151
|
Sim JS, Kesawat MS, Kumar M, Kim SY, Mani V, Subramanian P, Park S, Lee CM, Kim SR, Hahn BS. Lack of the α1,3-Fucosyltransferase Gene ( Osfuct) Affects Anther Development and Pollen Viability in Rice. Int J Mol Sci 2018; 19:ijms19041225. [PMID: 29670011 PMCID: PMC5979348 DOI: 10.3390/ijms19041225] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 04/11/2018] [Accepted: 04/16/2018] [Indexed: 12/04/2022] Open
Abstract
N-linked glycosylation is one of the key post-translational modifications. α1,3-Fucosyltransferase (OsFucT) is responsible for transferring α1,3-linked fucose residues to the glycoprotein N-glycan in plants. We characterized an Osfuct mutant that displayed pleiotropic developmental defects, such as impaired anther and pollen development, diminished growth, shorter plant height, fewer tillers, and shorter panicle length and internodes under field conditions. In addition, the anthers were curved, the pollen grains were shriveled, and pollen viability and pollen number per anther decreased dramatically in the mutant. Matrix-assisted laser desorption/ionization time-of-flight analyses of the N-glycans revealed that α1,3-fucose was lacking in the N-glycan structure of the mutant. Mutant complementation revealed that the phenotype was caused by loss of Osfuct function. Transcriptome profiling also showed that several genes essential for plant developmental processes were significantly altered in the mutant, including protein kinases, transcription factors, genes involved in metabolism, genes related to protein synthesis, and hypothetical proteins. Moreover, the mutant exhibited sensitivity to an increased concentration of salt. This study facilitates a further understanding of the function of genes mediating N-glycan modification and anther and pollen development in rice.
Collapse
Affiliation(s)
- Joon-Soo Sim
- Metabolic Engineering Division, Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea.
| | - Mahipal Singh Kesawat
- Metabolic Engineering Division, Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea.
| | - Manu Kumar
- Department of Life Sciences, Sogang University, Seoul 121-742, Korea.
| | - Su-Yeon Kim
- Metabolic Engineering Division, Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea.
| | - Vimalraj Mani
- Metabolic Engineering Division, Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea.
| | - Parthiban Subramanian
- Metabolic Engineering Division, Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea.
| | - Soyoung Park
- Metabolic Engineering Division, Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea.
| | - Chang-Muk Lee
- Metabolic Engineering Division, Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea.
| | - Seong-Ryong Kim
- Department of Life Sciences, Sogang University, Seoul 121-742, Korea.
| | - Bum-Soo Hahn
- Metabolic Engineering Division, Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea.
| |
Collapse
|
152
|
Ono S, Liu H, Tsuda K, Fukai E, Tanaka K, Sasaki T, Nonomura KI. EAT1 transcription factor, a non-cell-autonomous regulator of pollen production, activates meiotic small RNA biogenesis in rice anther tapetum. PLoS Genet 2018; 14:e1007238. [PMID: 29432414 PMCID: PMC5825165 DOI: 10.1371/journal.pgen.1007238] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 02/23/2018] [Accepted: 02/01/2018] [Indexed: 11/18/2022] Open
Abstract
The 24-nucleotides (nt) phased secondary small interfering RNA (phasiRNA) is a unique class of plant small RNAs abundantly expressed in monocot anthers at early meiosis. Previously, 44 intergenic regions were identified as the loci for longer precursor RNAs of 24-nt phasiRNAs (24-PHASs) in the rice genome. However, the regulatory mechanism that determines spatiotemporal expression of these RNAs has remained elusive. ETERNAL TAPETUM1 (EAT1) is a basic-helix-loop-helix (bHLH) transcription factor indispensable for induction of programmed cell death (PCD) in postmeiotic anther tapetum, the somatic nursery for pollen production. In this study, EAT1-dependent non-cell-autonomous regulation of male meiosis was evidenced from microscopic observation of the eat1 mutant, in which meiosis with aberrantly decondensed chromosomes was retarded but accomplished somehow, eventually resulting in abortive microspores due to an aberrant tapetal PCD. EAT1 protein accumulated in tapetal-cell nuclei at early meiosis and postmeiotic microspore stages. Meiotic EAT1 promoted transcription of 24-PHAS RNAs at 101 loci, and importantly, also activated DICER-LIKE5 (DCL5, previous DCL3b in rice) mRNA transcription that is required for processing of double-stranded 24-PHASs into 24-nt lengths. From the results of the chromatin-immunoprecipitation and transient expression analyses, another tapetum-expressing bHLH protein, TDR INTERACTING PROTEIN2 (TIP2), was suggested to be involved in meiotic small-RNA biogenesis. The transient assay also demonstrated that UNDEVELOPED TAPETUM1 (UDT1)/bHLH164 is a potential interacting partner of both EAT1 and TIP2 during early meiosis. This study indicates that EAT1 is one of key regulators triggering meiotic phasiRNA biogenesis in anther tapetum, and that other bHLH proteins, TIP2 and UDT1, also play some important roles in this process. Spatiotemporal expression control of these bHLH proteins is a clue to orchestrate precise meiosis progression and subsequent pollen production non-cell-autonomously.
Collapse
Affiliation(s)
- Seijiro Ono
- Experimental Farm, National Institute of Genetics, Yata, Mishima, Shizuoka, Japan
| | - Hua Liu
- Experimental Farm, National Institute of Genetics, Yata, Mishima, Shizuoka, Japan
| | - Katsutoshi Tsuda
- Experimental Farm, National Institute of Genetics, Yata, Mishima, Shizuoka, Japan
- Department of Genetics, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Yata, Mishima, Shizuoka, Japan
| | - Eigo Fukai
- Graduate School of Science and Technology, Niigata University, Ikarashi, Nishi-ku, Niigata, Japan
| | - Keisuke Tanaka
- NODAI Genome Research Center, Tokyo University of Agriculture, Sakuragaoka, Setagaya-ku, Tokyo, Japan
| | - Takuji Sasaki
- NODAI Research Institute, Tokyo University of Agriculture, Sakuragaoka, Setagaya-ku, Tokyo, Japan
| | - Ken-Ichi Nonomura
- Experimental Farm, National Institute of Genetics, Yata, Mishima, Shizuoka, Japan
- Department of Genetics, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Yata, Mishima, Shizuoka, Japan
- * E-mail:
| |
Collapse
|
153
|
Shi X, Chen S, Peng Y, Wang Y, Chen J, Hu Z, Wang B, Li A, Chao D, Li Y, Teng S. TSC1 enables plastid development under dark conditions, contributing to rice adaptation to transplantation shock. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2018; 60:112-129. [PMID: 29210524 DOI: 10.1111/jipb.12621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 12/04/2017] [Indexed: 06/07/2023]
Abstract
Since its domestication from wild rice thousands of years ago, rice has been cultivated largely through transplantation. During transplantation from the nursery to the paddy field, rice seedlings experience transplantation shock which affects their physiology and production. However, the mechanisms underlying transplantation shock and rice adaptation to this shock are largely unknown. Here, we isolated a transplant-sensitive chloroplast-deficient (tsc1) rice mutant that produces albino leaves after transplantation. Blocking light from reaching the juvenile leaves and leaf primordia caused chloroplast deficiencies in transplanted tsc1 seedlings. TSC1 encodes a noncanonical adenosine triphosphate-binding cassette (ABC) transporter homologous to AtNAP14 and is of cyanobacterial origin. We demonstrate that TSC1 controls plastid development in rice under dark conditions, and functions independently of light signaling. However, light rescued the tsc1 mutant phenotype in a spectrum-independent manner. TSC1 was upregulated following transplantation, and modulated the iron and copper levels, thereby regulating prolamellar body formation during the early P4 stage of leaf development. Therefore, TSC1 is indispensable for plastid development in the absence of light, and contributes to adaptation to transplantation shock. Our study provides insight into the regulation of plastid development and establishes a framework for improving recovery from transplantation shock in rice.
Collapse
Affiliation(s)
- Xiaoliang Shi
- Laboratory of Photosynthesis and Environmental Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Science, Shanghai 200032, China
| | - Sunlu Chen
- Laboratory of Photosynthesis and Environmental Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Science, Shanghai 200032, China
| | - Yu Peng
- Laboratory of Photosynthesis and Environmental Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Science, Shanghai 200032, China
| | - Yufeng Wang
- Laboratory of Photosynthesis and Environmental Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Science, Shanghai 200032, China
| | - Jiugeng Chen
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Zhanghua Hu
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Baohe Wang
- Rice Breeding Center, Lixiahe Agricultural Research Institute of Jiangsu Province, Yangzhou 225007, China
| | - Aihong Li
- Rice Breeding Center, Lixiahe Agricultural Research Institute of Jiangsu Province, Yangzhou 225007, China
| | - Daiyin Chao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yuhong Li
- Rice Breeding Center, Lixiahe Agricultural Research Institute of Jiangsu Province, Yangzhou 225007, China
| | - Sheng Teng
- Laboratory of Photosynthesis and Environmental Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Science, Shanghai 200032, China
| |
Collapse
|
154
|
Kim SH, Kwon CT, Song G, Koh HJ, An G, Paek NC. The rice zebra3 (z3) mutation disrupts citrate distribution and produces transverse dark-green/green variegation in mature leaves. RICE (NEW YORK, N.Y.) 2018; 11:1. [PMID: 29305728 PMCID: PMC5756232 DOI: 10.1186/s12284-017-0196-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 12/27/2017] [Indexed: 05/22/2023]
Abstract
BACKGROUND Rice zebra mutants are leaf variegation mutants that exhibit transverse sectors of green/yellow or green/white in developing or mature leaves. In most cases, leaf variegation is caused by defects in chloroplast biogenesis pathways, leading to an accumulation of reactive oxygen species in a transverse pattern in the leaves. Here, we examine a new type of leaf variegation mutant in rice, zebra3 (z3), which exhibits transverse dark-green/green sectors in mature leaves and lacks the typical yellow or white sectors. RESULTS Map-based cloning revealed that the Z3 locus encodes a putative citrate transporter that belongs to the citrate-metal hydrogen symport (CitMHS) family. CitMHS family members have been extensively studied in bacteria and function as secondary transporters that can transport metal-citrate complexes, but whether CitMHS family transporters exist in eukaryotes remains unknown. To investigate whether Z3 acts as a citrate transporter in rice, we measured citrate levels in wild-type leaves and in the dark-green and green sectors of the leaves of z3 mutants. The results showed that citrates accumulated to high levels in the dark-green sectors of z3 mutant leaves, but not in the green sectors as compared with the wild-type leaves. CONCLUSIONS These results suggest that leaf variegation in the z3 mutant is caused by an unbalanced accumulation of citrate in a transverse pattern in the leaves. Taking these results together, we propose that Z3 plays an important role in citrate transport and distribution during leaf development and is a possible candidate for a CitMHS family member in plants.
Collapse
Affiliation(s)
- Suk-Hwan Kim
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Choon-Tak Kwon
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
- Present address: Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | - Giha Song
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hee-Jong Koh
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Gynheung An
- Crop Biotech Institute and Graduate School of Biotechnology, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Nam-Chon Paek
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
- Crop Biotechnology Institute, Institutes of Green Bio Science and Technology, Seoul National University, Pyeongchang, 25354, Republic of Korea.
| |
Collapse
|
155
|
Cho SH, Lee CH, Gi E, Yim Y, Koh HJ, Kang K, Paek NC. The Rice Rolled Fine Striped (RFS) CHD3/Mi-2 Chromatin Remodeling Factor Epigenetically Regulates Genes Involved in Oxidative Stress Responses During Leaf Development. FRONTIERS IN PLANT SCIENCE 2018; 9:364. [PMID: 29616070 PMCID: PMC5870552 DOI: 10.3389/fpls.2018.00364] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 03/05/2018] [Indexed: 05/20/2023]
Abstract
In rice (Oryza sativa), moderate leaf rolling increases photosynthetic competence and raises grain yield; therefore, this important agronomic trait has attracted much attention from plant biologists and breeders. However, the relevant molecular mechanism remains unclear. Here, we isolated and characterized Rolled Fine Striped (RFS), a key gene affecting rice leaf rolling, chloroplast development, and reactive oxygen species (ROS) scavenging. The rfs-1 gamma-ray allele and the rfs-2 T-DNA insertion allele of RFS failed to complement each other and their mutants had similar phenotypes, producing extremely incurved leaves due to defective development of vascular cells on the adaxial side. Map-based cloning showed that the rfs-1 mutant harbors a 9-bp deletion in a gene encoding a predicted CHD3/Mi-2 chromatin remodeling factor belonging to the SNF2-ATP-dependent chromatin remodeling family. RFS was expressed in various tissues and accumulated mainly in the vascular cells throughout leaf development. Furthermore, RFS deficiency resulted in a cell death phenotype that was caused by ROS accumulation in developing leaves. We found that expression of five ROS-scavenging genes [encoding catalase C, ascorbate peroxidase 8, a putative copper/zinc superoxide dismutase (SOD), a putative SOD, and peroxiredoxin IIE2] decreased in rfs-2 mutants. Western-blot and chromatin immunoprecipitation (ChIP) assays demonstrated that rfs-2 mutants have reduced H3K4me3 levels in ROS-related genes. Loss-of-function in RFS also led to multiple developmental defects, affecting pollen development, grain filling, and root development. Our results suggest that RFS is required for many aspects of plant development and its function is closely associated with epigenetic regulation of genes that modulate ROS homeostasis.
Collapse
Affiliation(s)
- Sung-Hwan Cho
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Chung-Hee Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Eunji Gi
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Yehyun Yim
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Hee-Jong Koh
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Kiyoon Kang
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
- *Correspondence: Kiyoon Kang, Nam-Chon Paek,
| | - Nam-Chon Paek
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
- Crop Biotechnology Institute, Institutes of Green Bio Science & Technology, Seoul National University, Seoul, South Korea
- *Correspondence: Kiyoon Kang, Nam-Chon Paek,
| |
Collapse
|
156
|
Sevanthi AMV, Kandwal P, Kale PB, Prakash C, Ramkumar MK, Yadav N, Mahato AK, Sureshkumar V, Behera M, Deshmukh RK, Jeyaparakash P, Kar MK, Manonmani S, Muthurajan R, Gopala KS, Neelamraju S, Sheshshayee MS, Swain P, Singh AK, Singh NK, Mohapatra T, Sharma RP. Whole Genome Characterization of a Few EMS-Induced Mutants of Upland Rice Variety Nagina 22 Reveals a Staggeringly High Frequency of SNPs Which Show High Phenotypic Plasticity Towards the Wild-Type. FRONTIERS IN PLANT SCIENCE 2018; 9:1179. [PMID: 0 PMCID: PMC6132179 DOI: 10.3389/fpls.2018.01179] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 07/24/2018] [Indexed: 05/07/2023]
Abstract
The Indian initiative, in creating mutant resources for the functional genomics in rice, has been instrumental in the development of 87,000 ethylmethanesulfonate (EMS)-induced mutants, of which 7,000 are in advanced generations. The mutants have been created in the background of Nagina 22, a popular drought- and heat-tolerant upland cultivar. As it is a pregreen revolution cultivar, as many as 573 dwarf mutants identified from this resource could be useful as an alternate source of dwarfing. A total of 541 mutants, including the macromutants and the trait-specific ones, obtained after appropriate screening, are being maintained in the mutant garden. Here, we report on the detailed characterizations of the 541 mutants based on the distinctness, uniformity, and stability (DUS) descriptors at two different locations. About 90% of the mutants were found to be similar to the wild type (WT) with high similarity index (>0.6) at both the locations. All 541 mutants were characterized for chlorophyll and epicuticular wax contents, while a subset of 84 mutants were characterized for their ionomes, namely, phosphorous, silicon, and chloride contents. Genotyping of these mutants with 54 genomewide simple sequence repeat (SSR) markers revealed 93% of the mutants to be either completely identical to WT or nearly identical with just one polymorphic locus. Whole genome resequencing (WGS) of four mutants, which have minimal differences in the SSR fingerprint pattern and DUS characters from the WT, revealed a staggeringly high number of single nucleotide polymorphisms (SNPs) on an average (16,453 per mutant) in the genic sequences. Of these, nearly 50% of the SNPs led to non-synonymous codons, while 30% resulted in synonymous codons. The number of insertions and deletions (InDels) varied from 898 to 2,595, with more than 80% of them being 1-2 bp long. Such a high number of SNPs could pose a serious challenge in identifying gene(s) governing the mutant phenotype by next generation sequencing-based mapping approaches such as Mutmap. From the WGS data of the WT and the mutants, we developed a genic resource of the WT with a novel analysis pipeline. The entire information about this resource along with the panicle architecture of the 493 mutants is made available in a mutant database EMSgardeN22 (http://14.139.229.201/EMSgardeN22).
Collapse
Affiliation(s)
- Amitha M. V. Sevanthi
- ICAR-National Research Centre on Plant Biotechnology, New Delhi, India
- *Correspondence: Amitha M. V. Sevanthi,
| | - Prashant Kandwal
- ICAR-National Research Centre on Plant Biotechnology, New Delhi, India
| | - Prashant B. Kale
- ICAR-National Research Centre on Plant Biotechnology, New Delhi, India
| | - Chandra Prakash
- ICAR-National Research Centre on Plant Biotechnology, New Delhi, India
| | - M. K. Ramkumar
- ICAR-National Research Centre on Plant Biotechnology, New Delhi, India
| | - Neera Yadav
- ICAR-National Research Centre on Plant Biotechnology, New Delhi, India
| | - Ajay K. Mahato
- ICAR-National Research Centre on Plant Biotechnology, New Delhi, India
| | - V. Sureshkumar
- ICAR-National Research Centre on Plant Biotechnology, New Delhi, India
| | | | | | | | - Meera K. Kar
- ICAR-National Rice Research Institute, Cuttack, India
| | - S. Manonmani
- Tamil Nadu Agricultural University, Coimbatore, India
| | | | - K. S. Gopala
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | | | - P. Swain
- ICAR-National Rice Research Institute, Cuttack, India
| | - Ashok K. Singh
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - N. K. Singh
- ICAR-National Research Centre on Plant Biotechnology, New Delhi, India
| | | | - R. P. Sharma
- ICAR-National Research Centre on Plant Biotechnology, New Delhi, India
| |
Collapse
|
157
|
Yoon H, Yang J, Liang W, Zhang D, An G. OsVIL2 Regulates Spikelet Development by Controlling Regulatory Genes in Oryza sativa. FRONTIERS IN PLANT SCIENCE 2018; 9:102. [PMID: 29467779 PMCID: PMC5808121 DOI: 10.3389/fpls.2018.00102] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 01/18/2018] [Indexed: 05/08/2023]
Abstract
Flower organ patterning is accomplished by spatial and temporal functioning of various regulatory genes. We previously reported that Oryza sativa VIN3-LIKE 2 (OsVIL2) induces flowering by mediating the trimethylation of Histone H3 on LFL1 chromatin. In this study, we report that OsVIL2 also plays crucial roles during spikelet development. Two independent lines of T-DNA insertional mutants in the gene displayed altered organ numbers and abnormal morphology in all spikelet organs. Scanning electron microscopy showed that osvil2 affected organ primordia formation during early spikelet development. Expression analysis revealed that OsVIL2 is expressed in all stages of the spikelet developmental. Transcriptome analysis of developing spikelets revealed that several regulatory genes involved in that process and the formation of floral organs were down-regulated in osvil2. These results suggest that OsVIL2 is required for proper expression of the regulatory genes that control floral organ number and morphology.
Collapse
Affiliation(s)
- Hyeryung Yoon
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, South Korea
| | - Jungil Yang
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, South Korea
| | - Wanqi Liang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University–University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University–University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Gynheung An
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, South Korea
- *Correspondence: Gynheung An,
| |
Collapse
|
158
|
Liao Y, Bai Q, Xu P, Wu T, Guo D, Peng Y, Zhang H, Deng X, Chen X, Luo M, Ali A, Wang W, Wu X. Mutation in Rice Abscisic Acid2 Results in Cell Death, Enhanced Disease-Resistance, Altered Seed Dormancy and Development. FRONTIERS IN PLANT SCIENCE 2018; 9:405. [PMID: 29643863 PMCID: PMC5882781 DOI: 10.3389/fpls.2018.00405] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 03/14/2018] [Indexed: 05/15/2023]
Abstract
Lesion mimic mutants display spontaneous cell death, and thus are valuable for understanding the molecular mechanism of cell death and disease resistance. Although a lot of such mutants have been characterized in rice, the relationship between lesion formation and abscisic acid (ABA) synthesis pathway is not reported. In the present study, we identified a rice mutant, lesion mimic mutant 9150 (lmm9150), exhibiting spontaneous cell death, pre-harvest sprouting, enhanced growth, and resistance to rice bacterial and blast diseases. Cell death in the mutant was accompanied with excessive accumulation of H2O2. Enhanced disease resistance was associated with cell death and upregulation of defense-related genes. Map-based cloning identified a G-to-A point mutation resulting in a D-to-N substitution at the amino acid position 110 of OsABA2 (LOC_Os03g59610) in lmm9150. Knock-out of OsABA2 through CRISPR/Cas9 led to phenotypes similar to those of lmm9150. Consistent with the function of OsABA2 in ABA biosynthesis, ABA level in the lmm9150 mutant was significantly reduced. Moreover, exogenous application of ABA could rescue all the mutant phenotypes of lmm9150. Taken together, our data linked ABA deficiency to cell death and provided insight into the role of ABA in rice disease resistance.
Collapse
Affiliation(s)
- Yongxiang Liao
- Rice Research Institute, Sichuan Agricultural University, Sichuan, China
| | - Que Bai
- Rice Research Institute, Sichuan Agricultural University, Sichuan, China
| | - Peizhou Xu
- Rice Research Institute, Sichuan Agricultural University, Sichuan, China
| | - Tingkai Wu
- Rice Research Institute, Sichuan Agricultural University, Sichuan, China
| | - Daiming Guo
- Rice Research Institute, Sichuan Agricultural University, Sichuan, China
| | - Yongbin Peng
- Rice Research Institute, Sichuan Agricultural University, Sichuan, China
| | - Hongyu Zhang
- Rice Research Institute, Sichuan Agricultural University, Sichuan, China
| | - Xiaoshu Deng
- Rice Research Institute, Sichuan Agricultural University, Sichuan, China
| | - Xiaoqiong Chen
- Rice Research Institute, Sichuan Agricultural University, Sichuan, China
| | - Ming Luo
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organization (CSIRO), Canberra, ACT, Australia
| | - Asif Ali
- Rice Research Institute, Sichuan Agricultural University, Sichuan, China
| | - Wenming Wang
- Rice Research Institute, Sichuan Agricultural University, Sichuan, China
- *Correspondence: Wenming Wang, Xianjun Wu,
| | - Xianjun Wu
- Rice Research Institute, Sichuan Agricultural University, Sichuan, China
- *Correspondence: Wenming Wang, Xianjun Wu,
| |
Collapse
|
159
|
Song G, Kwon CT, Kim SH, Shim Y, Lim C, Koh HJ, An G, Kang K, Paek NC. The Rice SPOTTED LEAF4 ( SPL4) Encodes a Plant Spastin That Inhibits ROS Accumulation in Leaf Development and Functions in Leaf Senescence. FRONTIERS IN PLANT SCIENCE 2018; 9:1925. [PMID: 30666263 PMCID: PMC6330318 DOI: 10.3389/fpls.2018.01925] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 12/11/2018] [Indexed: 05/21/2023]
Abstract
Lesion mimic mutants (LMMs) are usually controlled by single recessive mutations that cause the formation of necrotic lesions without pathogen invasion. These genetic defects are useful to reveal the regulatory mechanisms of defense-related programmed cell death in plants. Molecular evidence has been suggested that some of LMMs are closely associated with the regulation of leaf senescence in rice (Oryza sativa). Here, we characterized the mutation underlying spotted leaf4 (spl4), which results in lesion formation and also affects leaf senescence in rice. Map-based cloning revealed that the γ ray-induced spl4-1 mutant has a single base substitution in the splicing site of the SPL4 locus, resulting in a 13-bp deletion within the encoded microtubule-interacting-and-transport (MIT) spastin protein containing an AAA-type ATPase domain. The T-DNA insertion spl4-2 mutant exhibited spontaneous lesions similar to those of the spl4-1 mutant, confirming that SPL4 is responsible for the LMM phenotype. In addition, both spl4 mutants exhibited delayed leaf yellowing during dark-induced or natural senescence. Western blot analysis of spl4 mutant leaves suggested possible roles for SPL4 in the degradation of photosynthetic proteins. Punctate signals of SPL4-fused fluorescent proteins were detected in the cytoplasm, similar to the cellular localization of animal spastin. Based on these findings, we propose that SPL4 is a plant spastin that is involved in multiple aspects of leaf development, including senescence.
Collapse
Affiliation(s)
- Giha Song
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Choon-Tak Kwon
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Suk-Hwan Kim
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Yejin Shim
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Chaemyeong Lim
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Hee-Jong Koh
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Gynheung An
- Department of Plant Molecular Systems Biotechnology, Crop Biotech Institute, Kyung Hee University, Seoul, South Korea
| | - Kiyoon Kang
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
- *Correspondence: Kiyoon Kang, Nam-Chon Paek,
| | - Nam-Chon Paek
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
- *Correspondence: Kiyoon Kang, Nam-Chon Paek,
| |
Collapse
|
160
|
Niu M, Wang Y, Wang C, Lyu J, Wang Y, Dong H, Long W, Wang D, Kong W, Wang L, Guo X, Sun L, Hu T, Zhai H, Wang H, Wan J. ALR encoding dCMP deaminase is critical for DNA damage repair, cell cycle progression and plant development in rice. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:5773-5786. [PMID: 29186482 DOI: 10.1093/jxb/erx380] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 09/26/2017] [Indexed: 06/07/2023]
Abstract
Deoxycytidine monophosphate deaminase (dCMP deaminase, DCD) is crucial to the production of dTTP needed for DNA replication and damage repair. However, the effect of DCD deficiency and its molecular mechanism are poorly understood in plants. Here, we isolated and characterized a rice albinic leaf and growth retardation (alr) mutant that is manifested by albinic leaves, dwarf stature and necrotic lesions. Map-based cloning and complementation revealed that ALR encodes a DCD protein. OsDCD was expressed ubiquitously in all tissues. Enzyme activity assays showed that OsDCD catalyses conversion of dCMP to dUMP, and the ΔDCD protein in the alr mutant is a loss-of-function protein that lacks binding ability. We report that alr plants have typical DCD-mediated imbalanced dNTP pools with decreased dTTP; exogenous dTTP recovers the wild-type phenotype. A comet assay and Trypan Blue staining showed that OsDCD deficiency causes accumulation of DNA damage in the alr mutant, sometimes leading to cell apoptosis. Moreover, OsDCD deficiency triggered cell cycle checkpoints and arrested cell progression at the G1/S-phase. The expression of nuclear and plastid genome replication genes was down-regulated under decreased dTTP, and together with decreased cell proliferation and defective chloroplast development in the alr mutant this demonstrated the molecular and physiological roles of DCD-mediated dNTP pool balance in plant development.
Collapse
Affiliation(s)
- Mei Niu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, China
| | - Yihua Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, China
| | - Chunming Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, China
| | - Jia Lyu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, China
| | - Yunlong Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, China
| | - Hui Dong
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, China
| | - Wuhua Long
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, China
| | - Di Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, China
| | - Weiyi Kong
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, China
| | - Liwei Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, China
| | - Xiuping Guo
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, China
| | - Liting Sun
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, China
| | - Tingting Hu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, China
| | - Huqu Zhai
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, China
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, China
| | - Haiyang Wang
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, China
| | - Jianmin Wan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, China
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, China
| |
Collapse
|
161
|
Kwon CT, Kim SH, Song G, Kim D, Paek NC. Two NADPH: Protochlorophyllide Oxidoreductase (POR) Isoforms Play Distinct Roles in Environmental Adaptation in Rice. RICE (NEW YORK, N.Y.) 2017; 10:1. [PMID: 28078486 PMCID: PMC5226909 DOI: 10.1186/s12284-016-0141-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 12/29/2016] [Indexed: 05/05/2023]
Abstract
BACKGROUND NADPH: protochlorophyllide oxidoreductase (POR) is an essential enzyme that catalyzes the photoreduction of protochlorophyllide to chlorophyllide, which is ultimately converted to chlorophyll in developing leaves. Rice has two POR isoforms, OsPORA and OsPORB. OsPORA is expressed in the dark during early leaf development; OsPORB is expressed throughout leaf development regardless of light conditions. The faded green leaf (fgl) is a loss-of-function osporB mutant that displays necrotic lesions and variegation in the leaves due to destabilized grana thylakoids, and has increased numbers of plastoglobules in the chloroplasts. To investigate whether the function of OsPORA can complement that of OsPORB, we constitutively overexpressed OsPORA in fgl mutant. RESULTS In the 35S:OsPORA/fgl (termed OPAO) transgenic plants, the necrotic lesions of the mutant disappeared and the levels of photosynthetic pigments and proteins, as well as plastid structure, were recovered in developing leaves under natural long days in the paddy field and under short days in an artificially controlled growth room. Under constant light conditions, however, total chlorophyll and carotenoid levels in the developing leaves of OPAO plants were lower than those of wild type. Moreover, the OPAO plants exhibited mild defects in mature leaves beginning at the early reproductive stage in the paddy field. CONCLUSIONS The physiological function of OsPORB in response to constant light or during reproductive growth cannot be completely replaced by constitutive activity of OsPORA, although the biochemical functions of OsPORA and OsPORB are redundant. Therefore, we suggest that the two OsPORs have differentiated over the course of evolution, playing distinct roles in the adaptation of rice to the environment.
Collapse
Affiliation(s)
- Choon-Tak Kwon
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826 Republic of Korea
| | - Suk-Hwan Kim
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826 Republic of Korea
| | - Giha Song
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826 Republic of Korea
| | - Dami Kim
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826 Republic of Korea
| | - Nam-Chon Paek
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826 Republic of Korea
- Crop Biotechnology Institute, Institutes of Green Bio Science and Technology, Seoul National University, Pyeongchang, 25354 Republic of Korea
| |
Collapse
|
162
|
Pérez‐Martín F, Yuste‐Lisbona FJ, Pineda B, Angarita‐Díaz MP, García‐Sogo B, Antón T, Sánchez S, Giménez E, Atarés A, Fernández‐Lozano A, Ortíz‐Atienza A, García‐Alcázar M, Castañeda L, Fonseca R, Capel C, Goergen G, Sánchez J, Quispe JL, Capel J, Angosto T, Moreno V, Lozano R. A collection of enhancer trap insertional mutants for functional genomics in tomato. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:1439-1452. [PMID: 28317264 PMCID: PMC5633825 DOI: 10.1111/pbi.12728] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 03/03/2017] [Accepted: 03/15/2017] [Indexed: 05/06/2023]
Abstract
With the completion of genome sequencing projects, the next challenge is to close the gap between gene annotation and gene functional assignment. Genomic tools to identify gene functions are based on the analysis of phenotypic variations between a wild type and its mutant; hence, mutant collections are a valuable resource. In this sense, T-DNA collections allow for an easy and straightforward identification of the tagged gene, serving as the basis of both forward and reverse genetic strategies. This study reports on the phenotypic and molecular characterization of an enhancer trap T-DNA collection in tomato (Solanum lycopersicum L.), which has been produced by Agrobacterium-mediated transformation using a binary vector bearing a minimal promoter fused to the uidA reporter gene. Two genes have been isolated from different T-DNA mutants, one of these genes codes for a UTP-glucose-1-phosphate uridylyltransferase involved in programmed cell death and leaf development, which means a novel gene function reported in tomato. Together, our results support that enhancer trapping is a powerful tool to identify novel genes and regulatory elements in tomato and that this T-DNA mutant collection represents a highly valuable resource for functional analyses in this fleshy-fruited model species.
Collapse
Affiliation(s)
- Fernando Pérez‐Martín
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL)Universidad de AlmeríaAlmeríaSpain
| | | | - Benito Pineda
- Instituto de Biología Molecular y Celular de Plantas (UPV‐CSIC)Universidad Politécnica de ValenciaValenciaSpain
| | - María Pilar Angarita‐Díaz
- Instituto de Biología Molecular y Celular de Plantas (UPV‐CSIC)Universidad Politécnica de ValenciaValenciaSpain
| | - Begoña García‐Sogo
- Instituto de Biología Molecular y Celular de Plantas (UPV‐CSIC)Universidad Politécnica de ValenciaValenciaSpain
| | - Teresa Antón
- Instituto de Biología Molecular y Celular de Plantas (UPV‐CSIC)Universidad Politécnica de ValenciaValenciaSpain
| | - Sibilla Sánchez
- Instituto de Biología Molecular y Celular de Plantas (UPV‐CSIC)Universidad Politécnica de ValenciaValenciaSpain
| | - Estela Giménez
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL)Universidad de AlmeríaAlmeríaSpain
| | - Alejandro Atarés
- Instituto de Biología Molecular y Celular de Plantas (UPV‐CSIC)Universidad Politécnica de ValenciaValenciaSpain
| | - Antonia Fernández‐Lozano
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL)Universidad de AlmeríaAlmeríaSpain
| | - Ana Ortíz‐Atienza
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL)Universidad de AlmeríaAlmeríaSpain
| | - Manuel García‐Alcázar
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL)Universidad de AlmeríaAlmeríaSpain
| | - Laura Castañeda
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL)Universidad de AlmeríaAlmeríaSpain
| | - Rocío Fonseca
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL)Universidad de AlmeríaAlmeríaSpain
| | - Carmen Capel
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL)Universidad de AlmeríaAlmeríaSpain
| | - Geraldine Goergen
- Instituto de Biología Molecular y Celular de Plantas (UPV‐CSIC)Universidad Politécnica de ValenciaValenciaSpain
| | - Jorge Sánchez
- Instituto de Biología Molecular y Celular de Plantas (UPV‐CSIC)Universidad Politécnica de ValenciaValenciaSpain
| | - Jorge L. Quispe
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL)Universidad de AlmeríaAlmeríaSpain
| | - Juan Capel
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL)Universidad de AlmeríaAlmeríaSpain
| | - Trinidad Angosto
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL)Universidad de AlmeríaAlmeríaSpain
| | - Vicente Moreno
- Instituto de Biología Molecular y Celular de Plantas (UPV‐CSIC)Universidad Politécnica de ValenciaValenciaSpain
| | - Rafael Lozano
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL)Universidad de AlmeríaAlmeríaSpain
| |
Collapse
|
163
|
Piao W, Han SH, Sakuraba Y, Paek NC. Rice 7-Hydroxymethyl Chlorophyll a Reductase Is Involved in the Promotion of Chlorophyll Degradation and Modulates Cell Death Signaling. Mol Cells 2017; 40:773-786. [PMID: 29047257 PMCID: PMC5682254 DOI: 10.14348/molcells.2017.0127] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 08/10/2017] [Accepted: 08/23/2017] [Indexed: 11/30/2022] Open
Abstract
The loss of green coloration via chlorophyll (Chl) degradation typically occurs during leaf senescence. To date, many Chl catabolic enzymes have been identified and shown to interact with light harvesting complex II to form a Chl degradation complex in senescing chloroplasts; this complex might metabolically channel phototoxic Chl catabolic intermediates to prevent oxidative damage to cells. The Chl catabolic enzyme 7-hydroxymethyl Chl a reductase (HCAR) converts 7-hydroxymethyl Chl a (7-HMC a) to Chl a. The rice (Oryza sativa) genome contains a single HCAR homolog (OsHCAR), but its exact role remains unknown. Here, we show that an oshcar knockout mutant exhibits persistent green leaves during both dark-induced and natural senescence, and accumulates 7-HMC a and pheophorbide a (Pheo a) in green leaf blades. Interestingly, both rice and Arabidopsis hcar mutants exhibit severe cell death at the vegetative stage; this cell death largely occurs in a light intensity-dependent manner. In addition, 7-HMC a treatment led to the generation of singlet oxygen (1O2) in Arabidopsis and rice protoplasts in the light. Under herbicide-induced oxidative stress conditions, leaf necrosis was more severe in hcar plants than in wild type, and HCAR-overexpressing plants were more tolerant to reactive oxygen species than wild type. Therefore, in addition to functioning in the conversion of 7-HMC a to Chl a in senescent leaves, HCAR may play a critical role in protecting plants from high light-induced damage by preventing the accumulation of 7-HMC a and Pheo a in developing and mature leaves at the vegetative stage.
Collapse
Affiliation(s)
- Weilan Piao
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826,
Korea
| | - Su-Hyun Han
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826,
Korea
| | - Yasuhito Sakuraba
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826,
Korea
| | - Nam-Chon Paek
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826,
Korea
| |
Collapse
|
164
|
Wu J, Wang Y, Kim SG, Jung KH, Gupta R, Kim J, Park Y, Kang KY, Kim ST. A secreted chitinase-like protein (OsCLP) supports root growth through calcium signaling in Oryza sativa. PHYSIOLOGIA PLANTARUM 2017; 161:273-284. [PMID: 28401568 DOI: 10.1111/ppl.12579] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 02/22/2017] [Accepted: 03/07/2017] [Indexed: 05/27/2023]
Abstract
Chitinases belong to a conserved protein family and play multiple roles in defense, development and growth regulation in plants. Here, we identified a secreted chitinase-like protein, OsCLP, which functions in rice growth. A T-DNA insertion mutant of OsCLP (osclp) showed significant retardation of root and shoot growth. A comparative proteomic analysis was carried out using root tissue of wild-type and the osclp mutant to understand the OsCLP-mediated rice growth retardation. Results obtained revealed that proteins related to glycolysis (phosphoglycerate kinase), stress adaption (chaperonin) and calcium signaling (calreticulin and CDPK1) were differentially regulated in osclp roots. Fura-2 molecular probe staining, which is an intracellular calcium indicator, and inductively coupled plasma-mass spectrometry (ICP-MS) analysis suggested that the intracellular calcium content was significantly lower in roots of osclp as compared with the wild-type. Exogenous application of Ca2+ resulted in successful recovery of both primary and lateral root growth in osclp. Moreover, overexpression of OsCLP resulted in improved growth with modified seed shape and starch structure; however, the overall yield remained unaffected. Taken together, our results highlight the involvement of OsCLP in rice growth by regulating the intracellular calcium concentrations.
Collapse
Affiliation(s)
- Jingni Wu
- Division of Applied Life Science (BK21 program), Gyeongsang National University, Jinju, 660-701, South Korea
| | - Yiming Wang
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
| | - Sang Gon Kim
- National Institute of Crop Science, Rural Development Administration, Suwon, 16429, South Korea
| | - Ki-Hong Jung
- Department of Plant Molecular Systems Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, 446-701, South Korea
| | - Ravi Gupta
- Department of Plant Bioscience, Pusan National University, Miryang, 627-706, South Korea
- Life and Industry Convergence Research Institute, Pusan National University, Miryang, 627-706, South Korea
| | - Joonyup Kim
- Life and Industry Convergence Research Institute, Pusan National University, Miryang, 627-706, South Korea
| | - Younghoon Park
- Life and Industry Convergence Research Institute, Pusan National University, Miryang, 627-706, South Korea
- Department of Horticultural Bioscience, Pusan National University, Miryang, 627-706, South Korea
| | - Kyu Young Kang
- Division of Applied Life Science (BK21 program), Gyeongsang National University, Jinju, 660-701, South Korea
- National Institute of Crop Science, Rural Development Administration, Suwon, 16429, South Korea
| | - Sun Tae Kim
- Department of Plant Bioscience, Pusan National University, Miryang, 627-706, South Korea
| |
Collapse
|
165
|
Nieves-Cordones M, Mohamed S, Tanoi K, Kobayashi NI, Takagi K, Vernet A, Guiderdoni E, Périn C, Sentenac H, Véry AA. Production of low-Cs + rice plants by inactivation of the K + transporter OsHAK1 with the CRISPR-Cas system. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 92:43-56. [PMID: 28670755 DOI: 10.1111/tpj.13632] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 06/20/2017] [Accepted: 06/29/2017] [Indexed: 05/20/2023]
Abstract
The occurrence of radiocesium in food has raised sharp health concerns after nuclear accidents. Despite being present at low concentrations in contaminated soils (below μm), cesium (Cs+ ) can be taken up by crops and transported to their edible parts. This plant capacity to take up Cs+ from low concentrations has notably affected the production of rice (Oryza sativa L.) in Japan after the nuclear accident at Fukushima in 2011. Several strategies have been put into practice to reduce Cs+ content in this crop species such as contaminated soil removal or adaptation of agricultural practices, including dedicated fertilizer management, with limited impact or pernicious side-effects. Conversely, the development of biotechnological approaches aimed at reducing Cs+ accumulation in rice remain challenging. Here, we show that inactivation of the Cs+ -permeable K+ transporter OsHAK1 with the CRISPR-Cas system dramatically reduced Cs+ uptake by rice plants. Cs+ uptake in rice roots and in transformed yeast cells that expressed OsHAK1 displayed very similar kinetics parameters. In rice, Cs+ uptake is dependent on two functional properties of OsHAK1: (i) a poor capacity of this system to discriminate between Cs+ and K+ ; and (ii) a high capacity to transport Cs+ from very low external concentrations that is likely to involve an active transport mechanism. In an experiment with a Fukushima soil highly contaminated with 137 Cs+ , plants lacking OsHAK1 function displayed strikingly reduced levels of 137 Cs+ in roots and shoots. These results open stimulating perspectives to smartly produce safe food in regions contaminated by nuclear accidents.
Collapse
Affiliation(s)
- Manuel Nieves-Cordones
- Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes, UMR 5004 CNRS/386 INRA/Montpellier SupAgro/Université Montpellier, Montpellier Cedex 2, 34060, France
| | - Sonia Mohamed
- Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes, UMR 5004 CNRS/386 INRA/Montpellier SupAgro/Université Montpellier, Montpellier Cedex 2, 34060, France
- CIRAD, UMR AGAP, Montpellier Cedex 5, 34398, France
| | - Keitaro Tanoi
- Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
- PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Natsuko I Kobayashi
- Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Keiko Takagi
- Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | | | | | | | - Hervé Sentenac
- Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes, UMR 5004 CNRS/386 INRA/Montpellier SupAgro/Université Montpellier, Montpellier Cedex 2, 34060, France
| | - Anne-Aliénor Véry
- Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes, UMR 5004 CNRS/386 INRA/Montpellier SupAgro/Université Montpellier, Montpellier Cedex 2, 34060, France
| |
Collapse
|
166
|
Meng X, Yu H, Zhang Y, Zhuang F, Song X, Gao S, Gao C, Li J. Construction of a Genome-Wide Mutant Library in Rice Using CRISPR/Cas9. MOLECULAR PLANT 2017. [PMID: 28645639 DOI: 10.1016/j.molp.2017.06.006] [Citation(s) in RCA: 167] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Affiliation(s)
- Xiangbing Meng
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hong Yu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yi Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | | | - Xiaoguang Song
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Songsong Gao
- Beijing ViewSolid Biotechnology, Beijing 102206, China
| | - Caixia Gao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Jiayang Li
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of the Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
167
|
Hu B, Zhang G, Liu W, Shi J, Wang H, Qi M, Li J, Qin P, Ruan Y, Huang H, Zhang Y, Xu L. Divergent regeneration-competent cells adopt a common mechanism for callus initiation in angiosperms. ACTA ACUST UNITED AC 2017; 4:132-139. [PMID: 28975033 PMCID: PMC5617900 DOI: 10.1002/reg2.82] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 06/13/2017] [Accepted: 06/14/2017] [Indexed: 12/22/2022]
Abstract
In tissue culture, the formation of callus from detached explants is a key step in plant regeneration; however, the regenerative abilities in different species are variable. While nearly all parts of organs of the dicot Arabidopsis thaliana are ready for callus formation, mature regions of organs in monocot rice (Oryza sativa) and other cereals are extremely unresponsive to tissue culture. Whether there is a common molecular mechanism beyond these different regenerative phenomena is unclear. Here we show that the Arabidopsis and rice use different regeneration‐competent cells to initiate callus, whereas the cells all adopt WUSCHEL‐RELATED HOMEOBOX 11 (WOX11) and WOX5 during cell fate transition. Different from Arabidopsis which maintains regeneration‐competent cells in mature organs, rice exhausts those cells during organ maturation, resulting in regenerative inability in mature organs. Our study not only explains this old perplexity in agricultural biotechnology, but also provides common molecular markers for tissue culture of different angiosperm species.
Collapse
Affiliation(s)
- Bo Hu
- National Key Laboratory of Plant Molecular Genetics CAS Center for Excellence in Molecular Plant Sciences Institute of Plant Physiology and Ecology Shanghai Institutes for Biological Sciences Chinese Academy of Sciences 300 Fenglin Road Shanghai 200032 China.,Pre-National Laboratory for Crop Germplasm Innovation and Resource Utilization Hunan Agricultural University Changsha Hunan 410128 China
| | - Guifang Zhang
- National Key Laboratory of Plant Molecular Genetics CAS Center for Excellence in Molecular Plant Sciences Institute of Plant Physiology and Ecology Shanghai Institutes for Biological Sciences Chinese Academy of Sciences 300 Fenglin Road Shanghai 200032 China.,University of Chinese Academy of Sciences 19A Yuquan Road Changsha Beijing 100049 China
| | - Wu Liu
- National Key Laboratory of Plant Molecular Genetics CAS Center for Excellence in Molecular Plant Sciences Institute of Plant Physiology and Ecology Shanghai Institutes for Biological Sciences Chinese Academy of Sciences 300 Fenglin Road Shanghai 200032 China
| | - Jianmin Shi
- National Key Laboratory of Plant Molecular Genetics CAS Center for Excellence in Molecular Plant Sciences Institute of Plant Physiology and Ecology Shanghai Institutes for Biological Sciences Chinese Academy of Sciences 300 Fenglin Road Shanghai 200032 China.,College of Life and Environment Sciences Shanghai Normal University Shanghai 200234 China
| | - Hua Wang
- National Key Laboratory of Plant Molecular Genetics CAS Center for Excellence in Molecular Plant Sciences Institute of Plant Physiology and Ecology Shanghai Institutes for Biological Sciences Chinese Academy of Sciences 300 Fenglin Road Shanghai 200032 China
| | - Meifang Qi
- National Key Laboratory of Plant Molecular Genetics CAS Center for Excellence in Molecular Plant Sciences Institute of Plant Physiology and Ecology Shanghai Institutes for Biological Sciences Chinese Academy of Sciences 300 Fenglin Road Shanghai 200032 China.,University of Chinese Academy of Sciences 19A Yuquan Road Changsha Beijing 100049 China
| | - Jiqin Li
- National Key Laboratory of Plant Molecular Genetics CAS Center for Excellence in Molecular Plant Sciences Institute of Plant Physiology and Ecology Shanghai Institutes for Biological Sciences Chinese Academy of Sciences 300 Fenglin Road Shanghai 200032 China
| | - Peng Qin
- Department of Instrument Science and Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Ying Ruan
- Pre-National Laboratory for Crop Germplasm Innovation and Resource Utilization Hunan Agricultural University Changsha Hunan 410128 China
| | - Hai Huang
- National Key Laboratory of Plant Molecular Genetics CAS Center for Excellence in Molecular Plant Sciences Institute of Plant Physiology and Ecology Shanghai Institutes for Biological Sciences Chinese Academy of Sciences 300 Fenglin Road Shanghai 200032 China
| | - Yijing Zhang
- National Key Laboratory of Plant Molecular Genetics CAS Center for Excellence in Molecular Plant Sciences Institute of Plant Physiology and Ecology Shanghai Institutes for Biological Sciences Chinese Academy of Sciences 300 Fenglin Road Shanghai 200032 China
| | - Lin Xu
- National Key Laboratory of Plant Molecular Genetics CAS Center for Excellence in Molecular Plant Sciences Institute of Plant Physiology and Ecology Shanghai Institutes for Biological Sciences Chinese Academy of Sciences 300 Fenglin Road Shanghai 200032 China.,University of Chinese Academy of Sciences 19A Yuquan Road Changsha Beijing 100049 China
| |
Collapse
|
168
|
The activation of OsEIL1 on YUC8 transcription and auxin biosynthesis is required for ethylene-inhibited root elongation in rice early seedling development. PLoS Genet 2017; 13:e1006955. [PMID: 28829777 PMCID: PMC5581195 DOI: 10.1371/journal.pgen.1006955] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 09/01/2017] [Accepted: 08/04/2017] [Indexed: 11/21/2022] Open
Abstract
Rice is an important monocotyledonous crop worldwide; it differs from the dicotyledonous plant Arabidopsis in many aspects. In Arabidopsis, ethylene and auxin act synergistically to regulate root growth and development. However, their interaction in rice is still unclear. Here, we report that the transcriptional activation of OsEIL1 on the expression of YUC8/REIN7 and indole-3-pyruvic acid (IPA)-dependent auxin biosynthesis is required for ethylene-inhibited root elongation. Using an inhibitor of YUC activity, which regulates auxin biosynthesis via the conversion of IPA to indole-3-acetic acid (IAA), we showed that ethylene-inhibited primary root elongation is dependent on YUC-based auxin biosynthesis. By screening phenotypes of seedling primary root from mutagenesis libraries following ethylene treatment, we identified a rice ethylene-insensitive mutant, rein7-1, in which YUC8/REIN7 is truncated at its C-terminus. Mutation in YUC8/REIN7 reduced auxin biosynthesis in rice, while YUC8/REIN7 overexpression enhanced ethylene sensitivity in the roots. Moreover, YUC8/REIN7 catalyzed the conversion of IPA to IAA, truncated version at C-terminal end of the YUC8/REIN7 resulted in significant reduction of enzymatic activity, indicating that YUC8/REIN7 is required for IPA-dependent auxin biosynthesis and ethylene-inhibited root elongation in rice early seedlings. Further investigations indicated that ethylene induced YUC8/REIN7 expression and promoted auxin accumulation in roots. Addition of low concentrations of IAA rescued the ethylene response in the rein7-1, strongly demonstrating that ethylene-inhibited root elongation depends on IPA-dependent auxin biosynthesis. Genetic studies revealed that YUC8/REIN7-mediated auxin biosynthesis functioned downstream of OsEIL1, which directly activated the expression of YUC8/REIN7. Thus, our findings reveal a model of interaction between ethylene and auxin in rice seedling primary root elongation, enhancing our understanding of ethylene signaling in rice. Rice is an important crop worldwide and is grown in water-saturated environments during its life cycle. This unique feature confers that rice might have different aspects from Arabidopsis in ethylene signaling. Although the crosstalk between ethylene and auxin is well understood in Arabidopsis, however, the interaction in rice is largely unclear. Here, we show that YUC8/REIN7, a member of the YUC gene family, catalyzing the conversion of IPA to IAA in auxin biosynthesis, is transcriptionally modulated by ethylene signaling component OsEIL1, and mainly participates in auxin biosynthesis and ethylene-inhibited root growth. We first identified that ethylene-inhibited root elongation is suppressed by the inhibitor of YUC activity, and YUC8/REIN7 is required for IPA-dependent auxin biosynthesis, indicating that YUC8/REIN7 is involved in ethylene-inhibited root elongation in rice early seedlings. Moreover, ethylene induced YUC8/REIN7 transcription and promoted auxin accumulation in roots. Addition of low concentrations of IAA rescued the ethylene response in the rein7-1, demonstrating that ethylene stimulates auxin biosynthesis dependent on YUC8/REIN7 function. Further evidence revealed that OsEIL1 transcriptionally activates the expression of YUC8/REIN7, and YUC8/REIN7-mediated auxin biosynthesis genetically acts downstream of OsEIL1. Our data in the present report identified an interaction between ethylene and auxin in rice seedling primary root elongation, increasing our understanding of ethylene signaling in rice root growth.
Collapse
|
169
|
Lee S, Jeong H, Lee S, Lee J, Kim SJ, Park JW, Woo HR, Lim PO, An G, Nam HG, Hwang D. Molecular bases for differential aging programs between flag and second leaves during grain-filling in rice. Sci Rep 2017; 7:8792. [PMID: 28821707 PMCID: PMC5562787 DOI: 10.1038/s41598-017-07035-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 06/21/2017] [Indexed: 01/31/2023] Open
Abstract
Flag leaves (FL) and second leaves (SL) in rice show differential aging patterns during monocarpic senescence. Coordination of aging programs between FL and SL is important for grain yield and quality. However, the molecular bases for differential aging programs between FL and SL have not been systematically explored in rice. Here, we performed mRNA-sequencing of FL and SL at six time points during grain-filling and identified four molecular bases for differential aging programs between FL and SL: phenylpropanoid biosynthesis, photosynthesis, amino acid (AA) transport, and hormone response. Of them, photosynthesis (carbon assimilation) and AA transport (nitrogen remobilization) predominantly occurred in FL and SL, respectively, during grain-filling. Unlike other molecular bases, AA transport showed consistent differential expression patterns between FL and SL in independent samples. Moreover, long-distance AA transporters showed invariant differential expression patterns between FL and SL after panicle removal, which was consistent to invariant differential nitrogen contents between FL and SL after panicle removal. Therefore, our results suggest that the supplies of carbon and nitrogen to seeds is functionally segregated between FL and SL and that long-distance AA transport is an invariant core program for high nitrogen remobilization in SL.
Collapse
Affiliation(s)
- Shinyoung Lee
- Center for Plant Ageing Research, IBS, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 711-873, Republic of Korea
| | - Hyobin Jeong
- Center for Plant Ageing Research, IBS, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 711-873, Republic of Korea
| | - Sichul Lee
- Center for Plant Ageing Research, IBS, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 711-873, Republic of Korea
| | - Jinwon Lee
- Center for Plant Ageing Research, IBS, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 711-873, Republic of Korea
| | - Sun-Ji Kim
- Center for Plant Ageing Research, IBS, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 711-873, Republic of Korea
| | - Ji-Won Park
- Center for Plant Ageing Research, IBS, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 711-873, Republic of Korea
| | - Hye Ryun Woo
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 711-873, Republic of Korea
| | - Pyung Ok Lim
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 711-873, Republic of Korea
| | - Gynheung An
- Department of Plant Molecular Systems Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, 446-701, Republic of Korea
| | - Hong Gil Nam
- Center for Plant Ageing Research, IBS, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 711-873, Republic of Korea. .,Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 711-873, Republic of Korea.
| | - Daehee Hwang
- Center for Plant Ageing Research, IBS, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 711-873, Republic of Korea. .,Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 711-873, Republic of Korea.
| |
Collapse
|
170
|
Li G, Wu Y, Liu G, Xiao X, Wang P, Gao T, Xu M, Han Q, Wang Y, Guo T, Kang G. Large-scale Proteomics Combined with Transgenic Experiments Demonstrates An Important Role of Jasmonic Acid in Potassium Deficiency Response in Wheat and Rice. Mol Cell Proteomics 2017; 16:1889-1905. [PMID: 28821602 PMCID: PMC5671998 DOI: 10.1074/mcp.ra117.000032] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Indexed: 12/03/2022] Open
Abstract
Potassium (K+) is the most abundant inorganic cation in plants, and molecular dissection of K+ deficiency has received considerable interest in order to minimize K+ fertilizer input and develop high quality K+-efficient crops. However, the molecular mechanism of plant responses to K+ deficiency is still poorly understood. In this study, 2-week-old bread wheat seedlings grown hydroponically in Hoagland solution were transferred to K+-free conditions for 8 d, and their root and leaf proteome profiles were assessed using the iTRAQ proteome method. Over 4000 unique proteins were identified, and 818 K+-responsive protein species showed significant differences in abundance. The differentially expressed protein species were associated with diverse functions and exhibited organ-specific differences. Most of the differentially expressed protein species related to hormone synthesis were involved in jasmonic acid (JA) synthesis and the upregulated abundance of JA synthesis-related enzymes could result in the increased JA concentrations. Abundance of allene oxide synthase (AOS), one key JA synthesis-related enzyme, was significantly increased in K+-deficient wheat seedlings, and its overexpression markedly increased concentrations of K+ and JA, altered the transcription levels of some genes encoding K+-responsive protein species, as well as enhanced the tolerance of rice plants to low K+ or K+ deficiency. Moreover, rice AOS mutant (osaos) exhibited more sensitivity to low K+ or K+ deficiency. Our findings could highlight the importance of JA in K+ deficiency, and imply a network of molecular processes underlying plant responses to K+ deficiency.
Collapse
Affiliation(s)
- Gezi Li
- From the ‡National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, 450002, China.,§Collaborative Innovation Center of Henan Food Crops, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yufang Wu
- From the ‡National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, 450002, China
| | - Guoyu Liu
- From the ‡National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, 450002, China
| | - Xianghong Xiao
- §Collaborative Innovation Center of Henan Food Crops, Henan Agricultural University, Zhengzhou, 450002, China
| | - Pengfei Wang
- From the ‡National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, 450002, China
| | - Tian Gao
- From the ‡National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, 450002, China
| | - Mengjun Xu
- §Collaborative Innovation Center of Henan Food Crops, Henan Agricultural University, Zhengzhou, 450002, China
| | - Qiaoxia Han
- ¶National Engineering Research Centre for Wheat, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yonghua Wang
- From the ‡National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, 450002, China.,¶National Engineering Research Centre for Wheat, Henan Agricultural University, Zhengzhou, 450002, China
| | - Tiancai Guo
- From the ‡National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, 450002, China.,¶National Engineering Research Centre for Wheat, Henan Agricultural University, Zhengzhou, 450002, China
| | - Guozhang Kang
- From the ‡National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, 450002, China; .,§Collaborative Innovation Center of Henan Food Crops, Henan Agricultural University, Zhengzhou, 450002, China
| |
Collapse
|
171
|
Kim SW, Lee SK, Jeong HJ, An G, Jeon JS, Jung KH. Crosstalk between diurnal rhythm and water stress reveals an altered primary carbon flux into soluble sugars in drought-treated rice leaves. Sci Rep 2017; 7:8214. [PMID: 28811563 PMCID: PMC5557844 DOI: 10.1038/s41598-017-08473-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 06/30/2017] [Indexed: 12/13/2022] Open
Abstract
Plants retain rhythmic physiological responses when adapting to environmental challenges. However, possible integrations between drought conditions and those responses have not received much focus, especially regarding crop plants, and the relationship between abiotic stress and the diurnal cycle is generally not considered. Therefore, we conducted a genome-wide analysis to identify genes showing both diurnal regulation and water-deficiency response in rice (Oryza sativa). Among the 712 drought-responsive genes primary identified, 56.6% are diurnally expressed while 47.6% of the 761 that are down-regulated by drought are also diurnal. Using the β-glucuronidase reporter system and qRT-PCR analyses, we validated expression patterns of two candidate genes, thereby supporting the reliability of our transcriptome data. MapMan analysis indicated that diurnal genes up-regulated by drought are closely associated with the starch-sucrose pathway while those that are down-regulated are involved in photosynthesis. We then confirmed that starch-sucrose contents and chlorophyll fluorescence are altered in a diurnal manner under drought stress, suggesting these metabolic diurnal alterations as a novel indicator to evaluate the drought response in rice leaves. We constructed a functional gene network associated with the starch-sucrose KEGG metabolic pathway for further functional studies, and also developed a regulatory pathway model that includes OsbZIP23 transcription factor.
Collapse
Affiliation(s)
- Seo-Woo Kim
- Graduate School of Biotechnology & Crop Biotech Institute, Kyung Hee University, Yongin, 17104, Korea
| | - Sang-Kyu Lee
- Graduate School of Biotechnology & Crop Biotech Institute, Kyung Hee University, Yongin, 17104, Korea
| | - Hee-Jeong Jeong
- Graduate School of Biotechnology & Crop Biotech Institute, Kyung Hee University, Yongin, 17104, Korea
| | - Gynheung An
- Graduate School of Biotechnology & Crop Biotech Institute, Kyung Hee University, Yongin, 17104, Korea
| | - Jong-Seong Jeon
- Graduate School of Biotechnology & Crop Biotech Institute, Kyung Hee University, Yongin, 17104, Korea.
| | - Ki-Hong Jung
- Graduate School of Biotechnology & Crop Biotech Institute, Kyung Hee University, Yongin, 17104, Korea.
| |
Collapse
|
172
|
Lee SC, Kim SJ, Han SK, An G, Kim SR. A gibberellin-stimulated transcript, OsGASR1, controls seedling growth and α-amylase expression in rice. JOURNAL OF PLANT PHYSIOLOGY 2017; 214:116-122. [PMID: 28482332 DOI: 10.1016/j.jplph.2017.04.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 04/20/2017] [Accepted: 04/21/2017] [Indexed: 05/07/2023]
Abstract
From a T-DNA-tagging population in rice, we identified OsGASR1 (LOC_Os03g55290), a member of the GAST (gibberellin (GA)-Stimulated Transcript) family that is induced by salt stress and ABA treatment. This gene was highly expressed in the regions of cell proliferation and panicle development, as revealed by a GUS assay of the mutant line. In the osgasr1 mutants, the second leaf blades were much longer than those of the segregating wild type due to an increase in cell length. In addition, five α-amylase genes were up-regulated in the mutants, implying that OsGASR1 is a negative regulator of those genes. These results suggest that OsGASR1 plays important roles in seedling growth and α-amylase gene expression.
Collapse
Affiliation(s)
- Sang-Choon Lee
- Department of Life Science, Sogang University, Seoul 121-742, Republic of Korea; Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, 151-921 Seoul, Republic of Korea
| | - Soo-Jin Kim
- Department of Life Science, Sogang University, Seoul 121-742, Republic of Korea
| | - Soon-Ki Han
- Department of Life Science, Sogang University, Seoul 121-742, Republic of Korea
| | - Gynheung An
- Crop Biotech Institute & Department of Plant Molecular Systems Biotechnology, Kyung Hee University, Yongin, 446-701, Republic of Korea
| | - Seong-Ryong Kim
- Department of Life Science, Sogang University, Seoul 121-742, Republic of Korea.
| |
Collapse
|
173
|
Sun J, Zheng T, Yu J, Wu T, Wang X, Chen G, Tian Y, Zhang H, Wang Y, Terzaghi W, Wang C, Wan J. TSV, a putative plastidic oxidoreductase, protects rice chloroplasts from cold stress during development by interacting with plastidic thioredoxin Z. THE NEW PHYTOLOGIST 2017; 215:240-255. [PMID: 28248438 DOI: 10.1111/nph.14482] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Accepted: 01/15/2017] [Indexed: 05/23/2023]
Abstract
Rice is vulnerable to cold stress. Seedlings are very sensitive to cold stress and this harms global rice production. The effects of cold on chloroplast development are well known, but little is known about the underlying molecular mechanisms. Here, we isolated a temperature-sensitive virescent (tsv) mutant that is extremely sensitive to cold stress. It displayed defective chloroplasts, decreased chlorophyll and zero survivorship under cold stress. We isolated and identified TSV by map-based cloning and rescue experiments, combined with genetic, cytological and molecular biological analyses. We found that TSV, a putative plastidic oxidoreductase, is a new type of virescent protein. A mutation in tsv causes premature termination of the gene product. The activity of plastid-encoded RNA polymerase (PEP) and the expression of genes participating in chlorophyll synthesis were severely reduced in the tsv mutant under cold stress, but not at normal temperatures. TSV expression was induced by low temperatures. Strikingly, TSV interacted with OsTrxZ (a subunit of PEP in chloroplasts) and enhanced OsTrxZ stability under low temperatures. We demonstrated that TSV protects rice chloroplasts from cold stress by interacting with OsTrxZ. These results provide novel insights into ways in which rice chloroplast development and chlorophyll synthesis are protected by TSV under cold stress.
Collapse
Affiliation(s)
- Juan Sun
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Tianhui Zheng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jun Yu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Tingting Wu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xinhua Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Gaoming Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yunlu Tian
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Huan Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yihua Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - William Terzaghi
- Department of Biology, Wilkes University, Wilkes-Barre, PA, 18766, USA
| | - Chunming Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, 210095, China
| | - Jianmin Wan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop, Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
174
|
Zhang YY, Hao YY, Wang YH, Wang CM, Wang YL, Long WH, Wang D, Liu X, Jiang L, Wan JM. Lethal albinic seedling, encoding a threonyl-tRNA synthetase, is involved in development of plastid protein synthesis system in rice. PLANT CELL REPORTS 2017; 36:1053-1064. [PMID: 28405745 DOI: 10.1007/s00299-017-2136-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 03/27/2017] [Indexed: 05/26/2023]
Abstract
An albinic rice is caused by mutation of threonyl-tRNA synthetase, which is essential for plant development by stabilizing of NEP and PEP gene expressions and chloroplast protein synthesis. Chloroplast biogenesis and development depend on complex genetic mechanisms. Apart from their function in translation, aminoacyl-tRNA synthetases (aaRSs) play additional role in gene expression regulation, RNA splicing, and cytokine activity. However, their detailed functions in plant development are still poorly understood. We isolated a lethal albinic seedling (las) mutant in rice. Physiological and ultrastructural analysis of las mutant plants revealed weak chlorophyll fluorescence, negligible chlorophyll accumulation, and defective thylakoid membrane development. By map based cloning we determined that the LAS allele gene encodes threonyl-tRNA synthetase (ThrRS). LAS was constitutively expressed with relatively high level in leaves. NEP-dependent gene transcripts accumulated in the developing chloroplasts, while PEP-dependent transcripts were reduced in the las mutant. This result indicated that PEP activity was impaired. Chloroplast-encoded protein levels were sharply reduced in the las mutant. Biogenesis of chloroplast rRNAs (16S and 23S rRNA) was arrested, leading to impaired translation and protein synthesis. Together, our findings indicated that LAS is essential not only for chloroplast development by stabilizing the NEP and PEP gene expression, but also for protein synthesis and construction of the ribosome system in rice chloroplasts.
Collapse
Affiliation(s)
- Yuan-Yan Zhang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuan-Yuan Hao
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yi-Hua Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chun-Ming Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yun-Long Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wu-Hua Long
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Di Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xi Liu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ling Jiang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jian-Min Wan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China.
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
175
|
Wu Y, Yang W, Wei J, Yoon H, An G. Transcription Factor OsDOF18 Controls Ammonium Uptake by Inducing Ammonium Transporters in Rice Roots. Mol Cells 2017; 40:178-185. [PMID: 28292004 PMCID: PMC5386955 DOI: 10.14348/molcells.2017.2261] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 01/05/2017] [Accepted: 01/06/2017] [Indexed: 12/29/2022] Open
Abstract
Nitrogen is one of the most important mineral elements for plant growth. We studied the functional roles of Oryza sativa DNA BINDING WITH ONE FINGER 18 (OsDOF18) in controlling ammonium uptake. The growth of null mutants of OsDOF18 was retarded in a medium containing ammonium as the sole nitrogen source. In contrast, those mutants grew normally in a medium with nitrate as the sole nitrogen source. The gene expression was induced by ammonium but not by nitrate. Uptake of ammonium was lower in osdof18 mutants than in the wild type, while that of nitrate was not affected by the mutation. This indicated that OsDOF18 is involved in regulating ammonium transport. Among the 10 ammonium transporter genes examined here, expression of OsAMT1;1, OsAMT1;3, OsAMT2;1, and OsAMT4;1 was reduced in osdof18 mutants, demonstrating that the ammonium transporter genes function downstream of OsDOF18. Genes for nitrogen assimilation were also affected in the mutants. These results provide evidence that OsDOF18 mediates ammonium transport and nitrogen distribution, which then affects nitrogen use efficiency.
Collapse
Affiliation(s)
- Yunfei Wu
- Crop Biotech Institute and Graduate School of Biotechnology, Kyung Hee University, Yongin 17104,
Korea
| | - Wenzhu Yang
- Crop Biotech Institute and Graduate School of Biotechnology, Kyung Hee University, Yongin 17104,
Korea
| | - Jinhuan Wei
- Crop Biotech Institute and Graduate School of Biotechnology, Kyung Hee University, Yongin 17104,
Korea
| | - Hyeryung Yoon
- Crop Biotech Institute and Graduate School of Biotechnology, Kyung Hee University, Yongin 17104,
Korea
| | - Gynheung An
- Crop Biotech Institute and Graduate School of Biotechnology, Kyung Hee University, Yongin 17104,
Korea
| |
Collapse
|
176
|
Bashir K, Nozoye T, Nagasaka S, Rasheed S, Miyauchi N, Seki M, Nakanishi H, Nishizawa NK. Paralogs and mutants show that one DMA synthase functions in iron homeostasis in rice. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:1785-1795. [PMID: 28369596 PMCID: PMC5444454 DOI: 10.1093/jxb/erx065] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Rice (Oryza sativa) secretes 2'-deoxymugineic acid (DMA) to acquire insoluble iron (Fe) from the rhizosphere. In rice, DMA is synthesized by DMA synthase 1 (OsDMAS1), a member of the aldo-keto reductase super family. We screened OsDMAS1 paralogs for DMA synthesis. None of these paralogs displayed in vitro DMA synthesis activity, suggesting that rice only harbors one functional DMAS. We further characterized OsDMAS1 mutant plants. We failed to screen homozygous knock-out plants (dmas-1), so we characterized DMAS knock-down plants (dmas-kd1 and dmas-kd2). Under Fe-deficient conditions, dmas-kd1 plants were more chlorotic compared to the wild-type (WT) plants, and the expression of OsNAS3, OsYSL2, OsIRT1, and OsIRO2 was significantly up-regulated in the dmas-kd1 mutant, indicating that metal homeostasis was significantly disturbed. The secretion of DMA in dmas-kd1 was not significantly reduced. The dmas-kd1 plants accumulated less Fe in their roots compared to WT plants when grown with 10 μM FeSO4. The dmas-kd1 plants accumulated more Zn in their roots compared to WT plants under Fe-deficient, Fe-EDTA, and FeSO4 conditions. In both dehusked rice seeds (brown rice) and polished rice, no differences were observed for Fe, Cu, or Mn accumulation, whereas dmas-kd1 seeds significantly accumulated more Zn in brown rice. Our data suggests that rice only harbors one functional gene for DMA synthesis. In addition, the knock-down of OsDMAS1 significantly up-regulates the genes involved in Fe uptake and homeostasis.
Collapse
Affiliation(s)
- Khurram Bashir
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
- Center for Sustainable Resource Science, RIKEN Yokohama Campus, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa, 230-0045, Japan
| | - Tomoko Nozoye
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
- Center for Liberal Arts, Meiji Gakuin University, 1518 Kamikurata-cho, Totsuka-ku, Yokohama 244-8539, Japan
| | - Seiji Nagasaka
- Graduate School of Life Sciences, Toyo University, 1-1-1 Izumino Itakura-machi, Gunma 374-0193, Japan
| | - Sultana Rasheed
- Center for Sustainable Resource Science, RIKEN Yokohama Campus, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa, 230-0045, Japan
| | - Nanako Miyauchi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Motoaki Seki
- Center for Sustainable Resource Science, RIKEN Yokohama Campus, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa, 230-0045, Japan
- CREST, JST, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Hiromi Nakanishi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Naoko K Nishizawa
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi-shi, Ishikawa 921-8836, Japan
| |
Collapse
|
177
|
Wang S, Lei C, Wang J, Ma J, Tang S, Wang C, Zhao K, Tian P, Zhang H, Qi C, Cheng Z, Zhang X, Guo X, Liu L, Wu C, Wan J. SPL33, encoding an eEF1A-like protein, negatively regulates cell death and defense responses in rice. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:899-913. [PMID: 28199670 PMCID: PMC5441852 DOI: 10.1093/jxb/erx001] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Lesion-mimic mutants are useful to dissect programmed cell death and defense-related pathways in plants. Here we identified a new rice lesion-mimic mutant, spotted leaf 33 (spl33) and cloned the causal gene by a map-based cloning strategy. SPL33 encodes a eukaryotic translation elongation factor 1 alpha (eEF1A)-like protein consisting of a non-functional zinc finger domain and three functional EF-Tu domains. spl33 exhibited programmed cell death-mediated cell death and early leaf senescence, as evidenced by analyses of four histochemical markers, namely H2O2 accumulation, cell death, callose accumulation and TUNEL-positive nuclei, and by four indicators, namely loss of chlorophyll, breakdown of chloroplasts, down-regulation of photosynthesis-related genes, and up-regulation of senescence-associated genes. Defense responses were induced in the spl33 mutant, as shown by enhanced resistance to both the fungal pathogen Magnaporthe oryzae and the bacterial pathogen Xanthomonas oryzae pv. oryzae and by up-regulation of defense response genes. Transcriptome analysis of the spl33 mutant and its wild type provided further evidence for the biological effects of loss of SPL33 function in cell death, leaf senescence and defense responses in rice. Detailed analyses showed that reactive oxygen species accumulation may be the cause of cell death in the spl33 mutant, whereas uncontrolled activation of multiple innate immunity-related receptor genes and signaling molecules may be responsible for the enhanced disease resistance observed in spl33. Thus, we have demonstrated involvement of an eEF1A-like protein in programmed cell death and provided a link to defense responses in rice.
Collapse
Affiliation(s)
- Shuai Wang
- Institute of Crop Science, Chinese Academy of Agriculture Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing 100081, China
| | - Cailin Lei
- Institute of Crop Science, Chinese Academy of Agriculture Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing 100081, China
| | - Jiulin Wang
- Institute of Crop Science, Chinese Academy of Agriculture Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing 100081, China
| | - Jian Ma
- Institute of Crop Science, Chinese Academy of Agriculture Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing 100081, China
| | - Sha Tang
- Institute of Crop Science, Chinese Academy of Agriculture Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing 100081, China
| | - Chunlian Wang
- Institute of Crop Science, Chinese Academy of Agriculture Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing 100081, China
| | - Kaijun Zhao
- Institute of Crop Science, Chinese Academy of Agriculture Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing 100081, China
| | - Peng Tian
- Institute of Crop Science, Chinese Academy of Agriculture Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing 100081, China
| | - Huan Zhang
- Key Laboratory of Crop Genetics and Germplasm Enhancement/Jiangsu Provincial Center of Plant Gene Engineering, Nanjing Agricultural University, Nanjing 210095, China
| | - Changyan Qi
- Institute of Crop Science, Chinese Academy of Agriculture Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing 100081, China
| | - Zhijun Cheng
- Institute of Crop Science, Chinese Academy of Agriculture Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing 100081, China
| | - Xin Zhang
- Institute of Crop Science, Chinese Academy of Agriculture Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing 100081, China
| | - Xiuping Guo
- Institute of Crop Science, Chinese Academy of Agriculture Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing 100081, China
| | - Linglong Liu
- Key Laboratory of Crop Genetics and Germplasm Enhancement/Jiangsu Provincial Center of Plant Gene Engineering, Nanjing Agricultural University, Nanjing 210095, China
| | - Chuanyin Wu
- Institute of Crop Science, Chinese Academy of Agriculture Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing 100081, China
| | - Jianmin Wan
- Institute of Crop Science, Chinese Academy of Agriculture Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing 100081, China
- Key Laboratory of Crop Genetics and Germplasm Enhancement/Jiangsu Provincial Center of Plant Gene Engineering, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
178
|
Wu J, Yang R, Yang Z, Yao S, Zhao S, Wang Y, Li P, Song X, Jin L, Zhou T, Lan Y, Xie L, Zhou X, Chu C, Qi Y, Cao X, Li Y. ROS accumulation and antiviral defence control by microRNA528 in rice. NATURE PLANTS 2017; 3:16203. [PMID: 28059073 DOI: 10.1038/nplants.2016.203] [Citation(s) in RCA: 183] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 11/23/2016] [Indexed: 05/18/2023]
Abstract
MicroRNAs (miRNAs) are key regulators of plant-pathogen interactions. Modulating miRNA function has emerged as a new strategy to produce virus resistance traits1-5. However, the miRNAs involved in antiviral defence and the underlying mechanisms remain largely elusive. We previously demonstrated that sequestration by Argonaute (AGO) proteins plays an important role in regulating miRNA function in antiviral defence pathways6. Here we reveal that cleavage-defective AGO18 complexes sequester microRNA528 (miR528) upon viral infection. We show that miR528 negatively regulates viral resistance in rice by cleaving L-ascorbate oxidase (AO) messenger RNA, thereby reducing AO-mediated accumulation of reactive oxygen species. Upon viral infection, miR528 becomes preferentially associated with AGO18, leading to elevated AO activity, higher basal reactive oxygen species accumulation and enhanced antiviral defence. Our findings reveal a mechanism in which antiviral defence is boosted through suppression of an miRNA that negatively regulates viral resistance. This mechanism could be manipulated to engineer virus-resistant crop plants.
Collapse
Affiliation(s)
- Jianguo Wu
- The State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Rongxin Yang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhirui Yang
- The State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Shengze Yao
- The State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Shanshan Zhao
- The State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Yu Wang
- The State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Pingchuan Li
- Agriculture and Agri-Food Canada, Morden, Manitoba R6M 1Y5, Canada
| | - Xianwei Song
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Lian Jin
- The State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Tong Zhou
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Ying Lan
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Lianhui Xie
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xueping Zhou
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310029, China
| | - Chengcai Chu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yijun Qi
- Center for Plant Biology, Tsinghua-Peking Center for Life Sciences, College of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiaofeng Cao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yi Li
- The State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
179
|
Jang S, Li HY. Oryza sativa BRASSINOSTEROID UPREGULATED1 LIKE1 Induces the Expression of a Gene Encoding a Small Leucine-Rich-Repeat Protein to Positively Regulate Lamina Inclination and Grain Size in Rice. FRONTIERS IN PLANT SCIENCE 2017; 8:1253. [PMID: 28769958 PMCID: PMC5511847 DOI: 10.3389/fpls.2017.01253] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 07/03/2017] [Indexed: 05/05/2023]
Abstract
Oryza sativa BRASSINOSTEROID UPREGULATED1 LIKE1 (OsBUL1) positively affects lamina inclination and grain size. OsBUL1 knock-out (osbul1) plants as well as transgenic rice with reduced level of OsBUL1 expression produce erect leaves and small grains. Here, we identified a putative downstream gene of OsBUL1, OsBUL1 DOWNSTREAM GENE1 (OsBDG1) encoding a small protein with short leucine-rich-repeats by cDNA microarray analyses in the lamina joint and panicles of wild-type and osbul1 plants. Transgenic rice plants with increased OsBDG1 expression exhibit increased leaf angle and grain size, which is similar to an OsBDG1 activation tagging line whereas double stranded RNA interference (dsRNAi) lines for OsBDG1 knock-down generate erect leaves with smaller grains. Moreover, transgenic rice expressing OsBDG1 under the control of OsBUL1 promoter also shows enlarged leaf bending and grain size phenotypes. Two genes, OsAP2 (OsAPETALA2) and OsWRKY24 were identified as being upregulated transcriptional activators in the lamina joint of pOsBUL1:OsBDG1 plants and induced expression of the two genes driven by OsBUL1 promoter caused increased lamina inclination and grain size in rice. Thus, our work demonstrates that a series of genes showing expression cascades are involved in the promotion of cell elongation in lamina joints and functionally cause increased lamina inclination.
Collapse
Affiliation(s)
- Seonghoe Jang
- Biotechnology Center in Southern Taiwan of Agricultural Biotechnology Research Center, Academia SinicaTainan, Taiwan
- Institute of Tropical Plant Science, National Cheng Kung UniversityTainan, Taiwan
- *Correspondence: Seonghoe Jang,
| | - Hsing-Yi Li
- Biotechnology Center in Southern Taiwan of Agricultural Biotechnology Research Center, Academia SinicaTainan, Taiwan
| |
Collapse
|
180
|
Macaya-Sanz D, Chen J, Kalluri UC, Muchero W, Tschaplinski TJ, Gunter LE, Simon SJ, Biswal AK, Bryan AC, Payyavula R, Xie M, Yang Y, Zhang J, Mohnen D, Tuskan GA, DiFazio SP. Agronomic performance of Populus deltoides trees engineered for biofuel production. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:253. [PMID: 29213313 PMCID: PMC5707814 DOI: 10.1186/s13068-017-0934-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 10/19/2017] [Indexed: 05/02/2023]
Abstract
BACKGROUND One of the major barriers to the development of lignocellulosic feedstocks is the recalcitrance of plant cell walls to deconstruction and saccharification. Recalcitrance can be reduced by targeting genes involved in cell wall biosynthesis, but this can have unintended consequences that compromise the agronomic performance of the trees under field conditions. Here we report the results of a field trial of fourteen distinct transgenic Populus deltoides lines that had previously demonstrated reduced recalcitrance without yield penalties under greenhouse conditions. RESULTS Survival and productivity of the trial were excellent in the first year, and there was little evidence for reduced performance of the transgenic lines with modified target gene expression. Surprisingly, the most striking phenotypic effects in this trial were for two empty-vector control lines that had modified bud set and bud flush. This is most likely due to somaclonal variation or insertional mutagenesis. Traits related to yield, crown architecture, herbivory, pathogen response, and frost damage showed few significant differences between target gene transgenics and empty vector controls. However, there were a few interesting exceptions. Lines overexpressing the DUF231 gene, a putative O-acetyltransferase, showed early bud flush and marginally increased height growth. Lines overexpressing the DUF266 gene, a putative glycosyltransferase, had significantly decreased stem internode length and slightly higher volume index. Finally, lines overexpressing the PFD2 gene, a putative member of the prefoldin complex, had a slightly reduced volume index. CONCLUSIONS This field trial demonstrates that these cell wall modifications, which decreased cell wall recalcitrance under laboratory conditions, did not seriously compromise first-year performance in the field, despite substantial challenges, including an outbreak of a stem boring insect (Gypsonoma haimbachiana), attack by a leaf rust pathogen (Melampsora spp.), and a late frost event. This bodes well for the potential utility of these lines as advanced biofuels feedstocks.
Collapse
Affiliation(s)
- David Macaya-Sanz
- Department of Biology, West Virginia University, Morgantown, WV 26506 USA
| | - Jin‐Gui Chen
- BioEnergy Science Center and Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Udaya C. Kalluri
- BioEnergy Science Center and Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Wellington Muchero
- BioEnergy Science Center and Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Timothy J. Tschaplinski
- BioEnergy Science Center and Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Lee E. Gunter
- BioEnergy Science Center and Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Sandra J. Simon
- Department of Biology, West Virginia University, Morgantown, WV 26506 USA
| | - Ajaya K. Biswal
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602 USA
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602 USA
| | - Anthony C. Bryan
- BioEnergy Science Center and Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Raja Payyavula
- BioEnergy Science Center and Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Meng Xie
- BioEnergy Science Center and Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Yongil Yang
- BioEnergy Science Center and Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Jin Zhang
- BioEnergy Science Center and Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Debra Mohnen
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602 USA
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602 USA
| | - Gerald A. Tuskan
- BioEnergy Science Center and Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Stephen P. DiFazio
- Department of Biology, West Virginia University, Morgantown, WV 26506 USA
| |
Collapse
|
181
|
Wang FZ, Chen MX, Yu LJ, Xie LJ, Yuan LB, Qi H, Xiao M, Guo W, Chen Z, Yi K, Zhang J, Qiu R, Shu W, Xiao S, Chen QF. OsARM1, an R2R3 MYB Transcription Factor, Is Involved in Regulation of the Response to Arsenic Stress in Rice. FRONTIERS IN PLANT SCIENCE 2017; 8:1868. [PMID: 29163593 PMCID: PMC5670359 DOI: 10.3389/fpls.2017.01868] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 10/13/2017] [Indexed: 05/18/2023]
Abstract
Bioaccumulation of arsenic (As) in rice (Oryza sativa) increases human exposure to this toxic, carcinogenic element. Recent studies identified several As transporters, but the regulation of these transporters remains unclear. Here, we show that the rice R2R3 MYB transcription factor OsARM1 (ARSENITE-RESPONSIVE MYB1) regulates As-associated transporters genes. Treatment with As(III) induced OsARM1 transcript accumulation and an OsARM1-GFP fusion localized to the nucleus. Histochemical analysis of OsARM1pro::GUS lines indicated that OsARM1 was expressed in the phloem of vascular bundles in basal and upper nodes. Knockout of OsARM1 (OsARM1-KO CRISPR/Cas9-generated mutants) improved tolerance to As(III) and overexpression of OsARM1 (OsARM1-OE lines) increased sensitivity to As(III). Measurement of As in As(III)-treated plants showed that under low As(III) conditions (2 μM), more As was transported from the roots to the shoots in OsARM1-KOs. By contrast, more As accumulated in the roots in OsARM1-OEs in response to high As(III) exposure (25 μM). In particular, the As(III) levels in node I were significantly higher in OsARM1-KOs, but significantly lower in OsARM1-OEs, compared to wild-type plants, implying that OsARM1 is important for the regulation of root-to-shoot translocation of As. Moreover, OsLsi1, OsLsi2, and OsLsi6, which encode key As transporters, were significantly downregulated in OsARM1-OEs and upregulated in OsARM1-KOs compared to wild type. Chromatin immunoprecipitation-quantitative PCR of OsARM1-OEs indicated that OsARM1 binds to the conserved MYB-binding sites in the promoters or genomic regions of OsLsi1, OsLsi2, and OsLsi6 in rice. Our findings suggest that the OsARM1 transcription factor has essential functions in regulating As uptake and root-to-shoot translocation in rice.
Collapse
Affiliation(s)
- Feng-Zhu Wang
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Mo-Xian Chen
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Lu-Jun Yu
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Li-Juan Xie
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Li-Bing Yuan
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Hua Qi
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ming Xiao
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wuxiu Guo
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhe Chen
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, China
| | - Keke Yi
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jianhua Zhang
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
- Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Rongliang Qiu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, China
| | - Wensheng Shu
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shi Xiao
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Qin-Fang Chen
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Qin-Fang Chen
| |
Collapse
|
182
|
Yoo YH, Nalini Chandran AK, Park JC, Gho YS, Lee SW, An G, Jung KH. OsPhyB-Mediating Novel Regulatory Pathway for Drought Tolerance in Rice Root Identified by a Global RNA-Seq Transcriptome Analysis of Rice Genes in Response to Water Deficiencies. FRONTIERS IN PLANT SCIENCE 2017; 8:580. [PMID: 28491065 PMCID: PMC5405136 DOI: 10.3389/fpls.2017.00580] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 03/30/2017] [Indexed: 05/18/2023]
Abstract
Water deficiencies are one of the most serious challenges to crop productivity. To improve our understanding of soil moisture stress, we performed RNA-Seq analysis using roots from 4-week-old rice seedlings grown in soil that had been subjected to drought conditions for 2-3 d. In all, 1,098 genes were up-regulated in response to soil moisture stress for 3 d, which causes severe damage in root development after recovery, unlikely that of 2 d. Comparison with previous transcriptome data produced in drought condition indicated that more than 68% of our candidate genes were not previously identified, emphasizing the novelty of our transcriptome analysis for drought response in soil condition. We then validated the expression patterns of two candidate genes using a promoter-GUS reporter system in planta and monitored the stress response with novel molecular markers. An integrating omics tool, MapMan analysis, indicated that RING box E3 ligases in the ubiquitin-proteasome pathways are significantly stimulated by induced drought. We also analyzed the functions of 66 candidate genes that have been functionally investigated previously, suggesting the primary roles of our candidate genes in resistance or tolerance relating traits including drought tolerance (29 genes) through literature searches besides diverse regulatory roles of our candidate genes for morphological traits (15 genes) or physiological traits (22 genes). Of these, we used a T-DNA insertional mutant of rice phytochrome B (OsPhyB) that negatively regulates a plant's degree of tolerance to water deficiencies through the control of total leaf area and stomatal density based on previous finding. Unlike previous result, we found that OsPhyB represses the activity of ascorbate peroxidase and catalase mediating reactive oxygen species (ROS) processing machinery required for drought tolerance of roots in soil condition, suggesting the potential significance of remaining uncharacterized candidate genes for manipulating drought tolerance in rice.
Collapse
|
183
|
Nguyen HP, Jeong HY, Jeon SH, Kim D, Lee C. Rice pectin methylesterase inhibitor28 (OsPMEI28) encodes a functional PMEI and its overexpression results in a dwarf phenotype through increased pectin methylesterification levels. JOURNAL OF PLANT PHYSIOLOGY 2017; 208:17-25. [PMID: 27889517 DOI: 10.1016/j.jplph.2016.11.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Revised: 10/30/2016] [Accepted: 11/14/2016] [Indexed: 05/02/2023]
Abstract
Pectin methylesterases (PMEs, EC 3.1.1.11) belonging to carbohydrate esterase family 8 cleave the ester bond between a galacturonic acid and an methyl group and the resulting change in methylesterification level plays an important role during the growth and development of plants. Optimal pectin methylesterification status in each cell type is determined by the balance between PME activity and post-translational PME inhibition by PME inhibitors (PMEIs). Rice contains 49 PMEIs and none of them are functionally characterized. Genomic sequence analysis led to the identification of rice PMEI28 (OsPMEI28). Recombinant OsPMEI28 exhibited inhibitory activity against commercial PME protein with the highest activities detected at pH 8.5. Overexpression of OsPMEI28 in rice resulted in an increased level of cell wall bound methylester groups and differential changes in the composition of cell wall neutral monosaccharides and lignin content in culm tissues. Consequently, transgenic plants overexpressing OsPMEI28 exhibited dwarf phenotypes and reduced culm diameter. Our data indicate that OsPMEI28 functions as a critical structural modulator by regulating the degree of pectin methylesterification and that an impaired status of pectin methylesterification affects physiochemical properties of the cell wall components and causes abnormal cell extensibility in rice culm tissues.
Collapse
Affiliation(s)
- Hong Phuong Nguyen
- Graduate School of Biotechnology, Kyung Hee University, Yongin 446-701, Republic of Korea
| | - Ho Young Jeong
- Graduate School of Biotechnology, Kyung Hee University, Yongin 446-701, Republic of Korea
| | - Seung Ho Jeon
- Seed Research Center, Gyeongnam National University of Science and Technology, Jinju-Si 52725, Republic of Korea
| | - Donghyuk Kim
- Graduate School of Biotechnology, Kyung Hee University, Yongin 446-701, Republic of Korea
| | - Chanhui Lee
- Graduate School of Biotechnology, Kyung Hee University, Yongin 446-701, Republic of Korea; Department of Plant and Environmental New Resources, Kyung Hee University, Yongin 446-701, Republic of Korea.
| |
Collapse
|
184
|
Men X, Shi J, Liang W, Zhang Q, Lian G, Quan S, Zhu L, Luo Z, Chen M, Zhang D. Glycerol-3-Phosphate Acyltransferase 3 (OsGPAT3) is required for anther development and male fertility in rice. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:513-526. [PMID: 28082511 PMCID: PMC6055571 DOI: 10.1093/jxb/erw445] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 11/09/2016] [Indexed: 05/20/2023]
Abstract
Lipid molecules are key structural components of plant male reproductive organs, such as the anther and pollen. Although advances have been made in the understanding of acyl lipids in plant reproduction, the metabolic pathways of other lipid compounds, particularly glycerolipids, are not fully understood. Here we report that an endoplasmic reticulum-localized enzyme, Glycerol-3-Phosphate Acyltransferase 3 (OsGPAT3), plays an indispensable role in anther development and pollen formation in rice. OsGPAT3 is preferentially expressed in the tapetum and microspores of the anther. Compared with wild-type plants, the osgpat3 mutant displays smaller, pale yellow anthers with defective anther cuticle, degenerated pollen with defective exine, and abnormal tapetum development and degeneration. Anthers of the osgpat3 mutant have dramatic reductions of all aliphatic lipid contents. The defective cuticle and pollen phenotype coincide well with the down-regulation of sets of genes involved in lipid metabolism and regulation of anther development. Taking these findings together, this work reveals the indispensable role of a monocot-specific glycerol-3-phosphate acyltransferase in male reproduction in rice.
Collapse
Affiliation(s)
- Xiao Men
- State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University and University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jianxin Shi
- State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University and University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Wanqi Liang
- State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University and University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Qianfei Zhang
- State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University and University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Gaibin Lian
- State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University and University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Sheng Quan
- State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University and University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Lu Zhu
- State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University and University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhijing Luo
- State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University and University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Mingjiao Chen
- State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University and University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Dabing Zhang
- State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University and University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, South Australia, Australia
- Correspondence:
| |
Collapse
|
185
|
Hinrichs M, Fleck AT, Biedermann E, Ngo NS, Schreiber L, Schenk MK. An ABC Transporter Is Involved in the Silicon-Induced Formation of Casparian Bands in the Exodermis of Rice. FRONTIERS IN PLANT SCIENCE 2017; 8:671. [PMID: 28503184 PMCID: PMC5408559 DOI: 10.3389/fpls.2017.00671] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 04/12/2017] [Indexed: 05/18/2023]
Abstract
Silicon (Si) promotes the formation of Casparian bands (CB) in rice and reduces radial oxygen loss (ROL). Further transcriptomic approaches revealed several candidate genes involved in the Si-induced formation of CB such as ATP binding cassette (ABC) transporter, Class III peroxidases, ligases and transferases. Investigation of these genes by means of overexpression (OE) and knockout (KO) mutants revealed the contribution of the ABC transporter (OsABCG25) to CB formation in the exodermis, which was also reflected in the expression of other OsABCG25 in the Si-promoted formation of CB genes related to the phenylpropanoid pathway, such as phenylalanine-ammonia-lyase, diacylglycerol O-acyltransferase and 4-coumarate-CoA ligase. Differential CB development in mutants and Si supply also affected the barrier function of the exodermis. OE of the ABC transporter and Si supply reduced the ROL from roots and Fe uptake. No effect on ROL and Fe uptake could be observed for the KO mutant. The presented research confirms the impact of the OsABCG25 in the Si-promoted formation of CB and its barrier functions.
Collapse
Affiliation(s)
- Martin Hinrichs
- Institute of Plant Nutrition, Faculty of Natural Science, Leibniz Universität HannoverHannover, Germany
- *Correspondence: Martin Hinrichs,
| | - Alexander T. Fleck
- Institute of Plant Nutrition, Faculty of Natural Science, Leibniz Universität HannoverHannover, Germany
| | - Eline Biedermann
- Institute of Plant Nutrition, Faculty of Natural Science, Leibniz Universität HannoverHannover, Germany
| | - Ngoc S. Ngo
- Institute of Plant Nutrition, Faculty of Natural Science, Leibniz Universität HannoverHannover, Germany
| | - Lukas Schreiber
- Institute of Cellular and Molecular Botany, Department of Ecophysiology, University of BonnBonn, Germany
| | - Manfred K. Schenk
- Institute of Plant Nutrition, Faculty of Natural Science, Leibniz Universität HannoverHannover, Germany
| |
Collapse
|
186
|
Vo KTX, Kim CY, Hoang TV, Lee SK, Shirsekar G, Seo YS, Lee SW, Wang GL, Jeon JS. OsWRKY67 Plays a Positive Role in Basal and XA21-Mediated Resistance in Rice. FRONTIERS IN PLANT SCIENCE 2017; 8:2220. [PMID: 29375598 PMCID: PMC5769460 DOI: 10.3389/fpls.2017.02220] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 12/18/2017] [Indexed: 05/07/2023]
Abstract
WRKY proteins play important roles in transcriptional reprogramming in plants in response to various stresses including pathogen attack. In this study, we functionally characterized a rice WRKY gene, OsWRKY67, whose expression is upregulated against pathogen challenges. Activation of OsWRKY67 by T-DNA tagging significantly improved the resistance against two rice pathogens, Magnaporthe oryzae and Xanthomonas oryzae pv. oryzae (Xoo). Reactive oxygen species (ROS) rapidly accumulated in OsWRKY67 activation mutant lines in response to elicitor treatment, compared with the controls. Overexpression of OsWRKY67 in rice confirmed enhanced disease resistance, but led to a restriction of plant growth in transgenic lines with high levels of OsWRKY67 protein. OsWRKY67 RNAi lines significantly reduced resistance to M. oryzae and Xoo isolates tested, and abolished XA21-mediated resistance, implying the possibility of broad-spectrum resistance from OsWRKY67. Transcriptional activity and subcellular localization assays indicated that OsWRKY67 is present in the nucleus where it functions as a transcriptional activator. Quantitative PCR revealed that the pathogenesis-related genes, PR1a, PR1b, PR4, PR10a, and PR10b, are upregulated in OsWRKY67 overexpression lines. Therefore, these results suggest that OsWRKY67 positively regulates basal and XA21-mediated resistance, and is a promising candidate for genetic improvement of disease resistance in rice.
Collapse
Affiliation(s)
- Kieu T. X. Vo
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, South Korea
| | - Chi-Yeol Kim
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, South Korea
| | - Trung V. Hoang
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, South Korea
| | - Sang-Kyu Lee
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, South Korea
| | - Gautam Shirsekar
- Department of Plant Pathology, The Ohio State University, Columbus, OH, United States
| | - Young-Su Seo
- Department of Microbiology, Pusan National University, Busan, South Korea
| | - Sang-Won Lee
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, South Korea
| | - Guo-Liang Wang
- Department of Plant Pathology, The Ohio State University, Columbus, OH, United States
| | - Jong-Seong Jeon
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, South Korea
| |
Collapse
|
187
|
Chandran AKN, Lee GS, Yoo YH, Yoon UH, Ahn BO, Yun DW, Kim JH, Choi HK, An G, Kim TH, Jung KH. Functional classification of rice flanking sequence tagged genes using MapMan terms and global understanding on metabolic and regulatory pathways affected by dxr mutant having defects in light response. RICE (NEW YORK, N.Y.) 2016; 9:17. [PMID: 27076183 PMCID: PMC4830809 DOI: 10.1186/s12284-016-0089-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Accepted: 03/04/2016] [Indexed: 05/05/2023]
Abstract
BACKGROUND Rice is one of the most important food crops for humans. To improve the agronomical traits of rice, the functions of more than 1,000 rice genes have been recently characterized and summarized. The completed, map-based sequence of the rice genome has significantly accelerated the functional characterization of rice genes, but progress remains limited in assigning functions to all predicted non-transposable element (non-TE) genes, estimated to number 37,000-41,000. RESULTS The International Rice Functional Genomics Consortium (IRFGC) has generated a huge number of gene-indexed mutants by using mutagens such as T-DNA, Tos17 and Ds/dSpm. These mutants have been identified by 246,566 flanking sequence tags (FSTs) and cover 65 % (25,275 of 38,869) of the non-TE genes in rice, while the mutation ratio of TE genes is 25.7 %. In addition, almost 80 % of highly expressed non-TE genes have insertion mutations, indicating that highly expressed genes in rice chromosomes are more likely to have mutations by mutagens such as T-DNA, Ds, dSpm and Tos17. The functions of around 2.5 % of rice genes have been characterized, and studies have mainly focused on transcriptional and post-transcriptional regulation. Slow progress in characterizing the function of rice genes is mainly due to a lack of clues to guide functional studies or functional redundancy. These limitations can be partially solved by a well-categorized functional classification of FST genes. To create this classification, we used the diverse overviews installed in the MapMan toolkit. Gene Ontology (GO) assignment to FST genes supplemented the limitation of MapMan overviews. CONCLUSION The functions of 863 of 1,022 known genes can be evaluated by current FST lines, indicating that FST genes are useful resources for functional genomic studies. We assigned 16,169 out of 29,624 FST genes to 34 MapMan classes, including major three categories such as DNA, RNA and protein. To demonstrate the MapMan application on FST genes, transcriptome analysis was done from a rice mutant of 1-deoxy-D-xylulose 5-phosphate reductoisomerase (DXR) gene with FST. Mapping of 756 down-regulated genes in dxr mutants and their annotation in terms of various MapMan overviews revealed candidate genes downstream of DXR-mediating light signaling pathway in diverse functional classes such as the methyl-D-erythritol 4-phosphatepathway (MEP) pathway overview, photosynthesis, secondary metabolism and regulatory overview. This report provides a useful guide for systematic phenomics and further applications to enhance the key agronomic traits of rice.
Collapse
Affiliation(s)
- Anil Kumar Nalini Chandran
- Graduate School of Biotechnology & Crop Biotech Institute, Kyung Hee University, Yongin, 446-701, Republic of Korea
| | - Gang-Seob Lee
- Molecular Breeding Division, National Academy of Agricultural Science, RDA, Jeonju, 560-500, Republic of Koreas
| | - Yo-Han Yoo
- Graduate School of Biotechnology & Crop Biotech Institute, Kyung Hee University, Yongin, 446-701, Republic of Korea
| | - Ung-Han Yoon
- Genomics Division, National Academy of Agricultural Science, RDA, Jeonju, 560-500, Republic of Korea
| | - Byung-Ohg Ahn
- R&D Coordination Division, Research Policy Bureau, RDA, Jeonju, 560-500, Republic of Korea
| | - Doh-Won Yun
- Planning & Coordination Division, National Academy of Agricultural Science, RDA, Jeonju, 560-500, Republic of Korea
| | - Jin-Hyun Kim
- Department of Medical Bioscience, Dong-A University, Busan, Republic of Korea
| | - Hong-Kyu Choi
- Department of Medical Bioscience, Dong-A University, Busan, Republic of Korea
| | - GynHeung An
- Graduate School of Biotechnology & Crop Biotech Institute, Kyung Hee University, Yongin, 446-701, Republic of Korea.
| | - Tae-Ho Kim
- Genomics Division, National Academy of Agricultural Science, RDA, Jeonju, 560-500, Republic of Korea.
| | - Ki-Hong Jung
- Graduate School of Biotechnology & Crop Biotech Institute, Kyung Hee University, Yongin, 446-701, Republic of Korea.
| |
Collapse
|
188
|
Dong H, Zhao H, Xie W, Han Z, Li G, Yao W, Bai X, Hu Y, Guo Z, Lu K, Yang L, Xing Y. A Novel Tiller Angle Gene, TAC3, together with TAC1 and D2 Largely Determine the Natural Variation of Tiller Angle in Rice Cultivars. PLoS Genet 2016; 12:e1006412. [PMID: 27814357 PMCID: PMC5096673 DOI: 10.1371/journal.pgen.1006412] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 10/07/2016] [Indexed: 01/09/2023] Open
Abstract
Tiller angle is one of the most important components of the ideal plant architecture that can greatly enhance rice grain yield. Understanding the genetic basis of tiller angle and mining favorable alleles will be helpful for breeding new plant-type varieties. Here, we performed genome-wide association studies (GWAS) to identify genes controlling tiller angle using 529 diverse accessions of Oryza sativa including 295 indica and 156 japonica accessions in two environments. We identified 7 common quantitative trait loci (QTLs), including the previously reported major gene Tiller Angle Control 1 (TAC1), in the two environments, 10 and 13 unique QTLs in Hainan and Wuhan, respectively. More QTLs were identified in indica than in japonica, and three major QTLs (qTA3, qTA1b/DWARF2 (D2) and qTA9c/TAC1) were fixed in japonica but segregating in indica, which explained the wider variation observed in indica compared with that in japonica. No common QTLs were identified between the indica and japonica subpopulations. Mutant analysis for the candidate gene of qTA3 on chromosome 3 indicated a novel gene, Tiller Angle Control 3 (TAC3), encoding a conserved hypothetical protein controlling tiller angle. TAC3 is preferentially expressed in the tiller base. The ebisu dwarf (d2) mutant exhibited a decreased tiller angle, in addition to its previously described abnormal phenotype. A nucleotide diversity analysis revealed that TAC3, D2 and TAC1 have been subjected to selection during japonica domestication. A haplotype analysis identified favorable alleles of TAC3, D2 and TAC1, which may be used for breeding plants with an ideal architecture. In conclusion, there is a diverse genetic basis for tiller angle between the two subpopulations, and it is the novel gene TAC3 together with TAC1, D2, and other newly identified genes in this study that controls tiller angle in rice cultivars. Tiller angle is the key component of plant architecture that greatly affect grain yield. However, few tiller angle-related genes that can be used for improving rice plant architecture have been isolated based on natural variation. Here, we identified 7 common tiller angle-related QTLs by a genome-wide association study, including the previously reported major gene TAC1, in two environments in the 529 diverse rice accessions and dozens of QTLs specially identified in one environment. Two QTLs were validated by mutant analysis: A novel gene TAC3, encoding a conserved hypothetical protein and preferentially expressing in the tiller base, was the candidate gene of qTA3; d2 mutant exhibited a decreased tiller angle, in addition to its previously described abnormal phenotype. A haplotype analysis identified favorable alleles of TAC3, D2 and TAC1 in indica, which may be used for breeding plants with an ideal architecture, while they were all subjected to selection and fixed in japonica. In conclusion, there is a diverse genetic basis for tiller angle between the two subpopulations, and it is the novel gene TAC3, together with TAC1 and D2 that greatly controls tiller angle in rice cultivars.
Collapse
Affiliation(s)
- Haijiao Dong
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, China
| | - Hu Zhao
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, China
| | - Weibo Xie
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, China
| | - Zhongmin Han
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, China
| | - Guangwei Li
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, China
| | - Wen Yao
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, China
| | - Xufeng Bai
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, China
| | - Yong Hu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, China
| | - Zilong Guo
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, China
| | - Kai Lu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, China
| | - Lin Yang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, China
| | - Yongzhong Xing
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, China
- Hubei Collaborative Innovation Center for Grain Industry, China
- * E-mail:
| |
Collapse
|
189
|
Wang L, Wang C, Wang Y, Niu M, Ren Y, Zhou K, Zhang H, Lin Q, Wu F, Cheng Z, Wang J, Zhang X, Guo X, Jiang L, Lei C, Wang J, Zhu S, Zhao Z, Wan J. WSL3, a component of the plastid-encoded plastid RNA polymerase, is essential for early chloroplast development in rice. PLANT MOLECULAR BIOLOGY 2016; 92:581-595. [PMID: 27573887 DOI: 10.1007/s11103-016-0533-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 08/22/2016] [Indexed: 06/06/2023]
Abstract
Plastid-encoded plastid RNA polymerase (PEP), a dominant RNA polymerase in mature chloroplasts, consists of core subunits and peripheral subunits. Despite the importance of the peripheral subunits in control of PEP activity it is unclear how they interact with one another to exert physiological effects on chloroplast development and plant growth, especially in rice. Here, we report a mutant, designated wsl3 that lacks a peripheral subunit in rice. We isolated the WSL3 gene encoding an essential peripheral subunit of rice PEP complex, OsPAP1/OspTAC3 by map-based cloning, and verified its function by complementation analysis. The wsl3 mutant showed a typical expression pattern of plastid-encoded genes, suggesting that PEP activity was impaired. Using immunofluorescent labeling and immunoblotting, we found that WSL3 was localized to the chloroplast and associated with the nucleoid. In addition, we demonstrated that WSL3 interacted with PEP subunits in Y2H, BiFC and pull-down experiments. Furthermore, a cpDNA IP assay revealed that WSL3 was associated with the PEP complex during the entire transcription process. We provide evidence suggesting that WSL3 is essential for early chloroplast development by interacting with subunits of the PEP complex.
Collapse
Affiliation(s)
- Liwei Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Chunming Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Yihua Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Mei Niu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Yulong Ren
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Kunneng Zhou
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Huan Zhang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Qibing Lin
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Fuqing Wu
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Zhijun Cheng
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Jiulin Wang
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Xin Zhang
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Xiuping Guo
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Ling Jiang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Cailin Lei
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Jie Wang
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Shanshan Zhu
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Zhichao Zhao
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Jianmin Wan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China.
| |
Collapse
|
190
|
Wei J, Choi H, Jin P, Wu Y, Yoon J, Lee YS, Quan T, An G. GL2-type homeobox gene Roc4 in rice promotes flowering time preferentially under long days by repressing Ghd7. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 252:133-143. [PMID: 27717449 DOI: 10.1016/j.plantsci.2016.07.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 07/18/2016] [Accepted: 07/19/2016] [Indexed: 06/06/2023]
Abstract
Under long day (LD) lengths, flowering can be delayed in rice by modulating several regulatory genes. We found activation tagging lines that showed an early flowering phenotype preferentially under LD conditions. Expression of Rice outermost cell-specific gene 4 (Roc4), encoding a homeodomain Leu-zipper class IV family protein, was significantly increased. Transcript levels of Grain number, plant height, and heading date7 (Ghd7) were significantly reduced while those of Ghd7 downstream genes were increased. However, other flowering regulators were unaffected. Whereas constitutive overexpression of Roc4 in 'Dongjin' japonica rice, which carries active Ghd7, also caused LD-preferential early flowering, its overexpression in 'Longjing27' rice, which is defective in functional Ghd7, did not produce the same result. This confirmed that Roc4 regulates flowering time mainly through Ghd7. Phytochromes and O. sativa GIGANTEA (OsGI) function upstream of Roc4. Transgenic plants showed ubiquitous expression of the β-glucuronidase reporter gene under the Roc4 promoter. Furthermore, Roc4 had transcriptional activation activity in the N-terminal region of the StAR-related lipid-transfer domain. All of these findings are evidence that Roc4 is an LD-preferential flowering enhancer that functions downstream of phytochromes and OsGI, but upstream of Ghd7.
Collapse
Affiliation(s)
- Jinhuan Wei
- Crop Biotech Institute, Kyung Hee University, Yongin 446-701, Republic of Korea
| | - Heebak Choi
- Crop Biotech Institute, Kyung Hee University, Yongin 446-701, Republic of Korea; Department of Life Science, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Ping Jin
- Crop Biotech Institute, Kyung Hee University, Yongin 446-701, Republic of Korea
| | - Yunfei Wu
- Crop Biotech Institute, Kyung Hee University, Yongin 446-701, Republic of Korea
| | - Jinmi Yoon
- Crop Biotech Institute, Kyung Hee University, Yongin 446-701, Republic of Korea
| | - Yang-Seok Lee
- Crop Biotech Institute, Kyung Hee University, Yongin 446-701, Republic of Korea
| | - Taiyong Quan
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, College of Life Science, Shandong University, Jinan 250100, People's Republic of China
| | - Gynheung An
- Crop Biotech Institute, Kyung Hee University, Yongin 446-701, Republic of Korea.
| |
Collapse
|
191
|
Liu JM, Xu ZS, Lu PP, Li WW, Chen M, Guo CH, Ma YZ. Genome-wide investigation and expression analyses of the pentatricopeptide repeat protein gene family in foxtail millet. BMC Genomics 2016; 17:840. [PMID: 27793078 PMCID: PMC5084403 DOI: 10.1186/s12864-016-3184-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 10/22/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Pentatricopeptide repeat (PPR) proteins are encoded by a large gene family of approximately 450 members in Arabidopsis and 477 in rice, which characterized by tandem repetitions of a degenerate 35 amino acid characteristic sequence motifs. A large majority of the PPR genes in the higher plants are localized in organelles. Their functions remain as yet largely unknown. The majority of characterized PPR proteins have been found to function in modulating the expression plastid and mitochondrial genes in plants. RESULTS Here, a genome-wide identification and comparison of the PPR genes from 5 organisms was performed, including the moss Physcomitrella patens, the lycophyte Selaginella moellendorffii, the eudicot Arabidopsis, and the monocots rice and foxtail millet. It appears that the expansion of this gene family prior to the divergence of the euphyllophytes and the lycophytes in land plants. The duplication and divergence rates of the foxtail millet PPR genes (SiPPRs) showed that the expansion period of this gene family around 400 Mya, and indicated that genome segmental duplication was very likely the primary mechanism underlying the expansion of the PPR gene family in vascular plants. An analysis of a complete set of SiPPR genes/proteins that included classification, chromosomal location, orthologous relationships, duplication analysis, and auxiliary motifs is presented. Expression analysis of the SiPPR genes under stress conditions revealed that the expression of 24 SiPPR genes was responsive to abiotic stress. Subcellular localization analysis of 11 PPR proteins indicated that 5 proteins were localized to chloroplasts, that 4 were localized to mitochondria, and that 2 were localized to the cytoplasm. CONCLUSIONS Our results contribute to a more comprehensive understanding the roles of PPR proteins and will be useful in the prioritization of particular PPR proteins for subsequent functional validation studies in foxtail millet.
Collapse
Affiliation(s)
- Jia-Ming Liu
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China.,Institute of Crop Science, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081, China
| | - Zhao-Shi Xu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081, China.
| | - Pan-Pan Lu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081, China
| | - Wei-Wei Li
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China.,Institute of Crop Science, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081, China
| | - Ming Chen
- Institute of Crop Science, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081, China
| | - Chang-Hong Guo
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China.
| | - You-Zhi Ma
- Institute of Crop Science, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081, China
| |
Collapse
|
192
|
Critical roles of soluble starch synthase SSIIIa and granule-bound starch synthase Waxy in synthesizing resistant starch in rice. Proc Natl Acad Sci U S A 2016; 113:12844-12849. [PMID: 27791174 DOI: 10.1073/pnas.1615104113] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Changes in human lifestyle and food consumption have resulted in a large increase in the incidence of type-2 diabetes, obesity, and colon disease, especially in Asia. These conditions are a growing threat to human health, but consumption of foods high in resistant starch (RS) can potentially reduce their incidence. Strategies to increase RS in rice are limited by a lack of knowledge of its molecular basis. Through map-based cloning of a RS locus in indica rice, we have identified a defective soluble starch synthase gene (SSIIIa) responsible for RS production and further showed that RS production is dependent on the high expression of the Waxya (Wxa ) allele, which is prevalent in indica varieties. The resulting RS has modified granule structure; high amylose, lipid, and amylose-lipid complex; and altered physicochemical properties. This discovery provides an opportunity to increase RS content of cooked rice, especially in the indica varieties, which predominates in southern Asia.
Collapse
|
193
|
Harmoko R, Yoo JY, Ko KS, Ramasamy NK, Hwang BY, Lee EJ, Kim HS, Lee KJ, Oh DB, Kim DY, Lee S, Li Y, Lee SY, Lee KO. N-glycan containing a core α1,3-fucose residue is required for basipetal auxin transport and gravitropic response in rice (Oryza sativa). THE NEW PHYTOLOGIST 2016; 212:108-22. [PMID: 27241276 DOI: 10.1111/nph.14031] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 04/24/2016] [Indexed: 05/18/2023]
Abstract
In plants, α1,3-fucosyltransferase (FucT) catalyzes the transfer of fucose from GDP-fucose to asparagine-linked GlcNAc of the N-glycan core in the medial Golgi. To explore the physiological significance of this processing, we isolated two Oryza sativa (rice) mutants (fuct-1 and fuct-2) with loss of FucT function. Biochemical analyses of the N-glycan structure confirmed that α1,3-fucose is missing from the N-glycans of allelic fuct-1 and fuct-2. Compared with the wild-type cv Kitaake, fuct-1 displayed a larger tiller angle, shorter internode and panicle lengths, and decreased grain filling as well as an increase in chalky grains with abnormal shape. The mutant allele fuct-2 gave rise to similar developmental abnormalities, although they were milder than those of fuct-1. Restoration of a normal tiller angle in fuct-1 by complementation demonstrated that the phenotype is caused by the loss of FucT function. Both fuct-1 and fuct-2 plants exhibited reduced gravitropic responses. Expression of the genes involved in tiller and leaf angle control was also affected in the mutants. We demonstrate that reduced basipetal auxin transport and low auxin accumulation at the base of the shoot in fuct-1 account for both the reduced gravitropic response and the increased tiller angle.
Collapse
Affiliation(s)
- Rikno Harmoko
- Division of Applied Life Science (BK21 + program), PMBBRC, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, Korea
| | - Jae Yong Yoo
- Division of Applied Life Science (BK21 + program), PMBBRC, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, Korea
| | - Ki Seong Ko
- Division of Applied Life Science (BK21 + program), PMBBRC, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, Korea
| | - Nirmal Kumar Ramasamy
- Division of Applied Life Science (BK21 + program), PMBBRC, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, Korea
| | - Bo Young Hwang
- Division of Applied Life Science (BK21 + program), PMBBRC, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, Korea
| | - Eun Ji Lee
- Division of Applied Life Science (BK21 + program), PMBBRC, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, Korea
| | - Ho Soo Kim
- Division of Applied Life Science (BK21 + program), PMBBRC, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, Korea
| | - Kyung Jin Lee
- Integrative Omics Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Korea
| | - Doo-Byoung Oh
- Integrative Omics Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Korea
| | - Dool-Yi Kim
- Crop Function Division, National Institute of Crop Science, Rural Development Administration, 181 Hyeoksin-ro, Wanju-gun, Jeollabuk-do, 55365, Korea
| | - Sanghun Lee
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Yang Li
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Sang Yeol Lee
- Division of Applied Life Science (BK21 + program), PMBBRC, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, Korea
| | - Kyun Oh Lee
- Division of Applied Life Science (BK21 + program), PMBBRC, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, Korea
| |
Collapse
|
194
|
Lee SK, Eom JS, Hwang SK, Shin D, An G, Okita TW, Jeon JS. Plastidic phosphoglucomutase and ADP-glucose pyrophosphorylase mutants impair starch synthesis in rice pollen grains and cause male sterility. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:5557-5569. [PMID: 27588462 PMCID: PMC5049399 DOI: 10.1093/jxb/erw324] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
To elucidate the starch synthesis pathway and the role of this reserve in rice pollen, we characterized mutations in the plastidic phosphoglucomutase, OspPGM, and the plastidic large subunit of ADP-glucose (ADP-Glc) pyrophosphorylase, OsAGPL4 Both genes were up-regulated in maturing pollen, a stage when starch begins to accumulate. Progeny analysis of self-pollinated heterozygous lines carrying the OspPGM mutant alleles, osppgm-1 and osppgm-2, or the OsAGPL4 mutant allele, osagpl4-1, as well as reciprocal crosses between the wild type (WT) and heterozygotes revealed that loss of OspPGM or OsAGPL4 caused male sterility, with the former condition rescued by the introduction of the WT OspPGM gene. While iodine staining and transmission electron microscopy analyses of pollen grains from homozygous osppgm-1 lines produced by anther culture confirmed the starch null phenotype, pollen from homozygous osagpl4 mutant lines, osagpl4-2 and osagpl4-3, generated by the CRISPR/Cas system, accumulated small amounts of starch which were sufficient to produce viable seed. Such osagpl4 mutant pollen, however, was unable to compete against WT pollen successfully, validating the important role of this reserve in fertilization. Our results demonstrate that starch is mainly polymerized from ADP-Glc synthesized from plastidic hexose phosphates in rice pollen and that starch is an essential requirement for successful fertilization in rice.
Collapse
Affiliation(s)
- Sang-Kyu Lee
- Graduate School of Biotechnology & Crop Biotech Institute, Kyung Hee University, Yongin 17104, Korea
| | - Joon-Seob Eom
- Graduate School of Biotechnology & Crop Biotech Institute, Kyung Hee University, Yongin 17104, Korea
| | - Seon-Kap Hwang
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164-6340, USA
| | - Dongjin Shin
- Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration, Milyang 50424, Korea
| | - Gynheung An
- Graduate School of Biotechnology & Crop Biotech Institute, Kyung Hee University, Yongin 17104, Korea
| | - Thomas W Okita
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164-6340, USA
| | - Jong-Seong Jeon
- Graduate School of Biotechnology & Crop Biotech Institute, Kyung Hee University, Yongin 17104, Korea
| |
Collapse
|
195
|
Sakuraba Y, Han SH, Yang HJ, Piao W, Paek NC. Mutation of Rice Early Flowering3.1 (OsELF3.1) delays leaf senescence in rice. PLANT MOLECULAR BIOLOGY 2016; 92:223-34. [PMID: 27380315 DOI: 10.1007/s11103-016-0507-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 06/26/2016] [Indexed: 05/21/2023]
Abstract
In Arabidopsis, EARLY FLOWERING3 (ELF3) has pivotal roles in controlling circadian rhythm and photoperiodic flowering. In addition, ELF3 negatively regulates leaf senescence by repressing the transcription of PHYTOCHROME-INTERACTING FACTOR4 (PIF4) and PHYTOCHROME-INTERACTING FACTOR5 (PIF5); elf3 mutants senesce earlier and ELF3-overexpressing (ELF3-OX) plants senesce later than wild type (WT). Here, we show that in contrast to Arabidopsis ELF3, which represses senescence, the rice homolog OsELF3.1 promotes leaf senescence; oself3.1 mutants showed delayed senescence and OsELF3.1-OX plants senesced earlier under both dark-induced and natural senescence conditions. Microarray analysis revealed that in the senescing leaves, a number of senescence-associated genes, phytohormone-related genes, and NAC and WRKY family genes (OsNAP, ONAC106, and OsWRKY42) were differentially expressed in oself3.1 mutants compared with WT. Interestingly, we found that Arabidopsis plants overexpressing OsELF3.1 show delayed leaf senescence, produce short petioles, and flower late in long days, just like Arabidopsis ELF3-OX plants. This demonstrates that the regulatory functions of ELF3 and OsELF3.1 are conserved between Arabidopsis and rice, but the downstream regulatory cascades have opposite effects.
Collapse
Affiliation(s)
- Yasuhito Sakuraba
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea
- Graduate school of Agricultural and Life Sciences, Biotechnology Research Center, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Su-Hyun Han
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea
| | - Hyun-Jung Yang
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea
| | - Weilan Piao
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea
| | - Nam-Chon Paek
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea.
- Crop Biotechnology Institute, GreenBio Science and Technology, Seoul National University, Pyeongchang, 232-916, Republic of Korea.
| |
Collapse
|
196
|
Xuan YH, Kim CM, Je BI, Liu JM, Li TY, Lee GS, Kim TH, Han CD. Transposon Ds-Mediated Insertional Mutagenesis in Rice (Oryza sativa). CURRENT PROTOCOLS IN PLANT BIOLOGY 2016; 1:466-487. [PMID: 31725960 DOI: 10.1002/cppb.20030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Rice (Oryza sativa) is the most important consumed staple food for a large and diverse population worldwide. Since databases of genomic sequences became available, functional genomics and genetic manipulations have been widely practiced in rice research communities. Insertional mutants are the most common genetic materials utilized to analyze gene function. To mutagenize rice genomes, we exploited the transpositional activity of an Activator/Dissociation (Ac/Ds) system in rice. To mobilize Ds in rice genomes, a maize Ac cDNA was expressed under the CaMV35S promoter, and a gene trap Ds was utilized to detect expression of host genes via the reporter gene GUS. Conventional transposon-mediated gene-tagging systems rely on genetic crossing and selection markers. Furthermore, the activities of transposases have to be monitored. By taking advantage of the fact that Ds becomes highly active during tissue culture, a plant regeneration system employing tissue culture was employed to generate a large Ds transposant population in rice. This system overcomes the requirement for markers and the monitoring of Ac activity. In the regenerated populations, more than 70% of the plant lines contained independent Ds insertions and 12% expressed GUS at seedling stages. This protocol describes the method for producing a Ds-mediated insertional population via tissue culture regeneration systems. © 2016 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Yuan Hu Xuan
- College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Chul Min Kim
- Division of Applied Life Science (BK21 program), Plant Molecular Biology & Biotechnology Research Center (PMBBRC), Gyeongsang National University, Jinju, Korea
| | - Byoung Il Je
- Division of Applied Life Science (BK21 program), Plant Molecular Biology & Biotechnology Research Center (PMBBRC), Gyeongsang National University, Jinju, Korea
| | - Jing Miao Liu
- Division of Applied Life Science (BK21 program), Plant Molecular Biology & Biotechnology Research Center (PMBBRC), Gyeongsang National University, Jinju, Korea
| | - Tian Ya Li
- College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Gang-Seob Lee
- Biosafty Division, Department of Agricultural Biotechnology, National Institute of Agricultural Science (NIAS), RDA, Jeonju, Korea
| | - Tae-Ho Kim
- Genomics Division, Department of Agricultural Biotechnology, National Institute of Agricultural Science (NIAS), RDA, Jeonju, Korea
| | - Chang-Deok Han
- Division of Applied Life Science (BK21 program), Plant Molecular Biology & Biotechnology Research Center (PMBBRC), Gyeongsang National University, Jinju, Korea
| |
Collapse
|
197
|
Onda Y, Mochida K. Exploring Genetic Diversity in Plants Using High-Throughput Sequencing Techniques. Curr Genomics 2016; 17:358-67. [PMID: 27499684 PMCID: PMC4955029 DOI: 10.2174/1389202917666160331202742] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 07/19/2015] [Accepted: 07/21/2015] [Indexed: 12/31/2022] Open
Abstract
Food security has emerged as an urgent concern because of the rising world population. To meet the food demands of the near future, it is required to improve the productivity of various crops, not just of staple food crops. The genetic diversity among plant populations in a given species allows the plants to adapt to various environmental conditions. Such diversity could therefore yield valuable traits that could overcome the food-security challenges. To explore genetic diversity comprehensively and to rapidly identify useful genes and/or allele, advanced high-throughput sequencing techniques, also called next-generation sequencing (NGS) technologies, have been developed. These provide practical solutions to the challenges in crop genomics. Here, we review various sources of genetic diversity in plants, newly developed genetic diversity-mining tools synergized with NGS techniques, and related genetic approaches such as quantitative trait locus analysis and genome-wide association study.
Collapse
Affiliation(s)
- Yoshihiko Onda
- Cellulose Production Research Team, Biomass Engineering Research Division, RIKEN Center for Sustainable Resource Science, Kanagawa,Japan
- Kihara Institute for Biological Research, Yokohama City University, Kanagawa,Japan
| | - Keiichi Mochida
- Cellulose Production Research Team, Biomass Engineering Research Division, RIKEN Center for Sustainable Resource Science, Kanagawa,Japan
- Kihara Institute for Biological Research, Yokohama City University, Kanagawa,Japan
- Gene Discovery Research Group, RIKEN Center for Sustainable Resource Science, Kanagawa,Japan
| |
Collapse
|
198
|
Liu L, Zheng C, Kuang B, Wei L, Yan L, Wang T. Receptor-Like Kinase RUPO Interacts with Potassium Transporters to Regulate Pollen Tube Growth and Integrity in Rice. PLoS Genet 2016; 12:e1006085. [PMID: 27447945 PMCID: PMC4957769 DOI: 10.1371/journal.pgen.1006085] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 05/06/2016] [Indexed: 11/18/2022] Open
Abstract
During sexual reproduction of flowering plants, the pollen tube grows fast and over a long distance within the pistil to deliver two sperms for double fertilization. Growing plant cells need to communicate constantly with external stimuli as well as monitor changes in surface tension of the cell wall and plasma membrane to coordinate these signals and internal growth machinery; however, the underlying mechanisms remain largely unknown. Here we show that the rice member of plant-specific receptor-like kinase CrRLK1Ls subfamily, Ruptured Pollen tube (RUPO), is specifically expressed in rice pollen. RUPO localizes to the apical plasma membrane and vesicle of pollen tubes and is required for male gamete transmission. K+ levels were greater in pollen of homozygous CRISPR-knockout lines than wild-type plants, and pollen tubes burst shortly after germination. We reveal the interaction of RUPO with high-affinity potassium transporters. Phosphorylation of RUPO established and dephosphorylation abolished the interaction. These results have revealed the receptor-like kinase as a regulator of high-affinity potassium transporters via phosphorylation-dependent interaction, and demonstrated a novel receptor-like kinase signaling pathway that mediates K+ homeostasis required for pollen tube growth and integrity.
Collapse
Affiliation(s)
- Lingtong Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Canhui Zheng
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Baijan Kuang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Liqin Wei
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Longfeng Yan
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Tai Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
199
|
A heavy metal P-type ATPase OsHMA4 prevents copper accumulation in rice grain. Nat Commun 2016; 7:12138. [PMID: 27387148 PMCID: PMC4941113 DOI: 10.1038/ncomms12138] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 06/03/2016] [Indexed: 01/10/2023] Open
Abstract
Rice is a major source of calories and mineral nutrients for over half the world's human population. However, little is known in rice about the genetic basis of variation in accumulation of copper (Cu), an essential but potentially toxic nutrient. Here we identify OsHMA4 as the likely causal gene of a quantitative trait locus controlling Cu accumulation in rice grain. We provide evidence that OsHMA4 functions to sequester Cu into root vacuoles, limiting Cu accumulation in the grain. The difference in grain Cu accumulation is most likely attributed to a single amino acid substitution that leads to different OsHMA4 transport activity. The allele associated with low grain Cu was found in 67 of the 1,367 rice accessions investigated. Identification of natural allelic variation in OsHMA4 may facilitate the development of rice varieties with grain Cu concentrations tuned to both the concentration of Cu in the soil and dietary needs. Copper (Cu) is an essential mineral nutrient but high concentrations in rice grain can cause toxicity. Here the authors provide evidence that natural variation in rice grain Cu concentration is caused by altered sequestration of Cu into root vacuoles due to a single amino acid substitution in the OsHMA4 transporter.
Collapse
|
200
|
Li G, Chern M, Jain R, Martin JA, Schackwitz WS, Jiang L, Vega-Sánchez ME, Lipzen AM, Barry KW, Schmutz J, Ronald PC. Genome-Wide Sequencing of 41 Rice (Oryza sativa L.) Mutated Lines Reveals Diverse Mutations Induced by Fast-Neutron Irradiation. MOLECULAR PLANT 2016; 9:1078-81. [PMID: 27018389 DOI: 10.1016/j.molp.2016.03.009] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 02/05/2016] [Accepted: 03/07/2016] [Indexed: 05/05/2023]
Affiliation(s)
- Guotian Li
- Department of Plant Pathology and the Genome Center, University of California, Davis, CA 95616, USA; Feedstocks Division, Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Mawsheng Chern
- Department of Plant Pathology and the Genome Center, University of California, Davis, CA 95616, USA; Feedstocks Division, Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Rashmi Jain
- Department of Plant Pathology and the Genome Center, University of California, Davis, CA 95616, USA; Feedstocks Division, Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Joel A Martin
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - Wendy S Schackwitz
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - Liangrong Jiang
- Department of Plant Pathology and the Genome Center, University of California, Davis, CA 95616, USA; School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Miguel E Vega-Sánchez
- Feedstocks Division, Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Anna M Lipzen
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - Kerrie W Barry
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - Jeremy Schmutz
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA; HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Pamela C Ronald
- Department of Plant Pathology and the Genome Center, University of California, Davis, CA 95616, USA; Feedstocks Division, Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| |
Collapse
|