151
|
Meiser S, Sleeboom JM, Arkhypchuk I, Sandbote K, Kretzberg J. Cell anatomy and network input explain differences within but not between leech touch cells at two different locations. Front Cell Neurosci 2023; 17:1186997. [PMID: 37565030 PMCID: PMC10411907 DOI: 10.3389/fncel.2023.1186997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/06/2023] [Indexed: 08/12/2023] Open
Abstract
Mechanosensory cells in the leech share several common features with mechanoreceptors in the human glabrous skin. Previous studies showed that the six T (touch) cells in each body segment of the leech are highly variable in their responses to somatic current injection and change their excitability over time. Here, we investigate three potential reasons for this variability in excitability by comparing the responses of T cells at two soma locations (T2 and T3): (1) Differential effects of time-dependent changes in excitability, (2) divergent synaptic input from the network, and (3) different anatomical structures. These hypotheses were explored with a combination of electrophysiological double recordings, 3D reconstruction of neurobiotin-filled cells, and compartmental model simulations. Current injection triggered significantly more spikes with shorter latency and larger amplitudes in cells at soma location T2 than at T3. During longer recordings, cells at both locations increased their excitability over time in the same way. T2 and T3 cells received the same amount of synaptic input from the unstimulated network, and the polysynaptic connections between both T cells were mutually symmetric. However, we found a striking anatomical difference: While in our data set all T2 cells innervated two roots connecting the ganglion with the skin, 50% of the T3 cells had only one root process. The sub-sample of T3 cells with one root process was significantly less excitable than the T3 cells with two root processes and the T2 cells. To test if the additional root process causes higher excitability, we simulated the responses of 3D reconstructed cells of both anatomies with detailed multi-compartment models. The anatomical subtypes do not differ in excitability when identical biophysical parameters and a homogeneous channel distribution are assumed. Hence, all three hypotheses may contribute to the highly variable T cell responses, but none of them is the only factor accounting for the observed systematic difference in excitability between cells at T2 vs. T3 soma location. Therefore, future patch clamp and modeling studies are needed to analyze how biophysical properties and spatial distribution of ion channels on the cell surface contribute to the variability and systematic differences of electrophysiological phenotypes.
Collapse
Affiliation(s)
- Sonja Meiser
- Department of Neuroscience, Computational Neuroscience, Faculty VI, University of Oldenburg, Oldenburg, Germany
| | - Jana Marie Sleeboom
- Department of Neuroscience, Computational Neuroscience, Faculty VI, University of Oldenburg, Oldenburg, Germany
- Institute of Physiology II, Faculty of Medicine, University Clinic Bonn (UKB), University of Bonn, Bonn, Germany
| | - Ihor Arkhypchuk
- Department of Neuroscience, Computational Neuroscience, Faculty VI, University of Oldenburg, Oldenburg, Germany
| | - Kevin Sandbote
- Department of Neuroscience, Computational Neuroscience, Faculty VI, University of Oldenburg, Oldenburg, Germany
| | - Jutta Kretzberg
- Department of Neuroscience, Computational Neuroscience, Faculty VI, University of Oldenburg, Oldenburg, Germany
- Department of Neuroscience, Cluster of Excellence Hearing4all, Faculty VI, University of Oldenburg, Oldenburg, Germany
- Research Center Neurosensory Science, University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
152
|
Jha V, Cudmore RH. Brightest path tracing: A Python package to trace the brightest path in 2D and 3D images. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.16.549233. [PMID: 37503184 PMCID: PMC10370081 DOI: 10.1101/2023.07.16.549233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Brightest path tracing is a widely used image processing technique in several fields including biology, geography, and geology. However, despite the availability of many image processing libraries in Python, few offer an out-of-the-box implementation of a brightest path tracing algorithm. This paper presents a Python package, brightest-path-lib, that efficiently finds the path with maximum brightness between points in a 2D or 3D image. An example graphical user interface is provided as a Napari plugin. Taken together, the package and plugin provide a powerful and extensible tool for users to efficiently trace structures of interest in 2D or 3D images, regardless of the type of structure being analyzed.
Collapse
Affiliation(s)
- Vasudha Jha
- Department of Computer Science, University of California, Davis, CA, USA
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Physiology and Membrane Biology, University of California Davis School of Medicine, Davis, CA, USA
| | - Robert H. Cudmore
- Department of Physiology and Membrane Biology, University of California Davis School of Medicine, Davis, CA, USA
| |
Collapse
|
153
|
Erickson T, Biggers WP, Williams K, Butland SE, Venuto A. Regionalized Protein Localization Domains in the Zebrafish Hair Cell Kinocilium. J Dev Biol 2023; 11:28. [PMID: 37367482 DOI: 10.3390/jdb11020028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 05/05/2023] [Accepted: 06/02/2023] [Indexed: 06/28/2023] Open
Abstract
Sensory hair cells are the receptors for auditory, vestibular, and lateral line sensory organs in vertebrates. These cells are distinguished by "hair"-like projections from their apical surface collectively known as the hair bundle. Along with the staircase arrangement of the actin-filled stereocilia, the hair bundle features a single, non-motile, true cilium called the kinocilium. The kinocilium plays an important role in bundle development and the mechanics of sensory detection. To understand more about kinocilial development and structure, we performed a transcriptomic analysis of zebrafish hair cells to identify cilia-associated genes that have yet to be characterized in hair cells. In this study, we focused on three such genes-ankef1a, odf3l2a, and saxo2-because human or mouse orthologs are either associated with sensorineural hearing loss or are located near uncharacterized deafness loci. We made transgenic fish that express fluorescently tagged versions of their proteins, demonstrating their localization to the kinocilia of zebrafish hair cells. Furthermore, we found that Ankef1a, Odf3l2a, and Saxo2 exhibit distinct localization patterns along the length of the kinocilium and within the cell body. Lastly, we have reported a novel overexpression phenotype of Saxo2. Overall, these results suggest that the hair cell kinocilium in zebrafish is regionalized along its proximal-distal axis and set the groundwork to understand more about the roles of these kinocilial proteins in hair cells.
Collapse
Affiliation(s)
- Timothy Erickson
- Department of Biology, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
| | | | - Kevin Williams
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | - Shyanne E Butland
- Department of Biology, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
| | - Alexandra Venuto
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| |
Collapse
|
154
|
Serrano E, Barrantes FJ, Valdivieso ÁG. Apolipoprotein E4 heterologous expression, purification under non-denaturing conditions, and effects on neuronal clonal cell lines. Protein Expr Purif 2023:106312. [PMID: 37236517 DOI: 10.1016/j.pep.2023.106312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 05/23/2023] [Indexed: 05/28/2023]
Abstract
The ε4 allele of the apolipoprotein E gene (APOE4) constitutes the main genetic risk factor for late-onset Alzheimer disease (AD). High amounts of pure apolipoprotein E4 (ApoE4), in a rapid and reproducible fashion, could be of value for studying its pathophysiological roles in AD. The aim of the present work was to optimize a preparative method to obtain highly purified recombinant ApoE4 (rApoE4) with full biological activity. rApoE4 was expressed in the E. Coli BL21(D3) strain and a soluble form of the protein was purified by a combination of affinity and size-exclusion chromatography that precluded a denaturation step. The structural integrity and the biochemical activity of the purified rApoE4 were confirmed by circular dichroism and a lipid-binding assay. Several biological parameters affected by rApoE4, such as mitochondrial morphology, mitochondrial membrane potential and reactive oxygen species production were studied in CNh cells, a neuronal cell line, and neurodifferentiation and dendritogenesis were analyzed in the SH-SY5Y neuroblastoma cell line. The improved rApoE4 purification technique reported here enables the production of highly purified protein that retain the structural properties and functional activity of the native protein, as confirmed by tests in two different neuronal cell lines in culture.
Collapse
Affiliation(s)
| | | | - Ángel G Valdivieso
- Laboratory of Cellular and Molecular Biology, Faculty of Medical Sciences, Pontifical Catholic University of Argentina (UCA), National Research and Technological Council of Argentina (CONICET), Av. Alicia Moreau de Justo 1600, 1107, Buenos Aires, Argentina.
| |
Collapse
|
155
|
Marino KM, Squirrell JM, Chacko JV, Watters JW, Eliceiri KW, Ulland TK. Metabolic response of microglia to amyloid deposition during Alzheimer's disease progression in a mouse model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.12.540407. [PMID: 37214940 PMCID: PMC10197659 DOI: 10.1101/2023.05.12.540407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Alzheimer's disease (AD) drives metabolic changes in the central nervous system (CNS). In AD microglia are activated and proliferate in response to amyloid β plaques. To further characterize the metabolic changes in microglia associated with plaque deposition in situ, we examined cortical tissue from 2, 4, and 8-month-old wild type and 5XFAD mice, a mouse model of plaque deposition. 5XFAD mice exhibited progressive microgliosis and plaque deposition as well as changes in microglial morphology and neuronal dystrophy. Multiphoton-based fluorescent lifetime imaging microscopy (FLIM) metabolic measurements showed that older mice had an increased amount of free NAD(P)H, indicative of a shift towards glycolysis. Interestingly in 5XFAD mice, we also found an abundant previously undescribed third fluorescence component that suggests an alternate NAD(P)H binding partner associated with pathology. This work demonstrates that FLIM in combination with other quantitative imaging methods, is a promising label-free tool for understanding the mechanisms of AD pathology.
Collapse
Affiliation(s)
- Kaitlyn M. Marino
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Jayne M. Squirrell
- Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Jenu V. Chacko
- Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Jyoti W. Watters
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Kevin W. Eliceiri
- Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Departments of Biomedical Engineering and Medical Physics, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Morgridge Institute for Research, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Tyler K. Ulland
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
| |
Collapse
|
156
|
Schlienger S, Yam PT, Balekoglu N, Ducuing H, Michaud JF, Makihara S, Kramer DK, Chen B, Fasano A, Berardelli A, Hamdan FF, Rouleau GA, Srour M, Charron F. Genetics of mirror movements identifies a multifunctional complex required for Netrin-1 guidance and lateralization of motor control. SCIENCE ADVANCES 2023; 9:eadd5501. [PMID: 37172092 PMCID: PMC10181192 DOI: 10.1126/sciadv.add5501] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 04/06/2023] [Indexed: 05/14/2023]
Abstract
Mirror movements (MM) disorder is characterized by involuntary movements on one side of the body that mirror intentional movements on the opposite side. We performed genetic characterization of a family with autosomal dominant MM and identified ARHGEF7, a RhoGEF, as a candidate MM gene. We found that Arhgef7 and its partner Git1 bind directly to Dcc. Dcc is the receptor for Netrin-1, an axon guidance cue that attracts commissural axons to the midline, promoting the midline crossing of axon tracts. We show that Arhgef7 and Git1 are required for Netrin-1-mediated axon guidance and act as a multifunctional effector complex. Arhgef7/Git1 activates Rac1 and Cdc42 and inhibits Arf1 downstream of Netrin-1. Furthermore, Arhgef7/Git1, via Arf1, mediates the Netrin-1-induced increase in cell surface Dcc. Mice heterozygous for Arhgef7 have defects in commissural axon trajectories and increased symmetrical paw placements during skilled walking, a MM-like phenotype. Thus, we have delineated how ARHGEF7 mutation causes MM.
Collapse
Affiliation(s)
- Sabrina Schlienger
- Montreal Clinical Research Institute (IRCM), 110 Pine Avenue West, Montreal, QC H2W 1R7, Canada
- Department of Anatomy and Cell Biology, Division of Experimental Medicine, McGill University, Montreal, QC H3A 0G4, Canada
| | - Patricia T. Yam
- Montreal Clinical Research Institute (IRCM), 110 Pine Avenue West, Montreal, QC H2W 1R7, Canada
| | - Nursen Balekoglu
- Montreal Clinical Research Institute (IRCM), 110 Pine Avenue West, Montreal, QC H2W 1R7, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC H3A 2B4, Canada
| | - Hugo Ducuing
- Montreal Clinical Research Institute (IRCM), 110 Pine Avenue West, Montreal, QC H2W 1R7, Canada
| | - Jean-Francois Michaud
- Montreal Clinical Research Institute (IRCM), 110 Pine Avenue West, Montreal, QC H2W 1R7, Canada
| | - Shirin Makihara
- Montreal Clinical Research Institute (IRCM), 110 Pine Avenue West, Montreal, QC H2W 1R7, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC H3A 2B4, Canada
| | - Daniel K. Kramer
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Baoyu Chen
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Alfonso Fasano
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, UHN, Toronto, ON, Canada
- Division of Neurology, University of Toronto, Toronto, ON, Canada
- Krembil Brain Institute, Toronto, ON, Canada
| | - Alfredo Berardelli
- IRCCS Neuromed, Pozzilli (IS), Italy
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Fadi F. Hamdan
- Division of Medical Genetics, Department of Pediatrics, CHU Sainte-Justine and University of Montreal, Montreal, QC H3T1C5, Canada
| | - Guy A. Rouleau
- Division of Medical Genetics, Department of Pediatrics, CHU Sainte-Justine and University of Montreal, Montreal, QC H3T1C5, Canada
- Department of Human Genetics, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Myriam Srour
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 2B4, Canada
- Department of Pediatrics, Division of Pediatric Neurology, McGill University, Montreal, QC H4A 3J1, Canada
- McGill University Health Center Research Institute, Montreal, QC H4A 3J1, Canada
| | - Frederic Charron
- Montreal Clinical Research Institute (IRCM), 110 Pine Avenue West, Montreal, QC H2W 1R7, Canada
- Department of Anatomy and Cell Biology, Division of Experimental Medicine, McGill University, Montreal, QC H3A 0G4, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC H3A 2B4, Canada
- Department of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
| |
Collapse
|
157
|
Weigel B, Tegethoff JF, Grieder SD, Lim B, Nagarajan B, Liu YC, Truberg J, Papageorgiou D, Adrian-Segarra JM, Schmidt LK, Kaspar J, Poisel E, Heinzelmann E, Saraswat M, Christ M, Arnold C, Ibarra IL, Campos J, Krijgsveld J, Monyer H, Zaugg JB, Acuna C, Mall M. MYT1L haploinsufficiency in human neurons and mice causes autism-associated phenotypes that can be reversed by genetic and pharmacologic intervention. Mol Psychiatry 2023; 28:2122-2135. [PMID: 36782060 PMCID: PMC10575775 DOI: 10.1038/s41380-023-01959-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 12/30/2022] [Accepted: 01/11/2023] [Indexed: 02/15/2023]
Abstract
MYT1L is an autism spectrum disorder (ASD)-associated transcription factor that is expressed in virtually all neurons throughout life. How MYT1L mutations cause neurological phenotypes and whether they can be targeted remains enigmatic. Here, we examine the effects of MYT1L deficiency in human neurons and mice. Mutant mice exhibit neurodevelopmental delays with thinner cortices, behavioural phenotypes, and gene expression changes that resemble those of ASD patients. MYT1L target genes, including WNT and NOTCH, are activated upon MYT1L depletion and their chemical inhibition can rescue delayed neurogenesis in vitro. MYT1L deficiency also causes upregulation of the main cardiac sodium channel, SCN5A, and neuronal hyperactivity, which could be restored by shRNA-mediated knockdown of SCN5A or MYT1L overexpression in postmitotic neurons. Acute application of the sodium channel blocker, lamotrigine, also rescued electrophysiological defects in vitro and behaviour phenotypes in vivo. Hence, MYT1L mutation causes both developmental and postmitotic neurological defects. However, acute intervention can normalise resulting electrophysiological and behavioural phenotypes in adulthood.
Collapse
Affiliation(s)
- Bettina Weigel
- Cell Fate Engineering and Disease Modeling Group, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany
- HITBR Hector Institute for Translational Brain Research gGmbH, 69120, Heidelberg, Germany
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
- Faculty of Biosciences, Heidelberg University, 69120, Heidelberg, Germany
| | - Jana F Tegethoff
- Cell Fate Engineering and Disease Modeling Group, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany
- HITBR Hector Institute for Translational Brain Research gGmbH, 69120, Heidelberg, Germany
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
- Faculty of Biosciences, Heidelberg University, 69120, Heidelberg, Germany
| | - Sarah D Grieder
- Cell Fate Engineering and Disease Modeling Group, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany
- HITBR Hector Institute for Translational Brain Research gGmbH, 69120, Heidelberg, Germany
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | - Bryce Lim
- Cell Fate Engineering and Disease Modeling Group, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany
- HITBR Hector Institute for Translational Brain Research gGmbH, 69120, Heidelberg, Germany
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
- Faculty of Biosciences, Heidelberg University, 69120, Heidelberg, Germany
| | - Bhuvaneswari Nagarajan
- Cell Fate Engineering and Disease Modeling Group, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany
- HITBR Hector Institute for Translational Brain Research gGmbH, 69120, Heidelberg, Germany
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | - Yu-Chao Liu
- Department of Clinical Neurobiology, University Hospital Heidelberg and DKFZ, Heidelberg, Germany
| | - Jule Truberg
- Cell Fate Engineering and Disease Modeling Group, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany
- HITBR Hector Institute for Translational Brain Research gGmbH, 69120, Heidelberg, Germany
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
- Faculty of Biosciences, Heidelberg University, 69120, Heidelberg, Germany
| | - Dimitris Papageorgiou
- Division of Proteomics of Stem Cells and Cancer, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- Medical Faculty, Heidelberg University, 69120, Heidelberg, Germany
| | - Juan M Adrian-Segarra
- Cell Fate Engineering and Disease Modeling Group, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany
- HITBR Hector Institute for Translational Brain Research gGmbH, 69120, Heidelberg, Germany
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | - Laura K Schmidt
- Cell Fate Engineering and Disease Modeling Group, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany
- HITBR Hector Institute for Translational Brain Research gGmbH, 69120, Heidelberg, Germany
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | - Janina Kaspar
- Cell Fate Engineering and Disease Modeling Group, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany
- HITBR Hector Institute for Translational Brain Research gGmbH, 69120, Heidelberg, Germany
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | - Eric Poisel
- Cell Fate Engineering and Disease Modeling Group, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany
- HITBR Hector Institute for Translational Brain Research gGmbH, 69120, Heidelberg, Germany
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | - Elisa Heinzelmann
- Cell Fate Engineering and Disease Modeling Group, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany
- HITBR Hector Institute for Translational Brain Research gGmbH, 69120, Heidelberg, Germany
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | - Manu Saraswat
- Cell Fate Engineering and Disease Modeling Group, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany
- HITBR Hector Institute for Translational Brain Research gGmbH, 69120, Heidelberg, Germany
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
- Faculty of Biosciences, Heidelberg University, 69120, Heidelberg, Germany
| | - Marleen Christ
- Cell Fate Engineering and Disease Modeling Group, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany
- HITBR Hector Institute for Translational Brain Research gGmbH, 69120, Heidelberg, Germany
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | - Christian Arnold
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, 69115, Heidelberg, Germany
| | - Ignacio L Ibarra
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, 69115, Heidelberg, Germany
- Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Joaquin Campos
- Chica and Heinz Schaller Research Group, Institute for Anatomy and Cell Biology, Heidelberg University, 69120, Heidelberg, Germany
| | - Jeroen Krijgsveld
- Division of Proteomics of Stem Cells and Cancer, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- Medical Faculty, Heidelberg University, 69120, Heidelberg, Germany
| | - Hannah Monyer
- Department of Clinical Neurobiology, University Hospital Heidelberg and DKFZ, Heidelberg, Germany
| | - Judith B Zaugg
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, 69115, Heidelberg, Germany
| | - Claudio Acuna
- Chica and Heinz Schaller Research Group, Institute for Anatomy and Cell Biology, Heidelberg University, 69120, Heidelberg, Germany
| | - Moritz Mall
- Cell Fate Engineering and Disease Modeling Group, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany.
- HITBR Hector Institute for Translational Brain Research gGmbH, 69120, Heidelberg, Germany.
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany.
| |
Collapse
|
158
|
Qi L, Iskols M, Shi D, Reddy P, Walker C, Lezgiyeva K, Voisin T, Pawlak M, Kuchroo VK, Chiu I, Ginty DD, Sharma N. A DRG genetic toolkit reveals molecular, morphological, and functional diversity of somatosensory neuron subtypes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.22.537932. [PMID: 37131664 PMCID: PMC10153270 DOI: 10.1101/2023.04.22.537932] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Mechanical and thermal stimuli acting on the skin are detected by morphologically and physiologically distinct sensory neurons of the dorsal root ganglia (DRG). Achieving a holistic view of how this diverse neuronal population relays sensory information from the skin to the central nervous system (CNS) has been challenging with existing tools. Here, we used transcriptomic datasets of the mouse DRG to guide development and curation of a genetic toolkit to interrogate transcriptionally defined DRG neuron subtypes. Morphological analysis revealed unique cutaneous axon arborization areas and branching patterns of each subtype. Physiological analysis showed that subtypes exhibit distinct thresholds and ranges of responses to mechanical and/or thermal stimuli. The somatosensory neuron toolbox thus enables comprehensive phenotyping of most principal sensory neuron subtypes. Moreover, our findings support a population coding scheme in which the activation thresholds of morphologically and physiologically distinct cutaneous DRG neuron subtypes tile multiple dimensions of stimulus space.
Collapse
Affiliation(s)
- Lijun Qi
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115
| | - Michael Iskols
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115
| | - David Shi
- Department of Molecular Pharmacology and Therapeutics, Department of Systems Biology, Columbia University, New York, NY
| | - Pranav Reddy
- Department of Molecular Pharmacology and Therapeutics, Department of Systems Biology, Columbia University, New York, NY
| | - Christopher Walker
- Department of Molecular Pharmacology and Therapeutics, Department of Systems Biology, Columbia University, New York, NY
| | - Karina Lezgiyeva
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115
| | - Tiphaine Voisin
- Department of Immunology, Harvard Medical School, Boston, MA 02115
| | - Mathias Pawlak
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Vijay K. Kuchroo
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Isaac Chiu
- Department of Immunology, Harvard Medical School, Boston, MA 02115
| | - David D. Ginty
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115
| | - Nikhil Sharma
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115
- Department of Molecular Pharmacology and Therapeutics, Department of Systems Biology, Columbia University, New York, NY
| |
Collapse
|
159
|
Moatti A, Cai Y, Li C, Popowski KD, Cheng K, Ligler FS, Greenbaum A. Tissue clearing and three-dimensional imaging of the whole cochlea and vestibular system from multiple large-animal models. STAR Protoc 2023; 4:102220. [PMID: 37060559 PMCID: PMC10140170 DOI: 10.1016/j.xpro.2023.102220] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/27/2023] [Accepted: 03/13/2023] [Indexed: 04/16/2023] Open
Abstract
The inner ear of humans and large animals is embedded in a thick and dense bone that makes dissection challenging. Here, we present a protocol that enables three-dimensional (3D) characterization of intact inner ears from large-animal models. We describe steps for decalcifying bone, using solvents to remove color and lipids, and imaging tissues in 3D using confocal and light sheet microscopy. We then detail a pipeline to count hair cells in antibody-stained and 3D imaged cochleae using open-source software. For complete details on the use and execution of this protocol, please refer to (Moatti et al., 2022).1.
Collapse
Affiliation(s)
- Adele Moatti
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27606, USA; Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27606, USA
| | - Yuheng Cai
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27606, USA; Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27606, USA
| | - Chen Li
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27606, USA; Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27606, USA
| | - Kristen D Popowski
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27606, USA; College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA
| | - Ke Cheng
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27606, USA; Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27606, USA; College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA
| | - Frances S Ligler
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Alon Greenbaum
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27606, USA; Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27606, USA.
| |
Collapse
|
160
|
Jungenitz T, Bird A, Engelhardt M, Jedlicka P, Schwarzacher SW, Deller T. Structural plasticity of the axon initial segment in rat hippocampal granule cells following high frequency stimulation and LTP induction. Front Neuroanat 2023; 17:1125623. [PMID: 37090138 PMCID: PMC10113456 DOI: 10.3389/fnana.2023.1125623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/20/2023] [Indexed: 04/25/2023] Open
Abstract
The axon initial segment (AIS) is the site of action potential initiation and important for the integration of synaptic input. Length and localization of the AIS are dynamic, modulated by afferent activity and contribute to the homeostatic control of neuronal excitability. Synaptopodin is a plasticity-related protein expressed by the majority of telencephalic neurons. It is required for the formation of cisternal organelles within the AIS and an excellent marker to identify these enigmatic organelles at the light microscopic level. Here we applied 2 h of high frequency stimulation of the medial perforant path in rats in vivo to induce a strong long-term potentiation of dentate gyrus granule cells. Immunolabeling for βIV-spectrin and synaptopodin were performed to study structural changes of the AIS and its cisternal organelles. Three-dimensional analysis of the AIS revealed a shortening of the AIS and a corresponding reduction of the number of synaptopodin clusters. These data demonstrate a rapid structural plasticity of the AIS and its cisternal organelles to strong stimulation, indicating a homeostatic response of the entire AIS compartment.
Collapse
Affiliation(s)
- Tassilo Jungenitz
- Institute of Clinical Neuroanatomy, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Alexander Bird
- Interdisciplinary Centre for 3Rs in Animal Research, Justus Liebig University Giessen, Giessen, Germany
| | - Maren Engelhardt
- Institute of Anatomy and Cell Biology, Johannes Kepler University Linz, Linz, Austria
| | - Peter Jedlicka
- Institute of Clinical Neuroanatomy, Goethe University Frankfurt, Frankfurt am Main, Germany
- Interdisciplinary Centre for 3Rs in Animal Research, Justus Liebig University Giessen, Giessen, Germany
| | | | - Thomas Deller
- Institute of Clinical Neuroanatomy, Goethe University Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
161
|
Bolívar-Baquero O, Troncoso J. Facial nerve axotomy induces morphological changes in hippocampal pyramidal neurons. J Comp Neurol 2023; 531:663-680. [PMID: 36629001 DOI: 10.1002/cne.25455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 12/01/2022] [Accepted: 12/20/2022] [Indexed: 01/12/2023]
Abstract
Facial nerve injury in rats have been widely used to study functional and structural changes that occur in the injured motoneurons and other central nervous system structures related with sensorimotor processing. A decrease in long-term potentiation of hippocampal CA3-to-CA1 commissural synapse has recently been reported related to this peripheral injury. Additionally, it has been found increased corticosterone plasmatic levels, impairment in spatial memory consolidation, and hippocampal microglial activation in animals with facial nerve axotomy. In this work, we analyzed the neuronal morphology of hippocampal CA1 and CA3 pyramidal neurons in animals with either reversible or irreversible facial nerve injury. For this purpose, brain tissues of injured animals sacrificed at different postlesion times, were stained with the Golgi-Cox method and compared with control brains. It was found that both reversible and irreversible facial nerve injury-induced significant decreases in dendritic tree complexity, dendritic length, branch points, and spine density of hippocampal neurons. However, such changes' timing varied according to hippocampal area (CA1 vs. CA3), dendritic area (apical vs. basal), and lesion type (reversible vs. irreversible). In general, the observed changes were transient when animals had the possibility of motor recovery (reversible injury), but perdurable if the recovery from the lesion was impeded (irreversible injury). CA1 apical and CA3 basal dendritic tree morphology were more sensible to irreversible injury. It is concluded that facial nerve injury induced significant changes in hippocampal CA1 and CA3 pyramidal neurons morphology, which could be related to LTP impairments and microglial activation in the hippocampal formation, previously described.
Collapse
Affiliation(s)
- Oscar Bolívar-Baquero
- Behavioral Neurophysiology Laboratory, Physiological Sciences Department, School of Medicine, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Julieta Troncoso
- Behavioral Neurophysiology Laboratory, Physiological Sciences Department, School of Medicine, Universidad Nacional de Colombia, Bogotá, Colombia.,Biology Department, School of Sciences, Universidad Nacional de Colombia, Bogotá, Colombia
| |
Collapse
|
162
|
Szarka G, Hoffmann G, Kovács-Öller T, Völgyi B. Serotonin is a gap junction-permeable neuronal tracer in the mouse retina. FRONTIERS IN OPHTHALMOLOGY 2023; 3:1151024. [PMID: 38983061 PMCID: PMC11182087 DOI: 10.3389/fopht.2023.1151024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 02/27/2023] [Indexed: 07/11/2024]
Abstract
Introduction Gap junctions are dynamically modulated bridges allowing the transcellular passage of ions and small molecules with a molecular mass of up to 1 kDa, a mechanism utilized for molecular communication purposes by living cells. This same mechanism is also exploited by scientists to reveal the existence of gap junction contacts by the cell-to-cell movement of tracers. However, multiple labeling experiments require the availability of multiple gap junction-permeable tracers. Methods To this end, we utilized the well-known transient OFF alpha retinal ganglion cell (RGC)-coupled array as a model system to study and compare the transjunctional movement of neurobiotin (NB), a commonly used tracer, and serotonin, a recently identified tracer. Results Although the transjunctional movement of serotonin has been established in cell cultures, here we show, for the first time, that serotonin is also a potent tracer in in vitro tissue. In addition, serotonin is lighter than the classical gap junction-permeable NB, and thus, we expected that tracer movement would be comparable to or better than that of serotonin. We found that intracellular serotonin injections result in the labeling of the coupled transient OFF alpha RGC array very similar to those of the classical NB-labeled arrays. Both serotonin and NB-injected transient OFF alpha RGCs displayed the well-known pattern with coupled RGCs and a cohort of coupled wide-field amacrine cells (ACs). Discussion By using morphological characteristics, we confirm that the serotonin and the NB-coupled AC arrays are identical, and thereby confirm that serotonin is a potent gap junction-permeable tracer and can be readily used as an alternative to NB in in vitro tissue. Moreover, serotonin can be utilized in parallel with other dyes or tracers, enabling the use of multiple labels in the same material.
Collapse
Affiliation(s)
- Gergely Szarka
- Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Department of Comparative Anatomy and Developmental Biology, University of Pécs, Pécs, Hungary
- Center for Neuroscience, University of Pécs, Pécs, Hungary
- NEURON-066 Rethealthsi Research Group, Pécs, Hungary
| | - Gyula Hoffmann
- Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Department of Comparative Anatomy and Developmental Biology, University of Pécs, Pécs, Hungary
- Center for Neuroscience, University of Pécs, Pécs, Hungary
| | - Tamás Kovács-Öller
- Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Department of Comparative Anatomy and Developmental Biology, University of Pécs, Pécs, Hungary
- Center for Neuroscience, University of Pécs, Pécs, Hungary
- NEURON-066 Rethealthsi Research Group, Pécs, Hungary
| | - Béla Völgyi
- Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Department of Comparative Anatomy and Developmental Biology, University of Pécs, Pécs, Hungary
- Center for Neuroscience, University of Pécs, Pécs, Hungary
- NEURON-066 Rethealthsi Research Group, Pécs, Hungary
| |
Collapse
|
163
|
Kounoupa Z, Tivodar S, Theodorakis K, Kyriakis D, Denaxa M, Karagogeos D. Rac1 and Rac3 GTPases and TPC2 are required for axonal outgrowth and migration of cortical interneurons. J Cell Sci 2023; 136:286920. [PMID: 36744839 DOI: 10.1242/jcs.260373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 01/31/2023] [Indexed: 02/07/2023] Open
Abstract
Rho GTPases, among them Rac1 and Rac3, are major transducers of extracellular signals and are involved in multiple cellular processes. In cortical interneurons, the neurons that control the balance between excitation and inhibition of cortical circuits, Rac1 and Rac3 are essential for their development. Ablation of both leads to a severe reduction in the numbers of mature interneurons found in the murine cortex, which is partially due to abnormal cell cycle progression of interneuron precursors and defective formation of growth cones in young neurons. Here, we present new evidence that upon Rac1 and Rac3 ablation, centrosome, Golgi complex and lysosome positioning is significantly perturbed, thus affecting both interneuron migration and axon growth. Moreover, for the first time, we provide evidence of altered expression and localization of the two-pore channel 2 (TPC2) voltage-gated ion channel that mediates Ca2+ release. Pharmacological inhibition of TPC2 negatively affected axonal growth and migration of interneurons. Our data, taken together, suggest that TPC2 contributes to the severe phenotype in axon growth initiation, extension and interneuron migration in the absence of Rac1 and Rac3.
Collapse
Affiliation(s)
- Zouzana Kounoupa
- Institute of Molecular Biology and Biotechnology (IMBB, FORTH), Heraklion 71110, Greece.,Department of Basic Science, Faculty of Medicine, University of Crete, Heraklion 71110, Greece
| | - Simona Tivodar
- Institute of Molecular Biology and Biotechnology (IMBB, FORTH), Heraklion 71110, Greece.,Department of Basic Science, Faculty of Medicine, University of Crete, Heraklion 71110, Greece
| | - Kostas Theodorakis
- Institute of Molecular Biology and Biotechnology (IMBB, FORTH), Heraklion 71110, Greece.,Department of Basic Science, Faculty of Medicine, University of Crete, Heraklion 71110, Greece
| | - Dimitrios Kyriakis
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4365 Esch-sur-Alzette, Luxembourg
| | - Myrto Denaxa
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Centre 'Al. Fleming', Vari, 16672, Greece
| | - Domna Karagogeos
- Institute of Molecular Biology and Biotechnology (IMBB, FORTH), Heraklion 71110, Greece.,Department of Basic Science, Faculty of Medicine, University of Crete, Heraklion 71110, Greece
| |
Collapse
|
164
|
Fozard JA, Morgan C, Howard M. Coarsening dynamics can explain meiotic crossover patterning in both the presence and absence of the synaptonemal complex. eLife 2023; 12:e79408. [PMID: 36847348 PMCID: PMC10036115 DOI: 10.7554/elife.79408] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 02/24/2023] [Indexed: 03/01/2023] Open
Abstract
The shuffling of genetic material facilitated by meiotic crossovers is a critical driver of genetic variation. Therefore, the number and positions of crossover events must be carefully controlled. In Arabidopsis, an obligate crossover and repression of nearby crossovers on each chromosome pair are abolished in mutants that lack the synaptonemal complex (SC), a conserved protein scaffold. We use mathematical modelling and quantitative super-resolution microscopy to explore and mechanistically explain meiotic crossover pattering in Arabidopsis lines with full, incomplete, or abolished synapsis. For zyp1 mutants, which lack an SC, we develop a coarsening model in which crossover precursors globally compete for a limited pool of the pro-crossover factor HEI10, with dynamic HEI10 exchange mediated through the nucleoplasm. We demonstrate that this model is capable of quantitatively reproducing and predicting zyp1 experimental crossover patterning and HEI10 foci intensity data. Additionally, we find that a model combining both SC- and nucleoplasm-mediated coarsening can explain crossover patterning in wild-type Arabidopsis and in pch2 mutants, which display partial synapsis. Together, our results reveal that regulation of crossover patterning in wild-type Arabidopsis and SC-defective mutants likely acts through the same underlying coarsening mechanism, differing only in the spatial compartments through which the pro-crossover factor diffuses.
Collapse
Affiliation(s)
- John A Fozard
- Computational and Systems Biology, John Innes Centre, Norwich Research ParkNorwichUnited Kingdom
| | - Chris Morgan
- Cell and Developmental Biology, John Innes Centre, Norwich Research ParkNorwichUnited Kingdom
| | - Martin Howard
- Computational and Systems Biology, John Innes Centre, Norwich Research ParkNorwichUnited Kingdom
| |
Collapse
|
165
|
Traumatic Brain Injury Induces Microglial and Caspase3 Activation in the Retina. Int J Mol Sci 2023; 24:ijms24054451. [PMID: 36901880 PMCID: PMC10003323 DOI: 10.3390/ijms24054451] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/18/2023] [Accepted: 02/22/2023] [Indexed: 03/05/2023] Open
Abstract
Traumatic brain injury (TBI) is among the main causes of sudden death after head trauma. These injuries can result in severe degeneration and neuronal cell death in the CNS, including the retina, which is a crucial part of the brain responsible for perceiving and transmitting visual information. The long-term effects of mild-repetitive TBI (rmTBI) are far less studied thus far, even though damage induced by repetitive injuries occurring in the brain is more common, especially amongst athletes. rmTBI can also have a detrimental effect on the retina and the pathophysiology of these injuries is likely to differ from severe TBI (sTBI) retinal injury. Here, we show how rmTBI and sTBI can differentially affect the retina. Our results indicate an increase in the number of activated microglial cells and Caspase3-positive cells in the retina in both traumatic models, suggesting a rise in the level of inflammation and cell death after TBI. The pattern of microglial activation appears distributed and widespread but differs amongst the various retinal layers. sTBI induced microglial activation in both the superficial and deep retinal layers. In contrast to sTBI, no significant change occurred following the repetitive mild injury in the superficial layer, only the deep layer (spanning from the inner nuclear layer to the outer plexiform layer) shows microglial activation. This difference suggests that alternate response mechanisms play a role in the case of the different TBI incidents. The Caspase3 activation pattern showed a uniform increase in both the superficial and deep layers of the retina. This suggests a different action in the course of the disease in sTBI and rmTBI models and points to the need for new diagnostic procedures. Our present results suggest that the retina might serve as such a model of head injuries since the retinal tissue reacts to both forms of TBI and is the most accessible part of the human brain.
Collapse
|
166
|
Melo P, S Silveira M, Mendes-Pinto I, Relvas JB. MorphoMacro for in vivo and ex vivo quantitative morphometric analysis of microglia. Methods Cell Biol 2023; 174:75-92. [PMID: 36710053 DOI: 10.1016/bs.mcb.2022.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Microglia cells dynamically survey the central nervous system microenvironment and, in response to tissue damage inflicted by radiation therapy, disease or infection, undergo morphological and functional changes that culminate in microglia activation. Cell shape transformation can be assessed descriptively or, alternatively, it can be quantified as a continuous variable for parameters including total cell size as well as protrusion length, ramification and complexity. The purpose of the MorphoMacro method is to quantitatively profile multiple and single microglia cells using the available ImageJ platform. This method outlines the required steps and ImageJ plugins to convert fluorescence and bright-field photomicrographs into representative binary and skeletonized images and to analyze them using the MorphoMacro software plugin for multiparametric and multilevel description of microglia cell morphology in vivo and ex vivo. Overall, the protocol provides a quantitative and comprehensive tool that can be used to identify, stratify, and monitor diverse microglia morphologies in homeostatic, different disease conditions and subsequent therapeutic monitoring.
Collapse
Affiliation(s)
- Pedro Melo
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
| | - Mariana S Silveira
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal; Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Inês Mendes-Pinto
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.
| | - João B Relvas
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal; Departmento de Biomedicina, Faculdade de Medicina, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
167
|
Dixon SC, Calder BJ, Lilya SM, Davies BM, Martin A, Peterson M, Hansen JM, Suli A. Valproic acid affects neurogenesis during early optic tectum development in zebrafish. Biol Open 2023; 12:286129. [PMID: 36537579 PMCID: PMC9916031 DOI: 10.1242/bio.059567] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 12/09/2022] [Indexed: 02/01/2023] Open
Abstract
The mammalian superior colliculus and its non-mammalian homolog, the optic tectum (OT), are midbrain structures that integrate multimodal sensory inputs and guide non-voluntary movements in response to prevalent stimuli. Recent studies have implicated this structure as a possible site affected in autism spectrum disorder (ASD). Interestingly, fetal exposure to valproic acid (VPA) has also been associated with an increased risk of ASD in humans and animal models. Therefore, we took the approach of determining the effects of VPA treatment on zebrafish OT development as a first step in identifying the mechanisms that allow its formation. We describe normal OT development during the first 5 days of development and show that in VPA-treated embryos, neuronal specification and neuropil formation was delayed. VPA treatment was most detrimental during the first 3 days of development and did not appear to be linked to oxidative stress. In conclusion, our work provides a foundation for research into mechanisms driving OT development, as well as the relationship between the OT, VPA, and ASD. This article has an associated First Person interview with one of the co-first authors of the paper.
Collapse
Affiliation(s)
- Sierra C. Dixon
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA
| | - Bailey J. Calder
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA
| | - Shane M. Lilya
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA
| | - Brandon M. Davies
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA
| | - Annalie Martin
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA
| | - Maggie Peterson
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA
| | - Jason M. Hansen
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA
| | - Arminda Suli
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA,Author for correspondence ()
| |
Collapse
|
168
|
Reyes-Ortiz AM, Abud EM, Burns MS, Wu J, Hernandez SJ, McClure N, Wang KQ, Schulz CJ, Miramontes R, Lau A, Michael N, Miyoshi E, Van Vactor D, Reidling JC, Blurton-Jones M, Swarup V, Poon WW, Lim RG, Thompson LM. Single-nuclei transcriptome analysis of Huntington disease iPSC and mouse astrocytes implicates maturation and functional deficits. iScience 2023; 26:105732. [PMID: 36590162 PMCID: PMC9800269 DOI: 10.1016/j.isci.2022.105732] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/13/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022] Open
Abstract
Huntington disease (HD) is a neurodegenerative disorder caused by expanded CAG repeats in the huntingtin gene that alters cellular homeostasis, particularly in the striatum and cortex. Astrocyte signaling that establishes and maintains neuronal functions are often altered under pathological conditions. We performed single-nuclei RNA-sequencing on human HD patient-induced pluripotent stem cell (iPSC)-derived astrocytes and on striatal and cortical tissue from R6/2 HD mice to investigate high-resolution HD astrocyte cell state transitions. We observed altered maturation and glutamate signaling in HD human and mouse astrocytes. Human HD astrocytes also showed upregulated actin-mediated signaling, suggesting that some states may be cell-autonomous and human specific. In both species, astrogliogenesis transcription factors may drive HD astrocyte maturation deficits, which are supported by rescued climbing deficits in HD drosophila with NFIA knockdown. Thus, dysregulated HD astrocyte states may induce dysfunctional astrocytic properties, in part due to maturation deficits influenced by astrogliogenesis transcription factor dysregulation.
Collapse
Affiliation(s)
- Andrea M. Reyes-Ortiz
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92617, USA
| | - Edsel M. Abud
- Department of Neurobiology & Behavior, University of California, Irvine, Irvine, CA 92617, USA
| | - Mara S. Burns
- Department of Neurobiology & Behavior, University of California, Irvine, Irvine, CA 92617, USA
| | - Jie Wu
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92617, USA
| | - Sarah J. Hernandez
- Department of Neurobiology & Behavior, University of California, Irvine, Irvine, CA 92617, USA
| | - Nicolette McClure
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92617, USA
| | - Keona Q. Wang
- Department of Neurobiology & Behavior, University of California, Irvine, Irvine, CA 92617, USA
| | - Corey J. Schulz
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92617, USA
| | - Ricardo Miramontes
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92617, USA
| | - Alice Lau
- Department of Psychiatry & Human Behavior, University of California, Irvine, Irvine, CA 92617, USA
| | - Neethu Michael
- Department of Neurobiology & Behavior, University of California, Irvine, Irvine, CA 92617, USA
| | - Emily Miyoshi
- Department of Neurobiology & Behavior, University of California, Irvine, Irvine, CA 92617, USA
| | - David Van Vactor
- Harvard Medical School, Department of Cell Biology, Boston, MA 02115, USA
| | - John C. Reidling
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92617, USA
| | - Mathew Blurton-Jones
- Department of Neurobiology & Behavior, University of California, Irvine, Irvine, CA 92617, USA
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92617, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92617, USA
| | - Vivek Swarup
- Department of Neurobiology & Behavior, University of California, Irvine, Irvine, CA 92617, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92617, USA
| | - Wayne W. Poon
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92617, USA
| | - Ryan G. Lim
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92617, USA
| | - Leslie M. Thompson
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92617, USA
- Department of Neurobiology & Behavior, University of California, Irvine, Irvine, CA 92617, USA
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92617, USA
- Department of Psychiatry & Human Behavior, University of California, Irvine, Irvine, CA 92617, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92617, USA
| |
Collapse
|
169
|
Walker LJ, Guevara C, Kawakami K, Granato M. A glia cell dependent mechanism at a peripheral nerve plexus critical for target-selective axon regeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.05.522786. [PMID: 36712008 PMCID: PMC9881934 DOI: 10.1101/2023.01.05.522786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A critical step for functional recovery from peripheral nerve injury is for regenerating axons to connect with their pre-injury targets. Reestablishing pre-injury target specificity is particularly challenging for limb-innervating axons as they encounter a plexus, a network where peripheral nerves converge, axons from different nerves intermingle, and then re-sort into target-specific bundles. Here, we examine this process at a plexus located at the base of the zebrafish pectoral fin, equivalent to tetrapod forelimbs. Using live cell imaging and sparse axon labeling, we find that regenerating motor axons from three nerves coalesce into the plexus. There, they intermingle and sort into distinct branches, and then navigate to their original muscle domains with high fidelity that restores functionality. We demonstrate that this regeneration process includes selective retraction of mistargeted axons, suggesting active correction mechanisms. Moreover, we find that Schwann cells are enriched and associate with axons at the plexus, and that Schwann cell ablation during regeneration causes profound axonal mistargeting. Our data provide the first real time account of regenerating vertebrate motor axons navigating a nerve plexus and reveal a previously unappreciated role for Schwann cells to promote axon sorting at a plexus during regeneration.
Collapse
Affiliation(s)
- Lauren J Walker
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Camilo Guevara
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Koichi Kawakami
- Laboratory of Molecular and Developmental Biology, National Institute of Genetics, and Department of Genetics, The Graduate University for Advanced Studies (SOKENDAI), Mishima, Shizuoka 411-8540, Japan
| | - Michael Granato
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
170
|
Jorratt P, Ricny J, Leibold C, Ovsepian SV. Endogenous Modulators of NMDA Receptor Control Dendritic Field Expansion of Cortical Neurons. Mol Neurobiol 2023; 60:1440-1452. [PMID: 36462136 PMCID: PMC9899188 DOI: 10.1007/s12035-022-03147-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 11/21/2022] [Indexed: 12/05/2022]
Abstract
Impairments of N-methyl-D-aspartate receptor (NMDAR) activity have been implicated in several neuropsychiatric disorders, with pharmacological inhibition of NMDAR-mediated currents and associated neurobehavioral changes considered as a model of schizophrenia. We analyzed the effects of brief and long-term exposure of rat cortical cultures to the most prevalent endogenous modulators of NMDAR (kynurenic acid, pregnenolone sulfate, spermidine, and zinc) on neuronal viability, stimulation-induced release of glutamate, and dendritic morphology with synaptic density. Both, glutamate release and neuronal viability studies revealed no difference between the test and control groups. No differences were also observed in the number of dendritic branching and length, or density of synaptic connections and neuronal soma size. Comparison of the extent of dendritic projections and branching patterns, however, revealed enhanced distal arborization with the expansion of the dendritic area under prolonged treatment of cultures with physiological concentrations of NMDAR modulators, with differences reaching significance in spermidine and pregnenolone sulfate tests. Measurements of the density of glutamatergic synapses showed consistency across all neuronal groups, except those treated with pregnenolone sulfate, which showed a reduction of PSD-95-positive elements. Overall, our data suggest that constitutive glutamatergic activity mediated by NMDAR controls the dendritic field expansion and can influence the integrative properties of cortical neurons.
Collapse
Affiliation(s)
- Pascal Jorratt
- grid.447902.cNational Institute of Mental Health, Klecany, Czech Republic ,grid.4491.80000 0004 1937 116XThird Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jan Ricny
- grid.447902.cNational Institute of Mental Health, Klecany, Czech Republic
| | - Christian Leibold
- grid.5963.9Faculty of Biology and Bernstein Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Saak V. Ovsepian
- grid.36316.310000 0001 0806 5472Faculty of Science and Engineering, University of Greenwich London, Chatham Maritime, Kent, ME4 4TB UK
| |
Collapse
|
171
|
Valek L, Tran BN, Tegeder I. Cold avoidance and heat pain hypersensitivity in neuronal nucleoredoxin knockout mice. Free Radic Biol Med 2022; 192:84-97. [PMID: 36126861 DOI: 10.1016/j.freeradbiomed.2022.09.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 08/15/2022] [Accepted: 09/13/2022] [Indexed: 11/29/2022]
Abstract
Nucleoredoxin is a thioredoxin-like oxidoreductase that mainly acts as oxidase and thereby regulates calcium calmodulin kinase Camk2a, an effector of nitric oxide mediated synaptic potentiation and nociceptive sensitization. We asked here if and how NXN affects thermal sensation and nociception in mice using pan-neuronal NXN deletion driven by Nestin-Cre, and sensory neuron specific deletion driven by Advillin-Cre. In a thermal gradient ring, where mice can freely choose the temperature of well-being, Nestin-NXN-/- mice avoided unpleasant cold temperatures. In neuropathic and inflammatory nociceptive models, Nestin-NXN-/- and Advillin-NXN-/- mice displayed subtle phenotypes of heightened heat nociception. Abnormal thermal in vivo responses were associated with heightened calcium influx upon stimulation of transient receptor channels, with heightened oxygen consumption upon disruption of the mitochondrial membrane potential and with higher density of neurite trees of primary sensory neurons of the dorsal root ganglia in cultures. The data suggest that loss of NXN's balancing redox functions leads to maladaptive changes in sensory neurons that manifest in vivo as polyneuropathy-like abnormal cold sensitivity and heat "pain".
Collapse
Affiliation(s)
- Lucie Valek
- Institute of Clinical Pharmacology, Goethe-University, Faculty of Medicine, Frankfurt, Germany
| | - Bao Ngoc Tran
- Institute of Clinical Pharmacology, Goethe-University, Faculty of Medicine, Frankfurt, Germany
| | - Irmgard Tegeder
- Institute of Clinical Pharmacology, Goethe-University, Faculty of Medicine, Frankfurt, Germany.
| |
Collapse
|
172
|
Pancho A, Mitsogiannis MD, Aerts T, Dalla Vecchia M, Ebert LK, Geenen L, Noterdaeme L, Vanlaer R, Stulens A, Hulpiau P, Staes K, Van Roy F, Dedecker P, Schermer B, Seuntjens E. Modifying PCDH19 levels affects cortical interneuron migration. Front Neurosci 2022; 16:887478. [PMID: 36389226 PMCID: PMC9642031 DOI: 10.3389/fnins.2022.887478] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2023] Open
Abstract
PCDH19 is a transmembrane protein and member of the protocadherin family. It is encoded by the X-chromosome and more than 200 mutations have been linked to the neurodevelopmental PCDH-clustering epilepsy (PCDH19-CE) syndrome. A disturbed cell-cell contact that arises when random X-inactivation creates mosaic absence of PCDH19 has been proposed to cause the syndrome. Several studies have shown roles for PCDH19 in neuronal proliferation, migration, and synapse function, yet most of them have focused on cortical and hippocampal neurons. As epilepsy can also be caused by impaired interneuron migration, we studied the role of PCDH19 in cortical interneurons during embryogenesis. We show that cortical interneuron migration is affected by altering PCDH19 dosage by means of overexpression in brain slices and medial ganglionic eminence (MGE) explants. We also detect subtle defects when PCDH19 expression was reduced in MGE explants, suggesting that the dosage of PCDH19 is important for proper interneuron migration. We confirm this finding in vivo by showing a mild reduction in interneuron migration in heterozygote, but not in homozygote PCDH19 knockout animals. In addition, we provide evidence that subdomains of PCDH19 have a different impact on cell survival and interneuron migration. Intriguingly, we also observed domain-dependent differences in migration of the non-targeted cell population in explants, demonstrating a non-cell-autonomous effect of PCDH19 dosage changes. Overall, our findings suggest new roles for the extracellular and cytoplasmic domains of PCDH19 and support that cortical interneuron migration is dependent on balanced PCDH19 dosage.
Collapse
Affiliation(s)
- Anna Pancho
- Developmental Neurobiology Group, Animal Physiology and Neurobiology Division, Department of Biology, KU Leuven, Leuven, Belgium
| | - Manuela D. Mitsogiannis
- Developmental Neurobiology Group, Animal Physiology and Neurobiology Division, Department of Biology, KU Leuven, Leuven, Belgium
| | - Tania Aerts
- Developmental Neurobiology Group, Animal Physiology and Neurobiology Division, Department of Biology, KU Leuven, Leuven, Belgium
| | - Marco Dalla Vecchia
- Laboratory for NanoBiology, Department of Chemistry, KU Leuven, Leuven, Belgium
- Molecular Signaling and Cell Death Unit, Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- VIB Center for Inflammation Research, Ghent, Belgium
| | - Lena K. Ebert
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Cologne Cluster of Excellence on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Lieve Geenen
- Developmental Neurobiology Group, Animal Physiology and Neurobiology Division, Department of Biology, KU Leuven, Leuven, Belgium
- Laboratory of Neuroplasticity and Neuroproteomics, Animal Physiology and Neurobiology Division, Department of Biology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Lut Noterdaeme
- Developmental Neurobiology Group, Animal Physiology and Neurobiology Division, Department of Biology, KU Leuven, Leuven, Belgium
| | - Ria Vanlaer
- Developmental Neurobiology Group, Animal Physiology and Neurobiology Division, Department of Biology, KU Leuven, Leuven, Belgium
| | - Anne Stulens
- Developmental Neurobiology Group, Animal Physiology and Neurobiology Division, Department of Biology, KU Leuven, Leuven, Belgium
| | - Paco Hulpiau
- Department of Biomedical Molecular Biology, Ghent University, Inflammation Research Center, VIB, Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- BioInformatics Knowledge Center (BiKC), Howest University of Applied Sciences, Bruges, Belgium
| | - Katrien Staes
- Department of Biomedical Molecular Biology, Ghent University, Inflammation Research Center, VIB, Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Frans Van Roy
- Department of Biomedical Molecular Biology, Ghent University, Inflammation Research Center, VIB, Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Peter Dedecker
- Laboratory for NanoBiology, Department of Chemistry, KU Leuven, Leuven, Belgium
| | - Bernhard Schermer
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Cologne Cluster of Excellence on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Eve Seuntjens
- Developmental Neurobiology Group, Animal Physiology and Neurobiology Division, Department of Biology, KU Leuven, Leuven, Belgium
| |
Collapse
|
173
|
Kumar SS, Gänswein T, Buccino AP, Xue X, Bartram J, Emmenegger V, Hierlemann A. Tracking axon initial segment plasticity using high-density microelectrode arrays: A computational study. Front Neuroinform 2022; 16:957255. [PMID: 36221258 PMCID: PMC7613690 DOI: 10.3389/fninf.2022.957255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Despite being composed of highly plastic neurons with extensive positive feedback, the nervous system maintains stable overall function. To keep activity within bounds, it relies on a set of negative feedback mechanisms that can induce stabilizing adjustments and that are collectively termed “homeostatic plasticity.” Recently, a highly excitable microdomain, located at the proximal end of the axon—the axon initial segment (AIS)—was found to exhibit structural modifications in response to activity perturbations. Though AIS plasticity appears to serve a homeostatic purpose, many aspects governing its expression and its functional role in regulating neuronal excitability remain elusive. A central challenge in studying the phenomenon is the rich heterogeneity of its expression (distal/proximal relocation, shortening, lengthening) and the variability of its functional role. A potential solution is to track AISs of a large number of neurons over time and attempt to induce structural plasticity in them. To this end, a promising approach is to use extracellular electrophysiological readouts to track a large number of neurons at high spatiotemporal resolution by means of high-density microelectrode arrays (HD-MEAs). However, an analysis framework that reliably identifies specific activity signatures that uniquely map on to underlying microstructural changes is missing. In this study, we assessed the feasibility of such a task and used the distal relocation of the AIS as an exemplary problem. We used sophisticated computational models to systematically explore the relationship between incremental changes in AIS positions and the specific consequences observed in simulated extracellular field potentials. An ensemble of feature changes in the extracellular fields that reliably characterize AIS plasticity was identified. We trained models that could detect these signatures with remarkable accuracy. Based on these findings, we propose a hybrid analysis framework that could potentially enable high-throughput experimental studies of activity-dependent AIS plasticity using HD-MEAs.
Collapse
|
174
|
Revah O, Gore F, Kelley KW, Andersen J, Sakai N, Chen X, Li MY, Birey F, Yang X, Saw NL, Baker SW, Amin ND, Kulkarni S, Mudipalli R, Cui B, Nishino S, Grant GA, Knowles JK, Shamloo M, Huguenard JR, Deisseroth K, Pașca SP. Maturation and circuit integration of transplanted human cortical organoids. Nature 2022; 610:319-326. [PMID: 36224417 PMCID: PMC9556304 DOI: 10.1038/s41586-022-05277-w] [Citation(s) in RCA: 212] [Impact Index Per Article: 70.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 08/25/2022] [Indexed: 01/26/2023]
Abstract
Self-organizing neural organoids represent a promising in vitro platform with which to model human development and disease1-5. However, organoids lack the connectivity that exists in vivo, which limits maturation and makes integration with other circuits that control behaviour impossible. Here we show that human stem cell-derived cortical organoids transplanted into the somatosensory cortex of newborn athymic rats develop mature cell types that integrate into sensory and motivation-related circuits. MRI reveals post-transplantation organoid growth across multiple stem cell lines and animals, whereas single-nucleus profiling shows progression of corticogenesis and the emergence of activity-dependent transcriptional programs. Indeed, transplanted cortical neurons display more complex morphological, synaptic and intrinsic membrane properties than their in vitro counterparts, which enables the discovery of defects in neurons derived from individuals with Timothy syndrome. Anatomical and functional tracings show that transplanted organoids receive thalamocortical and corticocortical inputs, and in vivo recordings of neural activity demonstrate that these inputs can produce sensory responses in human cells. Finally, cortical organoids extend axons throughout the rat brain and their optogenetic activation can drive reward-seeking behaviour. Thus, transplanted human cortical neurons mature and engage host circuits that control behaviour. We anticipate that this approach will be useful for detecting circuit-level phenotypes in patient-derived cells that cannot otherwise be uncovered.
Collapse
Affiliation(s)
- Omer Revah
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Stanford Brain Organogenesis, Wu Tsai Neurosciences Institute and Bio-X, Stanford University, Stanford, CA, USA
| | - Felicity Gore
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Kevin W Kelley
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Stanford Brain Organogenesis, Wu Tsai Neurosciences Institute and Bio-X, Stanford University, Stanford, CA, USA
| | - Jimena Andersen
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Stanford Brain Organogenesis, Wu Tsai Neurosciences Institute and Bio-X, Stanford University, Stanford, CA, USA
| | - Noriaki Sakai
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Xiaoyu Chen
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Stanford Brain Organogenesis, Wu Tsai Neurosciences Institute and Bio-X, Stanford University, Stanford, CA, USA
| | - Min-Yin Li
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Stanford Brain Organogenesis, Wu Tsai Neurosciences Institute and Bio-X, Stanford University, Stanford, CA, USA
| | - Fikri Birey
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Stanford Brain Organogenesis, Wu Tsai Neurosciences Institute and Bio-X, Stanford University, Stanford, CA, USA
| | - Xiao Yang
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Stanford Brain Organogenesis, Wu Tsai Neurosciences Institute and Bio-X, Stanford University, Stanford, CA, USA
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Nay L Saw
- Stanford Behavioral and Functional Neuroscience Laboratory, Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Samuel W Baker
- Department of Comparative Medicine, Stanford University, Stanford, CA, USA
| | - Neal D Amin
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Stanford Brain Organogenesis, Wu Tsai Neurosciences Institute and Bio-X, Stanford University, Stanford, CA, USA
| | - Shravanti Kulkarni
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Stanford Brain Organogenesis, Wu Tsai Neurosciences Institute and Bio-X, Stanford University, Stanford, CA, USA
| | - Rachana Mudipalli
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Bianxiao Cui
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Seiji Nishino
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Gerald A Grant
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | - Juliet K Knowles
- Department of Neurology and Neurological Sciences, Stanford, CA, USA
| | - Mehrdad Shamloo
- Stanford Behavioral and Functional Neuroscience Laboratory, Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | - John R Huguenard
- Department of Neurology and Neurological Sciences, Stanford, CA, USA
| | - Karl Deisseroth
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Sergiu P Pașca
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA.
- Stanford Brain Organogenesis, Wu Tsai Neurosciences Institute and Bio-X, Stanford University, Stanford, CA, USA.
| |
Collapse
|
175
|
Hansen JN, Brückner M, Pietrowski MJ, Jikeli JF, Plescher M, Beckert H, Schnaars M, Fülle L, Reitmeier K, Langmann T, Förster I, Boche D, Petzold GC, Halle A. MotiQ: an open-source toolbox to quantify the cell motility and morphology of microglia. Mol Biol Cell 2022; 33:ar99. [PMID: 35731557 DOI: 10.1091/mbc.e21-11-0585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Microglia are the primary resident innate immune cells of the CNS. They possess branched, motile cell processes that are important for their cellular functions. To study the pathways that control microglial morphology and motility under physiological and disease conditions, it is necessary to quantify microglial morphology and motility precisely and reliably. Several image analysis approaches are available for the quantification of microglial morphology and motility. However, they are either not automated, not freely accessible, and/or limited in the number of morphology and motility parameters that can be assessed. Thus, we have developed MotiQ, an open-source, freely accessible software for automated quantification of microglial motility and morphology. MotiQ allows quantification of a diverse set of cellular motility and morphology parameters, including the parameters that have become the gold standard in the microglia field. We demonstrate that MotiQ can be applied to in vivo, ex vivo, and in vitro data from confocal, epifluorescence, or two-photon microscopy, and we compare its results to other analysis approaches. We suggest MotiQ as a versatile and customizable tool to study microglia.
Collapse
Affiliation(s)
- Jan N Hansen
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany.,Max-Planck Research Group Neuroimmunology and
| | | | - Marie J Pietrowski
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| | - Jan F Jikeli
- Minerva Research Group Molecular Physiology, Research Center Caesar, 53175 Bonn, Germany
| | - Monika Plescher
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany.,Max-Planck Research Group Neuroimmunology and
| | - Hannes Beckert
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany.,Max-Planck Research Group Neuroimmunology and
| | | | - Lorenz Fülle
- Immunology and Environment, Life and Medical Sciences (LIMES) Institute, University of Bonn, 53115 Bonn, Germany
| | - Katharina Reitmeier
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, University Hospital of Cologne, 50931 Cologne, Germany
| | - Thomas Langmann
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, University Hospital of Cologne, 50931 Cologne, Germany
| | - Irmgard Förster
- Immunology and Environment, Life and Medical Sciences (LIMES) Institute, University of Bonn, 53115 Bonn, Germany
| | - Delphine Boche
- Clinical Neurosciences and Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, United Kingdom
| | - Gabor C Petzold
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany.,Department of Neurology and
| | - Annett Halle
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany.,Max-Planck Research Group Neuroimmunology and.,Department of Neuropathology, University Hospital Bonn, 53127 Bonn, Germany
| |
Collapse
|
176
|
Anbazhakan S, Rios Coronado PE, Sy-Quia ANL, Seow LW, Hands AM, Zhao M, Dong ML, Pfaller MR, Amir ZA, Raftrey BC, Cook CK, D’Amato G, Fan X, Williams IM, Jha SK, Bernstein D, Nieman K, Pașca AM, Marsden AL, Horse KR. Blood flow modeling reveals improved collateral artery performance during the regenerative period in mammalian hearts. NATURE CARDIOVASCULAR RESEARCH 2022; 1:775-790. [PMID: 37305211 PMCID: PMC10256232 DOI: 10.1038/s44161-022-00114-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 07/07/2022] [Indexed: 06/13/2023]
Abstract
Collateral arteries bridge opposing artery branches, forming a natural bypass that can deliver blood flow downstream of an occlusion. Inducing coronary collateral arteries could treat cardiac ischemia, but more knowledge on their developmental mechanisms and functional capabilities is required. Here we used whole-organ imaging and three-dimensional computational fluid dynamics modeling to define spatial architecture and predict blood flow through collaterals in neonate and adult mouse hearts. Neonate collaterals were more numerous, larger in diameter and more effective at restoring blood flow. Decreased blood flow restoration in adults arose because during postnatal growth coronary arteries expanded by adding branches rather than increasing diameters, altering pressure distributions. In humans, adult hearts with total coronary occlusions averaged 2 large collaterals, with predicted moderate function, while normal fetal hearts showed over 40 collaterals, likely too small to be functionally relevant. Thus, we quantify the functional impact of collateral arteries during heart regeneration and repair-a critical step toward realizing their therapeutic potential.
Collapse
Affiliation(s)
- Suhaas Anbazhakan
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
- These authors contributed equally
| | - Pamela E. Rios Coronado
- Department of Biology, Stanford University, Stanford, CA 94305, USA
- These authors contributed equally
| | | | - Lek Wei Seow
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Aubrey M. Hands
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Mingming Zhao
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Melody L. Dong
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Martin R. Pfaller
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305
| | - Zhainib A. Amir
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Brian C. Raftrey
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | | | - Gaetano D’Amato
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Xiaochen Fan
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Ian M. Williams
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Sawan K. Jha
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Daniel Bernstein
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Koen Nieman
- Departments of Cardiovascular Medicine and Radiology, School of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Anca M. Pașca
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305
| | - Alison L. Marsden
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kristy Red Horse
- Department of Biology, Stanford University, Stanford, CA 94305, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Howard Hughes Medical Institute, Stanford, CA, 94305, USA
| |
Collapse
|
177
|
van den Hoek H, Klena N, Jordan MA, Alvarez Viar G, Righetto RD, Schaffer M, Erdmann PS, Wan W, Geimer S, Plitzko JM, Baumeister W, Pigino G, Hamel V, Guichard P, Engel BD. In situ architecture of the ciliary base reveals the stepwise assembly of intraflagellar transport trains. Science 2022; 377:543-548. [PMID: 35901159 DOI: 10.1126/science.abm6704] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The cilium is an antenna-like organelle that performs numerous cellular functions, including motility, sensing, and signaling. The base of the cilium contains a selective barrier that regulates the entry of large intraflagellar transport (IFT) trains, which carry cargo proteins required for ciliary assembly and maintenance. However, the native architecture of the ciliary base and the process of IFT train assembly remain unresolved. In this work, we used in situ cryo-electron tomography to reveal native structures of the transition zone region and assembling IFT trains at the ciliary base in Chlamydomonas. We combined this direct cellular visualization with ultrastructure expansion microscopy to describe the front-to-back stepwise assembly of IFT trains: IFT-B forms the backbone, onto which bind IFT-A, dynein-1b, and finally kinesin-2 before entry into the cilium.
Collapse
Affiliation(s)
- Hugo van den Hoek
- Biozentrum, University of Basel, 4056 Basel, Switzerland.,Helmholtz Pioneer Campus, Helmholtz Munich, 85764 Neuherberg, Germany.,Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Nikolai Klena
- Department of Molecular and Cellular Biology, Section of Biology, University of Geneva, 1211 Geneva, Switzerland.,Human Technopole, 20157 Milan, Italy
| | - Mareike A Jordan
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Gonzalo Alvarez Viar
- Human Technopole, 20157 Milan, Italy.,Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Ricardo D Righetto
- Biozentrum, University of Basel, 4056 Basel, Switzerland.,Helmholtz Pioneer Campus, Helmholtz Munich, 85764 Neuherberg, Germany
| | - Miroslava Schaffer
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | | | - William Wan
- Department of Biochemistry and Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Stefan Geimer
- Cell Biology and Electron Microscopy, University of Bayreuth, 95447 Bayreuth, Germany
| | - Jürgen M Plitzko
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Wolfgang Baumeister
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Gaia Pigino
- Human Technopole, 20157 Milan, Italy.,Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Virginie Hamel
- Department of Molecular and Cellular Biology, Section of Biology, University of Geneva, 1211 Geneva, Switzerland
| | - Paul Guichard
- Department of Molecular and Cellular Biology, Section of Biology, University of Geneva, 1211 Geneva, Switzerland
| | - Benjamin D Engel
- Biozentrum, University of Basel, 4056 Basel, Switzerland.,Helmholtz Pioneer Campus, Helmholtz Munich, 85764 Neuherberg, Germany
| |
Collapse
|
178
|
Formation of unique T-shape budding and differential impacts of low surface water on Bacillus mycoides rhizoidal colony. Arch Microbiol 2022; 204:528. [PMID: 35896814 DOI: 10.1007/s00203-022-03141-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/24/2022] [Accepted: 07/13/2022] [Indexed: 11/02/2022]
Abstract
Bacillus mycoides Ko01 strain grows rapidly and forms extensive rhizoidal colonies on hard agar despite limited surface water availability. The agar concentrations affect the handedness of the colonies as well as other colony architectures. In this study, we found that the local curvature of cell chains in the developing colonies did not vary based on the agar concentration, while concentration does affect the handedness of chirality at the macroscale. This result suggests independence between the microscale filament curvature and macroscale colony chirality. In addition, we discovered a novel microscopic property of cells that has not been observed before: T-shaped budding under extremely low surface water availability conditions. We propose that this feature gives rise to chaotic colony morphology. Together with bundling of chains, cells form a unique set of spatial arrangements under different surface water availability. These properties appear to impact the structural features of thick tendrils, and thereby the overall morphology of colonies. Our study provides additional insights as to how bacteria proliferate, spread, and develop macroscale colony architecture under water-limited conditions.
Collapse
|
179
|
DeMarco EC, Stoner GR, Robles E. A genetic labeling system to study dendritic spine development in zebrafish models of neurodevelopmental disorders. Dis Model Mech 2022; 15:276065. [PMID: 35875841 PMCID: PMC9403749 DOI: 10.1242/dmm.049507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 07/13/2022] [Indexed: 11/20/2022] Open
Abstract
Dendritic spines are the principal site of excitatory synapse formation in the human brain. Several neurodevelopmental disorders cause spines to develop abnormally, resulting in altered spine number and morphology. Although spine development has been thoroughly characterized in the mammalian brain, spines are not unique to mammals. We have developed a genetic system in zebrafish to enable high-resolution in vivo imaging of spine dynamics during larval development. Although spiny neurons are rare in the larval zebrafish, pyramidal neurons (PyrNs) of the zebrafish tectum form an apical dendrite containing a dense array of dendritic spines. To characterize dendritic spine development, we performed mosaic genetic labeling of individual PyrNs labeled by an id2b:gal4 transgene. Our findings identify a developmental period during which PyrN dendrite growth is concurrent with spine formation. Throughout this period, motile, transient filopodia gradually transform into stable spines containing postsynaptic specializations. The utility of this system to study neurodevelopmental disorders was validated by examining spine development in fmr1 mutant zebrafish, a model of fragile X syndrome. PyrNs in fmr1 mutants exhibited pronounced defects in dendrite growth and spine stabilization. Taken together, these findings establish a genetic labeling system to study dendritic spine development in larval zebrafish. In the future, this system could be combined with high-throughput screening approaches to identify genes and drug targets that regulate spine formation. Summary: We have developed a genetic labeling system in zebrafish to enable high-resolution in vivo imaging of dendritic spine dynamics during larval development.
Collapse
Affiliation(s)
- Elisabeth C DeMarco
- Department of Biological Sciences and Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, USA
| | - George R Stoner
- Department of Biological Sciences and Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, USA
| | - Estuardo Robles
- Department of Biological Sciences and Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
180
|
Kirjavainen A, Singh P, Lahti L, Seja P, Lelkes Z, Makkonen A, Kilpinen S, Ono Y, Salminen M, Aitta-Aho T, Stenberg T, Molchanova S, Achim K, Partanen J. Gata2, Nkx2-2 and Skor2 form a transcription factor network regulating development of a midbrain GABAergic neuron subtype with characteristics of REM-sleep regulatory neurons. Development 2022; 149:275960. [DOI: 10.1242/dev.200937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/15/2022] [Indexed: 11/20/2022]
Abstract
ABSTRACT
The midbrain reticular formation (MRF) is a mosaic of diverse GABAergic and glutamatergic neurons that have been associated with a variety of functions, including sleep regulation. However, the molecular characteristics and development of MRF neurons are poorly understood. As the transcription factor, Gata2 is required for the development of all GABAergic neurons derived from the embryonic mouse midbrain, we hypothesized that the genes expressed downstream of Gata2 could contribute to the diversification of GABAergic neuron subtypes in this brain region. Here, we show that Gata2 is required for the expression of several GABAergic lineage-specific transcription factors, including Nkx2-2 and Skor2, which are co-expressed in a restricted group of post-mitotic GABAergic precursors in the MRF. Both Gata2 and Nkx2-2 function is required for Skor2 expression in GABAergic precursors. In the adult mouse and rat midbrain, Nkx2-2-and Skor2-expressing GABAergic neurons locate at the boundary of the ventrolateral periaqueductal gray and the MRF, an area containing REM-off neurons regulating REM sleep. In addition to the characteristic localization, Skor2+ cells increase their activity upon REM-sleep inhibition, send projections to the dorsolateral pons, a region associated with sleep control, and are responsive to orexins, consistent with the known properties of midbrain REM-off neurons.
Collapse
Affiliation(s)
- Anna Kirjavainen
- Molecular and Integrative Biosciences Research Programme 1 , Faculty of Biological and Environmental Sciences, PO Box 56 , , Helsinki , Finland
- FIN00014-University of Helsinki 1 , Faculty of Biological and Environmental Sciences, PO Box 56 , , Helsinki , Finland
| | - Parul Singh
- Molecular and Integrative Biosciences Research Programme 1 , Faculty of Biological and Environmental Sciences, PO Box 56 , , Helsinki , Finland
- FIN00014-University of Helsinki 1 , Faculty of Biological and Environmental Sciences, PO Box 56 , , Helsinki , Finland
| | - Laura Lahti
- Molecular and Integrative Biosciences Research Programme 1 , Faculty of Biological and Environmental Sciences, PO Box 56 , , Helsinki , Finland
- FIN00014-University of Helsinki 1 , Faculty of Biological and Environmental Sciences, PO Box 56 , , Helsinki , Finland
| | - Patricia Seja
- Molecular and Integrative Biosciences Research Programme 1 , Faculty of Biological and Environmental Sciences, PO Box 56 , , Helsinki , Finland
- FIN00014-University of Helsinki 1 , Faculty of Biological and Environmental Sciences, PO Box 56 , , Helsinki , Finland
| | - Zoltan Lelkes
- FIN00014-University of Helsinki 2 Department of Physiology, PO Box 63 , , Helsinki , Finland
- University of Szeged 3 Department of Physiology, Faculty of Medicine , , Szeged , Hungary
| | - Aki Makkonen
- FIN00014-University of Helsinki 4 Department of Pharmacology, PO Box 63 , , Helsinki , Finland
| | - Sami Kilpinen
- Molecular and Integrative Biosciences Research Programme 1 , Faculty of Biological and Environmental Sciences, PO Box 56 , , Helsinki , Finland
- FIN00014-University of Helsinki 1 , Faculty of Biological and Environmental Sciences, PO Box 56 , , Helsinki , Finland
| | - Yuichi Ono
- Department of Developmental Neurobiology, Integrated Cell Biology, KAN Research Institute 5 , 6-8-2 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047 , Japan
| | - Marjo Salminen
- FIN00014-University of Helsinki 6 Department of Veterinary Biosciences, PO Box 66 , , Helsinki , Finland
| | - Teemu Aitta-Aho
- FIN00014-University of Helsinki 4 Department of Pharmacology, PO Box 63 , , Helsinki , Finland
| | - Tarja Stenberg
- FIN00014-University of Helsinki 2 Department of Physiology, PO Box 63 , , Helsinki , Finland
| | - Svetlana Molchanova
- Molecular and Integrative Biosciences Research Programme 1 , Faculty of Biological and Environmental Sciences, PO Box 56 , , Helsinki , Finland
- FIN00014-University of Helsinki 1 , Faculty of Biological and Environmental Sciences, PO Box 56 , , Helsinki , Finland
| | - Kaia Achim
- Molecular and Integrative Biosciences Research Programme 1 , Faculty of Biological and Environmental Sciences, PO Box 56 , , Helsinki , Finland
- FIN00014-University of Helsinki 1 , Faculty of Biological and Environmental Sciences, PO Box 56 , , Helsinki , Finland
| | - Juha Partanen
- Molecular and Integrative Biosciences Research Programme 1 , Faculty of Biological and Environmental Sciences, PO Box 56 , , Helsinki , Finland
- FIN00014-University of Helsinki 1 , Faculty of Biological and Environmental Sciences, PO Box 56 , , Helsinki , Finland
| |
Collapse
|
181
|
Haase R, Fazeli E, Legland D, Doube M, Culley S, Belevich I, Jokitalo E, Schorb M, Klemm A, Tischer C. A Hitchhiker's Guide through the Bio-image Analysis Software Universe. FEBS Lett 2022; 596:2472-2485. [PMID: 35833863 DOI: 10.1002/1873-3468.14451] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/01/2022] [Accepted: 05/12/2022] [Indexed: 11/06/2022]
Abstract
Modern research in the life sciences is unthinkable without computational methods for extracting, quantifying and visualizing information derived from microscopy imaging data of biological samples. In the past decade, we observed a dramatic increase in available software packages for these purposes. As it is increasingly difficult to keep track of the number of available image analysis platforms, tool collections, components and emerging technologies, we provide a conservative overview of software that we use in daily routine and give insights into emerging new tools. We give guidance on which aspects to consider when choosing the platform that best suits the user's needs, including aspects such as image data type, skills of the team, infrastructure and community at the institute and availability of time and budget.
Collapse
Affiliation(s)
- Robert Haase
- DFG Cluster of Excellence "Physics of Life", TU, Dresden, Germany.,Center for Systems Biology Dresden, Germany
| | - Elnaz Fazeli
- Biomedicum Imaging Unit, Faculty of Medicine and HiLIFE, University of Helsinki, Finland
| | - David Legland
- INRAE, UR BIA, F-44316, Nantes, France.,INRAE, PROBE research infrastructure, BIBS facility, F-44316, Nantes, France
| | - Michael Doube
- Department of Infectious Diseases and Public Health, City University of Hong Kong, Kowloon, Hong Kong
| | - Siân Culley
- Randall Centre for Cell & Molecular Biophysics, Guy's Campus, King's College London, LondonSE1 1UL, UK
| | - Ilya Belevich
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Eija Jokitalo
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Martin Schorb
- Electron Microscopy Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany.,Centre for Bioimage Analysis, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Anna Klemm
- VI2 - Department of Information Technology and SciLifeLab BioImage Informatics Facility, Uppsala University, Uppsala, 752 37, Sweden
| | - Christian Tischer
- Centre for Bioimage Analysis, European Molecular Biology Laboratory, Heidelberg, Germany
| |
Collapse
|
182
|
Goetz J, Jessen ZF, Jacobi A, Mani A, Cooler S, Greer D, Kadri S, Segal J, Shekhar K, Sanes JR, Schwartz GW. Unified classification of mouse retinal ganglion cells using function, morphology, and gene expression. Cell Rep 2022; 40:111040. [PMID: 35830791 PMCID: PMC9364428 DOI: 10.1016/j.celrep.2022.111040] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 01/27/2022] [Accepted: 06/13/2022] [Indexed: 11/24/2022] Open
Abstract
Classification and characterization of neuronal types are critical for understanding their function and dysfunction. Neuronal classification schemes typically rely on measurements of electrophysiological, morphological, and molecular features, but aligning such datasets has been challenging. Here, we present a unified classification of mouse retinal ganglion cells (RGCs), the sole retinal output neurons. We use visually evoked responses to classify 1,859 mouse RGCs into 42 types. We also obtain morphological or transcriptomic data from subsets and use these measurements to align the functional classification to publicly available morphological and transcriptomic datasets. We create an online database that allows users to browse or download the data and to classify RGCs from their light responses using a machine learning algorithm. This work provides a resource for studies of RGCs, their upstream circuits in the retina, and their projections in the brain, and establishes a framework for future efforts in neuronal classification and open data distribution.
Collapse
Affiliation(s)
- Jillian Goetz
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Zachary F Jessen
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Northwestern University Interdepartmental Neuroscience Program, Northwestern University, Evanston, IL, USA; Medical Scientist Training Program, Northwestern University, Chicago, IL, USA
| | - Anne Jacobi
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Adam Mani
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Sam Cooler
- Northwestern University Interdepartmental Neuroscience Program, Northwestern University, Evanston, IL, USA
| | - Devon Greer
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Northwestern University Interdepartmental Neuroscience Program, Northwestern University, Evanston, IL, USA
| | - Sabah Kadri
- Department of Pathology, Pritzker School of Medicine, University of Chicago, Chicago, IL, USA
| | - Jeremy Segal
- Department of Pathology, Pritzker School of Medicine, University of Chicago, Chicago, IL, USA
| | - Karthik Shekhar
- Department of Chemical and Biomolecular Engineering and Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, USA
| | - Joshua R Sanes
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Gregory W Schwartz
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Department of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
183
|
Wienbar S, Schwartz GW. Differences in spike generation instead of synaptic inputs determine the feature selectivity of two retinal cell types. Neuron 2022; 110:2110-2123.e4. [PMID: 35508174 PMCID: PMC9262831 DOI: 10.1016/j.neuron.2022.04.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 03/21/2022] [Accepted: 04/11/2022] [Indexed: 12/19/2022]
Abstract
Retinal ganglion cells (RGCs) are the spiking projection neurons of the eye that encode different features of the visual environment. The circuits providing synaptic input to different RGC types to drive feature selectivity have been studied extensively, but there has been less research aimed at understanding the intrinsic properties and how they impact feature selectivity. We introduce an RGC type in the mouse, the Bursty Suppressed-by-Contrast (bSbC) RGC, and compared it to the OFF sustained alpha (OFFsA). Differences in their contrast response functions arose from differences not in synaptic inputs but in their intrinsic properties. Spike generation was the key intrinsic property behind this functional difference; the bSbC RGC undergoes depolarization block while the OFFsA RGC maintains a high spike rate. Our results demonstrate that differences in intrinsic properties allow these two RGC types to detect and relay distinct features of an identical visual stimulus to the brain.
Collapse
Affiliation(s)
- Sophia Wienbar
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Northwestern University Interdepartmental Neuroscience Program, Northwestern University, Evanston, IL 60208, USA
| | - Gregory William Schwartz
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL 60208, USA.
| |
Collapse
|
184
|
Schreiber M, Gao Y, Koch N, Fuchs J, Heckmann S, Himmelbach A, Börner A, Özkan H, Maurer A, Stein N, Mascher M, Dreissig S. Recombination landscape divergence between populations is marked by larger low-recombining regions in domesticated rye. Mol Biol Evol 2022; 39:msac131. [PMID: 35687854 PMCID: PMC9218680 DOI: 10.1093/molbev/msac131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 11/13/2022] Open
Abstract
The genomic landscape of recombination plays an essential role in evolution. Patterns of recombination are highly variable along chromosomes, between sexes, individuals, populations, and species. In many eukaryotes, recombination rates are elevated in sub-telomeric regions and drastically reduced near centromeres, resulting in large low-recombining (LR) regions. The processes of recombination are influenced by genetic factors, such as different alleles of genes involved in meiosis and chromatin structure, as well as external environmental stimuli like temperature and overall stress. In this work, we focused on the genomic landscapes of recombination in a collection of 916 rye (Secale cereale) individuals. By analysing population structure among individuals of different domestication status and geographic origin, we detected high levels of admixture, reflecting the reproductive biology of a self-incompatible, wind-pollinating grass species. We then analysed patterns of recombination in overlapping subpopulations, which revealed substantial variation in the physical size of LR regions, with a tendency for larger LR regions in domesticated subpopulations. Genome-wide association scans (GWAS) for LR region size revealed a major quantitative-trait-locus (QTL) at which, among 18 annotated genes, an ortholog of histone H4 acetyltransferase ESA1 was located. Rye individuals belonging to domesticated subpopulations showed increased synaptonemal complex length, but no difference in crossover frequency, indicating that only the recombination landscape is different. Furthermore, the genomic region harbouring rye ScESA1 showed moderate patterns of selection in domesticated subpopulations, suggesting that larger LR regions were indirectly selected for during domestication to achieve more homogeneous populations for agricultural use.
Collapse
Affiliation(s)
- Mona Schreiber
- Department of Biology, University of Marburg, 35037 Marburg, Germany
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Seeland, OT Gatersleben, Germany
| | - Yixuan Gao
- Institute of Agricultural and Nutritional Sciences, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Natalie Koch
- Institute of Agricultural and Nutritional Sciences, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Joerg Fuchs
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Seeland, OT Gatersleben, Germany
| | - Stefan Heckmann
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Seeland, OT Gatersleben, Germany
| | - Axel Himmelbach
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Seeland, OT Gatersleben, Germany
| | - Andreas Börner
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Seeland, OT Gatersleben, Germany
| | - Hakan Özkan
- Faculty of Agriculture, Department of Field Crops, University of Cukurova, 01330 Adana, Turkey
| | - Andreas Maurer
- Institute of Agricultural and Nutritional Sciences, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Seeland, OT Gatersleben, Germany
| | - Martin Mascher
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Seeland, OT Gatersleben, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
| | - Steven Dreissig
- Institute of Agricultural and Nutritional Sciences, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany
| |
Collapse
|
185
|
Nielson CD, Berthiaume AA, Bonney SK, Shih AY. In vivo Single Cell Optical Ablation of Brain Pericytes. Front Neurosci 2022; 16:900761. [PMID: 35720702 PMCID: PMC9205398 DOI: 10.3389/fnins.2022.900761] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/19/2022] [Indexed: 01/09/2023] Open
Abstract
Pericytes have myriad functions in cerebrovascular regulation but remain understudied in the living brain. To dissect pericyte functions in vivo, prior studies have used genetic approaches to induce global pericyte loss in the rodent brain. However, this leads to complex outcomes, making it challenging to disentangle the physiological roles of pericytes from the pathophysiological effects of their depletion. Here, we describe a protocol to optically ablate individual pericytes of the mouse cerebral cortex in vivo for fine-scale studies of pericyte function. The strategy relies on two-photon microscopy and cranial window-implanted transgenic mice with mural cell-specific expression of fluorescent proteins. Single pericyte somata are precisely targeted with pulsed infrared laser light to induce selective pericyte death, but without overt blood-brain barrier leakage. Following pericyte ablation, the changes to the local capillary network and remaining pericytes can be examined longitudinally. The approach has been used to study pericyte roles in capillary flow regulation, and the structural remodeling of pericytes involved in restoration of endothelial coverage after pericyte loss.
Collapse
Affiliation(s)
- Cara D. Nielson
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute, Seattle, WA, United States,Graduate Program in Neuroscience, University of Washington, Seattle, WA, United States
| | - Andrée-Anne Berthiaume
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute, Seattle, WA, United States,Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States
| | - Stephanie K. Bonney
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Andy Y. Shih
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute, Seattle, WA, United States,Department of Pediatrics, University of Washington, Seattle, WA, United States,Department of Bioengineering, University of Washington, Seattle, WA, United States,*Correspondence: Andy Y. Shih,
| |
Collapse
|
186
|
Guo S, Xue J, Liu J, Ye X, Guo Y, Liu D, Zhao X, Xiong F, Han X, Peng H. Smart imaging to empower brain-wide neuroscience at single-cell levels. Brain Inform 2022; 9:10. [PMID: 35543774 PMCID: PMC9095808 DOI: 10.1186/s40708-022-00158-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 04/12/2022] [Indexed: 11/10/2022] Open
Abstract
A deep understanding of the neuronal connectivity and networks with detailed cell typing across brain regions is necessary to unravel the mechanisms behind the emotional and memorial functions as well as to find the treatment of brain impairment. Brain-wide imaging with single-cell resolution provides unique advantages to access morphological features of a neuron and to investigate the connectivity of neuron networks, which has led to exciting discoveries over the past years based on animal models, such as rodents. Nonetheless, high-throughput systems are in urgent demand to support studies of neural morphologies at larger scale and more detailed level, as well as to enable research on non-human primates (NHP) and human brains. The advances in artificial intelligence (AI) and computational resources bring great opportunity to 'smart' imaging systems, i.e., to automate, speed up, optimize and upgrade the imaging systems with AI and computational strategies. In this light, we review the important computational techniques that can support smart systems in brain-wide imaging at single-cell resolution.
Collapse
Affiliation(s)
- Shuxia Guo
- Institute for Brain and Intelligence, Southeast University, Nanjing, 210096, Jiangsu, China.
| | - Jie Xue
- Institute for Brain and Intelligence, Southeast University, Nanjing, 210096, Jiangsu, China
| | - Jian Liu
- Institute for Brain and Intelligence, Southeast University, Nanjing, 210096, Jiangsu, China
| | - Xiangqiao Ye
- Institute for Brain and Intelligence, Southeast University, Nanjing, 210096, Jiangsu, China
| | - Yichen Guo
- Institute for Brain and Intelligence, Southeast University, Nanjing, 210096, Jiangsu, China
| | - Di Liu
- Institute for Brain and Intelligence, Southeast University, Nanjing, 210096, Jiangsu, China
| | - Xuan Zhao
- Institute for Brain and Intelligence, Southeast University, Nanjing, 210096, Jiangsu, China
| | - Feng Xiong
- Institute for Brain and Intelligence, Southeast University, Nanjing, 210096, Jiangsu, China
| | - Xiaofeng Han
- Institute for Brain and Intelligence, Southeast University, Nanjing, 210096, Jiangsu, China.
| | - Hanchuan Peng
- Institute for Brain and Intelligence, Southeast University, Nanjing, 210096, Jiangsu, China
| |
Collapse
|
187
|
Méndez-Salcido FA, Torres-Flores MI, Ordaz B, Peña-Ortega F. Abnormal innate and learned behavior induced by neuron-microglia miscommunication is related to CA3 reconfiguration. Glia 2022; 70:1630-1651. [PMID: 35535571 DOI: 10.1002/glia.24185] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 12/15/2022]
Abstract
Neuron-microglia communication through the Cx3cr1-Cx3cl1 axis is essential for the development and refinement of neural circuits, which determine their function into adulthood. In the present work we set out to extend the behavioral characterization of Cx3cr1-/- mice evaluating innate behaviors and spatial navigation, both dependent on hippocampal function. Our results show that Cx3cr1-deficient mice, which show some changes in microglial and synaptic terminals morphology and density, exhibit alterations in activities of daily living and in the rapid encoding of novel spatial information that, nonetheless, improves with training. A neural substrate for these cognitive deficiencies was found in the form of synaptic dysfunction in the CA3 region of the hippocampus, with a marked impact on the mossy fiber (MF) pathway. A network analysis of the CA3 microcircuit reveals the effect of these synaptic alterations on the functional connectivity among CA3 neurons with diminished strength and topological reorganization in Cx3cr1-deficient mice. Neonatal population activity of the CA3 region in Cx3cr1-deficient mice shows a marked reorganization around the giant depolarizing potentials, the first form of network-driven activity of the hippocampus, suggesting that alterations found in adult subjects arise early on in postnatal development, a critical period of microglia-dependent neural circuit refinement. Our results show that interruption of the Cx3cr1-Cx3cl1/neuron-microglia axis leads to changes in CA3 configuration that affect innate and learned behaviors.
Collapse
Affiliation(s)
- Felipe Antonio Méndez-Salcido
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, México
| | - Mayra Itzel Torres-Flores
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, México
| | - Benito Ordaz
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, México
| | - Fernando Peña-Ortega
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, México
| |
Collapse
|
188
|
Reinhard N, Schubert FK, Bertolini E, Hagedorn N, Manoli G, Sekiguchi M, Yoshii T, Rieger D, Helfrich-Förster C. The Neuronal Circuit of the Dorsal Circadian Clock Neurons in Drosophila melanogaster. Front Physiol 2022; 13:886432. [PMID: 35574472 PMCID: PMC9100938 DOI: 10.3389/fphys.2022.886432] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 03/28/2022] [Indexed: 11/30/2022] Open
Abstract
Drosophila’s dorsal clock neurons (DNs) consist of four clusters (DN1as, DN1ps, DN2s, and DN3s) that largely differ in size. While the DN1as and the DN2s encompass only two neurons, the DN1ps consist of ∼15 neurons, and the DN3s comprise ∼40 neurons per brain hemisphere. In comparison to the well-characterized lateral clock neurons (LNs), the neuroanatomy and function of the DNs are still not clear. Over the past decade, numerous studies have addressed their role in the fly’s circadian system, leading to several sometimes divergent results. Nonetheless, these studies agreed that the DNs are important to fine-tune activity under light and temperature cycles and play essential roles in linking the output from the LNs to downstream neurons that control sleep and metabolism. Here, we used the Flybow system, specific split-GAL4 lines, trans-Tango, and the recently published fly connectome (called hemibrain) to describe the morphology of the DNs in greater detail, including their synaptic connections to other clock and non-clock neurons. We show that some DN groups are largely heterogenous. While certain DNs are strongly connected with the LNs, others are mainly output neurons that signal to circuits downstream of the clock. Among the latter are mushroom body neurons, central complex neurons, tubercle bulb neurons, neurosecretory cells in the pars intercerebralis, and other still unidentified partners. This heterogeneity of the DNs may explain some of the conflicting results previously found about their functionality. Most importantly, we identify two putative novel communication centers of the clock network: one fiber bundle in the superior lateral protocerebrum running toward the anterior optic tubercle and one fiber hub in the posterior lateral protocerebrum. Both are invaded by several DNs and LNs and might play an instrumental role in the clock network.
Collapse
Affiliation(s)
- Nils Reinhard
- Julius Maximilian University of Würzburg, Würzburg, Germany
| | | | - Enrico Bertolini
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Würzburg, Würzburg, Germany
| | | | - Giulia Manoli
- Julius Maximilian University of Würzburg, Würzburg, Germany
| | - Manabu Sekiguchi
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Taishi Yoshii
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Dirk Rieger
- Julius Maximilian University of Würzburg, Würzburg, Germany
| | | |
Collapse
|
189
|
A report on digitised neuronal tracing method to study neurons in their entirety. MethodsX 2022; 9:101715. [PMID: 35592463 PMCID: PMC9111970 DOI: 10.1016/j.mex.2022.101715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 04/21/2022] [Indexed: 11/24/2022] Open
Abstract
Conventional camera lucida (CL) aided neuronal tracing technique for studying neural plasticity is a demanding procedure. Stereo Investigator-Neurolucida enabled neuronal tracing system is not accessible to all researchers. This necessitates alternate simple and less challenging digitised neuronal tracing methods. This report describes a novel digitised neuronal tracing method using widefield microscopy, and its effectiveness is compared with the traditional camera lucida aided neuronal tracing method. Golgi-Cox stained hippocampal cornu ammonis area-3 (CA3) pyramidal neuron photomicrographs were serially captured at a depth of every 2µm in the z-axis by a wide field microscope from the point of appearance to the disappearance. These images were stacked along the axis perpendicular to the image plane to reconstruct the neuron in its entirety, digitally traced and dendritic quantification was performed using open source software. The same neurons were manually traced using camera lucida, and Sholl analysis was done manually to quantify the dendritic arborisation pattern. The dendritic quantification data were not significantly different in both methods. Hence, the technology-enabled, less demanding, and equally accurate neuronal tracing can be adopted instead of manual tracing and analysis of neurons. A simple digitised neuronal tracing method is described. It is fast, rigorous, and comparable to traditional tracing techniques. Helps the researcher to repeatedly probe data to reduce errors.
Collapse
|
190
|
Rolotti SV, Blockus H, Sparks FT, Priestley JB, Losonczy A. Reorganization of CA1 dendritic dynamics by hippocampal sharp-wave ripples during learning. Neuron 2022; 110:977-991.e4. [PMID: 35041805 PMCID: PMC8930454 DOI: 10.1016/j.neuron.2021.12.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 07/23/2021] [Accepted: 12/10/2021] [Indexed: 12/17/2022]
Abstract
The hippocampus plays a critical role in memory consolidation, mediated by coordinated network activity during sharp-wave ripple (SWR) events. Despite the link between SWRs and hippocampal plasticity, little is known about how network state affects information processing in dendrites, the primary sites of synaptic input integration and plasticity. Here, we monitored somatic and basal dendritic activity in CA1 pyramidal cells in behaving mice using longitudinal two-photon calcium imaging integrated with simultaneous local field potential recordings. We found immobility was associated with an increase in dendritic activity concentrated during SWRs. Coincident dendritic and somatic activity during SWRs predicted increased coupling during subsequent exploration of a novel environment. In contrast, somatic-dendritic coupling and SWR recruitment varied with cells' tuning distance to reward location during a goal-learning task. Our results connect SWRs with the stabilization of information processing within CA1 neurons and suggest that these mechanisms may be dynamically biased by behavioral demands.
Collapse
Affiliation(s)
- Sebi V Rolotti
- Department of Neuroscience, Columbia University, New York, NY 10027, USA; Doctoral Program in Neurobiology and Behavior, Columbia University, New York, NY 10027, USA; Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA.
| | - Heike Blockus
- Department of Neuroscience, Columbia University, New York, NY 10027, USA; Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Fraser T Sparks
- Department of Neuroscience, Columbia University, New York, NY 10027, USA; Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - James B Priestley
- Department of Neuroscience, Columbia University, New York, NY 10027, USA; Doctoral Program in Neurobiology and Behavior, Columbia University, New York, NY 10027, USA; Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Attila Losonczy
- Department of Neuroscience, Columbia University, New York, NY 10027, USA; Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Kavli Institute for Brain Science, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
191
|
Bonacossa-Pereira I, Coakley S, Hilliard MA. Neuron-epidermal attachment protects hyper-fragile axons from mechanical strain. Cell Rep 2022; 38:110501. [PMID: 35263583 DOI: 10.1016/j.celrep.2022.110501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 12/06/2021] [Accepted: 02/15/2022] [Indexed: 11/03/2022] Open
Abstract
Axons experience significant strain caused by organismal development and movement. A combination of intrinsic mechanical resistance and external shielding by surrounding tissues prevents axonal damage, although the precise mechanisms are unknown. Here, we reveal a neuroprotective function of neuron-epidermal attachment in Caenorhabditis elegans. We show that a gain-of-function mutation in the epidermal hemidesmosome component LET-805/myotactin, in combination with a loss-of-function mutation in UNC-70/β-spectrin, disrupts the uniform attachment and subsequent embedment of sensory axons within the epidermis during development. This generates regions of high tension within axons, leading to spontaneous axonal breaks and degeneration. Completely preventing attachment, by disrupting HIM-4/hemicentin or MEC-5/collagen, eliminates tension and alleviates damage. Finally, we demonstrate that progressive neuron-epidermal attachment via LET-805/myotactin is induced by the axon during development, as well as during regeneration after injury. Together, these results reveal that establishment of uniform neuron-epidermal attachment is critical to protect axons from mechanical strain during development.
Collapse
Affiliation(s)
- Igor Bonacossa-Pereira
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Sean Coakley
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Massimo A Hilliard
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
192
|
Ribeiro M, McGrady NR, Baratta RO, Del Buono BJ, Schlumpf E, Calkins DJ. Intraocular Delivery of a Collagen Mimetic Peptide Repairs Retinal Ganglion Cell Axons in Chronic and Acute Injury Models. Int J Mol Sci 2022; 23:ijms23062911. [PMID: 35328332 PMCID: PMC8949359 DOI: 10.3390/ijms23062911] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 01/05/2023] Open
Abstract
Vision loss through the degeneration of retinal ganglion cell (RGC) axons occurs in both chronic and acute conditions that target the optic nerve. These include glaucoma, in which sensitivity to intraocular pressure (IOP) causes early RGC axonal dysfunction, and optic nerve trauma, which causes rapid axon degeneration from the site of injury. In each case, degeneration is irreversible, necessitating new therapeutics that protect, repair, and regenerate RGC axons. Recently, we demonstrated the reparative capacity of using collagen mimetic peptides (CMPs) to heal fragmented collagen in the neuronal extracellular milieu. This was an important step in the development of neuronal-based therapies since neurodegeneration involves matrix metalloproteinase (MMP)-mediated remodeling of the collagen-rich environment in which neurons and their axons exist. We found that intraocular delivery of a CMP comprising single-strand fractions of triple helix human type I collagen prevented early RGC axon dysfunction in an inducible glaucoma model. Additionally, CMPs also promoted neurite outgrowth from dorsal root ganglia, challenged in vitro by partial digestion of collagen. Here, we compared the ability of a CMP sequence to protect RGC axons in both inducible glaucoma and optic nerve crush. A three-week +40% elevation in IOP caused a 67% degradation in anterograde transport to the superior colliculus, the primary retinal projection target in rodents. We found that a single intravitreal injection of CMP during the period of IOP elevation significantly reduced this degradation. The same CMP delivered shortly after optic nerve crush promoted significant axonal recovery during the two-week period following injury. Together, these findings support a novel protective and reparative role for the use of CMPs in both chronic and acute conditions affecting the survival of RGC axons in the optic projection to the brain.
Collapse
Affiliation(s)
- Marcio Ribeiro
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, AA7103 MCN/VUIIS, 1161 21st Ave. S., Nashville, TN 37232, USA; (M.R.); (N.R.M.)
| | - Nolan R. McGrady
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, AA7103 MCN/VUIIS, 1161 21st Ave. S., Nashville, TN 37232, USA; (M.R.); (N.R.M.)
| | - Robert O. Baratta
- Stuart Therapeutics, Inc., 411 SE Osceola St., Suite 203, Stuart, FL 34994, USA; (R.O.B.); (B.J.D.B.); (E.S.)
| | - Brian J. Del Buono
- Stuart Therapeutics, Inc., 411 SE Osceola St., Suite 203, Stuart, FL 34994, USA; (R.O.B.); (B.J.D.B.); (E.S.)
| | - Eric Schlumpf
- Stuart Therapeutics, Inc., 411 SE Osceola St., Suite 203, Stuart, FL 34994, USA; (R.O.B.); (B.J.D.B.); (E.S.)
| | - David J. Calkins
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, AA7103 MCN/VUIIS, 1161 21st Ave. S., Nashville, TN 37232, USA; (M.R.); (N.R.M.)
- Correspondence: ; Tel.: +1-(615)-936-1424; Fax: +1-(615)-936-6410
| |
Collapse
|
193
|
Arzt M, Deschamps J, Schmied C, Pietzsch T, Schmidt D, Tomancak P, Haase R, Jug F. LABKIT: Labeling and Segmentation Toolkit for Big Image Data. FRONTIERS IN COMPUTER SCIENCE 2022. [DOI: 10.3389/fcomp.2022.777728] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We present LABKIT, a user-friendly Fiji plugin for the segmentation of microscopy image data. It offers easy to use manual and automated image segmentation routines that can be rapidly applied to single- and multi-channel images as well as to timelapse movies in 2D or 3D. LABKIT is specifically designed to work efficiently on big image data and enables users of consumer laptops to conveniently work with multiple-terabyte images. This efficiency is achieved by using ImgLib2 and BigDataViewer as well as a memory efficient and fast implementation of the random forest based pixel classification algorithm as the foundation of our software. Optionally we harness the power of graphics processing units (GPU) to gain additional runtime performance. LABKIT is easy to install on virtually all laptops and workstations. Additionally, LABKIT is compatible with high performance computing (HPC) clusters for distributed processing of big image data. The ability to use pixel classifiers trained in LABKIT via the ImageJ macro language enables our users to integrate this functionality as a processing step in automated image processing workflows. Finally, LABKIT comes with rich online resources such as tutorials and examples that will help users to familiarize themselves with available features and how to best use LABKIT in a number of practical real-world use-cases.
Collapse
|
194
|
Vargova I, Kriska J, Kwok JCF, Fawcett JW, Jendelova P. Long-Term Cultures of Spinal Cord Interneurons. Front Cell Neurosci 2022; 16:827628. [PMID: 35197829 PMCID: PMC8859857 DOI: 10.3389/fncel.2022.827628] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/12/2022] [Indexed: 11/25/2022] Open
Abstract
Spinal cord interneurons (SpINs) are highly diverse population of neurons that play a significant role in circuit reorganization and spontaneous recovery after spinal cord injury. Regeneration of SpIN axons across rodent spinal injuries has been demonstrated after modification of the environment and neurotrophin treatment, but development of methods to enhance the intrinsic regenerative ability of SpINs is needed. There is a lack of described in vitro models of spinal cord neurons in which to develop new regeneration treatments. For this reason, we developed a new model of mouse primary spinal cord neuronal culture in which to analyze maturation, morphology, physiology, connectivity and regeneration of identified interneurons. Isolated from E14 mice, the neurons mature over 15 days in vitro, demonstrated by expression of maturity markers, electrophysiological patch-clamp recordings, and formation of synapses. The neurons express markers of SpINs, including Tlx3, Lmx1b, Lbx1, Chx10, and Pax2. The neurons demonstrate distinct morphologies and some form perineuronal nets in long-term cultivation. Live neurons in various maturation stages were axotomized, using a 900 nm multiphoton laser and their fate was observed overnight. The percentage of axons that regenerated declined with neuronal maturity. This model of SpINs will be a valuable tool in future regenerative, developmental, and functional studies alongside existing models using cortical or hippocampal neurons.
Collapse
Affiliation(s)
- Ingrid Vargova
- Department of Neuroregeneration, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czechia
- Second Faculty of Medicine, Charles University, Prague, Czechia
| | - Jan Kriska
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czechia
| | - Jessica C. F. Kwok
- The Center for Reconstructive Neuroscience, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czechia
- Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - James W. Fawcett
- The Center for Reconstructive Neuroscience, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czechia
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Pavla Jendelova
- Department of Neuroregeneration, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czechia
- Second Faculty of Medicine, Charles University, Prague, Czechia
| |
Collapse
|
195
|
Zhao J, Gonsalvez GB, Mysona BA, Smith SB, Bollinger KE. Sigma 1 Receptor Contributes to Astrocyte-Mediated Retinal Ganglion Cell Protection. Invest Ophthalmol Vis Sci 2022; 63:1. [PMID: 35103752 PMCID: PMC8819349 DOI: 10.1167/iovs.63.2.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 12/28/2021] [Indexed: 01/22/2023] Open
Abstract
Purpose Sigma 1 receptor (S1R) is expressed in retinal ganglion cells (RGCs) and astrocytes, and its activation is neuroprotective. We evaluated the contribution of S1R within optic nerve head astrocytes (ONHAs) to growth and survival of RGCs in vitro. Methods Wild-type (WT) RGCs and WT or S1R knockout (S1R KO) ONHAs were cocultured for 2, 4, or 7 days. Total and maximal neurite length, neurite root, and extremity counts were measured. Cell death was measured using a TUNEL assay. Signal transducer and activator of transcription 3 phosphorylation levels were evaluated in ONHA-derived lysates by immunoblotting. Results The coculture of WT RGCs with WT or S1R KO ONHAs increased the total and maximal neurite length. Neurite root and extremity counts increased at 4 and 7 days when WT RGCs were cocultured with WT or S1R KO ONHAs. At all timepoints, the total and maximal neurite length decreased for WT RGCs in coculture with S1R KO ONHAs compared with WT ONHAs. Root and extremity counts decreased for WT RGCs in coculture with S1R KO ONHAs compared with WT ONHAs at 2 and 7, but not 4 days. RGC apoptosis increased in S1R KO ONHA coculture and S1R KO-conditioned medium, compared with WT ONHA coculture or WT-conditioned medium. S1R KO ONHA-derived lysates showed decreased phosphorylated signal transducer and activator of transcription 3 levels compared with WT ONHA-derived lysates. Conclusions The absence of S1R within ONHAs has a deleterious effect on RGC neurite growth and RGC survival, reflected in analysis of WT RGC + S1R KO ONHA indirect cocultures. The data suggest that S1R may enhance ganglion cell survival via glia-mediated mechanisms.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Ophthalmology, Medical College of Georgia at Augusta University, Augusta, Georgia, United States
- Culver Vision Discovery Institute, Augusta, Georgia, United States
| | | | - Barbara A. Mysona
- Department of Ophthalmology, Medical College of Georgia at Augusta University, Augusta, Georgia, United States
- Department of Cellular Biology and Anatomy, Augusta, Georgia, United States
- Culver Vision Discovery Institute, Augusta, Georgia, United States
| | - Sylvia B. Smith
- Department of Ophthalmology, Medical College of Georgia at Augusta University, Augusta, Georgia, United States
- Department of Cellular Biology and Anatomy, Augusta, Georgia, United States
- Culver Vision Discovery Institute, Augusta, Georgia, United States
| | - Kathryn E. Bollinger
- Department of Ophthalmology, Medical College of Georgia at Augusta University, Augusta, Georgia, United States
- Department of Cellular Biology and Anatomy, Augusta, Georgia, United States
- Culver Vision Discovery Institute, Augusta, Georgia, United States
| |
Collapse
|
196
|
The influence of spontaneous and visual activity on the development of direction selectivity maps in mouse retina. Cell Rep 2022; 38:110225. [PMID: 35021080 PMCID: PMC8805704 DOI: 10.1016/j.celrep.2021.110225] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 11/11/2021] [Accepted: 12/10/2021] [Indexed: 01/23/2023] Open
Abstract
In mice, retinal direction selectivity is organized in a map that aligns to the body and gravitational axes of optic flow, and little is known about how this map develops. We find direction selectivity maps are largely present at eye opening and develop normally in the absence of visual experience. Remarkably, in mice lacking the beta2 subunit of neuronal nicotinic acetylcholine receptors (β2-nAChR-KO), which exhibit drastically reduced cholinergic retinal waves in the first postnatal week, selectivity to horizontal motion is absent while selectivity to vertical motion remains. We tested several possible mechanisms that could explain the loss of horizontal direction selectivity in β2-nAChR-KO mice (wave propagation bias, FRMD7 expression, starburst amacrine cell morphology), but all were found to be intact when compared with WT mice. This work establishes a role for retinal waves in the development of asymmetric circuitry that mediates retinal direction selectivity via an unknown mechanism.
Collapse
|
197
|
Tyson AL, Margrie TW. Mesoscale microscopy and image analysis tools for understanding the brain. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2022; 168:81-93. [PMID: 34216639 PMCID: PMC8786668 DOI: 10.1016/j.pbiomolbio.2021.06.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 06/09/2021] [Accepted: 06/29/2021] [Indexed: 12/12/2022]
Abstract
Over the last ten years, developments in whole-brain microscopy now allow for high-resolution imaging of intact brains of small animals such as mice. These complex images contain a wealth of information, but many neuroscience laboratories do not have all of the computational knowledge and tools needed to process these data. We review recent open source tools for registration of images to atlases, and the segmentation, visualisation and analysis of brain regions and labelled structures such as neurons. Since the field lacks fully integrated analysis pipelines for all types of whole-brain microscopy analysis, we propose a pathway for tool developers to work together to meet this challenge.
Collapse
Affiliation(s)
- Adam L Tyson
- Sainsbury Wellcome Centre, University College London, 25 Howland Street, London, W1T 4JG, United Kingdom
| | - Troy W Margrie
- Sainsbury Wellcome Centre, University College London, 25 Howland Street, London, W1T 4JG, United Kingdom.
| |
Collapse
|
198
|
Barettino C, Ballesteros-Gonzalez Á, Aylón A, Soler-Sanchis X, Ortí L, Díaz S, Reillo I, García-García F, Iborra FJ, Lai C, Dehorter N, Leinekugel X, Flames N, Del Pino I. Developmental Disruption of Erbb4 in Pet1+ Neurons Impairs Serotonergic Sub-System Connectivity and Memory Formation. Front Cell Dev Biol 2021; 9:770458. [PMID: 34957103 PMCID: PMC8703035 DOI: 10.3389/fcell.2021.770458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 11/19/2021] [Indexed: 11/30/2022] Open
Abstract
The serotonergic system of mammals innervates virtually all the central nervous system and regulates a broad spectrum of behavioral and physiological functions. In mammals, serotonergic neurons located in the rostral raphe nuclei encompass diverse sub-systems characterized by specific circuitry and functional features. Substantial evidence suggest that functional diversity of serotonergic circuits has a molecular and connectivity basis. However, the landscape of intrinsic developmental mechanisms guiding the formation of serotonergic sub-systems is unclear. Here, we employed developmental disruption of gene expression specific to serotonergic subsets to probe the contribution of the tyrosine kinase receptor ErbB4 to serotonergic circuit formation and function. Through an in vivo loss-of-function approach, we found that ErbB4 expression occurring in a subset of serotonergic neurons, is necessary for axonal arborization of defined long-range projections to the forebrain but is dispensable for the innervation of other targets of the serotonergic system. We also found that Erbb4-deletion does not change the global excitability or the number of neurons with serotonin content in the dorsal raphe nuclei. In addition, ErbB4-deficiency in serotonergic neurons leads to specific behavioral deficits in memory processing that involve aversive or social components. Altogether, our work unveils a developmental mechanism intrinsically acting through ErbB4 in subsets of serotonergic neurons to orchestrate a precise long-range circuit and ultimately involved in the formation of emotional and social memories.
Collapse
Affiliation(s)
- Candela Barettino
- Neural Plasticity Laboratory, Príncipe Felipe Research Center, Valencia, Spain
| | | | - Andrés Aylón
- Neural Plasticity Laboratory, Príncipe Felipe Research Center, Valencia, Spain
| | | | - Leticia Ortí
- Neural Plasticity Laboratory, Príncipe Felipe Research Center, Valencia, Spain
| | - Selene Díaz
- Neural Plasticity Laboratory, Príncipe Felipe Research Center, Valencia, Spain
| | - Isabel Reillo
- Developmental Neurobiology Unit, Instituto de Biomedicina de Valencia, IBV-CSIC, Valencia, Spain
| | - Francisco García-García
- Bioinformatics and Biostatistics Unit, Príncipe Felipe Research Center (CIPF), Valencia, Spain
| | | | - Cary Lai
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, United States
| | | | - Xavier Leinekugel
- Institut de Neurobiology de la Méditerranée (INMED, UMR1249), INSERM, Marseille, France
| | - Nuria Flames
- Developmental Neurobiology Unit, Instituto de Biomedicina de Valencia, IBV-CSIC, Valencia, Spain
| | - Isabel Del Pino
- Neural Plasticity Laboratory, Príncipe Felipe Research Center, Valencia, Spain
| |
Collapse
|
199
|
Tworig JM, Coate C, Feller MB. Excitatory neurotransmission activates compartmentalized calcium transients in Müller glia without affecting lateral process motility. eLife 2021; 10:73202. [PMID: 34913435 PMCID: PMC8806189 DOI: 10.7554/elife.73202] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 12/15/2021] [Indexed: 11/13/2022] Open
Abstract
Neural activity has been implicated in the motility and outgrowth of glial cell processes throughout the central nervous system. Here, we explore this phenomenon in Müller glia, which are specialized radial astroglia that are the predominant glial type of the vertebrate retina. Müller glia extend fine filopodia-like processes into retinal synaptic layers, in similar fashion to brain astrocytes and radial glia that exhibit perisynaptic processes. Using two-photon volumetric imaging, we found that during the second postnatal week, Müller glial processes were highly dynamic, with rapid extensions and retractions that were mediated by cytoskeletal rearrangements. During this same stage of development, retinal waves led to increases in cytosolic calcium within Müller glial lateral processes and stalks. These regions comprised distinct calcium compartments, distinguished by variable participation in waves, timing, and sensitivity to an M1 muscarinic acetylcholine receptor antagonist. However, we found that motility of lateral processes was unaffected by the presence of pharmacological agents that enhanced or blocked wave-associated calcium transients. Finally, we found that mice lacking normal cholinergic waves in the first postnatal week also exhibited normal Müller glial process morphology. Hence, outgrowth of Müller glial lateral processes into synaptic layers is determined by factors that are independent of neuronal activity. When it comes to studying the nervous system, neurons often steal the limelight; yet, they can only work properly thanks to an ensemble cast of cell types whose roles are only just emerging. For example, ‘glial cells’ – their name derives from the Greek word for glue – were once thought to play only a passive, supporting function in nervous tissues. Now, growing evidence shows that they are, in fact, integrated into neural circuits: their activity is influenced by neurons, and, in turn, they help neurons to function properly. The role of glial cells is becoming clear in the retina, the thin, light-sensitive layer that lines the back of the eye and relays visual information to the brain. There, beautifully intricate Müller glial cells display fine protrusions (or ‘processes') that intermingle with synapses, the busy space between neurons where chemical messengers are exchanged. These messengers can act on Müller cells, triggering cascades of molecular events that may influence the structure and function of glia. This is of particular interest during development: as Müller cells mature, they are exposed to chemicals released by more fully formed retinal neurons. Tworig et al. explored how neuronal messengers can influence the way Müller cells grow their processes. To do so, they tracked mouse retinal glial cells ‘live’ during development, showing that they were growing fine, highly dynamic processes in a region rich in synapses just as neurons and glia increased their communication. However, using drugs to disrupt this messaging for a short period did not seem to impact how the processes grew. Extending the blockade over a longer timeframe also did not change the way Müller cells developed, with the cells still acquiring their characteristic elaborate process networks. Taken together, these results suggest that the structural maturation of Müller glial cells is not impacted by neuronal signaling, giving a more refined understanding of how glia form in the retina and potentially in the brain.
Collapse
Affiliation(s)
- Joshua M Tworig
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Chandler Coate
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Marla B Feller
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| |
Collapse
|
200
|
Baruchin LJ, Ghezzi F, Kohl MM, Butt SJB. Contribution of Interneuron Subtype-Specific GABAergic Signaling to Emergent Sensory Processing in Mouse Somatosensory Whisker Barrel Cortex. Cereb Cortex 2021; 32:2538-2554. [PMID: 34613375 PMCID: PMC9201598 DOI: 10.1093/cercor/bhab363] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 08/13/2021] [Accepted: 08/14/2021] [Indexed: 11/12/2022] Open
Abstract
Mammalian neocortex is important for conscious processing of sensory information with balanced glutamatergic and GABAergic signaling fundamental to this function. Yet little is known about how this interaction arises despite increasing insight into early GABAergic interneuron (IN) circuits. To study this, we assessed the contribution of specific INs to the development of sensory processing in the mouse whisker barrel cortex, specifically the role of INs in early speed coding and sensory adaptation. In wild-type animals, both speed processing and adaptation were present as early as the layer 4 critical period of plasticity and showed refinement over the period leading to active whisking onset. To test the contribution of IN subtypes, we conditionally silenced action-potential-dependent GABA release in either somatostatin (SST) or vasoactive intestinal peptide (VIP) INs. These genetic manipulations influenced both spontaneous and sensory-evoked cortical activity in an age- and layer-dependent manner. Silencing SST + INs reduced early spontaneous activity and abolished facilitation in sensory adaptation observed in control pups. In contrast, VIP + IN silencing had an effect towards the onset of active whisking. Silencing either IN subtype had no effect on speed coding. Our results show that these IN subtypes contribute to early sensory processing over the first few postnatal weeks.
Collapse
Affiliation(s)
- Liad J Baruchin
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford OX1 3PT, UK
| | - Filippo Ghezzi
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford OX1 3PT, UK
| | - Michael M Kohl
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford OX1 3PT, UK
| | - Simon J B Butt
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford OX1 3PT, UK
| |
Collapse
|