151
|
Adrees M, Khan ZS, Rehman MZU, Rizwan M, Ali S. Foliar spray of silicon nanoparticles improved the growth and minimized cadmium (Cd) in wheat under combined Cd and water-limited stress. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:77321-77332. [PMID: 35672649 DOI: 10.1007/s11356-022-21238-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/29/2022] [Indexed: 06/15/2023]
Abstract
The effects of foliar supply of silicon nanoparticles (Si-NPs) on growth, physiology, and cadmium (Cd) uptake by wheat (Triticum aestivum L.) were examined in different soil moisture levels. Seeds were sown in soil containing excess Cd (7.67 mg kg-1) and Si-NPs were applied through foliar dressing with various levels (0, 25, 50, 100 mg L-1) at different time intervals during growth period. Initially, all pots were irrigated with normal moisture level (70% water-holding capacity) and two moisture levels (35%, 70% WHC) were initiated after 6 weeks of plant growth for remaining growth duration and harvesting was done after 124 days of sowing. The results demonstrated the lowest plant growth, yield, and chlorophyll concentrations while the highest oxidative stress and Cd concentrations in plant tissues in water-stressed control (35% WHC) followed by normal control (75% WHC). Si-NPs enhanced the growth, photosynthesis, leaf defense system, and Si concentrations in tissues while minimized the Cd in wheat parts particularly in grains either soil normal or water-stressed conditions. Of the foliar spray, 100 mg L-1 of Si-NPs showed the best results with respect to growth, Cd and Si uptake by plants, and soil post-harvest bioavailable Cd irrespective of soil water levels. In grain, Cd concentration was below threshold limit (0.2 mg kg-1) for cereals in 100-mg kg-1 Si-NPs treatment irrespective of soil water levels. Si-NPs foliar dressing under Cd and water-limited stress might be an effective strategy in increasing growth, yield, and decreasing Cd concentration in wheat grains under experimental conditions. Thus, foliar dressing of Si-NPs minimized the Cd risk in food crops and NPs entry to surroundings, which might be possible after harvesting of crops in soil-applied NPs.
Collapse
Affiliation(s)
- Muhammad Adrees
- Department of Environmental Sciences, Government College University, Faisalabad, 38000, Pakistan
| | - Zahra Saeed Khan
- Department of Environmental Sciences, Government College University, Faisalabad, 38000, Pakistan
| | - Muhammad Zia Ur Rehman
- Institute of Soil & Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Muhammad Rizwan
- Department of Environmental Sciences, Government College University, Faisalabad, 38000, Pakistan.
| | - Shafaqat Ali
- Department of Environmental Sciences, Government College University, Faisalabad, 38000, Pakistan
- Department of Biological Sciences and Technology, China Medical University, Taichung, 40402, Taiwan
| |
Collapse
|
152
|
Promoting the utilization efficiency of agrochemicals via short-chain nonionic fluorinated synergist: Strategies and working mechanisms. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
153
|
Karpouzas DG, Vryzas Z, Martin-Laurent F. Pesticide soil microbial toxicity: setting the scene for a new pesticide risk assessment for soil microorganisms (IUPAC Technical Report). PURE APPL CHEM 2022. [DOI: 10.1515/pac-2022-0201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Pesticides constitute an integral part of modern agriculture. However, there are still concerns about their effects on non-target organisms. To address this the European Commission has imposed a stringent regulatory scheme for new pesticide compounds. Assessment of the aquatic toxicity of pesticides is based on a range of advanced tests. This does not apply to terrestrial ecosystems, where the toxicity of pesticides on soil microorganisms, is based on an outdated and crude test (N mineralization). This regulatory gap is reinforced by the recent methodological and standardization advances in soil microbial ecology. The inclusion of such standardized tools in a revised risk assessment scheme will enable the accurate estimation of the toxicity of pesticides on soil microorganisms and on associated ecosystem services. In this review we (i) summarize recent work in the assessment of the soil microbial toxicity of pesticides and point to ammonia-oxidizing microorganisms (AOM) and arbuscular mycorrhizal fungi (AMF) as most relevant bioindicator groups (ii) identify limitations in the experimental approaches used and propose mitigation solutions, (iii) identify scientific gaps and (iv) propose a new risk assessment procedure to assess the effects of pesticides on soil microorganisms.
Collapse
Affiliation(s)
- Dimitrios G. Karpouzas
- Department of Biochemistry and Biotechnology , Laboratory of Plant and Environmental Biotechnology, University of Thessaly , Viopolis 41500 , Larissa , Greece
| | - Zisis Vryzas
- Department of Agricultural Development , Democritus University of Thrace , Orestiada , Greece
| | | |
Collapse
|
154
|
Latha M, Raja K, Subramanian KS, Govindaraju K, Karthikeyan M, Lakshmanan A, Srivignesh S, Kumuthan MS. Polyvinyl alcohol (PVA) nanofibre matrix encapsulated with tebuconazole fungicide: a smart delivery system against dry root rot disease of black gram. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04509-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
155
|
Zhang Y, Goss GG. Nanotechnology in agriculture: Comparison of the toxicity between conventional and nano-based agrochemicals on non-target aquatic species. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129559. [PMID: 35863222 DOI: 10.1016/j.jhazmat.2022.129559] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/04/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
Increased crop production is necessary to keep up with rising food demand. However, conventional agricultural practices and agrochemicals are unable to sustain further increases without serious risk of adverse environmental consequences. The implementation of nanotechnology in agriculture practices has been increasing in recent years and has shown tremendous potential to boost crop production. The rapid growth in development and use of nano-agrochemicals in agriculture will inevitably result in more chemicals reaching water bodies. Some unique properties of nanoformulations may also alter the toxicity of the AI on aquatic organisms when compared to their conventional counterparts. Results from studies on conventional formulations may not properly represent the toxicity of new nanoformulations in the aquatic environment. As a result, current guidelines derived from conventional formulations may not be suitable to regulate those newly developed nanoformulations. Current knowledge on the toxicity of nano-agrochemicals on aquatic organisms is limited, especially in an ecologically relevant setting. This review complies and analyzes 18 primary studies based on 7 criteria to provide a comprehensive analysis of the available toxicity information of nano-agrochemicals and their conventional counterparts on aquatic organisms. Our analysis demonstrates that the overall toxicity of nano-agrochemicals on non-target aquatic species is significantly lower as compared to conventional counterparts. However, further dividing formulations into three categories (organic, bulk and ionic) shows that some nanoformulations can be more toxic when compared to bulk materials but less toxic as compared to ionic formulations while organic nanopesticides do not show a general trend in overall toxicity. Moreover, our analysis reveals the limitations of current studies and provides recommendations for future toxicity studies to ensure the effective and sustainable application of nano-agrochemicals, which will be beneficial to both the agrochemical industry and regulatory agencies alike.
Collapse
Affiliation(s)
- Yueyang Zhang
- Department of Biological Sciences, University of Alberta, 11455 Saskatchewan Drive, Edmonton, Alberta T6G 2E9, Canada.
| | - Greg G Goss
- Department of Biological Sciences, University of Alberta, 11455 Saskatchewan Drive, Edmonton, Alberta T6G 2E9, Canada; National Institute for Nanotechnology, 11421 Saskatchewan Drive, Edmonton, Alberta T6G 2M9, Canada; Director of Office of Environmental Nanosafety, University of Alberta, Canada.
| |
Collapse
|
156
|
Kumar R, Dhiman M, Sharma L, Dadhich A, Kaushik P, Sharma MM. Nanofertilizers: The targeted nutrient supplier and enhance nutrients uptake by pearl millets (Pennisetum glaucum). BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
157
|
Cheema AI, Ahmed T, Abbas A, Noman M, Zubair M, Shahid M. Antimicrobial activity of the biologically synthesized zinc oxide nanoparticles against important rice pathogens. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:1955-1967. [PMID: 36484030 PMCID: PMC9723035 DOI: 10.1007/s12298-022-01251-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 06/17/2023]
Abstract
Global rice production is seriously affected by many abiotic and biotic factors. Among the aggressive rice pathogens, Xanthomonas oryzae pv. oryzae (X. o. pv. oryzae), Bipolaris oryzae (B. oryzae) and Sphaerulina oryzina (S. oryzina) cause bacterial leaf blight, brown leaf spot and narrow brown leaf spot diseases, respectively. The objective of this study was to evaluate the efficacy of biogenic zinc oxide nanoparticles (ZnO NPs) as antimicrobial agent to control rice pathogens. This is the first report of antifungal activity evaluation of ZnO NPs against B. oryzae and S. oryzina. A pre-characterized bacterial strain Escherichia sp. SINT7 was bio-prospected for synthesis of green ZnO NPs. The NPs were confirmed by a characteristic peak measured at 360.96 nm through UV-Vis spectroscopy. Further, the NPs were characterized to elucidate the surface capping molecules, crystallite structure and morphology by various spectroscopic and imaging techniques, which confirmed the spherical shape of NPs with size ranging from 13.07 to 22.25 nm. In vitro studies against X. o. pv. oryzae pathogen depicted the substantial antibacterial activity (up to 25.7 mm inhibition zone at 20 μg/ml NPs concentration). Similarly, ZnO NPs reduced the mycelial growth of B. oryzae and S. oryzina up to 72.68 and 95.78%, respectively at 50 μg/ml concentration on potato dextrose agar plates, while the mycelial biomass reduction was found to be 64.66 and 68. 49% for B. oryzae and S. oryzina, respectively on potato dextrose broth media as compared to control without the addition of NPs. The green ZnO NPs also significantly reduced the fungal spore germination and a disintegration of fungal hyphae for both fungal strains was observed under the microscope as a result of NPs treatment. Hence, it was concluded that biologically synthesized ZnO NPs are potential antimicrobials and could be compared in greenhouse pathogenicity assays with commercial pesticides to control rice pathogens. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-022-01251-y.
Collapse
Affiliation(s)
- Ayesha Iftikhar Cheema
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, 38000 Pakistan
| | - Temoor Ahmed
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058 China
| | - Ali Abbas
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, 38000 Pakistan
| | - Muhammad Noman
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058 China
| | - Muhammad Zubair
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, 38000 Pakistan
| | - Muhammad Shahid
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, 38000 Pakistan
| |
Collapse
|
158
|
Siimes N, Sharp EL, Lewis N, Kah M. Determining acceptance and rejection of nano-enabled agriculture: A case study of the New Zealand wine industry. NANOIMPACT 2022; 28:100432. [PMID: 36220628 DOI: 10.1016/j.impact.2022.100432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 09/18/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
This paper gathers gatekeeper views and perceptions on nano-enabled viticulture in Aotearoa New Zealand. While the science of nanotechnology is indicated to offer improvements to conventional vineyard inputs and operations, its acceptability by potential users and consumers has an impact on the governance of nano-enabled agriculture. This governance takes place not just at the state level through regulation and policy, but also through corporate, and community sectors' use of branding and narratives about nanotechnology and nano-based agrichemicals, and the (non)consumption of nano-enabled products. This paper investigates the technical and market acceptability, or governance, of nanotechnology by elucidating the attitudes of industry gatekeepers towards wines grown with nanotechnology. This necessarily informs the 'market permissibility' of such technologies, and illuminates sensitivities, concerns, and consumer-based barriers to adoption. We conducted 15 semi-structured, key informant interviews and a thematic data analysis. Our results suggest a high level of technical acceptability, particularly if environmental sustainability benefits are made clear. Wine producers are interested in nano-solutions to labour, pest and disease, and cost of production issues. However, key actors in the production-consumption network of New Zealand wine have concerns about nano-enabled approaches. Regulatory approval and safety assurances are expected prior to adoption in food or wine. Respondents argue that consumer acceptability is less clear, and that thought leaders like wine writers, intermediaries and 'influencers' will be critical in shaping public opinion. This research highlights the potential risks of nanotechnology development and adoption.
Collapse
Affiliation(s)
- Nikolai Siimes
- School of Environment, The University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand.
| | - Emma L Sharp
- School of Environment, The University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand
| | - Nicolas Lewis
- School of Environment, The University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand
| | - Melanie Kah
- School of Environment, The University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand
| |
Collapse
|
159
|
Zhao W, Liu Y, Zhang P, Zhou P, Wu Z, Lou B, Jiang Y, Shakoor N, Li M, Li Y, Lynch I, Rui Y, Tan Z. Engineered Zn-based nano-pesticides as an opportunity for treatment of phytopathogens in agriculture. NANOIMPACT 2022; 28:100420. [PMID: 36038133 DOI: 10.1016/j.impact.2022.100420] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/15/2022] [Accepted: 08/21/2022] [Indexed: 06/15/2023]
Abstract
People's desire for food has never slowed, despite the deterioration of the global agricultural environment and the threat to food security. People rely on agrochemicals to ensure normal crop growth and to relieve the existing demand pressure. Phytopathogens have acquired resistance to traditional pesticides as a result of pesticdes' abuse. Compared with traditional formulations, nano-pesticides have superior antimicrobial performance and are environmentally friendly. Zn-based nanoparticles (NPs) have shown their potential as strong antipathogen activity. However, their full potential has not been demonstrated yet. Here, we analyzed the prerequisites for the use of Zn-based NPs as nano-pesticides in agriculture including both intrinsic properties of the materials and environmental conditions. We also summarized the mechanisms of Zn-based NPs against phytopathogens including direct and indirect strategies to alleviate plant disease stress. Finally, the current challenges and future directions are highlighted to advance our understanding of this field and guide future studies.
Collapse
Affiliation(s)
- Weichen Zhao
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yanwanjing Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, Zhejiang Province, China
| | - Peng Zhang
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Pingfan Zhou
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Zhangguo Wu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, Zhejiang Province, China
| | - Benzhen Lou
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Yaqi Jiang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Noman Shakoor
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Mingshu Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Yuanbo Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Yukui Rui
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; China Agricultural University Professor Workstation of Yuhuangmiao Town, Shanghe County, Jinan, Shandong, China; China Agricultural University Professor Workstation of Sunji Town, Shanghe County, Jinan, Shandong, China.
| | - Zhiqiang Tan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, Zhejiang Province, China.
| |
Collapse
|
160
|
Kala S, Jawle CKD, Sogan N, Agarwal A, Kant K, Mishra BK, Kumar J. Analogous foliar uptake and leaf-to-root translocation of micelle nanoparticles in two dicot plants of diverse families. NANOIMPACT 2022; 28:100431. [PMID: 36206944 DOI: 10.1016/j.impact.2022.100431] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 09/05/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Bio-inspired nanoparticles, including metallic, micelles, and polymeric, have been explored as a novel tool in the quest for effective and safe agrochemicals. Although nanoparticles (NPs) are being rapidly investigated for their usefulness in agricultural production and protection, little is known about the behaviour and interaction of oil-in-water micelle nanoparticles or nano-micelles (NM) with plants. We loaded a bio-based resin inherent of tree from the Pinaceae family as active material and produced stable nano-micelles using a natural emulsifier system. Here, we show that foliar-applied nano-micelle can translocate in two dicot plants belonging to diverse families (Coriandrum sativum -Apiaceae and Trigonella foenumgraecum -Fabaceae) via similar mode. Fluorescent-tagged NM (average diameter 11.20nm) showed strong signals and higher intensities as revealed by confocal imaging and exhibited significant adhesion in leaf compared to control. The NM subsequently translocates to other parts of the plants. As observed by SEM, the leaf surface anatomies revealed higher stomata densities and uptake of NM by guard cells; furthermore, larger extracellular spaces in mesophyll cells indicate a possible route of NM translocation. In addition, NM demonstrated improved wetting-spreading as illustrated by contact angle measurement. In a field bioassay, a single spray application of NM offered protection from aphid infestation for at least 9 days. There were no signs of phytotoxicity in plants post-application of NM. We conclude that pine resin-based nano-micelle provides an efficient, safe, and sustainable alternative for agricultural applications.
Collapse
Affiliation(s)
- Smriti Kala
- Formulation Division, Institute of Pesticide Formulation Technology (IPFT), Gurugram 122016, Haryana, India.
| | - Chetan K D Jawle
- Formulation Division, Institute of Pesticide Formulation Technology (IPFT), Gurugram 122016, Haryana, India
| | - Nisha Sogan
- Deapartment of Botany, Deshbandhu College, University of Delhi, Kalkaji, New Delhi 110019, India
| | - Amrish Agarwal
- Formulation Division, Institute of Pesticide Formulation Technology (IPFT), Gurugram 122016, Haryana, India
| | - Krishna Kant
- National Research Center for Seed Spice Research, Ajmer 305206, India
| | - B K Mishra
- National Research Center for Seed Spice Research, Ajmer 305206, India
| | - Jitendra Kumar
- Formulation Division, Institute of Pesticide Formulation Technology (IPFT), Gurugram 122016, Haryana, India
| |
Collapse
|
161
|
Mukarram M, Petrik P, Mushtaq Z, Khan MMA, Gulfishan M, Lux A. Silicon nanoparticles in higher plants: Uptake, action, stress tolerance, and crosstalk with phytohormones, antioxidants, and other signalling molecules. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 310:119855. [PMID: 35940485 DOI: 10.1016/j.envpol.2022.119855] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/06/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
Silicon is absorbed as uncharged mono-silicic acid by plant roots through passive absorption of Lsi1, an influx transporter belonging to the aquaporin protein family. Lsi2 then actively effluxes silicon from root cells towards the xylem from where it is exported by Lsi6 for silicon distribution and accumulation to other parts. Recently, it was proposed that silicon nanoparticles (SiNPs) might share a similar route for their uptake and transport. SiNPs then initiate a cascade of morphophysiological adjustments that improve the plant physiology through regulating the expression of many photosynthetic genes and proteins along with photosystem I (PSI) and PSII assemblies. Subsequent improvement in photosynthetic performance and stomatal behaviour correspond to higher growth, development, and productivity. On many occasions, SiNPs have demonstrated a protective role during stressful environments by improving plant-water status, source-sink potential, reactive oxygen species (ROS) metabolism, and enzymatic profile. The present review comprehensively discusses the crop improvement potential of SiNPs stretching their role during optimal and abiotic stress conditions including salinity, drought, temperature, heavy metals, and ultraviolet (UV) radiation. Moreover, in the later section of this review, we offered the understanding that most of these upgrades can be explained by SiNPs intricate correspondence with phytohormones, antioxidants, and signalling molecules. SiNPs can modulate the endogenous phytohormones level such as abscisic acid (ABA), auxins (IAAs), cytokinins (CKs), ethylene (ET), gibberellins (GAs), and jasmonic acid (JA). Altered phytohormones level affects plant growth, development, and productivity at various organ and tissue levels. Similarly, SiNPs regulate the activities of catalase (CAT), ascorbate peroxidase (APX), superoxide dismutase (SOD), and ascorbate-glutathione (AsA-GSH) cycle leading to an upgraded defence system. At the cellular and subcellular levels, SiNPs crosstalk with various signalling molecules such as Ca2+, K+, Na+, nitric oxide (NO), ROS, soluble sugars, and transcription factors (TFs) was also explained.
Collapse
Affiliation(s)
- Mohammad Mukarram
- Advance Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India; Department of Integrated Forest and Landscape Protection, Faculty of Forestry, Technical University in Zvolen, T. G. Masaryka 24, 96001, Zvolen, Slovakia.
| | - Peter Petrik
- Global Change Research Institute, Czech Academy of Sciences, Brno, Czech Republic
| | - Zeenat Mushtaq
- Environmental Physiology Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India
| | - M Masroor A Khan
- Advance Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India
| | - Mohd Gulfishan
- Glocal School of Agricultural Science, Glocal University, Saharanpur, 247121, India
| | - Alexander Lux
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovicova 6, Bratislava, Slovakia; Institute of Chemistry, Slovak Academy of Sciences, Dubravska Cesta 9, Bratislava, Slovakia
| |
Collapse
|
162
|
Yeguerman CA, Urrutia RI, Jesser EN, Massiris M, Delrieux CA, Murray AP, González JOW. Essential oils loaded on polymeric nanoparticles: bioefficacy against economic and medical insect pests and risk evaluation on terrestrial and aquatic non-target organisms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:71412-71426. [PMID: 35597828 DOI: 10.1007/s11356-022-20848-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
This paper introduces the lethal, sublethal, and ecotoxic effects of peppermint and palmarosa essential oils (EOs) and their polymeric nanoparticles (PNs). The physicochemical analyses indicated that peppermint PNs were polydisperse (PDI > 0.4) with sizes of 381 nm and loading efficiency (LE) of 70.3%, whereas palmarosa PNs were monodisperse (PDI < 0.25) with sizes of 191 nm and LE of 89.7%. EOs and their PNs were evaluated on the adults of rice weevil (Sitophilus oryzae L.) and cigarette beetle (Lasioderma serricorne F.) and the larvae of Culex pipiens pipiens Say. On S. oryzae and L. serricorne, PNs increased EOs' lethal activity, extended repellent effects for 84 h, and also modified behavioral variables during 24 h. Moreover, EOs and PNs generated toxic effects against C. pipiens pipiens. On the other hand, peppermint and palmarosa EOs and their PNs were not toxic to terrestrial non-target organisms, larvae of mealworm (Tenebrio molitor L.), and nymphs of orange-spotted cockroach (Blaptica dubia S.). In addition, PNs were slightly toxic to aquatic non-target organisms, such as brine shrimp (Artemia salina L.). Therefore, these results show that PNs are a novel and eco-friendly formulation to control insect pests.
Collapse
Affiliation(s)
- Cristhian A Yeguerman
- INBIOSUR, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS) - CONICET, B8000CPB, Buenos Aires, Argentina
| | - Rodrigo I Urrutia
- INBIOSUR, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS) - CONICET, B8000CPB, Buenos Aires, Argentina
| | - Emiliano N Jesser
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS) - CONICET, B8000CPB, Buenos Aires, Argentina
- Departamento de Biología, Bioquímica Y Farmacia, Universidad Nacional del Sur (UNS), B8000CPB, Buenos Aires, Argentina
| | - Manlio Massiris
- Laboratorio de Ciencias de Las Imágenes, Departamento de Ingeniería Eléctrica Y Computadoras, CONICET-Universidad Nacional del Sur. Av, San Andrés 800 (B8000CPB), Bahía Blanca, Buenos Aires, Argentina
| | - Claudio A Delrieux
- Laboratorio de Ciencias de Las Imágenes, Departamento de Ingeniería Eléctrica Y Computadoras, CONICET-Universidad Nacional del Sur. Av, San Andrés 800 (B8000CPB), Bahía Blanca, Buenos Aires, Argentina
| | - Ana P Murray
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS) - CONICET, B8000CPB, Buenos Aires, Argentina
| | - Jorge O Werdin González
- INBIOSUR, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS) - CONICET, B8000CPB, Buenos Aires, Argentina.
- Departamento de Biología, Bioquímica Y Farmacia, Universidad Nacional del Sur (UNS), B8000CPB, Buenos Aires, Argentina.
| |
Collapse
|
163
|
Malandrakis AA, Kavroulakis N, Chrysikopoulos CV. Metal nanoparticles against fungicide resistance: alternatives or partners? PEST MANAGEMENT SCIENCE 2022; 78:3953-3956. [PMID: 35620887 DOI: 10.1002/ps.7014] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 05/24/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
Chemical control suffers from the loss of available conventional active ingredients due to strict environmental safety regulations which, combined with the loss of fungicide efficacy due to resistance development, constitute major problems of contemporary crop protection. Metal-containing nanoparticles (MNPs) appear to have all the credentials to be next-generation, eco-compatible fungicide alternatives and a valuable anti-resistance management tool. Could the introduction of MNPs as nano-fungicides be the answer to both reducing the environmental footprint of xenobiotics and dealing with fungicide resistance? The potential of MNPs to be utilized as nano-fungicides, both as alternatives to conventional fungicides or/and as partners in combating fungicide resistance, is discussed in terms of effectiveness, potential antimicrobial mechanisms as well as synergy profiles with conventional fungicides. However, their "golden" potential to be used both as alternatives and partners of conventional fungicides to combat resistance and reduce environmental pollution is challenged by undesirable effects towards non-target organisms such as phytotoxicity, toxicity to humans and environmental ecotoxicity, constituting risks that should be considered before their commercial introduction as nano-pesticides at a large scale. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
| | - Nektarios Kavroulakis
- Hellenic Agricultural Organization "Dimitra", Institute for Olive Tree, Subtropical Plants and Viticulture, Chania, Greece
| | | |
Collapse
|
164
|
Dhakate P, Kandhol N, Raturi G, Ray P, Bhardwaj A, Srivastava A, Kaushal L, Singh A, Pandey S, Chauhan DK, Dubey NK, Sharma S, Singh VP, Sahi S, Grillo R, Peralta-Videa J, Deshmukh R, Tripathi DK. Silicon nanoforms in crop improvement and stress management. CHEMOSPHERE 2022; 305:135165. [PMID: 35667508 DOI: 10.1016/j.chemosphere.2022.135165] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
Although, silicon - the second most abundant element in the earth crust could not supersede carbon (C) in the competition of being the building block of life during evolution, yet its presence has been reported in some life forms. In case of the plants, silicon has been reported widely to promote the plant growth under normal as well as stressful situations. Nanoform of silicon is now being explored for its potential to improve plant productivity and its tolerance against various stresses. Silicon nanoparticles (SiNPs) in the form of nanofertilizers, nanoherbicides, nanopesticides, nanosensors and targeted delivery systems, find great utilization in the field of agriculture. However, the mechanisms underlying their uptake by plants need to be deciphered in detail. Silicon nanoformss are reported to enhance plant growth, majorly by improving photosynthesis rate, elevating nutrient uptake and mitigating reactive oxygen species (ROS)-induced oxidative stress. Various studies have reported their ability to provide tolerance against a range of stresses by upregulating plant defense responses. Moreover, they are proclaimed not to have any detrimental impacts on environment yet. This review includes the up-to-date information in context of the eminent role of silicon nanoforms in crop improvement and stress management, supplemented with suggestions for future research in this field.
Collapse
Affiliation(s)
| | - Nidhi Kandhol
- Crop Nanobiology and Molecular Stress Physiology Laboratory, Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Sector-125, Noida, 201313, India
| | - Gaurav Raturi
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India; Department of Biotechnology, Panjab University, Chandigarh, India
| | - Priyanka Ray
- Crop Nanobiology and Molecular Stress Physiology Laboratory, Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Sector-125, Noida, 201313, India
| | - Anupriya Bhardwaj
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India; Department of Biotechnology, Panjab University, Chandigarh, India
| | - Aakriti Srivastava
- Crop Nanobiology and Molecular Stress Physiology Laboratory, Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Sector-125, Noida, 201313, India
| | - Laveena Kaushal
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India; Department of Biotechnology, Panjab University, Chandigarh, India
| | - Akanksha Singh
- Crop Nanobiology and Molecular Stress Physiology Laboratory, Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Sector-125, Noida, 201313, India
| | - Sangeeta Pandey
- Plant-Microbe Interaction Laboratory, Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Sector-125, Noida, 201313, India
| | - Devendra Kumar Chauhan
- D D Pant Interdisciplinary Research Laboratory, Department of Botany, University of Allahabad, Prayagraj, UP India
| | - Nawal Kishore Dubey
- Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi, India
| | - Shivesh Sharma
- Department of Biotechnology, Motilal Nehru National Institute of Technology,Allahabad, Prayagraj, India
| | - Vijay Pratap Singh
- Department of Botany, C.M.P. Degree College, University of Allahabad, Allahabad-211002, India
| | - Shivendra Sahi
- Department of Biology, Saint Joseph's University, University City Campus, 600 S. 43rd St. Philadelphia, PA 19104, USA
| | - Renato Grillo
- São Paulo State University (UNESP), Department of Physics and Chemistry, School of Engineering, Ilha Solteira, SP, 15385-000, Brazil
| | - Jose Peralta-Videa
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, 500 West University Ave., El Paso, TX, 79968, USA
| | - Rupesh Deshmukh
- National Institute of Plant Genome Research, New Delhi, India.
| | - Durgesh Kumar Tripathi
- Crop Nanobiology and Molecular Stress Physiology Laboratory, Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Sector-125, Noida, 201313, India.
| |
Collapse
|
165
|
Nongbet A, Mishra AK, Mohanta YK, Mahanta S, Ray MK, Khan M, Baek KH, Chakrabartty I. Nanofertilizers: A Smart and Sustainable Attribute to Modern Agriculture. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11192587. [PMID: 36235454 PMCID: PMC9573764 DOI: 10.3390/plants11192587] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 05/27/2023]
Abstract
The widespread use of fertilizers is a result of the increased global demand for food. The commonly used chemical fertilizers may increase plant growth and output, but they have deleterious effects on the soil, the environment, and even human health. Therefore, nanofertilizers are one of the most promising solutions or substitutes for conventional fertilizers. These engineered materials are composed of nanoparticles containing macro- and micronutrients that are delivered to the plant rhizosphere in a regulated manner. In nanofertilizers, the essential minerals and nutrients (such as N, P, K, Fe, and Mn) are bonded alone or in combination with nano-dimensional adsorbents. This review discusses the development of nanotechnology-based smart and efficient agriculture using nanofertilizers that have higher nutritional management, owing to their ability to increase the nutrient uptake efficiency. Additionally, the synthesis and mechanism of action of the nanofertilizers are discussed, along with the different types of fertilizers that are currently available. Furthermore, sustainable agriculture can be realised by the targeted delivery and controlled release of nutrients through the application of nanoscale active substances. This paper emphasises the successful development and safe application of nanotechnology in agriculture; however, certain basic concerns and existing gaps in research need to be addressed and resolved.
Collapse
Affiliation(s)
- Amilia Nongbet
- Department of Botany, School of Biological Sciences, University of Science and Technology Meghalaya (USTM), 9th Mile, Techno City, Baridua, Ri-Bhoi 793101, Meghalaya, India
| | - Awdhesh Kumar Mishra
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Korea
| | - Yugal Kishore Mohanta
- Department of Applied Biology, School of Biological Sciences, University of Science and Technology Meghalaya (USTM), 9th Mile, Techno City, Baridua, Ri-Bhoi 793101, Meghalaya, India
| | - Saurov Mahanta
- National Institute of Electronics and Information Technology (NIELIT), Guwahati Centre, Guwahati 781008, Assam, India
| | - Manjit Kumar Ray
- Department of Applied Biology, School of Biological Sciences, University of Science and Technology Meghalaya (USTM), 9th Mile, Techno City, Baridua, Ri-Bhoi 793101, Meghalaya, India
| | - Maryam Khan
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Korea
| | - Ishani Chakrabartty
- Department of Applied Biology, School of Biological Sciences, University of Science and Technology Meghalaya (USTM), 9th Mile, Techno City, Baridua, Ri-Bhoi 793101, Meghalaya, India
| |
Collapse
|
166
|
El-Sharkawy M, Mahmoud E, Abd El-Aziz M, Khalifa T. Effect of Zinc Oxide Nanoparticles and Soil Amendments on Wheat Yield, Physiological Attributes and Soil Properties Grown in the Saline – Sodic Soil. COMMUNICATIONS IN SOIL SCIENCE AND PLANT ANALYSIS 2022; 53:2170-2186. [DOI: 10.1080/00103624.2022.2070635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 02/22/2022] [Indexed: 09/02/2023]
Affiliation(s)
- Mahmoud El-Sharkawy
- Department of Soil and Water, Faculty of Agriculture, Tanta University, Tanta Egypt
| | - Esawy Mahmoud
- Department of Soil and Water, Faculty of Agriculture, Tanta University, Tanta Egypt
| | - Mohamed Abd El-Aziz
- Soils, Water and Environment Research Institute (SWERI), Agricultural Research Center, Egypt
| | - Tamer Khalifa
- Soils, Water and Environment Research Institute (SWERI), Agricultural Research Center, Egypt
| |
Collapse
|
167
|
Graziano S, Caldara M, Gullì M, Bevivino A, Maestri E, Marmiroli N. A Metagenomic and Gene Expression Analysis in Wheat (T. durum) and Maize (Z. mays) Biofertilized with PGPM and Biochar. Int J Mol Sci 2022; 23:ijms231810376. [PMID: 36142289 PMCID: PMC9499264 DOI: 10.3390/ijms231810376] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 11/25/2022] Open
Abstract
Commodity crops, such as wheat and maize, are extremely dependent on chemical fertilizers, a practice contributing greatly to the increase in the contaminants in soil and water. Promising solutions are biofertilizers, i.e., microbial biostimulants that when supplemented with soil stimulate plant growth and production. Moreover, the biofertilizers can be fortified when (i) provided as multifunctional consortia and (ii) combined with biochar with a high cargo capacity. The aim of this work was to determine the molecular effects on the soil microbiome of different biofertilizers and delivery systems, highlight their physiological effects and merge the data with statistical analyses. The measurements of the physiological parameters (i.e., shoot and root biomass), transcriptomic response of genes involved in essential pathways, and characterization of the rhizosphere population were analyzed. The results demonstrated that wheat and maize supplemented with different combinations of selected microbial consortia and biochar have a positive effect on plant growth in terms of shoot and root biomass; the treatments also had a beneficial influence on the biodiversity of the indigenous rhizo-microbial community, reinforcing the connection between microbes and plants without further spreading contaminants. There was also evidence at the transcriptional level of crosstalk between microbiota and plants.
Collapse
Affiliation(s)
- Sara Graziano
- Interdepartmental Center SITEIA.PARMA, University of Parma, Parco Area delle Scienze, 43124 Parma, Italy
| | - Marina Caldara
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Mariolina Gullì
- Interdepartmental Center SITEIA.PARMA, University of Parma, Parco Area delle Scienze, 43124 Parma, Italy
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Annamaria Bevivino
- Department for Sustainability, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, ENEA Casaccia Research Center, 00123 Rome, Italy
| | - Elena Maestri
- Interdepartmental Center SITEIA.PARMA, University of Parma, Parco Area delle Scienze, 43124 Parma, Italy
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Nelson Marmiroli
- Interdepartmental Center SITEIA.PARMA, University of Parma, Parco Area delle Scienze, 43124 Parma, Italy
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
- National Interuniversity Consortium for Environmental Sciences (CINSA), 30123 Venice, Italy
- Correspondence:
| |
Collapse
|
168
|
Dong S, Jing X, Lin S, Lu K, Li W, Lu J, Li M, Gao S, Lu S, Zhou D, Chen C, Xing B, Mao L. Root Hair Apex is the Key Site for Symplastic Delivery of Graphene into Plants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:12179-12189. [PMID: 35947795 DOI: 10.1021/acs.est.2c01926] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Uptake kinetics and delivery mechanisms of nanoparticles (NPs) in crop plants need to be urgently understood for the application of nanotechnology in agriculture as delivery systems for eco-friendly nanoagrochemicals. Here, we investigated the uptake kinetics, translocation pathway, and key internalization process of graphene in wheat (Triticum aestivum L.) by applying three specific hydroponic cultivation methods (submerging, hanging, and split-root). Quantification results on the uptake of carbon-14 radiolabeled graphene in each tissue indicated that graphene could enter the root of wheat and further translocate to the shoot with a low delivery rate (<2%). Transmission electron microscopy (TEM) images showed that internalized graphene was transported to adjacent cells through the plasmodesmata, clearly indicating the symplastic pathway of graphene translocation. The key site for the introduction of graphene into root cells for translocation through the symplastic pathway is evidenced to be the apex of growing root hair, where the newly constructed primary cell wall is much thinner. The confirmation of uptake kinetics and delivery mechanisms is useful for the development of nanotechnology in sustainable agriculture, especially for graphene serving as the delivery vector for pesticides, genes, and sensors.
Collapse
Affiliation(s)
- Shipeng Dong
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| | - Xueping Jing
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| | - Sijie Lin
- College Environmental Science & Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China
| | - Kun Lu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| | - Wenfei Li
- National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China
| | - Jiajun Lu
- National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China
| | - Muzi Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| | - Shixiang Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| | - Shan Lu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Dongmei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Liang Mao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| |
Collapse
|
169
|
Li X, He F, Wang Z, Xing B. Roadmap of environmental health research on emerging contaminants: Inspiration from the studies on engineered nanomaterials. ECO-ENVIRONMENT & HEALTH (ONLINE) 2022; 1:181-197. [PMID: 38075596 PMCID: PMC10702922 DOI: 10.1016/j.eehl.2022.10.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/04/2022] [Accepted: 10/11/2022] [Indexed: 01/25/2024]
Abstract
Research on the environmental health of emerging contaminants is critical to understand their risks before causing severe harm. However, the low environmental concentrations, complex behaviors, and toxicology of emerging contaminants present enormous challenges for researchers. Here, we reviewed the research on the environmental health of engineered nanomaterials (ENMs), one of the typical emerging contaminants, to enlighten pathways for future research on emerging contaminants at their initial exploratory stage. To date, some developed pretreatment methods and detection technologies have been established for the determination of ENMs in natural environments. The mechanisms underlying the transfer and transformation of ENMs have been systematically explored in laboratory studies. The mechanisms of ENMs-induced toxicity have also been preliminarily clarified at genetic, cellular, individual, and short food chain levels, providing not only a theoretical basis for revealing the risk change and environmental health effects of ENMs in natural environments but also a methodological guidance for studying environmental health of other emerging contaminants. Nonetheless, due to the interaction of multiple environmental factors and the high diversity of organisms in natural environments, health effects observed in laboratory studies likely differ from those in natural environments. We propose a holistic approach and mesocosmic model ecosystems to systematically carry out environmental health research on emerging contaminants, obtaining data that determine the objectivity and accuracy of risk assessment.
Collapse
Affiliation(s)
- Xiaona Li
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi 214122, China
| | - Feng He
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi 214122, China
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi 214122, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States
| |
Collapse
|
170
|
Zhao J, Song R, Li H, Zheng Q, Li S, Liu L, Li X, Bai L, Liu K. New Formulation to Accelerate the Degradation of Pesticide Residues: Composite Nanoparticles of Imidacloprid and 24-Epibrassinolide. ACS OMEGA 2022; 7:29027-29037. [PMID: 36033692 PMCID: PMC9404473 DOI: 10.1021/acsomega.2c02820] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
Pest control effectiveness and residues of pesticides are contradictory concerns in agriculture and environmental conservation. On the premise of not affecting the insecticidal effect, the pesticide residues in the later stage should be degraded as fast as possible. In the present study, composite nanoparticles in a double-layer structure, consisting of imidacloprid (IMI) in the outer layer and plant hormone 24-epibrassinolide (24-EBL) in the inner layer, were prepared by the W/O/W solvent evaporation method using Eudragit RL/RS and polyhydroxyalkanoate as wall materials. The release of IMI in the outer layer was faster and reached the maximum within 24 h, while the release of 24-EBL in the inner layer was slower and reached the maximum within 96 h. The contact angle of the composite nanoparticles was half that of the 5% IMI emulsifiable concentrate (EC), and the deposition of composite nanoparticles on rice was twice that of 5% IMI EC, which increased the pesticide utilization efficiency. Compared with the common pesticide, 5% IMI EC, the insecticidal effect of the composite nanoparticles was stronger than that of planthoppers, with a much lower final residue amount on rice after 21 days. The composite nanoparticles prepared in this study to achieve sustained release of pesticides and, meanwhile, accelerate the degradation of pesticide residues have a strong application potential in agriculture for controlling pests and promoting crop growth.
Collapse
Affiliation(s)
- Jingyu Zhao
- College
of Plant Protection, Hunan Agricultural
University, Changsha 410128, China
| | - Rong Song
- Institute
of Agricultural Environment and Ecology, Hunan academy of Agricultural Sciences, Changsha 410125, China
| | - Hui Li
- Department
of Crop and Soil Sciences, North Carolina
State University, Raleigh, North Carolina 27695, United States
| | - Qianqi Zheng
- College
of Plant Protection, Hunan Agricultural
University, Changsha 410128, China
| | - Shaomei Li
- College
of Plant Protection, Hunan Agricultural
University, Changsha 410128, China
| | - Lejun Liu
- College
of Plant Protection, Hunan Agricultural
University, Changsha 410128, China
| | - Xiaogang Li
- College
of Plant Protection, Hunan Agricultural
University, Changsha 410128, China
| | - Lianyang Bai
- College
of Plant Protection, Hunan Agricultural
University, Changsha 410128, China
- Key
Laboratory for Biology and Control of Weeds, Hunan Agricultural Biotechnology
Research Institute, Hunan Academy of Agricultural
Sciences, Changsha 410125, China
| | - Kailin Liu
- College
of Plant Protection, Hunan Agricultural
University, Changsha 410128, China
- Key
Laboratory for Biology and Control of Weeds, Hunan Agricultural Biotechnology
Research Institute, Hunan Academy of Agricultural
Sciences, Changsha 410125, China
| |
Collapse
|
171
|
Gao R, Xu L, Sun M, Xu M, Hao C, Guo X, Colombari FM, Zheng X, Král P, de Moura AF, Xu C, Yang J, Kotov NA, Kuang H. Site-selective proteolytic cleavage of plant viruses by photoactive chiral nanoparticles. Nat Catal 2022. [DOI: 10.1038/s41929-022-00823-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
172
|
Takeshita V, Carvalho LB, Galhardi JA, Munhoz-Garcia GV, Pimpinato RF, Oliveira HC, Tornisielo VL, Fraceto LF. Development of a Preemergent Nanoherbicide: From Efficiency Evaluation to the Assessment of Environmental Fate and Risks to Soil Microorganisms. ACS NANOSCIENCE AU 2022; 2:307-323. [PMID: 37102067 PMCID: PMC10125138 DOI: 10.1021/acsnanoscienceau.1c00055] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Nanoparticles based on biodegradable polymers have been shown to be excellent herbicide carriers, improving weed control and protecting the active ingredient in the crop fields. Metribuzin is often found in natural waters, which raises environmental concerns. Nanoencapsulation of this herbicide could be an alternative to reduce its losses to the environment and improve gains in its efficiency. However, there is a paucity of information about the behavior of nanoformulations of herbicides in environmental matrices. In this study, the stability of nanoencapsulated metribuzin in polymeric nanoparticles (nanoMTZ) was verified over time, as well as its dissipation in different soils, followed by the effects on soil enzymatic activity. The physiological parameters and control effects of nanoMTZ on Ipomoea grandifolia plants were investigated. No differences were verified in the half-life of nanoencapsulated metribuzin compared to a commercial formulation of the herbicide. Moreover, no suppressive effects on soil enzymatic activities were observed. The retention of nanoMTZ in the tested soils was lower compared to its commercial analogue. However, the mobility of nanoencapsulated metribuzin was not greatly increased, reflecting a low risk of groundwater contamination. Weed control was effective even at the lowest dose of nanoMTZ (48 g a.i. ha-1), which was consistent with the higher efficiency of nanoMTZ compared to the conventional herbicide in inhibiting PSII activity and decreasing pigment levels. Overall, we verified that nanoMTZ presented a low environmental risk, with increased weed control.
Collapse
Affiliation(s)
- Vanessa Takeshita
- Center
of Nuclear Energy in Agriculture, University
of São Paulo, Av. Centenário 303, 13400-970 Piracicaba, SP, Brazil
| | - Lucas Bragança Carvalho
- Institute
of Science and Technology, São Paulo
State University (UNESP), Av. Três de Março
511, 18087-180 Sorocaba, SP, Brazil
| | - Juliana Aparecida Galhardi
- Institute
of Science and Technology, São Paulo
State University (UNESP), Av. Três de Março
511, 18087-180 Sorocaba, SP, Brazil
| | | | - Rodrigo Floriano Pimpinato
- Center
of Nuclear Energy in Agriculture, University
of São Paulo, Av. Centenário 303, 13400-970 Piracicaba, SP, Brazil
| | - Halley Caixeta Oliveira
- Department
of Animal and Plant Biology, State University
of Londrina, PR 445,
km 380, 86057-970 Londrina, PR, Brazil
| | - Valdemar Luiz Tornisielo
- Center
of Nuclear Energy in Agriculture, University
of São Paulo, Av. Centenário 303, 13400-970 Piracicaba, SP, Brazil
| | - Leonardo Fernandes Fraceto
- Institute
of Science and Technology, São Paulo
State University (UNESP), Av. Três de Março
511, 18087-180 Sorocaba, SP, Brazil
| |
Collapse
|
173
|
Demir E, Kansız S, Doğan M, Topel Ö, Akkoyunlu G, Kandur MY, Turna Demir F. Hazard Assessment of the Effects of Acute and Chronic Exposure to Permethrin, Copper Hydroxide, Acephate, and Validamycin Nanopesticides on the Physiology of Drosophila: Novel Insights into the Cellular Internalization and Biological Effects. Int J Mol Sci 2022; 23:ijms23169121. [PMID: 36012388 PMCID: PMC9408976 DOI: 10.3390/ijms23169121] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/07/2022] [Accepted: 08/09/2022] [Indexed: 12/23/2022] Open
Abstract
New insights into the interactions between nanopesticides and edible plants are required in order to elucidate their impacts on human health and agriculture. Nanopesticides include formulations consisting of organic/inorganic nanoparticles. Drosophila melanogaster has become a powerful model in genetic research thanks to its genetic similarity to mammals. This project mainly aimed to generate new evidence for the toxic/genotoxic properties of different nanopesticides (a nanoemulsion (permethrin nanopesticides, 20 ± 5 nm), an inorganic nanoparticle as an active ingredient (copper(II) hydroxide [Cu(OH)2] nanopesticides, 15 ± 6 nm), a polymer-based nanopesticide (acephate nanopesticides, 55 ± 25 nm), and an inorganic nanoparticle associated with an organic active ingredient (validamycin nanopesticides, 1177 ± 220 nm)) and their microparticulate forms (i.e., permethrin, copper(II) sulfate pentahydrate (CuSO4·5H2O), acephate, and validamycin) widely used against agricultural pests, while also showing the merits of using Drosophila—a non-target in vivo eukaryotic model organism—in nanogenotoxicology studies. Significant biological effects were noted at the highest doses of permethrin (0.06 and 0.1 mM), permethrin nanopesticides (1 and 2.5 mM), CuSO4·5H2O (1 and 5 mM), acephate and acephate nanopesticides (1 and 5 mM, respectively), and validamycin and validamycin nanopesticides (1 and 2.5 mM, respectively). The results demonstrating the toxic/genotoxic potential of these nanopesticides through their impact on cellular internalization and gene expression represent significant contributions to future nanogenotoxicology studies.
Collapse
Affiliation(s)
- Eşref Demir
- Medical Laboratory Techniques Program, Vocational School of Health Services, Department of Medical Services and Techniques, Antalya Bilim University, Antalya 07190, Turkey
- Correspondence: ; Tel.: +90-242-245-0088; Fax: +90-242-245-0100
| | - Seyithan Kansız
- Faculty of Science, Department of Chemistry, Akdeniz University, Antalya 07070, Turkey
- Faculty of Science, Department of Chemistry, Ankara University, Ankara 07100, Turkey
| | - Mehmet Doğan
- Faculty of Medicine, Department of Histology and Embryology, Akdeniz University, Antalya 07070, Turkey
- Department of Histology and Embryology, Faculty of Medicine, Kırklareli University, Kırklareli 39100, Turkey
| | - Önder Topel
- Faculty of Science, Department of Chemistry, Akdeniz University, Antalya 07070, Turkey
| | - Gökhan Akkoyunlu
- Faculty of Medicine, Department of Histology and Embryology, Akdeniz University, Antalya 07070, Turkey
| | - Muhammed Yusuf Kandur
- Industrial Biotechnology and Systems Biology Research Group, Faculty of Engineering, Department of Bioengineering, Marmara University, İstanbul 34854, Turkey
| | - Fatma Turna Demir
- Medical Laboratory Techniques Program, Vocational School of Health Services, Department of Medical Services and Techniques, Antalya Bilim University, Antalya 07190, Turkey
| |
Collapse
|
174
|
Torres R, Diz VE, Lagorio MG. Improved photosynthetic performance induced by Fe 3O 4 nanoparticles. PHOTOCHEMICAL & PHOTOBIOLOGICAL SCIENCES : OFFICIAL JOURNAL OF THE EUROPEAN PHOTOCHEMISTRY ASSOCIATION AND THE EUROPEAN SOCIETY FOR PHOTOBIOLOGY 2022; 21:1931-1946. [PMID: 35939255 DOI: 10.1007/s43630-022-00269-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 07/07/2022] [Indexed: 11/26/2022]
Abstract
Interaction between 11 nm-sized magnetite nanoparticles and Cichorium intybus plants was studied in this work. In particular, the effect of these nanoparticles on the photosynthesis electron chain was carefully analysed. Magnetite nanoparticles were synthesised and physically characterised by Transmission electron microscopy (TEM), Scanning electron microscopy (SEM)), Energy-dispersive X-ray spectroscopy (EDS), Fourier transform infrared spectroscopy (FTIR), Magnetic hysteresis cycles and UV-visible spectroscopy. Suspensions of the obtained magnetite nanoparticles with different concentrations (10-1000 ppm) were sprayed over chicory leaves and their photosynthetic activity was evaluated using chlorophyll fluorescence techniques. The study was complemented with the determination of pigment concentration and spectral reflectance indices. The whole set of results was compared to those obtained for control (non-treated) plants. Magnetite nanoparticles caused an increment in the content of Chlorophyll a (up to 36%) and Chlorophyll b (up to 41%). The ratio Chlorophyll/ Carotenoids significantly increased (up to 29%) and the quotient Chlorophyll a/b remained relatively constant, except for a sharp increase (19%) at 100 ppm. The reflectance index that best manifested the improvement in chlorophyll content was the modified Normalised Difference Vegetation Index (mNDI), with a maximum increase of about 35%. Electronic transport fluxes were favoured and the photosynthetic parameters derived from Kautsky's kinetics were improved. An optimal concentration of nanoparticles (100 ppm) for the most beneficial effects on photosynthesis was identified. For this dose, the probability by which a trapped electron in PSII was transferred up to PSI acceptors (ΦRE0) was doubled and the parameter that quantifies the energy conservation of photons absorbed by PSII up to the reduction of PSI acceptors ([Formula: see text]), augmented five times. The fraction of absorbed energy used for photosynthesis increased to 86% and the energy lost as heat by the non-photochemical quenching mechanism was reduced to 31%. Beyond 100 ppm, photosynthetic parameters declined but remained above the values of the control.
Collapse
Affiliation(s)
- Rocio Torres
- CONICET, Universidad de Buenos Aires, INQUIMAE, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Dpto. de Química Inorgánica, Analítica y Química Física, Ciudad Universitaria, Pabellón II, 1er piso, C1428EHA, Buenos Aires, Argentina
| | - Virginia Emilse Diz
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Dpto. de Química Inorgánica, Analítica y Química Física, Ciudad Universitaria, Pabellón II, 1er piso, C1428EHA, Buenos Aires, Argentina
| | - María Gabriela Lagorio
- CONICET, Universidad de Buenos Aires, INQUIMAE, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina.
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Dpto. de Química Inorgánica, Analítica y Química Física, Ciudad Universitaria, Pabellón II, 1er piso, C1428EHA, Buenos Aires, Argentina.
| |
Collapse
|
175
|
Carmona FJ, Guagliardi A, Masciocchi N. Nanosized Calcium Phosphates as Novel Macronutrient Nano-Fertilizers. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2709. [PMID: 35957141 PMCID: PMC9370389 DOI: 10.3390/nano12152709] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 07/27/2022] [Accepted: 07/30/2022] [Indexed: 05/21/2023]
Abstract
The need for qualitatively and quantitatively enhanced food production, necessary for feeding a progressively increasing World population, requires the adoption of new and sustainable agricultural protocols. Among them, limiting the waste of fertilizers in the environment has become a global target. Nanotechnology can offer the possibility of designing and preparing novel materials alternative to conventional fertilizers, which are more readily absorbed by plant roots and, therefore, enhance nutrient use efficiency. In this context, during the last decade, great attention has been paid to calcium phosphate nanoparticles (CaP), particularly nanocrystalline apatite and amorphous calcium phosphate, as potential macronutrient nano-fertilizers with superior nutrient-use efficiency to their conventional counterparts. Their inherent content in macronutrients, like phosphorus, and gradual solubility in water have been exploited for their use as slow P-nano-fertilizers. Likewise, their large (specific) surfaces, due to their nanometric size, have been functionalized with additional macronutrient-containing species, like urea or nitrate, to generate N-nano-fertilizers with more advantageous nitrogen-releasing profiles. In this regard, several studies report encouraging results on the superior nutrient use efficiency showed by CaP nano-fertilizers in several crops than their conventional counterparts. Based on this, the advances of this topic are reviewed here and critically discussed, with special emphasis on the preparation and characterization approaches employed to synthesize/functionalize the engineered nanoparticles, as well as on their fertilization properties in different crops and in different (soil, foliar, fertigation and hydroponic) conditions. In addition, the remaining challenges in progress toward the real application of CaP as nano-fertilizers, involving several fields (i.e., agronomic or material science sectors), are identified and discussed.
Collapse
Affiliation(s)
- Francisco J. Carmona
- Departamento de Química Inorgánica, Universidad de Granada, Av. Fuentenueva S/N, 18071 Granada, Spain
| | - Antonietta Guagliardi
- Institute of Crystallography and To.Sca.Lab., Consiglio Nazionale Delle Ricerche, Via Valleggio 11, 22100 Como, Italy
| | - Norberto Masciocchi
- Dipartimento di Scienza e Alta Tecnologia e To.Sca.Lab., Università dell’Insubria, Via Valleggio 11, 22100 Como, Italy
| |
Collapse
|
176
|
Zhi H, Zhou S, Pan W, Shang Y, Zeng Z, Zhang H. The Promising Nanovectors for Gene Delivery in Plant Genome Engineering. Int J Mol Sci 2022; 23:ijms23158501. [PMID: 35955636 PMCID: PMC9368765 DOI: 10.3390/ijms23158501] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 07/24/2022] [Accepted: 07/26/2022] [Indexed: 11/16/2022] Open
Abstract
Highly efficient gene delivery systems are essential for genetic engineering in plants. Traditional delivery methods have been widely used, such as Agrobacterium-mediated transformation, polyethylene glycol (PEG)-mediated delivery, biolistic particle bombardment, and viral transfection. However, genotype dependence and other drawbacks of these techniques limit the application of genetic engineering, particularly genome editing in many crop plants. There is a great need to develop newer gene delivery vectors or methods. Recently, nanomaterials such as mesoporous silica particles (MSNs), AuNPs, carbon nanotubes (CNTs), and layer double hydroxides (LDHs), have emerged as promising vectors for the delivery of genome engineering tools (DNA, RNA, proteins, and RNPs) to plants in a species-independent manner with high efficiency. Some exciting results have been reported, such as the successful delivery of cargo genes into plants and the generation of genome stable transgenic cotton and maize plants, which have provided some new routines for genome engineering in plants. Thus, in this review, we summarized recent progress in the utilization of nanomaterials for plant genetic transformation and discussed the advantages and limitations of different methods. Furthermore, we emphasized the advantages and potential broad applications of nanomaterials in plant genome editing, which provides guidance for future applications of nanomaterials in plant genetic engineering and crop breeding.
Collapse
Affiliation(s)
- Heng Zhi
- School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China; (H.Z.); (S.Z.); (W.P.)
- Institute of Advanced Agricultural Science, Peking University, Weifang 261000, China;
| | - Shengen Zhou
- School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China; (H.Z.); (S.Z.); (W.P.)
- Institute of Advanced Agricultural Science, Peking University, Weifang 261000, China;
| | - Wenbo Pan
- School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China; (H.Z.); (S.Z.); (W.P.)
- Institute of Advanced Agricultural Science, Peking University, Weifang 261000, China;
| | - Yun Shang
- Institute of Advanced Agricultural Science, Peking University, Weifang 261000, China;
| | - Zhanghua Zeng
- Institute of Environment and Sustainable Development in Agriculture, CAAS Chinese Academy of Agricultural Science, Beijing 100081, China;
| | - Huawei Zhang
- Institute of Advanced Agricultural Science, Peking University, Weifang 261000, China;
- Correspondence:
| |
Collapse
|
177
|
Barłóg P, Grzebisz W, Łukowiak R. Fertilizers and Fertilization Strategies Mitigating Soil Factors Constraining Efficiency of Nitrogen in Plant Production. PLANTS (BASEL, SWITZERLAND) 2022; 11:1855. [PMID: 35890489 PMCID: PMC9319167 DOI: 10.3390/plants11141855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
Fertilizer Use Efficiency (FUE) is a measure of the potential of an applied fertilizer to increase its impact on the uptake and utilization of nitrogen (N) present in the soil/plant system. The productivity of N depends on the supply of those nutrients in a well-defined stage of yield formation that are decisive for its uptake and utilization. Traditionally, plant nutritional status is evaluated by using chemical methods. However, nowadays, to correct fertilizer doses, the absorption and reflection of solar radiation is used. Fertilization efficiency can be increased not only by adjusting the fertilizer dose to the plant's requirements, but also by removing all of the soil factors that constrain nutrient uptake and their transport from soil to root surface. Among them, soil compaction and pH are relatively easy to correct. The goal of new the formulas of N fertilizers is to increase the availability of N by synchronization of its release with the plant demand. The aim of non-nitrogenous fertilizers is to increase the availability of nutrients that control the effectiveness of N present in the soil/plant system. A wide range of actions is required to reduce the amount of N which can pollute ecosystems adjacent to fields.
Collapse
|
178
|
Malandrakis AA, Kavroulakis N, Chrysikopoulos CV. Zinc nanoparticles: Mode of action and efficacy against boscalid-resistant Alternaria alternata isolates. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 829:154638. [PMID: 35314223 DOI: 10.1016/j.scitotenv.2022.154638] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/01/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
The antifungal potential of ZnO-NPs against Alternaria alternata isolates with reduced sensitivity to the succinate dehydrogenase inhibitor (SDHI) boscalid, resulting from target site modifications, was evaluated in vitro and in vivo. ZnO-NPs could effectively inhibit mycelial growth in a dose-dependent way in both boscalid (BOSC) sensitive (BOSC-S) and resistant (BOSC-R) isolates. The fungitoxic effect of ZnO-NPs against the pathogen was significantly enhanced when combined with boscalid compared to the individual treatments in all phenotype cases (BOSC-S/R) both in vitro and in vivo. Fungitoxic effect of ZnO-NPs could be, at least partly, attributed to zinc ion release as indicated by the positive correlation between sensitivities to the nanoparticles and their ionic counterpart ZnSO4 and the alleviation of the ZnO-NPs fungitoxic action in the presence of the strong chelating agent EDTA. The superior effectiveness of ZnO-NPs against A. alternata, compared to ZnSO4, could be due to nanoparticle properties interfering with cellular ion homeostasis mechanisms. The observed additive action of the oxidative phosphorylation-uncoupler fluazinam (FM) against all phenotypes indicates a possible role of ATP-dependent ion efflux mechanism in the mode of action of ZnO-NPs. A potential role of ROS production in the fungitoxic action of ZnO-NPs was evident by the additive/synergistic action of salicylhydroxamate (SHAM), which blocks the alternative oxidase antioxidant action. Mixture of ZnO-NPs and boscalid, resulting in a "capping" effect for the nanoparticles and significantly reducing their mean size, probably accounted for the synergistic effect of the mixture against both sensitive and resistant A. alternata isolates. Summarizing, results indicated that ZnO-NPs can be effectively used against A. alternata both alone or in combination with boscalid, providing an effective tool for combating SDHI-resistance and reducing the environmental fingerprint of synthetic fungicides.
Collapse
Affiliation(s)
| | - Nektarios Kavroulakis
- Hellenic Agricultural Organization "Demeter", Institute for Olive Tree, Subtropical Plants and Viticulture, Agrokipio-Souda, 73164 Chania, Greece
| | | |
Collapse
|
179
|
Basit F, Asghar S, Ahmed T, Ijaz U, Noman M, Hu J, Liang X, Guan Y. Facile synthesis of nanomaterials as nanofertilizers: a novel way for sustainable crop production. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:51281-51297. [PMID: 35614352 DOI: 10.1007/s11356-022-20950-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/16/2022] [Indexed: 05/27/2023]
Abstract
Nutrient fertilization plays a major role in improving crop productivity and maintaining soil fertility. In the last few decades, the productivity of current agricultural practices highly depends on the use of chemical fertilizers. Major drawback of traditional fertilizers is their low crop nutrient use efficiency and high loss into water. Nanomaterial in agriculture is a multipurpose tool for increasing growth, development, and yield of plants. Nanotechnology facilitates the amplifying of agriculture production by reducing relevant losses and improving the input efficiency. Nanotechnology has emerged as an attractive field of research and has various agriculture applications, especially the use of nano-agrochemicals to increase nutrient use efficiency and agricultural yield. Nanofertilizers are more effective as compared to chemical fertilizers due to their cost-efficient, eco-friendly, non-toxic, and more stable in nature. Overall, this chapter focuses on synthesis of nanofertilizers through physical, chemical, and biological methods. This chapter will also explore the use of nano-enabled fertilizers to enhance the nutrient use efficiency for sustainable crop production, and global food safety.
Collapse
Affiliation(s)
- Farwa Basit
- Institute of Crop Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, People's Republic of China
- Hainan Research Institute, Zhejiang University, Sanya, 572025, People's Republic of China
| | - Sana Asghar
- Institute of Crop Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, People's Republic of China
| | - Temoor Ahmed
- Institute of Crop Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, People's Republic of China
| | - Usman Ijaz
- Institute of Crop Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, People's Republic of China
| | - Muhammad Noman
- Institute of Crop Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, People's Republic of China
| | - Jin Hu
- Institute of Crop Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, People's Republic of China
- Hainan Research Institute, Zhejiang University, Sanya, 572025, People's Republic of China
| | - Xinqiang Liang
- Key Laboratory of Watershed Non-Point Source Pollution Control and Water Eco-Security of Ministry of Water Resources, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Yajing Guan
- Institute of Crop Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, People's Republic of China.
- Hainan Research Institute, Zhejiang University, Sanya, 572025, People's Republic of China.
| |
Collapse
|
180
|
Proença PL, Carvalho LB, Campos EV, Fraceto LF. Fluorescent labeling as a strategy to evaluate uptake and transport of polymeric nanoparticles in plants. Adv Colloid Interface Sci 2022; 305:102695. [PMID: 35598536 DOI: 10.1016/j.cis.2022.102695] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/05/2022] [Accepted: 05/08/2022] [Indexed: 11/01/2022]
Abstract
The use of biodegradable nanopolymers in agriculture offers an excellent alternative for the efficient delivery of agrochemicals that promote plant protection and development. However, tracking of these systems inside plants requires complex probe tagging strategies. In addition to providing a basis for better understanding such nanostructures to optimize delivery system design, these probes allow monitoring the migration of nanoparticles through plant tissues, and determine accumulation sites. Thus, these probes are powerful tools that can be used to quantify and visualize nanoparticle accumulation in plant cells and tissues. This review is an overview of the methods involved in labeling nanocarriers, mainly based on polymeric matrices, for the delivery of nanoagrochemicals and the recent advances in this field.
Collapse
|
181
|
Vallim JH, Clemente Z, Castanha RF, do Espírito Santo Pereira A, Campos EVR, Assalin MR, Maurer-Morelli CV, Fraceto LF, de Castro VLSS. Chitosan nanoparticles containing the insecticide dimethoate: A new approach in the reduction of harmful ecotoxicological effects. NANOIMPACT 2022; 27:100408. [PMID: 35659539 DOI: 10.1016/j.impact.2022.100408] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/19/2022] [Accepted: 05/22/2022] [Indexed: 06/15/2023]
Abstract
Organophosphate insecticides such as dimethoate (DMT) are widely used in agriculture. As a side effect, however, these insecticides contaminate bodies of water, resulting in damage to aquatic organisms. The development of nanopesticides may be an innovative alternative in the control of agricultural pests, increasing effectiveness and reducing their toxicological effects. Based upon this, the present study has investigated encapsulated DMT in alginate chitosan nanoparticles (nanoDMT) and evaluated its toxicological effects on non-target organisms. The nanoparticles were characterized by DLS, NTA and AFM, as well as being evaluated by the release profile. Nanoparticle toxicity was also evaluated in comparison with DMT, empty nanoparticles and DMT (NP + DMT), and commercial formulations (cDMT), in the embryos and larvae of Danio rerio (zebrafish) according to lethality, morphology, and behavior. The nanoparticle control (NP) showed hydrodynamic size values of 283 ± 4 nm, a PDI of 0.5 ± 0.05 and a zeta potential of -31 ± 0.4 mV. For nanoparticles containing dimethoate, the nanoparticles showed 301 ± 7 nm size values, a PDI of 0.45 ± 0.02, a zeta potential of -27.9 ± 0.2 mV, and an encapsulation of 75 ± 0.32%, with slow-release overtime (52% after 48 h). The AFM images showed that both types of nanoparticles showed spherical morphology. Major toxic effects on embryo larval development were observed in commercial dimethoate exposure followed by the technical pesticide, predominantly in the highest tested concentrations. With regard to the toxic effects of sodium alginate/chitosan, although there was an increase for LC50-96 h concerning the technical dimethoate, the behavior of the larvae was not affected. The data obtained demonstrate that nanoencapsulated dimethoate reduces the toxicity of insecticides on zebrafish larvae, suggesting that nanoencapsulation may be safer for non-target species, by eliminating collateral effects and thus promoting sustainable agriculture.
Collapse
Affiliation(s)
- José Henrique Vallim
- Embrapa Environment, Rod SP 340, km 127.5, 13918-110, Jaguariúna, São Paulo, Brazil
| | - Zaira Clemente
- Embrapa Environment, Rod SP 340, km 127.5, 13918-110, Jaguariúna, São Paulo, Brazil
| | | | - Anderson do Espírito Santo Pereira
- Department of Environmental Engineering, Sorocaba Institute of Science and Technology (ICTS), São Paulo State University (Unesp), Avenida Três de Março, 511, 18087-180, Sorocaba, São Paulo, Brazil
| | - Estefânia Vangelie Ramos Campos
- Department of Environmental Engineering, Sorocaba Institute of Science and Technology (ICTS), São Paulo State University (Unesp), Avenida Três de Março, 511, 18087-180, Sorocaba, São Paulo, Brazil
| | | | - Cláudia Vianna Maurer-Morelli
- Department of Translational Medicine, School of Medical Sciences, University of Campinas (Unicamp), 13087-883, Campinas, São Paulo, Brazil
| | - Leonardo Fernandes Fraceto
- Department of Environmental Engineering, Sorocaba Institute of Science and Technology (ICTS), São Paulo State University (Unesp), Avenida Três de Março, 511, 18087-180, Sorocaba, São Paulo, Brazil
| | | |
Collapse
|
182
|
Preisler AC, Carvalho LB, Saraiva-Santos T, Verri WA, Mayer JLS, Fraceto LF, Dalazen G, Oliveira HC. Interaction of Nanoatrazine and Target Organism: Evaluation of Fate and Photosystem II Inhibition in Hydroponically Grown Mustard ( Brassica juncea) Plants. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:7644-7652. [PMID: 35675570 DOI: 10.1021/acs.jafc.2c01601] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Poly(epsilon-caprolactone) nanoparticles are an efficient carrier system for atrazine. However, there is a gap regarding the effects of nanoencapsulation on herbicide-plant interactions. Here, we evaluate the fate and photosystem II inhibition of nano and commercial atrazine in hydroponically grown mustard (Brassica juncea) plants whose roots were exposed to the formulations. In addition, to quantify the endogenous levels of atrazine in plant organs, we measured the inhibition of photosystem II activity by both formulations. Moreover, the fluorescently labeled nanoatrazine was tracked in plant tissues using confocal microscopy. The nanoencapsulation induced greater inhibition of photosystem II activity as well as higher accumulation of atrazine in roots and leaves. The nanoparticles were quickly absorbed by the roots, being detected in the vascular tissues and the leaves. Overall, these results provide insights into the mechanisms involved in the enhanced preemergent herbicidal activity of nanoatrazine against target plants.
Collapse
Affiliation(s)
- Ana Cristina Preisler
- Department of Animal and Plant Biology, State University of Londrina (UEL), PR 445, Km 380, 86057-970 Londrina, Paraná, Brazil
- Department of Agronomy, State University of Londrina (UEL), PR 445, Km 380, 86057-970 Londrina, Paraná, Brazil
| | - Lucas Bragança Carvalho
- Institute of Science and Technology, São Paulo State University (UNESP), Av. Três de Março 511, 18087-180 Sorocaba, São Paulo, Brazil
| | - Telma Saraiva-Santos
- Department of Pathology, State University of Londrina (UEL), PR 445, Km 380, 86057-970 Londrina, Paraná, Brazil
| | - Waldiceu Aparecido Verri
- Department of Pathology, State University of Londrina (UEL), PR 445, Km 380, 86057-970 Londrina, Paraná, Brazil
| | - Juliana Lischka Sampaio Mayer
- Department of Plant Biology, Institute of Biology, University of Campinas (Unicamp), P.O. Box 6109, Campinas, São Paulo 13083-970, Brazil
| | - Leonardo Fernandes Fraceto
- Institute of Science and Technology, São Paulo State University (UNESP), Av. Três de Março 511, 18087-180 Sorocaba, São Paulo, Brazil
| | - Giliardi Dalazen
- Department of Agronomy, State University of Londrina (UEL), PR 445, Km 380, 86057-970 Londrina, Paraná, Brazil
| | - Halley Caixeta Oliveira
- Department of Animal and Plant Biology, State University of Londrina (UEL), PR 445, Km 380, 86057-970 Londrina, Paraná, Brazil
| |
Collapse
|
183
|
Liu Y, Huang Y, Liu J, Liu J. A temperature-responsive selenium nanohydrogel for strawberry grey mould management. J Mater Chem B 2022; 10:5231-5241. [PMID: 35748407 DOI: 10.1039/d2tb00345g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Grey mould is a fungal disease caused by Botrytis cinerea (B. cinerea), which can cause serious damage to a variety of crops. Herein, we developed iprodione (Ipr) reagent-loaded mesoporous selenium nanoparticles (MSe NPs), combined them with low-melting agarose (LA), and obtained a temperature-responsive selenium particle nanogel (Ipr@MSe@LA NPs) using a simple method. Importantly, Ipr@MSe@LA could capture B. cinerea and quickly be softened to realize the controlled release of Ipr, and effectively inhibit and kill B. cinerea. Plate-based antibacterial tests showed that the colony area of the Ipr@MSe@LA NPs was 4.27 cm-2, which was much smaller than that of the control (25 cm-2). In addition, the Ipr@MSe@LA NPs showed good biocompatibility, and they could improve the photosynthetic efficiency of plants and promote plant growth. Measurement of the fluorescence parameters showed that the maximum photochemical efficiency (Fv/Fm) of the plant leaves of the inoculated group (B. cinerea) is 0.58, but the Fv/Fm value of the Ipr@MSe@LA group is higher than 0.8. In particular, Ipr@MSe@LA NPs could prolong the storage time of strawberries, thereby preserving their freshness. Overall, Ipr@MSe@LA NPs exhibit excellent effects in terms of controlling strawberry gray mould and prolonging the fruit storage time, and this is expected to become a promising strategy for developing intelligent pesticide formulations.
Collapse
Affiliation(s)
- Yanan Liu
- Shenzhen Longhua Maternity and Child Healthcare Hospital, Shenzhen, 518110, China.
| | - Yuqin Huang
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou, 511436, China.
| | - Jiawei Liu
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou, 511436, China.
| | - Jie Liu
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou, 511436, China.
| |
Collapse
|
184
|
Insights into Nanopesticides for Ticks: The Superbugs of Livestock. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7411481. [PMID: 35720185 PMCID: PMC9200545 DOI: 10.1155/2022/7411481] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 05/10/2022] [Indexed: 12/26/2022]
Abstract
Livestock is an integral part of agriculture countries where ticks play significant role as potent pests causing considerable losses to economy and health. Drug resistance has made these pests supersede conventional therapies and control programs Nanotechnology here comes as an advancing and significant candidate alternatively able to reverse drug resistance. Nanoparticles, hence, against ticks may better be considered as nanopesticides that act in ways other than conventional drug efficacies. The methods of nanoparticles production include green synthesis, chemical synthesis, and arthropod-based synthesis. Pros and cons of these nanopesticides are by no means neglectable. Studies are fewer than needed to comprehensively discuss nanopesticides. Current review thus systematically covers aspects of ticks as livestock pests, their drug resistance, advent of nanotechnology against pests, their production methodologies, mechanisms of actions of ticks, and current limitations. This review opens several avenues for further research on nanoparticles as nanopesticides against ticks.
Collapse
|
185
|
Parada J, Díaz M, Hermosilla E, Vera J, Tortella G, Seabra AB, Quiroz A, Hormazábal E, Rubilar O. Synthesis and Antibacterial Activity of Manganese-Ferrite/Silver Nanocomposite Combined with Two Essential Oils. NANOMATERIALS 2022; 12:nano12132137. [PMID: 35807973 PMCID: PMC9268028 DOI: 10.3390/nano12132137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 12/14/2022]
Abstract
The antimicrobial activity of metal nanoparticles obtained by biogenic routes has been extensively reported. However, their combined use with other antimicrobial formulations, such as essential oils, remains scarcely explored. In this work, a manganese-ferrite/silver nanocomposite (MnFe2O4/Ag-NC) was synthesized in a two-step procedure: first, MnFe2O4 nanoparticles were produced by a coprecipitation method, followed by in situ biogenic reduction of silver ions using Galega officinalis. MnFe2O4/Ag-NC was characterized using transmission electron microscopy (TEM), scanning electron microscopy equipped with an energy dispersive X-ray analyzer (SEM-EDX), and a vibrating sample magnetometer (VSM-SQUID). The antibacterial activity if MnFe2O4/Ag-NC was evaluated against Pseudomonas syringae by determining its minimum inhibitory concentration (MIC) in the presence of two essential oils: eucalyptus oil (EO) and garlic oil (GO). The fractional inhibitory concentration (FIC) was also calculated to determine the interaction between MnFe2O4/Ag-NC and each oil. The MIC of MnFe2O4/Ag-NC was eightfold reduced with the two essential oils (from 20 to 2.5 µg mL−1). However, the interaction with EO was synergistic (FIC: 0.5), whereas the interaction with GO was additive (FIC: 0.75). Additionally, a time-kill curve analysis was performed, wherein the MIC of the combination of MnFe2O4/Ag-NC and EO provoked a rapid bactericidal effect, corroborating a strong synergism. These findings suggest that by combining MnFe2O4/Ag-NC with essential oils, the necessary ratio of the nanocomposite to control phytopathogens can be reduced, thus minimizing the environmental release of silver.
Collapse
Affiliation(s)
- Javiera Parada
- Chemical Engineering Department, Universidad de La Frontera, Temuco P.O. Box 54-D, Chile; (J.P.); (E.H.); (G.T.)
- Biotechnological Research Center Applied to the Environment (CIBAMA-BIOREN), Universidad de La Frontera, Temuco P.O. Box 54-D, Chile; (M.D.); (J.V.)
| | - Marcela Díaz
- Biotechnological Research Center Applied to the Environment (CIBAMA-BIOREN), Universidad de La Frontera, Temuco P.O. Box 54-D, Chile; (M.D.); (J.V.)
| | - Edward Hermosilla
- Chemical Engineering Department, Universidad de La Frontera, Temuco P.O. Box 54-D, Chile; (J.P.); (E.H.); (G.T.)
- Biotechnological Research Center Applied to the Environment (CIBAMA-BIOREN), Universidad de La Frontera, Temuco P.O. Box 54-D, Chile; (M.D.); (J.V.)
| | - Joelis Vera
- Biotechnological Research Center Applied to the Environment (CIBAMA-BIOREN), Universidad de La Frontera, Temuco P.O. Box 54-D, Chile; (M.D.); (J.V.)
- Programa de Doctorado en Ciencias de la Ingeniería, Universidad de La Frontera, Temuco P.O. Box 54-D, Chile
| | - Gonzalo Tortella
- Chemical Engineering Department, Universidad de La Frontera, Temuco P.O. Box 54-D, Chile; (J.P.); (E.H.); (G.T.)
- Biotechnological Research Center Applied to the Environment (CIBAMA-BIOREN), Universidad de La Frontera, Temuco P.O. Box 54-D, Chile; (M.D.); (J.V.)
| | - Amedea B. Seabra
- Center for Natural and Human Sciences, Federal University of ABC (UFABC), Santo André 09210-580, Brazil;
| | - Andrés Quiroz
- Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Temuco P.O. Box 54-D, Chile; (A.Q.); (E.H.)
| | - Emilio Hormazábal
- Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Temuco P.O. Box 54-D, Chile; (A.Q.); (E.H.)
| | - Olga Rubilar
- Chemical Engineering Department, Universidad de La Frontera, Temuco P.O. Box 54-D, Chile; (J.P.); (E.H.); (G.T.)
- Biotechnological Research Center Applied to the Environment (CIBAMA-BIOREN), Universidad de La Frontera, Temuco P.O. Box 54-D, Chile; (M.D.); (J.V.)
- Correspondence:
| |
Collapse
|
186
|
Safdar M, Kim W, Park S, Gwon Y, Kim YO, Kim J. Engineering plants with carbon nanotubes: a sustainable agriculture approach. J Nanobiotechnology 2022; 20:275. [PMID: 35701848 PMCID: PMC9195285 DOI: 10.1186/s12951-022-01483-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 05/25/2022] [Indexed: 01/12/2023] Open
Abstract
Sustainable agriculture is an important conception to meet the growing food demand of the global population. The increased need for adequate and safe food, as well as the ongoing ecological destruction associated with conventional agriculture practices are key global challenges. Nanomaterials are being developed in the agriculture sector to improve the growth and protection of crops. Among the various engineered nanomaterials, carbon nanotubes (CNTs) are one of the most promising carbon-based nanomaterials owing to their attractive physiochemical properties such as small size, high surface area, and superior mechanical and thermal strength, offering better opportunities for agriculture sector applications. This review provides basic information about CNTs, including their history; classification; and electrical, thermal, and mechanical properties, with a focus on their applications in the agriculture field. Furthermore, the mechanisms of the uptake and translocation of CNTs in plants and their defense mechanisms against environmental stresses are discussed. Finally, the major shortcomings, threats, and challenges of CNTs are assessed to provide a broad and clear view of the potential and future directions for CNT-based agriculture applications to achieve the goal of sustainability.
Collapse
Affiliation(s)
- Mahpara Safdar
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea.,Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea.,Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Woochan Kim
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea.,Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea.,Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Sunho Park
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea.,Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea.,Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Yonghyun Gwon
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea.,Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea.,Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Yeon-Ok Kim
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea.
| | - Jangho Kim
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea. .,Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea. .,Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
187
|
Ali SA, Khairy M, Ibrahim AA, Zohry NMH. Black seed and rosemary nanoformulations as green insecticides for the granary weevil, Sitophilus granarius (L.) (Coleoptera: Curculionidae). J Food Sci 2022; 87:3095-3106. [PMID: 35638325 DOI: 10.1111/1750-3841.16186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 03/19/2022] [Accepted: 04/20/2022] [Indexed: 11/26/2022]
Abstract
The development of nano-insecticides has attracted much interest in the last decade because it has the potential to result in an alternative pest-management strategy and also reduce the risk of chemically based insecticides. Herein, native rosemary (Rosmarinus officinalis) and black seed (Nigella sativa) oils were utilized for preparing their nanoemulsions by spontaneous emulsification method in the presence of tween 80 as a structure-directing agent. The prepared nanoemulsions were explored for granary weevil, Sitophilus granarius (L.), adults control and compared with their oils. Within the typical droplet sizes of 100 and 224 nm, both rosemary and black seed nanoemulsions were found to be physically and thermodynamically stable. The insecticidal activity of the nanoemulsions was higher than that of the crude oils. After 24 h of exposure, the LD50 values of rosemary and black seed nanoemulsions were estimated to be 102.56 and 35.08 µg/g, respectively, compared to 188.95 and 210.09 µg/g of their oils. These results revealed that the droplet size and chemical composition of the nanoemulsion are the significant factors that affect their toxicity. Surprisingly, the nanoemulsions had no effect on seed germination at LD50 or even LD99 . The utilization of such nanoformulations might open up a new avenue for ecofriendly pest control that is not damaging to humans or the environment, as well as a growing agricultural economy. PRACTICAL APPLICATION: The loss of cereals in postharvesting is one of the major challenges in the world because up to 50% of harvested grains might be destroyed. The intensive usage of chemicals caused harmful effects on humans and the environment. Thus, we prepared rosemary and black seed nanoemulsions and applied them for the grain weevil, S. granarius, control. The results showed superior toxicological efficacy without any effects on seed germination compared with their native oils. Such green strategy could be used instead of chemical insecticides to be environmentally safe for animals and humans.
Collapse
Affiliation(s)
- Salwa A Ali
- Department of Zoology, Faculty of Science, Sohag University, Sohag, Egypt
| | - Mohamed Khairy
- Chemistry Department, Faculty of Science, Sohag University, Sohag, Egypt
| | | | - Nasra M H Zohry
- Department of Zoology, Faculty of Science, Sohag University, Sohag, Egypt
| |
Collapse
|
188
|
Machado TO, Grabow J, Sayer C, de Araújo PHH, Ehrenhard ML, Wurm FR. Biopolymer-based nanocarriers for sustained release of agrochemicals: A review on materials and social science perspectives for a sustainable future of agri- and horticulture. Adv Colloid Interface Sci 2022; 303:102645. [PMID: 35358807 DOI: 10.1016/j.cis.2022.102645] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/04/2022] [Accepted: 03/17/2022] [Indexed: 11/20/2022]
Abstract
Devastating plant diseases and soil depletion rationalize an extensive use of agrochemicals to secure the food production worldwide. The sustained release of fertilizers and pesticides in agriculture is a promising solution to the eco-toxicological impacts and it might reduce the amount and increase the effectiveness of agrochemicals administration in the field. This review article focusses on carriers with diameters below 1 μm, such as capsules, spheres, tubes and micelles that promote the sustained release of actives. Biopolymer nanocarriers represent a potentially environmentally friendly alternative due to their renewable origin and biodegradability, which prevents the formation of microplastics. The social aspects, economic potential, and success of commercialization of biopolymer based nanocarriers are influenced by the controversial nature of nanotechnology and depend on the use case. Nanotechnology's enormous innovative power is only able to unfold its potential to limit the effects of climate change and to counteract current environmental developments if the perceived risks are understood and mitigated.
Collapse
Affiliation(s)
- Thiago O Machado
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, PO Box 476, Florianópolis, SC 88040-900, Brazil
| | - Justin Grabow
- Sustainable Polymer Chemistry Group, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, Universiteit Twente, PO Box 217, 7500 AE Enschede, The Netherlands; Faculty of Behavioural Management and Social Sciences, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands
| | - Claudia Sayer
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, PO Box 476, Florianópolis, SC 88040-900, Brazil
| | - Pedro H H de Araújo
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, PO Box 476, Florianópolis, SC 88040-900, Brazil
| | - Michel L Ehrenhard
- Faculty of Behavioural Management and Social Sciences, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands.
| | - Frederik R Wurm
- Sustainable Polymer Chemistry Group, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, Universiteit Twente, PO Box 217, 7500 AE Enschede, The Netherlands.
| |
Collapse
|
189
|
Stability Phenomena Associated with the Development of Polymer-Based Nanopesticides. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5766199. [PMID: 35509832 PMCID: PMC9060970 DOI: 10.1155/2022/5766199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/14/2022] [Accepted: 04/01/2022] [Indexed: 12/16/2022]
Abstract
Pesticides have been used in agricultural activity for decades because they represent the first defense against pathogens, harmful insects, and parasitic weeds. Conventional pesticides are commonly employed at high dosages to prevent their loss and degradation, guaranteeing effectiveness; however, this results in a large waste of resources and significant environmental pollution. In this regard, the search for biocompatible, biodegradable, and responsive materials has received greater attention in the last years to achieve the obtention of an efficient and green pesticide formulation. Nanotechnology is a useful tool to design and develop “nanopesticides” that limit pest degradation and ensure a controlled release using a lower concentration than the conventional methods. Besides different types of nanoparticles, polymeric nanocarriers represent the most promising group of nanomaterials to improve the agrochemicals’ sustainability due to polymers’ intrinsic properties. Polymeric nanoparticles are biocompatible, biodegradable, and suitable for chemical surface modification, making them attractive for pesticide delivery. This review summarizes the current use of synthetic and natural polymer-based nanopesticides, discussing their characteristics and their most common design shapes. Furthermore, we approached the instability phenomena in polymer-based nanopesticides and strategies to avoid it. Finally, we discussed the environmental risks and future challenges of polymeric nanopesticides to present a comprehensive analysis of this type of nanosystem.
Collapse
|
190
|
Liu Y, Cao X, Yue L, Wang C, Tao M, Wang Z, Xing B. Foliar-applied cerium oxide nanomaterials improve maize yield under salinity stress: Reactive oxygen species homeostasis and rhizobacteria regulation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 299:118900. [PMID: 35085650 DOI: 10.1016/j.envpol.2022.118900] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/08/2022] [Accepted: 01/22/2022] [Indexed: 05/04/2023]
Abstract
Salinity stress seriously threatens agricultural productivity and food security worldwide. This work reports on the mechanisms of alleviating salinity stress by cerium oxide nanomaterials (CeO2 NMs) in maize (Zea may L.). Soil-grown maize plants were irrigated with deionized water or 100 mM NaCl solution as the control or the salinity stress treatment. CeO2 NMs (1, 5, 10, 20, and 50 mg/L) with antioxidative enzyme mimicking activities were foliarly applied on maize leaves for 7 days. The morphological, physiological, biochemical, and transcriptomic responses of maize were evaluated. Specifically, salinity stress significantly reduced 59.0% and 63.8% in maize fresh and dry biomass, respectively. CeO2 NMs at 10, 20, and 50 mg/L improved the salt tolerance of maize by 69.5%, 69.1%, and 86.8%, respectively. Also, 10 mg/L CeO2 NMs maintained Na+/K+ homeostasis, enhanced photosynthetic efficiency by 30.8%, and decreased reactive oxygen species (ROS) level by 58.5% in salt-stressed maize leaves. Transcriptomic analysis revealed that the antioxidative defense system-related genes recovered to the normal control level after CeO2 NMs application, indicating that CeO2 NMs eliminated ROS through their intrinsic antioxidative enzyme properties. The down-regulation of genes related to lignin synthesis in the phenylpropanoid biosynthesis pathway accelerated leaf cell elongation. In addition, CeO2 NMs increased the rhizobacteria richness and diversity through the increment of carbon source in root exudates and improved the abundance of halotolerant plant growth-promoting rhizobacteria (HT-PGPR). Importantly, the yield of salt-stressed maize was enhanced by 293.3% after 10 mg/L CeO2 NMs foliar application. These results will provide new insights for the application of CeO2 NMs in management to reduce the salinity-caused crop loss.
Collapse
Affiliation(s)
- Yinglin Liu
- Institute of Environmental Processes and Pollution Control, School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Xuesong Cao
- Institute of Environmental Processes and Pollution Control, School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Le Yue
- Institute of Environmental Processes and Pollution Control, School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Chuanxi Wang
- Institute of Environmental Processes and Pollution Control, School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Mengna Tao
- Institute of Environmental Processes and Pollution Control, School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, 214122, China.
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, 01003, United States
| |
Collapse
|
191
|
Toxicity Assessment and Control of Early Blight and Stem Rot of Solanum tuberosum L. by Mancozeb-Loaded Chitosan–Gum Acacia Nanocomposites. J Xenobiot 2022; 12:74-90. [PMID: 35466214 PMCID: PMC9036208 DOI: 10.3390/jox12020008] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/28/2022] [Accepted: 04/12/2022] [Indexed: 12/23/2022] Open
Abstract
Biopolymers such as chitosan and gum acacia are used for nanotechnological applications due to their biosafety and ecofriendly nature. The commercial fungicide mancozeb (M) was loaded into chitosan–gum acacia (CSGA) polymers to form nanocomposite (NC) CSGA-M (mancozeb-loaded) measuring 363.6 nm via the ionic gelation and polyelectrolyte complexation method. The physico-chemical study of nano CSGA-M was accomplished using dynamic light scattering (DLS), scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray diffraction (XRD), and thermogravimetric analysis (TGA). Nano CSGA-M-1.0 (containing 1.0 mg/mL mancozeb) at 1.5 ppm demonstrated a maximum inhibition (83.8 ± 0.7%) against Alternaria solani, while Sclerotinia sclerotiorum exhibited a 100% inhibition at 1.0 and 1.5 ppm through the mycelium inhibition method. Commercial mancozeb showed an inhibition of 84.6 ± 0% and 100%, respectively, for both fungi. In pot house conditions, NCs were found to exhibit good antimicrobial activity. Disease control efficiency (DCE, in %) in pathogen-treated plants for CSGA-M-1.0 was 64.6 ± 5.0 and 60.2 ± 1.4% against early blight and stem rot diseases, respectively. NCs showed lower cytotoxicity than commercial mancozeb at the given concentration. In conclusion, both in vitro and in vivo antifungal efficacy for nano CSGA-M was found to be quite comparable but less toxic than mancozeb to Vero cell lines; thus, in the future, this formulation may be used for sustainable agriculture.
Collapse
|
192
|
Public Perceptions and Willingness-to-Pay for Nanopesticides. NANOMATERIALS 2022; 12:nano12081292. [PMID: 35458000 PMCID: PMC9027587 DOI: 10.3390/nano12081292] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 12/24/2022]
Abstract
The usage of pesticides is deemed essential to ensure crop production for global food security. Conventional chemical pesticides have significant effects on ecosystems. Nanopesticides are increasingly considered an emerging alternative due to their higher efficiency and lower environmental impacts. However, large knowledge gaps exist in the public perceptions and willingness-to-pay (WTP) for nanopesticides. Thus, we conducted a regional survey of pesticide users and food consumers on perceptions and WTP for nanopesticides across China. We found that 97.4% pesticide users were willing to pay for nanopesticides, with a main price from 25% to 40% higher than for conventional pesticides. Experience with applying pesticides, income, familiarity with and attitude toward nanopesticides, and trust in industries were significant determinants of WTP. Although the public were not familiar with nanopesticides, they had positive attitudes toward their future development and supported labeling nanoscale ingredients on products. Pesticide users presented high trust levels in governments and industries, while 34% of food consumers neutrally or distrusted industries in selling and production. This study highlights the socioeconomic and technological aspects of nanopesticides, which could provide guidance for industries to develop market strategies and for governments to design relevant regulation policies effectively, contributing to crop yield improvement and sustainable agriculture.
Collapse
|
193
|
Liu Y, Wang G, Qin Y, Chen L, Zhou C, Qiao L, Liu H, Jia C, Lei J, Ji Y. Sustainable nano-pesticide platform based on Pyrethrins II for prevention and control Monochamus alternatus. J Nanobiotechnology 2022; 20:183. [PMID: 35399073 PMCID: PMC8996642 DOI: 10.1186/s12951-022-01409-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 04/03/2022] [Indexed: 11/18/2022] Open
Abstract
Background Pine wilt disease as a devastating forest disaster result from Bursaphelenchus xylophilus that spread by stem-borers Monochamus alternatus feeding on pine leaves, which has brought inestimable economic losses to the world's forestry due to lack of effective prevention and control measures. In this paper, we put forward a proposal for utilizing nanoHKUST-1 to encapusulate the Pyrethrins II that a nerve agent extracted from plant to control M. alternatus, including toxicity mechanism research, traceable biopesticide monitoring, and environment assessment for the first time. The highly biocompatible nanoHKUST-1 can solve the problems of poor water solubility, easy degradation and low control efficiency of Pyrethrins II. Results The results illustrated the biopesticide loading efficiency of PthII@HKUST-1 reached 85% and the cumulative release of pH-dependent PthII@HKUST-1 was up to 15 days (90%), and also effectively avoid photodegradation (pH 7.0, retention 60.9%). 50 nm PthII@HKUST-1 made it easily penetrate the body wall of MA larvae and transmit to tissue cells through contact and diffusion. Moreover, PthII@HKUST-1 can effectively enhance the cytotoxicity and utilization of Pyrethrins II, which will provide valuable research value for the application of typical plant-derived nerve agents in the prevention and control of forestry pests. PthII@HKUST-1 as an environmentally friendly nano-pesticide can efficiently deliver Pyrethrins II to the larval intestines and absorbed by the larvae. PthII@HKUST-1 could also be transmitted to the epidemic wood and dead wood at a low concentration (10 mg/L). Conclusion Here we speculate that nanoHKUST-1 will bring new opportunity to research biopesticide inhibition mechanism of different agricultural and forestry pests, which will break through the existing research limitations on development, utilization and traceable monitoring of biopesticide, especially for the study of targeting specific proteins. Graphical Abstract ![]()
Collapse
|
194
|
Comparative Toxicity Assessment of Eco-Friendly Synthesized Superparamagnetic Iron Oxide Nanoparticles (SPIONs) in Plants and Aquatic Model Organisms. MINERALS 2022. [DOI: 10.3390/min12040451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
This study aimed to evaluate the toxicity of superparamagnetic iron oxide nanoparticles (SPIONs) synthesized by biogenic (BS) and chemical (CH) routes. The nanoparticles were characterized by X-ray diffraction (XRD), X-ray spectroscopy (XPS), atomic force microscopy (AFM), vibrating-sample magnetometry (VSM-SQUID), Fourier-transform infrared spectroscopy (FT-IR), and scanning electron microscopy (SEM). The toxicity of SPIONs was evaluated using Artemia salina as model aquatic organisms and Raphanus sativus and Lactuca sativa as model plants to evaluate their phytotoxicity. The results obtained from XRD, XPS, and AFM confirmed the formation of spherical nanoparticles of 41.9 ± 1.00 nm (BS route) and 19.8 ± 0.47 nm (CH route). VSM-SQUID demonstrated the superparamagnetic behavior of both nanoparticles, and FT-IR provided evidence of the differences in the surface of SPIONs, suggesting the presence of phenolic compounds on the surface of BS-SPIONs. For the assays with Artemia salina, the results demonstrated (i) nonsignificant differences of BS-SPIONs in mortality rates, and (ii) significant toxicity (p < 0.05) was observed for CH-SPIONs at 300 and 400 mg L−1. The Raphanus sativa plant assay tests showed (i) BS-SPIONs and CH-SPIONs improved the root elongation of seedlings. However, BS-SPIONs demonstrated significant activity on root seedling elongation (p < 0.05) in the range of 300 mg L−1 to 600 mg L−1. To the best of our knowledge, this is the first report to compare the toxicity of chemically and biogenically synthesized SPIONs. In conclusion, although BS-SPIONs and CH-SPIONs present similar structures, their characteristics of magnetic saturation and surface structure are nonidentical, providing differences in their biological activity.
Collapse
|
195
|
Shahane SP, Kumar A. Estimation of health risks due to copper-based nanoagrochemicals. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:25046-25059. [PMID: 34837610 DOI: 10.1007/s11356-021-17308-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/27/2021] [Indexed: 06/13/2023]
Abstract
This study estimated health risks due to two types of copper-based nanoagrochemicals (Cu (OH)2 and CuO nanoparticles (NPs)), during inadvertent ingestion of soil and consumption of leafy vegetables for a hypothetical exposure scenario. The dissolution of copper-based nanoagrochemicals in human digestive system was considered for estimating realistic doses. No risk was found during soil ingestion (hazard quotient (HQ) <1). HQ (no dissolution of Cu (OH) 2 nanopesticides) (HQ= 0.015) comes out to be 2 times higher than that of HQ (100% dissolution of Cu (OH)2 nanopesticides into copper ions) (HQ= 0.007). In case of risk from consumption of leafy vegetables, the following order of risk was found (high to low HQ value): Cu (OH)2 (HQ= 1925) >CuO NPs (1402). Combined exposure of Cu (OH)2 nanopesticide through soil ingestion as well as consumption of contaminated edible leafy vegetables resulted in health risks. The calculated maximum allowable applicable concentration values of Cu (OH)2 and CuO NPs without posing risk to human and plant toxicity were found to be 1.14 and 0.45 mg/L, respectively. These findings can be used now for deciding safe use of copper-based nanoagrochemicals.
Collapse
Affiliation(s)
- Shraddha Pravin Shahane
- Department of Civil Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India
| | - Arun Kumar
- Department of Civil Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India.
| |
Collapse
|
196
|
Zhao K, Yang Y, Zhang L, Zhang J, Zhou Y, Huang H, Luo S, Luo L. Silicon-based additive on heavy metal remediation in soils: Toxicological effects, remediation techniques, and perspectives. ENVIRONMENTAL RESEARCH 2022; 205:112244. [PMID: 34688645 DOI: 10.1016/j.envres.2021.112244] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 09/24/2021] [Accepted: 10/17/2021] [Indexed: 06/13/2023]
Abstract
Chemical fertilizer is gaining increasing attention and has been the center of much research which indicating complex beneficial and harmful effects. Chemical fertilizer might cause some environmental hazards to the biosphere, especially in the agricultural ecosystem. The application of silicon (Si) fertilizer in agriculture has been proved to be able to create good economic and environmental benefits. Si is the second most abundant earth crust element. Si fertilizer improves soil quality and alleviates biotic and abiotic crop stress. It is of great significance to understand the function of Si fertilizer in agricultural utilization and environmental remediation. This paper reviews the Si-based fertilizer in farmland use and summarizes prior research relevant with characterization, soil quality improvement, and pollution remediation effects. Its use in agriculture enhances plant silicon uptake, mediates plant salt and drought stress and remediates heavy metals such as Al, As, Cd, Cu, Zn and Cr. This article also summarizes the detoxification mechanism of silicon and its effects on plant physiological activity such as photosynthesis and transpiration. Fertilizer materials and crop fertilizer management were also considered. Foliar spraying is an effective method to improve crop growth and yield and reduce biotic or abiotic stress. Silicon nanoparticle material provides potential with great potential and prospects. More investigation and research are prospected to better understand how silicon impacts the environment and whether it is a beneficial additive.
Collapse
Affiliation(s)
- Keqi Zhao
- Hunan International Scientific and Technological Cooperation Center for Agricultural Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan, 410028, China
| | - Yuan Yang
- Hunan International Scientific and Technological Cooperation Center for Agricultural Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan, 410028, China.
| | - Lihua Zhang
- Hunan International Scientific and Technological Cooperation Center for Agricultural Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan, 410028, China
| | - Jiachao Zhang
- Hunan International Scientific and Technological Cooperation Center for Agricultural Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan, 410028, China.
| | - Yaoyu Zhou
- Hunan International Scientific and Technological Cooperation Center for Agricultural Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan, 410028, China
| | - Hongli Huang
- Hunan International Scientific and Technological Cooperation Center for Agricultural Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan, 410028, China
| | - Shuang Luo
- Hunan International Scientific and Technological Cooperation Center for Agricultural Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan, 410028, China
| | - Lin Luo
- Hunan International Scientific and Technological Cooperation Center for Agricultural Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan, 410028, China
| |
Collapse
|
197
|
Babu S, Singh R, Yadav D, Rathore SS, Raj R, Avasthe R, Yadav SK, Das A, Yadav V, Yadav B, Shekhawat K, Upadhyay PK, Yadav DK, Singh VK. Nanofertilizers for agricultural and environmental sustainability. CHEMOSPHERE 2022; 292:133451. [PMID: 34973251 DOI: 10.1016/j.chemosphere.2021.133451] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/02/2021] [Accepted: 12/24/2021] [Indexed: 06/14/2023]
Abstract
Indiscriminate use of chemical fertilizers in the agricultural production systems to keep pace with the food and nutritional demand of the galloping population had an adverse impact on ecosystem services and environmental quality. Hence, an alternative mechanism is to be developed to enhance farm production and environmental sustainability. A nanohybrid construct like nanofertilizers (NFs) is an excellent alternative to overcome the negative impact of traditional chemical fertilizers. The NFs provide smart nutrient delivery to the plants and proves their efficacy in terms of crop productivity and environmental sustainability over bulky chemical fertilizers. Plants can absorb NFs by foliage or roots depending upon the application methods and properties of the particles. NFs enhance the biotic and abiotic stresses tolerance in plants. It reduces the production cost and mitigates the environmental footprint. Multitude benefits of the NFs open new vistas towards sustainable agriculture and climate change mitigation. Although supra-optimal doses of NFs have a detrimental effect on crop growth, soil health, and environmental outcomes. The extensive release of NFs into the environment and food chain may pose a risk to human health, hence, need careful assessment. Thus, a thorough review on the role of different NFs and their impact on crop growth, productivity, soil, and environmental quality is required, which would be helpful for the research of sustainable agriculture.
Collapse
Affiliation(s)
- Subhash Babu
- Division of Agronomy, ICAR-Indian Agricultural Research Institute, New Delhi, 110 012, India
| | - Raghavendra Singh
- ICAR-Indian Institute of Pulses Research, Kanpur, Uttar Pradesh, 208 024, India
| | - Devideen Yadav
- ICAR- Indian Institute of Soil & Water Conservation, Dehradun, Uttarakhand, 248 195, India
| | - Sanjay Singh Rathore
- Division of Agronomy, ICAR-Indian Agricultural Research Institute, New Delhi, 110 012, India.
| | - Rishi Raj
- Division of Agronomy, ICAR-Indian Agricultural Research Institute, New Delhi, 110 012, India
| | - Ravikant Avasthe
- ICAR Research Complex for North Eastern Hill Region, Sikkim Centre, Sikkim, 737 102, India
| | - S K Yadav
- ICAR- Indian Institute of Sugarcane Research, Lucknow, Uttar Pradesh, 226 002, India
| | - Anup Das
- ICAR Research Complex for North Eastern Hill Region, Tripura Centre, Tripura, 799 210, India
| | - Vivek Yadav
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A & F University, Yangling, 712100, China.
| | - Brijesh Yadav
- ICAR-Directorate of Mushroom Research, Chambaghat, Solan, Himachal Pradesh, 173213, India
| | - Kapila Shekhawat
- Division of Agronomy, ICAR-Indian Agricultural Research Institute, New Delhi, 110 012, India
| | - P K Upadhyay
- Division of Agronomy, ICAR-Indian Agricultural Research Institute, New Delhi, 110 012, India
| | - Dinesh Kumar Yadav
- ICAR- Indian Institute of Soil Science, Bhopal, Madhya Pradesh, 462038, India
| | - Vinod K Singh
- ICAR-Central Research Institute on Dryland Agriculture, Hyderabad, Telangana, 500 059, India
| |
Collapse
|
198
|
Wang D, Saleh NB, Byro A, Zepp R, Sahle-Demessie E, Luxton TP, Ho KT, Burgess RM, Flury M, White JC, Su C. Nano-enabled pesticides for sustainable agriculture and global food security. NATURE NANOTECHNOLOGY 2022; 17:347-360. [PMID: 35332293 PMCID: PMC9774002 DOI: 10.1038/s41565-022-01082-8] [Citation(s) in RCA: 191] [Impact Index Per Article: 63.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 01/27/2022] [Indexed: 05/02/2023]
Abstract
Achieving sustainable agricultural productivity and global food security are two of the biggest challenges of the new millennium. Addressing these challenges requires innovative technologies that can uplift global food production, while minimizing collateral environmental damage and preserving the resilience of agroecosystems against a rapidly changing climate. Nanomaterials with the ability to encapsulate and deliver pesticidal active ingredients (AIs) in a responsive (for example, controlled, targeted and synchronized) manner offer new opportunities to increase pesticidal efficacy and efficiency when compared with conventional pesticides. Here, we provide a comprehensive analysis of the key properties of nanopesticides in controlling agricultural pests for crop enhancement compared with their non-nanoscale analogues. Our analysis shows that when compared with non-nanoscale pesticides, the overall efficacy of nanopesticides against target organisms is 31.5% higher, including an 18.9% increased efficacy in field trials. Notably, the toxicity of nanopesticides toward non-target organisms is 43.1% lower, highlighting a decrease in collateral damage to the environment. The premature loss of AIs prior to reaching target organisms is reduced by 41.4%, paired with a 22.1% lower leaching potential of AIs in soils. Nanopesticides also render other benefits, including enhanced foliar adhesion, improved crop yield and quality, and a responsive nanoscale delivery platform of AIs to mitigate various pressing biotic and abiotic stresses (for example, heat, drought and salinity). Nonetheless, the uncertainties associated with the adverse effects of some nanopesticides are not well-understood, requiring further investigations. Overall, our findings show that nanopesticides are potentially more efficient, sustainable and resilient with lower adverse environmental impacts than their conventional analogues. These benefits, if harnessed appropriately, can promote higher crop yields and thus contribute towards sustainable agriculture and global food security.
Collapse
Affiliation(s)
- Dengjun Wang
- Oak Ridge Institute for Science and Education, US Environmental Protection Agency, Ada, OK, USA.
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, USA.
| | - Navid B Saleh
- Department of Civil, Architectural and Environmental Engineering, University of Texas, Austin, TX, USA
| | - Andrew Byro
- Antimicrobials Division, Office of Pesticide Programs, US Environmental Protection Agency, Arlington, VA, USA
| | - Richard Zepp
- Center for Environmental Measurement and Modeling, Office of Research and Development, US Environmental Protection Agency, Athens, GA, USA
| | - Endalkachew Sahle-Demessie
- Center for Environmental Solutions and Emergency Response, Office of Research and Development, US Environmental Protection Agency, Cincinnati, OH, USA
| | - Todd P Luxton
- Center for Environmental Solutions and Emergency Response, Office of Research and Development, US Environmental Protection Agency, Cincinnati, OH, USA
| | - Kay T Ho
- Center for Environmental Measurement and Modeling, Office of Research and Development, US Environmental Protection Agency, Narragansett, RI, USA
| | - Robert M Burgess
- Center for Environmental Measurement and Modeling, Office of Research and Development, US Environmental Protection Agency, Narragansett, RI, USA
| | - Markus Flury
- Department of Crop and Soil Sciences, Washington State University, Puyallup and Pullman, WA, USA
| | - Jason C White
- Connecticut Agricultural Experiment Station, New Haven, CT, USA
| | - Chunming Su
- Center for Environmental Solutions and Emergency Response, Office of Research and Development, US Environmental Protection Agency, Ada, OK, USA.
| |
Collapse
|
199
|
Ma J, Zhou Y, Li J, Song Z, Han H. Novel approach to enhance Bradyrhizobium diazoefficiens nodulation through continuous induction of ROS by manganese ferrite nanomaterials in soybean. J Nanobiotechnology 2022; 20:168. [PMID: 35361201 PMCID: PMC8973989 DOI: 10.1186/s12951-022-01372-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/12/2022] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND The study of symbiotic nitrogen fixation between (SNF) legumes and rhizobia has always been a hot frontier in scientific research. Nanotechnology provides a new strategy for biological nitrogen fixation research. However, how to construct abiotic nano-structure-biological system, using the special properties of nanomaterials, to realize the self-enhancement of biological nitrogen fixation capacity is important. RESULTS In order to construct a more efficient SNF system, in this study, we applied manganese ferrite nanoparticles (MF-NPs) with sustainable diatomic catalysis to produce reactive oxygen species (ROS), thus regulating the nodulation pathway and increasing the number of nodules in soybean (Glycine max), eventually enhancing symbiotic nitrogen fixation. Symbiosis cultivation of MF-NPs and soybean plants resulted in 50.85% and 61.4% increase in nodule weight and number, respectively, thus inducing a 151.36% nitrogen fixation efficiency increase, finally leading to a 25.70% biomass accumulation increase despite no substantial effect on the nitrogenase activity per unit. Transcriptome sequencing analysis showed that of 36 differentially expressed genes (DEGs), 31 DEGs related to soybean nodulation were upregulated in late rhizobium inoculation stage (12 d), indicating that the increase of nodules was derived from nodule-related genes (Nod-R) continuous inductions by MF-NPs. CONCLUSIONS Our results indicated that the nodule number could be effectively increased by extending the nodulation period without threatening the vegetative growth of plants or triggering the autoregulation of nodulation (AON) pathway. This study provides an effective strategy for induction of super-conventional nodulation.
Collapse
Affiliation(s)
- Jun Ma
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, 430070, Hubei, China
| | - Yi Zhou
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, 430070, Hubei, China
| | - Jiaying Li
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, 430070, Hubei, China
| | - Zhiyong Song
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, 430070, Hubei, China.
| | - Heyou Han
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, 430070, Hubei, China.
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, 430070, Hubei, China.
| |
Collapse
|
200
|
Chitosan nanomaterials: A prelim of next-generation fertilizers; existing and future prospects. Carbohydr Polym 2022; 288:119356. [DOI: 10.1016/j.carbpol.2022.119356] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/28/2022] [Accepted: 03/10/2022] [Indexed: 01/20/2023]
|