151
|
Kondo Y, Larabee JL, Gao L, Shi H, Shao B, Hoover CM, McDaniel JM, Ho YC, Silasi-Mansat R, Archer-Hartmann SA, Azadi P, Srinivasan RS, Rezaie AR, Borczuk A, Laurence JC, Lupu F, Ahamed J, McEver RP, Papin JF, Yu Z, Xia L. L-SIGN is a receptor on liver sinusoidal endothelial cells for SARS-CoV-2 virus. JCI Insight 2021; 6:e148999. [PMID: 34291736 PMCID: PMC8410055 DOI: 10.1172/jci.insight.148999] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 06/03/2021] [Indexed: 12/14/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), remains a pandemic. Severe disease is associated with dysfunction of multiple organs, but some infected cells do not express ACE2, the canonical entry receptor for SARS-CoV-2. Here, we report that the C-type lectin receptor L-SIGN interacted in a Ca2+-dependent manner with high-mannose–type N-glycans on the SARS-CoV-2 spike protein. We found that L-SIGN was highly expressed on human liver sinusoidal endothelial cells (LSECs) and lymph node lymphatic endothelial cells but not on blood endothelial cells. Using high-resolution confocal microscopy imaging, we detected SARS-CoV-2 viral proteins within the LSECs from liver autopsy samples from patients with COVID-19. We found that both pseudo-typed virus enveloped with SARS-CoV-2 spike protein and authentic SARS-CoV-2 virus infected L-SIGN–expressing cells relative to control cells. Moreover, blocking L-SIGN function reduced CoV-2–type infection. These results indicate that L-SIGN is a receptor for SARS-CoV-2 infection. LSECs are major sources of the clotting factors vWF and factor VIII (FVIII). LSECs from liver autopsy samples from patients with COVID-19 expressed substantially higher levels of vWF and FVIII than LSECs from uninfected liver samples. Our data demonstrate that L-SIGN is an endothelial cell receptor for SARS-CoV-2 that may contribute to COVID-19–associated coagulopathy.
Collapse
Affiliation(s)
- Yuji Kondo
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | | | - Liang Gao
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Huiping Shi
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Bojing Shao
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Christopher M Hoover
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA.,Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - J Michael McDaniel
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Yen-Chun Ho
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Robert Silasi-Mansat
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | | | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - R Sathish Srinivasan
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Alireza R Rezaie
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA.,Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | | | - Jeffrey C Laurence
- Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, New York, USA
| | - Florea Lupu
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA.,Department of Pathology and
| | - Jasimuddin Ahamed
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA.,Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Rodger P McEver
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA.,Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | | | | | - Lijun Xia
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA.,Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| |
Collapse
|
152
|
Wang W, Li Q, Wu J, Hu Y, Wu G, Yu C, Xu K, Liu X, Wang Q, Huang W, Wang L, Wang Y. Lentil lectin derived from Lens culinaris exhibit broad antiviral activities against SARS-CoV-2 variants. Emerg Microbes Infect 2021; 10:1519-1529. [PMID: 34278967 PMCID: PMC8330776 DOI: 10.1080/22221751.2021.1957720] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The spike (S) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mutated continuously and newly emerging variants escape from antibody-mediated neutralization raised great concern. S protein is heavily glycosylated and the glycosylation sites are relatively conserved, thus glycans on S protein surface could be a target for the development of anti-SARS-CoV-2 strategies against variants. Here, we collected 12 plant-derived lectins with different carbohydrate specificity and evaluated their anti-SARS-CoV-2 activity against mutant strains and epidemic variants using a pseudovirus-based neutralization assay. The Lens culinaris-derived lentil lectin which specifically bind to oligomannose-type glycans and GlcNAc at the non-reducing end terminus showed most potent and broad antiviral activity against a panel of mutant strains and variants, including the artificial mutants at N-/O-linked glycosylation site, natural existed amino acid mutants, as well as the epidemic variants B.1.1.7, B.1.351, and P.1. Lentil lectin also showed antiviral activity against SARS-CoV and MERS-CoV. We found lentil lectin could block the binding of ACE2 to S trimer and inhibit SARS-CoV-2 at the early steps of infection. Using structural information and determined N-glycan profile of S trimer, taking together with the carbohydrate specificity of lentil lectin, we provide a basis for the observed broad spectrum anti-SARS-CoV-2 activity. Lentil lectin showed weak haemagglutination activity at 1 mg/mL and no cytotoxicity activity, and no weight loss was found in single injection mouse experiment. This report provides the first evidence that lentil lectin strongly inhibit infection of SARS-COV-2 variants, which should provide valuable insights for developing future anti-SARS-CoV-2 strategies.
Collapse
Affiliation(s)
- Wenbo Wang
- Division of Monoclonal Antibody Products, National Institutes for Food and Drug Control (NIFDC), Beijing, People's Republic of China
| | - Qianqian Li
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, National Institutes for Food and Drug Control (NIFDC), Beijing, People's Republic of China.,Graduate School of Peking Union Medical College, Beijing, People's Republic of China
| | - Jiajing Wu
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, National Institutes for Food and Drug Control (NIFDC), Beijing, People's Republic of China.,Wuhan Institute of Biological Products, Hubei, People's Republic of China
| | - Yu Hu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, People's Republic of China.,School of Life Sciences, University of Science and Technology of China, Hefei, People's Republic of China
| | - Gang Wu
- Division of Monoclonal Antibody Products, National Institutes for Food and Drug Control (NIFDC), Beijing, People's Republic of China
| | - Chuanfei Yu
- Division of Monoclonal Antibody Products, National Institutes for Food and Drug Control (NIFDC), Beijing, People's Republic of China
| | - Kangwei Xu
- Division of Respiratory Virus Vaccines, National Institutes for Food and Drug Control (NIFDC), Beijing, People's Republic of China
| | - Xumei Liu
- Division of Monoclonal Antibody Products, National Institutes for Food and Drug Control (NIFDC), Beijing, People's Republic of China.,School of Pharmacy, Yantai University, Yantai, People's Republic of China
| | - Qihui Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, People's Republic of China
| | - Weijin Huang
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, National Institutes for Food and Drug Control (NIFDC), Beijing, People's Republic of China
| | - Lan Wang
- Division of Monoclonal Antibody Products, National Institutes for Food and Drug Control (NIFDC), Beijing, People's Republic of China
| | - Youchun Wang
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, National Institutes for Food and Drug Control (NIFDC), Beijing, People's Republic of China
| |
Collapse
|
153
|
Dong X, Chen C, Yan J, Zhang X, Li X, Liang X. Comprehensive O-Glycosylation Analysis of the SARS-CoV-2 Spike Protein with Biomimetic Trp-Arg Materials. Anal Chem 2021; 93:10444-10452. [PMID: 34284575 DOI: 10.1021/acs.analchem.0c04634] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is a serious public health threat. Most vaccines against SARS-CoV-2 target the highly glycosylated spike protein (S). A good knowledge of the glycosylation profile of this protein is key to successful vaccine development. Unlike the 22 confirmed N-glycosylation sites on SARS-CoV-2 S, only a few O-glycosylation sites on this protein have been reported. This difference is mainly ascribed to the extremely low stoichiometry of O-glycosylation. Herein, we designed the biomimetic materials, Trp-Arg (WR) monomer-grafted silica microspheres (designated as WR-SiO2), and these biomimetic materials can enrich N- and O-linked glycopeptides with high selectivity. And WR-SiO2 can resist the nonglycopeptides' interference with the 100 molar fold of BSA during O-linked glycopeptide enrichment. We utilized WR-SiO2 to comprehensively analyze the O-glycosylation profile of recombinant SARS-CoV-2 S. Twenty-seven O-glycosylation sites including 18 unambiguous sites are identified on SARS-CoV-2 S. Our study demonstrates that the biomimetic polymer can offer specific selectivity for O-linked glycopeptides and pave the way for O-glycosylation research in biological fields. The O-glycosylation profile of SARS-CoV-2 S might supplement the comprehensive glycosylation in addition to N-glycosylation of SARS-CoV-2 S.
Collapse
Affiliation(s)
- Xuefang Dong
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Cheng Chen
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Jingyu Yan
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Xiaofei Zhang
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Xiuling Li
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Xinmiao Liang
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| |
Collapse
|
154
|
Guo W, Lakshminarayanan H, Rodriguez-Palacios A, Salata RA, Xu K, Draz MS. Glycan Nanostructures of Human Coronaviruses. Int J Nanomedicine 2021; 16:4813-4830. [PMID: 34290504 PMCID: PMC8289332 DOI: 10.2147/ijn.s302516] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 05/22/2021] [Indexed: 12/18/2022] Open
Abstract
Human coronaviruses present a substantial global disease burden, causing damage to populations’ health, economy, and social well-being. Glycans are one of the main structural components of all microbes and organismic structures, including viruses—playing multiple essential roles in virus infection and immunity. Studying and understanding virus glycans at the nanoscale provide new insights into the diagnosis and treatment of viruses. Glycan nanostructures are considered potential targets for molecular diagnosis, antiviral therapeutics, and the development of vaccines. This review article describes glycan nanostructures (eg, glycoproteins and glycolipids) that exist in cells, subcellular structures, and microbes. We detail the structure, characterization, synthesis, and functions of virus glycans. Furthermore, we describe the glycan nanostructures of different human coronaviruses, such as human coronavirus 229E (HCoV-229E), human coronavirus OC43 (HCoV-OC43), severe acute respiratory syndrome-associated coronavirus (SARS-CoV), human coronavirus NL63 (HCoV-NL63), human coronavirus HKU1 (HCoV-HKU1), the Middle East respiratory syndrome-associated coronavirus (MERS-CoV), and how glycan nanotechnology can be useful to prevent and combat human coronaviruses infections, along with possibilities that are not yet explored.
Collapse
Affiliation(s)
- Wanru Guo
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Harini Lakshminarayanan
- Department of Pathology and Molecular Pathology, University of Zurich and University Hospital Zurich, Zurich, Switzerland
| | - Alex Rodriguez-Palacios
- Division of Gastroenterology and Liver Diseases, Case Western Reserve University School of Medicine, Cleveland, OH, USA.,Digestive Health Research Institute, Case Western Reserve University, Cleveland, OH, USA.,Germ-Free and Gut Microbiome Core, Cleveland Digestive Diseases Research Core Center, Case Western Reserve University, Cleveland, OH, USA.,University Hospitals Research and Education Institute, University Hospital Cleveland Medical Center, Cleveland, OH, USA
| | - Robert A Salata
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Kaijin Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Mohamed S Draz
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| |
Collapse
|
155
|
Fischer W, Giorgi EE, Chakraborty S, Nguyen K, Bhattacharya T, Theiler J, Goloboff PA, Yoon H, Abfalterer W, Foley BT, Tegally H, San JE, de Oliveira T, Gnanakaran S, Korber B. HIV-1 and SARS-CoV-2: Patterns in the evolution of two pandemic pathogens. Cell Host Microbe 2021; 29:1093-1110. [PMID: 34242582 PMCID: PMC8173590 DOI: 10.1016/j.chom.2021.05.012] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Humanity is currently facing the challenge of two devastating pandemics caused by two very different RNA viruses: HIV-1, which has been with us for decades, and SARS-CoV-2, which has swept the world in the course of a single year. The same evolutionary strategies that drive HIV-1 evolution are at play in SARS-CoV-2. Single nucleotide mutations, multi-base insertions and deletions, recombination, and variation in surface glycans all generate the variability that, guided by natural selection, enables both HIV-1's extraordinary diversity and SARS-CoV-2's slower pace of mutation accumulation. Even though SARS-CoV-2 diversity is more limited, recently emergent SARS-CoV-2 variants carry Spike mutations that have important phenotypic consequences in terms of both antibody resistance and enhanced infectivity. We review and compare how these mutational patterns manifest in these two distinct viruses to provide the variability that fuels their evolution by natural selection.
Collapse
Affiliation(s)
- Will Fischer
- T-6: Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545, USA; New Mexico Consortium, Los Alamos, New Mexico, 87545, USA
| | - Elena E Giorgi
- T-6: Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545, USA; New Mexico Consortium, Los Alamos, New Mexico, 87545, USA
| | - Srirupa Chakraborty
- T-6: Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545, USA; Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545, USA
| | - Kien Nguyen
- T-6: Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545, USA
| | - Tanmoy Bhattacharya
- T-2: Nuclear and Particle Physics, Astrophysics and Cosmology, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545 USA
| | - James Theiler
- ISR-3: Space Data Science and Systems, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545, USA
| | - Pablo A Goloboff
- Unidad Ejecutora Lillo, Consejo Nacional de Investigaciones Científicas y Técnicas - Fundación Miguel Lillo, S. M. de Tucumán, Miguel Lillo 251 4000, Argentina; Research Associate, American Museum of Natural History, New York 10024, USA
| | - Hyejin Yoon
- T-6: Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545, USA
| | - Werner Abfalterer
- T-6: Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545, USA
| | - Brian T Foley
- T-6: Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545, USA
| | - Houriiyah Tegally
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), Department of Laboratory Medicine & Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - James Emmanuel San
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), Department of Laboratory Medicine & Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Tulio de Oliveira
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), Department of Laboratory Medicine & Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Sandrasegaram Gnanakaran
- T-6: Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545, USA
| | - Bette Korber
- T-6: Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545, USA; New Mexico Consortium, Los Alamos, New Mexico, 87545, USA.
| |
Collapse
|
156
|
Allen JD, Chawla H, Samsudin F, Zuzic L, Shivgan AT, Watanabe Y, He WT, Callaghan S, Song G, Yong P, Brouwer PJM, Song Y, Cai Y, Duyvesteyn HME, Malinauskas T, Kint J, Pino P, Wurm MJ, Frank M, Chen B, Stuart DI, Sanders RW, Andrabi R, Burton DR, Li S, Bond PJ, Crispin M. Site-Specific Steric Control of SARS-CoV-2 Spike Glycosylation. Biochemistry 2021; 60:2153-2169. [PMID: 34213308 PMCID: PMC8262170 DOI: 10.1021/acs.biochem.1c00279] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/18/2021] [Indexed: 02/08/2023]
Abstract
A central tenet in the design of vaccines is the display of native-like antigens in the elicitation of protective immunity. The abundance of N-linked glycans across the SARS-CoV-2 spike protein is a potential source of heterogeneity among the many different vaccine candidates under investigation. Here, we investigate the glycosylation of recombinant SARS-CoV-2 spike proteins from five different laboratories and compare them against S protein from infectious virus, cultured in Vero cells. We find patterns that are conserved across all samples, and this can be associated with site-specific stalling of glycan maturation that acts as a highly sensitive reporter of protein structure. Molecular dynamics simulations of a fully glycosylated spike support a model of steric restrictions that shape enzymatic processing of the glycans. These results suggest that recombinant spike-based SARS-CoV-2 immunogen glycosylation reproducibly recapitulates signatures of viral glycosylation.
Collapse
Affiliation(s)
- Joel D. Allen
- School
of Biological Sciences, University of Southampton, Southampton SO17 1BJ, U.K.
| | - Himanshi Chawla
- School
of Biological Sciences, University of Southampton, Southampton SO17 1BJ, U.K.
| | - Firdaus Samsudin
- Bioinformatics
Institute, Agency for Science, Technology
and Research (A*STAR), Singapore 138671
| | - Lorena Zuzic
- Bioinformatics
Institute, Agency for Science, Technology
and Research (A*STAR), Singapore 138671
- Department
of Chemistry, Faculty of Science and Engineering, Manchester Institute
of Biotechnology, The University of Manchester, Manchester M1 7DN, U.K.
| | - Aishwary Tukaram Shivgan
- Bioinformatics
Institute, Agency for Science, Technology
and Research (A*STAR), Singapore 138671
- Department
of Biological Sciences, National University
of Singapore, Singapore 117543
| | - Yasunori Watanabe
- School
of Biological Sciences, University of Southampton, Southampton SO17 1BJ, U.K.
| | - Wan-ting He
- Department
of Immunology and Microbiology, The Scripps
Research Institute, La Jolla, California 92037, United States
- IAVI
Neutralizing Antibody Center, The Scripps
Research Institute, La Jolla, California 92037, United States
- Consortium
for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, California 92037, United States
| | - Sean Callaghan
- Department
of Immunology and Microbiology, The Scripps
Research Institute, La Jolla, California 92037, United States
- IAVI
Neutralizing Antibody Center, The Scripps
Research Institute, La Jolla, California 92037, United States
- Consortium
for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, California 92037, United States
| | - Ge Song
- Department
of Immunology and Microbiology, The Scripps
Research Institute, La Jolla, California 92037, United States
- IAVI
Neutralizing Antibody Center, The Scripps
Research Institute, La Jolla, California 92037, United States
- Consortium
for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, California 92037, United States
| | - Peter Yong
- Department
of Immunology and Microbiology, The Scripps
Research Institute, La Jolla, California 92037, United States
- IAVI
Neutralizing Antibody Center, The Scripps
Research Institute, La Jolla, California 92037, United States
- Consortium
for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, California 92037, United States
| | - Philip J. M. Brouwer
- Department
of Medical Microbiology, Amsterdam UMC,
University of Amsterdam, Amsterdam Infection & Immunity Institute, 1007 MB Amsterdam, The Netherlands
| | - Yutong Song
- Tsinghua-Peking
Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Beijing
Advanced Innovation Center for Structural Biology and Frontier Research
Center for Biological Structure, Beijing 100084, China
| | - Yongfei Cai
- Division
of Molecular Medicine, Boston Children’s
Hospital, 3 Blackfan
Street, Boston, Massachusetts 02115, United States
| | - Helen M. E. Duyvesteyn
- Division
of Structural Biology, University of Oxford,
The Wellcome Centre for Human Genetics, Headington, Oxford OX3 7BN, U.K.
| | - Tomas Malinauskas
- Division
of Structural Biology, University of Oxford,
The Wellcome Centre for Human Genetics, Headington, Oxford OX3 7BN, U.K.
| | - Joeri Kint
- ExcellGene SA, CH1870 Monthey, Switzerland
| | - Paco Pino
- ExcellGene SA, CH1870 Monthey, Switzerland
| | | | - Martin Frank
- Biognos AB, Generatorsgatan
1, 41705 Göteborg, Sweden
| | - Bing Chen
- Division
of Molecular Medicine, Boston Children’s
Hospital, 3 Blackfan
Street, Boston, Massachusetts 02115, United States
- Department
of Pediatrics, Harvard Medical School, 3 Blackfan Street, Boston, Massachusetts 02115, United States
| | - David I. Stuart
- Division
of Structural Biology, University of Oxford,
The Wellcome Centre for Human Genetics, Headington, Oxford OX3 7BN, U.K.
- Diamond Light Source Ltd., Harwell Science
& Innovation Campus, Didcot OX11 0DE, U.K.
| | - Rogier W. Sanders
- Department
of Medical Microbiology, Amsterdam UMC,
University of Amsterdam, Amsterdam Infection & Immunity Institute, 1007 MB Amsterdam, The Netherlands
- Department
of Microbiology and Immunology, Weill Medical
College of Cornell University, New York, New York 10065, United States
| | - Raiees Andrabi
- Department
of Immunology and Microbiology, The Scripps
Research Institute, La Jolla, California 92037, United States
- IAVI
Neutralizing Antibody Center, The Scripps
Research Institute, La Jolla, California 92037, United States
- Consortium
for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, California 92037, United States
| | - Dennis R. Burton
- Department
of Immunology and Microbiology, The Scripps
Research Institute, La Jolla, California 92037, United States
- IAVI
Neutralizing Antibody Center, The Scripps
Research Institute, La Jolla, California 92037, United States
- Consortium
for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, California 92037, United States
- Ragon Institute of Massachusetts General
Hospital, Massachusetts
Institute of Technology, and Harvard University, Cambridge, Massachusetts 02139, United States
| | - Sai Li
- Tsinghua-Peking
Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Beijing
Advanced Innovation Center for Structural Biology and Frontier Research
Center for Biological Structure, Beijing 100084, China
| | - Peter J. Bond
- Bioinformatics
Institute, Agency for Science, Technology
and Research (A*STAR), Singapore 138671
- Department
of Biological Sciences, National University
of Singapore, Singapore 117543
| | - Max Crispin
- School
of Biological Sciences, University of Southampton, Southampton SO17 1BJ, U.K.
| |
Collapse
|
157
|
Zong G, Li C, Prabhu SK, Zhang R, Zhang X, Wang LX. A facile chemoenzymatic synthesis of SARS-CoV-2 glycopeptides for probing glycosylation functions. Chem Commun (Camb) 2021; 57:6804-6807. [PMID: 34236361 PMCID: PMC8294178 DOI: 10.1039/d1cc02790e] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Glycosylation plays important roles in SARS-CoV-2 infection. We describe here a facile chemoenzymatic synthesis of core-fucosylated N-glycopeptides derived from the SARS-CoV-2 Spike protein and their binding with glycan-dependent neutralizing antibody S309 and human lectin CLEC4G. The synthetic glycopeptides provide tools for further functional characterization of viral glycosylation.
Collapse
Affiliation(s)
- Guanghui Zong
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA.
| | - Chao Li
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA.
| | - Sunaina Kiran Prabhu
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA.
| | - Roushu Zhang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA.
| | - Xiao Zhang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA.
| | - Lai-Xi Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
158
|
Harvey WT, Carabelli AM, Jackson B, Gupta RK, Thomson EC, Harrison EM, Ludden C, Reeve R, Rambaut A, Peacock SJ, Robertson DL. SARS-CoV-2 variants, spike mutations and immune escape. Nat Rev Microbiol 2021; 19:409-424. [PMID: 34075212 PMCID: PMC8167834 DOI: 10.1038/s41579-021-00573-0] [Citation(s) in RCA: 2169] [Impact Index Per Article: 723.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2021] [Indexed: 02/07/2023]
Abstract
Although most mutations in the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genome are expected to be either deleterious and swiftly purged or relatively neutral, a small proportion will affect functional properties and may alter infectivity, disease severity or interactions with host immunity. The emergence of SARS-CoV-2 in late 2019 was followed by a period of relative evolutionary stasis lasting about 11 months. Since late 2020, however, SARS-CoV-2 evolution has been characterized by the emergence of sets of mutations, in the context of 'variants of concern', that impact virus characteristics, including transmissibility and antigenicity, probably in response to the changing immune profile of the human population. There is emerging evidence of reduced neutralization of some SARS-CoV-2 variants by postvaccination serum; however, a greater understanding of correlates of protection is required to evaluate how this may impact vaccine effectiveness. Nonetheless, manufacturers are preparing platforms for a possible update of vaccine sequences, and it is crucial that surveillance of genetic and antigenic changes in the global virus population is done alongside experiments to elucidate the phenotypic impacts of mutations. In this Review, we summarize the literature on mutations of the SARS-CoV-2 spike protein, the primary antigen, focusing on their impacts on antigenicity and contextualizing them in the protein structure, and discuss them in the context of observed mutation frequencies in global sequence datasets.
Collapse
Affiliation(s)
- William T Harvey
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | | | - Ben Jackson
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| | - Ravindra K Gupta
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, UK
| | - Emma C Thomson
- Department of Clinical Research, London School of Hygiene and Tropical Medicine, London, UK
- Wellcome Sanger Institute, Hinxton, UK
| | - Ewan M Harrison
- Department of Medicine, University of Cambridge, Cambridge, UK
- Wellcome Sanger Institute, Hinxton, UK
| | | | - Richard Reeve
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Andrew Rambaut
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| | | | | |
Collapse
|
159
|
Harvey WT, Carabelli AM, Jackson B, Gupta RK, Thomson EC, Harrison EM, Ludden C, Reeve R, Rambaut A, Peacock SJ, Robertson DL. SARS-CoV-2 variants, spike mutations and immune escape. Nat Rev Microbiol 2021; 19:409-424. [PMID: 34075212 DOI: 10.1038/s41579-021-00573-02] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2021] [Indexed: 05/26/2023]
Abstract
Although most mutations in the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genome are expected to be either deleterious and swiftly purged or relatively neutral, a small proportion will affect functional properties and may alter infectivity, disease severity or interactions with host immunity. The emergence of SARS-CoV-2 in late 2019 was followed by a period of relative evolutionary stasis lasting about 11 months. Since late 2020, however, SARS-CoV-2 evolution has been characterized by the emergence of sets of mutations, in the context of 'variants of concern', that impact virus characteristics, including transmissibility and antigenicity, probably in response to the changing immune profile of the human population. There is emerging evidence of reduced neutralization of some SARS-CoV-2 variants by postvaccination serum; however, a greater understanding of correlates of protection is required to evaluate how this may impact vaccine effectiveness. Nonetheless, manufacturers are preparing platforms for a possible update of vaccine sequences, and it is crucial that surveillance of genetic and antigenic changes in the global virus population is done alongside experiments to elucidate the phenotypic impacts of mutations. In this Review, we summarize the literature on mutations of the SARS-CoV-2 spike protein, the primary antigen, focusing on their impacts on antigenicity and contextualizing them in the protein structure, and discuss them in the context of observed mutation frequencies in global sequence datasets.
Collapse
Affiliation(s)
- William T Harvey
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | | | - Ben Jackson
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| | - Ravindra K Gupta
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, UK
| | - Emma C Thomson
- Department of Clinical Research, London School of Hygiene and Tropical Medicine, London, UK
- Wellcome Sanger Institute, Hinxton, UK
| | - Ewan M Harrison
- Department of Medicine, University of Cambridge, Cambridge, UK
- Wellcome Sanger Institute, Hinxton, UK
| | | | - Richard Reeve
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Andrew Rambaut
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| | | | | |
Collapse
|
160
|
Zimmerman MI, Porter JR, Ward MD, Singh S, Vithani N, Meller A, Mallimadugula UL, Kuhn CE, Borowsky JH, Wiewiora RP, Hurley MFD, Harbison AM, Fogarty CA, Coffland JE, Fadda E, Voelz VA, Chodera JD, Bowman GR. SARS-CoV-2 simulations go exascale to predict dramatic spike opening and cryptic pockets across the proteome. Nat Chem 2021; 13:651-659. [PMID: 34031561 PMCID: PMC8249329 DOI: 10.1038/s41557-021-00707-0] [Citation(s) in RCA: 156] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 04/14/2021] [Indexed: 01/20/2023]
Abstract
SARS-CoV-2 has intricate mechanisms for initiating infection, immune evasion/suppression and replication that depend on the structure and dynamics of its constituent proteins. Many protein structures have been solved, but far less is known about their relevant conformational changes. To address this challenge, over a million citizen scientists banded together through the Folding@home distributed computing project to create the first exascale computer and simulate 0.1 seconds of the viral proteome. Our adaptive sampling simulations predict dramatic opening of the apo spike complex, far beyond that seen experimentally, explaining and predicting the existence of 'cryptic' epitopes. Different spike variants modulate the probabilities of open versus closed structures, balancing receptor binding and immune evasion. We also discover dramatic conformational changes across the proteome, which reveal over 50 'cryptic' pockets that expand targeting options for the design of antivirals. All data and models are freely available online, providing a quantitative structural atlas.
Collapse
Affiliation(s)
- Maxwell I Zimmerman
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, MO, USA
- Center for Science and Engineering of Living Systems (CSELS), Washington University in St. Louis, St Louis, MO, USA
| | - Justin R Porter
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, MO, USA
- Center for Science and Engineering of Living Systems (CSELS), Washington University in St. Louis, St Louis, MO, USA
| | - Michael D Ward
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, MO, USA
- Center for Science and Engineering of Living Systems (CSELS), Washington University in St. Louis, St Louis, MO, USA
| | - Sukrit Singh
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, MO, USA
- Center for Science and Engineering of Living Systems (CSELS), Washington University in St. Louis, St Louis, MO, USA
| | - Neha Vithani
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, MO, USA
- Center for Science and Engineering of Living Systems (CSELS), Washington University in St. Louis, St Louis, MO, USA
| | - Artur Meller
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, MO, USA
- Center for Science and Engineering of Living Systems (CSELS), Washington University in St. Louis, St Louis, MO, USA
| | - Upasana L Mallimadugula
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, MO, USA
- Center for Science and Engineering of Living Systems (CSELS), Washington University in St. Louis, St Louis, MO, USA
| | - Catherine E Kuhn
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, MO, USA
- Center for Science and Engineering of Living Systems (CSELS), Washington University in St. Louis, St Louis, MO, USA
| | - Jonathan H Borowsky
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, MO, USA
- Center for Science and Engineering of Living Systems (CSELS), Washington University in St. Louis, St Louis, MO, USA
| | - Rafal P Wiewiora
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, NY, New York, USA
- Computational and Systems Biology Program, Sloan Kettering Institute, NY, New York, USA
| | | | - Aoife M Harbison
- Department of Chemistry and Hamilton Institute, Maynooth University, Maynooth, Ireland
| | - Carl A Fogarty
- Department of Chemistry and Hamilton Institute, Maynooth University, Maynooth, Ireland
| | | | - Elisa Fadda
- Department of Chemistry and Hamilton Institute, Maynooth University, Maynooth, Ireland
| | - Vincent A Voelz
- Department of Chemistry, Temple University, Philadelphia, PA, USA
| | - John D Chodera
- Computational and Systems Biology Program, Sloan Kettering Institute, NY, New York, USA
| | - Gregory R Bowman
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, MO, USA.
- Center for Science and Engineering of Living Systems (CSELS), Washington University in St. Louis, St Louis, MO, USA.
| |
Collapse
|
161
|
Man-Specific Lectins from Plants, Fungi, Algae and Cyanobacteria, as Potential Blockers for SARS-CoV, MERS-CoV and SARS-CoV-2 (COVID-19) Coronaviruses: Biomedical Perspectives. Cells 2021; 10:cells10071619. [PMID: 34203435 PMCID: PMC8305077 DOI: 10.3390/cells10071619] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/06/2021] [Accepted: 06/25/2021] [Indexed: 12/18/2022] Open
Abstract
Betacoronaviruses, responsible for the “Severe Acute Respiratory Syndrome” (SARS) and the “Middle East Respiratory Syndrome” (MERS), use the spikes protruding from the virion envelope to attach and subsequently infect the host cells. The coronavirus spike (S) proteins contain receptor binding domains (RBD), allowing the specific recognition of either the dipeptidyl peptidase CD23 (MERS-CoV) or the angiotensin-converting enzyme ACE2 (SARS-Cov, SARS-CoV-2) host cell receptors. The heavily glycosylated S protein includes both complex and high-mannose type N-glycans that are well exposed at the surface of the spikes. A detailed analysis of the carbohydrate-binding specificity of mannose-binding lectins from plants, algae, fungi, and bacteria, revealed that, depending on their origin, they preferentially recognize either complex type N-glycans, or high-mannose type N-glycans. Since both complex and high-mannose glycans substantially decorate the S proteins, mannose-specific lectins are potentially useful glycan probes for targeting the SARS-CoV, MERS-CoV, and SARS-CoV-2 virions. Mannose-binding legume lectins, like pea lectin, and monocot mannose-binding lectins, like snowdrop lectin or the algal lectin griffithsin, which specifically recognize complex N-glycans and high-mannose glycans, respectively, are particularly adapted for targeting coronaviruses. The biomedical prospects of targeting coronaviruses with mannose-specific lectins are wide-ranging including detection, immobilization, prevention, and control of coronavirus infection.
Collapse
|
162
|
Pokhrel S, Kraemer BR, Burkholz S, Mochly-Rosen D. Natural variants in SARS-CoV-2 Spike protein pinpoint structural and functional hotspots with implications for prophylaxis and therapeutic strategies. Sci Rep 2021; 11:13120. [PMID: 34162970 PMCID: PMC8222349 DOI: 10.1038/s41598-021-92641-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 04/30/2021] [Indexed: 12/17/2022] Open
Abstract
In December 2019, a novel coronavirus, termed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was identified as the cause of pneumonia with severe respiratory distress and outbreaks in Wuhan, China. The rapid and global spread of SARS-CoV-2 resulted in the coronavirus 2019 (COVID-19) pandemic. Earlier during the pandemic, there were limited genetic viral variations. As millions of people became infected, multiple single amino acid substitutions emerged. Many of these substitutions have no consequences. However, some of the new variants show a greater infection rate, more severe disease, and reduced sensitivity to current prophylaxes and treatments. Of particular importance in SARS-CoV-2 transmission are mutations that occur in the Spike (S) protein, the protein on the viral outer envelope that binds to the human angiotensin-converting enzyme receptor (hACE2). Here, we conducted a comprehensive analysis of 441,168 individual virus sequences isolated from humans throughout the world. From the individual sequences, we identified 3540 unique amino acid substitutions in the S protein. Analysis of these different variants in the S protein pinpointed important functional and structural sites in the protein. This information may guide the development of effective vaccines and therapeutics to help arrest the spread of the COVID-19 pandemic.
Collapse
Affiliation(s)
- Suman Pokhrel
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Benjamin R Kraemer
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Daria Mochly-Rosen
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
163
|
Wang Y, Wu Z, Hu W, Hao P, Yang S. Impact of Expressing Cells on Glycosylation and Glycan of the SARS-CoV-2 Spike Glycoprotein. ACS OMEGA 2021; 6:15988-15999. [PMID: 34179644 PMCID: PMC8204757 DOI: 10.1021/acsomega.1c01785] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 06/02/2021] [Indexed: 05/09/2023]
Abstract
The spike glycoprotein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the first point of contact for the virus to recognize and bind to host receptors, is the focus of biomedical research seeking to effectively prevent and treat coronavirus disease (COVID-19). The mass production of spike glycoproteins is usually carried out in different cell systems. Studies have been shown that different expression cell systems alter protein glycosylation of hemagglutinin and neuraminidase in the influenza virus. However, it is not clear whether the cellular system affects the spike protein glycosylation. In this work, we investigated the effect of an expression system on the glycosylation of the spike glycoprotein and its receptor-binding domain. We found that there are significant differences in the glycosylation and glycans attached at each glycosite of the spike glycoprotein obtained from different expression cells. Since glycosylation at the binding site and adjacent amino acids affects the interaction between the spike glycoprotein and the host cell receptor, we recognize that caution should be taken when selecting an expression system to develop inhibitors, antibodies, and vaccines.
Collapse
Affiliation(s)
- Yan Wang
- Mass
Spectrometry Facility, National Institute
of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Zhen Wu
- State
Key Laboratory of Genetic Engineering, Department of Biochemistry,
School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Wenhua Hu
- Center
for Clinical Mass Spectrometry, Department of Pharmaceutical Analysis, Soochow University, Suzhou, Jiangsu 215123, China
| | - Piliang Hao
- School
of Life Science and Technology, ShanghaiTech
University, Shanghai 201210, China
| | - Shuang Yang
- Center
for Clinical Mass Spectrometry, Department of Pharmaceutical Analysis, Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
164
|
Leung LYT, Khan S, Budylowski P, Li Z, Goroshko S, Liu Y, Dong S, Carlyle JR, Rini JM, Ostrowski M, Ehrhardt GRA. Detection and Neutralization of SARS-CoV-2 Using Non-conventional Variable Lymphocyte Receptor Antibodies of the Evolutionarily Distant Sea Lamprey. Front Immunol 2021; 12:659071. [PMID: 34234774 PMCID: PMC8256154 DOI: 10.3389/fimmu.2021.659071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 06/07/2021] [Indexed: 12/23/2022] Open
Abstract
SARS-CoV-2 is a newly emerged betacoronavirus and the causative agent for the COVID-19 pandemic. Antibodies recognizing the viral spike protein are instrumental in natural and vaccine-induced immune responses to the pathogen and in clinical diagnostic and therapeutic applications. Unlike conventional immunoglobulins, the variable lymphocyte receptor antibodies of jawless vertebrates are structurally distinct, indicating that they may recognize different epitopes. Here we report the isolation of monoclonal variable lymphocyte receptor antibodies from immunized sea lamprey larvae that recognize the spike protein of SARS-CoV-2 but not of other coronaviruses. We further demonstrate that these monoclonal variable lymphocyte receptor antibodies can efficiently neutralize the virus and form the basis of a rapid, single step SARS-CoV-2 detection system. This study provides evidence for monoclonal variable lymphocyte receptor antibodies as unique biomedical research and potential clinical diagnostic reagents targeting SARS-CoV-2.
Collapse
Affiliation(s)
| | - Srijit Khan
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | | | - Zhijie Li
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Sofiya Goroshko
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Yanling Liu
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Shilan Dong
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - James R. Carlyle
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - James M. Rini
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Mario Ostrowski
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
| | | |
Collapse
|
165
|
Kelta Wabalo E, Dukessa Dubiwak A, Welde Senbetu M, Sime Gizaw T. Effect of Genomic and Amino Acid Sequence Mutation on Virulence and Therapeutic Target of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS COV-2). Infect Drug Resist 2021; 14:2187-2192. [PMID: 34163183 PMCID: PMC8214021 DOI: 10.2147/idr.s307374] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/26/2021] [Indexed: 01/08/2023] Open
Abstract
The COVID-19 pandemic is caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). It is one of the RNA coronaviruses which share the highest mutation rates of RNA viruses when compared with that of their hosts. The collective mutation rate of RNA viruses is up to a million times higher than their hosts and is correlated with enhanced virulence of viruses. The RNA, genomic material of SARS-CoV-2, has the capacity of showing amplified fast changes as the infection spreads. These changes were frequently observed in genes for spike glycoprotein, nucleocapsid, ORF1ab, and ORF8, together with RNA dependent RNA polymerase. In contrast, genes for envelope, membrane, ORF6, ORF7a and ORF7b showed no observable changes in terms of amino acid substitutions. Mutated SARS COV-2 at these particular sites has been associated with viral infectivity, false laboratory results and viral genome mutation and interferes with therapeutic targets. Interferences with therapeutic targets is frequently observed in genes for RdRp. Additionally, mutated viral genes for RdRp render slow fidelity of RdRp protein, resulting in a high mutation rate. Such a high mutation rate might allow new virulent forms of the virus to emerge and influence the disease profile. This review aimed to elaborate on the effect of genomic and amino acid sequence mutations on the virulence and therapeutic targets of SARS COV-2. To achieve this objective, multiple literatures have been reviewed.
Collapse
Affiliation(s)
- Endriyas Kelta Wabalo
- Department of Biomedical Sciences, Faculty of Medical Sciences, Institute of Health, Jimma University, Jimma, Ethiopia
| | - Abebe Dukessa Dubiwak
- Department of Biomedical Sciences, Faculty of Medical Sciences, Institute of Health, Jimma University, Jimma, Ethiopia
| | - Mengistu Welde Senbetu
- Department of Biomedical Sciences, Faculty of Medical Sciences, Institute of Health, Jimma University, Jimma, Ethiopia
| | - Tariku Sime Gizaw
- Department of Biomedical Sciences, Faculty of Medical Sciences, Institute of Health, Jimma University, Jimma, Ethiopia
| |
Collapse
|
166
|
Miller NL, Clark T, Raman R, Sasisekharan R. Glycans in Virus-Host Interactions: A Structural Perspective. Front Mol Biosci 2021; 8:666756. [PMID: 34164431 PMCID: PMC8215384 DOI: 10.3389/fmolb.2021.666756] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 05/19/2021] [Indexed: 11/13/2022] Open
Abstract
Many interactions between microbes and their hosts are driven or influenced by glycans, whose heterogeneous and difficult to characterize structures have led to an underappreciation of their role in these interactions compared to protein-based interactions. Glycans decorate microbe glycoproteins to enhance attachment and fusion to host cells, provide stability, and evade the host immune system. Yet, the host immune system may also target these glycans as glycoepitopes. In this review, we provide a structural perspective on the role of glycans in host-microbe interactions, focusing primarily on viral glycoproteins and their interactions with host adaptive immunity. In particular, we discuss a class of topological glycoepitopes and their interactions with topological mAbs, using the anti-HIV mAb 2G12 as the archetypical example. We further offer our view that structure-based glycan targeting strategies are ready for application to viruses beyond HIV, and present our perspective on future development in this area.
Collapse
Affiliation(s)
- Nathaniel L Miller
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, United States.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States.,Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Thomas Clark
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States.,Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Rahul Raman
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States.,Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Ram Sasisekharan
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States.,Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| |
Collapse
|
167
|
Praissman JL, Wells L. Proteomics-Based Insights Into the SARS-CoV-2-Mediated COVID-19 Pandemic: A Review of the First Year of Research. Mol Cell Proteomics 2021; 20:100103. [PMID: 34089862 PMCID: PMC8176883 DOI: 10.1016/j.mcpro.2021.100103] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 05/24/2021] [Indexed: 02/08/2023] Open
Abstract
In late 2019, a virus subsequently named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in China and led to a worldwide pandemic of the disease termed coronavirus disease 2019. The global health threat posed by this pandemic led to an extremely rapid and robust mobilization of the scientific and medical communities as evidenced by the publication of more than 10,000 peer-reviewed articles and thousands of preprints in the first year of the pandemic alone. With the publication of the initial genome sequence of SARS-CoV-2, the proteomics community immediately joined this effort publishing, to date, more than 100 peer-reviewed proteomics studies and submitting many more preprints to preprint servers. In this review, we focus on peer-reviewed articles published on the proteome, glycoproteome, and glycome of SARS-CoV-2. At a basic level, proteomic studies provide valuable information on quantitative aspects of viral infection course; information on the identities, sites, and microheterogeneity of post-translational modifications; and, information on protein-protein interactions. At a biological systems level, these studies elucidate host cell and tissue responses, characterize antibodies and other immune system factors in infection, suggest biomarkers that may be useful for diagnosis and disease-course monitoring, and help in the development or repurposing of potential therapeutics. Here, we summarize results from selected early studies to provide a perspective on the current rapidly evolving literature.
Collapse
Affiliation(s)
- Jeremy L Praissman
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Lance Wells
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA.
| |
Collapse
|
168
|
Brotzakis ZF, Löhr T, Vendruscolo M. Determination of intermediate state structures in the opening pathway of SARS-CoV-2 spike using cryo-electron microscopy. Chem Sci 2021; 12:9168-9175. [PMID: 34276947 PMCID: PMC8261716 DOI: 10.1039/d1sc00244a] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 06/01/2021] [Indexed: 01/05/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of COVID-19, a highly infectious disease that is severely affecting our society and welfare systems. In order to develop therapeutic interventions against this condition, one promising strategy is to target spike, the trimeric transmembrane glycoprotein that the virus uses to recognise and bind its host cells. Here we use a metainference cryo-electron microscopy approach to determine the opening pathway that brings spike from its inactive (closed) conformation to its active (open) one. The knowledge of the structures of the intermediate states of spike along this opening pathway enables us to identify a cryptic pocket that is not exposed in the open and closed states. These results underline the opportunities offered by the determination of the structures of the transient intermediate states populated during the dynamics of proteins to allow the therapeutic targeting of otherwise invisible cryptic binding sites. A structural ensemble derived from cryo-electron microscopy reveals a cryptic pocket site in intermediate states along the opening pathway of the SARS-CoV-2 spike protein.![]()
Collapse
Affiliation(s)
- Z Faidon Brotzakis
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge Cambridge CB2 1EW UK
| | - Thomas Löhr
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge Cambridge CB2 1EW UK
| | - Michele Vendruscolo
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge Cambridge CB2 1EW UK
| |
Collapse
|
169
|
Zeng C, Evans JP, King T, Zheng YM, Oltz EM, Whelan SPJ, Saif L, Peeples ME, Liu SL. SARS-CoV-2 Spreads through Cell-to-Cell Transmission. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021. [PMID: 34100011 PMCID: PMC8183005 DOI: 10.1101/2021.06.01.446579] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a highly transmissible coronavirus responsible for the global COVID-19 pandemic. Herein we provide evidence that SARS-CoV-2 spreads through cell-cell contact in cultures, mediated by the spike glycoprotein. SARS-CoV-2 spike is more efficient in facilitating cell-to-cell transmission than SARS-CoV spike, which reflects, in part, their differential cell-cell fusion activity. Interestingly, treatment of cocultured cells with endosomal entry inhibitors impairs cell-to-cell transmission, implicating endosomal membrane fusion as an underlying mechanism. Compared with cell-free infection, cell-to-cell transmission of SARS-CoV-2 is refractory to inhibition by neutralizing antibody or convalescent sera of COVID-19 patients. While ACE2 enhances cell-to-cell transmission, we find that it is not absolutely required. Notably, despite differences in cell-free infectivity, the variants of concern (VOC) B.1.1.7 and B.1.351 have similar cell-to-cell transmission capability. Moreover, B.1.351 is more resistant to neutralization by vaccinee sera in cell-free infection, whereas B.1.1.7 is more resistant to inhibition by vaccine sera in cell-to-cell transmission. Overall, our study reveals critical features of SARS-CoV-2 spike-mediated cell-to-cell transmission, with important implications for a better understanding of SARS-CoV-2 spread and pathogenesis.
Collapse
|
170
|
Ye F, Zhao J, Xu P, Liu X, Yu J, Shangguan W, Liu J, Luo X, Li C, Ying T, Wang J, Yu B, Wang P. Synthetic Homogeneous Glycoforms of the SARS‐CoV‐2 Spike Receptor‐Binding Domain Reveals Different Binding Profiles of Monoclonal Antibodies. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Farong Ye
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University Shanghai 200240 China
| | - Jie Zhao
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University Shanghai 200240 China
| | - Peng Xu
- State Key Laboratory of Bioorganic and Natural Product Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry Chinese Academy of Sciences Shanghai 200032 China
| | - Xinliang Liu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University Shanghai 200240 China
| | - Jing Yu
- State Key Laboratory of Bioorganic and Natural Product Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry Chinese Academy of Sciences Shanghai 200032 China
| | - Wei Shangguan
- State Key Laboratory of Bioorganic and Natural Product Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry Chinese Academy of Sciences Shanghai 200032 China
| | - Jiazhi Liu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University Shanghai 200240 China
| | - Xiaosheng Luo
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University Shanghai 200240 China
| | - Cheng Li
- Laboratory of Medical Molecular Virology (MOE/NHC/CAMS) School of Basic Medical Sciences Fudan University Shanghai 200032 China
| | - Tianlei Ying
- Laboratory of Medical Molecular Virology (MOE/NHC/CAMS) School of Basic Medical Sciences Fudan University Shanghai 200032 China
| | - Jing Wang
- State Key Laboratory of Bioorganic and Natural Product Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry Chinese Academy of Sciences Shanghai 200032 China
- Institutes for Life Sciences School of Medicine and National Engineering Research Center for Tissue Restoration and Reconstruction South China University of Technology Guangdong 510006 China
| | - Biao Yu
- State Key Laboratory of Bioorganic and Natural Product Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry Chinese Academy of Sciences Shanghai 200032 China
| | - Ping Wang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University Shanghai 200240 China
- Key Laboratory of Systems Biomedicine (Ministry of Education) Shanghai Center for Systems Biomedicine Shanghai Jiao Tong University Shanghai 200240 China
| |
Collapse
|
171
|
Valdes-Balbin Y, Santana-Mederos D, Paquet F, Fernandez S, Climent Y, Chiodo F, Rodríguez L, Sanchez Ramirez B, Leon K, Hernandez T, Castellanos-Serra L, Garrido R, Chen GW, Garcia-Rivera D, Rivera DG, Verez-Bencomo V. Molecular Aspects Concerning the Use of the SARS-CoV-2 Receptor Binding Domain as a Target for Preventive Vaccines. ACS CENTRAL SCIENCE 2021; 7:757-767. [PMID: 34075345 PMCID: PMC8084267 DOI: 10.1021/acscentsci.1c00216] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Indexed: 02/08/2023]
Abstract
The development of recombinant COVID-19 vaccines has resulted from scientific progress made at an unprecedented speed during 2020. The recombinant spike glycoprotein monomer, its trimer, and its recombinant receptor-binding domain (RBD) induce a potent anti-RBD neutralizing antibody response in animals. In COVID-19 convalescent sera, there is a good correlation between the antibody response and potent neutralization. In this review, we summarize with a critical view the molecular aspects associated with the interaction of SARS-CoV-2 RBD with its receptor in human cells, the angiotensin-converting enzyme 2 (ACE2), the epitopes involved in the neutralizing activity, and the impact of virus mutations thereof. Recent trends in RBD-based vaccines are analyzed, providing detailed insights into the role of antigen display and multivalence in the immune response of vaccines under development.
Collapse
Affiliation(s)
| | | | - Françoise Paquet
- Centre
de Biophysique Moléculaire, Centre
National de la Recherche Scientifique UPR 4301, rue Charles Sadron, F-45071, Orléans, Cedex 2, France
| | | | - Yanet Climent
- Finlay
Vaccine Institute, 200
and 21 Street, Havana 11600, Cuba
| | - Fabrizio Chiodo
- Department
of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands, 1081 HV
- Institute
of Biomolecular Chemistry, National Research
Council (CNR), Pozzuoli, Napoli, Italy
| | - Laura Rodríguez
- Finlay
Vaccine Institute, 200
and 21 Street, Havana 11600, Cuba
| | | | - Kalet Leon
- Center
of Molecular Immunology, P.O. Box 16040, 216 Street, Havana, Cuba
| | - Tays Hernandez
- Center
of Molecular Immunology, P.O. Box 16040, 216 Street, Havana, Cuba
| | | | - Raine Garrido
- Finlay
Vaccine Institute, 200
and 21 Street, Havana 11600, Cuba
| | - Guang-Wu Chen
- Chengdu
Olisynn Biotech. Co. Ltd. and State Key Laboratory of Biotherapy and
Cancer Center, West China Hospital, Sichuan
University, Chengdu 610041, People’s Republic of China
| | | | - Daniel G. Rivera
- Laboratory
of Synthetic and Biomolecular Chemistry, Faculty of Chemistry, University of Havana, Zapata & G, Havana 10400, Cuba
| | | |
Collapse
|
172
|
Pourrajab F. Targeting the glycans: A paradigm for host-targeted and COVID-19 drug design. J Cell Mol Med 2021; 25:5842-5856. [PMID: 34028178 PMCID: PMC8242448 DOI: 10.1111/jcmm.16585] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/12/2021] [Accepted: 04/19/2021] [Indexed: 12/28/2022] Open
Abstract
There is always a need for new approaches for the control of virus burdens caused by seasonal outbreaks, the emergence of novel viruses with pandemic potential and the development of resistance to current antiviral drugs. The outbreak of the 2019 novel coronavirus-disease COVID-19 represented a pandemic threat and declared a public health emergency of international concern. Herein, the role of glycans for the development of new drugs or vaccines, as a host-targeted approach, is discussed where may provide a front-line prophylactic or threats to protect against the current and any future respiratory-infecting virus and possibly against other respiratory pathogens. As a prototype, the role of glycans in the coronavirus infection, as well as, galectins (Gal) as the glycan-recognition agents (GRAs) in drug design are here summarized. Galectins, in particular, Gal-1 and Gal-3 are ubiquitous and important to biological systems, whose interactions with viral glycans modulate host immunity and homeostatic balance.
Collapse
Affiliation(s)
- Fatemeh Pourrajab
- Reproductive Immunology Research CenterShahid Sadoughi University of Medical SciencesYazdIran
- Nutrition and Food Security Research CenterShahid Sadoughi University of Medical SciencesYazdIran
- Biotechnology Research Center, International CampusShahid Sadoughi University of Medical SciencesYazdIran
| |
Collapse
|
173
|
Beeckmans S, Van Driessche E. Scrutinizing Coronaviruses Using Publicly Available Bioinformatic Tools: The Viral Structural Proteins as a Case Study. Front Mol Biosci 2021; 8:671923. [PMID: 34109214 PMCID: PMC8181738 DOI: 10.3389/fmolb.2021.671923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/15/2021] [Indexed: 01/18/2023] Open
Abstract
Since early 2020, the world suffers from a new beta-coronavirus, called SARS-CoV-2, that has devastating effects globally due to its associated disease, Covid-19. Until today, Covid-19, which not only causes life-threatening lung infections but also impairs various other organs and tissues, has killed hundreds of thousands of people and caused irreparable damage to many others. Since the very onset of the pandemic, huge efforts were made worldwide to fully understand this virus and numerous studies were, and still are, published. Many of these deal with structural analyses of the viral spike glycoprotein and with vaccine development, antibodies and antiviral molecules or immunomodulators that are assumed to become essential tools in the struggle against the virus. This paper summarizes knowledge on the properties of the four structural proteins (spike protein S, membrane protein M, envelope protein E and nucleocapsid protein N) of the SARS-CoV-2 virus and its relatives, SARS-CoV and MERS-CoV, that emerged few years earlier. Moreover, attention is paid to ways to analyze such proteins using freely available bioinformatic tools and, more importantly, to bring these proteins alive by looking at them on a computer/laptop screen with the easy-to-use but highly performant and interactive molecular graphics program DeepView. It is hoped that this paper will stimulate non-bioinformaticians and non-specialists in structural biology to scrutinize these and other macromolecules and as such will contribute to establishing procedures to fight these and maybe other forthcoming viruses.
Collapse
Affiliation(s)
- Sonia Beeckmans
- Research Unit Protein Chemistry, Vrije Universiteit Brussel, Brussels, Belgium
| | | |
Collapse
|
174
|
Verkhivker GM, Agajanian S, Oztas DY, Gupta G. Comparative Perturbation-Based Modeling of the SARS-CoV-2 Spike Protein Binding with Host Receptor and Neutralizing Antibodies: Structurally Adaptable Allosteric Communication Hotspots Define Spike Sites Targeted by Global Circulating Mutations. Biochemistry 2021; 60:1459-1484. [PMID: 33900725 PMCID: PMC8098775 DOI: 10.1021/acs.biochem.1c00139] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/12/2021] [Indexed: 12/11/2022]
Abstract
In this study, we used an integrative computational approach to examine molecular mechanisms and determine functional signatures underlying the role of functional residues in the SARS-CoV-2 spike protein that are targeted by novel mutational variants and antibody-escaping mutations. Atomistic simulations and functional dynamics analysis are combined with alanine scanning and mutational sensitivity profiling of the SARS-CoV-2 spike protein complexes with the ACE2 host receptor and the REGN-COV2 antibody cocktail(REG10987+REG10933). Using alanine scanning and mutational sensitivity analysis, we have shown that K417, E484, and N501 residues correspond to key interacting centers with a significant degree of structural and energetic plasticity that allow mutants in these positions to afford the improved binding affinity with ACE2. Through perturbation-based network modeling and community analysis of the SARS-CoV-2 spike protein complexes with ACE2, we demonstrate that E406, N439, K417, and N501 residues serve as effector centers of allosteric interactions and anchor major intermolecular communities that mediate long-range communication in the complexes. The results provide support to a model according to which mutational variants and antibody-escaping mutations constrained by the requirements for host receptor binding and preservation of stability may preferentially select structurally plastic and energetically adaptable allosteric centers to differentially modulate collective motions and allosteric interactions in the complexes with the ACE2 enzyme and REGN-COV2 antibody combination. This study suggests that the SARS-CoV-2 spike protein may function as a versatile and functionally adaptable allosteric machine that exploits the plasticity of allosteric regulatory centers to fine-tune response to antibody binding without compromising the activity of the spike protein.
Collapse
Affiliation(s)
- Gennady M. Verkhivker
- Keck Center for Science and Engineering, Schmid
College of Science and Technology, Chapman University, One
University Drive, Orange, California 92866, United States
- Depatment of Biomedical and Pharmaceutical Sciences,
Chapman University School of Pharmacy, Irvine, California
92618, United States
| | - Steve Agajanian
- Keck Center for Science and Engineering, Schmid
College of Science and Technology, Chapman University, One
University Drive, Orange, California 92866, United States
| | - Deniz Yazar Oztas
- Keck Center for Science and Engineering, Schmid
College of Science and Technology, Chapman University, One
University Drive, Orange, California 92866, United States
| | - Grace Gupta
- Keck Center for Science and Engineering, Schmid
College of Science and Technology, Chapman University, One
University Drive, Orange, California 92866, United States
| |
Collapse
|
175
|
Verkhivker GM, Di Paola L. Integrated Biophysical Modeling of the SARS-CoV-2 Spike Protein Binding and Allosteric Interactions with Antibodies. J Phys Chem B 2021; 125:4596-4619. [PMID: 33929853 PMCID: PMC8098774 DOI: 10.1021/acs.jpcb.1c00395] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/16/2021] [Indexed: 02/07/2023]
Abstract
Structural and biochemical studies of the severe acute respiratory syndrome (SARS)-CoV-2 spike glycoproteins and complexes with highly potent antibodies have revealed multiple conformation-dependent epitopes highlighting conformational plasticity of spike proteins and capacity for eliciting specific binding and broad neutralization responses. In this study, we used coevolutionary analysis, molecular simulations, and perturbation-based hierarchical network modeling of the SARS-CoV-2 spike protein complexes with a panel of antibodies targeting distinct epitopes to explore molecular mechanisms underlying binding-induced modulation of dynamics and allosteric signaling in the spike proteins. Through coevolutionary analysis of the SARS-CoV-2 spike proteins, we identified highly coevolving hotspots and functional clusters that enable a functional cross-talk between distant allosteric regions in the SARS-CoV-2 spike complexes with antibodies. Coarse-grained and all-atom molecular dynamics simulations combined with mutational sensitivity mapping and perturbation-based profiling of the SARS-CoV-2 receptor-binding domain (RBD) complexes with CR3022 and CB6 antibodies enabled a detailed validation of the proposed approach and an extensive quantitative comparison with the experimental structural and deep mutagenesis scanning data. By combining in silico mutational scanning, perturbation-based modeling, and network analysis of the SARS-CoV-2 spike trimer complexes with H014, S309, S2M11, and S2E12 antibodies, we demonstrated that antibodies can incur specific and functionally relevant changes by modulating allosteric propensities and collective dynamics of the SARS-CoV-2 spike proteins. The results provide a novel insight into regulatory mechanisms of SARS-CoV-2 S proteins showing that antibody-escaping mutations can preferentially target structurally adaptable energy hotspots and allosteric effector centers that control functional movements and allosteric communication in the complexes.
Collapse
Affiliation(s)
- Gennady M. Verkhivker
- Keck Center for Science and Engineering, Schmid
College of Science and Technology, Chapman University, One
University Drive, Orange, California 92866, United States
- Department of Biomedical and Pharmaceutical Sciences,
Chapman University School of Pharmacy, Irvine, California
92618, United States
| | - Luisa Di Paola
- Unit of Chemical-Physics Fundamentals in Chemical
Engineering, Department of Engineering, Università Campus Bio-Medico
di Roma, via Álvaro del Portillo 21, 00128 Rome,
Italy
| |
Collapse
|
176
|
Miotto M, Di Rienzo L, Gosti G, Milanetti E, Ruocco G. Does blood type affect the COVID-19 infection pattern? PLoS One 2021; 16:e0251535. [PMID: 33984040 PMCID: PMC8118288 DOI: 10.1371/journal.pone.0251535] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 04/18/2021] [Indexed: 12/13/2022] Open
Abstract
Among the many aspects that characterize the COVID-19 pandemic, two seem particularly challenging to understand: i) the great geographical differences in the degree of virus contagiousness and lethality that were found in the different phases of the epidemic progression, and, ii) the potential role of the infected people's blood type in both the virus infectivity and the progression of the disease. A recent hypothesis could shed some light on both aspects. Specifically, it has been proposed that, in the subject-to-subject transfer, SARS-CoV-2 conserves on its capsid the erythrocytes' antigens of the source subject. Thus these conserved antigens can potentially cause an immune reaction in a receiving subject that has previously acquired specific antibodies for the source subject antigens. This hypothesis implies a blood type-dependent infection rate. The strong geographical dependence of the blood type distribution could be, therefore, one of the factors at the origin of the observed heterogeneity in the epidemics spread. Here, we present an epidemiological deterministic model where the infection rules based on blood types are taken into account, and we compare our model outcomes with the exiting worldwide infection progression data. We found an overall good agreement, which strengthens the hypothesis that blood types do play a role in the COVID-19 infection.
Collapse
Affiliation(s)
- Mattia Miotto
- Department of Physics, Sapienza University, Rome, Italy
- Center for Life Nano & Neuroscience, Istituto Italiano di Tecnologia, Rome, Italy
| | - Lorenzo Di Rienzo
- Center for Life Nano & Neuroscience, Istituto Italiano di Tecnologia, Rome, Italy
| | - Giorgio Gosti
- Center for Life Nano & Neuroscience, Istituto Italiano di Tecnologia, Rome, Italy
| | - Edoardo Milanetti
- Department of Physics, Sapienza University, Rome, Italy
- Center for Life Nano & Neuroscience, Istituto Italiano di Tecnologia, Rome, Italy
| | - Giancarlo Ruocco
- Department of Physics, Sapienza University, Rome, Italy
- Center for Life Nano & Neuroscience, Istituto Italiano di Tecnologia, Rome, Italy
| |
Collapse
|
177
|
Umashankar V, Deshpande SH, Hegde HV, Singh I, Chattopadhyay D. Phytochemical Moieties From Indian Traditional Medicine for Targeting Dual Hotspots on SARS-CoV-2 Spike Protein: An Integrative in-silico Approach. Front Med (Lausanne) 2021; 8:672629. [PMID: 34026798 PMCID: PMC8137902 DOI: 10.3389/fmed.2021.672629] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 03/31/2021] [Indexed: 12/21/2022] Open
Abstract
SARS-CoV-2 infection across the world has led to immense turbulence in the treatment modality, thus demanding a swift drug discovery process. Spike protein of SARS-CoV-2 binds to ACE2 receptor of human to initiate host invasion. Plethora of studies demonstrate the inhibition of Spike-ACE2 interactions to impair infection. The ancient Indian traditional medicine has been of great interest of Virologists worldwide to decipher potential antivirals. Hence, in this study, phytochemicals (1,952 compounds) from eight potential medicinal plants used in Indian traditional medicine were meticulously collated, based on their usage in respiratory disorders, along with immunomodulatory and anti-viral potential from contemporary literature. Further, these compounds were virtually screened against Receptor Binding Domain (RBD) of Spike protein. The potential compounds from each plant were prioritized based on the binding affinity, key hotspot interactions at ACE2 binding region and glycosylation sites. Finally, the potential hits in complex with spike protein were subjected to Molecular Dynamics simulation (450 ns), to infer the stability of complex formation. Among the compounds screened, Tellimagrandin-II (binding energy of −8.2 kcal/mol and binding free energy of −32.08 kcal/mol) from Syzygium aromaticum L. and O-Demethyl-demethoxy-curcumin (binding energy of −8.0 kcal/mol and binding free energy of −12.48 kcal/mol) from Curcuma longa L. were found to be highly potential due to their higher binding affinity and significant binding free energy (MM-PBSA), along with favorable ADMET properties and stable intermolecular interactions with hotspots (including the ASN343 glycosylation site). The proposed hits are highly promising, as these are resultant of stringent in silico checkpoints, traditionally used, and are documented through contemporary literature. Hence, could serve as promising leads for subsequent experimental validations.
Collapse
Affiliation(s)
- V Umashankar
- ICMR-National Institute of Traditional Medicine, Indian Council of Medical Research, Department of Health Research (Government of India), Belagavi, India
| | - Sanjay H Deshpande
- ICMR-National Institute of Traditional Medicine, Indian Council of Medical Research, Department of Health Research (Government of India), Belagavi, India
| | - Harsha V Hegde
- ICMR-National Institute of Traditional Medicine, Indian Council of Medical Research, Department of Health Research (Government of India), Belagavi, India
| | - Ishwar Singh
- ICMR-National Institute of Traditional Medicine, Indian Council of Medical Research, Department of Health Research (Government of India), Belagavi, India
| | - Debprasad Chattopadhyay
- ICMR-National Institute of Traditional Medicine, Indian Council of Medical Research, Department of Health Research (Government of India), Belagavi, India
| |
Collapse
|
178
|
Gleinich AS, Pepi LE, Shajahan A, Heiss C, Azadi P. Vaccines and Therapeutics for COVID-19 - How Can Understanding SARS-CoV-2 Glycosylation Lead to Pharmaceutical Advances? AMERICAN PHARMACEUTICAL REVIEW 2021; 24:14-21. [PMID: 38099300 PMCID: PMC10721230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
The COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has infected more than 160 million people worldwide. Researchers have targeted the SARS-CoV-2 structural proteins to better combat the pandemic. Of the four structural proteins, spike (S), membrane (M), envelope (E) and nucleocapsid (N), the S, M and E proteins are glycosylated whereas the N protein is phosphorylated. The glycosylation of the S protein has been reported previously by multiple research groups, and this knowledge has assisted the pharmaceutical industry in developing vaccines and treatment options. In the United States, there are currently three approved COVID-19 vaccines. All three of these vaccines use the S protein to teach host cells how to react when SARS-CoV-2 particles are present. Treatment options utilizing antivirals and immunosuppressants are being developed in addition to vaccines. Different treatment approaches are needed based on the severity of COVID-19 infection. The therapeutic options currently available are not derived through the direct knowledge on SARS-CoV-2 glycosylation. However, more research on the glycosylation of the structural proteins and how this effects SARS-CoV-2 and host cell binding could lead to new and more effective therapeutics. Herein we outline the current vaccine and therapeutic options against COVID-19 available to the public, as well as those still in development.
Collapse
Affiliation(s)
- Anne S Gleinich
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA
| | - Lauren E Pepi
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA
| | - Asif Shajahan
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA
| | - Christian Heiss
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA
| |
Collapse
|
179
|
Thépaut M, Luczkowiak J, Vivès C, Labiod N, Bally I, Lasala F, Grimoire Y, Fenel D, Sattin S, Thielens N, Schoehn G, Bernardi A, Delgado R, Fieschi F. DC/L-SIGN recognition of spike glycoprotein promotes SARS-CoV-2 trans-infection and can be inhibited by a glycomimetic antagonist. PLoS Pathog 2021; 17:e1009576. [PMID: 34015061 PMCID: PMC8136665 DOI: 10.1371/journal.ppat.1009576] [Citation(s) in RCA: 124] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 04/20/2021] [Indexed: 12/26/2022] Open
Abstract
The efficient spread of SARS-CoV-2 resulted in a unique pandemic in modern history. Despite early identification of ACE2 as the receptor for viral spike protein, much remains to be understood about the molecular events behind viral dissemination. We evaluated the contribution of C-type lectin receptors (CLRS) of antigen-presenting cells, widely present in respiratory mucosa and lung tissue. DC-SIGN, L-SIGN, Langerin and MGL bind to diverse glycans of the spike using multiple interaction areas. Using pseudovirus and cells derived from monocytes or T-lymphocytes, we demonstrate that while virus capture by the CLRs examined does not allow direct cell infection, DC/L-SIGN, among these receptors, promote virus transfer to permissive ACE2+ Vero E6 cells. A glycomimetic compound designed against DC-SIGN, enable inhibition of this process. These data have been then confirmed using authentic SARS-CoV-2 virus and human respiratory cell lines. Thus, we described a mechanism potentiating viral spreading of infection.
Collapse
Affiliation(s)
- Michel Thépaut
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, Grenoble, France
| | - Joanna Luczkowiak
- Instituto de Investigación Hospital Universitario 12 de Octubre (imas12), Universidad Complutense School of Medicine, Madrid, Spain
| | - Corinne Vivès
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, Grenoble, France
| | - Nuria Labiod
- Instituto de Investigación Hospital Universitario 12 de Octubre (imas12), Universidad Complutense School of Medicine, Madrid, Spain
| | - Isabelle Bally
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, Grenoble, France
| | - Fátima Lasala
- Instituto de Investigación Hospital Universitario 12 de Octubre (imas12), Universidad Complutense School of Medicine, Madrid, Spain
| | - Yasmina Grimoire
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, Grenoble, France
| | - Daphna Fenel
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, Grenoble, France
| | - Sara Sattin
- Universita`degli Studi di Milano, Dipartimento di Chimica, Milano, Italy
| | - Nicole Thielens
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, Grenoble, France
| | - Guy Schoehn
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, Grenoble, France
| | - Anna Bernardi
- Universita`degli Studi di Milano, Dipartimento di Chimica, Milano, Italy
| | - Rafael Delgado
- Instituto de Investigación Hospital Universitario 12 de Octubre (imas12), Universidad Complutense School of Medicine, Madrid, Spain
| | - Franck Fieschi
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, Grenoble, France
| |
Collapse
|
180
|
Watanabe Y, Mendonça L, Allen ER, Howe A, Lee M, Allen JD, Chawla H, Pulido D, Donnellan F, Davies H, Ulaszewska M, Belij-Rammerstorfer S, Morris S, Krebs AS, Dejnirattisai W, Mongkolsapaya J, Supasa P, Screaton GR, Green CM, Lambe T, Zhang P, Gilbert SC, Crispin M. Native-like SARS-CoV-2 Spike Glycoprotein Expressed by ChAdOx1 nCoV-19/AZD1222 Vaccine. ACS CENTRAL SCIENCE 2021; 7:594-602. [PMID: 34056089 PMCID: PMC8043200 DOI: 10.1021/acscentsci.1c00080] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Indexed: 05/08/2023]
Abstract
Vaccine development against the SARS-CoV-2 virus focuses on the principal target of the neutralizing immune response, the spike (S) glycoprotein. Adenovirus-vectored vaccines offer an effective platform for the delivery of viral antigen, but it is important for the generation of neutralizing antibodies that they produce appropriately processed and assembled viral antigen that mimics that observed on the SARS-CoV-2 virus. Here, we describe the structure, conformation, and glycosylation of the S protein derived from the adenovirus-vectored ChAdOx1 nCoV-19/AZD1222 vaccine. We demonstrate native-like post-translational processing and assembly, and reveal the expression of S proteins on the surface of cells adopting the trimeric prefusion conformation. The data presented here confirm the use of ChAdOx1 adenovirus vectors as a leading platform technology for SARS-CoV-2 vaccines.
Collapse
Affiliation(s)
- Yasunori Watanabe
- School
of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, U.K.
- Oxford
Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, U.K.
| | - Luiza Mendonça
- Division
of Structural Biology, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, U.K.
| | - Elizabeth R. Allen
- The
Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, U.K.
| | - Andrew Howe
- Electron
Bio-imaging Centre, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, U.K.
| | - Mercede Lee
- The
Wellcome Centre for Human Genetics, University
of Oxford, Roosevelt Drive, Oxford OX3 7BN, U.K.
| | - Joel D. Allen
- School
of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, U.K.
| | - Himanshi Chawla
- School
of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, U.K.
| | - David Pulido
- The
Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, U.K.
| | - Francesca Donnellan
- The
Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, U.K.
| | - Hannah Davies
- The
Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, U.K.
| | - Marta Ulaszewska
- The
Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, U.K.
| | - Sandra Belij-Rammerstorfer
- The
Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, U.K.
- NIHR Oxford
Biomedical Research Centre, Oxford, U.K.
| | - Susan Morris
- The
Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, U.K.
| | - Anna-Sophia Krebs
- Division
of Structural Biology, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, U.K.
| | - Wanwisa Dejnirattisai
- The
Wellcome Centre for Human Genetics, University
of Oxford, Roosevelt Drive, Oxford OX3 7BN, U.K.
| | - Juthathip Mongkolsapaya
- The
Wellcome Centre for Human Genetics, University
of Oxford, Roosevelt Drive, Oxford OX3 7BN, U.K.
- Dengue
Hemorrhagic Fever Research Unit, Office for Research and Development,
Faculty of Medicine, Siriraj Hospital, Mahidol
University, Bangkok, Thailand
- Chinese
Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, U.K.
| | - Piyada Supasa
- The
Wellcome Centre for Human Genetics, University
of Oxford, Roosevelt Drive, Oxford OX3 7BN, U.K.
| | - Gavin R. Screaton
- The
Wellcome Centre for Human Genetics, University
of Oxford, Roosevelt Drive, Oxford OX3 7BN, U.K.
- Division
of Medical Sciences, John Radcliffe Hospital, University of Oxford, Oxford, U.K.
| | - Catherine M. Green
- The
Wellcome Centre for Human Genetics, University
of Oxford, Roosevelt Drive, Oxford OX3 7BN, U.K.
| | - Teresa Lambe
- The
Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, U.K.
- NIHR Oxford
Biomedical Research Centre, Oxford, U.K.
| | - Peijun Zhang
- Division
of Structural Biology, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, U.K.
- Electron
Bio-imaging Centre, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, U.K.
| | - Sarah C. Gilbert
- The
Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, U.K.
- NIHR Oxford
Biomedical Research Centre, Oxford, U.K.
| | - Max Crispin
- School
of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, U.K.
| |
Collapse
|
181
|
Guo S, Liu K, Zheng J. The Genetic Variant of SARS-CoV-2: would It Matter for Controlling the Devastating Pandemic? Int J Biol Sci 2021; 17:1476-1485. [PMID: 33907511 PMCID: PMC8071763 DOI: 10.7150/ijbs.59137] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 03/12/2021] [Indexed: 02/06/2023] Open
Abstract
The pandemic of COVID-19, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is far from being controlled despite the great effort that have been taken throughout the world. Herd immunity through vaccination is our major expectation to rein the virus. However, the emergence of widespread genetic variants could potentially undermine the vaccines. The evidence that some variants could evade immune responses elicited by vaccines and previous infection is growing. In this review, we summarized the current understanding on five notable genetic variants, i.e., D614G, Cluster 5, VOC 202012/01, 501Y.V2 and P.1, and discussed the potential impact of these variants on the virus transmission, pathogenesis and vaccine efficacy. We also highlight that mutations in the N-terminal domain of spike protein should be considered when evaluating the antibody neutralization abilities. Among these genetic variants, a concern of genetic variant 501Y.V2 to escape the protection by vaccines was raised. We therefore call for new vaccines targeting this variant to be developed.
Collapse
Affiliation(s)
- Shuxin Guo
- Faculty of Health Sciences, University of Macau, Macau SAR, China
- Chinese Academy of Sciences Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, 100101 Beijing, China
| | - Kefang Liu
- Chinese Academy of Sciences Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, 100101 Beijing, China
| | - Jun Zheng
- Faculty of Health Sciences, University of Macau, Macau SAR, China
- Institute of Translational Medicine, University of Macau, Macau SAR, China
| |
Collapse
|
182
|
Ye F, Zhao J, Xu P, Liu X, Yu J, Shangguan W, Liu J, Luo X, Li C, Ying T, Wang J, Yu B, Wang P. Synthetic Homogeneous Glycoforms of the SARS-CoV-2 Spike Receptor-Binding Domain Reveals Different Binding Profiles of Monoclonal Antibodies. Angew Chem Int Ed Engl 2021; 60:12904-12910. [PMID: 33709491 PMCID: PMC8251112 DOI: 10.1002/anie.202100543] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/23/2021] [Indexed: 12/16/2022]
Abstract
SARS‐CoV‐2 attaches to its host receptor, angiotensin‐converting enzyme 2 (ACE2), via the receptor‐binding domain (RBD) of the spike protein. The RBD glycoprotein is a critical target for the development of neutralizing antibodies and vaccines against SARS‐CoV‐2. However, the high heterogeneity of RBD glycoforms may lead to an incomplete neutralization effect and impact the immunogenic integrity of RBD‐based vaccines. Investigating the role of different carbohydrate domains is of paramount importance. Unfortunately, there is no viable method for preparing RBD glycoproteins with structurally defined glycans. Herein we describe a highly efficient and scalable strategy for the preparation of six glycosylated RBDs bearing defined structure glycoforms at T323, N331, and N343. A combination of modern oligosaccharide, peptide synthesis and recombinant protein engineering provides a robust route to decipher carbohydrate structure‐function relationships.
Collapse
Affiliation(s)
- Farong Ye
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jie Zhao
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Peng Xu
- State Key Laboratory of Bioorganic and Natural Product Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Xinliang Liu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jing Yu
- State Key Laboratory of Bioorganic and Natural Product Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Wei Shangguan
- State Key Laboratory of Bioorganic and Natural Product Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Jiazhi Liu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaosheng Luo
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Cheng Li
- Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Tianlei Ying
- Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Jing Wang
- State Key Laboratory of Bioorganic and Natural Product Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China.,Institutes for Life Sciences, School of Medicine and National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangdong, 510006, China
| | - Biao Yu
- State Key Laboratory of Bioorganic and Natural Product Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Ping Wang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China.,Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
183
|
Sikora M, von Bülow S, Blanc FEC, Gecht M, Covino R, Hummer G. Computational epitope map of SARS-CoV-2 spike protein. PLoS Comput Biol 2021; 17:e1008790. [PMID: 33793546 PMCID: PMC8016105 DOI: 10.1371/journal.pcbi.1008790] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 02/14/2021] [Indexed: 12/23/2022] Open
Abstract
The primary immunological target of COVID-19 vaccines is the SARS-CoV-2 spike (S) protein. S is exposed on the viral surface and mediates viral entry into the host cell. To identify possible antibody binding sites, we performed multi-microsecond molecular dynamics simulations of a 4.1 million atom system containing a patch of viral membrane with four full-length, fully glycosylated and palmitoylated S proteins. By mapping steric accessibility, structural rigidity, sequence conservation, and generic antibody binding signatures, we recover known epitopes on S and reveal promising epitope candidates for structure-based vaccine design. We find that the extensive and inherently flexible glycan coat shields a surface area larger than expected from static structures, highlighting the importance of structural dynamics. The protective glycan shield and the high flexibility of its hinges give the stalk overall low epitope scores. Our computational epitope-mapping procedure is general and should thus prove useful for other viral envelope proteins whose structures have been characterized.
Collapse
Affiliation(s)
- Mateusz Sikora
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
- Faculty of Physics, University of Vienna, Vienna, Austria
| | - Sören von Bülow
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Florian E. C. Blanc
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Michael Gecht
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Roberto Covino
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
- Frankfurt Institute for Advanced Studies, Frankfurt am Main, Germany
| | - Gerhard Hummer
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
- Institute of Biophysics, Goethe University Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
184
|
Kellman BP, Lewis NE. Big-Data Glycomics: Tools to Connect Glycan Biosynthesis to Extracellular Communication. Trends Biochem Sci 2021; 46:284-300. [PMID: 33349503 PMCID: PMC7954846 DOI: 10.1016/j.tibs.2020.10.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 10/05/2020] [Accepted: 10/22/2020] [Indexed: 12/12/2022]
Abstract
Characteristically, cells must sense and respond to environmental cues. Despite the importance of cell-cell communication, our understanding remains limited and often lacks glycans. Glycans decorate proteins and cell membranes at the cell-environment interface, and modulate intercellular communication, from development to pathogenesis. Providing further challenges, glycan biosynthesis and cellular behavior are co-regulating systems. Here, we discuss how glycosylation contributes to extracellular responses and signaling. We further organize approaches for disentangling the roles of glycans in multicellular interactions using newly available datasets and tools, including glycan biosynthesis models, omics datasets, and systems-level analyses. Thus, emerging tools in big data analytics and systems biology are facilitating novel insights on glycans and their relationship with multicellular behavior.
Collapse
Affiliation(s)
- Benjamin P Kellman
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, CA, USA; Department of Bioengineering, University of California San Diego School of Medicine, La Jolla, CA, USA; Bioinformatics and Systems Biology Program, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Nathan E Lewis
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, CA, USA; Department of Bioengineering, University of California San Diego School of Medicine, La Jolla, CA, USA; Bioinformatics and Systems Biology Program, University of California San Diego School of Medicine, La Jolla, CA, USA; Novo Nordisk Foundation Center for Biosustainability at the University of California San Diego School of Medicine, La Jolla, CA, USA.
| |
Collapse
|
185
|
Allen JD, Chawla H, Samsudin F, Zuzic L, Shivgan AT, Watanabe Y, He WT, Callaghan S, Song G, Yong P, Brouwer PJM, Song Y, Cai Y, Duyvesteyn HME, Malinauskas T, Kint J, Pino P, Wurm MJ, Frank M, Chen B, Stuart DI, Sanders RW, Andrabi R, Burton DR, Li S, Bond PJ, Crispin M. Site-specific steric control of SARS-CoV-2 spike glycosylation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.03.08.433764. [PMID: 33758835 PMCID: PMC7986994 DOI: 10.1101/2021.03.08.433764] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
A central tenet in the design of vaccines is the display of native-like antigens in the elicitation of protective immunity. The abundance of N-linked glycans across the SARS-CoV-2 spike protein is a potential source of heterogeneity between the many different vaccine candidates under investigation. Here, we investigate the glycosylation of recombinant SARS-CoV-2 spike proteins from five different laboratories and compare them against infectious virus S protein. We find patterns which are conserved across all samples and this can be associated with site-specific stalling of glycan maturation which act as a highly sensitive reporter of protein structure. Molecular dynamics (MD) simulations of a fully glycosylated spike support s a model of steric restrictions that shape enzymatic processing of the glycans. These results suggest that recombinant spike-based SARS-CoV-2 immunogen glycosylation reproducibly recapitulates signatures of viral glycosylation.
Collapse
|
186
|
Exploring dynamics and network analysis of spike glycoprotein of SARS-COV-2. Biophys J 2021; 120:2902-2913. [PMID: 33705760 PMCID: PMC7939993 DOI: 10.1016/j.bpj.2021.02.047] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 02/10/2021] [Accepted: 02/24/2021] [Indexed: 12/22/2022] Open
Abstract
The ongoing pandemic caused by severe acute respiratory syndrome coronavirus 2 continues to rage with devastating consequences on human health and global economy. The spike glycoprotein on the surface of coronavirus mediates its entry into host cells and is the target of all current antibody design efforts to neutralize the virus. The glycan shield of the spike helps the virus to evade the human immune response by providing a thick sugar-coated barrier against any antibody. To study the dynamic motion of glycans in the spike protein, we performed microsecond-long molecular dynamics simulation in two different states that correspond to the receptor binding domain in open or closed conformations. Analysis of this microsecond-long simulation revealed a scissoring motion on the N-terminal domain of neighboring monomers in the spike trimer. The roles of multiple glycans in shielding of spike protein in different regions were uncovered by a network analysis, in which the high betweenness centrality of glycans at the apex revealed their importance and function in the glycan shield. Microdomains of glycans were identified featuring a high degree of intracommunication in these microdomains. An antibody overlap analysis revealed the glycan microdomains as well as individual glycans that inhibit access to the antibody epitopes on the spike protein. Overall, the results of this study provide detailed understanding of the spike glycan shield, which may be utilized for therapeutic efforts against this crisis.
Collapse
|
187
|
Lee CCD, Watanabe Y, Wu NC, Han J, Kumar S, Pholcharee T, Seabright GE, Allen JD, Lin CW, Yang JR, Liu MT, Wu CY, Ward AB, Crispin M, Wilson IA. A cross-neutralizing antibody between HIV-1 and influenza virus. PLoS Pathog 2021; 17:e1009407. [PMID: 33750987 PMCID: PMC8016226 DOI: 10.1371/journal.ppat.1009407] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 04/01/2021] [Accepted: 02/17/2021] [Indexed: 11/19/2022] Open
Abstract
Incessant antigenic evolution enables the persistence and spread of influenza virus in the human population. As the principal target of the immune response, the hemagglutinin (HA) surface antigen on influenza viruses continuously acquires and replaces N-linked glycosylation sites to shield immunogenic protein epitopes using host-derived glycans. Anti-glycan antibodies, such as 2G12, target the HIV-1 envelope protein (Env), which is even more extensively glycosylated and contains under-processed oligomannose-type clusters on its dense glycan shield. Here, we illustrate that 2G12 can also neutralize human seasonal influenza A H3N2 viruses that have evolved to present similar oligomannose-type clusters on their HAs from around 20 years after the 1968 pandemic. Using structural biology and mass spectrometric approaches, we find that two N-glycosylation sites close to the receptor binding site (RBS) on influenza hemagglutinin represent the oligomannose cluster recognized by 2G12. One of these glycan sites is highly conserved in all human H3N2 strains and the other emerged during virus evolution. These two N-glycosylation sites have also become crucial for fitness of recent H3N2 strains. These findings shed light on the evolution of the glycan shield on influenza virus and suggest 2G12-like antibodies can potentially act as broad neutralizers to target human enveloped viruses.
Collapse
Affiliation(s)
- Chang-Chun D. Lee
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Yasunori Watanabe
- School of Biological Sciences, University of Southampton, Southampton, England, United Kingdom
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford, England, United Kingdom
- Division of Structural Biology, University of Oxford, Wellcome Centre for Human Genetics, Oxford, England, United Kingdom
| | - Nicholas C. Wu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Julianna Han
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Sonu Kumar
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Tossapol Pholcharee
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Gemma E. Seabright
- School of Biological Sciences, University of Southampton, Southampton, England, United Kingdom
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford, England, United Kingdom
| | - Joel D. Allen
- School of Biological Sciences, University of Southampton, Southampton, England, United Kingdom
| | - Chih-Wei Lin
- Department of Chemistry, The Scripps Research Institute, La Jolla, California, United States of America
| | - Ji-Rong Yang
- Centers for Disease Control, Taipei City, Taiwan
| | | | - Chung-Yi Wu
- Genomics Research Center, Academia Sinica, Taipei City, Taiwan
| | - Andrew B. Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton, England, United Kingdom
| | - Ian A. Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California, United States of America
| |
Collapse
|
188
|
Komiyama M. Molecular-level Anatomy of SARS-CoV-2 for the Battle against COVID-19 Pandemic. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210030] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
189
|
Allen JD, Watanabe Y, Chawla H, Newby ML, Crispin M. Subtle Influence of ACE2 Glycan Processing on SARS-CoV-2 Recognition. J Mol Biol 2021; 433:166762. [PMID: 33340519 PMCID: PMC7744274 DOI: 10.1016/j.jmb.2020.166762] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 11/03/2020] [Accepted: 12/11/2020] [Indexed: 02/08/2023]
Abstract
The severity of SARS-CoV-2 infection is highly variable and yet the molecular basis for this effect remains elusive. One potential contribution are differences in the glycosylation of target human cells, particularly as SARS-CoV-2 has the capacity to bind sialic acid which is a common, and highly variable, terminal modification of glycans. The viral spike glycoprotein (S) of SARS-CoV-2 and the human cellular receptor, angiotensin-converting enzyme 2 (ACE2) are both densely glycosylated. We therefore sought to investigate whether the glycosylation state of ACE2 impacts the interaction with SARS-CoV-2 viral spike. We generated a panel of engineered ACE2 glycoforms which were analyzed by mass spectrometry to reveal the site-specific glycan modifications. We then probed the impact of ACE2 glycosylation on S binding and revealed a subtle sensitivity with hypersialylated or oligomannose-type glycans slightly impeding the interaction. In contrast, deglycosylation of ACE2 did not influence SARS-CoV-2 binding. Overall, ACE2 glycosylation does not significantly influence viral spike binding. We suggest that any role of glycosylation in the pathobiology of SARS-CoV-2 will lie beyond its immediate impact of receptor glycosylation on virus binding.
Collapse
Affiliation(s)
- Joel D Allen
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Yasunori Watanabe
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK; Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK; Division of Structural Biology, University of Oxford, Wellcome Centre for Human Genetics, Oxford OX3 7BN, UK
| | - Himanshi Chawla
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Maddy L Newby
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK.
| |
Collapse
|
190
|
Re S, Mizuguchi K. Glycan Cluster Shielding and Antibody Epitopes on Lassa Virus Envelop Protein. J Phys Chem B 2021; 125:2089-2097. [PMID: 33606939 DOI: 10.1021/acs.jpcb.0c11516] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
An understanding of how an antiviral monoclonal antibody recognizes its target is vital for the development of neutralizing antibodies and vaccines. The extensive glycosylation of viral proteins almost certainly affects the antibody response, but the investigation of such effects is hampered by the huge range of structures and interactions of surface glycans through their inherent complexity and flexibility. Here, we built an atomistic model of a fully glycosylated envelope protein complex of the Lassa virus and performed molecular dynamics simulations to characterize the impact of surface glycans on the antibody response. The simulations attested to the variety of conformations and interactions of surface glycans. The results show that glycosylation nonuniformly shields the surface of the complex and only marginally affects protein dynamics. The glycans gather in distinct clusters through interaction with protein residues, and only a few regions are left accessible by an antibody. We successfully recovered known protein epitopes by integrating the simulation results with existing sequence- and structure-based epitope prediction methods. The results emphasize the rich structural environment of glycans and demonstrate that shielding is not merely envelopment by a uniform blanket of sugars. This work provides a molecular basis for integrating otherwise elusive structural properties of glycans into vaccine and neutralizing antibody developments.
Collapse
Affiliation(s)
- Suyong Re
- Center for Drug Design Research, National Institutes of Biomedical Innovation, Health, and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan.,RIKEN Center for Biosystems Dynamics Research, Integrated Innovation Building 7F, 6-7-1 minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Kenji Mizuguchi
- Center for Drug Design Research, National Institutes of Biomedical Innovation, Health, and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan.,Artificial Intelligence Center for Health and Biomedical Research, National Institutes of Biomedical Innovation, Health, and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan.,Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
191
|
Brouwer PJM, Antanasijevic A, de Gast M, Allen JD, Bijl TPL, Yasmeen A, Ravichandran R, Burger JA, Ozorowski G, Torres JL, LaBranche C, Montefiori DC, Ringe RP, van Gils MJ, Moore JP, Klasse PJ, Crispin M, King NP, Ward AB, Sanders RW. Immunofocusing and enhancing autologous Tier-2 HIV-1 neutralization by displaying Env trimers on two-component protein nanoparticles. NPJ Vaccines 2021; 6:24. [PMID: 33563983 PMCID: PMC7873233 DOI: 10.1038/s41541-021-00285-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 01/07/2021] [Indexed: 01/09/2023] Open
Abstract
The HIV-1 envelope glycoprotein trimer is poorly immunogenic because it is covered by a dense glycan shield. As a result, recombinant Env glycoproteins generally elicit inadequate antibody levels that neutralize clinically relevant, neutralization-resistant (Tier-2) HIV-1 strains. Multivalent antigen presentation on nanoparticles is an established strategy to increase vaccine-driven immune responses. However, due to nanoparticle instability in vivo, the display of non-native Env structures, and the inaccessibility of many neutralizing antibody (NAb) epitopes, the effects of nanoparticle display are generally modest for Env trimers. Here, we generate two-component self-assembling protein nanoparticles presenting twenty SOSIP trimers of the clade C Tier-2 genotype 16055. We show in a rabbit immunization study that these nanoparticles induce 60-fold higher autologous Tier-2 NAb titers than the corresponding SOSIP trimers. Epitope mapping studies reveal that the presentation of 16055 SOSIP trimers on these nanoparticle focuses antibody responses to an immunodominant apical epitope. Thus, these nanoparticles are a promising platform to improve the immunogenicity of Env trimers with apex-proximate NAb epitopes.
Collapse
Affiliation(s)
- Philip J M Brouwer
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, Amsterdam, The Netherlands
| | - Aleksandar Antanasijevic
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Marlon de Gast
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, Amsterdam, The Netherlands
| | - Joel D Allen
- School of Biological Sciences, University of Southampton, Southampton, UK
| | - Tom P L Bijl
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, Amsterdam, The Netherlands
| | - Anila Yasmeen
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY, USA
| | - Rashmi Ravichandran
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Judith A Burger
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, Amsterdam, The Netherlands
| | - Gabriel Ozorowski
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Jonathan L Torres
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Celia LaBranche
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | | | - Rajesh P Ringe
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY, USA
- Institute of Microbial Technology, Chandigarh, India
| | - Marit J van Gils
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, Amsterdam, The Netherlands
| | - John P Moore
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY, USA
| | - Per Johan Klasse
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY, USA
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton, UK
| | - Neil P King
- Department of Biochemistry, University of Washington, Seattle, WA, USA.
- Institute for Protein Design, University of Washington, Seattle, WA, USA.
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA.
| | - Rogier W Sanders
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, Amsterdam, The Netherlands.
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY, USA.
| |
Collapse
|
192
|
Santopolo S, Riccio A, Santoro MG. The biogenesis of SARS-CoV-2 spike glycoprotein: multiple targets for host-directed antiviral therapy. Biochem Biophys Res Commun 2021; 538:80-87. [PMID: 33303190 PMCID: PMC7698684 DOI: 10.1016/j.bbrc.2020.10.080] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 10/28/2020] [Indexed: 12/15/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19 (coronavirus disease-19), represents a far more serious threat to public health than SARS and MERS coronaviruses, due to its ability to spread more efficiently than its predecessors. Currently, there is no worldwide-approved effective treatment for COVID-19, urging the scientific community to intense efforts to accelerate the discovery and development of prophylactic and therapeutic solutions against SARS-CoV-2 infection. In particular, effective antiviral drugs are urgently needed. With few exceptions, therapeutic approaches to combat viral infections have traditionally focused on targeting unique viral components or enzymes; however, it has now become evident that this strategy often fails due to the rapid emergence of drug-resistant viruses. Targeting host factors that are essential for the virus life cycle, but are dispensable for the host, has recently received increasing attention. The spike glycoprotein, a component of the viral envelope that decorates the virion surface as a distinctive crown ("corona") and is essential for SARS-CoV-2 entry into host cells, represents a key target for developing therapeutics capable of blocking virus invasion. This review highlights aspects of the SARS-CoV-2 spike biogenesis that may be amenable to host-directed antiviral targeting.
Collapse
Affiliation(s)
- Silvia Santopolo
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Anna Riccio
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - M Gabriella Santoro
- Department of Biology, University of Rome Tor Vergata, Rome, Italy; Institute of Translational Pharmacology, CNR, Rome, Italy.
| |
Collapse
|
193
|
Wong NA, Saier MH. The SARS-Coronavirus Infection Cycle: A Survey of Viral Membrane Proteins, Their Functional Interactions and Pathogenesis. Int J Mol Sci 2021; 22:1308. [PMID: 33525632 PMCID: PMC7865831 DOI: 10.3390/ijms22031308] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 02/07/2023] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is a novel epidemic strain of Betacoronavirus that is responsible for the current viral pandemic, coronavirus disease 2019 (COVID-19), a global health crisis. Other epidemic Betacoronaviruses include the 2003 SARS-CoV-1 and the 2009 Middle East Respiratory Syndrome Coronavirus (MERS-CoV), the genomes of which, particularly that of SARS-CoV-1, are similar to that of the 2019 SARS-CoV-2. In this extensive review, we document the most recent information on Coronavirus proteins, with emphasis on the membrane proteins in the Coronaviridae family. We include information on their structures, functions, and participation in pathogenesis. While the shared proteins among the different coronaviruses may vary in structure and function, they all seem to be multifunctional, a common theme interconnecting these viruses. Many transmembrane proteins encoded within the SARS-CoV-2 genome play important roles in the infection cycle while others have functions yet to be understood. We compare the various structural and nonstructural proteins within the Coronaviridae family to elucidate potential overlaps and parallels in function, focusing primarily on the transmembrane proteins and their influences on host membrane arrangements, secretory pathways, cellular growth inhibition, cell death and immune responses during the viral replication cycle. We also offer bioinformatic analyses of potential viroporin activities of the membrane proteins and their sequence similarities to the Envelope (E) protein. In the last major part of the review, we discuss complement, stimulation of inflammation, and immune evasion/suppression that leads to CoV-derived severe disease and mortality. The overall pathogenesis and disease progression of CoVs is put into perspective by indicating several stages in the resulting infection process in which both host and antiviral therapies could be targeted to block the viral cycle. Lastly, we discuss the development of adaptive immunity against various structural proteins, indicating specific vulnerable regions in the proteins. We discuss current CoV vaccine development approaches with purified proteins, attenuated viruses and DNA vaccines.
Collapse
Affiliation(s)
- Nicholas A. Wong
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, USA
| | - Milton H. Saier
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, USA
| |
Collapse
|
194
|
Verkhivker GM, Di Paola L. Dynamic Network Modeling of Allosteric Interactions and Communication Pathways in the SARS-CoV-2 Spike Trimer Mutants: Differential Modulation of Conformational Landscapes and Signal Transmission via Cascades of Regulatory Switches. J Phys Chem B 2021; 125:850-873. [PMID: 33448856 PMCID: PMC7839160 DOI: 10.1021/acs.jpcb.0c10637] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/08/2021] [Indexed: 12/13/2022]
Abstract
The rapidly growing body of structural and biochemical studies of the SARS-CoV-2 spike glycoprotein has revealed a variety of distinct functional states with radically different arrangements of the receptor-binding domain, highlighting a remarkable function-driven conformational plasticity and adaptability of the spike proteins. In this study, we examined molecular mechanisms underlying conformational and dynamic changes in the SARS-CoV-2 spike mutant trimers through the lens of dynamic analysis of allosteric interaction networks and atomistic modeling of signal transmission. Using an integrated approach that combined coarse-grained molecular simulations, protein stability analysis, and perturbation-based modeling of residue interaction networks, we examined how mutations in the regulatory regions of the SARS-CoV-2 spike protein can differentially affect dynamics and allosteric signaling in distinct functional states. The results of this study revealed key functional regions and regulatory centers that govern collective dynamics, allosteric interactions, and control signal transmission in the SARS-CoV-2 spike proteins. We found that the experimentally confirmed regulatory hotspots that dictate dynamic switching between conformational states of the SARS-CoV-2 spike protein correspond to the key hinge sites and global mediating centers of the allosteric interaction networks. The results of this study provide a novel insight into allosteric regulatory mechanisms of SARS-CoV-2 spike proteins showing that mutations at the key regulatory positions can differentially modulate distribution of states and determine topography of signal communication pathways operating through state-specific cascades of control switch points. This analysis provides a plausible strategy for allosteric probing of the conformational equilibrium and therapeutic intervention by targeting specific hotspots of allosteric interactions and communications in the SARS-CoV-2 spike proteins.
Collapse
Affiliation(s)
- Gennady M. Verkhivker
- Keck
Center for Science and Engineering, Schmid College of Science and
Technology, Chapman University, One University Drive, Orange, California 92866, United States
- Department
of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California 92618, United States
| | - Luisa Di Paola
- Unit
of Chemical-Physics Fundamentals in Chemical Engineering, Department
of Engineering, Università Campus
Bio-Medico di Roma, via
Álvaro del Portillo 21, 00128 Rome, Italy
| |
Collapse
|
195
|
Fisher E, Padula L, Podack K, O’Neill K, Seavey MM, Jayaraman P, Jasuja R, Strbo N. Induction of SARS-CoV-2 Protein S-Specific CD8+ T Cells in the Lungs of gp96-Ig-S Vaccinated Mice. Front Immunol 2021; 11:602254. [PMID: 33584668 PMCID: PMC7873992 DOI: 10.3389/fimmu.2020.602254] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 12/17/2020] [Indexed: 01/08/2023] Open
Abstract
Given the aggressive spread of COVID-19-related deaths, there is an urgent public health need to support the development of vaccine candidates to rapidly improve the available control measures against SARS-CoV-2. To meet this need, we are leveraging our existing vaccine platform to target SARS-CoV-2. Here, we generated cellular heat shock chaperone protein, glycoprotein 96 (gp96), to deliver SARS-CoV-2 protein S (spike) to the immune system and to induce cell-mediated immune responses. We showed that our vaccine platform effectively stimulates a robust cellular immune response against protein S. Moreover, we confirmed that gp96-Ig, secreted from allogeneic cells expressing full-length protein S, generates powerful, protein S polyepitope-specific CD4+ and CD8+ T cell responses in both lung interstitium and airways. These findings were further strengthened by the observation that protein-S -specific CD8+ T cells were induced in human leukocyte antigen HLA-A2.1 transgenic mice thus providing encouraging translational data that the vaccine is likely to work in humans, in the context of SARS-CoV-2 antigen presentation.
Collapse
Affiliation(s)
- Eva Fisher
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Laura Padula
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Kristin Podack
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Katelyn O’Neill
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, United States
| | | | | | - Rahul Jasuja
- Heat Biologics, Inc., Morrisville, NC, United States
| | - Natasa Strbo
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, United States
| |
Collapse
|
196
|
Mori T, Jung J, Kobayashi C, Dokainish HM, Re S, Sugita Y. Elucidation of interactions regulating conformational stability and dynamics of SARS-CoV-2 S-protein. Biophys J 2021; 120:1060-1071. [PMID: 33484712 PMCID: PMC7825899 DOI: 10.1016/j.bpj.2021.01.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/31/2020] [Accepted: 01/13/2021] [Indexed: 12/23/2022] Open
Abstract
The ongoing COVID-19 pandemic caused by the new coronavirus, SARS-CoV-2, calls for urgent developments of vaccines and antiviral drugs. The spike protein of SARS-CoV-2 (S-protein), which consists of trimeric polypeptide chains with glycosylated residues on the surface, triggers the virus entry into a host cell. Extensive structural and functional studies on this protein have rapidly advanced our understanding of the S-protein structure at atomic resolutions, although most of these structural studies overlook the effect of glycans attached to the S-protein on the conformational stability and functional motions between the inactive down and active up forms. Here, we performed all-atom molecular dynamics simulations of both down and up forms of a fully glycosylated S-protein in solution as well as targeted molecular dynamics simulations between them to elucidate key interdomain interactions for stabilizing each form and inducing the large-scale conformational transitions. The residue-level interaction analysis of the simulation trajectories detects distinct amino acid residues and N-glycans as determinants on conformational stability of each form. During the conformational transitions between them, interdomain interactions mediated by glycosylated residues are switched to play key roles on the stabilization of another form. Electrostatic interactions, as well as hydrogen bonds between the three receptor binding domains, work as driving forces to initiate the conformational transitions toward the active form. This study sheds light on the mechanisms underlying conformational stability and functional motions of the S-protein, which are relevant for vaccine and antiviral drug developments.
Collapse
Affiliation(s)
- Takaharu Mori
- Theoretical Molecular Science Laboratory, RIKEN Cluster for Pioneering Research, Wako, Japan
| | - Jaewoon Jung
- Theoretical Molecular Science Laboratory, RIKEN Cluster for Pioneering Research, Wako, Japan; Computational Biophysics Research Team, RIKEN Center for Computational Science, Kobe, Japan
| | - Chigusa Kobayashi
- Computational Biophysics Research Team, RIKEN Center for Computational Science, Kobe, Japan
| | - Hisham M Dokainish
- Theoretical Molecular Science Laboratory, RIKEN Cluster for Pioneering Research, Wako, Japan
| | - Suyong Re
- Laboratory for Biomolecular Function Simulation, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan; Center for Drug Design Research, National Institutes of Biomedical Innovation, Health, and Nutrition, Osaka, Japan
| | - Yuji Sugita
- Theoretical Molecular Science Laboratory, RIKEN Cluster for Pioneering Research, Wako, Japan; Computational Biophysics Research Team, RIKEN Center for Computational Science, Kobe, Japan; Laboratory for Biomolecular Function Simulation, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan.
| |
Collapse
|
197
|
Finkelstein MT, Mermelstein AG, Parker Miller E, Seth PC, Stancofski ESD, Fera D. Structural Analysis of Neutralizing Epitopes of the SARS-CoV-2 Spike to Guide Therapy and Vaccine Design Strategies. Viruses 2021; 13:134. [PMID: 33477902 PMCID: PMC7833398 DOI: 10.3390/v13010134] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/01/2021] [Accepted: 01/14/2021] [Indexed: 02/07/2023] Open
Abstract
Coronavirus research has gained tremendous attention because of the COVID-19 pandemic, caused by the novel severe acute respiratory syndrome coronavirus (nCoV or SARS-CoV-2). In this review, we highlight recent studies that provide atomic-resolution structural details important for the development of monoclonal antibodies (mAbs) that can be used therapeutically and prophylactically and for vaccines against SARS-CoV-2. Structural studies with SARS-CoV-2 neutralizing mAbs have revealed a diverse set of binding modes on the spike's receptor-binding domain and N-terminal domain and highlight alternative targets on the spike. We consider this structural work together with mAb effects in vivo to suggest correlations between structure and clinical applications. We also place mAbs against severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS) coronaviruses in the context of the SARS-CoV-2 spike to suggest features that may be desirable to design mAbs or vaccines capable of conferring broad protection.
Collapse
Affiliation(s)
| | | | | | | | | | - Daniela Fera
- Department of Chemistry and Biochemistry, Swarthmore College, Swarthmore, PA 19081, USA; (M.T.F.); (A.G.M.); (E.P.M.); (P.C.S.); (E.-S.D.S.)
| |
Collapse
|
198
|
Watanabe Y, Mendonça L, Allen ER, Howe A, Lee M, Allen JD, Chawla H, Pulido D, Donnellan F, Davies H, Ulaszewska M, Belij-Rammerstorfer S, Morris S, Krebs AS, Dejnirattisai W, Mongkolsapaya J, Supasa P, Screaton GR, Green CM, Lambe T, Zhang P, Gilbert SC, Crispin M. Native-like SARS-CoV-2 spike glycoprotein expressed by ChAdOx1 nCoV-19/AZD1222 vaccine. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.01.15.426463. [PMID: 33501433 PMCID: PMC7836103 DOI: 10.1101/2021.01.15.426463] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Vaccine development against the SARS-CoV-2 virus focuses on the principal target of the neutralizing immune response, the spike (S) glycoprotein. Adenovirus-vectored vaccines offer an effective platform for the delivery of viral antigen, but it is important for the generation of neutralizing antibodies that they produce appropriately processed and assembled viral antigen that mimics that observed on the SARS-CoV-2 virus. Here, we describe the structure, conformation and glycosylation of the S protein derived from the adenovirus-vectored ChAdOx1 nCoV-19/AZD1222 vaccine. We demonstrate native-like post-translational processing and assembly, and reveal the expression of S proteins on the surface of cells adopting the trimeric prefusion conformation. The data presented here confirms the use of ChAdOx1 adenovirus vectors as a leading platform technology for SARS-CoV-2 vaccines.
Collapse
Affiliation(s)
- Yasunori Watanabe
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Luiza Mendonça
- Division of Structural Biology, University of Oxford, Wellcome Centre for Human Genetics, Oxford, OX3 7BN, UK
| | - Elizabeth R. Allen
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Andrew Howe
- Electron Bio-imaging Centre, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
| | - Mercede Lee
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Joel D. Allen
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Himanshi Chawla
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - David Pulido
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Francesca Donnellan
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Hannah Davies
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Marta Ulaszewska
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Sandra Belij-Rammerstorfer
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Susan Morris
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Anna-Sophia Krebs
- Division of Structural Biology, University of Oxford, Wellcome Centre for Human Genetics, Oxford, OX3 7BN, UK
| | - Wanwisa Dejnirattisai
- The Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Juthathip Mongkolsapaya
- The Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
- Dengue Hemorrhagic Fever Research Unit, Office for Research and Development, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Chinese Academy of Medical Science(CAMS) Oxford Institute (COI), University of Oxford, Oxford, U.K
| | - Piyada Supasa
- The Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Gavin R. Screaton
- The Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
- Division of Medical Sciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Catherine M. Green
- The Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Teresa Lambe
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Peijun Zhang
- Division of Structural Biology, University of Oxford, Wellcome Centre for Human Genetics, Oxford, OX3 7BN, UK
- Electron Bio-imaging Centre, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
| | - Sarah C. Gilbert
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| |
Collapse
|
199
|
Bò L, Miotto M, Di Rienzo L, Milanetti E, Ruocco G. Exploring the Association Between Sialic Acid and SARS-CoV-2 Spike Protein Through a Molecular Dynamics-Based Approach. FRONTIERS IN MEDICAL TECHNOLOGY 2021; 2:614652. [PMID: 35047894 PMCID: PMC8757799 DOI: 10.3389/fmedt.2020.614652] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/03/2020] [Indexed: 12/19/2022] Open
Abstract
Recent experimental evidence demonstrated the capability of SARS-CoV-2 Spike protein to bind sialic acid molecules, which was a trait not present in SARS-CoV and could shed light on the molecular mechanism used by the virus for the cell invasion. This peculiar feature has been successfully predicted by in-silico studies comparing the sequence and structural characteristics that SARS-CoV-2 shares with other sialic acid-binding viruses, like MERS-CoV. Even if the region of the binding has been identified in the N-terminal domain of Spike protein, so far no comprehensive analyses have been carried out on the spike-sialic acid conformations once in the complex. Here, we addressed this aspect performing an extensive molecular dynamics simulation of a system composed of the N-terminal domain of the spike protein and a sialic acid molecule. We observed several short-lived binding events, reconnecting to the avidic nature of the binding, interestingly occurring in the surface Spike region where several insertions are present with respect to the SARS-CoV sequence. Characterizing the bound configurations via a clustering analysis on the Principal Component of the motion, we identified different possible binding conformations and discussed their dynamic and structural properties. In particular, we analyze the correlated motion between the binding residues and the binding effect on the stability of atomic fluctuation, thus proposing regions with high binding propensity with sialic acid.
Collapse
Affiliation(s)
- Leonardo Bò
- Center for Life Nanoscience, Istituto Italiano di Tecnologia, Rome, Italy
| | - Mattia Miotto
- Center for Life Nanoscience, Istituto Italiano di Tecnologia, Rome, Italy
- Department of Physics, Sapienza University, Rome, Italy
| | - Lorenzo Di Rienzo
- Center for Life Nanoscience, Istituto Italiano di Tecnologia, Rome, Italy
| | - Edoardo Milanetti
- Center for Life Nanoscience, Istituto Italiano di Tecnologia, Rome, Italy
- Department of Physics, Sapienza University, Rome, Italy
| | - Giancarlo Ruocco
- Center for Life Nanoscience, Istituto Italiano di Tecnologia, Rome, Italy
- Department of Physics, Sapienza University, Rome, Italy
| |
Collapse
|
200
|
Affiliation(s)
- Tobias
P. Wörner
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584
CH Utrecht, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584 CH Utrecht, The Netherlands
| | - Tatiana M. Shamorkina
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584
CH Utrecht, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584 CH Utrecht, The Netherlands
| | - Joost Snijder
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584
CH Utrecht, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584 CH Utrecht, The Netherlands
| | - Albert J. R. Heck
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584
CH Utrecht, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|