151
|
Jonsson WO, Margolies NS, Mirek ET, Zhang Q, Linden MA, Hill CM, Link C, Bithi N, Zalma B, Levy JL, Pettit AP, Miller JW, Hine C, Morrison CD, Gettys TW, Miller BF, Hamilton KL, Wek RC, Anthony TG. Physiologic Responses to Dietary Sulfur Amino Acid Restriction in Mice Are Influenced by Atf4 Status and Biological Sex. J Nutr 2021; 151:785-799. [PMID: 33512502 PMCID: PMC8030708 DOI: 10.1093/jn/nxaa396] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/19/2020] [Accepted: 11/17/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Dietary sulfur amino acid restriction (SAAR) improves body composition and metabolic health across several model organisms in part through induction of the integrated stress response (ISR). OBJECTIVE We investigate the hypothesis that activating transcription factor 4 (ATF4) acts as a converging point in the ISR during SAAR. METHODS Using liver-specific or global gene ablation strategies, in both female and male mice, we address the role of ATF4 during dietary SAAR. RESULTS We show that ATF4 is dispensable in the chronic induction of the hepatokine fibroblast growth factor 21 while being essential for the sustained production of endogenous hydrogen sulfide. We also affirm that biological sex, independent of ATF4 status, is a determinant of the response to dietary SAAR. CONCLUSIONS Our results suggest that auxiliary components of the ISR, which are independent of ATF4, are critical for SAAR-mediated improvements in metabolic health in mice.
Collapse
Affiliation(s)
- William O Jonsson
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ, USA
| | | | - Emily T Mirek
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ, USA
| | - Qian Zhang
- Department of Health and Exercise Science, Colorado State University, Ft. Collins, CO, USA
| | - Melissa A Linden
- Department of Health and Exercise Science, Colorado State University, Ft. Collins, CO, USA
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA
| | - Cristal M Hill
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA
| | - Christopher Link
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - Nazmin Bithi
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - Brian Zalma
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ, USA
| | - Jordan L Levy
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ, USA
| | - Ashley P Pettit
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ, USA
| | - Joshua W Miller
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ, USA
| | - Christopher Hine
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | | | - Thomas W Gettys
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA
| | - Benjamin F Miller
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Karyn L Hamilton
- Department of Health and Exercise Science, Colorado State University, Ft. Collins, CO, USA
| | - Ronald C Wek
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Tracy G Anthony
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ, USA
| |
Collapse
|
152
|
Noncanonical immune response to the inhibition of DNA methylation by Staufen1 via stabilization of endogenous retrovirus RNAs. Proc Natl Acad Sci U S A 2021; 118:2016289118. [PMID: 33762305 DOI: 10.1073/pnas.2016289118] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
DNA-methyltransferase inhibitors (DNMTis), such as azacitidine and decitabine, are used clinically to treat myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML). Decitabine activates the transcription of endogenous retroviruses (ERVs), which can induce immune response by acting as cellular double-stranded RNAs (dsRNAs). Yet, the posttranscriptional regulation of ERV dsRNAs remains uninvestigated. Here, we find that the viral mimicry and subsequent cell death in response to decitabine require the dsRNA-binding protein Staufen1 (Stau1). We show that Stau1 directly binds to ERV RNAs and stabilizes them in a genome-wide manner. Furthermore, Stau1-mediated stabilization requires a long noncoding RNA TINCR, which enhances the interaction between Stau1 and ERV RNAs. Analysis of a clinical patient cohort reveals that MDS and AML patients with lower Stau1 and TINCR expressions exhibit inferior treatment outcomes to DNMTi therapy. Overall, our study reveals the posttranscriptional regulatory mechanism of ERVs and identifies the Stau1-TINCR complex as a potential target for predicting the efficacy of DNMTis and other drugs that rely on dsRNAs.
Collapse
|
153
|
McCarty MF. Nutraceutical, Dietary, and Lifestyle Options for Prevention and Treatment of Ventricular Hypertrophy and Heart Failure. Int J Mol Sci 2021; 22:ijms22073321. [PMID: 33805039 PMCID: PMC8037104 DOI: 10.3390/ijms22073321] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/22/2021] [Accepted: 03/22/2021] [Indexed: 12/12/2022] Open
Abstract
Although well documented drug therapies are available for the management of ventricular hypertrophy (VH) and heart failure (HF), most patients nonetheless experience a downhill course, and further therapeutic measures are needed. Nutraceutical, dietary, and lifestyle measures may have particular merit in this regard, as they are currently available, relatively safe and inexpensive, and can lend themselves to primary prevention as well. A consideration of the pathogenic mechanisms underlying the VH/HF syndrome suggests that measures which control oxidative and endoplasmic reticulum (ER) stress, that support effective nitric oxide and hydrogen sulfide bioactivity, that prevent a reduction in cardiomyocyte pH, and that boost the production of protective hormones, such as fibroblast growth factor 21 (FGF21), while suppressing fibroblast growth factor 23 (FGF23) and marinobufagenin, may have utility for preventing and controlling this syndrome. Agents considered in this essay include phycocyanobilin, N-acetylcysteine, lipoic acid, ferulic acid, zinc, selenium, ubiquinol, astaxanthin, melatonin, tauroursodeoxycholic acid, berberine, citrulline, high-dose folate, cocoa flavanols, hawthorn extract, dietary nitrate, high-dose biotin, soy isoflavones, taurine, carnitine, magnesium orotate, EPA-rich fish oil, glycine, and copper. The potential advantages of whole-food plant-based diets, moderation in salt intake, avoidance of phosphate additives, and regular exercise training and sauna sessions are also discussed. There should be considerable scope for the development of functional foods and supplements which make it more convenient and affordable for patients to consume complementary combinations of the agents discussed here. Research Strategy: Key word searching of PubMed was employed to locate the research papers whose findings are cited in this essay.
Collapse
Affiliation(s)
- Mark F McCarty
- Catalytic Longevity Foundation, 811 B Nahant Ct., San Diego, CA 92109, USA
| |
Collapse
|
154
|
Vo DK, Engler A, Stoimenovski D, Hartig R, Kaehne T, Kalinski T, Naumann M, Haybaeck J, Nass N. Interactome Mapping of eIF3A in a Colon Cancer and an Immortalized Embryonic Cell Line Using Proximity-Dependent Biotin Identification. Cancers (Basel) 2021; 13:cancers13061293. [PMID: 33799492 PMCID: PMC7999522 DOI: 10.3390/cancers13061293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/08/2021] [Accepted: 03/11/2021] [Indexed: 12/12/2022] Open
Abstract
Translation initiation comprises complex interactions of eukaryotic initiation factor (eIF) subunits and the structural elements of the mRNAs. Translation initiation is a key process for building the cell's proteome. It not only determines the total amount of protein synthesized but also controls the translation efficiency for individual transcripts, which is important for cancer or ageing. Thus, understanding protein interactions during translation initiation is one key that contributes to understanding how the eIF subunit composition influences translation or other pathways not yet attributed to eIFs. We applied the BioID technique to two rapidly dividing cell lines (the immortalized embryonic cell line HEK-293T and the colon carcinoma cell line HCT-166) in order to identify interacting proteins of eIF3A, a core subunit of the eukaryotic initiation factor 3 complex. We identified a total of 84 interacting proteins, with very few proteins being specific to one cell line. When protein biosynthesis was blocked by thapsigargin-induced endoplasmic reticulum (ER) stress, the interacting proteins were considerably smaller in number. In terms of gene ontology, although eIF3A interactors are mainly part of the translation machinery, protein folding and RNA binding were also found. Cells suffering from ER-stress show a few remaining interactors which are mainly ribosomal proteins or involved in RNA-binding.
Collapse
Affiliation(s)
- Diep-Khanh Vo
- Department of Pathology, Medical Faculty, Otto-von-Guericke University Magdeburg, D-39120 Magdeburg, Germany; (D.-K.V.); (D.S.); (T.K.); (J.H.)
| | - Alexander Engler
- Institute of Experimental Internal Medicine, Medical Faculty, Otto von Guericke University, D-39120 Magdeburg, Germany; (A.E.); (T.K.); (M.N.)
| | - Darko Stoimenovski
- Department of Pathology, Medical Faculty, Otto-von-Guericke University Magdeburg, D-39120 Magdeburg, Germany; (D.-K.V.); (D.S.); (T.K.); (J.H.)
| | - Roland Hartig
- Institute of Molecular and Clinical Immunology, Otto von Guericke University Magdeburg, Leipziger Str. 44, D-39120 Magdeburg, Germany;
| | - Thilo Kaehne
- Institute of Experimental Internal Medicine, Medical Faculty, Otto von Guericke University, D-39120 Magdeburg, Germany; (A.E.); (T.K.); (M.N.)
| | - Thomas Kalinski
- Department of Pathology, Medical Faculty, Otto-von-Guericke University Magdeburg, D-39120 Magdeburg, Germany; (D.-K.V.); (D.S.); (T.K.); (J.H.)
| | - Michael Naumann
- Institute of Experimental Internal Medicine, Medical Faculty, Otto von Guericke University, D-39120 Magdeburg, Germany; (A.E.); (T.K.); (M.N.)
| | - Johannes Haybaeck
- Department of Pathology, Medical Faculty, Otto-von-Guericke University Magdeburg, D-39120 Magdeburg, Germany; (D.-K.V.); (D.S.); (T.K.); (J.H.)
- Department of Pathology, Neuropathology, and Molecular Pathology, Medical University of Innsbruck, A-6020 Innsbruck, Austria
- Department of Pathology, Diagnostic & Research Center for Molecular BioMedicine, Institute of Pathology, Medical University of Graz, A-8010 Graz, Austria
- Center for Biomarker Research in Medicine, A-8010 Graz, Austria
| | - Norbert Nass
- Department of Pathology, Medical Faculty, Otto-von-Guericke University Magdeburg, D-39120 Magdeburg, Germany; (D.-K.V.); (D.S.); (T.K.); (J.H.)
- Correspondence:
| |
Collapse
|
155
|
Hei Z, Wu S, Zheng L, Zhou J, Liu Z, Wang J, Fang P. Crystal structures reveal a novel dimer of the RWD domain of human general control nonderepressible 2. Biochem Biophys Res Commun 2021; 549:164-170. [PMID: 33676185 DOI: 10.1016/j.bbrc.2021.02.111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 02/23/2021] [Indexed: 10/22/2022]
Abstract
General control nonderepressible 2 (GCN2) is a serine/threonine protein kinase, detecting a variety of stresses including amino acid starvation, reactive oxygen species, etc. in eukaryotic cells. Activation of GCN2 requires the interaction of the N-terminal RWD domain with the upstream GCN1 protein and the dimerization by the kinase domain. In this study, we determined two crystal structures of the RWD domain of human GCN2 in two different crystal packing modes. These two different crystal structures reveal a same dimer of the RWD domain, which has not been reported in previous studies. We further confirmed this novel dimer interaction in solution using gel filtration experiments, and in human embryonic kidney (HEK) 293 cells using bimolecular fluorescence complementation (BiFC) and co-immunoprecipitation (co-IP) assays. Together, this study discovers a potential protein-protein interface on the RWD domain of human GCN2, and suggests a possible regulation between the interaction of GCN1 and the formation of GCN2 dimer.
Collapse
Affiliation(s)
- Zhoufei Hei
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Siqi Wu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Li Zheng
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China; School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, China
| | - Jintong Zhou
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Zaizhou Liu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Jing Wang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China; School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, China
| | - Pengfei Fang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China; School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, China.
| |
Collapse
|
156
|
Santos A, Magro DO, Evangelista-Poderoso R, Saad MJA. Diabetes, obesity, and insulin resistance in COVID-19: molecular interrelationship and therapeutic implications. Diabetol Metab Syndr 2021; 13:23. [PMID: 33648564 PMCID: PMC7919999 DOI: 10.1186/s13098-021-00639-2] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Revised: 02/05/2021] [Accepted: 02/13/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Our understanding of the pathophysiology of the COVID-19 manifestations and evolution has improved over the past 10 months, but the reasons why evolution is more severe in obese and diabetic patients are not yet completely understood. MAIN TEXT In the present review we discuss the different mechanisms that may contribute to explain the pathophysiology of COVID-19 including viral entrance, direct viral toxicity, endothelial dysfunction, thromboinflammation, dysregulation of the immune response, and the renin-angiotensin-aldosterone system. CONCLUSIONS We show that the viral infection activates an integrated stress response, including activations of serine kinases such as PKR and PERK, which induce IRS-1 serine phosphorylation and insulin resistance. In parallel, we correlate and show the synergy of the insulin resistance of COVID-19 with this hormonal resistance of obesity and diabetes, which increase the severity of the disease. Finally, we discuss the potential beneficial effects of drugs used to treat insulin resistance and diabetes in patients with COVID-19.
Collapse
Affiliation(s)
- Andrey Santos
- Department of Internal Medicine-FCM, State University of Campinas-UNICAMP, Campinas, SP, Brazil
| | - Daniéla Oliveira Magro
- Department of Surgery, Faculty of Medical Sciences, State University of Campinas-UNICAMP, Campinas, SP, Brazil
| | | | - Mario José Abdalla Saad
- Department of Internal Medicine-FCM, State University of Campinas-UNICAMP, Campinas, SP, Brazil.
| |
Collapse
|
157
|
Wu CC, Shields JN, Akemann C, Meyer DN, Connell M, Baker BB, Pitts DK, Baker TR. The phenotypic and transcriptomic effects of developmental exposure to nanomolar levels of estrone and bisphenol A in zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 757:143736. [PMID: 33243503 PMCID: PMC7790172 DOI: 10.1016/j.scitotenv.2020.143736] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/12/2020] [Accepted: 11/09/2020] [Indexed: 04/14/2023]
Abstract
Estrone and BPA are two endocrine disrupting chemicals (EDCs) that are predicted to be less potent than estrogens such as 17β-estradiol and 17α-ethinylestradiol. Human exposure concentrations to estrone and BPA can be as low as nanomolar levels. However, very few toxicological studies have focused on the nanomolar-dose effects. Low level of EDCs can potentially cause non-monotonic responses. In addition, exposures at different developmental stages can lead to different health outcomes. To identify the nanomolar-dose effects of estrone and BPA, we used zebrafish modeling to study the phenotypic and transcriptomic responses after extended duration exposure from 0 to 5 days post-fertilization (dpf) and short-term exposure at days 4-5 post fertilization. We found that non-monotonic transcriptomic responses occurred after extended duration exposures at 1 nM of estrone or BPA. At this level, estrone also caused hypoactivity locomotive behavior in zebrafish. After both extended duration and short-term exposures, BPA led to more apparent phenotypic responses, i.e. skeletal abnormalities and locomotion changes, and more significant transcriptomic responses than estrone exposure. After short-term exposure, BPA at concentrations equal or above 100 nM affected locomotive behavior and changed the expression of both estrogenic and non-estrogenic genes that are linked to neurological diseases. These data provide gaps of mechanisms between neurological genes expression and associated phenotypic response due to estrone or BPA exposures. This study also provides insights for assessing the acceptable concentration of BPA and estrone in aquatic environments.
Collapse
Affiliation(s)
- Chia-Chen Wu
- Institute of Environmental Health Sciences, Wayne State University, 6135 Woodward Ave, Detroit, MI 48202, USA
| | - Jeremiah N Shields
- Institute of Environmental Health Sciences, Wayne State University, 6135 Woodward Ave, Detroit, MI 48202, USA
| | - Camille Akemann
- Institute of Environmental Health Sciences, Wayne State University, 6135 Woodward Ave, Detroit, MI 48202, USA; Department of Pharmacology, Wayne State University, 540 E Canfield, Detroit, MI 28201, USA
| | - Danielle N Meyer
- Institute of Environmental Health Sciences, Wayne State University, 6135 Woodward Ave, Detroit, MI 48202, USA; Department of Pharmacology, Wayne State University, 540 E Canfield, Detroit, MI 28201, USA
| | - Mackenzie Connell
- Institute of Environmental Health Sciences, Wayne State University, 6135 Woodward Ave, Detroit, MI 48202, USA
| | - Bridget B Baker
- Institute of Environmental Health Sciences, Wayne State University, 6135 Woodward Ave, Detroit, MI 48202, USA
| | - David K Pitts
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Tracie R Baker
- Institute of Environmental Health Sciences, Wayne State University, 6135 Woodward Ave, Detroit, MI 48202, USA; Department of Pharmacology, Wayne State University, 540 E Canfield, Detroit, MI 28201, USA.
| |
Collapse
|
158
|
Stone KP, Ghosh S, Kovalik JP, Orgeron M, Wanders D, Sims LC, Gettys TW. The acute transcriptional responses to dietary methionine restriction are triggered by inhibition of ternary complex formation and linked to Erk1/2, mTOR, and ATF4. Sci Rep 2021; 11:3765. [PMID: 33580171 PMCID: PMC7880992 DOI: 10.1038/s41598-021-83380-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/01/2021] [Indexed: 12/20/2022] Open
Abstract
The initial sensing of dietary methionine restriction (MR) occurs in the liver where it activates an integrated stress response (ISR) that quickly reduces methionine utilization. The ISR program is regulated in part by ATF4, but ATF4's prototypical upstream regulator, eIF2α, is not acutely activated by MR. Bioinformatic analysis of RNAseq and metabolomics data from liver samples harvested 3 h and 6 h after initiating MR shows that general translation is inhibited at the level of ternary complex formation by an acute 50% reduction of hepatic methionine that limits formation of initiator methionine tRNA. The resulting ISR is induced by selective expression of ATF4 target genes that mediate adaptation to reduced methionine intake and return hepatic methionine to control levels within 4 days of starting the diet. Complementary in vitro experiments in HepG2 cells after knockdown of ATF4, or inhibition of mTOR or Erk1/2 support the conclusion that the early induction of genes by MR is partially dependent on ATF4 and regulated by both mTOR and Erk1/2. Taken together, these data show that initiation of dietary MR induces an mTOR- and Erk1/2-dependent stress response that is linked to ATF4 by the sharp, initial drop in hepatic methionine and resulting repression of translation pre-initiation.
Collapse
Affiliation(s)
- Kirsten P Stone
- Laboratory of Nutrient Sensing and Adipocyte Signaling, Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA, 70808, USA
| | - Sujoy Ghosh
- Laboratory of Computational Biology, Pennington Biomedical Research Center, Baton Rouge, LA, USA
- Program in Cardiovascular and Metabolic Disorders and Center for Computational Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Jean Paul Kovalik
- Program in Cardiovascular and Metabolic Disorders and Center for Computational Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Manda Orgeron
- Laboratory of Nutrient Sensing and Adipocyte Signaling, Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA, 70808, USA
| | - Desiree Wanders
- Department of Nutrition, Georgia State University, Atlanta, GA, USA
| | - Landon C Sims
- Laboratory of Nutrient Sensing and Adipocyte Signaling, Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA, 70808, USA
| | - Thomas W Gettys
- Laboratory of Nutrient Sensing and Adipocyte Signaling, Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA, 70808, USA.
| |
Collapse
|
159
|
Yang W, Zhou X, Ryazanov AG, Ma T. Suppression of the kinase for elongation factor 2 alleviates mGluR-LTD impairments in a mouse model of Alzheimer's disease. Neurobiol Aging 2021; 98:225-230. [PMID: 33341653 PMCID: PMC8201868 DOI: 10.1016/j.neurobiolaging.2020.11.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/05/2020] [Accepted: 11/22/2020] [Indexed: 01/06/2023]
Abstract
Impaired mRNA translation (protein synthesis) is linked to Alzheimer's disease (AD) pathophysiology. Recent studies revealed the role of increased phosphorylation of eukaryotic elongation factor 2 (eEF2) in AD-associated cognitive deficits. Phosphorylation of eEF2 (at the Thr56 site) by its only known kinase eEF2K leads to inhibition of general protein synthesis. AD is considered as a disease of "synaptic failure" characterized by impairments of synaptic plasticity, including long-term potentiation (LTP) and long-term depression (LTD). Deficiency of metabotropic glutamate receptor 5-dependent LTD (mGluR-LTD) is indicated in cognitive syndromes associated with various neurological disorders, including AD, but the molecular signaling mechanisms underlying the mGluR-LTD dysregulation in AD remain unclear. In this brief communication, we report genetic repression of eEF2K in aged APP/PS1 AD model mice prevented AD-associated hippocampal mGluR-LTD deficits. Using a pharmacological approach, we further observed that impairments of mGluR-LTD in APP/PS1 mice were rescued by treating hippocampal slices with a small molecule eEF2K antagonist NH125. Our findings, taken together, suggest a critical role of abnormal protein synthesis dysregulation at the elongation phase in AD-associated mGluR-LTD failure, thus providing insights into a mechanistic understanding of synaptic impairments in AD and other related dementia syndromes.
Collapse
Affiliation(s)
- Wenzhong Yang
- Department of Internal Medicine-Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Xueyan Zhou
- Department of Internal Medicine-Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Alexey G Ryazanov
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA
| | - Tao Ma
- Department of Internal Medicine-Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA; Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, USA; Department of Neurobiology and Anatomy, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
160
|
Lemmer IL, Willemsen N, Hilal N, Bartelt A. A guide to understanding endoplasmic reticulum stress in metabolic disorders. Mol Metab 2021; 47:101169. [PMID: 33484951 PMCID: PMC7887651 DOI: 10.1016/j.molmet.2021.101169] [Citation(s) in RCA: 153] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/08/2021] [Accepted: 01/18/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The global rise of metabolic disorders, such as obesity, type 2 diabetes, and cardiovascular disease, demands a thorough molecular understanding of the cellular mechanisms that govern health or disease. The endoplasmic reticulum (ER) is a key organelle for cellular function and metabolic adaptation and, therefore disturbed ER function, known as "ER stress," is a key feature of metabolic disorders. SCOPE OF REVIEW As ER stress remains a poorly defined phenomenon, this review provides a general guide to understanding the nature, etiology, and consequences of ER stress in metabolic disorders. We define ER stress by its type of stressor, which is driven by proteotoxicity, lipotoxicity, and/or glucotoxicity. We discuss the implications of ER stress in metabolic disorders by reviewing evidence implicating ER phenotypes and organelle communication, protein quality control, calcium homeostasis, lipid and carbohydrate metabolism, and inflammation as key mechanisms in the development of ER stress and metabolic dysfunction. MAJOR CONCLUSIONS In mammalian biology, ER is a phenotypically and functionally diverse platform for nutrient sensing, which is critical for cell type-specific metabolic control by hepatocytes, adipocytes, muscle cells, and neurons. In these cells, ER stress is a distinct, transient state of functional imbalance, which is usually resolved by the activation of adaptive programs such as the unfolded protein response (UPR), ER-associated protein degradation (ERAD), or autophagy. However, challenges to proteostasis also impact lipid and glucose metabolism and vice versa. In the ER, sensing and adaptive measures are integrated and failure of the ER to adapt leads to aberrant metabolism, organelle dysfunction, insulin resistance, and inflammation. In conclusion, the ER is intricately linked to a wide spectrum of cellular functions and is a critical component in maintaining and restoring metabolic health.
Collapse
Affiliation(s)
- Imke L Lemmer
- Institute for Cardiovascular Prevention (IPEK), Pettenkoferstr. 9, Ludwig-Maximilians-University, 80336 Munich, Germany; Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Nienke Willemsen
- Institute for Cardiovascular Prevention (IPEK), Pettenkoferstr. 9, Ludwig-Maximilians-University, 80336 Munich, Germany
| | - Nazia Hilal
- Institute for Cardiovascular Prevention (IPEK), Pettenkoferstr. 9, Ludwig-Maximilians-University, 80336 Munich, Germany
| | - Alexander Bartelt
- Institute for Cardiovascular Prevention (IPEK), Pettenkoferstr. 9, Ludwig-Maximilians-University, 80336 Munich, Germany; Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Technische Universität München, Biedersteiner Str. 29, 80802 München, Germany; Department of Molecular Metabolism, 665 Huntington Avenue, Harvard T.H. Chan School of Public Health, 02115 Boston, MA, USA.
| |
Collapse
|
161
|
Çetin G, Klafack S, Studencka-Turski M, Krüger E, Ebstein F. The Ubiquitin-Proteasome System in Immune Cells. Biomolecules 2021; 11:biom11010060. [PMID: 33466553 PMCID: PMC7824874 DOI: 10.3390/biom11010060] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/16/2020] [Accepted: 12/22/2020] [Indexed: 12/11/2022] Open
Abstract
The ubiquitin–proteasome system (UPS) is the major intracellular and non-lysosomal protein degradation system. Thanks to its unique capacity of eliminating old, damaged, misfolded, and/or regulatory proteins in a highly specific manner, the UPS is virtually involved in almost all aspects of eukaryotic life. The critical importance of the UPS is particularly visible in immune cells which undergo a rapid and profound functional remodelling upon pathogen recognition. Innate and/or adaptive immune activation is indeed characterized by a number of substantial changes impacting various cellular processes including protein homeostasis, signal transduction, cell proliferation, and antigen processing which are all tightly regulated by the UPS. In this review, we summarize and discuss recent progress in our understanding of the molecular mechanisms by which the UPS contributes to the generation of an adequate immune response. In this regard, we also discuss the consequences of UPS dysfunction and its role in the pathogenesis of recently described immune disorders including cancer and auto-inflammatory diseases.
Collapse
|
162
|
Cho J, Min HY, Lee HJ, Hyun SY, Sim JY, Noh M, Hwang SJ, Park SH, Boo HJ, Lee HJ, Hong S, Park RW, Shin YK, Hung MC, Lee HY. RGS2-mediated translational control mediates cancer cell dormancy and tumor relapse. J Clin Invest 2021; 131:136779. [PMID: 33393490 PMCID: PMC7773398 DOI: 10.1172/jci136779] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 09/09/2020] [Indexed: 02/06/2023] Open
Abstract
Slow-cycling/dormant cancer cells (SCCs) have pivotal roles in driving cancer relapse and drug resistance. A mechanistic explanation for cancer cell dormancy and therapeutic strategies targeting SCCs are necessary to improve patient prognosis, but are limited because of technical challenges to obtaining SCCs. Here, by applying proliferation-sensitive dyes and chemotherapeutics to non-small cell lung cancer (NSCLC) cell lines and patient-derived xenografts, we identified a distinct SCC subpopulation that resembled SCCs in patient tumors. These SCCs displayed major dormancy-like phenotypes and high survival capacity under hostile microenvironments through transcriptional upregulation of regulator of G protein signaling 2 (RGS2). Database analysis revealed RGS2 as a biomarker of retarded proliferation and poor prognosis in NSCLC. We showed that RGS2 caused prolonged translational arrest in SCCs through persistent eukaryotic initiation factor 2 (eIF2α) phosphorylation via proteasome-mediated degradation of activating transcription factor 4 (ATF4). Translational activation through RGS2 antagonism or the use of phosphodiesterase 5 inhibitors, including sildenafil (Viagra), promoted ER stress-induced apoptosis in SCCs in vitro and in vivo under stressed conditions, such as those induced by chemotherapy. Our results suggest that a low-dose chemotherapy and translation-instigating pharmacological intervention in combination is an effective strategy to prevent tumor progression in NSCLC patients after rigorous chemotherapy.
Collapse
Affiliation(s)
- Jaebeom Cho
- Creative Research Initiative Center for Concurrent Control of Emphysema and Lung Cancer, College of Pharmacy
| | - Hye-Young Min
- Creative Research Initiative Center for Concurrent Control of Emphysema and Lung Cancer, College of Pharmacy
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, and
| | - Ho Jin Lee
- Creative Research Initiative Center for Concurrent Control of Emphysema and Lung Cancer, College of Pharmacy
| | - Seung Yeob Hyun
- Creative Research Initiative Center for Concurrent Control of Emphysema and Lung Cancer, College of Pharmacy
| | - Jeong Yeon Sim
- Creative Research Initiative Center for Concurrent Control of Emphysema and Lung Cancer, College of Pharmacy
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology and College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Myungkyung Noh
- Creative Research Initiative Center for Concurrent Control of Emphysema and Lung Cancer, College of Pharmacy
| | - Su Jung Hwang
- College of Pharmacy, Inje University, Gimhae, Gyungnam, Republic of Korea
| | - Shin-Hyung Park
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, and
| | - Hye-Jin Boo
- Creative Research Initiative Center for Concurrent Control of Emphysema and Lung Cancer, College of Pharmacy
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, and
| | - Hyo-Jong Lee
- College of Pharmacy, Inje University, Gimhae, Gyungnam, Republic of Korea
| | - Sungyoul Hong
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, and
| | - Rang-Woon Park
- Department of Biochemistry and Cell Biology, School of Medicine, and Cell & Matrix Research Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Young Kee Shin
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, and
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology and College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Mien-Chie Hung
- Graduate Institute of Biomedical Sciences, Research Center for Cancer Biology, and Center for Molecular Medicine, China Medical University, Taichung, Taiwan
- Department of Biotechnology, Asia University, Taichung, Taiwan
| | - Ho-Young Lee
- Creative Research Initiative Center for Concurrent Control of Emphysema and Lung Cancer, College of Pharmacy
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, and
| |
Collapse
|
163
|
Mondal A, Burchat N, Sampath H. Palmitate exacerbates bisphenol A toxicity via induction of ER stress and mitochondrial dysfunction. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:158816. [PMID: 32976987 PMCID: PMC7686068 DOI: 10.1016/j.bbalip.2020.158816] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/14/2020] [Accepted: 09/18/2020] [Indexed: 12/15/2022]
Abstract
Combined exposure to dietary nutrients and environmental chemicals may elicit significantly different physiological effects than single exposures. Exposure to dietary saturated fats and environmental toxins is a physiologically-significant dual exposure that is particularly associated with lower socioeconomic status, potentially placing these individuals at heightened risk of xenobiotic toxicities. However, no prior studies have examined interactions between specific lipids and environmental xenobiotics in modulating cellular health. Using primary mouse embryonic fibroblasts, we have discovered that prior exposure to the saturated fatty acid, palmitate, exacerbates cellular toxicity associated with the industrial plasticizer, bisphenol A (BPA). Cell death upon BPA exposure following palmitate pre-treatment was greater than that occurring with either exposure alone. Mechanistically, cell death was preceded by increased endoplasmic reticulum stress and loss of mitochondrial membrane potential in palmitate plus BPA exposed cells, leading to increased caspase-3 cleavage and subsequent apoptosis. Interestingly, inclusion of the unsaturated fatty acid, oleate, along with palmitate during the pre-treatment period completely abrogated the ER stress, mitochondrial toxicity, and cell death induced by subsequent exposure to BPA. Thus, our data identify for the first time an important interaction between a fatty acid and an environmental toxin and have implications for developing nutritional interventions to mitigate the deleterious effects of such xenobiotic exposures.
Collapse
Affiliation(s)
- Anupom Mondal
- Rutgers Center for Lipid Research, Rutgers University, New Brunswick, NJ, USA; Center for Nutrition, Microbiome, and Health, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, NJ, USA; Invivotek, A Genesis Biotechnology Group, Hamilton, NJ, USA
| | - Natalie Burchat
- Rutgers Center for Lipid Research, Rutgers University, New Brunswick, NJ, USA; Center for Nutrition, Microbiome, and Health, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, NJ, USA
| | - Harini Sampath
- Rutgers Center for Lipid Research, Rutgers University, New Brunswick, NJ, USA; Center for Nutrition, Microbiome, and Health, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, NJ, USA; Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ, USA.
| |
Collapse
|
164
|
Gutierrez-Castillo E, Ming H, Foster B, Gatenby L, Mak CK, Pinto C, Bondioli K, Jiang Z. Effect of vitrification on global gene expression dynamics of bovine elongating embryos. Reprod Fertil Dev 2021; 33:338-348. [PMID: 33602389 DOI: 10.1071/rd20285] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/13/2021] [Indexed: 12/27/2022] Open
Abstract
Embryo vitrification involves exposure to high concentrations of cryoprotectants and osmotic stress during cooling and warming in the cryopreservation process. Many of these factors can potentially affect gene expression. In this study, invitro-produced bovine embryos at the blastocyst stage were subjected to vitrification. Four recipients each were used for transferring non-vitrified (n=80) and vitrified (n=80) embryos. A total of 12 non-vitrified and 9 vitrified viable day-14 (D14) embryos were recovered by uterine flushing. RNA-seq analysis of the whole embryo or isolated trophectoderm (TE) from vitrified and fresh recovered D14 embryos revealed a total of 927 and 4376 genes with changed expression in embryos and TE isolates, respectively, as a result of vitrification. In addition, we found 671 and 61 genes commonly up- or downregulated in both vitrified whole embryos and TE. Commonly upregulated pathways by vitrification included epithelial adherens junctions, sirtuin signalling, germ cell-sertoli cell junction, ATM signalling, NER and protein ubiquitination pathways. The commonly downregulated pathways included EIF2 signalling, oxidative phosphorylation, mitochondrial dysfunction, regulation of eIF4 and p70S6K signalling and mTOR signalling pathways. Our analysis identified specific pathways and implicated specific gene expression patterns affecting embryo developmental competence that are important to cryopreservation.
Collapse
Affiliation(s)
| | - Hao Ming
- School of Animal Sciences, AgCenter, Louisiana State University, Baton Rouge, LA, USA
| | - Brittany Foster
- School of Animal Sciences, AgCenter, Louisiana State University, Baton Rouge, LA, USA
| | - Lauren Gatenby
- School of Animal Sciences, AgCenter, Louisiana State University, Baton Rouge, LA, USA
| | - Chun Kuen Mak
- Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | - Carlos Pinto
- Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | - Kenneth Bondioli
- School of Animal Sciences, AgCenter, Louisiana State University, Baton Rouge, LA, USA; and Corresponding authors. ;
| | - Zongliang Jiang
- School of Animal Sciences, AgCenter, Louisiana State University, Baton Rouge, LA, USA; and Corresponding authors. ;
| |
Collapse
|
165
|
Calame DG, Hainlen M, Takacs D, Ferrante L, Pence K, Emrick LT, Chao HT. EIF2AK2-related Neurodevelopmental Disorder With Leukoencephalopathy, Developmental Delay, and Episodic Neurologic Regression Mimics Pelizaeus-Merzbacher Disease. NEUROLOGY-GENETICS 2020; 7:e539. [PMID: 33553620 PMCID: PMC7862097 DOI: 10.1212/nxg.0000000000000539] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 10/16/2020] [Indexed: 11/29/2022]
Abstract
Objective To demonstrate that de novo missense single nucleotide variants (SNVs) in EIF2AK2 cause a neurodevelopmental disorder with leukoencephalopathy resembling Pelizaeus-Merzbacher disease (PMD). Methods A retrospective chart review was performed of 2 unrelated males evaluated at a single institution with de novo EIF2AK2 SNVs identified by clinical exome sequencing (ES). Clinical and radiographic data were reviewed and summarized. Results Both individuals presented in the first year of life with concern for seizures and developmental delay. Common clinical findings included horizontal and/or pendular nystagmus during infancy, axial hypotonia, appendicular hypertonia, spasticity, and episodic neurologic regression with febrile viral illnesses. MRI of the brain demonstrated severely delayed myelination in infancy. A hypomyelinating pattern was confirmed on serial imaging at age 4 years for proband 1. In proband 2, repeat imaging at age 13 months confirmed persistent delayed myelination. These clinical and radiographic features led to a strong suspicion of PMD. However, neither PLP1 copy number variants nor pathogenic SNVs were detected by chromosomal microarray and trio ES, respectively. Reanalysis of trio ES identified heterozygous de novo EIF2AK2 missense variant c.290C>T (p.Ser97Phe) in proband 1 and c.326C>T (p.Ala109Val) in proband 2. Conclusions The autosomal dominant EIF2AK2-related leukoencephalopathy, developmental delay, and episodic neurologic regression syndrome should be considered in the differential diagnosis for PMD and other hypomyelinating leukodystrophies (HLDs). A characteristic history of developmental regression with febrile illnesses may help distinguish it from other HLDs.
Collapse
Affiliation(s)
- Daniel G Calame
- Division of Neurology and Developmental Neuroscience (D.G.C., D.T., L.F., K.P., L.T.E., H.-T.C.), Department of Pediatrics, BCM, Houston, TX; Texas Children's Hospital (D.G.C., D.T., L.F., K.P., L.T.E., H.-T.C.), Houston, TX; Department of Neurology and Neurotherapeutics (M.H.), UTSW, Dallas, TX; Department of Molecular and Human Genetics (L.T.E., H.-T.C.), BCM, Houston, TX; Department of Neuroscience (H.-T.C.), BCM, Houston, TX; Program in Development (H.-T.C.), Disease Models, and Therapeutics, BCM, Houston, TX; McNair Medical Institute (H.-T.C.), The Robert and Janice McNair Foundation, Houston, TX; and Jan and Dan Duncan Neurological Research Institute (H.-T.C.), Texas Children's Hospital, Houston, TX
| | - Meagan Hainlen
- Division of Neurology and Developmental Neuroscience (D.G.C., D.T., L.F., K.P., L.T.E., H.-T.C.), Department of Pediatrics, BCM, Houston, TX; Texas Children's Hospital (D.G.C., D.T., L.F., K.P., L.T.E., H.-T.C.), Houston, TX; Department of Neurology and Neurotherapeutics (M.H.), UTSW, Dallas, TX; Department of Molecular and Human Genetics (L.T.E., H.-T.C.), BCM, Houston, TX; Department of Neuroscience (H.-T.C.), BCM, Houston, TX; Program in Development (H.-T.C.), Disease Models, and Therapeutics, BCM, Houston, TX; McNair Medical Institute (H.-T.C.), The Robert and Janice McNair Foundation, Houston, TX; and Jan and Dan Duncan Neurological Research Institute (H.-T.C.), Texas Children's Hospital, Houston, TX
| | - Danielle Takacs
- Division of Neurology and Developmental Neuroscience (D.G.C., D.T., L.F., K.P., L.T.E., H.-T.C.), Department of Pediatrics, BCM, Houston, TX; Texas Children's Hospital (D.G.C., D.T., L.F., K.P., L.T.E., H.-T.C.), Houston, TX; Department of Neurology and Neurotherapeutics (M.H.), UTSW, Dallas, TX; Department of Molecular and Human Genetics (L.T.E., H.-T.C.), BCM, Houston, TX; Department of Neuroscience (H.-T.C.), BCM, Houston, TX; Program in Development (H.-T.C.), Disease Models, and Therapeutics, BCM, Houston, TX; McNair Medical Institute (H.-T.C.), The Robert and Janice McNair Foundation, Houston, TX; and Jan and Dan Duncan Neurological Research Institute (H.-T.C.), Texas Children's Hospital, Houston, TX
| | - Leah Ferrante
- Division of Neurology and Developmental Neuroscience (D.G.C., D.T., L.F., K.P., L.T.E., H.-T.C.), Department of Pediatrics, BCM, Houston, TX; Texas Children's Hospital (D.G.C., D.T., L.F., K.P., L.T.E., H.-T.C.), Houston, TX; Department of Neurology and Neurotherapeutics (M.H.), UTSW, Dallas, TX; Department of Molecular and Human Genetics (L.T.E., H.-T.C.), BCM, Houston, TX; Department of Neuroscience (H.-T.C.), BCM, Houston, TX; Program in Development (H.-T.C.), Disease Models, and Therapeutics, BCM, Houston, TX; McNair Medical Institute (H.-T.C.), The Robert and Janice McNair Foundation, Houston, TX; and Jan and Dan Duncan Neurological Research Institute (H.-T.C.), Texas Children's Hospital, Houston, TX
| | - Kayla Pence
- Division of Neurology and Developmental Neuroscience (D.G.C., D.T., L.F., K.P., L.T.E., H.-T.C.), Department of Pediatrics, BCM, Houston, TX; Texas Children's Hospital (D.G.C., D.T., L.F., K.P., L.T.E., H.-T.C.), Houston, TX; Department of Neurology and Neurotherapeutics (M.H.), UTSW, Dallas, TX; Department of Molecular and Human Genetics (L.T.E., H.-T.C.), BCM, Houston, TX; Department of Neuroscience (H.-T.C.), BCM, Houston, TX; Program in Development (H.-T.C.), Disease Models, and Therapeutics, BCM, Houston, TX; McNair Medical Institute (H.-T.C.), The Robert and Janice McNair Foundation, Houston, TX; and Jan and Dan Duncan Neurological Research Institute (H.-T.C.), Texas Children's Hospital, Houston, TX
| | - Lisa T Emrick
- Division of Neurology and Developmental Neuroscience (D.G.C., D.T., L.F., K.P., L.T.E., H.-T.C.), Department of Pediatrics, BCM, Houston, TX; Texas Children's Hospital (D.G.C., D.T., L.F., K.P., L.T.E., H.-T.C.), Houston, TX; Department of Neurology and Neurotherapeutics (M.H.), UTSW, Dallas, TX; Department of Molecular and Human Genetics (L.T.E., H.-T.C.), BCM, Houston, TX; Department of Neuroscience (H.-T.C.), BCM, Houston, TX; Program in Development (H.-T.C.), Disease Models, and Therapeutics, BCM, Houston, TX; McNair Medical Institute (H.-T.C.), The Robert and Janice McNair Foundation, Houston, TX; and Jan and Dan Duncan Neurological Research Institute (H.-T.C.), Texas Children's Hospital, Houston, TX
| | - Hsiao-Tuan Chao
- Division of Neurology and Developmental Neuroscience (D.G.C., D.T., L.F., K.P., L.T.E., H.-T.C.), Department of Pediatrics, BCM, Houston, TX; Texas Children's Hospital (D.G.C., D.T., L.F., K.P., L.T.E., H.-T.C.), Houston, TX; Department of Neurology and Neurotherapeutics (M.H.), UTSW, Dallas, TX; Department of Molecular and Human Genetics (L.T.E., H.-T.C.), BCM, Houston, TX; Department of Neuroscience (H.-T.C.), BCM, Houston, TX; Program in Development (H.-T.C.), Disease Models, and Therapeutics, BCM, Houston, TX; McNair Medical Institute (H.-T.C.), The Robert and Janice McNair Foundation, Houston, TX; and Jan and Dan Duncan Neurological Research Institute (H.-T.C.), Texas Children's Hospital, Houston, TX
| |
Collapse
|
166
|
Kim K, Park JE, Yeom J, Park N, Trần TXT, Kang MJ. Tissue-specific roles of GCN2 in aging and autosomal dominant retinitis pigmentosa. Biochem Biophys Res Commun 2020; 533:1054-1060. [PMID: 33019980 DOI: 10.1016/j.bbrc.2020.09.120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 09/26/2020] [Indexed: 11/26/2022]
Abstract
The organisms have the capacity to sense and adapt to their surroundings for their life in a dynamic environment. In response to amino acid starvation, cells activate a rectifying physiological program, termed the integrated stress response (ISR), to restore cellular homeostasis. General controlled non-repressed (GCN2) kinase is a master regulator of the ISR and modulates protein synthesis in response to amino acid starvation. We previously established the GCN2/ATF4/4E-BP pathway in development and aging. Here, we investigated the tissue-specific roles of GCN2 upon dietary restriction of amino acid in a Drosophila model. The knockdown of GCN2 in the gut and fat body, an energy sensing organ in Drosophila, abolished the beneficial effect of GCN2 in lifespan extension upon dietary restriction of amino acids. Proteome analysis in an autosomal dominant retinitis pigmentosa (ADRP) model showed that dietary restriction of amino acids regulates the synthesis of proteins in several pathways, including mitochondrial translation, mitochondrial gene expression, and regulation of biological quality, and that gcn2-mutant flies have reduced levels of these mitochondria-associated proteins, which may contribute to retinal degeneration in ADRP. These results indicate that the tissue-specific regulation of GCN2 contributes to normal physiology and ADRP progression.
Collapse
Affiliation(s)
- Kyunggon Kim
- Convergence Medicine Research Center, Asan Institute for Life Sciences, Asan Medical Center, 88-gil, 43 Olympic-ro, Songpa-gu, Seoul, 05505, Republic of Korea; Department of Convergence Medicine, University of Ulsan College of Medicine, 88-gil, 43 Olympic-ro, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Jung-Eun Park
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jeonghun Yeom
- Convergence Medicine Research Center, Asan Institute for Life Sciences, Asan Medical Center, 88-gil, 43 Olympic-ro, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Nayoung Park
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Thị-Xuân Thùy Trần
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Min-Ji Kang
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea; Biomedical Research Center, Asan Institute for Life Sciences, Asan Medical Center, 88-gil, 43 Olympic-ro, Songpa-gu, Seoul, 05505, Republic of Korea.
| |
Collapse
|
167
|
Muller R, Meacham ZA, Ferguson L, Ingolia NT. CiBER-seq dissects genetic networks by quantitative CRISPRi profiling of expression phenotypes. Science 2020; 370:eabb9662. [PMID: 33303588 PMCID: PMC7819735 DOI: 10.1126/science.abb9662] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 10/22/2020] [Indexed: 12/12/2022]
Abstract
To realize the promise of CRISPR-Cas9-based genetics, approaches are needed to quantify a specific, molecular phenotype across genome-wide libraries of genetic perturbations. We addressed this challenge by profiling transcriptional, translational, and posttranslational reporters using CRISPR interference (CRISPRi) with barcoded expression reporter sequencing (CiBER-seq). Our barcoding approach allowed us to connect an entire library of guides to their individual phenotypic consequences using pooled sequencing. CiBER-seq profiling fully recapitulated the integrated stress response (ISR) pathway in yeast. Genetic perturbations causing uncharged transfer RNA (tRNA) accumulation activated ISR reporter transcription. Notably, tRNA insufficiency also activated the reporter, independent of the uncharged tRNA sensor. By uncovering alternate triggers for ISR activation, we illustrate how precise, comprehensive CiBER-seq profiling provides a powerful and broadly applicable tool for dissecting genetic networks.
Collapse
Affiliation(s)
- Ryan Muller
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Zuriah A Meacham
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Lucas Ferguson
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Nicholas T Ingolia
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
168
|
Moradi Majd R, Mayeli M, Rahmani F. Pathogenesis and promising therapeutics of Alzheimer disease through eIF2α pathway and correspondent kinases. Metab Brain Dis 2020; 35:1241-1250. [PMID: 32681467 DOI: 10.1007/s11011-020-00600-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 07/05/2020] [Indexed: 01/10/2023]
Abstract
Eukaryotic initiation factor 2 (eIF2α) pathway is overactivated in Alzheimer disease and is probably associated with synaptic and memory deficiencies. EIF2α protein is principally in charge of the regulation of protein synthesis in eukaryotic cells. Four kinases responsible for eIF2α phosphorylation at ser-51 are: General control non-derepressible-2 kinase (GCN2), double-stranded RNA-activated protein kinase (PKR), PKR-like endoplasmic reticulum kinase (PERK), and heme-regulated inhibitor kinase (HRI) are the four kinases. They lead to reduced levels of general translation and paradoxical increase of stress-responsive mRNAs expression including the B-secretase (BACE1) and the transcriptional modulator activating transcription factor 4 (ATF4), which in turn accelerates the beta-amyloidogenesis, tau phosphorylation, proapoptotic pathway induction and autophagy elements formation leading to the main pathological hallmarks of AD. Findings suggest that genetic or pharmacological inhibition of correspondent kinases can restore memory and prevent neurodegeneration. This implies that inhibition of eIF2α phosphorylation through respondent kinases is indeed a feasible prospect of clinical application. This review discusses recent therapeutic approaches targeting eIF2α pathway and provides an overview of the links between correspondent kinases overactivation with neurodegeneration in AD.
Collapse
Affiliation(s)
- Reza Moradi Majd
- Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Mahsa Mayeli
- Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran.
| | - Farzaneh Rahmani
- Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| |
Collapse
|
169
|
Kim SM, Choi KC. Acrylonitrile induced cell cycle arrest and apoptosis by promoting the formation of reactive oxygen species in human choriocarcinoma cells. J Toxicol Sci 2020; 45:713-724. [PMID: 33132245 DOI: 10.2131/jts.45.713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Acrylonitrile (AN), which is widely utilized in the manufacture of plastics, acrylamide, acrylic fibers, and resins, is also one of main components of cigarette smoke (CS). In this study, we examined the effects of AN on the cell viability and apoptosis of JEG-3 and BeWo human choriocarcinoma cancer cell lines. A cell viability assay confirmed that AN decreased the cell proliferation of JEG-3 and BeWo cells in a dose-dependent manner. Additionally, Western blot assay revealed that protein expression of cyclin D and cyclin E decreased, while protein expression of p21 and p27 increased in response to AN treatment for 48 hr. The changes in reactive oxygen species (ROS) levels in JEG-3 and BeWo cells exposed to AN were also measured by a dichlorofluorescein diacetate (DCFH-DA) assay, which revealed that ROS levels increased in response to AN treatment for 48 hr. Moreover, western blot assay confirmed that AN treatment of JEG-3 and BeWo cells for 4 hr promoted the expression of phosphorylated eukaryotic initiation factor 2 alpha protein (p-eIF2α), C/EBP homologous protein (CHOP) and caspase 12, which are known to be involved in ROS-mediated endoplasmic reticulum stress (ER-stress)-related apoptosis. Overall, the protein expression of p53 and Bax (a pro-apoptosis marker) increased, while the expression of Bcl-xl (an anti-apoptotic marker) decreased and the number of apoptotic cells increased in response to AN treatment for 48 hr. Taken together, these results suggest that AN has the potential to induce apoptosis of JEG-3 and BeWo human choriocarcinoma cancer cells by activating ROS.
Collapse
Affiliation(s)
- Soo-Min Kim
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Korea
| | - Kyung-Chul Choi
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Korea
| |
Collapse
|
170
|
Linher-Melville K, Shah A, Singh G. Sex differences in neuro(auto)immunity and chronic sciatic nerve pain. Biol Sex Differ 2020; 11:62. [PMID: 33183347 PMCID: PMC7661171 DOI: 10.1186/s13293-020-00339-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/20/2020] [Indexed: 01/13/2023] Open
Abstract
Chronic pain occurs with greater frequency in women, with a parallel sexually dimorphic trend reported in sufferers of many autoimmune diseases. There is a need to continue examining neuro-immune-endocrine crosstalk in the context of sexual dimorphisms in chronic pain. Several phenomena in particular need to be further explored. In patients, autoantibodies to neural antigens have been associated with sensory pathway hyper-excitability, and the role of self-antigens released by damaged nerves remains to be defined. In addition, specific immune cells release pro-nociceptive cytokines that directly influence neural firing, while T lymphocytes activated by specific antigens secrete factors that either support nerve repair or exacerbate the damage. Modulating specific immune cell populations could therefore be a means to promote nerve recovery, with sex-specific outcomes. Understanding biological sex differences that maintain, or fail to maintain, neuroimmune homeostasis may inform the selection of sex-specific treatment regimens, improving chronic pain management by rebalancing neuroimmune feedback. Given the significance of interactions between nerves and immune cells in the generation and maintenance of neuropathic pain, this review focuses on sex differences and possible links with persistent autoimmune activity using sciatica as an example.
Collapse
Affiliation(s)
- Katja Linher-Melville
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
- Michael G. DeGroote Institute for Pain Research and Care, McMaster University, Hamilton, Ontario, Canada
| | - Anita Shah
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Gurmit Singh
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada.
- Michael G. DeGroote Institute for Pain Research and Care, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
171
|
Huang W, Liao CC, Han Y, Lv J, Lei M, Li Y, Lv Q, Dong D, Zhang S, Pan YH, Luo J. Co-activation of Akt, Nrf2, and NF-κB signals under UPR ER in torpid Myotis ricketti bats for survival. Commun Biol 2020; 3:658. [PMID: 33177645 PMCID: PMC7658203 DOI: 10.1038/s42003-020-01378-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 10/14/2020] [Indexed: 12/22/2022] Open
Abstract
Bats hibernate to survive stressful conditions. Examination of whole cell and mitochondrial proteomes of the liver of Myotis ricketti revealed that torpid bats had endoplasmic reticulum unfolded protein response (UPRER), global reduction in glycolysis, enhancement of lipolysis, and selective amino acid metabolism. Compared to active bats, torpid bats had higher amounts of phosphorylated serine/threonine kinase (p-Akt) and UPRER markers such as PKR-like endoplasmic reticulum kinase (PERK) and activating transcription factor 4 (ATF4). Torpid bats also had lower amounts of the complex of Kelch-like ECH-associated protein 1 (Keap1), nuclear factor erythroid 2-related factor 2 (Nrf2), and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) (p65)/I-κBα. Cellular redistribution of 78 kDa glucose-regulated protein (GRP78) and reduced binding between PERK and GRP78 were also seen in torpid bats. Evidence of such was not observed in fasted, cold-treated, or normal mice. These data indicated that bats activate Akt, Nrf2, and NF-κB via the PERK-ATF4 regulatory axis against endoplasmic reticulum stresses during hibernation.
Collapse
Affiliation(s)
- Wenjie Huang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Chen-Chung Liao
- Proteomics Research Center, National Yang-Ming University, Taipei, 11221, Taiwan
| | - Yijie Han
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junyan Lv
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), Institute of Brain Functional Genomics, School of Life Sciences and the Collaborative Innovation Center for Brain Science, East China Normal University, Shanghai, 200062, China
| | - Ming Lei
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yangyang Li
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), Institute of Brain Functional Genomics, School of Life Sciences and the Collaborative Innovation Center for Brain Science, East China Normal University, Shanghai, 200062, China
| | - Qingyun Lv
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), Institute of Brain Functional Genomics, School of Life Sciences and the Collaborative Innovation Center for Brain Science, East China Normal University, Shanghai, 200062, China
| | - Dong Dong
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Shuyi Zhang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yi-Husan Pan
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), Institute of Brain Functional Genomics, School of Life Sciences and the Collaborative Innovation Center for Brain Science, East China Normal University, Shanghai, 200062, China.
| | - Jian Luo
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
172
|
de Oliveira TM, van Beek L, Shilliday F, Debreczeni JÉ, Phillips C. Cryo-EM: The Resolution Revolution and Drug Discovery. SLAS DISCOVERY 2020; 26:17-31. [PMID: 33016175 DOI: 10.1177/2472555220960401] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Single-particle cryogenic electron microscopy (cryo-EM) has been elevated to the mainstream of structural biology propelled by technological advancements in numerous fronts, including imaging analysis and the development of direct electron detectors. The drug discovery field has watched with (initial) skepticism and wonder at the progression of the technique and how it revolutionized the molecular understanding of previously intractable targets. This article critically assesses how cryo-EM has impacted drug discovery in diverse therapeutic areas. Targets that have been brought into the realm of structure-based drug design by cryo-EM and are thus reviewed here include membrane proteins like the GABAA receptor, several TRP channels, and G protein-coupled receptors, and multiprotein complexes like the ribosomes, the proteasome, and eIF2B. We will describe these studies highlighting the achievements, challenges, and caveats.
Collapse
Affiliation(s)
| | - Lotte van Beek
- Structure, Biophysics and FBLG, Discovery Sciences, AstraZeneca R&D, Cambridge, UK
| | - Fiona Shilliday
- Structure, Biophysics and FBLG, Discovery Sciences, AstraZeneca R&D, Cambridge, UK
| | - Judit É Debreczeni
- Structure, Biophysics and FBLG, Discovery Sciences, AstraZeneca R&D, Cambridge, UK
| | - Chris Phillips
- Structure, Biophysics and FBLG, Discovery Sciences, AstraZeneca R&D, Cambridge, UK
| |
Collapse
|
173
|
Berrocal-Lobo M, Toribio R, Castellano MM. eIF2α Phosphorylation by GCN2 Is Induced in the Presence of Chitin and Plays an Important Role in Plant Defense against B. cinerea Infection. Int J Mol Sci 2020; 21:ijms21197335. [PMID: 33020405 PMCID: PMC7582497 DOI: 10.3390/ijms21197335] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/23/2020] [Accepted: 10/01/2020] [Indexed: 01/04/2023] Open
Abstract
Translation plays an important role in plant adaptation to different abiotic and biotic stresses; however, the mechanisms involved in translational regulation during each specific response and their effect in translation are poorly understood in plants. In this work, we show that GCN2 promotes eIF2α phosphorylation upon contact with Botrytis cinerea spores, and that this phosphorylation is required for the proper establishment of plant defense against the fungus. In fact, independent gcn2 mutants display an enhanced susceptibility to B. cinerea infection, which is highlighted by an increased cell death and reduced expression of ethylene- and jasmonic-related genes in the gcn2 mutants. eIF2α phosphorylation is not only triggered in the presence of the fungus, but interestingly, is also achieved in the sole presence of the microbe-associated molecular pattern (MAMP) chitin. Moreover, analysis of de novo protein synthesis by 35SMet-35SCys incorporation indicates that chitin treatment promotes a global inhibition of translation. Taken together, these results suggest that eIF2α phosphorylation by GCN2 is promoted in the presence of chitin and plays an important role in plant defense against B. cinerea infection.
Collapse
Affiliation(s)
- Marta Berrocal-Lobo
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)—Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo UPM, 28223 Pozuelo de Alarcón, Madrid, Spain;
- Departamento de Sistemas y Recursos Naturales, E.T.S.I. Montes, Forestal y del Medio Natural, Ciudad Universitaria s/n, 28040 Madrid, Spain
- Correspondence: (M.B.-L.); (M.M.C.); Tel.: +34-910-679-181 (M.M.C.)
| | - René Toribio
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)—Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo UPM, 28223 Pozuelo de Alarcón, Madrid, Spain;
| | - M. Mar Castellano
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)—Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo UPM, 28223 Pozuelo de Alarcón, Madrid, Spain;
- Correspondence: (M.B.-L.); (M.M.C.); Tel.: +34-910-679-181 (M.M.C.)
| |
Collapse
|
174
|
Hu G, Yu Y, Tang YJ, Wu C, Long F, Karner CM. The Amino Acid Sensor Eif2ak4/GCN2 Is Required for Proliferation of Osteoblast Progenitors in Mice. J Bone Miner Res 2020; 35:2004-2014. [PMID: 32453500 PMCID: PMC7688563 DOI: 10.1002/jbmr.4091] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 05/01/2020] [Accepted: 05/13/2020] [Indexed: 12/16/2022]
Abstract
Skeletal stem/progenitor cells (SSPC) are critical regulators of bone homeostasis by providing a continuous supply of osteoblasts throughout life. In response to inductive signals, SSPC proliferate before osteoblast differentiation. Proliferation requires the duplication of all cellular components before cell division. This imposes a unique biosynthetic requirement for amino acids that can be used for biomass production. Thus, the ability to sense and respond to amino acid availability is likely a major determinant for proliferation. Using a cellular and genetic approach, we demonstrate the amino acid sensor GCN2 is required to support the robust proliferative capacity of SSPC during bone homeostasis. GCN2 ablation results in decreased postnatal bone mass due primarily to reduced osteoblast numbers. Decreased osteoblast numbers is likely attributed to reduced SSPC proliferation as loss of GCN2 specifically affected proliferation in cultured bone marrow stromal cells (BMSCs) without impacting osteoblast differentiation in vitro. Mechanistically, GCN2 regulates proliferation by increasing amino acid uptake downstream of the transcriptional effector ATF4. Collectively, these data suggest amino acid sensing through the GCN2/ATF4 pathway is indispensable for robust SSPC proliferation necessary for bone homeostasis. © 2020 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Guoli Hu
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Yilin Yu
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Yuning J Tang
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, USA.,Department of Biology, Stanford University, Stanford, CA, USA
| | - Colleen Wu
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, USA.,Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA
| | - Fanxin Long
- Department of Orthopaedic Surgery, Translational Research Program in Pediatric Orthopaedics, The Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
| | - Courtney M Karner
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, USA.,Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
175
|
Mukherjee D, Bercz LS, Torok MA, Mace TA. Regulation of cellular immunity by activating transcription factor 4. Immunol Lett 2020; 228:24-34. [PMID: 33002512 DOI: 10.1016/j.imlet.2020.09.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/10/2020] [Accepted: 09/22/2020] [Indexed: 02/06/2023]
Abstract
Activating transcription factor 4 (ATF4) is a DNA binding transcription factor belonging to the family of basic Leucine zipper proteins. ATF4 can be activated in response to multiple cellular stress signals including endoplasmic reticulum stress in the event of improper protein folding or oxidative stress because of mitochondrial dysfunction as well as hypoxia. There are multiple downstream targets of ATF4 that can coordinate the regulation between survival and apoptosis of a cell based on time and exposure to stress. ATF4, therefore, has a broad range of control that results in the modulation of immune cells of the innate and adaptive responses leading to regulation of the cellular immunity. Studies provide evidence that ATF4 can regulate immune cells such as macrophages, T cells, B cells, NK cells and dendritic cells contributing to progression of disease. Immune cells can be exposed to stressed environment in the event of a pathogen attack, infection, inflammation, or in the tumor microenvironment leading to increased ATF4 activity to regulate these responses. ATF4 can further control differentiation and maturation of different immune cell types becoming a determinant of effective immune regulation. Additionally, ATF4 has been heavily implicated in rendering effector immune cells dysfunctional that are used to target tumorigenesis. Therefore, there is a need to evaluate where the literature stands in understanding the overall role of ATF4 in regulating cellular immunity to identify therapeutic targets and generalized mechanisms for different disease progressions.
Collapse
Affiliation(s)
- Debasmita Mukherjee
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Lena S Bercz
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Molly A Torok
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Thomas A Mace
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States; Department of Internal Medicine, Division of Gastroenterology, Hepatology and Nutrition, The Ohio State University, Columbus, OH, United States.
| |
Collapse
|
176
|
Han NC, Kelly P, Ibba M. Translational quality control and reprogramming during stress adaptation. Exp Cell Res 2020; 394:112161. [PMID: 32619498 DOI: 10.1016/j.yexcr.2020.112161] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/26/2020] [Accepted: 06/29/2020] [Indexed: 12/18/2022]
Abstract
Organisms encounter stress throughout their lives, and therefore require the ability to respond rapidly to environmental changes. Although transcriptional responses are crucial for controlling changes in gene expression, regulation at the translational level often allows for a faster response at the protein levels which permits immediate adaptation. The fidelity and robustness of protein synthesis are actively regulated under stress. For example, mistranslation can be beneficial to cells upon environmental changes and also alters cellular stress responses. Additionally, stress modulates both global and selective translational regulation through mechanisms including the change of aminoacyl-tRNA activity, tRNA pool reprogramming and ribosome heterogeneity. In this review, we draw on studies from both the prokaryotic and eukaryotic systems to discuss current findings of cellular adaptation at the level of translation, specifically translational fidelity and activity changes in response to a wide array of environmental stressors including oxidative stress, nutrient depletion, temperature variation, antibiotics and host colonization.
Collapse
Affiliation(s)
- Nien-Ching Han
- Department of Microbiology, The Ohio State University, Columbus, OH, 43220, USA
| | - Paul Kelly
- The Ohio State University Molecular, Cellular and Developmental Biology Program, The Ohio State University, Columbus, OH, 43220, USA
| | - Michael Ibba
- Department of Microbiology, The Ohio State University, Columbus, OH, 43220, USA.
| |
Collapse
|
177
|
Deshpande P, Flinkman D, Hong Y, Goltseva E, Siino V, Sun L, Peltonen S, Elo LL, Kaasinen V, James P, Coffey ET. Protein synthesis is suppressed in sporadic and familial Parkinson's disease by LRRK2. FASEB J 2020; 34:14217-14233. [PMID: 32926469 DOI: 10.1096/fj.202001046r] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/12/2020] [Accepted: 07/29/2020] [Indexed: 12/21/2022]
Abstract
Gain of function LRRK2-G2019S is the most frequent mutation found in familial and sporadic Parkinson's disease. It is expected therefore that understanding the cellular function of LRRK2 will provide insight on the pathological mechanism not only of inherited Parkinson's, but also of sporadic Parkinson's, the more common form. Here, we show that constitutive LRRK2 activity controls nascent protein synthesis in rodent neurons. Specifically, pharmacological inhibition of LRRK2, Lrrk2 knockdown or Lrrk2 knockout, all lead to increased translation. In the rotenone model for sporadic Parkinson's, LRRK2 activity increases, dopaminergic neuron translation decreases, and the neurites atrophy. All are prevented by LRRK2 inhibitors. Moreover, in striatum and substantia nigra of rotenone treated rats, phosphorylation changes are observed on eIF2α-S52(↑), eIF2s2-S2(↓), and eEF2-T57(↑) in directions that signify protein synthesis arrest. Significantly, translation is reduced by 40% in fibroblasts from Parkinson's patients (G2019S and sporadic cases alike) and this is reversed upon LRRK2 inhibitor treatment. In cells from multiple system atrophy patients, translation is unchanged suggesting that repression of translation is specific to Parkinson's disease. These findings indicate that repression of translation is a proximal function of LRRK2 in Parkinson's pathology.
Collapse
Affiliation(s)
| | - Dani Flinkman
- Turku Bioscience, University of Turku and Åbo Akademi University, Turku, Finland.,Department of Immunotechnology, Lund University, Lund, Sweden
| | - Ye Hong
- Turku Bioscience, University of Turku and Åbo Akademi University, Turku, Finland
| | - Elena Goltseva
- Department of Immunotechnology, Lund University, Lund, Sweden
| | - Valentina Siino
- Department of Immunotechnology, Lund University, Lund, Sweden
| | - Lihua Sun
- Turku Bioscience, University of Turku and Åbo Akademi University, Turku, Finland
| | - Sirkku Peltonen
- Department of Dermatology, University of Turku and Turku University Hospital, Turku, Finland
| | - Laura L Elo
- Turku Bioscience, University of Turku and Åbo Akademi University, Turku, Finland
| | - Valtteri Kaasinen
- Division of Clinical Neurosciences, Turku University Hospital and University of Turku, Turku, Finland
| | - Peter James
- Turku Bioscience, University of Turku and Åbo Akademi University, Turku, Finland.,Department of Immunotechnology, Lund University, Lund, Sweden
| | - Eleanor T Coffey
- Turku Bioscience, University of Turku and Åbo Akademi University, Turku, Finland
| |
Collapse
|
178
|
Kumar A, Rahal A, Sohal JS, Gupta VK. Bacterial stress response: understanding the molecular mechanics to identify possible therapeutic targets. Expert Rev Anti Infect Ther 2020; 19:121-127. [PMID: 32811215 DOI: 10.1080/14787210.2020.1813021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Bacteria are ubiquitous and many of them are pathogenic in nature. Entry of bacteria in host and its recognition by host defense system induce stress in host cells. With time, bacteria have also developed strategies including drug resistance to escape from antibacterial therapy as well as host defense mechanism. AREAS COVERED Bacterial stress initiates and promotes adaptive immune response through several integrated mechanisms. The mechanisms of bacteria to up and down regulate different pathways involved in these responses have been discussed. The genetic expression of these pathways can be manipulated by the pharmacological interventions. Present review discusses in these contexts and explores the possibilities to overcome stress induced by bacterial pathogens and to suggest new possible therapeutic targets. EXPERT OPINION In our opinion, there are two important fronts to regulate the bacterial stress. One is to target caspase involved in the process of transformation and translation at gene level and protein expression. Second is the identification of bacterial genes that lead to synthesis of abnormal end products supporting bacterial survival in host environment and also to surpass the host defense mechanism. Identification of such genes and their expression products could be an effective option to encounter bacterial resistance.
Collapse
Affiliation(s)
- Amit Kumar
- College of Biotechnology, SVPUAT , Meerut, India
| | - Anu Rahal
- Division of Animal Health, ICAR- CIRG , Mathura, India
| | - Jagdip Singh Sohal
- Amity University Jaipur, Centre for Mycobacterial Disease Research, Amity University , Jaipur, India
| | | |
Collapse
|
179
|
Green SR, Al-Attar R, McKechnie AE, Naidoo S, Storey KB. Role of Akt signaling pathway regulation in the speckled mousebird (Colius striatus) during torpor displays tissue specific responses. Cell Signal 2020; 75:109763. [PMID: 32871209 DOI: 10.1016/j.cellsig.2020.109763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/06/2020] [Accepted: 08/25/2020] [Indexed: 10/23/2022]
Abstract
Pronounced heterothermic responses are relatively rare among birds. Along with taxa such as hummingbirds and caprimulgids, the order Coliiformes (mousebirds) is known to possess the physiological capacity for torpor. During torpor, body temperature is greatly reduced and a bird becomes unresponsive to external stimuli until ambient temperatures return to more favorable conditions. Under such conditions, these birds are forced to rely only on their internal fuel storage for energy and show great reduction in metabolic rates by decreasing energy-expensive processes. This study investigated the role of the key insulin-Akt signaling kinase pathway involved in regulating energy metabolism and protein translation in the liver, kidney, heart, skeletal muscle, and brain of the speckled mousebird (Colius striatus). The degree of phosphorylation of well-conserved target residues with important regulatory function was examined in both the euthermic control and torpid birds. The results demonstrated marked differences in responses between the tissues with decreases in RPS6 S235/236 phosphorylation in the kidney (0.52 fold of euthermic) and muscle (0.29 fold of euthermic) as well as decreases in GS3K3β S9 in muscle (0.60 fold of euthermic) and GSK3α S21 (0.71 fold of euthermic) phosphorylation in kidney during torpor, suggesting a downregulation of this pathway. Interestingly, the liver demonstrated an increase in RPS6 S235/236 (2.89 fold increase) and P70S6K T412 (1.44 fold increase) phosphorylation in the torpor group suggesting that protein translation is maintained in this tissue. This study demonstrates that avian torpor is a complex phenomenon and alterations in this signaling pathway follow a tissue specific pattern.
Collapse
Affiliation(s)
- Stuart R Green
- Institute of Biochemistry & Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa K1S 5B6, Ontario, Canada
| | - Rasha Al-Attar
- Institute of Biochemistry & Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa K1S 5B6, Ontario, Canada
| | - Andrew E McKechnie
- South African Research Chair in Conservation Physiology, National Zoological Garden, South African National Biodiversity Institute, Pretoria, South Africa; DST-NRF Centre of Excellence, FitzPatrick Institute, Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa
| | - Samantha Naidoo
- South African Research Chair in Conservation Physiology, National Zoological Garden, South African National Biodiversity Institute, Pretoria, South Africa; DST-NRF Centre of Excellence, FitzPatrick Institute, Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa
| | - Kenneth B Storey
- Institute of Biochemistry & Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa K1S 5B6, Ontario, Canada.
| |
Collapse
|
180
|
Wang S, Ma X, Wang H, He H. Induction of the Unfolded Protein Response during Bovine Alphaherpesvirus 1 Infection. Viruses 2020; 12:v12090974. [PMID: 32887282 PMCID: PMC7552016 DOI: 10.3390/v12090974] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/27/2020] [Accepted: 08/31/2020] [Indexed: 12/29/2022] Open
Abstract
Bovine herpesvirus 1 (BoHV-1) is an alphaherpesvirus that causes great economic losses in the cattle industry. Herpesvirus infection generally induces endoplasmic reticulum (ER) stress, and the unfolded protein response (UPR) in infected cells. However, it is not clear whether ER stress and UPR can be induced by BoHV-1 infection. Here, we found that ER stress induced by BoHV-1 infection could activate all three UPR sensors (the activating transcription factor 6 (ATF6), the inositol-requiring enzyme 1 (IRE1), and the protein kinase RNA-like ER kinase (PERK)) in MDBK cells. During BoHV-1 infection, the ATF6 pathway of UPR did not affect viral replication. However, both knockdown and specific chemical inhibition of PERK attenuated the BoHV-1 proliferation, and chemical inhibition of PERK significantly reduced the viral replication at the post-entry step of the BoHV-1 life cycle. Furthermore, knockdown of IRE1 inhibits BoHV-1 replication, indicating that the IRE1 pathway may promote viral replication. Further study revealed that BoHV-1 replication was enhanced by IRE1 RNase activity inhibition at the stage of virus post-entry in MDBK cells. Furthermore, IRE1 kinase activity inhibition and RNase activity enhancement decrease BoHV1 replication via affecting the virus post-entry step. Our study revealed that BoHV-1 infection activated all three UPR signaling pathways in MDBK cells, and BoHV-1-induced PERK and IRE1 pathways may promote viral replication. This study provides a new perspective for the interactions of BoHV-1 and UPR, which is helpful to further elucidate the mechanism of BoHV-1 pathogenesis.
Collapse
Affiliation(s)
- Song Wang
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan 250014, China; (S.W.); (X.M.)
- Key Laboratory of Animal Resistant Biology of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Xiaomei Ma
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan 250014, China; (S.W.); (X.M.)
- Key Laboratory of Animal Resistant Biology of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Hongmei Wang
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan 250014, China; (S.W.); (X.M.)
- Key Laboratory of Animal Resistant Biology of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China
- Correspondence: (H.W.); (H.H.)
| | - Hongbin He
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan 250014, China; (S.W.); (X.M.)
- Key Laboratory of Animal Resistant Biology of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China
- Correspondence: (H.W.); (H.H.)
| |
Collapse
|
181
|
The role of asparagine synthetase on nutrient metabolism in pancreatic disease. Pancreatology 2020; 20:1029-1034. [PMID: 32800652 DOI: 10.1016/j.pan.2020.08.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/31/2020] [Accepted: 08/02/2020] [Indexed: 12/11/2022]
Abstract
The pancreas avidly takes up and synthesizes the amino acid asparagine (Asn), in part, to maintain an active translational machinery that requires incorporation of the amino acid. The de novo synthesis of Asn in the pancreas occurs through the enzyme asparagine synthetase (ASNS). The pancreas has the highest expression of ASNS of any organ, and it can further upregulate ASNS expression in the setting of amino acid depletion. ASNS expression is driven by an intricate feedback network within the integrated stress response (ISR), which includes the amino acid response (AAR) and the unfolded protein response (UPR). Asparaginase is a cancer chemotherapeutic drug that depletes plasma Asn. However, asparaginase-associated pancreatitis (AAP) is a major medical problem and could be related to pancreatic Asn depletion. In this review, we will provide an overview of ASNS and then describe its role in pancreatic health and in the exocrine disorders of pancreatitis and pancreatic cancer. We will offer the overarching perspective that a high abundance of ASNS expression is hardwired in the exocrine pancreas to buffer the high demands of Asn for pancreatic digestive enzyme protein synthesis, that perturbations in the ability to express or upregulate ASNS could tip the balance towards pancreatitis, and that pancreatic cancers exploit ASNS to gain a metabolic survival advantage.
Collapse
|
182
|
Bond S, Lopez-Lloreda C, Gannon PJ, Akay-Espinoza C, Jordan-Sciutto KL. The Integrated Stress Response and Phosphorylated Eukaryotic Initiation Factor 2α in Neurodegeneration. J Neuropathol Exp Neurol 2020; 79:123-143. [PMID: 31913484 DOI: 10.1093/jnen/nlz129] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/07/2019] [Indexed: 02/06/2023] Open
Abstract
The proposed molecular mechanisms underlying neurodegenerative pathogenesis are varied, precluding the development of effective therapies for these increasingly prevalent disorders. One of the most consistent observations across neurodegenerative diseases is the phosphorylation of eukaryotic initiation factor 2α (eIF2α). eIF2α is a translation initiation factor, involved in cap-dependent protein translation, which when phosphorylated causes global translation attenuation. eIF2α phosphorylation is mediated by 4 kinases, which, together with their downstream signaling cascades, constitute the integrated stress response (ISR). While the ISR is activated by stresses commonly observed in neurodegeneration, such as oxidative stress, endoplasmic reticulum stress, and inflammation, it is a canonically adaptive signaling cascade. However, chronic activation of the ISR can contribute to neurodegenerative phenotypes such as neuronal death, memory impairments, and protein aggregation via apoptotic induction and other maladaptive outcomes downstream of phospho-eIF2α-mediated translation inhibition, including neuroinflammation and altered amyloidogenic processing, plausibly in a feed-forward manner. This review examines evidence that dysregulated eIF2a phosphorylation acts as a driver of neurodegeneration, including a survey of observations of ISR signaling in human disease, inspection of the overlap between ISR signaling and neurodegenerative phenomenon, and assessment of recent encouraging findings ameliorating neurodegeneration using developing pharmacological agents which target the ISR. In doing so, gaps in the field, including crosstalk of the ISR kinases and consideration of ISR signaling in nonneuronal central nervous system cell types, are highlighted.
Collapse
Affiliation(s)
- Sarah Bond
- From the Department of Biochemistry and Biophysics (SB); Department of Neuroscience (CL-L); Department of Pharmacology (PG), Perelman School of Medicine; Department of Basic and Translational Sciences (CA-E); and Department of Basic and Translational Sciences (KLJ-S), School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Claudia Lopez-Lloreda
- From the Department of Biochemistry and Biophysics (SB); Department of Neuroscience (CL-L); Department of Pharmacology (PG), Perelman School of Medicine; Department of Basic and Translational Sciences (CA-E); and Department of Basic and Translational Sciences (KLJ-S), School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Patrick J Gannon
- From the Department of Biochemistry and Biophysics (SB); Department of Neuroscience (CL-L); Department of Pharmacology (PG), Perelman School of Medicine; Department of Basic and Translational Sciences (CA-E); and Department of Basic and Translational Sciences (KLJ-S), School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Cagla Akay-Espinoza
- From the Department of Biochemistry and Biophysics (SB); Department of Neuroscience (CL-L); Department of Pharmacology (PG), Perelman School of Medicine; Department of Basic and Translational Sciences (CA-E); and Department of Basic and Translational Sciences (KLJ-S), School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kelly L Jordan-Sciutto
- From the Department of Biochemistry and Biophysics (SB); Department of Neuroscience (CL-L); Department of Pharmacology (PG), Perelman School of Medicine; Department of Basic and Translational Sciences (CA-E); and Department of Basic and Translational Sciences (KLJ-S), School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
183
|
Jiang Z, Hsu JL, Li Y, Hortobagyi GN, Hung MC. Cancer Cell Metabolism Bolsters Immunotherapy Resistance by Promoting an Immunosuppressive Tumor Microenvironment. Front Oncol 2020; 10:1197. [PMID: 32775303 PMCID: PMC7387712 DOI: 10.3389/fonc.2020.01197] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/12/2020] [Indexed: 12/16/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) targeting immune checkpoint proteins, such as CTLA-4 and PD-1/PD-L1, have demonstrated remarkable and durable clinical responses in various cancer types. However, a considerable number of patients receiving ICIs eventually experience a relapse due to diverse resistance mechanisms. As a result, there have been increasing research efforts to elucidate the molecular mechanisms behind resistance to ICIs and improve patient outcomes. There is growing evidence that the dysregulated metabolic activity of tumor cells generates an immunosuppressive tumor microenvironment (TME) that orchestrates an impaired anti-tumor immune response. Notably, the immunosuppressive TME is characterized by nutrient shortage, hypoxia, an acidic extracellular milieu, and abundant immunosuppressive molecules. A detailed understanding of the TME remains a major challenge in mounting a more effective anti-tumor immune response. Herein, we discuss how tumor cells reprogram metabolism to modulate a pro-tumor TME, driving disease progression and immune evasion; in particular, we highlight potential approaches to target metabolic vulnerabilities in the context of anti-tumor immunotherapy.
Collapse
Affiliation(s)
- Zhou Jiang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jennifer L. Hsu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Yintao Li
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Gabriel N. Hortobagyi
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Center for Molecular Medicine and Research Center for Cancer Biology, Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Department of Biotechnology, Asia University, Taichung, Taiwan
| |
Collapse
|
184
|
Kobayashi N, Arihiro S, Shimada K, Hoshino A, Saijo H, Oka N, Saruta M, Kondo K. Activating transcription factor 3 (ATF3) as a perspective biomarker of Crohn’s disease. EUR J INFLAMM 2020. [DOI: 10.1177/2058739220929790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Introduction: Inflammatory bowel disease (IBD) is characterized by chronic inflammation of the intestinal tract. Known types are Crohn’s disease (CD) and ulcerative colitis (UC), but their cause remains unclear and there is no convenient biomarker for IBD. The present study aimed to demonstrate an association between the onset of CD and activating transcription factor 3 (ATF3); as a new biomarker, measurement of blood ATF3 mRNA would be useful for distinguishing between CD and UC. Methods: First, in a mouse model of IBD in which damage to the intestinal mucosa was chemically induced with dextran sulfate sodium (DSS), intestinal ATF3 mRNA was evaluated. Next, in human subjects, CD and UC patients, blood ATF3 mRNA and intestinal ATF3 protein production were evaluated. Results: In the mouse model of IBD, intestinal ATF3 mRNA was elevated compared with the control ( P < 0.0001). In CD patients, blood ATF3 mRNA was elevated as compared with normal controls (NCs) and UC patients ( P < 0.05). In addition, we observed an increase in ATF3 production in the intestinal tract specific to CD. Conclusion: ATF3 is involved in the onset of CD, and blood ATF3 mRNA measurements would be useful for distinguishing it from UC.
Collapse
Affiliation(s)
- Nobuyuki Kobayashi
- Department of Virology, The Jikei University School of Medicine, Minato-ku, Japan
| | - Seiji Arihiro
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University Katsushika Medical Center, Katsushika-ku, Japan
| | - Kazuya Shimada
- Department of Virology, The Jikei University School of Medicine, Minato-ku, Japan
| | - Atsushi Hoshino
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Minato-ku, Japan
| | - Hiroki Saijo
- Department of Anatomy, The Jikei University School of Medicine, Minato-ku, Japan
| | - Naomi Oka
- Department of Virology, The Jikei University School of Medicine, Minato-ku, Japan
| | - Masayuki Saruta
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Minato-ku, Japan
| | - Kazuhiro Kondo
- Department of Virology, The Jikei University School of Medicine, Minato-ku, Japan
| |
Collapse
|
185
|
Lu F, Lu B, Zhang L, Wen J, Wang M, Zhang S, Li Q, Shu F, Sun Y, Liu N, Peng S, Zhao Y, Dong S, Zhao D, Lu F, Zhang W. Hydrogen sulphide ameliorating skeletal muscle atrophy in db/db mice via Muscle RING finger 1 S-sulfhydration. J Cell Mol Med 2020; 24:9362-9377. [PMID: 32633463 PMCID: PMC7417732 DOI: 10.1111/jcmm.15587] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 06/04/2020] [Accepted: 06/06/2020] [Indexed: 12/25/2022] Open
Abstract
Muscle atrophy occurs in many pathological states, including cancer, diabetes and sepsis, whose results primarily from accelerated protein degradation and activation of the ubiquitin‐proteasome pathway. Expression of Muscle RING finger 1 (MuRF1), an E3 ubiquitin ligase, was increased to induce the loss of muscle mass in diabetic condition. However, hydrogen sulphide (H2S) plays a crucial role in the variety of physiological functions, including antihypertension, antiproliferation and antioxidant. In this study, db/db mice and C2C12 myoblasts treated by high glucose and palmitate and oleate were chose as animal and cellular models. We explored how exogenous H2S attenuated the degradation of skeletal muscle via the modification of MuRF1 S‐sulfhydration in db/db mice. Our results show cystathionine‐r‐lyase expression, and H2S level in skeletal muscle of db/db mice was reduced. Simultaneously, exogenous H2S could alleviate ROS production and reverse expression of ER stress protein markers. Exogenous H2S could decrease the ubiquitination level of MYOM1 and MYH4 in db/db mice. In addition, exogenous H2S reduced the interaction between MuRF1 with MYOM1 and MYH4 via MuRF1 S‐sulfhydration. Based on these results, we establish that H2S prevented the degradation of skeletal muscle via MuRF1 S‐sulfhydration at the site of Cys44 in db/db mice.
Collapse
Affiliation(s)
- Fangping Lu
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Baoling Lu
- Department of Infectious, The Fourth Hospital of Harbin Medical University, Harbin, China
| | - Linxue Zhang
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - JingChen Wen
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Mengyi Wang
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Shiwu Zhang
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Qianzhu Li
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Feng Shu
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Yu Sun
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Ning Liu
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Shuo Peng
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Yajun Zhao
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Shiyun Dong
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Dechao Zhao
- Department of Cardiology, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Fanghao Lu
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Weihua Zhang
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| |
Collapse
|
186
|
Pellegrini P, Selvaraju K, Faustini E, Mofers A, Zhang X, Ternerot J, Schubert A, Linder S, D′Arcy P. Induction of ER Stress in Acute Lymphoblastic Leukemia Cells by the Deubiquitinase Inhibitor VLX1570. Int J Mol Sci 2020; 21:ijms21134757. [PMID: 32635430 PMCID: PMC7369842 DOI: 10.3390/ijms21134757] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 07/02/2020] [Indexed: 02/08/2023] Open
Abstract
The proteasome is a validated target of cancer therapeutics. Inhibition of proteasome activity results in the activation of the unfolded protein response (UPR) characterized by phosphorylation of eukaryotic initiation factor 2α (eIF2α), global translational arrest, and increased expression of the proapoptotic CHOP (C/EBP homologous protein) protein. Defects in the UPR response has been reported to result in altered sensitivity of tumor cells to proteasome inhibitors. Here, we characterized the effects of the deubiquitinase (DUB) inhibitor VLX1570 on protein homeostasis, both at the level of the UPR and on protein translation, in acute lymphoblastic leukemia (ALL). Similar to the 20S inhibitor bortezomib, VLX1570 induced accumulation of polyubiquitinated proteins and increased expression of the chaperone Grp78/Bip in ALL cells. Both compounds induced cleavage of PARP (Poly (ADP-ribose) polymerase) in ALL cells, consistent with induction of apoptosis. However, and in contrast to bortezomib, VLX1570 treatment resulted in limited induction of the proapoptotic CHOP protein. Translational inhibition was observed by both bortezomib and VLX1570. We report that in distinction to bortezomib, suppression of translation by VXL1570 occurred at the level of elongation. Increased levels of Hsc70/Hsp70 proteins were observed on polysomes following exposure to VLX1570, possibly suggesting defects in nascent protein folding. Our findings demonstrate apoptosis induction in ALL cells that appears to be uncoupled from CHOP induction, and show that VLX1570 suppresses protein translation by a mechanism distinct from that of bortezomib.
Collapse
Affiliation(s)
- Paola Pellegrini
- Department of Biomedical and Clinical Sciences, Linköping University, S-58183 Linköping, Sweden; (P.P.); (K.S.); (E.F.); (A.M.); (J.T.); (A.S.); (S.L.)
| | - Karthik Selvaraju
- Department of Biomedical and Clinical Sciences, Linköping University, S-58183 Linköping, Sweden; (P.P.); (K.S.); (E.F.); (A.M.); (J.T.); (A.S.); (S.L.)
| | - Elena Faustini
- Department of Biomedical and Clinical Sciences, Linköping University, S-58183 Linköping, Sweden; (P.P.); (K.S.); (E.F.); (A.M.); (J.T.); (A.S.); (S.L.)
| | - Arjan Mofers
- Department of Biomedical and Clinical Sciences, Linköping University, S-58183 Linköping, Sweden; (P.P.); (K.S.); (E.F.); (A.M.); (J.T.); (A.S.); (S.L.)
| | - Xiaonan Zhang
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden;
| | - Jens Ternerot
- Department of Biomedical and Clinical Sciences, Linköping University, S-58183 Linköping, Sweden; (P.P.); (K.S.); (E.F.); (A.M.); (J.T.); (A.S.); (S.L.)
| | - Alice Schubert
- Department of Biomedical and Clinical Sciences, Linköping University, S-58183 Linköping, Sweden; (P.P.); (K.S.); (E.F.); (A.M.); (J.T.); (A.S.); (S.L.)
| | - Stig Linder
- Department of Biomedical and Clinical Sciences, Linköping University, S-58183 Linköping, Sweden; (P.P.); (K.S.); (E.F.); (A.M.); (J.T.); (A.S.); (S.L.)
- Department of Oncology-Pathology, Karolinska Institute, S-17176 Stockholm, Sweden
| | - Pádraig D′Arcy
- Department of Biomedical and Clinical Sciences, Linköping University, S-58183 Linköping, Sweden; (P.P.); (K.S.); (E.F.); (A.M.); (J.T.); (A.S.); (S.L.)
- Correspondence:
| |
Collapse
|
187
|
Chaput C, Sirard MA. Embryonic response to high beta-hydroxybutyrate (BHB) levels in postpartum dairy cows. Domest Anim Endocrinol 2020; 72:106431. [PMID: 32325411 DOI: 10.1016/j.domaniend.2019.106431] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 10/21/2019] [Accepted: 12/27/2019] [Indexed: 12/11/2022]
Abstract
Cows at the beginning of lactation often do not meet their energy needs by feeding and therefore mobilize body fat, which produces ketone bodies, including β-hydroxybutyrate (BHB). They are nevertheless usually inseminated around 60 d postpartum, when they are still in this characteristic period of energy deficit. The aim of this study was to observe the effects of negative energy balance on embryo quality and to identify ways to improve the fertility of dairy cows. Holstein cows (n = 18) grouped as high or low BHB based on blood measurement at day 45 postpartum were estrus-synchronized and treated with follicle-stimulating hormone to obtain multiple follicle development, induced to ovulate and inseminated with sexed semen around day 60 postpartum. Of the 290 embryos collected over 16 mo, 159 were of quality I to IV. Based on microarray analysis of gene expression, exposure to an energy deficit metabolic environment (high BHB) during early development appeared to modify signaling by the mTOR and sirtuins pathways in the embryo, implying mitochondrial dysfunction and inhibition of transcription, leading to slower cell division, thus programming the embryo to be more energy efficient. Altered methylation markers suggested that such coping mechanisms might persist into adulthood.
Collapse
Affiliation(s)
- C Chaput
- Centre de recherche en reproduction, développement et santé intergénérationnelle, Faculté des sciences de l'Agriculture et de l'Alimentation, Département des Sciences Animales, Pavillon INAF, Université Laval, Québec, Québec, Canada
| | - M A Sirard
- Centre de recherche en reproduction, développement et santé intergénérationnelle, Faculté des sciences de l'Agriculture et de l'Alimentation, Département des Sciences Animales, Pavillon INAF, Université Laval, Québec, Québec, Canada.
| |
Collapse
|
188
|
Indoximod opposes the immunosuppressive effects mediated by IDO and TDO via modulation of AhR function and activation of mTORC1. Oncotarget 2020; 11:2438-2461. [PMID: 32637034 PMCID: PMC7321702 DOI: 10.18632/oncotarget.27646] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 06/01/2020] [Indexed: 12/11/2022] Open
Abstract
Indoximod has shaped our understanding of the biology of IDO1 in the control of immune responses, though its mechanism of action has been poorly understood. Previous studies demonstrated that indoximod creates a tryptophan (Trp) sufficiency signal that reactivates mTOR in the context of low Trp concentrations, thus opposing the effects caused by IDO1. Here we extend the understanding of indoximod’s mechanism of action by showing that it has pleiotropic effects on immune regulation. Indoximod can have a direct effect on T cells, increasing their proliferation as a result of mTOR reactivation. Further, indoximod modulates the differentiation of CD4+ T cells via the aryl hydrocarbon receptor (AhR), which controls transcription of several genes in response to different ligands including kynurenine (Kyn). Indoximod increases the transcription of RORC while inhibiting transcription of FOXP3, thus favoring differentiation to IL-17-producing helper T cells and inhibiting the differentiation of regulatory T cells. These indoximod-driven effects on CD8+ and CD4+ T cells were independent from the activity of IDO/TDO and from the presence of exogenous Kyn, though they do oppose the effects of Kyn produced by these Trp catabolizing enzymes. Indoximod can also downregulate expression of IDO protein in vivo in murine lymph node dendritic cells and in vitro in human monocyte-derived dendritic cells via a mechanism that involves signaling through the AhR. Together, these data improve the understanding of how indoximod influences the effects of IDO, beyond and distinct from direct enzymatic inhibition of the enzyme.
Collapse
|
189
|
Humeau J, Leduc M, Cerrato G, Loos F, Kepp O, Kroemer G. Phosphorylation of eukaryotic initiation factor-2α (eIF2α) in autophagy. Cell Death Dis 2020; 11:433. [PMID: 32513922 PMCID: PMC7280501 DOI: 10.1038/s41419-020-2642-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 05/19/2020] [Accepted: 05/25/2020] [Indexed: 01/12/2023]
Abstract
The integrated stress response is characterized by the phosphorylation of eukaryotic initiation factor-2α (eIF2α) on serine 51 by one out of four specific kinases (EIF2AK1 to 4). Here we provide three series of evidence suggesting that macroautophagy (to which we refer to as autophagy) induced by a variety of distinct pharmacological agents generally requires this phosphorylation event. First, the induction of autophagic puncta by various distinct compounds was accompanied by eIF2α phosphorylation on serine 51. Second, the modulation of autophagy by >30 chemically unrelated agents was partially inhibited in cells expressing a non-phosphorylable (S51A) mutant of eIF2α or lacking all four eIF2α kinases, although distinct kinases were involved in the response to different autophagy inducers. Third, inhibition of eIF2α phosphatases was sufficient to stimulate autophagy. In synthesis, it appears that eIF2α phosphorylation is a central event for the stimulation of autophagy.
Collapse
Affiliation(s)
- Juliette Humeau
- Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, INSERM UMR1138, Centre de Recherche des Cordeliers, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy, Villejuif, France.,Faculty of Medicine, Université Paris Sud, Paris Saclay, Kremlin Bicêtre, France
| | - Marion Leduc
- Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, INSERM UMR1138, Centre de Recherche des Cordeliers, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy, Villejuif, France
| | - Giulia Cerrato
- Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, INSERM UMR1138, Centre de Recherche des Cordeliers, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy, Villejuif, France.,Faculty of Medicine, Université Paris Sud, Paris Saclay, Kremlin Bicêtre, France
| | - Friedemann Loos
- Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, INSERM UMR1138, Centre de Recherche des Cordeliers, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy, Villejuif, France
| | - Oliver Kepp
- Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, INSERM UMR1138, Centre de Recherche des Cordeliers, Paris, France. .,Metabolomics and Cell Biology Platforms, Gustave Roussy, Villejuif, France.
| | - Guido Kroemer
- Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, INSERM UMR1138, Centre de Recherche des Cordeliers, Paris, France. .,Metabolomics and Cell Biology Platforms, Gustave Roussy, Villejuif, France. .,Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China. .,Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France. .,Department of Women's and Children's Health, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
190
|
Piazzi M, Bavelloni A, Faenza I, Blalock W. Glycogen synthase kinase (GSK)-3 and the double-strand RNA-dependent kinase, PKR: When two kinases for the common good turn bad. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118769. [PMID: 32512016 PMCID: PMC7273171 DOI: 10.1016/j.bbamcr.2020.118769] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/29/2020] [Accepted: 05/31/2020] [Indexed: 01/08/2023]
Abstract
Glycogen synthase kinase (GSK)-3α/β and the double-stranded RNA-dependent kinase PKR are two sentinel kinases that carry-out multiple similar yet distinct functions in both the cytosol and the nucleus. While these kinases belong to separate signal transduction cascades, they demonstrate an uncanny propensity to regulate many of the same proteins either through direct phosphorylation or by altering transcription/translation, including: c-MYC, NF-κB, p53 and TAU, as well as each another. A significant number of studies centered on the GSK3 kinases have led to the identification of the GSK3 interactome and a number of substrates, which link GSK3 activity to metabolic control, translation, RNA splicing, ribosome biogenesis, cellular division, DNA repair and stress/inflammatory signaling. Interestingly, many of these same pathways and processes are controlled by PKR, but unlike the GSK3 kinases, a clear picture of proteins interacting with PKR and a complete listing of its substrates is still missing. In this review, we take a detailed look at what is known about the PKR and GSK3 kinases, how these kinases interact to influence common cellular processes (innate immunity, alternative splicing, translation, glucose metabolism) and how aberrant activation of these kinases leads to diseases such as Alzheimer's disease (AD), diabetes mellitus (DM) and cancer. GSK3α/β and PKR are major regulators of cellular homeostasis and the response to stress/inflammation and infection. GSK3α/β and PKR interact with and/or modify many of the same proteins and affect the expression of similar genes. A balance between AKT and PKR nuclear signaling may be responsible for regulating the activation of nuclear GSK3β. GSK3α/β- and PKR-dependent signaling influence major molecular mechanisms of the cell through similar intermediates. Aberrant activation of GSK3α/β and PKR is highly involved in cancer, metabolic disorders, and neurodegenerative diseases.
Collapse
Affiliation(s)
- Manuela Piazzi
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", Consiglio Nazionale delle Ricerche (IGM-CNR), Bologna, Italy; IRCCS, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Alberto Bavelloni
- Laboratoria di Oncologia Sperimentale, IRCCS, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Irene Faenza
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - William Blalock
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", Consiglio Nazionale delle Ricerche (IGM-CNR), Bologna, Italy; IRCCS, Istituto Ortopedico Rizzoli, Bologna, Italy.
| |
Collapse
|
191
|
Giannangelo C, Siddiqui G, De Paoli A, Anderson BM, Edgington-Mitchell LE, Charman SA, Creek DJ. System-wide biochemical analysis reveals ozonide antimalarials initially act by disrupting Plasmodium falciparum haemoglobin digestion. PLoS Pathog 2020; 16:e1008485. [PMID: 32589689 PMCID: PMC7347234 DOI: 10.1371/journal.ppat.1008485] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 07/09/2020] [Accepted: 05/13/2020] [Indexed: 01/23/2023] Open
Abstract
Ozonide antimalarials, OZ277 (arterolane) and OZ439 (artefenomel), are synthetic peroxide-based antimalarials with potent activity against the deadliest malaria parasite, Plasmodium falciparum. Here we used a "multi-omics" workflow, in combination with activity-based protein profiling (ABPP), to demonstrate that peroxide antimalarials initially target the haemoglobin (Hb) digestion pathway to kill malaria parasites. Time-dependent metabolomic profiling of ozonide-treated P. falciparum infected red blood cells revealed a rapid depletion of short Hb-derived peptides followed by subsequent alterations in lipid and nucleotide metabolism, while untargeted peptidomics showed accumulation of longer Hb-derived peptides. Quantitative proteomics and ABPP assays demonstrated that Hb-digesting proteases were increased in abundance and activity following treatment, respectively. Ozonide-induced depletion of short Hb-derived peptides was less extensive in a drug-treated K13-mutant artemisinin resistant parasite line (Cam3.IIR539T) than in the drug-treated isogenic sensitive strain (Cam3.IIrev), further confirming the association between ozonide activity and Hb catabolism. To demonstrate that compromised Hb catabolism may be a primary mechanism involved in ozonide antimalarial activity, we showed that parasites forced to rely solely on Hb digestion for amino acids became hypersensitive to short ozonide exposures. Quantitative proteomics analysis also revealed parasite proteins involved in translation and the ubiquitin-proteasome system were enriched following drug treatment, suggestive of the parasite engaging a stress response to mitigate ozonide-induced damage. Taken together, these data point to a mechanism of action involving initial impairment of Hb catabolism, and indicate that the parasite regulates protein turnover to manage ozonide-induced damage.
Collapse
Affiliation(s)
- Carlo Giannangelo
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Ghizal Siddiqui
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Amanda De Paoli
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Bethany M. Anderson
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Laura E. Edgington-Mitchell
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
- Department of Maxillofacial Surgery, College of Dentistry, New York University, New York, New York, United States of America
| | - Susan A. Charman
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Darren J. Creek
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| |
Collapse
|
192
|
Kastan JP, Dobrikova EY, Bryant JD, Gromeier M. CReP mediates selective translation initiation at the endoplasmic reticulum. SCIENCE ADVANCES 2020; 6:eaba0745. [PMID: 32537501 PMCID: PMC7269655 DOI: 10.1126/sciadv.aba0745] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 03/13/2020] [Indexed: 05/16/2023]
Abstract
Eukaryotic protein synthesis control at multiple levels allows for dynamic, selective responses to diverse conditions, but spatial organization of translation initiation machinery as a regulatory principle has remained largely unexplored. Here we report on a role of constitutive repressor of eIF2α phosphorylation (CReP) in translation of poliovirus and the endoplasmic reticulum (ER)-resident chaperone binding immunoglobulin protein (BiP) at the ER. Functional, proximity-dependent labeling and cell fractionation studies revealed that CReP, through binding eIF2α, anchors translation initiation machinery at the ER and enables local protein synthesis in this compartment. This ER site was protected from the suppression of cytoplasmic protein synthesis by acute stress responses, e.g., phosphorylation of eIF2α(S51) or mTOR blockade. We propose that partitioning of translation initiation machinery at the ER enables cells to maintain active translation during stress conditions associated with global protein synthesis suppression.
Collapse
Affiliation(s)
- Jonathan P. Kastan
- Department of Neurosurgery, Duke University Medical Center, NC 27710, USA
| | - Elena Y. Dobrikova
- Department of Neurosurgery, Duke University Medical Center, NC 27710, USA
| | | | | |
Collapse
|
193
|
Harada N, Gotoda Y, Hatakeyama A, Nakagawa T, Miyatake Y, Kuroda M, Masumoto S, Tsutsumi R, Nakaya Y, Sakaue H. Differential regulation of Actn2 and Actn3 expression during unfolded protein response in C2C12 myotubes. J Muscle Res Cell Motil 2020; 41:199-209. [PMID: 32451822 DOI: 10.1007/s10974-020-09582-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 05/20/2020] [Indexed: 11/29/2022]
Abstract
ACTN2 and ACTN3 encode sarcomeric α-actinin-2 and α-actinin-3 proteins, respectively, that constitute the Z-line in mammalian skeletal muscle fibers. In human ACTN3, a nonsense mutation at codon 577 that encodes arginine (R) produces the R577X polymorphism. Individuals having a homozygous 577XX genotype do not produce α-actinin-3 protein. The 577XX genotype reportedly occurs in sprint and power athletes in frequency lower than in the normal population, suggesting that α-actinin-3 deficiency diminishes fast-type muscle function. Among humans who carry 577R alleles, varying ACTN3 expression levels under certain conditions can have diverse effects on atheletic and muscle performance. However, the factors that regulate ACTN3 expression are unclear. Here we investigated whether the unfolded protein response (UPR) under endoplasmic reticulum (ER) stress regulates expression of Actn3 and its isoform Actn2 in mouse C2C12 myotubes. Among UPR-related transcription factors, XBP1 upregulated Actn2, whereas XBP1, ATF4 and ATF6 downregulated Actn3 promoter activity. Chemical induction of ER stress increased Actn2 mRNA levels, but decreased those for Actn3. ER stress also decreased α-actinin-3 protein levels, whereas levels of α-actinin-2 were unchanged. The intracellular composition of muscle contraction-related proteins was altered under ER stress, in that expression of parvalbumin (a fast-twitch muscle-specific protein) and troponin I type 1 (skeletal, slow) was suppressed. siRNA-induced suppression of Actn3 mimicked the inhibitory effect of ER stress on parvalbumin levels. Thus, endogenous expression levels of α-actinin-3 can be altered by ER stress, which may modulate muscle performance and athletic aptitudes, particularly in humans who carry ACTN3 577R alleles.
Collapse
Affiliation(s)
- Nagakatsu Harada
- Department of Health and Nutrition, Faculty of Nursing and Nutrition, The University of Shimane, 151 Nishihayashigi, Izumo City, Shimane, 693-8550, Japan. .,Department of Nutrition and Metabolism, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15, Kuramoto-cho, Tokushima City, Tokushima, 770-8503, Japan.
| | - Yuka Gotoda
- Department of Nutrition and Metabolism, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15, Kuramoto-cho, Tokushima City, Tokushima, 770-8503, Japan
| | - Adzumi Hatakeyama
- Department of Nutrition and Metabolism, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15, Kuramoto-cho, Tokushima City, Tokushima, 770-8503, Japan
| | - Tadahiko Nakagawa
- Department of Health and Nutrition, Faculty of Nursing and Nutrition, The University of Shimane, 151 Nishihayashigi, Izumo City, Shimane, 693-8550, Japan
| | - Yumiko Miyatake
- Department of Nutrition and Metabolism, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15, Kuramoto-cho, Tokushima City, Tokushima, 770-8503, Japan
| | - Masashi Kuroda
- Department of Nutrition and Metabolism, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15, Kuramoto-cho, Tokushima City, Tokushima, 770-8503, Japan
| | - Saeko Masumoto
- Faculty of Food and Agricultural Sciences, Fukushima University, 1, Kanayagawa, Fukushima City, Fukushima, 960-1296, Japan
| | - Rie Tsutsumi
- Department of Nutrition and Metabolism, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15, Kuramoto-cho, Tokushima City, Tokushima, 770-8503, Japan
| | - Yutaka Nakaya
- Department of Nutrition and Metabolism, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15, Kuramoto-cho, Tokushima City, Tokushima, 770-8503, Japan
| | - Hiroshi Sakaue
- Department of Nutrition and Metabolism, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15, Kuramoto-cho, Tokushima City, Tokushima, 770-8503, Japan
| |
Collapse
|
194
|
Kapoor A, Chen CG, Iozzo RV. Endorepellin evokes an angiostatic stress signaling cascade in endothelial cells. J Biol Chem 2020; 295:6344-6356. [PMID: 32205445 PMCID: PMC7212646 DOI: 10.1074/jbc.ra120.012525] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 03/17/2020] [Indexed: 12/25/2022] Open
Abstract
Endorepellin, the C-terminal fragment of the heparan sulfate proteoglycan perlecan, influences various signaling pathways in endothelial cells by binding to VEGFR2. In this study, we discovered that soluble endorepellin activates the canonical stress signaling pathway consisting of PERK, eIF2α, ATF4, and GADD45α. Specifically, endorepellin evoked transient activation of VEGFR2, which, in turn, phosphorylated PERK at Thr980 Subsequently, PERK phosphorylated eIF2α at Ser51, upregulating its downstream effector proteins ATF4 and GADD45α. RNAi-mediated knockdown of PERK or eIF2α abrogated the endorepellin-mediated up-regulation of GADD45α, the ultimate effector protein of this stress signaling cascade. To functionally validate these findings, we utilized an ex vivo model of angiogenesis. Exposure of the aortic rings embedded in 3D fibrillar collagen to recombinant endorepellin for 2-4 h activated PERK and induced GADD45α vis à vis vehicle-treated counterparts. Similar effects were obtained with the established cellular stress inducer tunicamycin. Notably, chronic exposure of aortic rings to endorepellin for 7-9 days markedly suppressed vessel sprouting, an angiostatic effect that was rescued by blocking PERK kinase activity. Our findings unravel a mechanism by which an extracellular matrix protein evokes stress signaling in endothelial cells, which leads to angiostasis.
Collapse
Affiliation(s)
- Aastha Kapoor
- Department of Pathology, Anatomy, and Cell Biology and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Carolyn G Chen
- Department of Pathology, Anatomy, and Cell Biology and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Renato V Iozzo
- Department of Pathology, Anatomy, and Cell Biology and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| |
Collapse
|
195
|
Adjibade P, Simoneau B, Ledoux N, Gauthier WN, Nkurunziza M, Khandjian EW, Mazroui R. Treatment of cancer cells with Lapatinib negatively regulates general translation and induces stress granules formation. PLoS One 2020; 15:e0231894. [PMID: 32365111 PMCID: PMC7197775 DOI: 10.1371/journal.pone.0231894] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/02/2020] [Indexed: 12/22/2022] Open
Abstract
Stress granules (SG) are cytoplasmic RNA granules that form during various types of stress known to inhibit general translation, including oxidative stress, hypoxia, endoplasmic reticulum stress (ER), ionizing radiations or viral infection. Induction of these SG promotes cell survival in part through sequestration of proapoptotic molecules, resulting in the inactivation of cell death pathways. SG also form in cancer cells, but studies investigating their formation upon treatment with chemotherapeutics are very limited. Here we identified Lapatinib (Tykerb / Tyverb®), a tyrosine kinase inhibitor used for the treatment of breast cancers as a new inducer of SG in breast cancer cells. Lapatinib-induced SG formation correlates with the inhibition of general translation initiation which involves the phosphorylation of the translation initiation factor eIF2α through the kinase PERK. Disrupting PERK-SG formation by PERK depletion experiments sensitizes resistant breast cancer cells to Lapatinib. This study further supports the assumption that treatment with anticancer drugs activates the SG pathway, which may constitute an intrinsic stress response used by cancer cells to resist treatment.
Collapse
Affiliation(s)
- Pauline Adjibade
- Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Centre de Recherche en Cancérologie, Centre de Recherche du CHU de Québec, Faculté de Médecine, Université Laval, Québec, Parti Québécois, Canada
| | - Bryan Simoneau
- Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Centre de Recherche en Cancérologie, Centre de Recherche du CHU de Québec, Faculté de Médecine, Université Laval, Québec, Parti Québécois, Canada
| | - Nassim Ledoux
- Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Centre de Recherche en Cancérologie, Centre de Recherche du CHU de Québec, Faculté de Médecine, Université Laval, Québec, Parti Québécois, Canada
| | - William-Naud Gauthier
- Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Centre de Recherche en Cancérologie, Centre de Recherche du CHU de Québec, Faculté de Médecine, Université Laval, Québec, Parti Québécois, Canada
| | - Melisse Nkurunziza
- Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Centre de Recherche en Cancérologie, Centre de Recherche du CHU de Québec, Faculté de Médecine, Université Laval, Québec, Parti Québécois, Canada
| | - Edouard W. Khandjian
- Département de Psychiatrie et de Neurosciences, Centre de Recherche, Institut Universitaire en Santé mentale de Québec, Faculté de Médecine, Université Laval, Québec, Parti Québécois, Canada
| | - Rachid Mazroui
- Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Centre de Recherche en Cancérologie, Centre de Recherche du CHU de Québec, Faculté de Médecine, Université Laval, Québec, Parti Québécois, Canada
- * E-mail:
| |
Collapse
|
196
|
Wang SF, Chen S, Tseng LM, Lee HC. Role of the mitochondrial stress response in human cancer progression. Exp Biol Med (Maywood) 2020; 245:861-878. [PMID: 32326760 PMCID: PMC7268930 DOI: 10.1177/1535370220920558] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
IMPACT STATEMENT Dysregulated mitochondria often occurred in cancers. Mitochondrial dysfunction might contribute to cancer progression. We reviewed several mitochondrial stresses in cancers. Mitochondrial stress responses might contribute to cancer progression. Several mitochondrion-derived molecules (ROS, Ca2+, oncometabolites, exported mtDNA, mitochondrial double-stranded RNA, humanin, and MOTS-c), integrated stress response, and mitochondrial unfolded protein response act as retrograde signaling pathways and might be critical in the development and progression of cancer. Targeting these mitochondrial stress responses may be an important strategy for cancer treatment.
Collapse
Affiliation(s)
- Sheng-Fan Wang
- Department of Pharmacy, Taipei Veterans General Hospital, 112 Taipei
- School of Pharmacy, Taipei Medical University, 110 Taipei
- Department and Institute of Pharmacology, School of Medicine, National Yang-Ming University, 112 Taipei
| | - Shiuan Chen
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, CA 91010, USA
| | - Ling-Ming Tseng
- Division of General Surgery, Department of Surgery, Comprehensive Breast Health Center, Taipei Veterans General Hospital, 112 Taipei
- Department of Surgery, School of Medicine, National Yang-Ming University, 112 Taipei
| | - Hsin-Chen Lee
- Department and Institute of Pharmacology, School of Medicine, National Yang-Ming University, 112 Taipei
| |
Collapse
|
197
|
Dash S, Aydin Y, Wu T. Integrated stress response in hepatitis C promotes Nrf2-related chaperone-mediated autophagy: A novel mechanism for host-microbe survival and HCC development in liver cirrhosis. Semin Cell Dev Biol 2020; 101:20-35. [PMID: 31386899 PMCID: PMC7007355 DOI: 10.1016/j.semcdb.2019.07.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/26/2019] [Accepted: 07/30/2019] [Indexed: 02/06/2023]
Abstract
The molecular mechanism(s) how liver damage during the chronic hepatitis C virus (HCV) infection evolve into cirrhosis and hepatocellular carcinoma (HCC) is unclear. HCV infects hepatocyte, the major cell types in the liver. During infection, large amounts of viral proteins and RNA replication intermediates accumulate in the endoplasmic reticulum (ER) of the infected hepatocyte, which creates a substantial amount of stress response. Infected hepatocyte activates a different type of stress adaptive mechanisms such as unfolded protein response (UPR), antioxidant response (AR), and the integrated stress response (ISR) to promote virus-host cell survival. The hepatic stress is also amplified by another layer of innate and inflammatory response associated with cellular sensing of virus infection through the production of interferon (IFN) and inflammatory cytokines. The interplay between various types of cellular stress signal leads to different forms of cell death such as apoptosis, necrosis, and autophagy depending on the intensity of the stress and nature of the adaptive cellular response. How do the adaptive cellular responses decode such death programs that promote host-microbe survival leading to the establishment of chronic liver disease? In this review, we discuss how the adaptive cellular response through the Nrf2 pathway that promotes virus and cell survival. Furthermore, we provide a glimpse of novel stress-induced Nrf2 mediated compensatory autophagy mechanisms in virus-cell survival that degrade tumor suppressor gene and activation of oncogenic signaling during HCV infection. Based on these facts, we hypothesize that the balance between hepatic stress, inflammation and different types of cell death determines liver disease progression outcomes. We propose that a more nuanced understanding of virus-host interactions under excessive cellular stress may provide an answer to the fundamental questions why some individuals with chronic HCV infection remain at risk of developing cirrhosis, cancer and some do not.
Collapse
Affiliation(s)
- Srikanta Dash
- Department of Pathology and Laboratory Medicine, Tulane University Health Sciences Center, New Orleans, LA, 70112, USA.
| | - Yucel Aydin
- Department of Pathology and Laboratory Medicine, Tulane University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Tong Wu
- Department of Pathology and Laboratory Medicine, Tulane University Health Sciences Center, New Orleans, LA, 70112, USA
| |
Collapse
|
198
|
Effect of the Viral Hemorrhagic Septicemia Virus Nonvirion Protein on Translation via PERK-eIF2α Pathway. Viruses 2020; 12:v12050499. [PMID: 32365817 PMCID: PMC7290495 DOI: 10.3390/v12050499] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 12/28/2022] Open
Abstract
Viral hemorrhagic septicemia virus (VHSV) is one of the most deadly infectious fish pathogens, posing a serious threat to the aquaculture industry and freshwater ecosystems worldwide. Previous work showed that VHSV sub-genotype IVb suppresses host innate immune responses, but the exact mechanism by which VHSV IVb inhibits antiviral response remains incompletely characterized. As with other novirhabdoviruses, VHSV IVb contains a unique and highly variable nonvirion (NV) gene, which is implicated in viral replication, virus-induced apoptosis and regulating interferon (IFN) production. However, the molecular mechanisms underlying the role of IVb NV gene in regulating viral or cellular processes is poorly understood. Compared to the wild-type recombinant (rWT) VHSV, mutant VHSV lacking a functional IVb NV reduced IFN expression and compromised innate immune response of the host cells by inhibiting translation. VHSV IVb infection increased phosphorylated eukaryotic initiation factor 2α (p-eIF2α), resulting in host translation shutoff. However, VHSV IVb protein synthesis proceeds despite increasing phosphorylation of eIF2α. During VHSV IVb infection, eIF2α phosphorylation was mediated via PKR-like endoplasmic reticulum kinase (PERK) and was required for efficient viral protein synthesis, but shutoff of host translation and IFN signaling was independent of p-eIF2α. Similarly, IVb NV null VHSV infection induced less p-eIF2α, but exhibited decreased viral protein synthesis despite increased levels of viral mRNA. These findings show a role for IVb NV in VHSV pathogenesis by utilizing the PERK-eIF2α pathway for viral-mediated host shutoff and interferon signaling to regulate host cell response.
Collapse
|
199
|
Pereira-Fantini PM, Pang B, Byars SG, Oakley RB, Perkins EJ, Dargaville PA, Davis PG, Nie S, Williamson NA, Ignjatovic V, Tingay DG. Preterm Lung Exhibits Distinct Spatiotemporal Proteome Expression at Initiation of Lung Injury. Am J Respir Cell Mol Biol 2020; 61:631-642. [PMID: 30995072 DOI: 10.1165/rcmb.2019-0084oc] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The development of regional lung injury in the preterm lung is not well understood. This study aimed to characterize time-dependent and regionally specific injury patterns associated with early ventilation of the preterm lung using a mass spectrometry-based proteomic approach. Preterm lambs delivered at 124-127 days gestation received 15 or 90 minutes of mechanical ventilation (positive end-expiratory pressure = 8 cm H2O, Vt = 6-8 ml/kg) and were compared with unventilated control lambs. At study completion, lung tissue was taken from standardized nondependent and dependent regions, and assessed for lung injury via histology, quantitative PCR, and proteomic analysis using Orbitrap-mass spectrometry. Ingenuity pathway analysis software was used to identify temporal and region-specific enrichments in pathways and functions. Apoptotic cell numbers were ninefold higher in nondependent lung at 15 and 90 minutes compared with controls, whereas proliferative cells were increased fourfold in the dependent lung at 90 minutes. The relative gene expression of lung injury markers was increased at 90 minutes in nondependent lung and unchanged in gravity-dependent lung. Within the proteome, the number of differentially expressed proteins was fourfold higher in the nondependent lung than the dependent lung. The number of differential proteins increased over time in both lung regions. A total of 95% of enriched canonical pathways and 94% of enriched cellular and molecular functions were identified only in nondependent lung tissue from the 90-minute ventilation group. In conclusion, complex injury pathways are initiated within the preterm lung after 15 minutes of ventilation and amplified by continuing ventilation. Injury development is region specific, with greater alterations within the proteome of nondependent lung.
Collapse
Affiliation(s)
| | | | - Sean G Byars
- Department of Clinical Pathology.,Melbourne Integrative Genomics
| | | | | | - Peter A Dargaville
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Peter G Davis
- Neonatal Research, and.,Department of Obstetrics and Gynaecology, and.,The Royal Women's Hospital, Parkville, Victoria, Australia; and
| | - Shuai Nie
- Bio21 Institute, University of Melbourne, Parkville, Victoria, Australia
| | | | - Vera Ignjatovic
- Haematology Research, Murdoch Children's Research Institute, Parkville, Victoria, Australia.,Department of Paediatrics
| | - David G Tingay
- Neonatal Research, and.,Department of Paediatrics.,Department of Neonatology, Royal Children's Hospital, Parkville, Victoria, Australia
| |
Collapse
|
200
|
Regulation of Translation in the Protozoan Parasite Leishmania. Int J Mol Sci 2020; 21:ijms21082981. [PMID: 32340274 PMCID: PMC7215931 DOI: 10.3390/ijms21082981] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/16/2020] [Accepted: 04/20/2020] [Indexed: 01/31/2023] Open
Abstract
Leishmaniasis represents a serious health problem worldwide and drug resistance is a growing concern. Leishmania parasites use unusual mechanisms to control their gene expression. In contrast to many other species, they do not have transcriptional regulation. The lack of transcriptional control is mainly compensated by post-transcriptional mechanisms, including tight translational control and regulation of mRNA stability/translatability by RNA-binding proteins. Modulation of translation plays a major role in parasite survival and adaptation to dramatically different environments during change of host; however, our knowledge of fine molecular mechanisms of translation in Leishmania remains limited. Here, we review the current progress in our understanding of how changes in the translational machinery promote parasite differentiation during transmission from a sand fly to a mammalian host, and discuss how translational reprogramming can contribute to the development of drug resistance.
Collapse
|