal model for evaluating clinical, histological and immunological processes potentially relevant to the human disease multiple sclerosis (MS), for which the mode of disease induction remains largely unknown. An important caveat for interpreting EAE processes in mice is the inflammatory effect of immunization with myelin peptides emulsified in Complete Freund's Adjuvant (CFA), often followed by additional injections of pertussis toxin (Ptx) in some strains to induce EAE. The current study evaluated clinical, histological, cellular (spleen), and chemokine-driven processes in spinal cords of male vs. female C57BL/6 mice that were immunized with mouse (m)MOG-35-55/CFA/Ptx to induce EAE; immunized with saline/CFA/Ptx only (CFA, no EAE); or were untreated (Naïve, no EAE). Analysis of response curves utilized a rigorous and sophisticated methodology to parse and characterize the effects of EAE and adjuvant alone vs. the Naive baseline responses. The results demonstrated stronger pro-inflammatory responses of immune cells and their associated cytokines, chemokines, and receptors in male vs. female CFA and EAE mice that appeared to be offset partially by increased percentages of male anti-inflammatory, regulatory and checkpoint T cell, B cell, and monocyte/macrophage subsets. These sex differences in peripheral immune responses may explain the reduced cellular infiltration and differing chemokine profiles in the Central Nervous System (CNS) of male vs. female CFA immunized mice and the reduced CNS infiltration and demyelination observed in male vs. female EAE groups of mice that ultimately resulted in the same clinical EAE disease severity in both sexes. Our findings suggest EAE disease severity is governed not only by the degree of CNS infiltration and demyelination, but also by the balance of pro-inflammatory vs. regulatory cell types and their secreted cytokines and chemokines.
Collapse
|
164
|
Ramos-Martinez E, Ramos-Martínez I, Molina-Salinas G, Zepeda-Ruiz WA, Cerbon M. The role of prolactin in central nervous system inflammation. Rev Neurosci 2021; 32:323-340. [PMID: 33661585 DOI: 10.1515/revneuro-2020-0082] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/25/2020] [Indexed: 12/14/2022]
Abstract
Prolactin has been shown to favor both the activation and suppression of the microglia and astrocytes, as well as the release of inflammatory and anti-inflammatory cytokines. Prolactin has also been associated with neuronal damage in diseases such as multiple sclerosis, epilepsy, and in experimental models of these diseases. However, studies show that prolactin has neuroprotective effects in conditions of neuronal damage and inflammation and may be used as neuroprotector factor. In this review, we first discuss general information about prolactin, then we summarize recent findings of prolactin function in inflammatory and anti-inflammatory processes and factors involved in the possible dual role of prolactin are described. Finally, we review the function of prolactin specifically in the central nervous system and how it promotes a neuroprotective effect, or that of neuronal damage, particularly in experimental autoimmune encephalomyelitis and during excitotoxicity. The overall studies indicated that prolactin may be a promising molecule for the treatment of some neurological diseases.
Collapse
Affiliation(s)
- Edgar Ramos-Martinez
- Escuela de Ciencias, Universidad Autónoma "Benito Juárez" de Oaxaca, Oaxaca68120, Mexico
- Instituto de Cómputo Aplicado en Ciencias, Oaxaca68000, Mexico
| | - Ivan Ramos-Martínez
- Glycobiology, Cell Growth and Tissue Repair Research Unit (Gly-CRRET), Université Paris Est Créteil (UPEC), 94010Créteil, France
| | - Gladys Molina-Salinas
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, CDMX, 04510Coyoacan, Mexico
| | - Wendy A Zepeda-Ruiz
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, CDMX, 04510Coyoacan, Mexico
| | - Marco Cerbon
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, CDMX, 04510Coyoacan, Mexico
| |
Collapse
|
165
|
Yu Z, Ling Z, Lu L, Zhao J, Chen X, Xu P, Zou X. Regulatory Roles of Bone in Neurodegenerative Diseases. Front Aging Neurosci 2020; 12:610581. [PMID: 33408628 PMCID: PMC7779400 DOI: 10.3389/fnagi.2020.610581] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 11/24/2020] [Indexed: 12/18/2022] Open
Abstract
Osteoporosis and neurodegenerative diseases are two kinds of common disorders of the elderly, which often co-occur. Previous studies have shown the skeletal and central nervous systems are closely related to pathophysiology. As the main structural scaffold of the body, the bone is also a reservoir for stem cells, a primary lymphoid organ, and an important endocrine organ. It can interact with the brain through various bone-derived cells, mostly the mesenchymal and hematopoietic stem cells (HSCs). The bone marrow is also a place for generating immune cells, which could greatly influence brain functions. Finally, the proteins secreted by bones (osteokines) also play important roles in the growth and function of the brain. This article reviews the latest research studying the impact of bone-derived cells, bone-controlled immune system, and bone-secreted proteins on the brain, and evaluates how these factors are implicated in the progress of neurodegenerative diseases and their potential use in the diagnosis and treatment of these diseases.
Collapse
Affiliation(s)
- Zhengran Yu
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Orthopaedic Research Institute/Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zemin Ling
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Orthopaedic Research Institute/Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Lin Lu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jin Zhao
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiang Chen
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Pingyi Xu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xuenong Zou
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Orthopaedic Research Institute/Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
166
|
Pilli D, Zou A, Dawes R, Lopez JA, Tea F, Liyanage G, Lee FX, Merheb V, Houston SD, Pillay A, Jones HF, Ramanathan S, Mohammad S, Kelleher AD, Alexander SI, Dale RC, Brilot F. Pro-inflammatory dopamine-2 receptor-specific T cells in paediatric movement and psychiatric disorders. Clin Transl Immunology 2020; 9:e1229. [PMID: 33425355 PMCID: PMC7780098 DOI: 10.1002/cti2.1229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/09/2020] [Accepted: 11/29/2020] [Indexed: 12/13/2022] Open
Abstract
Objectives A dysregulated inflammatory response against the dopamine‐2 receptor (D2R) has been implicated in movement and psychiatric disorders. D2R antibodies were previously reported in a subset of these patients; however, the role of T cells in these disorders remains unknown. Our objective was to identify and characterise pro‐inflammatory D2R‐specific T cells in movement and psychiatric disorders. Methods Blood from paediatric patients with movement and psychiatric disorders of suspected autoimmune and neurodevelopmental aetiology (n = 24) and controls (n = 16) was cultured in vitro with a human D2R peptide library, and D2R‐specific T cells were identified by flow cytometric quantification of CD4+CD25+CD134+ T cells. Cytokine secretion was analysed using a cytometric bead array and ELISA. HLA genotypes were examined in D2R‐specific T‐cell‐positive patients. D2R antibody seropositivity was determined using a flow cytometry live cell‐based assay. Results Three immunodominant regions of D2R, amino acid (aa)121–131, aa171–181 and aa396–416, specifically activated CD4+ T cells in 8/24 patients. Peptides corresponding to these regions were predicted to bind with high affinity to the HLA of the eight positive patients and had also elicited the secretion of pro‐inflammatory cytokines IL‐2, IFN‐ γ, TNF, IL‐6, IL‐17A and IL‐17F. All eight patients were seronegative for D2R antibodies. Conclusion Autoreactive D2R‐specific T cells and a pro‐inflammatory Th1 and Th17 cytokine profile characterise a subset of paediatric patients with movement and psychiatric disorders, further underpinning the theory of immune dysregulation in these disorders. These findings offer new perspectives into the neuroinflammatory mechanisms of movement and psychiatric disorders and can influence patient diagnosis and treatment.
Collapse
Affiliation(s)
- Deepti Pilli
- Brain Autoimmunity Group Kids Neuroscience Centre Kids Research at the Children's Hospital at Westmead Sydney NSW Australia.,Discipline of Child and Adolescent Health Faculty of Medicine and Health The University of Sydney Sydney NSW Australia
| | - Alicia Zou
- Brain Autoimmunity Group Kids Neuroscience Centre Kids Research at the Children's Hospital at Westmead Sydney NSW Australia.,Discipline of Child and Adolescent Health Faculty of Medicine and Health The University of Sydney Sydney NSW Australia
| | - Ruebena Dawes
- Discipline of Child and Adolescent Health Faculty of Medicine and Health The University of Sydney Sydney NSW Australia.,Genomic Medicine Group Kids Neuroscience Centre Kids Research at the Children's Hospital at Westmead Sydney NSW Australia
| | - Joseph A Lopez
- Brain Autoimmunity Group Kids Neuroscience Centre Kids Research at the Children's Hospital at Westmead Sydney NSW Australia.,Discipline of Child and Adolescent Health Faculty of Medicine and Health The University of Sydney Sydney NSW Australia
| | - Fiona Tea
- Brain Autoimmunity Group Kids Neuroscience Centre Kids Research at the Children's Hospital at Westmead Sydney NSW Australia.,Discipline of Child and Adolescent Health Faculty of Medicine and Health The University of Sydney Sydney NSW Australia
| | - Ganesha Liyanage
- Brain Autoimmunity Group Kids Neuroscience Centre Kids Research at the Children's Hospital at Westmead Sydney NSW Australia.,School of Medical Sciences Discipline of Applied Medical Science Faculty of Medicine and Health The University of Sydney Sydney NSW Australia
| | - Fiona Xz Lee
- Brain Autoimmunity Group Kids Neuroscience Centre Kids Research at the Children's Hospital at Westmead Sydney NSW Australia
| | - Vera Merheb
- Brain Autoimmunity Group Kids Neuroscience Centre Kids Research at the Children's Hospital at Westmead Sydney NSW Australia
| | - Samuel D Houston
- Brain Autoimmunity Group Kids Neuroscience Centre Kids Research at the Children's Hospital at Westmead Sydney NSW Australia.,School of Biomedical Engineering The University of Sydney Sydney NSW Australia
| | - Aleha Pillay
- Brain Autoimmunity Group Kids Neuroscience Centre Kids Research at the Children's Hospital at Westmead Sydney NSW Australia
| | - Hannah F Jones
- Brain Autoimmunity Group Kids Neuroscience Centre Kids Research at the Children's Hospital at Westmead Sydney NSW Australia.,Discipline of Child and Adolescent Health Faculty of Medicine and Health The University of Sydney Sydney NSW Australia
| | - Sudarshini Ramanathan
- Brain Autoimmunity Group Kids Neuroscience Centre Kids Research at the Children's Hospital at Westmead Sydney NSW Australia.,Discipline of Child and Adolescent Health Faculty of Medicine and Health The University of Sydney Sydney NSW Australia
| | - Shekeeb Mohammad
- Brain Autoimmunity Group Kids Neuroscience Centre Kids Research at the Children's Hospital at Westmead Sydney NSW Australia.,Discipline of Child and Adolescent Health Faculty of Medicine and Health The University of Sydney Sydney NSW Australia
| | | | - Stephen I Alexander
- Discipline of Child and Adolescent Health Faculty of Medicine and Health The University of Sydney Sydney NSW Australia.,Centre for Kidney Research Children's Hospital at Westmead Sydney NSW Australia
| | - Russell C Dale
- Brain Autoimmunity Group Kids Neuroscience Centre Kids Research at the Children's Hospital at Westmead Sydney NSW Australia.,Discipline of Child and Adolescent Health Faculty of Medicine and Health The University of Sydney Sydney NSW Australia.,Brain and Mind Centre The University of Sydney Sydney NSW Australia
| | - Fabienne Brilot
- Brain Autoimmunity Group Kids Neuroscience Centre Kids Research at the Children's Hospital at Westmead Sydney NSW Australia.,Discipline of Child and Adolescent Health Faculty of Medicine and Health The University of Sydney Sydney NSW Australia.,School of Medical Sciences Discipline of Applied Medical Science Faculty of Medicine and Health The University of Sydney Sydney NSW Australia.,Brain and Mind Centre The University of Sydney Sydney NSW Australia
| |
Collapse
|
167
|
Kofahi RM, Kofahi HM, Sabaheen S, Qawasmeh MA, Momani A, Yassin A, Alhayk K, El-Salem K. Prevalence of seropositivity of selected herpesviruses in patients with multiple sclerosis in the North of Jordan. BMC Neurol 2020; 20:397. [PMID: 33121451 PMCID: PMC7596955 DOI: 10.1186/s12883-020-01977-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 10/23/2020] [Indexed: 12/14/2022] Open
Abstract
Background Multiple sclerosis (MS) is a neurological disease that is caused by an autoimmune response that results in the neuron’s demyelination in the central nervous system. The exact etiology of MS is not clear; however, several environmental and genetic factors are believed to participate in its initiation and development, including exposure to viruses. This study aims to investigate the association between the seropositivity and antibody titer of selected herpesviruses and MS in Jordanian MS patients. Method In this study, 55 MS patients and 40 age- and gender-matching apparently healthy volunteers were recruited from two main hospitals in the north of Jordan. MS patients were grouped into three types of MS based on the clinical presentation of the disease. Blood samples were collected from the participants and the IgG antibodies for human herpesvirus 6 (HHV-6), Epstein-Barr virus (EBV) nuclear antigen (EBNA), EBV viral capsid antigen (VCA) and varicella-zoster virus (VZV) were assayed by ELISA. The prevalence of seropositivity and the antibody level for each of the antibodies were compared between MS patients and controls and between the three types of MS. Results There was no significant difference in the prevalence of seropositivity and in the levels of antibodies for HHV-6, EBNA and VCA between MS patients and controls and between the three types of MS. In contrast, the number of seropositive patients and the level of IgG antibodies for VZV were significantly higher in MS patients compared to the control. Conclusion This study showed that patients with MS in the north of Jordan were more likely to be seropositive for VZV than the general population. Based on this finding, we recommend further studies to evaluate the seropositivity to VZV to be carried out in other parts of Jordan and the greater middle east to find out if there is a correlation between MS and previous infection with VZV. Supplementary Information The online version contains supplementary material available at 10.1186/s12883-020-01977-w.
Collapse
Affiliation(s)
- Raid M Kofahi
- Department of Neurosciences, Jordan University of Science and Technology, P.O. Box 3030, Irbid, 22110, Jordan.
| | - Hassan M Kofahi
- Department of Medical Laboratory Sciences, Jordan University of Science and Technology, Irbid, Jordan
| | - Suhib Sabaheen
- Department of Medical Laboratory Sciences, Jordan University of Science and Technology, Irbid, Jordan
| | - Majdi Al Qawasmeh
- Department of Neurosciences, Jordan University of Science and Technology, P.O. Box 3030, Irbid, 22110, Jordan
| | - Aiman Momani
- Department of Neurosciences, Jordan University of Science and Technology, P.O. Box 3030, Irbid, 22110, Jordan
| | - Ahmed Yassin
- Department of Neurosciences, Jordan University of Science and Technology, P.O. Box 3030, Irbid, 22110, Jordan
| | - Kefah Alhayk
- Department of Neurosciences, Jordan University of Science and Technology, P.O. Box 3030, Irbid, 22110, Jordan
| | - Khalid El-Salem
- Department of Neurosciences, Jordan University of Science and Technology, P.O. Box 3030, Irbid, 22110, Jordan
| |
Collapse
|
168
|
Involvement of Indoleamine-2,3-Dioxygenase and Kynurenine Pathway in Experimental Autoimmune Encephalomyelitis in Mice. Neurochem Res 2020; 45:2959-2977. [PMID: 33040279 DOI: 10.1007/s11064-020-03144-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 09/21/2020] [Accepted: 10/05/2020] [Indexed: 02/07/2023]
Abstract
The experimental autoimmune encephalomyelitis (EAE) is a model that mimics multiple sclerosis in rodents. Evidence has suggested that the activation of indoleamine-2,3-dioxygenase (IDO), the rate-limiting enzyme in the kynurenine pathway (KP), plays a crucial role in inflammation-related diseases. The present study aimed to investigate the involvement of the inflammatory process and KP components in a model of EAE in mice. To identify the role of KP in EAE pathogenesis, mice received IDO inhibitor (INCB024360) at a dose of 200 mg/kg (per oral) for 25 days. We demonstrated that IDO inhibitor mitigated the clinical signs of EAE, in parallel with the reduction of cytokine levels (brain, spinal cord, spleen and lymph node) and ionized calcium-binding adaptor protein-1 (Iba-1) gene expression in the central nervous system of EAE mice. Besides, IDO inhibitor causes a significant decrease in the levels of tryptophan, kynurenine and neurotoxic metabolites of KP, such as 3-hydroxykynurenine (3-HK) and quinolinic acid (QUIN) in the prefrontal cortex, hippocampus, spinal cord, spleen and lymph node of EAE mice. The mRNA expression and enzyme activity of IDO and kynurenine 3-monooxygenase (KMO) were also reduced by IDO inhibitor. These findings indicate that the inflammatory process concomitant with the activation of IDO/KP is involved in the pathogenic mechanisms of EAE. The modulation of KP is a promising target for novel pharmacological treatment of MS.
Collapse
|
169
|
Bai M, Wang Y, Han R, Xu L, Huang M, Zhao J, Lin Y, Song S, Chen Y. Intermittent caloric restriction with a modified fasting-mimicking diet ameliorates autoimmunity and promotes recovery in a mouse model of multiple sclerosis. J Nutr Biochem 2020; 87:108493. [PMID: 32920091 DOI: 10.1016/j.jnutbio.2020.108493] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 08/07/2020] [Accepted: 08/12/2020] [Indexed: 12/13/2022]
Abstract
Dietary interventions such as fasting have been proved to be effective in the prevention of metabolic and autoimmune diseases as well as aging-related conditions. The complicated interaction between nutrition and immunity has drawn wide attention in recent years. In this study, we investigated the therapeutic effect of intermittent caloric restriction on autoimmune encephalomyelitis (EAE), a model of multiple sclerosis, in mice. EAE was induced by immunization of C57BL/6 mice with myelin oligodendrocyte glycoprotein 35-55 peptide. After the EAE symptoms became obvious at the 4th week post-immunization, the mice were administered with a modified fasting-mimicking diet (FMD) at 1/3 cal of control for 3 days, followed by ad libitum with normal chow for 4 days. A total of two cycles of FMD was applied. Compared with the mice without receiving caloric restriction, the mice using FMD had significant decreases in EAE severity, immune cell infiltration in spinal cord and CNS demyelination. FMD administration also reversed EAE-mediated CNS accumulation of total CD4+ T cells and in particular, IFN-γ-producing CD4+ T cells. Moreover, FMD application elevated the cell proliferation rate in CNS and enhanced expression of brain-derived neurotrophic factor (BDNF) and remyelination markers. In conclusion, our results indicate that intermittent caloric restriction using the modified FMD was effective in the treatment of EAE through ameliorating inflammatory response and promoting recovery of the damaged tissue.
Collapse
Affiliation(s)
- Meijuan Bai
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China, 200031
| | - Yan Wang
- CAS Key Laboratory of Tumor and Microenvironment, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China, 200031
| | - Ruomei Han
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China, 200031; School of Life Sciences and Technology, Shanghai Tech University, Shanghai, China 200031
| | - Lijiao Xu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China, 200031; School of Life Sciences and Technology, Shanghai Tech University, Shanghai, China 200031
| | - Meiqin Huang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China, 200031
| | - Jingyu Zhao
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China, 200031
| | - Yijun Lin
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China, 200031
| | - Shuo Song
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China, 200031; School of Life Sciences and Technology, Shanghai Tech University, Shanghai, China 200031
| | - Yan Chen
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China, 200031; School of Life Sciences and Technology, Shanghai Tech University, Shanghai, China 200031.
| |
Collapse
|
170
|
Association of the soluble CTLA4 with schizophrenia: an observational study. JOURNAL OF BIO-X RESEARCH 2020. [DOI: 10.1097/jbr.0000000000000070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
171
|
Lee HG, Cho MZ, Choi JM. Bystander CD4 + T cells: crossroads between innate and adaptive immunity. Exp Mol Med 2020; 52:1255-1263. [PMID: 32859954 PMCID: PMC8080565 DOI: 10.1038/s12276-020-00486-7] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/21/2020] [Accepted: 06/15/2020] [Indexed: 12/11/2022] Open
Abstract
T cells are the central mediators of both humoral and cellular adaptive immune responses. Highly specific receptor-mediated clonal selection and expansion of T cells assure antigen-specific immunity. In addition, encounters with cognate antigens generate immunological memory, the capacity for long-term, antigen-specific immunity against previously encountered pathogens. However, T-cell receptor (TCR)-independent activation, termed “bystander activation”, has also been found. Bystander-activated T cells can respond rapidly and secrete effector cytokines even in the absence of antigen stimulation. Recent studies have rehighlighted the importance of antigen-independent bystander activation of CD4+ T cells in infection clearance and autoimmune pathogenesis, suggesting the existence of a distinct innate-like immunological function performed by conventional T cells. In this review, we discuss the inflammatory mediators that activate bystander CD4+ T cells and the potential physiological roles of these cells during infection, autoimmunity, and cancer. Immune cells that become activated in the absence of antigen stimulation could be harnessed in the fight against infection, autoimmunity, and cancer. Je-Min Choi and colleagues from Hanyang University in Seoul, South Korea, review how the immune system can deploy helper T cells through an unusual process called bystander activation. Most T cells become activated only after receptors on their surface bind to specific cognate antigen. In contrast, bystander T cells are activated non-specifically in response to cytokines and other pro-inflammatory mediators. Studies have shown that this cell population has a variety of protective and pathogenic functions, for example, guarding against multiple sclerosis, aggravating the symptoms of parasitic infections and promoting antitumor immunity. A better understanding of these immune cells could lead to new therapeutic options for these diseases.
Collapse
Affiliation(s)
- Hong-Gyun Lee
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, Republic of Korea.,Research Institute for Natural Sciences, Hanyang University, Seoul, Republic of Korea
| | - Min-Zi Cho
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, Republic of Korea.,Research Institute for Natural Sciences, Hanyang University, Seoul, Republic of Korea
| | - Je-Min Choi
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, Republic of Korea. .,Research Institute for Natural Sciences, Hanyang University, Seoul, Republic of Korea. .,Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul, Republic of Korea.
| |
Collapse
|
172
|
Ilchmann-Diounou H, Menard S. Psychological Stress, Intestinal Barrier Dysfunctions, and Autoimmune Disorders: An Overview. Front Immunol 2020; 11:1823. [PMID: 32983091 PMCID: PMC7477358 DOI: 10.3389/fimmu.2020.01823] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 07/07/2020] [Indexed: 12/12/2022] Open
Abstract
Autoimmune disorders (ADs) are multifactorial diseases involving, genetic, epigenetic, and environmental factors characterized by an inappropriate immune response toward self-antigens. In the past decades, there has been a continuous rise in the incidence of ADs, which cannot be explained by genetic factors alone. Influence of psychological stress on the development or the course of autoimmune disorders has been discussed for a long time. Indeed, based on epidemiological studies, stress has been suggested to precede AD occurrence and to exacerbate symptoms. Furthermore, compiling data showed that most of ADs are associated with gastrointestinal symptoms, that is, microbiota dysbiosis, intestinal hyperpermeability, and intestinal inflammation. Interestingly, social stress (acute or chronic, in adult or in neonate) is a well-described intestinal disrupting factor. Taken together, those observations question a potential role of stress-induced defect of the intestinal barrier in the onset and/or the course of ADs. In this review, we aim to present evidences supporting the hypothesis for a role of stress-induced intestinal barrier disruption in the onset and/or the course of ADs. We will mainly focus on autoimmune type 1 diabetes, multiple sclerosis and systemic lupus erythematosus, ADs for which we could find sufficient circumstantial data to support this hypothesis. We excluded gastrointestinal (GI) ADs like coeliac disease to privilege ADs not focused on intestinal disorders to avoid confounding factors. Indeed, GIADs are characterized by antibodies directed against intestinal barrier actors.
Collapse
MESH Headings
- Animals
- Autoimmune Diseases/epidemiology
- Autoimmune Diseases/immunology
- Autoimmune Diseases/metabolism
- Autoimmune Diseases/microbiology
- Autoimmunity
- Diabetes Mellitus, Type 1/epidemiology
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/metabolism
- Diabetes Mellitus, Type 1/microbiology
- Dysbiosis
- Gastrointestinal Microbiome
- Host-Pathogen Interactions
- Humans
- Intestinal Mucosa/immunology
- Intestinal Mucosa/metabolism
- Intestinal Mucosa/microbiology
- Lupus Erythematosus, Systemic/epidemiology
- Lupus Erythematosus, Systemic/immunology
- Lupus Erythematosus, Systemic/metabolism
- Lupus Erythematosus, Systemic/microbiology
- Multiple Sclerosis/epidemiology
- Multiple Sclerosis/immunology
- Multiple Sclerosis/metabolism
- Multiple Sclerosis/microbiology
- Permeability
- Risk Factors
- Stress, Psychological/epidemiology
- Stress, Psychological/immunology
- Stress, Psychological/metabolism
- Stress, Psychological/microbiology
Collapse
Affiliation(s)
| | - Sandrine Menard
- Neuro-Gastroenterology and Nutrition Team, Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| |
Collapse
|
173
|
TunÇ A, TekeŞİn A, GÜzel V, ÜnlÜbaŞ Y, SeferoĞlu M. The prognostic value of demyelinating electrophysiologic findings and cerebrospinal fluid protein levels in acute inflammatory demyelinating polyneuropathy. ARQUIVOS DE NEURO-PSIQUIATRIA 2020; 78:481-487. [PMID: 32844898 DOI: 10.1590/0004-282x20200042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 04/12/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Guillain-Barre syndrome is an acute immune-mediated polyneuropathy characterized by rapidly evolving symptoms and disability. Cerebrospinal fluid analysis and electrophysiological studies are crucial in the diagnosis of this syndrome. OBJECTIVE To evaluate the prognostic value of the type and number of demyelinating findings and cerebrospinal fluid protein levels in patients with acute inflammatory demyelinating polyneuropathy. METHODS We retrospectively analyzed electrophysiological data and cerebrospinal fluid of 67 consecutive patients with acute inflammatory demyelinating polyneuropathy from Istanbul, Turkey (2011-2019) studied ≤ 24 hours post-onset. RESULTS The patients who met a higher number of demyelinating criteria had increased disability scores in the first day and first month, and higher cerebrospinal fluid protein levels were correlated with worse prognosis both on the first day and the first month. However, the disability scores did not correlate with any single specific criterion, and no significant correlation was found between the number of satisfied criteria and cerebrospinal fluid protein levels. CONCLUSIONS The number of demyelinating criteria that are met and high cerebrospinal fluid protein levels at the disease onset may be valuable prognostic markers. More systematic studies conducted with serial nerve conduction studies are required to highlight the roles of the suggested criteria in clinical practice.
Collapse
Affiliation(s)
- Abdulkadir TunÇ
- Sakarya University, Sakarya Training and Research Hospital, Department of Neurology, Sakarya, Turkey
| | - Aysel TekeŞİn
- Health Sciences University, Istanbul Training and Research Hospital, Department of Neurology, Istanbul, Turkey
| | - Vildan GÜzel
- Bezmialem Vakif University, Faculty of Medicine, Department of Neurology, Istanbul, Turkey
| | - Yonca ÜnlÜbaŞ
- Sakarya University, Sakarya Training and Research Hospital, Department of Neurology, Sakarya, Turkey
| | - Meral SeferoĞlu
- Bursa Yüksek İhtisas Education and Research Hospital, Department of Neurology, Bursa, Turkey
| |
Collapse
|
174
|
Bijelić DD, Milićević KD, Lazarević MN, Miljković DM, Bogdanović Pristov JJ, Savić DZ, Petković BB, Andjus PR, Momčilović MB, Nikolić LM. Central nervous system-infiltrated immune cells induce calcium increase in astrocytes via astroglial purinergic signaling. J Neurosci Res 2020; 98:2317-2332. [PMID: 32799373 DOI: 10.1002/jnr.24699] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 06/22/2020] [Accepted: 07/07/2020] [Indexed: 12/15/2022]
Abstract
Interaction between autoreactive immune cells and astroglia is an important part of the pathologic processes that fuel neurodegeneration in multiple sclerosis. In this inflammatory disease, immune cells enter into the central nervous system (CNS) and they spread through CNS parenchyma, but the impact of these autoreactive immune cells on the activity pattern of astrocytes has not been defined. By exploiting naïve astrocytes in culture and CNS-infiltrated immune cells (CNS IICs) isolated from rat with experimental autoimmune encephalomyelitis (EAE), here we demonstrate previously unrecognized properties of immune cell-astrocyte interaction. We show that CNS IICs but not the peripheral immune cell application, evokes a rapid and vigorous intracellular Ca2+ increase in astrocytes by promoting glial release of ATP. ATP propagated Ca2+ elevation through glial purinergic P2X7 receptor activation by the hemichannel-dependent nucleotide release mechanism. Astrocyte Ca2+ increase is specifically triggered by the autoreactive CD4+ T-cell application and these two cell types exhibit close spatial interaction in EAE. Therefore, Ca2+ signals may mediate a rapid astroglial response to the autoreactive immune cells in their local environment. This property of immune cell-astrocyte interaction may be important to consider in studies interrogating CNS autoimmune disease.
Collapse
Affiliation(s)
- Dunja D Bijelić
- Faculty of Biology, Center for Laser Microscopy, University of Belgrade, Belgrade, Serbia
| | - Katarina D Milićević
- Faculty of Biology, Center for Laser Microscopy, University of Belgrade, Belgrade, Serbia
| | - Milica N Lazarević
- Department of Immunology, Institute for Biological Research Siniša Stanković, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Djordje M Miljković
- Department of Immunology, Institute for Biological Research Siniša Stanković, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Jelena J Bogdanović Pristov
- Department of Life Sciences, Institute for Multidisciplinary Research, University of Belgrade, Belgrade, Serbia
| | - Danijela Z Savić
- Department of Neurobiology, Institute for Biological Research Siniša Stanković, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Branka B Petković
- Department of Neurophysiology, Institute for Biological Research Siniša Stanković, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Pavle R Andjus
- Faculty of Biology, Center for Laser Microscopy, University of Belgrade, Belgrade, Serbia
| | - Miljana B Momčilović
- Department of Immunology, Institute for Biological Research Siniša Stanković, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Ljiljana M Nikolić
- Department of Neurophysiology, Institute for Biological Research Siniša Stanković, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
175
|
Brandão WN, De Oliveira MG, Andreoni RT, Nakaya H, Farias AS, Peron JPS. Neuroinflammation at single cell level: What is new? J Leukoc Biol 2020; 108:1129-1137. [PMID: 32779279 DOI: 10.1002/jlb.3mr0620-035r] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 06/05/2020] [Accepted: 07/16/2020] [Indexed: 12/25/2022] Open
Abstract
Multiple sclerosis is a chronic and demyelinating disease of the central nervous system (CNS), most prevalent in women, and with an important social and economic cost worldwide. It is triggered by self-reacting lymphocytes that infiltrate the CNS and initiate neuroinflammation. Further, axonal loss and neuronal death takes place, leading to neurodegeneration and brain atrophy. The murine model for studying MS, experimental autoimmune encephalomyelitis (EAE), consists in immunizing mice with myelin-derived epitopes. APCs activate encephalitogenic T CD4 and CD8 lymphocytes that migrate mainly to the spinal cord resulting in neuroinflammation. Most of the knowledge on the pathophysiology and treatment of MS was obtained from EAE experiments, as Th17 cells, anti-alpha4 blocking Abs and the role of microbiota. Conversely, recent technology breakthroughs, such as CyTOF and single-cell RNA-seq, promise to revolutionize our understanding on the mechanisms involved both in MS and EAE. In fact, the importance of specific cellular populations and key molecules in MS/EAE is a constant matter of debate. It is well accepted that both Th1 and Th17 T CD4 lymphocytes play a relevant role in disease initiation after re-activation in situ. What is still under constant investigation, however, is the plasticity of the lymphocyte population, and the individual contribution of both resident and inflammatory cells for the progression or recovery of the disease. Thus, in this review, new findings obtained after single-cell analysis of blood and central nervous system infiltrating cells from MS/EAE and how they have contributed to a better knowledge on the cellular and molecular mechanisms of neuroinflammation are discussed.
Collapse
Affiliation(s)
- W N Brandão
- Neuroimmune Interactions Laboratory, Institute of Biomedical Sciences, Department of Immunology, University of Sao Paulo, São Paulo, Brazil
| | - M G De Oliveira
- Neuroimmune Interactions Laboratory, Institute of Biomedical Sciences, Department of Immunology, University of Sao Paulo, São Paulo, Brazil
| | - R T Andreoni
- Neuroimmune Interactions Laboratory, Institute of Biomedical Sciences, Department of Immunology, University of Sao Paulo, São Paulo, Brazil
| | - H Nakaya
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - A S Farias
- Autoimmune Research Laboratory, Department of Genetics, Microbiology and Immunology - Institute of Biology, University of Campinas, Campinas, Brazil.,Experimental Medicine Research Cluster (EMRC), Division of Immune-Mediated Diseases
| | - J P S Peron
- Neuroimmune Interactions Laboratory, Institute of Biomedical Sciences, Department of Immunology, University of Sao Paulo, São Paulo, Brazil.,Scientific Platform Pasteur, University of São Paulo, São Paulo, Brazil.,Immunopathology and Allergy Post Graduate Program, School of Medicine, University of São Paulo (USP), São Paulo, Brazil
| |
Collapse
|
176
|
Herden L, Weissert R. The Effect of Coffee and Caffeine Consumption on Patients with Multiple Sclerosis-Related Fatigue. Nutrients 2020; 12:nu12082262. [PMID: 32731633 PMCID: PMC7468779 DOI: 10.3390/nu12082262] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/24/2020] [Accepted: 07/25/2020] [Indexed: 12/13/2022] Open
Abstract
Background: Coffee and caffeine are considered to have beneficial effects in patients with multiple sclerosis (MS), an autoimmune disease of the central nervous system (CNS) that can lead to disability and chronic fatigue. Methods: In the present study the preference in terms of coffee and caffeine consumption in patients with MS was assessed. In total the opinions of 124 MS patients were explored with a questionnaire, which was developed to investigate the consumption behavior and associated beneficial and harmful effects of coffee and caffeine concerning symptoms of fatigue. Results: Our study showed that 37.1% of the included patients experience severe symptoms of fatigue. In our cohort, fatigue was not related to age, type of diagnosis or duration of the disease. The effects of coffee did not differ between MS patients with and without fatigue. Very few side effects linked to coffee consumption were reported, and we could demonstrate that coffee consumption had no negative impact on quality of sleep. A positive effect on everyday life was observed particularly among patients with a mid-level expanded disability status scale (EDSS). The strongest effects of coffee consumption were observed regarding a better ability to concentrate while fulfilling tasks, an expanded attention span and a better structured daily routine. Conclusions: Since coffee showed no severe side effects and in the absence of an effective fatigue therapy, coffee consumption might be a therapeutic approach for selected patients with MS-related fatigue.
Collapse
|
177
|
Wagner CA, Roqué PJ, Mileur TR, Liggitt D, Goverman JM. Myelin-specific CD8+ T cells exacerbate brain inflammation in CNS autoimmunity. J Clin Invest 2020; 130:203-213. [PMID: 31573979 DOI: 10.1172/jci132531] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 09/25/2019] [Indexed: 12/20/2022] Open
Abstract
Multiple sclerosis (MS) is an inflammatory, demyelinating disease of the CNS. Although CD4+ T cells are implicated in MS pathogenesis and have been the main focus of MS research using the animal model experimental autoimmune encephalomyelitis (EAE), substantial evidence from patients with MS points to a role for CD8+ T cells in disease pathogenesis. We previously showed that an MHC class I-restricted epitope of myelin basic protein (MBP) is presented in the CNS during CD4+ T cell-initiated EAE. Here, we investigated whether naive MBP-specific CD8+ T cells recruited to the CNS during CD4+ T cell-initiated EAE engaged in determinant spreading and influenced disease. We found that the MBP-specific CD8+ T cells exacerbated brain but not spinal cord inflammation. We show that a higher frequency of monocytes and monocyte-derived cells presented the MHC class I-restricted MBP ligand in the brain compared with the spinal cord. Infiltration of MBP-specific CD8+ T cells enhanced ROS production in the brain only in these cell types and only when the MBP-specific CD8+ T cells expressed Fas ligand (FasL). These results suggest that myelin-specific CD8+ T cells may contribute to disease pathogenesis via a FasL-dependent mechanism that preferentially promotes lesion formation in the brain.
Collapse
Affiliation(s)
| | | | | | - Denny Liggitt
- Department of Comparative Medicine, University of Washington, Seattle, Washington, USA
| | | |
Collapse
|
178
|
Wagner CA, Roqué PJ, Goverman JM. Pathogenic T cell cytokines in multiple sclerosis. J Exp Med 2020; 217:jem.20190460. [PMID: 31611252 PMCID: PMC7037255 DOI: 10.1084/jem.20190460] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/21/2019] [Accepted: 09/11/2019] [Indexed: 12/30/2022] Open
Abstract
Multiple sclerosis (MS) is an inflammatory, demyelinating disease of the central nervous system that is believed to have an autoimmune etiology. As MS is the most common nontraumatic disease that causes disability in young adults, extensive research has been devoted to identifying therapeutic targets. In this review, we discuss the current understanding derived from studies of patients with MS and animal models of how specific cytokines produced by autoreactive CD4 T cells contribute to the pathogenesis of MS. Defining the roles of these cytokines will lead to a better understanding of the potential of cytokine-based therapies for patients with MS.
Collapse
Affiliation(s)
| | - Pamela J Roqué
- Department of Immunology, University of Washington, Seattle, WA
| | - Joan M Goverman
- Department of Immunology, University of Washington, Seattle, WA
| |
Collapse
|
179
|
Zheng J, Sariol A, Meyerholz D, Zhang Q, Abrahante Lloréns JE, Narumiya S, Perlman S. Prostaglandin D2 signaling in dendritic cells is critical for the development of EAE. J Autoimmun 2020; 114:102508. [PMID: 32624353 PMCID: PMC7332282 DOI: 10.1016/j.jaut.2020.102508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/08/2020] [Accepted: 06/12/2020] [Indexed: 12/24/2022]
Abstract
Priming of autoreactive T cells in lymph nodes by dendritic cells (DCs) is critical for the pathogenesis of experimental autoimmune encephalitis (EAE). DC activation reflects a balance of pro- and anti-inflammatory signals. One anti-inflammatory factor is prostaglandin D2 signaling through its cognate receptor, D-prostanoid receptor 1 (PTGDR), on myeloid cells. Loss of PTGDR signaling might be expected to enhance DC activation and EAE but here we show that PTGDR−/− mice developed only mild signs of MOG35-55 peptide immunization-induced EAE. Compared to wild type mice, PTGDR−/− mice exhibited less demyelination, decreased leukocyte infiltration and diminished microglia activation. These effects resulted from increased pro-inflammatory responses in the lymph nodes, most notably in IL-1β production, with the unexpected consequence of increased activation-induced apoptosis of MOG35-55 peptide-specific T cells. Conditional deletion of PTGDR on DCs, and not other myeloid cells ameliorated EAE. Together, these results demonstrate the indispensable role that PGD2/PTGDR signaling on DCs has in development of pathogenic T cells in autoimmune demyelination. Increased T cell activation occurred in PTGDR−/- mice resulting in T cell apoptosis. AICD decreased T cell infiltration into, and demyelination in CNS during EAE. Decreased PGD2/PTGDR signaling in DCs resulted in increased IL-1β expression. Anakinra treatment in PTGDR−/- mice increased EAE severity.
Collapse
Affiliation(s)
- Jian Zheng
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, USA
| | - Alan Sariol
- Interdisciplinary Program in Immunology, University of Iowa, Iowa City, IA, USA
| | - David Meyerholz
- Department of Pathology, University of Iowa, Iowa City, IA, USA
| | - Qinran Zhang
- School of Mathematics and Statistics, Wuhan University, Wuhan, PR China
| | | | - Shuh Narumiya
- Department of Pharmacology, Kyoto University, Tokyo, 606-8501, Japan
| | - Stanley Perlman
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, USA; Interdisciplinary Program in Immunology, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
180
|
Focus on the Role of NLRP3 Inflammasome in Diseases. Int J Mol Sci 2020; 21:ijms21124223. [PMID: 32545788 PMCID: PMC7352196 DOI: 10.3390/ijms21124223] [Citation(s) in RCA: 145] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 12/25/2022] Open
Abstract
Inflammation is a protective reaction activated in response to detrimental stimuli, such as dead cells, irritants or pathogens, by the evolutionarily conserved immune system and is regulated by the host. The inflammasomes are recognized as innate immune system sensors and receptors that manage the activation of caspase-1 and stimulate inflammation response. They have been associated with several inflammatory disorders. The NLRP3 inflammasome is the most well characterized. It is so called because NLRP3 belongs to the family of nucleotide-binding and oligomerization domain-like receptors (NLRs). Recent evidence has greatly improved our understanding of the mechanisms by which the NLRP3 inflammasome is activated. Additionally, increasing data in animal models, supported by human studies, strongly implicate the involvement of the inflammasome in the initiation or progression of disorders with a high impact on public health, such as metabolic pathologies (obesity, type 2 diabetes, atherosclerosis), cardiovascular diseases (ischemic and non-ischemic heart disease), inflammatory issues (liver diseases, inflammatory bowel diseases, gut microbiome, rheumatoid arthritis) and neurologic disorders (Parkinson’s disease, Alzheimer’s disease, multiple sclerosis, amyotrophic lateral sclerosis and other neurological disorders), compared to other molecular platforms. This review will provide a focus on the available knowledge about the NLRP3 inflammasome role in these pathologies and describe the balance between the activation of the harmful and beneficial inflammasome so that new therapies can be created for patients with these diseases.
Collapse
|
181
|
Machhi J, Kevadiya BD, Muhammad IK, Herskovitz J, Olson KE, Mosley RL, Gendelman HE. Harnessing regulatory T cell neuroprotective activities for treatment of neurodegenerative disorders. Mol Neurodegener 2020; 15:32. [PMID: 32503641 PMCID: PMC7275301 DOI: 10.1186/s13024-020-00375-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 04/13/2020] [Indexed: 02/07/2023] Open
Abstract
Emerging evidence demonstrates that adaptive immunity influences the pathobiology of neurodegenerative disorders. Misfolded aggregated self-proteins can break immune tolerance leading to the induction of autoreactive effector T cells (Teffs) with associated decreases in anti-inflammatory neuroprotective regulatory T cells (Tregs). An imbalance between Teffs and Tregs leads to microglial activation, inflammation and neuronal injury. The cascade of such a disordered immunity includes the drainage of the aggregated protein antigens into cervical lymph nodes serving to amplify effector immune responses. Both preclinical and clinical studies demonstrate transformation of this altered immunity for therapeutic gain. We posit that the signs and symptoms of common neurodegenerative disorders such as Alzheimer's and Parkinson's diseases, amyotrophic lateral sclerosis, and stroke can be attenuated by boosting Treg activities.
Collapse
Affiliation(s)
- Jatin Machhi
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198-5880 USA
| | - Bhavesh D. Kevadiya
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198-5880 USA
- Department of Radiology, School of Medicine, Stanford University, Palo Alto, 94304 USA
| | - Ijaz Khan Muhammad
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198-5880 USA
- Department of Pharmacy, University of Swabi, Anbar Swabi, 23561 Pakistan
| | - Jonathan Herskovitz
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198-5880 USA
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198-5880 USA
| | - Katherine E. Olson
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198-5880 USA
| | - R. Lee Mosley
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198-5880 USA
| | - Howard E. Gendelman
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198-5880 USA
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198-5880 USA
| |
Collapse
|
182
|
Willing AE, Das M, Howell M, Mohapatra SS, Mohapatra S. Potential of mesenchymal stem cells alone, or in combination, to treat traumatic brain injury. CNS Neurosci Ther 2020; 26:616-627. [PMID: 32157822 PMCID: PMC7248546 DOI: 10.1111/cns.13300] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/17/2020] [Accepted: 02/23/2020] [Indexed: 12/13/2022] Open
Abstract
Traumatic brain injury (TBI) causes death and disability in the United States and around the world. The traumatic insult causes the mechanical injury of the brain and primary cellular death. While a comprehensive pathological mechanism of TBI is still lacking, the focus of the TBI research is concentrated on understanding the pathophysiology and developing suitable therapeutic approaches. Given the complexities in pathophysiology involving interconnected immunologic, inflammatory, and neurological cascades occurring after TBI, the therapies directed to a single mechanism fail in the clinical trials. This has led to the development of the paradigm of a combination therapeutic approach against TBI. While there are no drugs available for the treatment of TBI, stem cell therapy has shown promising results in preclinical studies. But, the success of the therapy depends on the survival of the stem cells, which are limited by several factors including route of administration, health of the administered cells, and inflammatory microenvironment of the injured brain. Reducing the inflammation prior to cell administration may provide a better outcome of cell therapy following TBI. This review is focused on different therapeutic approaches of TBI and the present status of the clinical trials.
Collapse
Affiliation(s)
- Alison E Willing
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Mahasweta Das
- Department of Molecular Medicine, University of South Florida Morsani College of Medicine, Tampa, FL, USA.,James A. Haley Veterans Hospital, Tampa, FL, USA
| | - Mark Howell
- Department of Molecular Medicine, University of South Florida Morsani College of Medicine, Tampa, FL, USA.,James A. Haley Veterans Hospital, Tampa, FL, USA
| | - Shyam S Mohapatra
- James A. Haley Veterans Hospital, Tampa, FL, USA.,Department of Internal Medicine, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Subhra Mohapatra
- Department of Molecular Medicine, University of South Florida Morsani College of Medicine, Tampa, FL, USA.,James A. Haley Veterans Hospital, Tampa, FL, USA
| |
Collapse
|
183
|
Al-Ani MR, Raju TK, Hachim MY, Hachim IY, Elemam NM, Guimei M, Bendardaf R, Maghazachi AA. Rituximab Prevents the Development of Experimental Autoimmune Encephalomyelitis (EAE): Comparison with Prophylactic, Therapeutic or Combinational Regimens. J Inflamm Res 2020; 13:151-164. [PMID: 32214838 PMCID: PMC7082624 DOI: 10.2147/jir.s243514] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 02/20/2020] [Indexed: 12/20/2022] Open
Abstract
Objective To investigate, in detail, the effects of rituximab (RTX), an off-label drug for treating multiple sclerosis (MS) disease on preventing and/or ameliorating experimental autoimmune encephalomyelitis (EAE). Methods Using bioinformatics analysis of publicly available transcriptomics data, we determined the accumulation of B cells, plasma cells and T cells in different compartments of multiple sclerosis patients (MS) and healthy individual brains. Based on these observations and on the literature search, we dosed RTX in EAE mice either orally, or injected intraperitoneally (IP). The latter route was used either prophylactically (asymptomatic stage; upon the induction of the disease), or therapeutically (acute stage; upon the appearance of the first sign of the disease). Further, we used RTX as a preventive drug either as a single agent or in combination with other routes of administration. Results Because no complete recovery was observed when RTX was used prophylactically or therapeutically, we devised another protocol of injecting this drug before the onset of the disease and designated this regiment as prevention. We demonstrated that the 20 μg/mouse prevention completely reduced the EAE clinical score, impaired infiltration of T and B cells into the perivascular space of mice brains, along with inhibiting the inflammation and demyelination. However, the 5 and 10 μg/mouse doses although reduced all aspects of inflammation in these mice, their effects were not as potent as the 20 μg/mouse RTX dose. Finally, we combined the 5 μg/mouse prevention treatment with either the prophylactic or therapeutic regimen and observed a robust effect. Conclusion We observed that combinatorial regimens resulted in further reduction of inflammation, T and B cell extravasation into the brains of EAE mice and improved the re-myelination.
Collapse
Affiliation(s)
- Mena R Al-Ani
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, 27272, United Arabs Emirates
| | - Tom K Raju
- Sharjah Institute for Medical Research (SIMR), University of Sharjah, Sharjah 27272, United Arabs Emirates
| | - Mahmood Y Hachim
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, 27272, United Arabs Emirates.,Sharjah Institute for Medical Research (SIMR), University of Sharjah, Sharjah 27272, United Arabs Emirates
| | - Ibrahim Y Hachim
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, 27272, United Arabs Emirates
| | - Noha M Elemam
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, 27272, United Arabs Emirates.,Sharjah Institute for Medical Research (SIMR), University of Sharjah, Sharjah 27272, United Arabs Emirates
| | - Maha Guimei
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, 27272, United Arabs Emirates.,Alexandria University, Alexandria, Egypt
| | | | - Azzam A Maghazachi
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, 27272, United Arabs Emirates.,Sharjah Institute for Medical Research (SIMR), University of Sharjah, Sharjah 27272, United Arabs Emirates
| |
Collapse
|
184
|
de Araújo Boleti AP, de Oliveira Flores TM, Moreno SE, Anjos LD, Mortari MR, Migliolo L. Neuroinflammation: An overview of neurodegenerative and metabolic diseases and of biotechnological studies. Neurochem Int 2020; 136:104714. [PMID: 32165170 DOI: 10.1016/j.neuint.2020.104714] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/19/2020] [Accepted: 03/04/2020] [Indexed: 12/11/2022]
Abstract
Neuroinflammation is an important factor contributing to cognitive impairment and neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), Amyotrophic lateral sclerosis (ALS), ischemic injury, and multiple sclerosis (MS). These diseases are characterized by inexorable progressive injury of neuron cells, and loss of motor or cognitive functions. Microglia, which are the resident macrophages in the brain, play an important role in both physiological and pathological conditions. In this review, we provide an updated discussion on the role of ROS and metabolic disease in the pathological mechanisms of activation of the microglial cells and release of cytotoxins, leading to the neurodegenerative process. In addition, we also discuss in vivo models, such as zebrafish and Caenorhabditis elegans, and provide new insights into therapeutics bioinspired by neuropeptides from venomous animals, supporting high throughput drug screening in the near future, searching for a complementary approach to elucidating crucial mechanisms associated with neurodegenerative disorders.
Collapse
Affiliation(s)
- Ana Paula de Araújo Boleti
- S-InovaBiotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, 79117-900, Campo Grande, MS, Brazil
| | - Taylla Michelle de Oliveira Flores
- S-InovaBiotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, 79117-900, Campo Grande, MS, Brazil; Programa de Pós-graduação em Biologia Celular e Molecular, Universidade Federal da Paraíba, João Pessoa, Brazil
| | - Susana Elisa Moreno
- S-InovaBiotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, 79117-900, Campo Grande, MS, Brazil
| | - Lilian Dos Anjos
- Laboratório de Neurofarmacologia, Departmento Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade de Brasília, Brazil
| | - Márcia Renata Mortari
- Laboratório de Neurofarmacologia, Departmento Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade de Brasília, Brazil
| | - Ludovico Migliolo
- S-InovaBiotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, 79117-900, Campo Grande, MS, Brazil; Programa de Pós-graduação em Biologia Celular e Molecular, Universidade Federal da Paraíba, João Pessoa, Brazil; Programa de Pós-graduação em Bioquímica, Universidade Federal do Rio Grande do Norte, Natal, Brazil.
| |
Collapse
|
185
|
Vattathara JJ, Prakash O, Subhramanian S, Satheeshkumar MK, Xavier T, Anil M, Pillai GS, Anandakuttan A, Radhakrishnan S, Sivanarayanan TB, Akk U, Mohan CG, Menon KN. Substrate Specific Inhibitor Designed against the Immunomodulator GMF-beta Reversed the Experimental Autoimmune Encephalomyelitis. Sci Rep 2020; 10:3790. [PMID: 32123210 PMCID: PMC7051966 DOI: 10.1038/s41598-020-60710-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 02/14/2020] [Indexed: 01/16/2023] Open
Abstract
The concept of substrate inhibition to prevent its phosphorylation has potential in drug discovery and is envisioned to treat the autoimmune disorder multiple sclerosis (MS). Glia maturation factor-β (GMF-β) Ser83 phosphorylation by protein kinase A (PKA) is pivotal in the activation of GMF-β-p38MAPK-NFκB biochemical pathway towards proinflammatory response induction in experimental autoimmune encephalomyelitis (EAE). Using structure-based drug design, we identified the small molecule inhibitor 1-H-indazole-4yl methanol (GMFBI.1) that specifically blocked Ser83 phosphorylation site on GMF-β substrate. Using in vitro and in vivo techniques, molecular mechanism of action of GMFBI.1’s direct interaction with GMF-β substrate and prevention of its Ser83 phosphorylation was established. GMFBI.1 down regulated p38MAPK phosphorylation and NFκB expression essential for proinflammatory response. Further, GMFBI.1 administration at peak of EAE reversed clinical symptoms, immunopathology, proinflammatory cytokine response and up regulated the anti-inflammatory cytokines. Present strategy of substrate inhibition against the key immunomodulatory target has immense therapeutic potential in MS.
Collapse
Affiliation(s)
- Jane Jose Vattathara
- Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Ponekkara, Kochi-682 041, Kerala, India
| | - Ohm Prakash
- Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Ponekkara, Kochi-682 041, Kerala, India
| | - Sunitha Subhramanian
- Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Ponekkara, Kochi-682 041, Kerala, India
| | - Madathiparambil Kumaran Satheeshkumar
- Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Ponekkara, Kochi-682 041, Kerala, India
| | - Tessy Xavier
- Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Ponekkara, Kochi-682 041, Kerala, India
| | - Meenakshi Anil
- Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Ponekkara, Kochi-682 041, Kerala, India
| | - Gopal S Pillai
- Department of Ophthalmology, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Ponekkara, Kochi-682 041, Kerala, India
| | - Anandkumar Anandakuttan
- Department of Neurology, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Ponekkara, Kochi-682 041, Kerala, India
| | - Sureshkumar Radhakrishnan
- Department of Neurology, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Ponekkara, Kochi-682 041, Kerala, India
| | - T B Sivanarayanan
- Central Animal Laboratory, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Ponekkara, Kochi-682 041, Kerala, India
| | - Unni Akk
- Central Animal Laboratory, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Ponekkara, Kochi-682 041, Kerala, India
| | - Chethampadi Gopi Mohan
- Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Ponekkara, Kochi-682 041, Kerala, India.
| | - Krishnakumar N Menon
- Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Ponekkara, Kochi-682 041, Kerala, India.
| |
Collapse
|
186
|
Maione F, Cappellano G, Bellan M, Raineri D, Chiocchetti A. Chicken-or-egg question: Which came first, extracellular vesicles or autoimmune diseases? J Leukoc Biol 2020; 108:601-616. [PMID: 32108378 PMCID: PMC7496139 DOI: 10.1002/jlb.3mr0120-232r] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/21/2020] [Accepted: 02/03/2020] [Indexed: 12/13/2022] Open
Abstract
Extracellular vesicles (EVs) have attracted great interest as contributors to autoimmune disease (AD) pathogenesis, owing to their immunomodulatory potential; they may also play a role in triggering tolerance disruption, by delivering auto‐antigens. EVs are released by almost all cell types, and afford paracrine or distal cell communication, functioning as biological carriers of active molecules including lipids, proteins, and nucleic acids. Depending on stimuli from the external microenvironment or on their cargo, EVs can promote or suppress immune responses. ADs are triggered by inappropriate immune‐system activation against the self, but their precise etiology is still poorly understood. Accumulating evidence indicates that lifestyle and diet have a strong impact on their clinical onset and development. However, to date the mechanisms underlying AD pathogenesis are not fully clarified, and reliable markers, which would provide early prediction and disease progression monitoring, are lacking. In this connection, EVs have recently been indicated as a promising source of AD biomarkers. Although EV isolation is currently based on differential centrifugation or density‐gradient ultracentrifugation, the resulting co‐isolation of contaminants (i.e., protein aggregates), and the pooling of all EVs in one sample, limit this approach to abundantly‐expressed EVs. Flow cytometry is one of the most promising methods for detecting EVs as biomarkers, and may have diagnostic applications. Furthermore, very recent findings describe a new method for identifying and sorting EVs by flow cytometry from freshly collected body fluids, based on specific EV surface markers.
Collapse
Affiliation(s)
- Federica Maione
- Center for Translational Research on Autoimmune and Allergic Disease-CAAD, Università del Piemonte Orientale, Novara, Italy.,Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases- IRCAD, Università del Piemonte Orientale, Novara, Italy
| | - Giuseppe Cappellano
- Center for Translational Research on Autoimmune and Allergic Disease-CAAD, Università del Piemonte Orientale, Novara, Italy.,Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases- IRCAD, Università del Piemonte Orientale, Novara, Italy
| | - Mattia Bellan
- Center for Translational Research on Autoimmune and Allergic Disease-CAAD, Università del Piemonte Orientale, Novara, Italy.,Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
| | - Davide Raineri
- Center for Translational Research on Autoimmune and Allergic Disease-CAAD, Università del Piemonte Orientale, Novara, Italy.,Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases- IRCAD, Università del Piemonte Orientale, Novara, Italy
| | - Annalisa Chiocchetti
- Center for Translational Research on Autoimmune and Allergic Disease-CAAD, Università del Piemonte Orientale, Novara, Italy.,Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases- IRCAD, Università del Piemonte Orientale, Novara, Italy
| |
Collapse
|
187
|
Lu K, Liu L, Xu X, Zhao F, Deng J, Tang X, Wang X, Zhao BQ, Zhang X, Zhao Y. ADAMTS13 ameliorates inflammatory responses in experimental autoimmune encephalomyelitis. J Neuroinflammation 2020; 17:67. [PMID: 32075652 PMCID: PMC7029584 DOI: 10.1186/s12974-020-1713-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 01/13/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND ADAMTS13 (a disintegrin and metalloprotease with a thrombospondin type 1 motif, member 13) plays a vital role in preventing microvascular thrombosis and inflammation. Reduced ADAMTS13 levels in plasma have been detected in multiple sclerosis (MS) patients. In the present study, we have determined the role of ADAMTS13 in the disease progression of MS using a mouse model of experimental autoimmune encephalomyelitis (EAE). METHODS Female C57BL/6 mice were immunized with MOG35-55 peptide and then treated with ADAMTS13 or vehicle in preventive and therapeutic settings. Mice were analyzed for clinical deficit, white matter demyelination and inflammatory cell infiltration. To explore the underlying mechanism, VWF expression and blood-spinal cord barriers (BSCB) were determined. RESULTS Plasma ADAMTS13 activity was suppressed in EAE mice. ADAMTS13-treated EAE mice exhibited an ameliorated disease course, reduced demyelination, and decreased T lymphocyte, neutrophil and monocyte infiltration into the spinal cord. Consistently, ADAMTS13 treatment reduced VWF levels and inhibited BSCB breakdown in the spinal cords of EAE mice. However, leukocytes in the blood and spleen of EAE mice remained unaffected by ADAMTS13 administration. CONCLUSION Our results demonstrate that ADAMTS13 treatment ameliorates inflammatory responses, demyelination and disease course in EAE mice. Therefore, our study suggests that ADAMTS13 may represent a potential therapeutic strategy for MS patients.
Collapse
Affiliation(s)
- Kaili Lu
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600, Yishan Road, Xuhui District, Shanghai, China
| | - Lan Liu
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600, Yishan Road, Xuhui District, Shanghai, China
| | - Xiaofeng Xu
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600, Yishan Road, Xuhui District, Shanghai, China
| | - Fei Zhao
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600, Yishan Road, Xuhui District, Shanghai, China
| | - Jiangshan Deng
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600, Yishan Road, Xuhui District, Shanghai, China
| | - Xin Tang
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600, Yishan Road, Xuhui District, Shanghai, China
| | - Xiuzhe Wang
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600, Yishan Road, Xuhui District, Shanghai, China
| | - Bing-Qiao Zhao
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Xiaojie Zhang
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600, Yishan Road, Xuhui District, Shanghai, China.
| | - Yuwu Zhao
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600, Yishan Road, Xuhui District, Shanghai, China.
| |
Collapse
|
188
|
Monteiro A, Rosado P, Rosado L, Fonseca AM, Paiva A. Alterations in circulating T cell functional subpopulations in interferon-beta treated multiple sclerosis patients: A pilot study. J Neuroimmunol 2020; 339:577113. [DOI: 10.1016/j.jneuroim.2019.577113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 10/21/2019] [Accepted: 11/14/2019] [Indexed: 12/18/2022]
|
189
|
Basile MS, Mazzon E, Mangano K, Pennisi M, Petralia MC, Lombardo SD, Nicoletti F, Fagone P, Cavalli E. Impaired Expression of Tetraspanin 32 (TSPAN32) in Memory T Cells of Patients with Multiple Sclerosis. Brain Sci 2020; 10:brainsci10010052. [PMID: 31963428 PMCID: PMC7016636 DOI: 10.3390/brainsci10010052] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/08/2020] [Accepted: 01/14/2020] [Indexed: 02/08/2023] Open
Abstract
Tetraspanins are a conserved family of proteins involved in a number of biological processes. We have previously shown that Tetraspanin-32 (TSPAN32) is significantly downregulated upon activation of T helper cells via anti-CD3/CD28 stimulation. On the other hand, TSPAN32 is marginally modulated in activated Treg cells. A role for TSPAN32 in controlling the development of autoimmune responses is consistent with our observation that encephalitogenic T cells from myelin oligodendrocyte glycoprotein (MOG)-induced experimental autoimmune encephalomyelitis (EAE) mice exhibit significantly lower levels of TSPAN32 as compared to naïve T cells. In the present study, by making use of ex vivo and in silico analysis, we aimed to better characterize the pathophysiological and diagnostic/prognostic role of TSPAN32 in T cell immunity and in multiple sclerosis (MS). We first show that TSPAN32 is significantly downregulated in memory T cells as compared to naïve T cells, and that it is further diminished upon ex vivo restimulation. Accordingly, following antigenic stimulation, myelin-specific memory T cells from MS patients showed significantly lower expression of TSPAN32 as compared to memory T cells from healthy donors (HD). The expression levels of TSPAN32 was significantly downregulated in peripheral blood mononuclear cells (PBMCs) from drug-naïve MS patients as compared to HD, irrespective of the disease state. Finally, when comparing patients undergoing early relapses in comparison to patients with longer stable disease, moderate but significantly lower levels of TSPAN32 expression were observed in PBMCs from the former group. Our data suggest a role for TSPAN32 in the immune responses underlying the pathophysiology of MS and represent a proof-of-concept for additional studies aiming at dissecting the eventual contribution of TSPAN32 in other autoimmune diseases and its possible use of TSPAN32 as a diagnostic factor and therapeutic target.
Collapse
Affiliation(s)
- Maria Sofia Basile
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 89, 95123 Catania, Italy; (M.S.B.); (K.M.); (M.P.); (S.D.L.); (F.N.)
| | - Emanuela Mazzon
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy; (E.M.); (M.C.P.); (E.C.)
| | - Katia Mangano
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 89, 95123 Catania, Italy; (M.S.B.); (K.M.); (M.P.); (S.D.L.); (F.N.)
| | - Manuela Pennisi
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 89, 95123 Catania, Italy; (M.S.B.); (K.M.); (M.P.); (S.D.L.); (F.N.)
| | - Maria Cristina Petralia
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy; (E.M.); (M.C.P.); (E.C.)
| | - Salvo Danilo Lombardo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 89, 95123 Catania, Italy; (M.S.B.); (K.M.); (M.P.); (S.D.L.); (F.N.)
| | - Ferdinando Nicoletti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 89, 95123 Catania, Italy; (M.S.B.); (K.M.); (M.P.); (S.D.L.); (F.N.)
| | - Paolo Fagone
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 89, 95123 Catania, Italy; (M.S.B.); (K.M.); (M.P.); (S.D.L.); (F.N.)
- Correspondence:
| | - Eugenio Cavalli
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy; (E.M.); (M.C.P.); (E.C.)
| |
Collapse
|
190
|
Benros ME, Mortensen PB. Role of Infection, Autoimmunity, Atopic Disorders, and the Immune System in Schizophrenia: Evidence from Epidemiological and Genetic Studies. Curr Top Behav Neurosci 2020; 44:141-159. [PMID: 30895532 DOI: 10.1007/7854_2019_93] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
An immunologic component to schizophrenia has been increasingly recognized, where infections and chronic inflammatory diseases as atopic disorders and autoimmune diseases could be involved in the pathogenesis of schizophrenia. Psychotic symptoms can be directly triggered by infections reaching the CNS, or be secondary to systemic inflammation indirectly affecting the brain through immune components, such as brain-reactive antibodies and cytokines. Large-scale epidemiological studies have consistently displayed that infections, autoimmune diseases, and atopic disorders are associated with increased risk of schizophrenia and that schizophrenia is associated with increased levels of immune markers at diagnosis. However, since there is also an increased risk of immune-related diseases after the diagnosis with schizophrenia and in family members of individuals with schizophrenia, parts of the association could also be due to heritable factors. Shared genetic factor might account for some of this increased prevalence of immune-related diseases among individuals with schizophrenia, and indeed the most pronounced genetic association with schizophrenia lies within the HLA region, which is one of the most important regions for the immune system. However, genetic studies have shown that the common genetic variants associated with schizophrenia do not seem to increase the susceptibility for acquiring infections. Nonetheless, shared genes with the susceptibility for acquiring infections not captured by the polygenic risk score for schizophrenia could still influence the association.
Collapse
Affiliation(s)
- Michael E Benros
- Mental Health Centre Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark.
- National Centre for Register Based Research, Aarhus University, Aarhus, Denmark.
| | - Preben B Mortensen
- National Centre for Register Based Research, Aarhus University, Aarhus, Denmark
| |
Collapse
|
191
|
Sambucci M, Gargano F, Guerrera G, Battistini L, Borsellino G. One, No One, and One Hundred Thousand: T Regulatory Cells' Multiple Identities in Neuroimmunity. Front Immunol 2019; 10:2947. [PMID: 31956323 PMCID: PMC6955595 DOI: 10.3389/fimmu.2019.02947] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 12/02/2019] [Indexed: 12/13/2022] Open
Abstract
As the Nobel laureate Luigi Pirandello wrote in his novels, identities can be evanescent. Although a quarter of a century has passed since regulatory T cells (Treg) were first described, new studies continue to reveal surprising and contradictory features of this lymphocyte subset. Treg cells are the core of the immunological workforce engaged in the restraint of autoimmune or inflammatory reactions, and their characterization has revealed substantial heterogeneity and complexity in the phenotype and gene expression profiles, proving them to be a most versatile and adaptive cell type, as exemplified by their plasticity in fine-tuning immune responses. Defects in Treg function are associated with several autoimmune diseases, including multiple sclerosis, which is caused by an inappropriate immune reaction toward brain components; conversely, the beneficial effects of immunomodulating therapies on disease progression have been shown to partly act upon the biology of these cells. Both in animals and in humans the pool of circulating Treg cells is a mixture of natural (nTregs) and peripherally-induced Treg (pTregs). Particularly in humans, circulating Treg cells can be phenotypically subdivided into different subpopulations, which so far are not well-characterized, particularly in the context of autoimmunity. Recently, Treg cells have been rediscovered as mediators of tissue healing, and have also shown to be involved in organ homeostasis. Moreover, stability of the Treg lineage has recently been addressed by several conflicting reports, and immune-suppressive abilities of these cells have been shown to be dynamically regulated, particularly in inflammatory conditions, adding further levels of complexity to the study of this cell subset. Finally, Treg cells exert their suppressive function through different mechanisms, some of which—such as their ectoenzymatic activity—are particularly relevant in CNS autoimmunity. Here, we will review the phenotypically and functionally discernible Treg cell subpopulations in health and in multiple sclerosis, touching also upon the effects on this cell type of immunomodulatory drugs used for the treatment of this disease.
Collapse
Affiliation(s)
- Manolo Sambucci
- Neuroimmunology Unit, Santa Lucia Foundation IRCCS, Rome, Italy
| | | | | | - Luca Battistini
- Neuroimmunology Unit, Santa Lucia Foundation IRCCS, Rome, Italy
| | | |
Collapse
|
192
|
Raphael I, Gomez-Rivera F, Raphael RA, Robinson RR, Nalawade S, Forsthuber TG. TNFR2 limits proinflammatory astrocyte functions during EAE induced by pathogenic DR2b-restricted T cells. JCI Insight 2019; 4:132527. [PMID: 31852844 DOI: 10.1172/jci.insight.132527] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 11/13/2019] [Indexed: 12/16/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune neuroinflammatory disease where the underlying mechanisms driving disease progression have remained unresolved. HLA-DR2b (DRB1*15:01) is the most common genetic risk factor for MS. Additionally, TNF and its receptors TNFR1 and TNFR2 play key roles in MS and its preclinical animal model, experimental autoimmune encephalomyelitis (EAE). TNFR2 is believed to ameliorate CNS pathology by promoting remyelination and Treg function. Here, we show that transgenic mice expressing the human MHC class II (MHC-II) allele HLA-DR2b and lacking mouse MHC-II and TNFR2 molecules, herein called DR2bΔR2, developed progressive EAE, while disease was not progressive in DR2b littermates. Mechanistically, expression of the HLA-DR2b favored Th17 cell development, whereas T cell-independent TNFR2 expression was critical for restraining of an astrogliosis-induced proinflammatory milieu and Th17 cell responses, while promoting remyelination. Our data suggest the TNFR2 signaling pathway as a potentially novel mechanism for curtailing astrogliosis and promoting remyelination, thus providing new insights into mechanisms limiting progressive MS.
Collapse
Affiliation(s)
- Itay Raphael
- Department of Neurological Surgery, University of Pittsburgh, UPMC Children's Hospital, Pittsburgh, Pennsylvania, USA.,Department of Biology, University of Texas at San Antonio, San Antonio, Texas, USA
| | - Francisco Gomez-Rivera
- Department of Biology, University of Texas at San Antonio, San Antonio, Texas, USA.,Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Rebecca A Raphael
- Department of Biology, University of Texas at San Antonio, San Antonio, Texas, USA.,Department of Pharmacology and Chemical Biology, University of Pittsburgh, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Rachel R Robinson
- Department of Biology, University of Texas at San Antonio, San Antonio, Texas, USA
| | - Saisha Nalawade
- Department of Biology, University of Texas at San Antonio, San Antonio, Texas, USA.,Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, USA
| | - Thomas G Forsthuber
- Department of Biology, University of Texas at San Antonio, San Antonio, Texas, USA
| |
Collapse
|
193
|
Autoreactive, Low-Affinity T Cells Preferentially Drive Differentiation of Short-Lived Memory B Cells at the Expense of Germinal Center Maintenance. Cell Rep 2019; 25:3342-3355.e5. [PMID: 30566861 DOI: 10.1016/j.celrep.2018.11.070] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 10/04/2018] [Accepted: 11/16/2018] [Indexed: 01/06/2023] Open
Abstract
B cell fate decisions within a germinal center (GC) are critical to determining the outcome of the immune response to a given antigen. Here, we characterize GC kinetics and B cell fate choices in a response to the autoantigen myelin oligodendrocyte glycoprotein (MOG) and compare the response with a standard model foreign antigen. Both antigens generate productive primary responses, as evidenced by GC development, circulating antigen-specific antibodies, and differentiation of memory B cells. However, in the MOG response, the status of the cognate T cell partner drives preferential B cell differentiation to a memory phenotype at the expense of GC maintenance, resulting in a truncated GC. Reduced plasma cell differentiation is largely independent of T cell influence. Interestingly, memory-phenotype B cells formed in the MOG GC are not long lived, resulting in a failure of the B cell response to secondary challenge.
Collapse
|
194
|
Ranjbar R, Karampoor S, Jalilian FA. The protective effect of Helicobacter Pylori infection on the susceptibility of multiple sclerosis. J Neuroimmunol 2019; 337:577069. [DOI: 10.1016/j.jneuroim.2019.577069] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 09/13/2019] [Accepted: 09/13/2019] [Indexed: 12/18/2022]
|
195
|
Tunç A. Early predictors of functional disability in Guillain-Barré Syndrome. Acta Neurol Belg 2019; 119:555-559. [PMID: 30963477 DOI: 10.1007/s13760-019-01133-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 04/02/2019] [Indexed: 02/06/2023]
Abstract
This study investigated the predictors of prognosis at admission and after the first month in Guillain-Barré syndrome (GBS) patients. This retrospective study used the electronic records of 81 GBS patients. Age, gender, previous GBS history, antecedent febrile illness and presence of cranial nerve dysfunction were recorded. Detailed neurological examinations, routine biochemical and haematological investigations, cerebrospinal fluid (CSF) analysis and electrophysiological studies, GBS subtypes and treatments were assessed. Hughes disability scores (HDSs) were evaluated at the end of the first day and first month. The GBS patient group included 44 male (54.3%) and 37 female (45.7%) patients. The mean age was 52.2 ± 18.5. The mean HDS score was 2.96 at admission and 1.94 at the end of the first month. Plasma sodium, albumin, and CSF protein levels were significantly correlated with low admission HDS scores (p = 0.03, p = 0.011, p = 0.036, and p < 0.001, respectively). Age, plasma sodium, albumin, neutrophil, neutrophil/lymphocyte ratio (NLR) levels, C-reactive protein (CRP) and CSF protein levels were significantly correlated with poor prognosis at the end of the first month (p < 0.05). Concomitant cranial nerve palsies were significantly correlated with low HDS scores (p = 0.011, p = 0.02) but antecedent events were not correlated with functional disability (p = 0.686, p = 0.413). Decreased albumin and sodium levels and increased CSF protein levels indicated poor GBS prognosis. Higher age, elevated NLR, and higher CRP levels indicated worse prognosis at the end of the first month. However, further studies are needed.
Collapse
Affiliation(s)
- Abdulkadir Tunç
- Clinic of Neurology, Sakarya Training and Research Hospital, Sakarya University, Sakarya, Turkey.
| |
Collapse
|
196
|
Anti-CD20 therapy depletes activated myelin-specific CD8 + T cells in multiple sclerosis. Proc Natl Acad Sci U S A 2019; 116:25800-25807. [PMID: 31748274 PMCID: PMC6926057 DOI: 10.1073/pnas.1915309116] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system. CD8+ T cells have been strongly implicated in MS pathogenesis, but it is unclear whether myelin is a CD8+ T cell autoantigenic target in MS. This study demonstrated that while myelin-specific CD8+ T cells are present at similar frequencies in untreated MS patients and healthy subjects, the proportion of memory and CD20-expressing myelin-specific CD8+ T cells was increased in MS patients, suggesting prior antigen encounter. This activated phenotype was reversible as the memory and CD20-expressing populations of certain myelin-specific CD8+ T cells were reduced following anti-CD20 treatment. CD8+ T cells are believed to play an important role in multiple sclerosis (MS), yet their role in MS pathogenesis remains poorly defined. Although myelin proteins are considered potential autoantigenic targets, prior studies of myelin-reactive CD8+ T cells in MS have relied on in vitro stimulation, thereby limiting accurate measurement of their ex vivo precursor frequencies and phenotypes. Peptide:MHC I tetramers were used to identify and validate 5 myelin CD8+ T cell epitopes, including 2 newly described determinants in humans. The validated tetramers were used to measure the ex vivo precursor frequencies and phenotypes of myelin-specific CD8+ T cells in the peripheral blood of untreated MS patients and HLA allele-matched healthy controls. In parallel, CD8+ T cell responses against immunodominant influenza epitopes were also measured. There were no differences in ex vivo frequencies of tetramer-positive myelin-specific CD8+ T cells between MS patients and control subjects. An increased proportion of myelin-specific CD8+ T cells in MS patients exhibited a memory phenotype and expressed CD20 compared to control subjects, while there were no phenotypic differences observed among influenza-specific CD8+ T cells. Longitudinal assessments were also measured in a subset of MS patients subsequently treated with anti-CD20 monoclonal antibody therapy. The proportion of memory and CD20+ CD8+ T cells specific for certain myelin but not influenza epitopes was significantly reduced following anti-CD20 treatment. This study, representing a characterization of unmanipulated myelin-reactive CD8+ T cells in MS, indicates these cells may be attractive targets in MS therapy.
Collapse
|
197
|
Geng G, Yu X, Jiang J, Yu X. Aetiology and pathogenesis of paraneoplastic autoimmune disorders. Autoimmun Rev 2019; 19:102422. [PMID: 31733369 DOI: 10.1016/j.autrev.2019.102422] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 06/21/2019] [Indexed: 12/15/2022]
Abstract
Paraneoplastic autoimmune disorders (PAD) represent a group of autoimmune diseases associated with neoplasms. As a consequence of a remote autoimmunity-mediated effect, PAD are found in multiple organs or tissues, including the skin, blood and nervous system. Compared with non-paraneoplastic autoimmune diseases, PAD have different aetiologies, pathologies, disease symptoms and treatment responses. There are two main origins of autoimmunity in PAD: neoplasm-mediated dysregulated homeostasis in immune cells/organs and in autoantigens. Pathologically, PAD are mediated predominantly by either autoantibodies or autoreactive T-cells. In the past decade, significant progress has been achieved in increasing our understanding of the aetiology and pathology of PAD. In this review article, we aim to provide a comprehensive overview of the recent advances in this field.
Collapse
Affiliation(s)
- Guojun Geng
- Department of Thoracic Surgery, the First Affiliated Hospital of Xiamen University, Xiamen 361003, China
| | - Xiuyi Yu
- Department of Thoracic Surgery, the First Affiliated Hospital of Xiamen University, Xiamen 361003, China
| | - Jie Jiang
- Department of Thoracic Surgery, the First Affiliated Hospital of Xiamen University, Xiamen 361003, China.
| | - Xinhua Yu
- Priority Area Asthma & Allergy, Research Center Borstel, 23845, Borstel, Germany.
| |
Collapse
|
198
|
Lee HG, Kim LK, Choi JM. NFAT-Specific Inhibition by dNP2-VIVITAmeliorates Autoimmune Encephalomyelitisby Regulation of Th1 and Th17. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2019; 16:32-41. [PMID: 31737742 PMCID: PMC6849366 DOI: 10.1016/j.omtm.2019.10.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 10/16/2019] [Indexed: 11/26/2022]
Abstract
Nuclear factor of activated T cells (NFATs) is an important transcription factor for T cell activation and proliferation. Recent studies have highlighted the role of NFATs in regulating the differentiation of effector CD4 T helper (Th) subsets including Th1 and Th17 cells. Because controlling the effector T cell function is important for the treatment of autoimmune diseases, regulation of NFAT functions in T cells would be an important strategy to control the pathogenesis of autoimmune diseases. Here, we demonstrated that an NFAT inhibitory peptide, VIVIT conjugated to dNP2 (dNP2-VIVIT), a blood-brain barrier-permeable peptide, ameliorated experimental autoimmune encephalomyelitis (EAE) by inhibiting Th1 and Th17 cells, but not regulatory T (Treg) cells. dNP2-VIVIT negatively regulated spinal cord-infiltrating interleukin-17A (IL-17A) and interferon (IFN)-γ-producing CD4+ T cells without affecting the number of Foxp3+ CD4+ Treg cells, whereas dNP2-VEET or 11R-VIVIT could not significantly inhibit EAE. In comparison with cyclosporin A (CsA), dNP2-VIVIT selectively inhibited Th1 and Th17 differentiation, whereas CsA inhibited the differentiation of all T cell subsets including that of Th2 and Treg cells. Collectively, this study demonstrated the role of dNP2-VIVIT as a novel agent for the treatment of autoimmune diseases such as multiple sclerosis by regulating the functions of Th1 and Th17 cells.
Collapse
Affiliation(s)
- Hong-Gyun Lee
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, Republic of Korea.,Research Institute for Natural Sciences, Hanyang University, Seoul, Republic of Korea
| | - Li-Kyung Kim
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, Republic of Korea.,Research Institute for Natural Sciences, Hanyang University, Seoul, Republic of Korea
| | - Je-Min Choi
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, Republic of Korea.,Research Institute for Natural Sciences, Hanyang University, Seoul, Republic of Korea.,Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul, Republic of Korea
| |
Collapse
|
199
|
miR-140-5p regulates T cell differentiation and attenuates experimental autoimmune encephalomyelitis by affecting CD4+T cell metabolism and DNA methylation. Int Immunopharmacol 2019; 75:105778. [DOI: 10.1016/j.intimp.2019.105778] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/30/2019] [Accepted: 07/23/2019] [Indexed: 12/18/2022]
|
200
|
Quandt JA, Becquart P, Kamma E, Hallenbeck J. Mucosal Administration of E-selectin Limits Disability in Models of Multiple Sclerosis. Front Mol Neurosci 2019; 12:190. [PMID: 31507371 PMCID: PMC6718462 DOI: 10.3389/fnmol.2019.00190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 07/22/2019] [Indexed: 11/13/2022] Open
Abstract
E-selectin plays an important role in mediating the rolling of leukocytes along and thus, the subsequent extravasation across activated endothelial cells comprising the microvasculature of the blood brain barrier (BBB). In multiple sclerosis (MS) and other inflammatory disorders of the central nervous system (CNS), the microvasculature is altered and immune cells infiltrate the brain and spinal cord contributing to damage, demyelination and ultimately disability. While mucosal administration is typically used to affect lymphocyte hyporesponsiveness or tolerance to suspect autoantigens, intranasal administration to E-selectin has previously been shown to protect against CNS inflammatory insults. We characterized the potential for mucosal administration of E-selectin to modulate CNS autoimmunity in the experimental autoimmune encephalomyelitis (EAE) model of MS. Intranasally administered E-selectin reduced swelling by as much as 50% in delayed-type hypersensitivity reactions compared to ovalbumin-tolerized controls. Intranasal E-selectin delivery prior to disease induction with myelin oligodendrocyte glycoprotein (MOG)35-55 reduced disease severity and total disease burden by more than 50% compared to PBS-tolerized animals; this protection was not associated with differences in the magnitude of the autoimmune response. Examination after the onset of disease showed that protection was associated with significant reductions in inflammatory infiltrates throughout the spinal cord. Tolerization to E-selectin did not influence encephalitogenic characteristics of autoreactive T cells such as IFN-gamma or IL-17 production. Clinical disease was also significantly reduced when E-selectin was first delivered after the onset of clinical symptoms. Splenic and lymph node (LN) populations from E-selectin-tolerized animals showed E-selectin-specific T cell responses and production of the immunomodulatory cytokine IL-10. Transfer of enriched CD4+ T cells from E-selectin tolerized mice limited disability in the passive SJL model of relapsing remitting MS. These results suggest a role for influencing E-selectin specific responses to limit neuroinflammation that warrants further exploration and characterization to better understand its potential to mitigate neurodegeneration in disorders such as MS.
Collapse
Affiliation(s)
- Jacqueline A Quandt
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Pierre Becquart
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Emily Kamma
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - John Hallenbeck
- Stroke Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|