151
|
North JA, Miller AR, Wildenthal JA, Young SJ, Tabita FR. Microbial pathway for anaerobic 5'-methylthioadenosine metabolism coupled to ethylene formation. Proc Natl Acad Sci U S A 2017; 114:E10455-E10464. [PMID: 29133429 PMCID: PMC5715764 DOI: 10.1073/pnas.1711625114] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Numerous cellular processes involving S-adenosyl-l-methionine result in the formation of the toxic by-product, 5'-methylthioadenosine (MTA). To prevent inhibitory MTA accumulation and retain biologically available sulfur, most organisms possess the "universal" methionine salvage pathway (MSP). However, the universal MSP is inherently aerobic due to a requirement of molecular oxygen for one of the key enzymes. Here, we report the presence of an exclusively anaerobic MSP that couples MTA metabolism to ethylene formation in the phototrophic bacteria Rhodospirillum rubrum and Rhodopseudomonas palustris In vivo metabolite analysis of gene deletion strains demonstrated that this anaerobic MSP functions via sequential action of MTA phosphorylase (MtnP), 5-(methylthio)ribose-1-phosphate isomerase (MtnA), and an annotated class II aldolase-like protein (Ald2) to form 2-(methylthio)acetaldehyde as an intermediate. 2-(Methylthio)acetaldehyde is reduced to 2-(methylthio)ethanol, which is further metabolized as a usable organic sulfur source, generating stoichiometric amounts of ethylene in the process. Ethylene induction experiments using 2-(methylthio)ethanol versus sulfate as sulfur sources further indicate anaerobic ethylene production from 2-(methylthio)ethanol requires protein synthesis and that this process is regulated. Finally, phylogenetic analysis reveals that the genes corresponding to these enzymes, and presumably the pathway, are widespread among anaerobic and facultatively anaerobic bacteria from soil and freshwater environments. These results not only establish the existence of a functional, exclusively anaerobic MSP, but they also suggest a possible route by which ethylene is produced by microbes in anoxic environments.
Collapse
Affiliation(s)
- Justin A North
- Department of Microbiology, The Ohio State University, Columbus, OH 43210
| | - Anthony R Miller
- Department of Microbiology, The Ohio State University, Columbus, OH 43210
| | - John A Wildenthal
- Department of Microbiology, The Ohio State University, Columbus, OH 43210
| | - Sarah J Young
- Department of Microbiology, The Ohio State University, Columbus, OH 43210
| | - F Robert Tabita
- Department of Microbiology, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
152
|
Abstract
Abstract
Clinical practice and experimental studies have shown the necessity of sufficient quantities of folic acid intake for normal embryogenesis and fetal development in the prevention of neural tube defects (NTDs) and neurological malformations. So, women of childbearing age must be sure to have an adequate folate intake periconceptionally, prior to and during pregnancy. Folic acid fortification of all enriched cereal grain product flour has been implemented in many countries. Thus, hundreds of thousands of people have been exposed to an increased intake of folic acid. Folate plays an essential role in the biosynthesis of methionine. Methionine is the principal aminopropyl donor required for polyamine biosynthesis, which is up-regulated in actively growing cells, including cancer cells. Folates are important in RNA and DNA synthesis, DNA stability and integrity. Clinical and epidemiological evidence links folate deficiency to DNA damage and cancer. On the other hand, long-term folate oversupplementation leads to adverse toxic effects, resulting in the appearance of malignancy. Considering the relationship of polyamines and rapidly proliferating tissues (especially cancers), there is a need for better investigation of the relationship between the ingestion of high amounts of folic acid in food supplementation and polyamine metabolism, related to malignant processes in the human body.
Collapse
|
153
|
Salzano AM, Sobolev A, Carbone V, Petriccione M, Renzone G, Capitani D, Vitale M, Minasi P, Pasquariello MS, Novi G, Zambrano N, Scortichini M, Mannina L, Scaloni A. A proteometabolomic study of Actinidia deliciosa fruit development. J Proteomics 2017; 172:11-24. [PMID: 29133123 DOI: 10.1016/j.jprot.2017.11.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 10/17/2017] [Accepted: 11/08/2017] [Indexed: 10/18/2022]
Affiliation(s)
- Anna Maria Salzano
- Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147 Naples, Italy
| | - Anatoly Sobolev
- Magnetic Resonance Laboratory "Annalaura Segre", Institute of Chemical Methodologies, National Research Council, 00015, Monterotondo, Rome, Italy
| | - Virginia Carbone
- Institute of Food Sciences, National Research Council, 83100 Avellino, Italy
| | - Milena Petriccione
- Centro di Ricerca per Olivicoltura, Frutticoltura e Agrumicoltura, Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, 81100 Caserta, Italy
| | - Giovanni Renzone
- Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147 Naples, Italy
| | - Donatella Capitani
- Magnetic Resonance Laboratory "Annalaura Segre", Institute of Chemical Methodologies, National Research Council, 00015, Monterotondo, Rome, Italy
| | - Monica Vitale
- Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147 Naples, Italy; Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", 80131 Naples, Italy
| | - Paola Minasi
- Institute of Food Sciences, National Research Council, 83100 Avellino, Italy
| | - Maria Silvia Pasquariello
- Centro di Ricerca per Olivicoltura, Frutticoltura e Agrumicoltura, Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, 81100 Caserta, Italy
| | - Gianfranco Novi
- Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147 Naples, Italy
| | - Nicola Zambrano
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", 80131 Naples, Italy; CEINGE Biotecnologie Avanzate, 80145 Naples, Italy
| | - Marco Scortichini
- Centro di Ricerca per Olivicoltura, Frutticoltura e Agrumicoltura, Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, 81100 Caserta, Italy
| | - Luisa Mannina
- Magnetic Resonance Laboratory "Annalaura Segre", Institute of Chemical Methodologies, National Research Council, 00015, Monterotondo, Rome, Italy; Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, 00185 Rome, Italy.
| | - Andrea Scaloni
- Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147 Naples, Italy.
| |
Collapse
|
154
|
Liu W, Karemera NJU, Wu T, Yang Y, Zhang X, Xu X, Wang Y, Han Z. The ethylene response factor AtERF4 negatively regulates the iron deficiency response in Arabidopsis thaliana. PLoS One 2017; 12:e0186580. [PMID: 29045490 PMCID: PMC5646859 DOI: 10.1371/journal.pone.0186580] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 10/03/2017] [Indexed: 12/26/2022] Open
Abstract
Iron (Fe) deficiency is one of many conditions that can seriously damage crops. Low levels of photosynthesis can lead to the degradation of chlorophyll content and impaired respiration in affected plants, which together cause poor growth and reduce quality. Although ethylene plays an important role in responses to Fe deficiency, a limited number of studies have been carried out on ethylene response factor (ERFs) as components of plant regulation mechanisms. Thus, this study aimed to investigate the role of AtERF4 in plant responses to Fe deficiency. Results collected when Arabidopsis thaliana was grown under Fe deficient conditions as well as in the presence of 1-aminocyclopropane-1-carboxylic acid (ACC) revealed that leaf chlorosis did not occur over short timescales and that chloroplast structural integrity was retained. At the same time, expression of the chlorophyll degradation-related genes AtPAO and AtCLH1 was inhibited and net H+ root flux was amplified. Our results show that chlorophyll content was enhanced in the mutant erf4, while expression of the chlorophyll degradation gene AtCLH1 was reduced. Ferric reductase activity in roots was also significantly higher in the mutant than in wild type plants, while erf4 caused high levels of expression of the genes AtIRT1 and AtHA2 under Fe deficient conditions. We also utilized yeast one-hybrid technology in this study to determine that AtERF4 binds directly to the AtCLH1 and AtITR1 promoter. Observations show that transient over-expression of AtERF4 resulted in rapid chlorophyll degradation in the leaves of Nicotiana tabacum and the up-regulation of gene AtCLH1 expression. In summary, AtERF4 plays an important role as a negative regulator of Fe deficiency responses, we hypothesize that AtERF4 may exert a balancing effect on plants subject to nutrition stress.
Collapse
Affiliation(s)
- Wei Liu
- Institute for Horticultural Plants, College of Horticulture, China Agricultural University, Beijing, China
- Key Laboratory of Beijing Municipality of Stress Physiology and Molecular Biology of Fruit Trees, Beijing, China
| | - N. J. Umuhoza Karemera
- Institute for Horticultural Plants, College of Horticulture, China Agricultural University, Beijing, China
- Key Laboratory of Beijing Municipality of Stress Physiology and Molecular Biology of Fruit Trees, Beijing, China
| | - Ting Wu
- Institute for Horticultural Plants, College of Horticulture, China Agricultural University, Beijing, China
- Key Laboratory of Beijing Municipality of Stress Physiology and Molecular Biology of Fruit Trees, Beijing, China
| | - Yafei Yang
- Institute for Horticultural Plants, College of Horticulture, China Agricultural University, Beijing, China
- Key Laboratory of Beijing Municipality of Stress Physiology and Molecular Biology of Fruit Trees, Beijing, China
| | - Xinzhong Zhang
- Institute for Horticultural Plants, College of Horticulture, China Agricultural University, Beijing, China
- Key Laboratory of Beijing Municipality of Stress Physiology and Molecular Biology of Fruit Trees, Beijing, China
| | - Xuefeng Xu
- Institute for Horticultural Plants, College of Horticulture, China Agricultural University, Beijing, China
- Key Laboratory of Beijing Municipality of Stress Physiology and Molecular Biology of Fruit Trees, Beijing, China
| | - Yi Wang
- Institute for Horticultural Plants, College of Horticulture, China Agricultural University, Beijing, China
- Key Laboratory of Beijing Municipality of Stress Physiology and Molecular Biology of Fruit Trees, Beijing, China
| | - Zhenhai Han
- Institute for Horticultural Plants, College of Horticulture, China Agricultural University, Beijing, China
- Key Laboratory of Beijing Municipality of Stress Physiology and Molecular Biology of Fruit Trees, Beijing, China
| |
Collapse
|
155
|
McGee SL, Walder KR. Exercise and the Skeletal Muscle Epigenome. Cold Spring Harb Perspect Med 2017; 7:cshperspect.a029876. [PMID: 28320830 DOI: 10.1101/cshperspect.a029876] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
An acute bout of exercise is sufficient to induce changes in skeletal muscle gene expression that are ultimately responsible for the adaptive responses to exercise. Although much research has described the intracellular signaling responses to exercise that are linked to transcriptional regulation, the epigenetic mechanisms involved are only just emerging. This review will provide an overview of epigenetic mechanisms and what is known in the context of exercise. Additionally, we will explore potential interactions between metabolism during exercise and epigenetic regulation, which serves as a framework for potential areas for future research. Finally, we will consider emerging opportunities to pharmacologically manipulate epigenetic regulators and mechanisms to induce aspects of the skeletal muscle exercise adaptive response for therapeutic intervention in various disease states.
Collapse
Affiliation(s)
- Sean L McGee
- Metabolic Research Unit, School of Medicine and Centre for Molecular and Medical Research, Deakin University, Geelong, Victoria 3216, Australia
| | - Ken R Walder
- Metabolic Research Unit, School of Medicine and Centre for Molecular and Medical Research, Deakin University, Geelong, Victoria 3216, Australia
| |
Collapse
|
156
|
Hacham Y, Matityahu I, Amir R. Transgenic tobacco plants having a higher level of methionine are more sensitive to oxidative stress. PHYSIOLOGIA PLANTARUM 2017; 160:242-252. [PMID: 28233326 DOI: 10.1111/ppl.12557] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 01/26/2017] [Accepted: 02/06/2017] [Indexed: 05/04/2023]
Abstract
Methionine is an essential amino acid the low level of which limits the nutritional quality of plants. We formerly produced transgenic tobacco (Nicotiana tabacum) plants overexpressing CYSTATHIONE γ-SYNTHASE (CGS) (FA plants), methionine's main regulatory enzyme. These plants accumulate significantly higher levels of methionine compared with wild-type (WT) plants. The aim of this study was to gain more knowledge about the effect of higher methionine content on the metabolic profile of vegetative tissue and on the morphological and physiological phenotypes. FA plants exhibit slightly reduced growth, and metabolic profiling analysis shows that they have higher contents of stress-related metabolites. Despite this, FA plants were more sensitive to short- and long-term oxidative stresses. In addition, compared with WT plants and transgenic plants expressing an empty vector, the primary metabolic profile of FA was altered less during oxidative stress. Based on morphological and metabolic phenotypes, we strongly proposed that FA plants having higher levels of methionine suffer from stress under non-stress conditions. This might be one of the reasons for their lesser ability to cope with oxidative stress when it appeared. The observation that their metabolic profiling is much less responsive to stress compared with control plants indicates that the delta changes in metabolite contents between non-stress and stress conditions is important for enabling the plants to cope with stress conditions.
Collapse
Affiliation(s)
- Yael Hacham
- Department of Plant Science, Migal Kiryat Shmona, 11016, Israel
- Tel-Hai College, Upper Galilee, 11016, Israel
| | - Ifat Matityahu
- Department of Plant Science, Migal Kiryat Shmona, 11016, Israel
| | - Rachel Amir
- Department of Plant Science, Migal Kiryat Shmona, 11016, Israel
- Tel-Hai College, Upper Galilee, 11016, Israel
| |
Collapse
|
157
|
Novel regulatory mechanism of serine biosynthesis associated with 3-phosphoglycerate dehydrogenase in Arabidopsis thaliana. Sci Rep 2017; 7:3533. [PMID: 28615699 PMCID: PMC5471267 DOI: 10.1038/s41598-017-03807-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 05/17/2017] [Indexed: 12/25/2022] Open
Abstract
The proteinogenic amino acid l-serine is a precursor for various essential biomolecules in all organisms. 3-Phosphoglycerate dehydrogenase (PGDH) is the first committed enzyme of the phosphorylated pathway of l-serine biosynthesis, and is regulated by negative feedback from l-serine in bacteria and plants. In the present study, two Arabidopsis PGDH isoforms were inhibited by l-serine but were activated by l-amino acids such as l-homocysteine in vitro. Activation and inhibition by these amino acids was cooperative, suggesting an allosteric mechanism. Moreover, the half maximal effective concentration of l-homocysteine was 2 orders of magnitude lower than that of l-serine, suggesting greater regulatory potency. These are the first data to show that PGDH is activated by various biomolecules and indicate that serine biosynthesis is regulated by multiple pathways.
Collapse
|
158
|
Dcona MM, Morris BL, Ellis KC, Grossman SR. CtBP- an emerging oncogene and novel small molecule drug target: Advances in the understanding of its oncogenic action and identification of therapeutic inhibitors. Cancer Biol Ther 2017; 18:379-391. [PMID: 28532298 PMCID: PMC5536941 DOI: 10.1080/15384047.2017.1323586] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
C-terminal Binding Proteins (CtBP) 1 and 2 are oncogenic transcriptional co-regulators overexpressed in many cancer types, with their expression level correlating to worse prognostic outcomes and aggressive tumor features. CtBP negatively regulates the expression of many tumor suppressor genes, while coactivating genes that promote proliferation, epithelial-mesenchymal transition, and cancer stem cell self-renewal activity. In light of this evidence, the development of novel inhibitors that mitigate CtBP function may provide clinically actionable therapeutic tools. This review article focuses on the progress made in understanding CtBP structure, role in tumor progression, and discovery and development of CtBP inhibitors that target CtBP's dehydrogenase activity and other functions, with a focus on the theory and rationale behind the designs of current inhibitors. We provide insight into the future development and use of rational combination therapy that may further augment the efficacy of CtBP inhibitors, specifically addressing metastasis and cancer stem cell populations within tumors.
Collapse
Affiliation(s)
- M Michael Dcona
- a Department of Internal Medicine , Virginia Commonwealth University , Richmond , VA , USA
| | - Benjamin L Morris
- b Department of Human and Molecular Genetics , Virginia Commonwealth University , Richmond , VA , USA
| | - Keith C Ellis
- c Department of Medicinal Chemistry , Virginia Commonwealth University , Richmond , VA , USA.,d Institute for Structural Biology , Drug Discovery and Development, Virginia Commonwealth University , Richmond , VA , USA.,e VCU Massey Cancer Center , Virginia Commonwealth University , Richmond , VA , USA
| | - Steven R Grossman
- a Department of Internal Medicine , Virginia Commonwealth University , Richmond , VA , USA.,b Department of Human and Molecular Genetics , Virginia Commonwealth University , Richmond , VA , USA.,d Institute for Structural Biology , Drug Discovery and Development, Virginia Commonwealth University , Richmond , VA , USA.,e VCU Massey Cancer Center , Virginia Commonwealth University , Richmond , VA , USA
| |
Collapse
|
159
|
Cohen H, Salmon A, Tietel Z, Hacham Y, Amir R. The relative contribution of genes operating in the S-methylmethionine cycle to methionine metabolism in Arabidopsis seeds. PLANT CELL REPORTS 2017; 36:731-743. [PMID: 28289884 DOI: 10.1007/s00299-017-2124-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 02/22/2017] [Indexed: 05/02/2023]
Abstract
Enzymes operating in the S -methylmethionine cycle make a differential contribution to methionine synthesis in seeds. In addition, mutual effects exist between the S -methylmethionine cycle and the aspartate family pathway in seeds. Methionine, a sulfur-containing amino acid, is a key metabolite in plant cells. The previous lines of evidence proposed that the S-methylmethionine (SMM) cycle contributes to methionine synthesis in seeds where methionine that is produced in non-seed tissues is converted to SMM and then transported via the phloem into the seeds. However, the relative regulatory roles of the S-methyltransferases operating within this cycle in seeds are yet to be fully understood. In the current study, we generated transgenic Arabidopsis seeds with altered expression of three HOMOCYSTEINE S-METHYLTRANSFERASEs (HMTs) and METHIONINE S-METHYLTRANSFERASE (MMT), and profiled them for transcript and metabolic changes. The results revealed that AtHMT1 and AtHMT3, but not AtHMT2 and AtMMT, are the predominant enzymes operating in seeds as altered expression of these two genes affected the levels of methionine and SMM in transgenic seeds. Their manipulations resulted in adapted expression level of genes participating in methionine synthesis through the SMM and aspartate family pathways. Taken together, our findings provide new insights into the regulatory roles of the SMM cycle and the mutual effects existing between the two methionine biosynthesis pathways, highlighting the complexity of the metabolism of methionine and SMM in seeds.
Collapse
Affiliation(s)
- Hagai Cohen
- Laboratory of Plant Science, Migal Galilee Technology Center, 12100, Kiryat Shmona, Israel
- Faculty of Biology, Technion-Israel Institute of Technology, 32000, Haifa, Israel
| | - Asaf Salmon
- Laboratory of Plant Science, Migal Galilee Technology Center, 12100, Kiryat Shmona, Israel
- Tel-Hai College, 11016, Upper Galilee, Israel
| | - Zipora Tietel
- Gilat Volcani Center, Agricultural Research Organization (ARO), Negev, Israel
| | - Yael Hacham
- Laboratory of Plant Science, Migal Galilee Technology Center, 12100, Kiryat Shmona, Israel
| | - Rachel Amir
- Laboratory of Plant Science, Migal Galilee Technology Center, 12100, Kiryat Shmona, Israel.
- Tel-Hai College, 11016, Upper Galilee, Israel.
| |
Collapse
|
160
|
Yang W, Li Y, Yin Y, Qin Z, Zheng M, Chen J, Luo Y, Pang D, Jiang W, Li Y, Wang Z. Involvement of ethylene and polyamines biosynthesis and abdominal phloem tissues characters of wheat caryopsis during grain filling under stress conditions. Sci Rep 2017; 7:46020. [PMID: 28383077 PMCID: PMC5382545 DOI: 10.1038/srep46020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 03/09/2017] [Indexed: 12/30/2022] Open
Abstract
Severe water deficit (SD) severely limited the photo-assimilate supply during the grain-filling stages. Although the ethylene and polyamines (PAs) have been identified as important signaling molecules involved in stress tolerance, it is yet unclear how 1-Aminocylopropane-1-carboxylic acid (ACC) and PA biosynthesis involving wheat abdominal phloem characters mitigate SD-induced filling inhibition. The results obtained indicated that the SD down-regulated the TaSUT1 expression and decreased the activities of sucrose synthase (SuSase, EC2.4.1.13), ADP glucose pyrophosphorylase (AGPase, EC2.7.7.27), soluble starch synthase (SSSase, EC2.4.1.21), then substantially limited grain filling. As a result, increased ACC and putrescine (Put) concentrations and their biosynthesis-related gene expression reduced spermidine (Spd) biosynthesis under SD condition. And, the ACC and PA biosynthesis in inferior grains was more sensitive to SD than that in superior grains. Intermediary cells (ICs) of caryopsis emerged prematurely under SD to compensate for the weakened photo-assimilate transport functions of sieve elements (SEs). Finally, plasmolysis and nuclear chromatin condensation of phloem parenchyma cells (PPC) and membrane degradation of SEs, as well as the decreased ATPase activity on plasma membranes of ICs and PPC at the later filling stage under SD were responsible for the considerably decreased weight of inferior grains.
Collapse
Affiliation(s)
- Weibing Yang
- State Key Laboratory of Crop Biology, Ministry of Science and Technology, Shandong Agricultural University, Tai'an 271018, Shandong, China.,Beijing Academy of Agricultural and Forestry Sciences, Beijing Engineering Research Center for Hybrid Wheat. Beijing, 100097, China
| | - Yanxia Li
- State Key Laboratory of Crop Biology, Ministry of Science and Technology, Shandong Agricultural University, Tai'an 271018, Shandong, China
| | - Yanping Yin
- State Key Laboratory of Crop Biology, Ministry of Science and Technology, Shandong Agricultural University, Tai'an 271018, Shandong, China
| | - Zhilie Qin
- Beijing Academy of Agricultural and Forestry Sciences, Beijing Engineering Research Center for Hybrid Wheat. Beijing, 100097, China
| | - Mengjing Zheng
- State Key Laboratory of Crop Biology, Ministry of Science and Technology, Shandong Agricultural University, Tai'an 271018, Shandong, China
| | - Jin Chen
- State Key Laboratory of Crop Biology, Ministry of Science and Technology, Shandong Agricultural University, Tai'an 271018, Shandong, China
| | - Yongli Luo
- State Key Laboratory of Crop Biology, Ministry of Science and Technology, Shandong Agricultural University, Tai'an 271018, Shandong, China
| | - Dangwei Pang
- State Key Laboratory of Crop Biology, Ministry of Science and Technology, Shandong Agricultural University, Tai'an 271018, Shandong, China
| | - Wenwen Jiang
- State Key Laboratory of Crop Biology, Ministry of Science and Technology, Shandong Agricultural University, Tai'an 271018, Shandong, China
| | - Yong Li
- State Key Laboratory of Crop Biology, Ministry of Science and Technology, Shandong Agricultural University, Tai'an 271018, Shandong, China
| | - Zhenlin Wang
- State Key Laboratory of Crop Biology, Ministry of Science and Technology, Shandong Agricultural University, Tai'an 271018, Shandong, China
| |
Collapse
|
161
|
Epigenetic regulation of skeletal muscle metabolism. Clin Sci (Lond) 2017; 130:1051-63. [PMID: 27215678 DOI: 10.1042/cs20160115] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 03/15/2016] [Indexed: 01/04/2023]
Abstract
Normal skeletal muscle metabolism is essential for whole body metabolic homoeostasis and disruptions in muscle metabolism are associated with a number of chronic diseases. Transcriptional control of metabolic enzyme expression is a major regulatory mechanism for muscle metabolic processes. Substantial evidence is emerging that highlights the importance of epigenetic mechanisms in this process. This review will examine the importance of epigenetics in the regulation of muscle metabolism, with a particular emphasis on DNA methylation and histone acetylation as epigenetic control points. The emerging cross-talk between metabolism and epigenetics in the context of health and disease will also be examined. The concept of inheritance of skeletal muscle metabolic phenotypes will be discussed, in addition to emerging epigenetic therapies that could be used to alter muscle metabolism in chronic disease states.
Collapse
|
162
|
Deshpande AA, Bhatia M, Laxman S, Bachhawat AK. Thiol trapping and metabolic redistribution of sulfur metabolites enable cells to overcome cysteine overload. MICROBIAL CELL 2017; 4:112-126. [PMID: 28435838 PMCID: PMC5376351 DOI: 10.15698/mic2017.04.567] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Cysteine is an essential requirement in living organisms. However, due to its reactive thiol side chain, elevated levels of intracellular cysteine can be toxic and therefore need to be rapidly eliminated from the cellular milieu. In mammals and many other organisms, excess cysteine is believed to be primarily eliminated by the cysteine dioxygenase dependent oxidative degradation of cysteine, followed by the removal of the oxidative products. However, other mechanisms of tackling excess cysteine are also likely to exist, but have not thus far been explored. In this study, we use Saccharomyces cerevisiae, which naturally lacks a cysteine dioxygenase, to investigate mechanisms for tackling cysteine overload. Overexpressing the high affinity cysteine transporter, YCT1, enabled yeast cells to rapidly accumulate high levels of intracellular cysteine. Using targeted metabolite analysis, we observe that cysteine is initially rapidly interconverted to non-reactive cystine in vivo. A time course revealed that cells systematically convert excess cysteine to inert thiol forms; initially to cystine, and subsequently to cystathionine, S-Adenosyl-L-homocysteine (SAH) and S-Adenosyl L-methionine (SAM), in addition to eventually accumulating glutathione (GSH) and polyamines. Microarray based gene expression studies revealed the upregulation of arginine/ornithine biosynthesis a few hours after the cysteine overload, and suggest that the non-toxic, non-reactive thiol based metabolic products are eventually utilized for amino acid and polyamine biogenesis, thereby enabling cell growth. Thus, cells can handle potentially toxic amounts of cysteine by a combination of thiol trapping, metabolic redistribution to non-reactive thiols and subsequent consumption for anabolism.
Collapse
Affiliation(s)
- Anup Arunrao Deshpande
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER Mohali), S.A.S. Nagar, Punjab 140306, India
| | - Muskan Bhatia
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER Mohali), S.A.S. Nagar, Punjab 140306, India
| | - Sunil Laxman
- Institute for Stem Cell Biology and Regenerative Medicine (inStem), NCBS campus, Bangalore 560065, India
| | - Anand Kumar Bachhawat
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER Mohali), S.A.S. Nagar, Punjab 140306, India
| |
Collapse
|
163
|
Fahrmann JF, Grapov DD, Wanichthanarak K, DeFelice BC, Salemi MR, Rom WN, Gandara DR, Phinney BS, Fiehn O, Pass H, Miyamoto S. Integrated Metabolomics and Proteomics Highlight Altered Nicotinamide- and Polyamine Pathways in Lung Adenocarcinoma. Carcinogenesis 2017; 38:271-280. [PMID: 28049629 PMCID: PMC5862279 DOI: 10.1093/carcin/bgw205] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 12/02/2016] [Accepted: 12/20/2016] [Indexed: 01/11/2023] Open
Abstract
Lung cancer is the leading cause of cancer mortality in the United States with non-small cell lung cancer (NSCLC) adenocarcinoma being the most common histological type. Early perturbations in cellular metabolism are a hallmark of cancer, but the extent of these changes in early stage lung adenocarcinoma remains largely unknown. In the current study, an integrated metabolomics and proteomics approach was utilized to characterize the biochemical and molecular alterations between malignant and matched control tissue from 27 subjects diagnosed with early stage lung adenocarcinoma. Differential analysis identified 71 metabolites and 1102 proteins that delineated tumor from control tissue. Integrated results indicated four major metabolic changes in early stage adenocarcinoma: (1) increased glycosylation and glutaminolysis; (2) elevated Nrf2 activation; (3) increase in nicotinic and nicotinamide salvaging pathways; and (4) elevated polyamine biosynthesis linked to differential regulation of the SAM/nicotinamide methyl-donor pathway. Genomic data from publicly available databases were included to strengthen proteomic findings. Our findings provide insight into the biochemical and molecular biological reprogramming that may accompanies early stage lung tumorigenesis and highlight potential therapeutic targets.
Collapse
Affiliation(s)
- Johannes F Fahrmann
- University of California, Davis, West Coast Metabolomics Center, Davis, California
| | | | | | - Brian C DeFelice
- University of California, Davis, West Coast Metabolomics Center, Davis, California
| | | | - William N Rom
- Division of Pulmonary, Critical Care, and Sleep, NYU School of Medicine, New York, NY, USA
| | - David R Gandara
- Division of Hematology and Oncology, Department of Internal Medicine, School of Medicine, University of California, Davis Medical Center, Sacramento, California
| | | | - Oliver Fiehn
- University of California, Davis, West Coast Metabolomics Center, Davis, California
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi-Arabia
| | - Harvey Pass
- Division of Thoracic Surgery, Department of Cardiothoracic Surgery, Langone Medical Center, New York University, New York, NY, USA
| | - Suzanne Miyamoto
- Division of Hematology and Oncology, Department of Internal Medicine, School of Medicine, University of California, Davis Medical Center, Sacramento, California
| |
Collapse
|
164
|
The Catalytic Mechanism of the Class C Radical S
-Adenosylmethionine Methyltransferase NosN. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201609948] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
165
|
Ding W, Li Y, Zhao J, Ji X, Mo T, Qianzhu H, Tu T, Deng Z, Yu Y, Chen F, Zhang Q. The Catalytic Mechanism of the Class C Radical S-Adenosylmethionine Methyltransferase NosN. Angew Chem Int Ed Engl 2017; 56:3857-3861. [PMID: 28112859 DOI: 10.1002/anie.201609948] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 12/15/2016] [Indexed: 12/23/2022]
Abstract
S-Adenosylmethionine (SAM) is one of the most common co-substrates in enzyme-catalyzed methylation reactions. Most SAM-dependent reactions proceed through an SN 2 mechanism, whereas a subset of them involves radical intermediates for methylating non-nucleophilic substrates. Herein, we report the characterization and mechanistic investigation of NosN, a class C radical SAM methyltransferase involved in the biosynthesis of the thiopeptide antibiotic nosiheptide. We show that, in contrast to all known SAM-dependent methyltransferases, NosN does not produce S-adenosylhomocysteine (SAH) as a co-product. Instead, NosN converts SAM into 5'-methylthioadenosine as a direct methyl donor, employing a radical-based mechanism for methylation and releasing 5'-thioadenosine as a co-product. A series of biochemical and computational studies allowed us to propose a comprehensive mechanism for NosN catalysis, which represents a new paradigm for enzyme-catalyzed methylation reactions.
Collapse
Affiliation(s)
- Wei Ding
- Department of Chemistry, Fudan University, Shanghai, 200433, China.,School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yongzhen Li
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Junfeng Zhao
- Department of Chemistry, Fudan University, Shanghai, 200433, China.,Key Laboratory of Combinatory Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Xinjian Ji
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Tianlu Mo
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Haocheng Qianzhu
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Tao Tu
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Zixin Deng
- Key Laboratory of Combinatory Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Yi Yu
- Key Laboratory of Combinatory Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Fener Chen
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Qi Zhang
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| |
Collapse
|
166
|
Forieri I, Sticht C, Reichelt M, Gretz N, Hawkesford MJ, Malagoli M, Wirtz M, Hell R. System analysis of metabolism and the transcriptome in Arabidopsis thaliana roots reveals differential co-regulation upon iron, sulfur and potassium deficiency. PLANT, CELL & ENVIRONMENT 2017; 40:95-107. [PMID: 27726154 DOI: 10.1111/pce.12842] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 09/06/2016] [Accepted: 09/19/2016] [Indexed: 05/22/2023]
Abstract
Deprivation of mineral nutrients causes significant retardation of plant growth. This retardation is associated with nutrient-specific and general stress-induced transcriptional responses. In this study, we adjusted the external supply of iron, potassium and sulfur to cause the same retardation of shoot growth. Nevertheless, limitation by individual nutrients resulted in specific morphological adaptations and distinct shifts within the root metabolite fingerprint. The metabolic shifts affected key metabolites of primary metabolism and the stress-related phytohormones, jasmonic, salicylic and abscisic acid. These phytohormone signatures contributed to specific nutrient deficiency-induced transcriptional regulation. Limitation by the micronutrient iron caused the strongest regulation and affected 18% of the root transcriptome. Only 130 genes were regulated by all nutrients. Specific co-regulation between the iron and sulfur metabolic routes upon iron or sulfur deficiency was observed. Interestingly, iron deficiency caused regulation of a different set of genes of the sulfur assimilation pathway compared with sulfur deficiency itself, which demonstrates the presence of specific signal-transduction systems for the cross-regulation of the pathways. Combined iron and sulfur starvation experiments demonstrated that a requirement for a specific nutrient can overrule this cross-regulation. The comparative metabolomics and transcriptomics approach used dissected general stress from nutrient-specific regulation in roots of Arabidopsis.
Collapse
Affiliation(s)
- Ilaria Forieri
- Centre for Organismal Studies (COS), University of Heidelberg, 69120, Heidelberg, Germany
| | - Carsten Sticht
- Center for Medical Research, University of Mannheim, 68167, Mannheim, Germany
| | | | - Norbert Gretz
- Center for Medical Research, University of Mannheim, 68167, Mannheim, Germany
| | | | - Mario Malagoli
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Padua, Italy
| | - Markus Wirtz
- Centre for Organismal Studies (COS), University of Heidelberg, 69120, Heidelberg, Germany
| | - Ruediger Hell
- Centre for Organismal Studies (COS), University of Heidelberg, 69120, Heidelberg, Germany
| |
Collapse
|
167
|
Zapata PJ, Serrano M, García-Legaz MF, Pretel MT, Botella MA. Short Term Effect of Salt Shock on Ethylene and Polyamines Depends on Plant Salt Sensitivity. FRONTIERS IN PLANT SCIENCE 2017; 8:855. [PMID: 28588603 PMCID: PMC5440749 DOI: 10.3389/fpls.2017.00855] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 05/08/2017] [Indexed: 05/08/2023]
Abstract
In the present manuscript the short term effect (3-24 h) of a saline shock (NaCl 100 mM) on fresh weight, water content, respiration rate, ethylene production and Na+, Cl-, ACC and polyamine concentration was studied in four plant species with different salt sensitivity, pepper, lettuce, spinach, and beetroot. Higher reduction in fresh weight and water content as a consequence of saline shock was found in pepper and lettuce plants than in spinach and beetroot, the latter behaving as more salinity tolerant. In general, salinity led to rapid increases in respiration rate, ethylene production and ACC and polyamine (putrescine, spermidine, and spermine) concentrations in shoot and root. These increases were related to plant salinity sensitivity, since they were higher in the most sensitive species and vice versa. However, ethylene and respiration rates in salt stressed plants recovered similar values to controls after 24 h of treatment in salt tolerant plants, while still remaining high in the most sensitive. On the other hand, sudden increases in putrescine, spermidine, and spermine concentration were higher and occurred earlier in pepper and lettuce, the most sensitive species, than in spinach and beetroot, the less sensitive ones. These increases tended to disappear after 24 h, except in lettuce. These changes would support the conclusion that ethylene and polyamine increases could be considered as a plant response to saline shock and related to the plant species sensitivity to this stress. In addition, no competition between polyamines and ethylene biosynthesis for their common precursor was observed.
Collapse
Affiliation(s)
- Pedro J. Zapata
- Departamento de Tecnología Agroalimentaria, Universidad Miguel HernándezOrihuela, Spain
| | - María Serrano
- Departamento de Biología Aplicada, Universidad Miguel HernándezOrihuela, Spain
| | - Manuel F. García-Legaz
- Departamento de Agroquímica y Medioambiente, Universidad Miguel HernándezOrihuela, Spain
| | - M. T. Pretel
- Departamento de Biología Aplicada, Universidad Miguel HernándezOrihuela, Spain
| | - M. A. Botella
- Departamento de Biología Aplicada, Universidad Miguel HernándezOrihuela, Spain
- *Correspondence: M. A. Botella,
| |
Collapse
|
168
|
Li L, Zhao J, Zhao Y, Lu X, Zhou Z, Zhao C, Xu G. Comprehensive investigation of tobacco leaves during natural early senescence via multi-platform metabolomics analyses. Sci Rep 2016; 6:37976. [PMID: 27897248 PMCID: PMC5126694 DOI: 10.1038/srep37976] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 11/03/2016] [Indexed: 01/20/2023] Open
Abstract
Senescence is the final stage of leaf growth and development. Many different physiological activities occur during this process. A comprehensive metabolomics analysis of tobacco middle leaves at 5 different developmental stages was implemented through multi-platform methods based on liquid chromatography, capillary electrophoresis and gas chromatography coupled with mass spectrometry. In total, 412 metabolites were identified, including pigments, sterols, lipids, amino acids, polyamines, sugars and secondary metabolites. Dramatic metabolic changes were observed. Firstly, membrane degradation and chlorophyll down-regulation occurred after the 50% flower bud stage. Levels of major membrane lipids decreased, including those of the glycolipids in chloroplast thylakoids and phospholipids in membrane envelopes. Clear decreases in free sterols and acylated sterol glucosides were detected along with the accumulation of sterol esters. The accumulation of alkaloids was found. The amino acid levels were significantly decreased, particularly those of N-rich amino acids (glutamine and asparagine), thus reflecting N translocation. Subsequently, the antioxidant system was activated. Sugar alcohols and polyphenols accumulated when the lower leaves turned yellow. These results comprehensively revealed the metabolic changes that occur during tobacco leaf development and senescence under natural conditions.
Collapse
Affiliation(s)
- Lili Li
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jieyu Zhao
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanni Zhao
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xin Lu
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhihui Zhou
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chunxia Zhao
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guowang Xu
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
169
|
Ahmad N, Malagoli M, Wirtz M, Hell R. Drought stress in maize causes differential acclimation responses of glutathione and sulfur metabolism in leaves and roots. BMC PLANT BIOLOGY 2016; 16:247. [PMID: 27829370 PMCID: PMC5103438 DOI: 10.1186/s12870-016-0940-z] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 10/31/2016] [Indexed: 05/08/2023]
Abstract
BACKGROUND Drought is the most important environmental stress that limits crop yield in a global warming world. Despite the compelling evidence of an important role of oxidized and reduced sulfur-containing compounds during the response of plants to drought stress (e.g. sulfate for stomata closure or glutathione for scavenging of reactive oxygen species), the assimilatory sulfate reduction pathway is almost not investigated at the molecular or at the whole plant level during drought. RESULTS In the present study, we elucidated the role of assimilatory sulfate reduction in roots and leaves of the staple crop maize after application of drought stress. The time-resolved dynamics of the adaption processes to the stress was analyzed in a physiological relevant situation -when prolonged drought caused significant oxidation stress but root growth should be maintained. The allocation of sulfate was significantly shifted to the roots upon drought and allowed for significant increase of thiols derived from sulfate assimilation in roots. This enabled roots to produce biomass, while leaf growth was stopped. Accumulation of harmful reactive oxygen species caused oxidation of the glutathione pool and decreased glutathione levels in leaves. Surprisingly, flux analysis using [35S]-sulfate demonstrated a significant down-regulation of sulfate assimilation and cysteine synthesis in leaves due to the substantial decrease of serine acetyltransferase activity. The insufficient cysteine supply caused depletion of glutathione pool in spite of significant transcriptional induction of glutathione synthesis limiting GSH1. Furthermore, drought impinges on transcription of membrane-localized sulfate transport systems in leaves and roots, which provides a potential molecular mechanism for the reallocation of sulfur upon prolonged water withdrawal. CONCLUSIONS The study demonstrated a significant and organ-specific impact of drought upon sulfate assimilation. The sulfur metabolism related alterations at the transcriptional, metabolic and enzyme activity level are consistent with a promotion of root growth to search for water at the expense of leaf growth. The results provide evidence for the importance of antagonistic regulation of sulfur metabolism in leaves and roots to enable successful drought stress response at the whole plant level.
Collapse
Affiliation(s)
- Nisar Ahmad
- Centre for Organismal Studies Heidelberg, Heidelberg University, Im Neuenheimer Feld 360, 69120, Heidelberg, Germany
- University of Science & Technology Bannu, Bannu, Pakistan
| | - Mario Malagoli
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Padova, Italy
| | - Markus Wirtz
- Centre for Organismal Studies Heidelberg, Heidelberg University, Im Neuenheimer Feld 360, 69120, Heidelberg, Germany
| | - Ruediger Hell
- Centre for Organismal Studies Heidelberg, Heidelberg University, Im Neuenheimer Feld 360, 69120, Heidelberg, Germany.
| |
Collapse
|
170
|
Huang XY, Chao DY, Koprivova A, Danku J, Wirtz M, Müller S, Sandoval FJ, Bauwe H, Roje S, Dilkes B, Hell R, Kopriva S, Salt DE. Nuclear Localised MORE SULPHUR ACCUMULATION1 Epigenetically Regulates Sulphur Homeostasis in Arabidopsis thaliana. PLoS Genet 2016; 12:e1006298. [PMID: 27622452 PMCID: PMC5021336 DOI: 10.1371/journal.pgen.1006298] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 08/12/2016] [Indexed: 12/25/2022] Open
Abstract
Sulphur (S) is an essential element for all living organisms. The uptake, assimilation and metabolism of S in plants are well studied. However, the regulation of S homeostasis remains largely unknown. Here, we report on the identification and characterisation of the more sulphur accumulation1 (msa1-1) mutant. The MSA1 protein is localized to the nucleus and is required for both S-adenosylmethionine (SAM) production and DNA methylation. Loss of function of the nuclear localised MSA1 leads to a reduction in SAM in roots and a strong S-deficiency response even at ample S supply, causing an over-accumulation of sulphate, sulphite, cysteine and glutathione. Supplementation with SAM suppresses this high S phenotype. Furthermore, mutation of MSA1 affects genome-wide DNA methylation, including the methylation of S-deficiency responsive genes. Elevated S accumulation in msa1-1 requires the increased expression of the sulphate transporter genes SULTR1;1 and SULTR1;2 which are also differentially methylated in msa1-1. Our results suggest a novel function for MSA1 in the nucleus in regulating SAM biosynthesis and maintaining S homeostasis epigenetically via DNA methylation. Sulphur is an essential element for all living organisms including plants. Plants take up sulphur from the soil mainly in the form of inorganic sulphate. The uptake of sulphate and assimilation of sulphur have been well studied. However, the regulation of sulphur accumulation in plants remains largely unknown. In this study, we characterize the high leaf sulphur mutant more sulphur accumulation1 (msa1-1) and demonstrate the function of MSA1 in controlling sulphur accumulation in Arabidopsis thaliana. The MSA1 protein is localized to the nucleus and is required for the biosynthesis of S-adenosylmethionine (SAM) which is a universal methyl donor for many methylation reactions, including DNA methylation. Loss of function of MSA1 reduces the SAM level in roots and affects genome-wide DNA methylation, including the methylation of sulphate transporter genes. We show that the high sulphur phenotype of msa1-1 requires elevated expression of the sulphate transporter genes which are differentially methylated in msa1-1. Our results suggest a connection between sulphur homeostasis and DNA methylation that is mediated by MSA1.
Collapse
Affiliation(s)
- Xin-Yuan Huang
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Dai-Yin Chao
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Anna Koprivova
- Botanical Institute, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
| | - John Danku
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Markus Wirtz
- Centre for Organismal Studies Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Steffen Müller
- Department of Plant Physiology, University of Rostock, Rostock, Germany
| | - Francisco J. Sandoval
- Institute of Biological Chemistry, Washington State University, Pullman, Washington, United States of America
| | - Hermann Bauwe
- Department of Plant Physiology, University of Rostock, Rostock, Germany
| | - Sanja Roje
- Institute of Biological Chemistry, Washington State University, Pullman, Washington, United States of America
| | - Brian Dilkes
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, United States of America
| | - Rüdiger Hell
- Centre for Organismal Studies Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Stanislav Kopriva
- Botanical Institute, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
| | - David E Salt
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, United Kingdom
- * E-mail:
| |
Collapse
|
171
|
Zhang Y, Wang T, Yang K, Xu J, Ren L, Li W, Liu W. Cerebral Microvascular Endothelial Cell Apoptosis after Ischemia: Role of Enolase-Phosphatase 1 Activation and Aci-Reductone Dioxygenase 1 Translocation. Front Mol Neurosci 2016; 9:79. [PMID: 27630541 PMCID: PMC5005407 DOI: 10.3389/fnmol.2016.00079] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 08/19/2016] [Indexed: 11/13/2022] Open
Abstract
Enolase-phosphatase 1 (ENOPH1), a newly discovered enzyme of the methionine salvage pathway, is emerging as an important molecule regulating stress responses. In this study, we investigated the role of ENOPH1 in blood brain barrier (BBB) injury under ischemic conditions. Focal cerebral ischemia induced ENOPH1 mRNA and protein expression in ischemic hemispheric microvessels in rats. Exposure of cultured brain microvascular endothelial cells (bEND3 cells) to oxygen-glucose deprivation (OGD) also induced ENOPH1 upregulation, which was accompanied by increased cell death and apoptosis reflected by increased 3-(4, 5-Dimethylthiazol-2-yl)-2, 5- diphenyltetrazolium bromide formation, lactate dehydrogenase release and TUNEL staining. Knockdown of ENOPH1 expression with siRNA or overexpressing ENOPH1 with CRISPR-activated plasmids attenuated or potentiated OGD-induced endothelial cell death, respectively. Moreover, ENOPH1 knockdown or overexpression resulted in a significant reduction or augmentation of reactive oxygen species (ROS) generation, apoptosis-associated proteins (caspase-3, PARP, Bcl-2 and Bax) and Endoplasmic reticulum (ER) stress proteins (Ire-1, Calnexin, GRP78 and PERK) in OGD-treated endothelial cells. OGD upregulated the expression of ENOPH1’s downstream protein aci-reductone dioxygenase 1 (ADI1) and enhanced its interaction with ENOPH1. Interestingly, knockdown of ENOPH1 had no effect on OGD-induced ADI1 upregulation, while it potentiated OGD-induced ADI1 translocation from the nucleus to the cytoplasm. Lastly, knockdown of ENOPH1 significantly reduced OGD-induced endothelial monolayer permeability increase. In conclusion, our data demonstrate that ENOPH1 activation may contribute to OGD-induced endothelial cell death and BBB disruption through promoting ROS generation and the activation of apoptosis associated proteins, thus representing a new therapeutic target for ischemic stroke.
Collapse
Affiliation(s)
- Yuan Zhang
- The Central Laboratory, Shenzhen Second People's Hospital, Graduate School of Guangzhou Medical UniversityShenzhen, China; Shenzhen Key Laboratory of Neurosurgery, Shenzhen Second People's Hospital, Graduate School of Guangzhou Medical UniversityShenzhen, China; Department of Pathophysiology, Baotou Medical CollegeBaotou, China
| | - Ting Wang
- The Central Laboratory, Shenzhen Second People's Hospital, Graduate School of Guangzhou Medical UniversityShenzhen, China; Shenzhen Key Laboratory of Neurosurgery, Shenzhen Second People's Hospital, Graduate School of Guangzhou Medical UniversityShenzhen, China
| | - Ke Yang
- The Central Laboratory, Shenzhen Second People's Hospital, Graduate School of Guangzhou Medical UniversityShenzhen, China; Shenzhen Key Laboratory of Neurosurgery, Shenzhen Second People's Hospital, Graduate School of Guangzhou Medical UniversityShenzhen, China
| | - Ji Xu
- The Central Laboratory, Shenzhen Second People's Hospital, Graduate School of Guangzhou Medical UniversityShenzhen, China; Shenzhen Key Laboratory of Neurosurgery, Shenzhen Second People's Hospital, Graduate School of Guangzhou Medical UniversityShenzhen, China
| | - Lijie Ren
- Department of Neurology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University Shenzhen, China
| | - Weiping Li
- Shenzhen Key Laboratory of Neurosurgery, Shenzhen Second People's Hospital, Graduate School of Guangzhou Medical UniversityShenzhen, China; Department of Neurosurgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen UniversityShenzhen, China
| | - Wenlan Liu
- The Central Laboratory, Shenzhen Second People's Hospital, Graduate School of Guangzhou Medical UniversityShenzhen, China; Shenzhen Key Laboratory of Neurosurgery, Shenzhen Second People's Hospital, Graduate School of Guangzhou Medical UniversityShenzhen, China; Department of Neurosurgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen UniversityShenzhen, China
| |
Collapse
|
172
|
Koprivova A, Kopriva S. Sulfur metabolism and its manipulation in crops. J Genet Genomics 2016; 43:623-629. [PMID: 27582269 DOI: 10.1016/j.jgg.2016.07.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 07/12/2016] [Indexed: 12/27/2022]
Affiliation(s)
- Anna Koprivova
- Botanical Institute and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Zülpicher Str. 47b, 50674 Cologne, Germany
| | - Stanislav Kopriva
- Botanical Institute and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Zülpicher Str. 47b, 50674 Cologne, Germany.
| |
Collapse
|
173
|
Koprivova A, Kopriva S. Hormonal control of sulfate uptake and assimilation. PLANT MOLECULAR BIOLOGY 2016; 91:617-27. [PMID: 26810064 DOI: 10.1007/s11103-016-0438-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 01/11/2016] [Indexed: 05/23/2023]
Abstract
Plant hormones have a plethora of functions in control of plant development, stress response, and primary metabolism, including nutrient homeostasis. In the plant nutrition, the interplay of hormones with responses to nitrate and phosphate deficiency is well described, but relatively little is known about the interaction between phytohormones and regulation of sulfur metabolism. As for other nutrients, sulfate deficiency results in modulation of root architecture, where hormones are expected to play an important role. Accordingly, sulfate deficiency induces genes involved in metabolism of tryptophane and auxin. Also jasmonate biosynthesis is induced, pointing to the need of increase the defense capabilities of the plants when sulfur is limiting. However, hormones affect also sulfate uptake and assimilation. The pathway is coordinately induced by jasmonate and the key enzyme, adenosine 5'-phosphosulfate reductase, is additionally regulated by ethylene, abscisic acid, nitric oxid, and other phytohormones. Perhaps the most intriguing link between hormones and sulfate assimilation is the fact that the main regulator of the response to sulfate starvation, SULFATE LIMITATION1 (SLIM1) belongs to the family of ethylene related transcription factors. We will review the current knowledge of interplay between phytohormones and control of sulfur metabolism and discuss the main open questions.
Collapse
Affiliation(s)
- Anna Koprivova
- Botanical Institute, Cluster of Excellence on Plant Sciences, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany
| | - Stanislav Kopriva
- Botanical Institute, Cluster of Excellence on Plant Sciences, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany.
| |
Collapse
|
174
|
Metabolic Regulation as a Consequence of Anaerobic 5-Methylthioadenosine Recycling in Rhodospirillum rubrum. mBio 2016; 7:mBio.00855-16. [PMID: 27406564 PMCID: PMC4958253 DOI: 10.1128/mbio.00855-16] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Rhodospirillum rubrum possesses a novel oxygen-independent, aerobic methionine salvage pathway (MSP) for recycling methionine from 5-methylthioadenosine (MTA), the MTA-isoprenoid shunt. This organism can also metabolize MTA as a sulfur source under anaerobic conditions, suggesting that the MTA-isoprenoid shunt may also function anaerobically as well. In this study, deep proteomics profiling, directed metabolite analysis, and reverse transcriptase quantitative PCR (RT-qPCR) revealed metabolic changes in response to anaerobic growth on MTA versus sulfate as sole sulfur source. The abundance of protein levels associated with methionine transport, cell motility, and chemotaxis increased in the presence of MTA over that in the presence of sulfate. Purine salvage from MTA resulted primarily in hypoxanthine accumulation and a decrease in protein levels involved in GMP-to-AMP conversion to balance purine pools. Acyl coenzyme A (acyl-CoA) metabolic protein levels for lipid metabolism were lower in abundance, whereas poly-β-hydroxybutyrate synthesis and storage were increased nearly 10-fold. The known R. rubrum aerobic MSP was also shown to be upregulated, to function anaerobically, and to recycle MTA. This suggested that other organisms with gene homologues for the MTA-isoprenoid shunt may also possess a functioning anaerobic MSP. In support of our previous findings that ribulose-1,5-carboxylase/oxygenase (RubisCO) is required for an apparently purely anaerobic MSP, RubisCO transcript and protein levels both increased in abundance by over 10-fold in cells grown anaerobically on MTA over those in cells grown on sulfate, resulting in increased intracellular RubisCO activity. These results reveal for the first time global metabolic responses as a consequence of anaerobic MTA metabolism compared to using sulfate as the sulfur source. In nearly all organisms, sulfur-containing byproducts result from many metabolic reactions. Unless these compounds are further metabolized, valuable organic sulfur is lost and can become limiting. To regenerate the sulfur-containing amino acid methionine, organisms typically employ one of several variations of a “universal” methionine salvage pathway (MSP). A common aspect of the universal MSP is a final oxygenation step. This work establishes that the metabolically versatile bacterium Rhodospirillum rubrum employs a novel MSP that does not require oxygen under either aerobic or anaerobic conditions. There is also a separate, dedicated anaerobic MTA metabolic route in R. rubrum. This work reveals global changes in cellular metabolism in response to anaerobic MTA metabolism compared to using sulfate as a sulfur source. We found that cell mobility and transport were enhanced, along with lipid, nucleotide, and carbohydrate metabolism, when cells were grown in the presence of MTA.
Collapse
|
175
|
Snezhkina AV, Krasnov GS, Lipatova AV, Sadritdinova AF, Kardymon OL, Fedorova MS, Melnikova NV, Stepanov OA, Zaretsky AR, Kaprin AD, Alekseev BY, Dmitriev AA, Kudryavtseva AV. The Dysregulation of Polyamine Metabolism in Colorectal Cancer Is Associated with Overexpression of c-Myc and C/EBPβ rather than Enterotoxigenic Bacteroides fragilis Infection. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:2353560. [PMID: 27433286 PMCID: PMC4940579 DOI: 10.1155/2016/2353560] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 03/28/2016] [Accepted: 04/27/2016] [Indexed: 12/16/2022]
Abstract
Colorectal cancer is one of the most common cancers in the world. It is well known that the chronic inflammation can promote the progression of colorectal cancer (CRC). Recently, a number of studies revealed a potential association between colorectal inflammation, cancer progression, and infection caused by enterotoxigenic Bacteroides fragilis (ETBF). Bacterial enterotoxin activates spermine oxidase (SMO), which produces spermidine and H2O2 as byproducts of polyamine catabolism, which, in turn, enhances inflammation and tissue injury. Using qPCR analysis, we estimated the expression of SMOX gene and ETBF colonization in CRC patients. We found no statistically significant associations between them. Then we selected genes involved in polyamine metabolism, metabolic reprogramming, and inflammation regulation and estimated their expression in CRC. We observed overexpression of SMOX, ODC1, SRM, SMS, MTAP, c-Myc, C/EBPβ (CREBP), and other genes. We found that two mediators of metabolic reprogramming, inflammation, and cell proliferation c-Myc and C/EBPβ may serve as regulators of polyamine metabolism genes (SMOX, AZIN1, MTAP, SRM, ODC1, AMD1, and AGMAT) as they are overexpressed in tumors, have binding site according to ENCODE ChIP-Seq data, and demonstrate strong coexpression with their targets. Thus, increased polyamine metabolism in CRC could be driven by c-Myc and C/EBPβ rather than ETBF infection.
Collapse
Affiliation(s)
- Anastasiya V. Snezhkina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - George S. Krasnov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
- Orekhovich Institute of Biomedical Chemistry, Russian Academy of Medical Sciences, Moscow 119121, Russia
| | - Anastasiya V. Lipatova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Asiya F. Sadritdinova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
- National Medical Research Center of Radiology, Ministry of Healthcare of the Russian Federation, Moscow 125284, Russia
| | - Olga L. Kardymon
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Maria S. Fedorova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Nataliya V. Melnikova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Oleg A. Stepanov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Andrew R. Zaretsky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Andrey D. Kaprin
- National Medical Research Center of Radiology, Ministry of Healthcare of the Russian Federation, Moscow 125284, Russia
| | - Boris Y. Alekseev
- National Medical Research Center of Radiology, Ministry of Healthcare of the Russian Federation, Moscow 125284, Russia
| | - Alexey A. Dmitriev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Anna V. Kudryavtseva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
- National Medical Research Center of Radiology, Ministry of Healthcare of the Russian Federation, Moscow 125284, Russia
| |
Collapse
|
176
|
Abstract
DNA methylation is an epigenetic mechanism that has important functions in transcriptional silencing and is associated with repressive histone methylation (H3K9me). To further investigate silencing mechanisms, we screened a mutagenized Arabidopsis thaliana population for expression of SDCpro-GFP, redundantly controlled by DNA methyltransferases DRM2 and CMT3. Here, we identify the hypomorphic mutant mthfd1-1, carrying a mutation (R175Q) in the cytoplasmic bifunctional methylenetetrahydrofolate dehydrogenase/methenyltetrahydrofolate cyclohydrolase (MTHFD1). Decreased levels of oxidized tetrahydrofolates in mthfd1-1 and lethality of loss-of-function demonstrate the essential enzymatic role of MTHFD1 in Arabidopsis. Accumulation of homocysteine and S-adenosylhomocysteine, genome-wide DNA hypomethylation, loss of H3K9me and transposon derepression indicate that S-adenosylmethionine-dependent transmethylation is inhibited in mthfd1-1. Comparative analysis of DNA methylation revealed that the CMT3 and CMT2 pathways involving positive feedback with H3K9me are mostly affected. Our work highlights the sensitivity of epigenetic networks to one-carbon metabolism due to their common S-adenosylmethionine-dependent transmethylation and has implications for human MTHFD1-associated diseases.
Collapse
|
177
|
Ilisso CP, Sapio L, Delle Cave D, Illiano M, Spina A, Cacciapuoti G, Naviglio S, Porcelli M. S-Adenosylmethionine Affects ERK1/2 and Stat3 Pathways and Induces Apotosis in Osteosarcoma Cells. J Cell Physiol 2016; 231:428-35. [PMID: 26174106 DOI: 10.1002/jcp.25089] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 07/07/2015] [Indexed: 01/06/2023]
Abstract
Osteosarcoma is a very aggressive bone tumor. Its clinical outcome remains discouraging despite intensive surgery, radiotherapy, and chemotherapy. Thus, novel therapeutic approaches are demanded. S-Adenosylmethionine (AdoMet) is a naturally occurring molecule that is synthesized in our body by methionine adenosyltransferase isoenzymes and is also available as a nutritional supplement. AdoMet is the principal methyl donor in numerous methylation reactions and is involved in many biological functions. Interestingly, AdoMet has been shown to exert antiproliferative action in various cancer cells. However, the underlying molecular mechanisms are just starting to be studied. Here, we investigated the effects of AdoMet on the proliferation of osteosarcoma U2OS cells and the underlying mechanisms. We carried out direct cell number counting, MTT and flow cytometry-based assays, and immunoblotting experiments in response to AdoMet treatment. We found that AdoMet strongly inhibits proliferation of U2OS cells by slowing-down cell cycle progression and by inducing apoptosis. We also report that AdoMet consistently causes an increase of p53 and p21 cell-cycle inhibitor, a decrease of cyclin A and cyclin E protein levels, and a marked increase of pro-apoptotic Bax/Bcl-2 ratio, with caspase-3 activation and PARP cleavage. Moreover, the AdoMet-induced antiproliferative effects were dynamically accompanied by profound changes in ERK1/2 and STAT3 protein and phosphorylation levels. Altogether, our data enforce the evidence of AdoMet acting as a biomolecule with antiproliferative action in osteosarcoma cells, capable of down-regulating ERK1/2 and STAT3 pathways leading to cell cycle inhibition and apoptosis, and provide a rationale for the possible use of AdoMet in osteosarcoma therapy.
Collapse
Affiliation(s)
- Concetta Paola Ilisso
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy
| | - Luigi Sapio
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy
| | - Donatella Delle Cave
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy
| | - Michela Illiano
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy
| | - Annamaria Spina
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy
| | - Giovanna Cacciapuoti
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy
| | - Silvio Naviglio
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy
| | - Marina Porcelli
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy
| |
Collapse
|
178
|
Tsaniklidis G, Kotsiras A, Tsafouros A, Roussos PA, Aivalakis G, Katinakis P, Delis C. Spatial and temporal distribution of genes involved in polyamine metabolism during tomato fruit development. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 100:27-36. [PMID: 26773542 DOI: 10.1016/j.plaphy.2016.01.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 01/04/2016] [Accepted: 01/04/2016] [Indexed: 05/20/2023]
Abstract
Polyamines are organic compounds involved in various biological roles in plants, including cell growth and organ development. In the present study, the expression profile, the accumulation of free polyamines and the transcript localisation of the genes involved in Put metabolism, such as Ornithine decarboxylase (ODC), Arginine decarboxylase (ADC) and copper containing Amine oxidase (CuAO), were examined during Solanum lycopersicum cv. Chiou fruit development and maturation. Moreover, the expression of genes coding for enzymes involved in higher polyamine metabolism, including Spermidine synthase (SPDS), Spermine synthase (SPMS), S-adenosylmethionine decarboxylase (SAMDC) and Polyamine oxidase (PAO), were studied. Most genes participating in PAs biosynthesis and metabolism exhibited an increased accumulation of transcripts at the early stages of fruit development. In contrast, CuAO and SPMS were mostly expressed later, during the development stages of the fruits where a massive increase in fruit volume occurs, while the SPDS1 gene exhibited a rather constant expression with a peak at the red ripe stage. Although Put, Spd and Spm were all exhibited decreasing levels in developing immature fruits, Put levels maxed late during fruit ripening. In contrast to Put both Spd and Spm levels continue to decrease gradually until full ripening. It is worth noticing that in situ RNA-RNA hybridisation is reported for the first time in tomato fruits. The localisation of ADC2, ODC1 and CuAO gene transcripts at tissues such as the locular parenchyma and the vascular bundles fruits, supports the theory that all genes involved in Put biosynthesis and catabolism are mostly expressed in fast growing tissues. The relatively high expression levels of CuAO at the ImG4 stage of fruit development (fruits with a diameter of 3 cm), mature green and breaker stages could possibly be attributed to the implication of polyamines in physiological processes taking place during fruit ripening.
Collapse
Affiliation(s)
- Georgios Tsaniklidis
- Agricultural University of Athens, Department of Natural Resources Development and Agricultural Engineering, Iera Odos 75, 11855 Votanikos, Athens, Greece.
| | - Anastasios Kotsiras
- Technological Educational Institute of Peloponnese, School of Agricultural Technology and Food Technology and Nutrition, Department of Agricultural Technology, 24100 Antikalamos, Kalamata, Greece.
| | - Athanasios Tsafouros
- Agricultural University of Athens, Department of Natural Resources Development and Agricultural Engineering, Iera Odos 75, 11855 Votanikos, Athens, Greece.
| | - Peter A Roussos
- Agricultural University of Athens, Department of Natural Resources Development and Agricultural Engineering, Iera Odos 75, 11855 Votanikos, Athens, Greece.
| | - Georgios Aivalakis
- Agricultural University of Athens, Department of Natural Resources Development and Agricultural Engineering, Iera Odos 75, 11855 Votanikos, Athens, Greece.
| | - Panagiotis Katinakis
- Agricultural University of Athens, Department of Natural Resources Development and Agricultural Engineering, Iera Odos 75, 11855 Votanikos, Athens, Greece.
| | - Costas Delis
- Technological Educational Institute of Peloponnese, School of Agricultural Technology and Food Technology and Nutrition, Department of Agricultural Technology, 24100 Antikalamos, Kalamata, Greece.
| |
Collapse
|
179
|
Kumar V, Irfan M, Ghosh S, Chakraborty N, Chakraborty S, Datta A. Fruit ripening mutants reveal cell metabolism and redox state during ripening. PROTOPLASMA 2016; 253:581-94. [PMID: 26008650 DOI: 10.1007/s00709-015-0836-z] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Accepted: 05/17/2015] [Indexed: 05/18/2023]
Abstract
Ripening which leads to fruit senescence is an inimitable process characterized by vivid changes in color, texture, flavor, and aroma of the fleshy fruits. Our understanding of the mechanisms underlying the regulation of fruit ripening and senescence is far from complete. Molecular and biochemical studies on tomato (Solanum lycopersicum) ripening mutants such as ripening inhibitor (rin), nonripening (nor), and never ripe (Nr) have been useful in our understanding of fruit development and ripening. The MADS-box transcription factor RIN, a global regulator of fruit ripening, is vital for the broad aspects of ripening, in both ethylene-dependent and independent manners. Here, we have carried out microarray analysis to study the expression profiles of tomato genes during ripening of wild type and rin mutant fruits. Analysis of the differentially expressed genes revealed the role of RIN in regulation of several molecular and biochemical events during fruit ripening including fruit specialized metabolism and cellular redox state. The role of reactive oxygen species (ROS) during fruit ripening and senescence was further examined by determining the changes in ROS level during ripening of wild type and mutant fruits and by analyzing expression profiles of the genes involved in maintaining cellular redox state. Taken together, our findings suggest an important role of ROS during fruit ripening and senescence, and therefore, modulation of ROS level during ripening could be useful in achieving desired fruit quality.
Collapse
Affiliation(s)
- Vinay Kumar
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Mohammad Irfan
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Sumit Ghosh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Niranjan Chakraborty
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Subhra Chakraborty
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Asis Datta
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
180
|
Johnová P, Skalák J, Saiz-Fernández I, Brzobohatý B. Plant responses to ambient temperature fluctuations and water-limiting conditions: A proteome-wide perspective. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:916-31. [PMID: 26861773 DOI: 10.1016/j.bbapap.2016.02.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 12/26/2015] [Accepted: 02/04/2016] [Indexed: 12/24/2022]
Abstract
BACKGROUND Every year, environmental stresses such as limited water and nutrient availability, salinity, and temperature fluctuations inflict significant losses on crop yields across the globe. Recently, developments in analytical techniques, e.g. mass spectrometry, have led to great advances towards understanding how plants respond to environmental stresses. These processes are mediated by many molecular pathways and, at least partially, via proteome-environment interactions. SCOPE OF REVIEW This review focuses on the current state of knowledge about interactions between the plant proteome and the environment, with a special focus on drought and temperature responses of plant proteome dynamics, and subcellular and organ-specific compartmentalization, in Arabidopsis thaliana and crop species. MAJOR CONCLUSIONS Correct plant development under non-optimal conditions requires complex self-protection mechanisms, many of them common to different abiotic stresses. Proteome analyses of plant responses to temperature and drought stresses have revealed an intriguing interplay of modifications, mainly affecting the photosynthetic machinery, carbohydrate metabolism, and ROS activation and scavenging. Imbalances between transcript-level and protein-level regulation observed during adaptation to abiotic stresses suggest that many of the regulatory processes are controlled at translational and post-translational levels; proteomics is thus essential in revealing important regulatory networks. GENERAL SIGNIFICANCE Because information from proteomic data extends far beyond what can be deduced from transcriptome analysis, the results of proteome studies have substantially deepened our understanding of stress adaptation in plants; this is clearly a prerequisite for designing strategies to improve the yield and quality of crops grown under unfavorable conditions brought about by ongoing climatic change. This article is part of a Special Issue entitled: Plant Proteomics--a bridge between fundamental processes and crop production, edited by Dr. Hans-Peter Mock.
Collapse
Affiliation(s)
- Patricie Johnová
- Laboratory of Plant Molecular Biology, Institute of Biophysics AS CR, v.v.i. and, Mendel University in Brno, CEITEC - Central European Institute of Technology, Mendel University in Brno, Zemědělská 1, CZ-613 00 Brno, Czech Republic.
| | - Jan Skalák
- Laboratory of Plant Molecular Biology, Institute of Biophysics AS CR, v.v.i. and, Mendel University in Brno, CEITEC - Central European Institute of Technology, Mendel University in Brno, Zemědělská 1, CZ-613 00 Brno, Czech Republic.
| | - Iñigo Saiz-Fernández
- Laboratory of Plant Molecular Biology, Institute of Biophysics AS CR, v.v.i. and, Mendel University in Brno, CEITEC - Central European Institute of Technology, Mendel University in Brno, Zemědělská 1, CZ-613 00 Brno, Czech Republic.
| | - Břetislav Brzobohatý
- Laboratory of Plant Molecular Biology, Institute of Biophysics AS CR, v.v.i. and, Mendel University in Brno, CEITEC - Central European Institute of Technology, Mendel University in Brno, Zemědělská 1, CZ-613 00 Brno, Czech Republic.
| |
Collapse
|
181
|
Jiang Z, Kempinski C, Bush CJ, Nybo SE, Chappell J. Engineering Triterpene and Methylated Triterpene Production in Plants Provides Biochemical and Physiological Insights into Terpene Metabolism. PLANT PHYSIOLOGY 2016; 170:702-16. [PMID: 26603654 PMCID: PMC4734568 DOI: 10.1104/pp.15.01548] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 11/23/2015] [Indexed: 05/08/2023]
Abstract
Linear, branch-chained triterpenes, including squalene (C30), botryococcene (C30), and their methylated derivatives (C31-C37), generated by the green alga Botryococcus braunii race B have received significant attention because of their utility as chemical and biofuel feedstocks. However, the slow growth habit of B. braunii makes it impractical as a production system. In this study, we evaluated the potential of generating high levels of botryococcene in tobacco (Nicotiana tabacum) plants by diverting carbon flux from the cytosolic mevalonate pathway or the plastidic methylerythritol phosphate pathway by the targeted overexpression of an avian farnesyl diphosphate synthase along with two versions of botryococcene synthases. Up to 544 µg g(-1) fresh weight of botryococcene was achieved when this metabolism was directed to the chloroplasts, which is approximately 90 times greater than that accumulating in plants engineered for cytosolic production. To test if methylated triterpenes could be produced in tobacco, we also engineered triterpene methyltransferases (TMTs) from B. braunii into wild-type plants and transgenic lines selected for high-level triterpene accumulation. Up to 91% of the total triterpene contents could be converted to methylated forms (C31 and C32) by cotargeting the TMTs and triterpene biosynthesis to the chloroplasts, whereas only 4% to 14% of total triterpenes were methylated when this metabolism was directed to the cytoplasm. When the TMTs were overexpressed in the cytoplasm of wild-type plants, up to 72% of the total squalene was methylated, and total triterpene (C30+C31+C32) content was elevated 7-fold. Altogether, these results point to innate mechanisms controlling metabolite fluxes, including a homeostatic role for squalene.
Collapse
Affiliation(s)
- Zuodong Jiang
- Plant Biology Program (Z.J., C.K., J.C.) and Department of Pharmaceutical Sciences (C.J.B., S.E.N., J.C.), University of Kentucky, Lexington, Kentucky 40536-0596
| | - Chase Kempinski
- Plant Biology Program (Z.J., C.K., J.C.) and Department of Pharmaceutical Sciences (C.J.B., S.E.N., J.C.), University of Kentucky, Lexington, Kentucky 40536-0596
| | - Caroline J Bush
- Plant Biology Program (Z.J., C.K., J.C.) and Department of Pharmaceutical Sciences (C.J.B., S.E.N., J.C.), University of Kentucky, Lexington, Kentucky 40536-0596
| | - S Eric Nybo
- Plant Biology Program (Z.J., C.K., J.C.) and Department of Pharmaceutical Sciences (C.J.B., S.E.N., J.C.), University of Kentucky, Lexington, Kentucky 40536-0596
| | - Joe Chappell
- Plant Biology Program (Z.J., C.K., J.C.) and Department of Pharmaceutical Sciences (C.J.B., S.E.N., J.C.), University of Kentucky, Lexington, Kentucky 40536-0596
| |
Collapse
|
182
|
Kopriva S, Talukdar D, Takahashi H, Hell R, Sirko A, D'Souza SF, Talukdar T. Editorial: Frontiers of Sulfur Metabolism in Plant Growth, Development, and Stress Response. FRONTIERS IN PLANT SCIENCE 2016; 6:1220. [PMID: 26793206 PMCID: PMC4709830 DOI: 10.3389/fpls.2015.01220] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 12/17/2015] [Indexed: 05/29/2023]
Affiliation(s)
- Stanislav Kopriva
- Botanical Institute and Cluster of Excellence on Plant Sciences (CEPLAS), University of CologneCologne, Germany
| | - Dibyendu Talukdar
- Department of Botany, Raja Peary Mohan College, University of CalcuttaUttarpara, India
| | - Hideki Takahashi
- Department of Biochemistry and Molecular Biology, Michigan State UniversityEast Lansing, MI, USA
| | - Rüdiger Hell
- Centre for Organismal Studies, University of HeidelbergHeidelberg, Germany
| | - Agnieszka Sirko
- Department of Plant Biochemistry, Institute of Biochemistry and Biophysics, Polish Academy of SciencesWarsaw, Poland
| | | | - Tulika Talukdar
- Department of Botany, Acharya Prafulla Chandra Roy Government CollegeSiliguri, India
| |
Collapse
|
183
|
Yu Y, Jin C, Sun C, Wang J, Ye Y, Zhou W, Lu L, Lin X. Inhibition of ethylene production by putrescine alleviates aluminium-induced root inhibition in wheat plants. Sci Rep 2016; 6:18888. [PMID: 26744061 PMCID: PMC4705537 DOI: 10.1038/srep18888] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 11/27/2015] [Indexed: 11/18/2022] Open
Abstract
Inhibition of root elongation is one of the most distinct symptoms of aluminium (Al) toxicity. Although putrescine (Put) has been identified as an important signaling molecule involved in Al tolerance, it is yet unknown how Put mitigates Al-induced root inhibition. Here, the possible mechanism was investigated by using two wheat genotypes differing in Al resistance: Al-tolerant Xi Aimai-1 and Al-sensitive Yangmai-5. Aluminium caused more root inhibition in Yangmai-5 and increased ethylene production at the root apices compared to Xi Aimai-1, whereas the effects were significantly reversed by ethylene biosynthesis inhibitors. The simultaneous exposure of wheat seedlings to Al and ethylene donor, ethephon, or ethylene biosynthesis precursor, 1-aminocyclopropane-1-carboxylic acid (ACC), increased ethylene production and aggravated root inhibition, which was more pronounced in Xi Aimai-1. In contrast, Put treatment decreased ethylene production and alleviated Al-induced root inhibition in both genotypes, and the effects were more conspicuous in Yangmai-5. Furthermore, our results indicated that Al-induced ethylene production was mediated by ACC synthase (ACS) and ACC oxidase, and that Put decreased ethylene production by inhibiting ACS. Altogether, these findings indicate that ethylene is involved in Al-induced root inhibition and this process could be alleviated by Put through inhibiting ACS activity.
Collapse
Affiliation(s)
- Yan Yu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chongwei Jin
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Subtropical Soil Science and Plant Nutrition of Zhejiang Province, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Chengliang Sun
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | | | - Yiquan Ye
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Weiwei Zhou
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lingli Lu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Subtropical Soil Science and Plant Nutrition of Zhejiang Province, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Xianyong Lin
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Subtropical Soil Science and Plant Nutrition of Zhejiang Province, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR China
| |
Collapse
|
184
|
Manzanares-Miralles L, Sarikaya-Bayram Ö, Smith EB, Dolan SK, Bayram Ö, Jones GW, Doyle S. Quantitative proteomics reveals the mechanism and consequence of gliotoxin-mediated dysregulation of the methionine cycle in Aspergillus niger. J Proteomics 2016; 131:149-162. [DOI: 10.1016/j.jprot.2015.10.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 10/14/2015] [Accepted: 10/18/2015] [Indexed: 12/25/2022]
|
185
|
Wawrzynska A, Moniuszko G, Sirko A. Links Between Ethylene and Sulfur Nutrition-A Regulatory Interplay or Just Metabolite Association? FRONTIERS IN PLANT SCIENCE 2015; 6:1053. [PMID: 26648954 PMCID: PMC4664752 DOI: 10.3389/fpls.2015.01053] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 11/12/2015] [Indexed: 05/24/2023]
Abstract
Multiple reports demonstrate associations between ethylene and sulfur metabolisms, however the details of these links have not yet been fully characterized; the links might be at the metabolic and the regulatory levels. First, sulfur-containing metabolite, methionine, is a precursor of ethylene and is a rate limiting metabolite for ethylene synthesis; the methionine cycle contributes to both sulfur and ethylene metabolism. On the other hand, ethylene is involved in the complex response networks to various stresses and it is known that S deficiency leads to photosynthesis and C metabolism disturbances that might be responsible for oxidative stress. In several plant species, ethylene increases during sulfur starvation and might serve signaling purposes to initiate the process of metabolism reprogramming during adjustment to sulfur deficit. An elevated level of ethylene might result from increased activity of enzymes involved in its synthesis. It has been demonstrated that the alleviation of cadmium stress in plants by application of S seems to be mediated by ethylene formation. On the other hand, the ethylene-insensitive Nicotiana attenuata plants are impaired in sulfur uptake, reduction and metabolism, and they invest their already limited S into methionine needed for synthesis of ethylene constitutively emitted in large amounts to the atmosphere. Regulatory links of EIN3 and SLIM1 (both from the same family of transcriptional factors) involved in the regulation of ethylene and sulfur pathway, respectively, is also quite probable as well as the reciprocal modulation of both pathways on the enzyme activity levels.
Collapse
|
186
|
Mao D, Yu F, Li J, Van de Poel B, Tan D, Li J, Liu Y, Li X, Dong M, Chen L, Li D, Luan S. FERONIA receptor kinase interacts with S-adenosylmethionine synthetase and suppresses S-adenosylmethionine production and ethylene biosynthesis in Arabidopsis. PLANT, CELL & ENVIRONMENT 2015; 38:2566-74. [PMID: 25988356 DOI: 10.1111/pce.12570] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 05/03/2015] [Accepted: 05/07/2015] [Indexed: 05/04/2023]
Abstract
Environmental inputs such as stress can modulate plant cell metabolism, but the detailed mechanism remains unclear. We report here that FERONIA (FER), a plasma membrane receptor-like kinase, may negatively regulate the S-adenosylmethionine (SAM) synthesis by interacting with two S-adenosylmethionine synthases (SAM1 and SAM2). SAM participates in ethylene, nicotianamine and polyamine biosynthetic pathways and provides the methyl group for protein and DNA methylation reactions. The Arabidopsis fer mutants contained a higher level of SAM and ethylene in plant tissues and displayed a dwarf phenotype. Such phenotype in the fer mutants was mimicked by over-expressing the S-adenosylmethionine synthetase in transgenic plants, whereas sam1/2 double mutant showed an opposite phenotype. We propose that FER receptor kinase, in response to environmental stress and plant hormones such as auxin and BR, interacts with SAM synthases and down-regulates ethylene biosynthesis.
Collapse
Affiliation(s)
- Dandan Mao
- NJU-NJFU Joint Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210093, China
- College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Feng Yu
- College of Life Sciences, Hunan Normal University, Changsha, 410081, China
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, 410082, China
| | - Jian Li
- College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Bram Van de Poel
- Division of Mechatronics, Biostatistics and Sensors (MeBioS), Department of Biosystems (BIOSYST), KU Leuven, Leuven, 3001, Belgium
| | - Dan Tan
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Jianglin Li
- College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Yanqionq Liu
- College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Xiushang Li
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, 410082, China
| | - Mengqiu Dong
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Liangbi Chen
- College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Dongping Li
- College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Sheng Luan
- NJU-NJFU Joint Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210093, China
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| |
Collapse
|
187
|
Lucena C, Romera FJ, García MJ, Alcántara E, Pérez-Vicente R. Ethylene Participates in the Regulation of Fe Deficiency Responses in Strategy I Plants and in Rice. FRONTIERS IN PLANT SCIENCE 2015; 6:1056. [PMID: 26640474 PMCID: PMC4661236 DOI: 10.3389/fpls.2015.01056] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 11/13/2015] [Indexed: 05/18/2023]
Abstract
Iron (Fe) is very abundant in most soils but its availability for plants is low, especially in calcareous soils. Plants have been divided into Strategy I and Strategy II species to acquire Fe from soils. Strategy I species apply a reduction-based uptake system which includes all higher plants except the Poaceae. Strategy II species apply a chelation-based uptake system which includes the Poaceae. To cope with Fe deficiency both type of species activate several Fe deficiency responses, mainly in their roots. These responses need to be tightly regulated to avoid Fe toxicity and to conserve energy. Their regulation is not totally understood but some hormones and signaling substances have been implicated. Several years ago it was suggested that ethylene could participate in the regulation of Fe deficiency responses in Strategy I species. In Strategy II species, the role of hormones and signaling substances has been less studied. However, in rice, traditionally considered a Strategy II species but that possesses some characteristics of Strategy I species, it has been recently shown that ethylene can also play a role in the regulation of some of its Fe deficiency responses. Here, we will review and discuss the data supporting a role for ethylene in the regulation of Fe deficiency responses in both Strategy I species and rice. In addition, we will review the data about ethylene and Fe responses related to Strategy II species. We will also discuss the results supporting the action of ethylene through different transduction pathways and its interaction with other signals, such as certain Fe-related repressive signals occurring in the phloem sap. Finally, the possible implication of ethylene in the interactions among Fe deficiency responses and the responses to other nutrient deficiencies in the plant will be addressed.
Collapse
Affiliation(s)
- Carlos Lucena
- Department of Agronomy, University of CórdobaCórdoba, Spain
| | | | - María J. García
- Department of Botany, Ecology and Plant Physiology, University of CórdobaCórdoba, Spain
| | | | - Rafael Pérez-Vicente
- Department of Botany, Ecology and Plant Physiology, University of CórdobaCórdoba, Spain
| |
Collapse
|
188
|
Deciphering Mineral Homeostasis in Barley Seed Transfer Cells at Transcriptional Level. PLoS One 2015; 10:e0141398. [PMID: 26536247 PMCID: PMC4633283 DOI: 10.1371/journal.pone.0141398] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 10/06/2015] [Indexed: 12/13/2022] Open
Abstract
In addition to the micronutrient inadequacy of staple crops for optimal human nutrition, a global downtrend in crop-quality has emerged from intensive breeding for yield. This trend will be aggravated by elevated levels of the greenhouse gas carbon dioxide. Therefore, crop biofortification is inevitable to ensure a sustainable supply of minerals to the large part of human population who is dietary dependent on staple crops. This requires a thorough understanding of plant-mineral interactions due to the complexity of mineral homeostasis. Employing RNA sequencing, we here communicate transfer cell specific effects of excess iron and zinc during grain filling in our model crop plant barley. Responding to alterations in mineral contents, we found a long range of different genes and transcripts. Among them, it is worth to highlight the auxin and ethylene signaling factors Arfs, Abcbs, Cand1, Hps4, Hac1, Ecr1, and Ctr1, diurnal fluctuation components Sdg2, Imb1, Lip1, and PhyC, retroelements, sulfur homeostasis components Amp1, Hmt3, Eil3, and Vip1, mineral trafficking components Med16, Cnnm4, Aha2, Clpc1, and Pcbps, and vacuole organization factors Ymr155W, RabG3F, Vps4, and Cbl3. Our analysis introduces new interactors and signifies a broad spectrum of regulatory levels from chromatin remodeling to intracellular protein sorting mechanisms active in the plant mineral homeostasis. The results highlight the importance of storage proteins in metal ion toxicity-resistance and chelation. Interestingly, the protein sorting and recycling factors Exoc7, Cdc1, Sec23A, and Rab11A contributed to the response as well as the polar distributors of metal-transporters ensuring the directional flow of minerals. Alternative isoform switching was found important for plant adaptation and occurred among transcripts coding for identical proteins as well as transcripts coding for protein isoforms. We also identified differences in the alternative-isoform preference between the treatments, indicating metal-affinity shifts among isoforms of metal transporters. Most important, we found the zinc treatment to impair both photosynthesis and respiration. A wide range of transcriptional changes including stress-related genes and negative feedback loops emphasize the importance to withhold mineral contents below certain cellular levels which otherwise might lead to agronomical impeding side-effects. By illustrating new mechanisms, genes, and transcripts, this report provides a solid platform towards understanding the complex network of plant mineral homeostasis.
Collapse
|
189
|
Almeida AM, Urra C, Moraga C, Jego M, Flores A, Meisel L, González M, Infante R, Defilippi BG, Campos-Vargas R, Orellana A. Proteomic analysis of a segregant population reveals candidate proteins linked to mealiness in peach. J Proteomics 2015; 131:71-81. [PMID: 26459401 DOI: 10.1016/j.jprot.2015.10.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 09/23/2015] [Accepted: 10/08/2015] [Indexed: 10/22/2022]
Abstract
Peaches are stored at low temperatures to delay ripening and increase postharvest life. However some varieties are susceptible to chilling injury,which leads to fruit mealiness, browning and flesh bleeding. In order to identify potentialmarkers associated with chilling injury,we performed proteomic analyses on a segregating population with contrasting susceptibility to chilling-induced mealiness. Chilling-induced mealiness was assessed by measuring juiciness in fruits that have been stored in cold and then allowed to ripen. Fruitmesocarp and leaf proteome from contrasting segregants were analyzed using 2-DE gels. Comparison of protein abundance between segregants revealed 133 spots from fruit mesocarp and 36 from leaf. Thirty four fruit mesocarp proteins were identified from these spots. Most of these proteins were related to ethylene synthesis, ABA response and stress response. Leaf protein analyses identified 22 proteins, most of which related to energy metabolism. Some of the genes that code for these proteins have been previously correlated with chilling injury through transcript analyses and co-segregation with mealiness QTLs. The results from this study, further deciphers the molecular mechanisms associated with chilling response in peach fruit, and identifies candidate proteins linked to mealiness in peach which may be used as putative markers for this trait.
Collapse
Affiliation(s)
- Andréa Miyasaka Almeida
- Universidad Andrés Bello, Fac. Ciencias Biológicas, Centro de Biotecnología Vegetal, República 217, Santiago, Chile; FONDAP-Center of Genome Regulation (CGR), Santiago, Chile.
| | - Claudio Urra
- Universidad Andrés Bello, Fac. Ciencias Biológicas, Centro de Biotecnología Vegetal, República 217, Santiago, Chile; FONDAP-Center of Genome Regulation (CGR), Santiago, Chile
| | - Carol Moraga
- Universidad Andrés Bello, Fac. Ciencias Biológicas, Centro de Biotecnología Vegetal, República 217, Santiago, Chile; FONDAP-Center of Genome Regulation (CGR), Santiago, Chile
| | - Marcela Jego
- Universidad Andrés Bello, Fac. Ciencias Biológicas, Centro de Biotecnología Vegetal, República 217, Santiago, Chile; FONDAP-Center of Genome Regulation (CGR), Santiago, Chile
| | - Alejandra Flores
- Universidad Andrés Bello, Fac. Ciencias Biológicas, Centro de Biotecnología Vegetal, República 217, Santiago, Chile; FONDAP-Center of Genome Regulation (CGR), Santiago, Chile
| | - Lee Meisel
- INTA-Universidad de Chile, Santiago, Chile
| | - Mauricio González
- FONDAP-Center of Genome Regulation (CGR), Santiago, Chile; INTA-Universidad de Chile, Santiago, Chile
| | - Rodrigo Infante
- Departamento de Producción Agrícola, Universidad de Chile, Casilla, 1004 Santiago, Chile
| | - Bruno G Defilippi
- Instituto de Investigaciones Agropecuarias, INIA-La Platina, Santa Rosa 11610, Santiago, Chile
| | - Reinaldo Campos-Vargas
- Universidad Andrés Bello, Fac. Ciencias Biológicas, Centro de Biotecnología Vegetal, República 217, Santiago, Chile
| | - Ariel Orellana
- Universidad Andrés Bello, Fac. Ciencias Biológicas, Centro de Biotecnología Vegetal, República 217, Santiago, Chile; FONDAP-Center of Genome Regulation (CGR), Santiago, Chile
| |
Collapse
|
190
|
Gruau C, Trotel-Aziz P, Villaume S, Rabenoelina F, Clément C, Baillieul F, Aziz A. Pseudomonas fluorescens PTA-CT2 Triggers Local and Systemic Immune Response Against Botrytis cinerea in Grapevine. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 28:1117-29. [PMID: 26075828 DOI: 10.1094/mpmi-04-15-0092-r] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Although induced systemic resistance (ISR) is well-documented in the context of plant-beneficial bacteria interactions, knowledge about the local and systemic molecular and biochemical defense responses before or upon pathogen infection in grapevine is very scarce. In this study, we first investigated the capacity of grapevine plants to express immune responses at both above- and below-ground levels upon interaction with a beneficial bacterium, Pseudomonas fluorescens PTA-CT2. We then explored whether the extent of priming state could contribute to the PTA-CT2-induced ISR in Botrytis cinerea-infected leaves. Our data provide evidence that this bacterium colonized grapevine roots but not the above-ground plant parts and altered the plant phenotype that displayed multiple defense responses both locally and systemically. The grapevine roots and leaves exhibited distinct patterns of defense-related gene expression during root colonization by PTA-CT2. Roots responded faster than leaves and some responses were more strongly upregulated in roots than in leaves and vice versa for other genes. These responses appear to be associated with some induction of cell death in roots and a transient expression of HSR, a hypersensitive response-related gene in both local (roots) and systemic (leaves) tissues. However, stilbenic phytoalexin patterns followed opposite trends in roots compared with leaves but no phytoalexin was exuded during plant-bacterium interaction, suggesting that roots could play an important role in the transfer of metabolites contributing to immune response at the systemic level. Unexpectedly, in B. cinerea-infected leaves PTA-CT2-mediated ISR was accompanied in large part by a downregulation of different defense-related genes, including HSR. Only phytoalexins and glutathion-S-transferase 1 transcripts were upregulated, while the expression of anthocyanin biosynthetic genes was maintained at a higher level than the control. This suggests that decreased expression of HSR, as a marker of cell death, and activation of secondary metabolism pathways could be responsible for a reduced B. cinerea colonization capacity in bacterized plants.
Collapse
Affiliation(s)
- Charlotte Gruau
- URVVC EA 4707, SDRP, University of Reims, UFR Sciences, Campus Moulin de la Housse, 51687 Reims Cedex 02, France
| | - Patricia Trotel-Aziz
- URVVC EA 4707, SDRP, University of Reims, UFR Sciences, Campus Moulin de la Housse, 51687 Reims Cedex 02, France
| | - Sandra Villaume
- URVVC EA 4707, SDRP, University of Reims, UFR Sciences, Campus Moulin de la Housse, 51687 Reims Cedex 02, France
| | - Fanja Rabenoelina
- URVVC EA 4707, SDRP, University of Reims, UFR Sciences, Campus Moulin de la Housse, 51687 Reims Cedex 02, France
| | - Christophe Clément
- URVVC EA 4707, SDRP, University of Reims, UFR Sciences, Campus Moulin de la Housse, 51687 Reims Cedex 02, France
| | - Fabienne Baillieul
- URVVC EA 4707, SDRP, University of Reims, UFR Sciences, Campus Moulin de la Housse, 51687 Reims Cedex 02, France
| | - Aziz Aziz
- URVVC EA 4707, SDRP, University of Reims, UFR Sciences, Campus Moulin de la Housse, 51687 Reims Cedex 02, France
| |
Collapse
|
191
|
Booker MA, DeLong A. Producing the Ethylene Signal: Regulation and Diversification of Ethylene Biosynthetic Enzymes. PLANT PHYSIOLOGY 2015; 169:42-50. [PMID: 26134162 PMCID: PMC4577410 DOI: 10.1104/pp.15.00672] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 06/26/2015] [Indexed: 05/16/2023]
Abstract
Strictly controlled production of ethylene gas lies upstream of the signaling activities of this crucial regulator throughout the plant life cycle. Although the biosynthetic pathway is enzymatically simple, the regulatory circuits that modulate signal production are fine tuned to allow integration of responses to environmental and intrinsic cues. Recently identified posttranslational mechanisms that control ethylene production converge on one family of biosynthetic enzymes and overlay several independent reversible phosphorylation events and distinct mediators of ubiquitin-dependent protein degradation. Although the core pathway is conserved throughout seed plants, these posttranslational regulatory mechanisms may represent evolutionarily recent innovations. The evolutionary origins of the pathway and its regulators are not yet clear; outside the seed plants, numerous biochemical and phylogenetic questions remain to be addressed.
Collapse
Affiliation(s)
- Matthew A Booker
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island 02912
| | - Alison DeLong
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island 02912
| |
Collapse
|
192
|
Ilisso CP, Castellano M, Zappavigna S, Lombardi A, Vitale G, Dicitore A, Cacciapuoti G, Caraglia M, Porcelli M. The methyl donor S-adenosylmethionine potentiates doxorubicin effects on apoptosis of hormone-dependent breast cancer cell lines. Endocrine 2015; 50:212-22. [PMID: 25577236 DOI: 10.1007/s12020-014-0484-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 11/14/2014] [Indexed: 12/19/2022]
Abstract
In this work, we have investigated the antiproliferative effect of AdoMet and Doxorubicin (Doxo), alone or in combination, on different breast cancer cell lines. For the evaluation of synergism, we have calculated the combination index (CI) by the Calcusyn software and we have evaluated the effects of the combination on apoptosis occurrence at FACS analysis in hormone-dependent CG5 cell line. We have found that AdoMet and Doxo given in combination were strongly synergistic in the hormone-dependent CG5 and MCF-7 human breast cancer cell line, as a CI50 < 0.5 was found after 72 h of treatment while the effect was only additive in hormone-independent MDA-MB 231 cells. On the basis of our results, we have selected a combination of AdoMet and Doxo, that was highly synergistic and we have found that the AdoMet in combination with Doxo increased apoptosis induced by Doxo alone, suggesting that the synergism on growth inhibition was largely due to apoptosis. Notably, the AdoMet/Doxo combination induced a significant activation of caspases 3, and 8, while no effect was found on caspase 9 cleavage. In contrast, no significant changes of the expression of cleaved caspase 8 and 9 were found in cells treated with AdoMet and Doxo alone. Moreover, the combination induced a significant increase of Fas and FasL expression. These results highlight the importance of the synergistic effect of AdoMet with Doxo in the regulation of hormone-dependent breast cancer cell proliferation and emphasize the anti-tumor activity of these molecules.
Collapse
Affiliation(s)
- Concetta Paola Ilisso
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Via L. De Crecchio 7, 80138, Naples, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
193
|
Interplay between Gliotoxin Resistance, Secretion, and the Methyl/Methionine Cycle in Aspergillus fumigatus. EUKARYOTIC CELL 2015; 14:941-57. [PMID: 26150413 DOI: 10.1128/ec.00055-15] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 06/30/2015] [Indexed: 01/20/2023]
Abstract
Mechanistic studies on gliotoxin biosynthesis and self-protection in Aspergillus fumigatus, both of which require the gliotoxin oxidoreductase GliT, have revealed a rich landscape of highly novel biochemistries, yet key aspects of this complex molecular architecture remain obscure. Here we show that an A. fumigatus ΔgliA strain is completely deficient in gliotoxin secretion but still retains the ability to efflux bisdethiobis(methylthio)gliotoxin (BmGT). This correlates with a significant increase in sensitivity to exogenous gliotoxin because gliotoxin trapped inside the cell leads to (i) activation of the gli cluster, as disabling gli cluster activation, via gliZ deletion, attenuates the sensitivity of an A. fumigatus ΔgliT strain to gliotoxin, thus implicating cluster activation as a factor in gliotoxin sensitivity, and (ii) increased methylation activity due to excess substrate (dithiol gliotoxin) for the gliotoxin bis-thiomethyltransferase GtmA. Intracellular dithiol gliotoxin is oxidized by GliT and subsequently effluxed by GliA. In the absence of GliA, gliotoxin persists in the cell and is converted to BmGT, with levels significantly higher than those in the wild type. Similarly, in the ΔgliT strain, gliotoxin oxidation is impeded, and methylation occurs unchecked, leading to significant S-adenosylmethionine (SAM) depletion and S-adenosylhomocysteine (SAH) overproduction. This in turn significantly contributes to the observed hypersensitivity of gliT-deficient A. fumigatus to gliotoxin. Our observations reveal a key role for GliT in preventing dysregulation of the methyl/methionine cycle to control intracellular SAM and SAH homeostasis during gliotoxin biosynthesis and exposure. Moreover, we reveal attenuated GliT abundance in the A. fumigatus ΔgliK strain, but not the ΔgliG strain, following exposure to gliotoxin, correlating with relative sensitivities. Overall, we illuminate new systems interactions that have evolved in gliotoxin-producing, compared to gliotoxin-naive, fungi to facilitate their cellular presence.
Collapse
|
194
|
Yoon GM. New Insights into the Protein Turnover Regulation in Ethylene Biosynthesis. Mol Cells 2015; 38:597-603. [PMID: 26095506 PMCID: PMC4507024 DOI: 10.14348/molcells.2015.0152] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 06/08/2015] [Indexed: 11/30/2022] Open
Abstract
Biosynthesis of the phytohormone ethylene is under tight regulation to satisfy the need for appropriate levels of ethylene in plants in response to exogenous and endogenous stimuli. The enzyme 1-aminocyclopropane-1-carboxylic acid synthase (ACS), which catalyzes the rate-limiting step of ethylene biosynthesis, plays a central role to regulate ethylene production through changes in ACS gene expression levels and the activity of the enzyme. Together with molecular genetic studies suggesting the roles of post-translational modification of the ACS, newly emerging evidence strongly suggests that the regulation of ACS protein stability is an alternative mechanism that controls ethylene production, in addition to the transcriptional regulation of ACS genes. In this review, recent new insight into the regulation of ACS protein turnover is highlighted, with a special focus on the roles of phosphorylation, ubiquitination, and novel components that regulate the turnover of ACS proteins. The prospect of cross-talk between ethylene biosynthesis and other signaling pathways to control turnover of the ACS protein is also considered.
Collapse
Affiliation(s)
- Gyeong Mee Yoon
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907,
USA
| |
Collapse
|
195
|
Li B, Kim SH, Zhang Y, Hanfrey CC, Elliott KA, Ealick SE, Michael AJ. Different polyamine pathways from bacteria have replaced eukaryotic spermidine biosynthesis in ciliates Tetrahymena thermophila and Paramecium tetaurelia. Mol Microbiol 2015; 97:791-807. [PMID: 25994085 DOI: 10.1111/mmi.13066] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2015] [Indexed: 11/28/2022]
Abstract
The polyamine spermidine is absolutely required for growth and cell proliferation in eukaryotes, due to its role in post-translational modification of essential translation elongation factor eIF5A, mediated by deoxyhypusine synthase. We have found that free-living ciliates Tetrahymena and Paramecium lost the eukaryotic genes encoding spermidine biosynthesis: S-adenosylmethionine decarboxylase (AdoMetDC) and spermidine synthase (SpdSyn). In Tetrahymena, they were replaced by a gene encoding a fusion protein of bacterial AdoMetDC and SpdSyn, present as three copies. In Paramecium, a bacterial homospermidine synthase replaced the eukaryotic genes. Individual AdoMetDC-SpdSyn fusion protein paralogues from Tetrahymena exhibit undetectable AdoMetDC activity; however, when two paralogous fusion proteins are mixed, AdoMetDC activity is restored and spermidine is synthesized. Structural modelling indicates a functional active site is reconstituted by sharing critical residues from two defective protomers across the heteromer interface. Paramecium was found to accumulate homospermidine, suggesting it replaces spermidine for growth. To test this concept, a budding yeast spermidine auxotrophic strain was found to grow almost normally with homospermidine instead of spermidine. Biosynthesis of spermidine analogue aminopropylcadaverine, but not exogenously provided norspermidine, correlated with some growth. Finally, we found that diverse single-celled eukaryotic parasites and multicellular metazoan Schistosoma worms have lost the spermidine biosynthetic pathway but retain deoxyhypusine synthase.
Collapse
Affiliation(s)
- Bin Li
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Sok Ho Kim
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Yang Zhang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | | | | | - Steven E Ealick
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Anthony J Michael
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| |
Collapse
|
196
|
Lächler K, Imhof J, Reichelt M, Gershenzon J, Binder S. The cytosolic branched-chain aminotransferases of Arabidopsis thaliana influence methionine supply, salvage and glucosinolate metabolism. PLANT MOLECULAR BIOLOGY 2015; 88:119-31. [PMID: 25851613 DOI: 10.1007/s11103-015-0312-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 03/22/2015] [Indexed: 05/10/2023]
Abstract
Arabidopsis thaliana possesses six branched-chain aminotransferases (BCAT1-6). Previous studies revealed that some members of this protein family are involved in the biosynthesis of branched-chain amino acids and/or in the Met chain elongation pathway, the initial steps towards the biosynthesis of Met-derived glucosinolates. We now analyzed branched-chain aminotransferase 6 (BCAT6). In vivo GFP-tagging experiments strongly suggest this enzyme to be localized to the cytosol. Substrate specificity assays performed with recombinant enzyme revealed that BCAT6 transaminates Val, Leu and Ile as well as the corresponding 2-oxo acids but also transaminates Met and its cognate ketoacid 4-methyl-2-oxobutanoate. We established single (bcat6-1), double (bcat4-2/bcat6-1) and triple (bcat3-1/bcat4-2/bcat6-1) mutants involving BCAT6 with the latter exhibiting a clear macroscopic phenotype with smaller plants and abnormal leaf morphology. Metabolite profiling of these mutants demonstrated that BCAT6 can contribute to Met chain elongation with the triple mutant line lacking BCAT3, 4 and 6 showing a dramatic reduction of Met-derived glucosinolate species down to 32 and 14% of wild-type levels in plant foliage and seeds, respectively. This drop in glucosinolate levels is accompanied by a 46-fold increase of free Met, demonstrating the important role of the three branched-chain aminotransferases in converting Met to its 2-oxo acid for glucosinolate chain elongation. In addition, we determined the relative amounts of 5'-deoxy-5'-methylthioadenosine, an intermediate of the Met recycling pathway. This metabolite accumulated to relative high amounts in the absence of the cytosolic BCAT4 and BCAT6, suggesting that cytosolic Met salvage also contributes to the biosynthesis of glucosinolates.
Collapse
Affiliation(s)
- Kurt Lächler
- Institut Molekulare Botanik, Universität Ulm, Albert-Einstein-Allee 11, 89069, Ulm, Germany
| | | | | | | | | |
Collapse
|
197
|
Liu SJ, Xu HH, Wang WQ, Li N, Wang WP, Møller IM, Song SQ. A proteomic analysis of rice seed germination as affected by high temperature and ABA treatment. PHYSIOLOGIA PLANTARUM 2015; 154:142-161. [PMID: 25270993 DOI: 10.1111/ppl.12292] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Revised: 09/07/2014] [Accepted: 09/09/2014] [Indexed: 06/03/2023]
Abstract
Seed germination is a critical phase in the plant life cycle, but the specific events associated with seed germination are still not fully understood. In this study, we used two-dimensional gel electrophoresis followed by mass spectrometry to investigate the changes in the proteome during imbibition of Oryza sativa seeds at optimal temperature with or without abscisic acid (ABA) and high temperature (germination thermoinhibition) to further identify and quantify key proteins required for seed germination. A total of 121 protein spots showed a significant change in abundance (1.5-fold increase/decrease) during germination under all conditions. Among these proteins, we found seven proteins specifically associated with seed germination including glycosyl hydrolases family 38 protein, granule-bound starch synthase 1, Os03g0842900 (putative steroleosin-B), N-carbamoylputrescine amidase, spermidine synthase 1, tubulin α-1 chain and glutelin type-A; and a total of 20 imbibition response proteins involved in energy metabolism, cell growth, cell defense and storage proteins. High temperature inhibited seed germination by decreasing the abundance of proteins involved in methionine metabolism, amino acid biosynthesis, energy metabolism, reserve degradation, protein folding and stress responses. ABA treatment inhibited germination and decreased the abundance of proteins associated with methionine metabolism, energy production and cell division. Our results show that changes in many biological processes including energy metabolism, protein synthesis and cell defense and rescue occurred as a result of all treatments, while enzymes involved in methionine metabolism and weakening of cell wall specifically accumulated when the seeds germinated at the optimal temperature.
Collapse
Affiliation(s)
- Shu-Jun Liu
- Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | | | | | | | | | | | | |
Collapse
|
198
|
Pandey R, Gupta A, Chowdhary A, Pal RK, Rajam MV. Over-expression of mouse ornithine decarboxylase gene under the control of fruit-specific promoter enhances fruit quality in tomato. PLANT MOLECULAR BIOLOGY 2015; 87:249-60. [PMID: 25537646 DOI: 10.1007/s11103-014-0273-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 12/07/2014] [Indexed: 05/23/2023]
Abstract
Diamine putrescine (Put) and polyamines; spermidine (Spd) and spermine (Spm) are essential component of every cell because of their involvement in the regulation of cell division, growth and development. The aim of this study is to enhance the levels of Put during fruit development and see its implications in ripening and quality of tomato fruits. Transgenic tomato plants over-expressing mouse ornithine decarboxylase gene under the control of fruit-specific promoter (2A11) were developed. Transgenic fruits exhibited enhanced levels of Put, Spd and Spm, with a concomitant reduction in ethylene levels, rate of respiration and physiological loss of water. Consequently such fruits displayed significant delay of on-vine ripening and prolonged shelf life over untransformed fruits. The activation of Put biosynthetic pathway at the onset of ripening in transgenic fruits is also consistent with the improvement of qualitative traits such as total soluble solids, titratable acids and total sugars. Such changes were associated with alteration in expression pattern of ripening specific genes. Transgenic fruits were also fortified with important nutraceuticals like lycopene, ascorbate and antioxidants. Therefore, these transgenic tomatoes would be useful for the improvement of tomato cultivars through breeding approaches.
Collapse
MESH Headings
- Animals
- Biogenic Polyamines/metabolism
- Ethylenes/biosynthesis
- Food, Genetically Modified
- Fruit/enzymology
- Fruit/genetics
- Fruit/growth & development
- Genes, Plant
- Solanum lycopersicum/enzymology
- Solanum lycopersicum/genetics
- Solanum lycopersicum/growth & development
- Mice
- Nutritive Value
- Ornithine Decarboxylase/genetics
- Plants, Genetically Modified/enzymology
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/growth & development
- Promoter Regions, Genetic
- Putrescine/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Plant/genetics
- RNA, Plant/metabolism
- Recombinant Proteins/genetics
- Up-Regulation
Collapse
Affiliation(s)
- Roopali Pandey
- Plant Polyamine, Transgenic and RNAi Research Laboratory, Department of Genetics, University of Delhi South Campus, New Delhi, 110021, India
| | | | | | | | | |
Collapse
|
199
|
Porcelli M, Ilisso CP, De Leo E, Cacciapuoti G. Biochemical characterization of a thermostable adenosylmethionine synthetase from the archaeon Pyrococcus furiosus with high catalytic power. Appl Biochem Biotechnol 2015; 175:2916-33. [PMID: 25577347 DOI: 10.1007/s12010-015-1476-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 01/01/2015] [Indexed: 11/25/2022]
Abstract
Adenosylmethionine synthetase plays a key role in the biogenesis of the sulfonium compound S-adenosylmethionine, the principal widely used methyl donor in the biological methylations. We report here, for the first time, the characterization of adenosylmethionine synthetase from the hyperthermophilic archaeon Pyrococcus furiosus (PfMAT). The gene PF1866 encoding PfMAT was cloned and expressed, and the recombinant protein was purified to homogeneity. PfMAT shares 51, 63, and 82% sequence identity with the homologous enzymes from Sulfolobus solfataricus, Methanococcus jannaschii, and Thermococcus kodakarensis, respectively. PfMAT is a homodimer of 90 kDa highly thermophilic with an optimum temperature of 90 °C and is characterized by remarkable thermodynamic stability (Tm, 99 °C), kinetic stability, and resistance to guanidine hydrochloride-induced unfolding. The latter process is reversible as demonstrated by the analysis of the refolding process by activity assays and fluorescence measurements. Limited proteolysis experiments indicated that the proteolytic cleavage site is localized at Lys148 and that the C-terminal peptide is necessary for the integrity of the active site. PfMAT shows kinetic features that make it the most efficient catalyst for S-adenosylmethionine synthesis among the characterized MAT from Bacteria and Archaea. Molecular and structural characterization of PfMAT could be useful to improve MAT enzyme engineering for biotechnological applications.
Collapse
Affiliation(s)
- Marina Porcelli
- Dipartimento di Biochimica, Biofisica e Patologia Generale, Seconda Università di Napoli, Via Costantinopoli 16, 80138, Naples, Italy,
| | | | | | | |
Collapse
|
200
|
Sheridan KJ, Dolan SK, Doyle S. Endogenous cross-talk of fungal metabolites. Front Microbiol 2015; 5:732. [PMID: 25601857 PMCID: PMC4283610 DOI: 10.3389/fmicb.2014.00732] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 12/04/2014] [Indexed: 12/21/2022] Open
Abstract
Non-ribosomal peptide (NRP) synthesis in fungi requires a ready supply of proteogenic and non-proteogenic amino acids which are subsequently incorporated into the nascent NRP via a thiotemplate mechanism catalyzed by NRP synthetases. Substrate amino acids can be modified prior to or during incorporation into the NRP, or following incorporation into an early stage amino acid-containing biosynthetic intermediate. These post-incorporation modifications involve a range of additional enzymatic activities including but not exclusively, monooxygenases, methyltransferases, epimerases, oxidoreductases, and glutathione S-transferases which are essential to effect biosynthesis of the final NRP. Likewise, polyketide biosynthesis is directly by polyketide synthase megaenzymes and cluster-encoded ancillary decorating enzymes. Additionally, a suite of additional primary metabolites, for example: coenzyme A (CoA), acetyl CoA, S-adenosylmethionine, glutathione (GSH), NADPH, malonyl CoA, and molecular oxygen, amongst others are required for NRP and polyketide synthesis (PKS). Clearly these processes must involve exquisite orchestration to facilitate the simultaneous biosynthesis of different types of NRPs, polyketides, and related metabolites requiring identical or similar biosynthetic precursors or co-factors. Moreover, the near identical structures of many natural products within a given family (e.g., ergot alkaloids), along with localization to similar regions within fungi (e.g., conidia) suggests that cross-talk may exist, in terms of biosynthesis and functionality. Finally, we speculate if certain biosynthetic steps involved in NRP and PKS play a role in cellular protection or environmental adaptation, and wonder if these enzymatic reactions are of equivalent importance to the actual biosynthesis of the final metabolite.
Collapse
Affiliation(s)
| | - Stephen K Dolan
- Department of Biology, Maynooth University Maynooth, Ireland
| | - Sean Doyle
- Department of Biology, Maynooth University Maynooth, Ireland
| |
Collapse
|