151
|
Ha H, Hwang IA, Park JH, Lee HB. Role of reactive oxygen species in the pathogenesis of diabetic nephropathy. Diabetes Res Clin Pract 2008; 82 Suppl 1:S42-5. [PMID: 18845352 DOI: 10.1016/j.diabres.2008.09.017] [Citation(s) in RCA: 165] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
There is an increasing evidence that reactive oxygen species (ROS) play a major role in the development of diabetic complications. Oxidative stress is increased in diabetes and the overproduction of ROS in diabetes is a direct consequence of hyperglycemia. Various types of vascular cells including renal cells are able to produce ROS under hyperglycemic condition. Both NADPH oxidase and mitochondrial electron gradient play roles in hyperglycemia-induced ROS generation. In addition to their ability to directly inflict macromolecular damage, ROS can function as signaling molecules. ROS mediate hyperglycemia-induced activation of signal transduction cascades and transcription factors leading to transcriptional activation of profibrotic genes in the kidney. Furthermore, ROS-activated signaling molecules generate and signal through ROS and thus ROS act as a signal amplifier. Intensive glycemic control and inhibition of angiotensin II delay the onset and progression of diabetic nephropathy, in part, through prevention of overproduction of ROS. Conventional and catalytic antioxidants have been shown to prevent or delay the onset of diabetic nephropathy. Combination of strategies to prevent overproduction of ROS and to increase the removal of preformed ROS may prove to be effective in preventing the development and progression of diabetic nephropathy.
Collapse
Affiliation(s)
- Hunjoo Ha
- College of Pharmacy and Division of Life & Pharmaceutical Sciences, Graduate School, Ewha Woman's University, Seoul, Republic of Korea
| | | | | | | |
Collapse
|
152
|
Bell TD, DiBona GF, Biemiller R, Brands MW. Continuously measured renal blood flow does not increase in diabetes if nitric oxide synthesis is blocked. Am J Physiol Renal Physiol 2008; 295:F1449-56. [PMID: 18753304 PMCID: PMC2584904 DOI: 10.1152/ajprenal.00004.2008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2008] [Accepted: 08/20/2008] [Indexed: 01/11/2023] Open
Abstract
This study used 16 h/day measurement of renal blood flow (RBF) and arterial pressure (AP) to determine the role of nitric oxide (NO) in mediating the renal vasodilation caused by onset of type 1 diabetes. The AP and RBF power spectra were used to determine the autoregulatory efficiency of the renal vasculature. Rats were instrumented with artery and vein catheters and a Transonic flow probe on the left renal artery and were divided randomly into four groups: control (C), diabetes (D), control plus nitro-L-arginine methyl ester (L-NAME; CL), and diabetes plus L-NAME (DL). Mean AP averaged 90 +/- 1 and 121 +/- 1 mmHg in the D and DL groups, respectively, during the control period, and RBF averaged 5.9 +/- 1.2 and 5.7 +/- 0.7 ml/min, respectively. Respective C and CL groups were not different. Onset of diabetes (streptozotocin 40 mg/kg iv) in D rats increased RBF gradually, but it averaged 55% above control by day 14. In DL rats, on the other hand, RBF remained essentially constant, tracking with RBF in the nondiabetic C and CL groups for the 2-wk period. Diabetes did not change mean AP in any group. Transfer function analysis revealed impaired dynamic autoregulation of RBF overall, including the frequency range of tubuloglomerular feedback (TGF), and L-NAME completely prevented those changes as well. These data strongly support a role for NO in causing renal vasodilation in diabetes and suggest that an effect of NO to blunt RBF autoregulation may play an important role.
Collapse
Affiliation(s)
- Tracy D Bell
- Department of Physiology, Medical College of Georgia, Augusta, GA 30912-3000, USA
| | | | | | | |
Collapse
|
153
|
Seiça R, Santos DL, Palmeira CM, Moreno AJ, Sena C, Cunha MF, Santos MS. Mitochondrial Function Is Not Affected by Renal Morphological Changes in Diabetic Goto-Kakizaki Rat. Toxicol Mech Methods 2008; 15:253-61. [DOI: 10.1080/15376520590968806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
154
|
Hałatek T, Gromadzińska J, Wasowicz W, Rydzyński K. Serum Clara-Cell Protein and β2-Microglobulin as Early Markers of Occupational Exposure to Nitric Oxides. Inhal Toxicol 2008; 17:87-97. [PMID: 15764486 DOI: 10.1080/08958370590899460] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Biochemical effects of NOx on 60 workers (both genders) of nitric acid production were studied. The control group consisted of 61 nonexposed people employed elsewhere in the plant. Although the actual threshold limit valuetime weighted averages (TLV-TWA) were not exceeded in the specific conditions of our study, the subjects were exposed to NO2 and NO during several exposure episodes with peak maximal concentrations of 140 ppm and 515 ppm, respectively. Additional cross-week evaluation of several biochemical biomarkers in 15 NOx-exposed workers from one shift was performed. The objective of the study was to evaluate the value of serum Clara-cell protein (CC16) as a marker of bronchoalveolar epithelium activity. Antioxidant status was assessed by measuring activity of enzymes: glutathione peroxidase (GSH-Px), ceruloplasmin (Cp) in plasma, or superoxide dismutase (SOD), gluthatione S-transferase (GST), and nonenzymatic alpha-tocopherol in erythrocytes and thiobarbituric acid-reactive substances (TBARS) in plasma. Serum hyaluronic acid (HA) determining the connective tissue matrix status of airways, and beta2-microglobulin in serum (beta2M-S) and urine (beta2M-U) as a marker of renal function in occupational exposure to NOx were also employed. Exposure to NOx initiates peroxidative chain depleting of lipoprotein pool (alpha-tocopherol) in blood. Serum CC16 levels in NOx-exposed workers were found to be closely connected with alpha-tocopherol content. In NOx-exposed workers, the beta2M-S level was significantly higher than in the nonexposed ones, with the exception of smokers. Results of the cross-week study confirm cumulative systemic effects of NOx on several examined biomarkers. SOD and GST were found to be depleted. A transient higher level of HA after a 5-d shift significantly inversely correlated with CC16 level. The data imply that NOx-depleted levels of CC16 are detectable already after an 8-h shift. Our results demonstrate that even low NOx human exposure can cause characteristic changes in bronchiolar epithelium cells and renal effects. Serum CC16 level, although a nonspecific marker, was lowest in NOx-exposed subjects. The most sensitive parameters in exposed workers were beta2M-S and a-tocopherol. Spirometric assessment was not useful to describe low occupational exposure to NOx. In studying the effects of NOx on biomarkers, it is essential to carefully select suitable time of sampling. Screening of CC16, beta2M-S, and a-tocopherol can be successfully employed for biological monitoring of exposure to NOx.
Collapse
Affiliation(s)
- T Hałatek
- Department of Toxicology and Carcinogenesis, Nofer Institute of Occupational Medicine, Lodz, Poland.
| | | | | | | |
Collapse
|
155
|
Elias JAZ, Delfino VDA, Barbosa DS, Fabris BA, Matsuo T. Efeito do ramipril e da sinvastatina sobre o estresse oxidativo de ratos diabéticos. ACTA ACUST UNITED AC 2008; 52:1131-8. [DOI: 10.1590/s0004-27302008000700009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2007] [Accepted: 08/19/2008] [Indexed: 11/21/2022]
Abstract
OBJETIVO: Avaliar se o ramipril, isoladamente ou em combinação com a sinvastatina, seria capaz de reduzir o estresse oxidativo de ratos diabéticos pela estreptozotocina (STZ). MÉTODOS: As drogas foram administradas a ratos diabéticos por duas semanas; o estresse oxidativo foi medido por dosagem de capacidade antioxidante total plasmática (TRAP) e malonaldeído (MDA). RESULTADOS: O ramipril usado isoladamente foi capaz de aumentar significativamente as defesas antioxidantes do rato diabético; a sinvastatina isoladamente ou combinada ao ramipril em tomadas separadas não produziu efeito significativo sobre o estresse oxidativo; a administração simultânea de ramipril e sinvastatina reduziu as defesas antioxidantes plasmáticas de ratos com diabetes melito químico. CONCLUSÕES: Os dados do presente estudo corroboram o efeito positivo do ramipril sobre a defesa antioxidante do plasma, mas não confirmam um possível efeito benéfico da sinvastatina no modelo. Pesquisas adicionais são necessárias para clarificar a paradoxal redução da TRAP verificada pela administração simultânea das drogas.
Collapse
|
156
|
Urinary neutrophil gelatinase-associated lipocalin levels reflect damage to glomeruli, proximal tubules, and distal nephrons. Kidney Int 2008; 75:285-94. [PMID: 19148153 DOI: 10.1038/ki.2008.499] [Citation(s) in RCA: 215] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Urinary neutrophil gelatinase-associated lipocalin (Ngal or lipocalin 2) is a very early and sensitive biomarker of kidney injury. Here we determined the origin and time course of Ngal appearance in several experimental and clinically relevant renal diseases. Urinary Ngal levels were found to be markedly increased in lipoatrophic- and streptozotocin-induced mouse models of diabetic nephropathy. In the latter mice, the angiotensin receptor blocker candesartan dramatically decreased urinary Ngal excretion. The reabsorption of Ngal by the proximal tubule was severely reduced in streptozotocin-induced diabetic mice, but upregulation of its mRNA and protein in the kidney was negligible, compared to those of control mice, suggesting that increased urinary Ngal was mainly due to impaired renal reabsorption. In the mouse model of unilateral ureteral obstruction, Ngal protein synthesis was dramatically increased in the dilated thick ascending limb of Henle and N was found in the urine present in the swollen pelvis of the ligated kidney. Five patients with nephrotic syndrome or interstitial nephritis had markedly elevated urinary Ngal levels at presentation, but these decreased in response to treatment. Our study shows that the urinary Ngal level may be useful for monitoring the status and treatment of diverse renal diseases reflecting defects in glomerular filtration barrier, proximal tubule reabsorption, and distal nephrons.
Collapse
|
157
|
Cheng Q, Law PK, de Gasparo M, Leung PS. Combination of the dipeptidyl peptidase IV inhibitor LAF237 [(S)-1-[(3-hydroxy-1-adamantyl)ammo]acetyl-2-cyanopyrrolidine] with the angiotensin II type 1 receptor antagonist valsartan [N-(1-oxopentyl)-N-[[2'-(1H-tetrazol-5-yl)-[1,1'-biphenyl]-4-yl]methyl]-L-valine] enhances pancreatic islet morphology and function in a mouse model of type 2 diabetes. J Pharmacol Exp Ther 2008; 327:683-91. [PMID: 18787107 DOI: 10.1124/jpet.108.142703] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
LAF237 [(S)-1-[(3-hydroxy-1-adamantyl)ammo]acetyl-2-cyanopyrrolidine] is an inhibitor of dipeptidyl peptidase IV that delays the degradation of glucagon-like peptide-1 (GLP-1). Valsartan [N-(1-oxopentyl)-N-[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-l-valine] is an antagonist of the angiotensin II type 1 receptor (AT1R) that reduces the incidence of type 2 diabetes mellitus. LAF237 and valsartan act on a common target through separate pathways to improve pancreatic islet cell function. We hypothesize that the combination of these two drugs acts in a synergistic or additive manner on islet function and structure. To test this hypothesis, we performed in vitro and in vivo studies. To measure the acute effect of the treatment, pancreatic islets of db/db mice were isolated and stimulated in vitro with glucose in the presence of valsartan (1 microM) and exendin-4 (100 nM), a GLP-1 receptor agonist. Combination treatment with valsartan and exendin-4 significantly enhanced glucose-stimulated insulin secretion from isolated islets. For studies of chronic effect, db/db mice received LAF237 (1 mg/kg/day) and/or valsartan (10 mg/kg/day). Islet cell reactive oxygen species (ROS), proliferation, apoptosis, fibrosis, beta-cell area, and glucose homeostasis were evaluated after 8 weeks of treatment, which showed that combination treatment resulted in a significant increase in pancreatic islet beta-cell area compared with monotherapy. This beneficial effect correlated with an increase in beta-cell proliferation and a decrease in ROS-induced islet apoptosis and fibrosis. These in vitro and in vivo data indicate that combination treatment with LAF237 and valsartan has significant beneficial additive effects on pancreatic beta-cell structure and function compared with their respective monotherapeutic effects.
Collapse
Affiliation(s)
- Qianni Cheng
- Department of Physiology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | | | | | | |
Collapse
|
158
|
Galle J, Schwedhelm E, Pinnetti S, Boger RH, Wanner C. Antiproteinuric effects of angiotensin receptor blockers: telmisartan versus valsartan in hypertensive patients with type 2 diabetes mellitus and overt nephropathy. Nephrol Dial Transplant 2008; 23:3174-83. [DOI: 10.1093/ndt/gfn230] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
159
|
Effects of N-hexacosanol on nitric oxide synthase system in diabetic rat nephropathy. Mol Cell Biochem 2008; 315:169-77. [DOI: 10.1007/s11010-008-9804-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2008] [Accepted: 05/23/2008] [Indexed: 12/20/2022]
|
160
|
Yuzawa Y, Niki I, Kosugi T, Maruyama S, Yoshida F, Takeda M, Tagawa Y, Kaneko Y, Kimura T, Kato N, Yamamoto J, Sato W, Nakagawa T, Matsuo S. Overexpression of calmodulin in pancreatic beta cells induces diabetic nephropathy. J Am Soc Nephrol 2008; 19:1701-11. [PMID: 18525005 DOI: 10.1681/asn.2006121358] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Recently, endothelial dysfunction induced by an uncoupling of vascular endothelial growth factor (VEGF) and nitric oxide has been implicated in the pathogenesis of diabetic nephropathy (DN). Investigating the pathogenesis of DN has been limited, however, because of the lack of animal models that mimic the human disease. In this report, pancreatic beta cell-specific calmodulin-overexpressing transgenic (CaMTg) mice, a potential new model of DN, are characterized with particular emphasis on VEGF and related molecules. CaMTg mice developed hyperglycemia at 3 wk and persistent proteinuria by 3 mo. Morphometric analysis showed considerable increases in the glomerular and mesangial areas with deposition of type IV collagen. Moreover, the pathologic hallmarks of human DN (mesangiolysis, Kimmelstiel-Wilson-like nodular lesions, exudative lesions, and hyalinosis of afferent and efferent arteries with neovascularization) were observed. In addition, increased VEGF expression was associated with an increased number of peritubular capillaries. Expression of endothelial nitric oxidase synthase was reduced and that of VEGF was markedly elevated in CaMTg mice kidney compared with nontransgenic mice. No differences in VEGF receptor-1 or VEGF receptor-2 expression were observed between CaMTg mice and nontransgenic kidneys. In summary, CaMTg mice develop most of the distinguishing lesions of human DN, and the elevated VEGF expression in the setting of diminished endothelial nitric oxide synthase expression may lead to endothelial proliferation and dysfunction. This model may prove useful in the study of the pathogenesis and treatment of DN.
Collapse
Affiliation(s)
- Yukio Yuzawa
- Department of Nephrology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya 466-8550, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
161
|
Abstract
It is postulated that localized tissue oxidative stress is a key component in the development of diabetic nephropathy. There remains controversy, however, as to whether this is an early link between hyperglycemia and renal disease or develops as a consequence of other primary pathogenic mechanisms. In the kidney, a number of pathways that generate reactive oxygen species (ROS) such as glycolysis, specific defects in the polyol pathway, uncoupling of nitric oxide synthase, xanthine oxidase, NAD(P)H oxidase, and advanced glycation have been identified as potentially major contributors to the pathogenesis of diabetic kidney disease. In addition, a unifying hypothesis has been proposed whereby mitochondrial production of ROS in response to chronic hyperglycemia may be the key initiator for each of these pathogenic pathways. This postulate emphasizes the importance of mitochondrial dysfunction in the progression and development of diabetes complications including nephropathy. A mystery remains, however, as to why antioxidants per se have demonstrated minimal renoprotection in humans despite positive preclinical research findings. It is likely that the utility of current study approaches, such as vitamin use, may not be the ideal antioxidant strategy in human diabetic nephropathy. There is now an increasing body of data to suggest that strategies involving a more targeted antioxidant approach, using agents that penetrate specific cellular compartments, may be the elusive additive therapy required to further optimize renoprotection in diabetes.
Collapse
Affiliation(s)
- Josephine M Forbes
- Juvenile Diabetes Research Foundation Albert Einstein Centre for Diabetes Complications, Division of Diabetes and Metabolism, Baker Heart Research Institute, Melbourne, Australia
| | | | | |
Collapse
|
162
|
Kakehi T, Yabe-Nishimura C. NOX enzymes and diabetic complications. Semin Immunopathol 2008; 30:301-14. [PMID: 18488224 DOI: 10.1007/s00281-008-0122-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2008] [Accepted: 04/24/2008] [Indexed: 12/24/2022]
Abstract
Several molecular mechanisms have been identified that mediate the tissue-damaging effects of hyperglycemia. These are increased flux through the polyol and hexosamine pathways, increased formation of advanced glycation end products, activation of protein kinase C, and augmented generation of reactive oxygen species (ROS). Increased production of ROS not only causes cellular damage but also activates the signal transduction cascade that activates specific target genes. Based on recent experimental data, it is now accepted that increased NADPH oxidase activity in tissues vulnerable to hyperglycemia takes place downstream of the advanced glycation end products and protein kinase C pathways, two of the primary mechanisms involved in the pathogenesis of diabetic complications. Thus, compounds that suppress NADPH oxidase activity may offer therapeutic benefits to ameliorate diabetic complications, highlighting the significance of NADPH oxidase as a new therapeutic target.
Collapse
Affiliation(s)
- Tomoko Kakehi
- Department of Pharmacology, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamikyoku, Kyoto, Japan
| | | |
Collapse
|
163
|
Matsumoto M, Tanimoto M, Gohda T, Aoki T, Murakoshi M, Yamada K, Yamazaki T, Kaneko S, Horikoshi S, Tomino Y. Effect of pitavastatin on type 2 diabetes mellitus nephropathy in KK-Ay/Ta mice. Metabolism 2008; 57:691-7. [PMID: 18442635 DOI: 10.1016/j.metabol.2008.01.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2007] [Accepted: 01/22/2008] [Indexed: 11/25/2022]
Abstract
It is generally considered that 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors (statins) have renoprotective effects via a pathway independent of their cholesterol-lowering cascade. In the kidneys of diabetic nephropathy, monomeric endothelial nitric oxide synthase (eNOS) is thought to be overexpressed; and its dimerization is suppressed. In the present study, we investigated the expression of eNOS and oxidative stress in type 2 diabetes mellitus KK-Ay/Ta mice treated with pitavastatin, one of the statins. The KK-Ay/Ta mice were divided into 3 groups and given pitavastatin intraperitoneally starting at 8 weeks of age for 8 weeks: pitavastatin 3 mg/(kg d) (n=5), pitavastatin 10 mg/(kg d) (n=5), and a control group (n=10). The urinary albumin-creatinine ratio (ACR), urinary 8-hydroxy-2'-deoxyguanosine, body weight, fasting blood glucose, hemoglobin A1c, total cholesterol, and triglyceride were measured; and the intraperitoneal glucose tolerance test was performed. The eNOS, nitrotyrosine, and p47 phox were evaluated by immunohistochemical analyses and/or Western blot analyses. Guanosine triphosphate cyclohydrolase 1 messenger RNA expression in the kidneys was evaluated using a real-time polymerase chain reaction assay. Pitavastatin improved the levels of urinary ACR and 8-hydroxy-2'-deoxyguanosine, intraperitoneal glucose tolerance test, and hemoglobin A1c. Protein levels of monomeric eNOS, nitrotyrosine, and p47 phox in the kidneys were decreased in the pitavastatin-treated groups. Guanosine triphosphate cyclohydrolase 1 messenger RNA expression was significantly increased in the pitavastatin groups. There were no significant changes in body weight, levels of fasting blood glucose, serum total cholesterol, triglyceride, and blood pressure among all groups. Pitavastatin improved urinary ACR apparently because of suppression of eNOS uncoupling and its antioxidant effect in the kidneys of KK-Ay/Ta mice.
Collapse
Affiliation(s)
- Masakazu Matsumoto
- Division of Nephrology, Department of Internal Medicine, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
164
|
Li Y, Descorbeth M, Anand-Srivastava MB. Role of oxidative stress in high glucose-induced decreased expression of Gialpha proteins and adenylyl cyclase signaling in vascular smooth muscle cells. Am J Physiol Heart Circ Physiol 2008; 294:H2845-54. [PMID: 18441196 DOI: 10.1152/ajpheart.91422.2007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
We have recently shown that aorta from streptozotocin (STZ)-induced diabetic rats and A10 vascular smooth muscle cells (VSMCs) exposed to high glucose exhibited decreased levels of inhibitory guanine nucleotide regulatory protein (Gi)alpha proteins. In the present studies, we investigated the implication of oxidative stress in the hyperglycemia/diabetes-induced decreased expression of the Gialpha protein and adenylyl cyclase signaling in VSMCs by using antioxidants. The levels of Gialpha proteins were significantly decreased in A10 VSMCs exposed to high glucose and in aortic VSMCs from STZ-diabetic rats compared with control cells and were restored to control levels by antioxidants. In addition, (111)Mn-tetralis(benzoic acid porphyrin) and uric acid, scavengers of peroxynitrite, and NG-nitro-L-arginine methyl ester, an inhibitor of nitric oxide synthase but not catalase, also restored the high glucose-induced decreased expression of Gialpha proteins to the control levels in A10 VSMCs. Furthermore, the enhanced production of superoxide anion (O2-) and increased activity of NADPH oxidase in these cells were also restored to control levels by diphenyleneiodonium, an inhibitor of NADPH oxidase. In addition, the diminished inhibition of adenylyl cyclase activity by inhibitory hormones and forskolin-stimulated adenylyl cyclase activity by low concentrations of GTPgammaS as well as the enhanced stimulation of adenylyl cyclase by stimulatory agonists in hyperglycemic cells were restored to control levels by antioxidant treatments. These results suggest that high glucose-induced decreased levels of Gialpha proteins and associated signaling in A10 VSMCs may be attributed to the enhanced oxidative stress due to augmented levels of peroxynitrite and not to H2O2.
Collapse
Affiliation(s)
- Yuan Li
- Department of Physiology, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
| | | | | |
Collapse
|
165
|
Shi XY, Hou FF, Niu HX, Wang GB, Xie D, Guo ZJ, Zhou ZM, Yang F, Tian JW, Zhang X. Advanced oxidation protein products promote inflammation in diabetic kidney through activation of renal nicotinamide adenine dinucleotide phosphate oxidase. Endocrinology 2008; 149:1829-39. [PMID: 18174276 DOI: 10.1210/en.2007-1544] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The involvement of inflammatory processes has been recognized in development and/or progression of diabetic nephropathy. However, the mechanisms involved in the pathogenesis of renal inflammation have not been completely understood. In this study, we tested the hypothesis that accumulation of advanced oxidation protein products (AOPPs), which occurs in diabetes, may promote inflammatory responses in diabetic kidney. Streptozotocin-induced diabetic rats were randomized to iv injection of vehicle, native rat serum albumin (RSA), and AOPPs-modified RSA (AOPPs-RSA) in the presence or absence of oral administration of apocynin. A control group was followed concurrently. Compared with RSA- or vehicle-treated diabetic rats, AOPPs-RSA-treated animals displayed significant increase in renal macrophage infiltration and overexpression of monocyte chemoattractant protein-1 and TGF-beta1. This was associated with deteriorated structural and functional abnormalities of diabetic kidney, such as glomerular hypertrophy, fibronectin accumulation, and albuminuria. AOPP challenge significantly increased nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-dependent superoxide generation in renal homogenates and up-regulated membrane expression of renal NADPH oxidase subunits p47(phox) and gp91(phox). All these AOPPs-induced perturbations in diabetic kidney could be prevented by the NADPH oxidase inhibitor apocynin. These data suggest that chronic accumulation of AOPPs may promote renal inflammation in diabetes probably through activation of renal NADPH oxidase.
Collapse
Affiliation(s)
- Xiao Yun Shi
- Division of Nephrology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
166
|
Chen YJ, Li J, Quilley J. Deficient renal 20-HETE release in the diabetic rat is not the result of oxidative stress. Am J Physiol Heart Circ Physiol 2008; 294:H2305-12. [PMID: 18326808 DOI: 10.1152/ajpheart.00868.2007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We confirmed that release of 20-hydroxyeicosatetraenoic acid (20-HETE) from the isolated perfused kidney of diabetic rats is greatly reduced compared with age-matched control rats. The present studies were undertaken to examine potential mechanisms for the deficit in renal 20-HETE in rats with streptozotocin-induced diabetes of 3-4 wk duration. A role for oxidative stress was excluded, inasmuch as treatment of diabetic rats with tempol, an SOD mimetic, for 4 wk did not affect the renal release of 20-HETE. Similarly, chronic inhibition of nitric oxide formation with nitro-l-arginine methyl ester or aldose reductase with zopolrestat failed to alter the release of 20-HETE from the diabetic rat kidney. Inasmuch as 20-HETE may be metabolized by cyclooxygenase (COX), the expression/activity of which is increased in diabetes, we included indomethacin in the perfusate of the isolated kidney to inhibit COX but found no effect on 20-HETE release. Diabetic rats were treated for 3 wk with fenofibrate to increase expression of cytochrome P-450 (CYP4A) in an attempt to find an intervention that would restore release of 20-HETE from the diabetic rat kidney. However, fenofibrate reduced 20-HETE release in diabetic and control rat kidneys but increased expression of CYP4A. Only insulin treatment of diabetic rats for 2 wk to reverse the hyperglycemia and maintain blood glucose levels at <200 mg/dl reversed the renal deficit in 20-HETE. We conclude that oxidative stress, increased aldose reductase activity, or increased COX activity does not contribute to the renal deficit of 20-HETE in diabetes, which may be directly related to insulin deficiency.
Collapse
Affiliation(s)
- Yu-Jung Chen
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, USA
| | | | | |
Collapse
|
167
|
Kagawa T, Takao T, Horino T, Matsumoto R, Inoue K, Morita T, Hashimoto K. Angiotensin II receptor blocker inhibits tumour necrosis factor-alpha-induced cell damage in human renal proximal tubular epithelial cells. Nephrology (Carlton) 2008; 13:309-15. [PMID: 18331441 DOI: 10.1111/j.1440-1797.2008.00918.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
AIM We investigated the effect of angiotensin II (AII) type 1 (AT1) and angiotensin II type 2 (AT2) receptor blockers on tumour necrosis factor alpha (TNF-alpha)-induced cell damage in human renal proximal tubular epithelial cells (RPTEC). METHODS The lactate dehydrogenase (LDH) and N-acetyl-beta-glucosaminidase (NAG) release into the medium after TNF-alpha treatment in RPTEC were determined using modified commercial procedures. In addition, the levels of caspase 3/7 activity in RPTEC were measured after TNF-alpha treatment with AlphaTau1 or AT2 receptor blockers. Finally we investigated the change of p22phox protein levels after TNF-alpha with AlphaTau1 or AT2 receptor blockers in RPTEC. RESULTS Tumour necrosis factor alpha (10(-8) mol/L) significantly increased LDH and NAG release into the medium from RPTEC. AlphaTau1 receptor blockers, olmesartan and valsartan (10(-9)-10(-6) mol/L) showed a significant reduction on TNF-alpha-induced LDH and NAG release in RPTEC. AT2 receptor blocker, PD123319 (10(-7)-10(-5) mol/L) also decreased TNF-alpha-induced LDH and NAG release in RPTEC. Blockade of both AlphaTau1 and AT2 receptor indicated additional reduction on TNF-alpha-induced LDH and NAG release. TNF-alpha (10(-8) mol/L) treatment showed small but significant increases of caspase 3/7 activity in RPTEC, and AT1 and AT2 receptor blockers (10(-8) mol/L) comparably decreased TNF-alpha-induced caspase 3/7 activity. Significant increases of p22phox protein levels were observed in TNF-alpha-treated group in RPTEC. However, only AlphaTau1 (10(-8) mol/L) but not AT2 (10(-5) mol/L) receptor blocker significantly decreased TNF-alpha-induced p22phox protein levels. CONCLUSION The present study demonstrates that TNF-alpha induces renal tubular cell damage in RPTEC and AT1/AT2 receptor blockers showed cytoprotective effects probably via at least partly different mechanism.
Collapse
Affiliation(s)
- Toru Kagawa
- Department of Endocrinology, Metabolism and Nephrology, Kochi Medical School, Nankoku, Japan.
| | | | | | | | | | | | | |
Collapse
|
168
|
Kido M, Ando K, Onozato ML, Tojo A, Yoshikawa M, Ogita T, Fujita T. Protective Effect of Dietary Potassium Against Vascular Injury in Salt-Sensitive Hypertension. Hypertension 2008; 51:225-31. [DOI: 10.1161/hypertensionaha.107.098251] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Makiko Kido
- From the Department of Nephrology and Endocrinology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Katsuyuki Ando
- From the Department of Nephrology and Endocrinology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Maristela L. Onozato
- From the Department of Nephrology and Endocrinology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Akihiro Tojo
- From the Department of Nephrology and Endocrinology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Masahiro Yoshikawa
- From the Department of Nephrology and Endocrinology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Teruhiko Ogita
- From the Department of Nephrology and Endocrinology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Toshiro Fujita
- From the Department of Nephrology and Endocrinology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
169
|
Thallas-Bonke V, Thorpe SR, Coughlan MT, Fukami K, Yap FYT, Sourris KC, Penfold SA, Bach LA, Cooper ME, Forbes JM. Inhibition of NADPH oxidase prevents advanced glycation end product-mediated damage in diabetic nephropathy through a protein kinase C-alpha-dependent pathway. Diabetes 2008; 57:460-9. [PMID: 17959934 DOI: 10.2337/db07-1119] [Citation(s) in RCA: 261] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
OBJECTIVE Excessive production of reactive oxygen species (ROS) via NADPH oxidase has been implicated in the pathogenesis of diabetic nephropathy. Since NADPH oxidase activation is closely linked to other putative pathways, its interaction with changes in protein kinase C (PKC) and increased advanced glycation was examined. RESEARCH DESIGN AND METHODS Streptozotocin-induced diabetic or nondiabetic Sprague Dawley rats were followed for 32 weeks, with groups randomized to no treatment or the NADPH oxidase assembly inhibitor apocynin (15 mg . kg(-1) . day(-1); weeks 16-32). Complementary in vitro studies were performed in which primary rat mesangial cells, in the presence and absence of advanced glycation end products (AGEs)-BSA, were treated with either apocynin or the PKC-alpha inhibitor Ro-32-0432. RESULTS; Apocynin attenuated diabetes-associated increases in albuminuria and glomerulosclerosis. Circulating, renal cytosolic, and skin collagen-associated AGE levels in diabetic rats were not reduced by apocynin. Diabetes-induced translocation of PKC, specifically PKC-alpha to renal membranes, was associated with increased NADPH-dependent superoxide production and elevated renal, serum, and urinary vascular endothelial growth factor (VEGF) concentrations. In both diabetic rodents and in AGE-treated mesangial cells, blockade of NADPH oxidase or PKC-alpha attenuated cytosolic superoxide and PKC activation and increased VEGF. Finally, renal extracellular matrix accumulation of fibronectin and collagen IV was decreased by apocynin. CONCLUSIONS In the context of these and previous findings by our group, we conclude that activation of NADPH oxidase via phosphorylation of PKC-alpha is downstream of the AGE-receptor for AGE interaction in diabetic renal disease and may provide a novel therapeutic target for diabetic nephropathy.
Collapse
Affiliation(s)
- Vicki Thallas-Bonke
- JDRF Albert Einstein Centre for Diabetes Complications, Diabetes and Metabolism Division, Baker Medical Research Institute, P.O. Box 6492, St. Kilda Rd., Central, Melbourne, Victoria, Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
170
|
Siragy HM, Huang J. Renal (pro)renin receptor upregulation in diabetic rats through enhanced angiotensin AT1 receptor and NADPH oxidase activity. Exp Physiol 2008; 93:709-14. [PMID: 18192338 DOI: 10.1113/expphysiol.2007.040550] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Recent studies have demonstrated the presence of the (pro)renin receptor (PRR) in the glomerular mesangium and the subendothelial layer of the renal arteries. We hypothesized that diabetes upregulates PRR expression through enhanced angiotensin subtype 1 (AT1) receptor-NADPH oxidase cascade activity. Using real-time polymerase chain reaction, Western blot analysis and immunostaining, we studied renal localization of the PRR in the streptozotocin-induced diabetic rat model and in response to 1 week of treatment with the AT1 receptor blocker valsartan (10 mg kg(-1) day(-1)), the angiotensin AT2 receptor blocker PD123319 (0.5 mg kg(-1) day(-1)) or the NADPH oxidase inhibitor diphenylene iodonium (DPI; 0.5 mg kg(-1) day(-1)) 6 weeks post-induction of diabetes. Both PRR mRNA and protein were expressed constitutively in the kidneys of normal rat renal cortex and medulla, mainly in glomerular mesangium, proximal, distal and collecting tubules. Compared with normal rats (100%), diabetic rats demonstrated an increase in renal PRR mRNA (184%), protein (228%) and immunostaining. Valsartan and DPI prevented the increase in the PRR mRNA (106 and 126%, respectively), protein (97 and 140%, respectively) and immunostaining that was seen in the kidneys of diabetic rats. The AT2 blocker PD123319 did not have significant effects on PRR mRNA (157%) or protein expression (200%) in the kidneys of diabetic rats. These results demonstrate that the PRR is constitutively expressed in renal glomeruli and tubules. Expression of the PRR is upregulated in diabetes via enhancement of AT1 receptor-NADPH oxidase activity.
Collapse
Affiliation(s)
- Helmy M Siragy
- Department of Medicine, University of Virginia Health System, Charlottesville, VA 22908-1409, USA.
| | | |
Collapse
|
171
|
Onozato ML, Tojo A, Leiper J, Fujita T, Palm F, Wilcox CS. Expression of NG,NG-dimethylarginine dimethylaminohydrolase and protein arginine N-methyltransferase isoforms in diabetic rat kidney: effects of angiotensin II receptor blockers. Diabetes 2008; 57:172-80. [PMID: 17909098 DOI: 10.2337/db06-1772] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE The nitric oxide (NO) synthase inhibitor asymmetric dimethylarginine (ADMA) is generated by protein arginine N-methyltransferase (PRMT)-1 and is metabolized by N(G),N(G)-dimethylarginine dimethylaminohydrolase (DDAH). We tested the hypothesis that increased serum ADMA (S(ADMA)) in the streptozotocin (STZ)-induced diabetic rat model of diabetes is mediated by an angiotensin receptor blocker-sensitive change in DDAH or PRMT expression. RESEARCH DESIGN AND METHODS Data were compared from four groups of rats: sham-injected controls, untreated STZ-induced diabetic rats at 4 weeks, STZ-induced diabetic rats administered the angiotensin II (Ang II) receptor blocker telmisartan for 2 weeks, and control rats administered telmisartan for 2 weeks. RESULTS Immunostaining and Western blotting of microdissected nephron segments localized DDAH I in the proximal tubules and DDAH II in the glomeruli, afferent arterioles, macula densa, and distal nephron. Renal Ang II and S(ADMA) increased with diabetes but were normalized by 2 weeks of telmisartan. DDAH I expression was decreased in diabetic kidneys, while DDAH II expression was increased. These changes were reversed by telmisartan, which also reduced expression of PRMT-1 and -5. Telmisartan increased expressions of DDAH I but decreased DDAH II in Ang II-stimulated kidney slices ex vivo. CONCLUSIONS Renal Ang II and S(ADMA) are increased in insulinopenic diabetes. They are normalized by an Ang II receptor blocker, which increases the renal expression of DDAH I, decreases PRMT-1, and increases renal NO metabolites.
Collapse
|
172
|
Fujita A, Sasaki H, Doi A, Okamoto K, Matsuno S, Furuta H, Nishi M, Nakao T, Tsuno T, Taniguchi H, Nanjo K. Ferulic acid prevents pathological and functional abnormalities of the kidney in Otsuka Long-Evans Tokushima Fatty diabetic rats. Diabetes Res Clin Pract 2008; 79:11-7. [PMID: 17897750 DOI: 10.1016/j.diabres.2007.08.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2007] [Accepted: 08/16/2007] [Indexed: 12/28/2022]
Abstract
We investigated the preventive effects of ferulic acid (FA) and alpha-tocopherol (AT) on the progression of diabetic nephropathy. Otsuka Long-Evans Tokushima Fatty (OLETF) and Long-Evans Tokushima Otsuka (LETO) rats were used as type 2 diabetes and non-diabetes models, respectively. Two-thirds of the OLETF rats were fed 0.2% FA-containing or 0.5% AT-containing chow. Diabetic nephropathy was assessed based on urinary protein excretion and pathological changes which were scored based on the percentages of extracellular matrix area in the glomerular area. Furthermore, renal messenger RNA (mRNA) expression of intercellular adhesion molecule-1 (ICAM-1), cyclooxygenase-2 (COX-2) and transforming growth factor-beta1 (TGF-beta1) was quantified by real-time polymerase chain reaction. After 12 weeks of FA- or AT-supplementation, urinary protein in untreated-OLETF group was significantly higher than that in LETO group, thus FA-supplementation significantly decreased urinary protein excretion. Pathological scores in FA-supplemented group were significantly lower than those in untreated OLETF group. Supplementation with either FA or AT significantly prevented the elevation of TGF-beta1 mRNA expression caused by diabetes. Treatment with neither FA nor AT had a significant effect on COX-2 or ICAM-1 mRNA expressions. We have demonstrated the preventative effects of FA on diabetic nephropathy via suppression of TGF-beta1 upregulation, furthermore FA may be more potent than AT.
Collapse
Affiliation(s)
- Atsuyo Fujita
- The First Department of Medicine, Wakayama Medical University, Kimiidera 811-1, Wakayama, PO 641-8509, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
173
|
|
174
|
Chen YJ, Quilley J. Fenofibrate treatment of diabetic rats reduces nitrosative stress, renal cyclooxygenase-2 expression, and enhanced renal prostaglandin release. J Pharmacol Exp Ther 2007; 324:658-63. [PMID: 17993607 DOI: 10.1124/jpet.107.129197] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Renal cyclooxygenase (COX)-2 expression is increased in the diabetic rat and has been linked to increased glomerular filtration rate (GFR) and renal injury. Our studies indicate that oxidative stress in the form of peroxynitrite (ONOO) may be the stimulus for induction of COX-2. In this study, we addressed the effects of a peroxisome proliferator-activated receptor alpha agonist on renal COX-2 expression as fibrates exert renal protective effects. Forty-eight hours after the induction of diabetes with streptozotocin in male Wistar rats, fenofibrate treatment (100 mg/kg/day) was started, and the effects were compared with untreated diabetic rats and treated and untreated age-matched control rats (n = 5 per group). After 12 to 14 weeks of treatment, the right kidney was perfused to determine prostaglandin release in response to arachidonic acid (AA), and the left kidney was used to examine the expression of COX-2 and nitrotyrosine, an index of ONOO formation. Release of prostaglandin (PG) E(2) in response to AA was enhanced in the diabetic rat kidney compared with control (4.8 +/- 0.7 versus 1.9 +/- 0.7 ng/min) and reduced by fenofibrate to 0.6 +/- 0.2 ng/min. A similar pattern was obtained for AA-stimulated release of 6-ketoPGF(1alpha). The effects of fenofibrate were associated with reduced renal expression of COX-2 and nitrotyrosine in diabetic rats. We used creatinine clearance as an index of GFR, which was increased in the diabetic rat, 3.09 +/- 0.4 versus 1.15 +/- 0.1 ml/min for control, and reduced by fenofibrate treatment to 1.87 +/- 0.3 ml/min. These results show that fenofibrate treatment of diabetic rats decreases renal COX-2 expression, possibly by reducing nitrosative stress, and is associated with a reduction of the enhanced GFR.
Collapse
Affiliation(s)
- Yu-Jung Chen
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, USA
| | | |
Collapse
|
175
|
Tentolouris N, Nzietchueng R, Cattan V, Poitevin G, Lacolley P, Papazafiropoulou A, Perrea D, Katsilambros N, Benetos A. White blood cells telomere length is shorter in males with type 2 diabetes and microalbuminuria. Diabetes Care 2007; 30:2909-15. [PMID: 17666463 DOI: 10.2337/dc07-0633] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To examine differences in telomere (terminal restriction fragment [TRF]) length and pulse wave velocity (PWV)--an index of arterial stiffness--in patients with type 2 diabetes with and without microalbuminuria (MA). RESEARCH DESIGN AND METHODS A total of 84 men with type 2 diabetes, 40 with MA and 44 without MA (aged 63.5 +/- 9.0 vs. 61.2 +/- 9.8 years), were studied. TRF length was determined in white blood cells. MA was defined as albumin excretion rate (AER) in the range of 30-300 mg/24 h in at least two of three 24-h urine collections. PWV was assessed using applanation tonometry. Markers of oxidative stress were also measured. RESULTS TRF length was shorter in patients with MA than in those without MA (6.64 +/- 0.74 vs. 7.23 +/- 1.01 kb, respectively, P = 0.004). PWV was significantly higher in the patients with MA. Multivariate linear regression analysis in the total sample demonstrated an independent association between TRF length and age (P = 0.02), MA status (P = 0.04) or AER (P = 0.002), and plasma nitrotyrosine levels (P = 0.02). AER was associated significantly with PWV (P < 0.01). CONCLUSIONS Subjects with type 2 diabetes and MA have shorter TRF length and increased arterial stiffness than those without MA. Additionally, TRF length is associated with age, AER, and nitrosative stress. As shorter TRF length indicates older biological age, the increased arterial stiffness in patients with type 2 diabetes who have MA may be due to the more pronounced "aging " of these subjects.
Collapse
Affiliation(s)
- Nicholas Tentolouris
- First Department of Propaedeutic Medicine, Athens University Medical School, Laiko Hospital, Athens, Greece.
| | | | | | | | | | | | | | | | | |
Collapse
|
176
|
Griffin KA, Abu-Naser M, Abu-Amarah I, Picken M, Williamson GA, Bidani AK. Dynamic blood pressure load and nephropathy in the ZSF1 (fa/facp) model of type 2 diabetes. Am J Physiol Renal Physiol 2007; 293:F1605-13. [PMID: 17728379 DOI: 10.1152/ajprenal.00511.2006] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Diabetes and increased blood pressure (BP) are believed to interact synergistically in the pathogenesis and progression of diabetic nephropathy. The present studies were performed to examine if there were differences in BP load and/or protective renal autoregulatory capacity between the obese diabetic Zucker fatty /spontaneously hypertensive heart failure F1 hybrid (ZSF1) ( fa/ facp) rats and their lean controls. By ∼26 wk of age, ZSF1 ( n = 13) but not their lean controls ( n = 16) had developed substantial proteinuria (180 ± 19 vs. 16 ± 1.4 mg/24 h) and glomerulosclerosis (19 ± 2.4 vs. 0.6 ± 0.2%; P < 0.001). However, average ambient systolic BP by radiotelemetry (12–26 wk of age) was modestly lower in ZSF1 than in lean controls (130 ± 1.4 vs. 137 ± 1.7 mmHg, P < 0.002), although the 24-h BP power spectra showed a mild increase at frequencies <0.1 Hz in the ZSF1. Autoregulatory capacity under anesthesia in response to step changes in perfusion pressure between 100 and 140 mmHg was similarly well preserved in both ZSF1 and lean controls at 16–18 wk of age [autoregulatory indexes (AI) <0.1]. Similarly, differences were not observed for dynamic autoregulation in conscious rats [transfer functions between BP (input) and renal blood flow (output) using chronic Transonic flow probes]. Collectively, these data indicate that the pathogenesis of nephropathy in the ZSF1 model of type 2 diabetic nephropathy is largely independent of differences in systemic BP and/or its potential renal transmission. However, these data do not exclude the possibility that the diabetic milieu may alter the glomerular capillaries in the ZSF1, such that there is an enhanced local susceptibility to injury with even normal glomerular pressures.
Collapse
Affiliation(s)
- Karen A Griffin
- Department of Internal Medicine, Loyola University Medical Center, 2160 S. First Ave., Maywood, IL 60153, USA.
| | | | | | | | | | | |
Collapse
|
177
|
Ishigaki N, Yamamoto T, Shimizu Y, Kobayashi K, Yatoh S, Sone H, Takahashi A, Suzuki H, Yamagata K, Yamada N, Shimano H. Involvement of glomerular SREBP-1c in diabetic nephropathy. Biochem Biophys Res Commun 2007; 364:502-8. [PMID: 17961514 DOI: 10.1016/j.bbrc.2007.10.038] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2007] [Accepted: 10/07/2007] [Indexed: 01/11/2023]
Abstract
The role of glomerular SREBP-1c in diabetic nephropathy was investigated. PEPCK-promoter transgenic mice overexpressing nuclear SREBP-1c exhibited enhancement of proteinuria with mesangial proliferation and matrix accumulation, mimicking diabetic nephropathy, despite the absence of hyperglycemia or hyperlipidemia. Isolated transgenic glomeruli had higher expression of TGFbeta-1, fibronectin, and SPARC in the absence of marked lipid accumulation. Gene expression of P47phox, p67phox, and PU.1 were also activated, accompanying increased 8-OHdG in urine and kidney, demonstrating that glomerular SREBP-1c could directly cause oxidative stress through induced NADPH oxidase. Similar changes were observed in STZ-treated diabetic mice with activation of endogenous SREBP-1c. Finally, diabetic proteinuria and oxidative stress were ameliorated in SREBP-1-null mice. Adenoviral overexpression of active and dominant-negative SREBP-1c caused consistent reciprocal changes in expression of both profibrotic and oxidative stress genes in MES13 mesangial cells. These data suggest that activation of glomerular SREBP-1c could contribute to emergence and/or progression of diabetic nephropathy.
Collapse
Affiliation(s)
- Naomi Ishigaki
- Department of Internal Medicine (Endocrinology and Metabolism), Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
178
|
Palm F, Onozato ML, Luo Z, Wilcox CS. Dimethylarginine dimethylaminohydrolase (DDAH): expression, regulation, and function in the cardiovascular and renal systems. Am J Physiol Heart Circ Physiol 2007; 293:H3227-45. [PMID: 17933965 DOI: 10.1152/ajpheart.00998.2007] [Citation(s) in RCA: 244] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Asymmetric (N(G),N(G))-dimethylarginine (ADMA) inhibits nitric oxide (NO) synthases (NOS). ADMA is a risk factor for endothelial dysfunction, cardiovascular mortality, and progression of chronic kidney disease. Two isoforms of dimethylarginine dimethylaminohydrolase (DDAH) metabolize ADMA. DDAH-1 is the predominant isoform in the proximal tubules of the kidney and in the liver. These organs extract ADMA from the circulation. DDAH-2 is the predominant isoform in the vasculature, where it is found in endothelial cells adjacent to the cell membrane and in intracellular vesicles and in vascular smooth muscle cells among the myofibrils and the nuclear envelope. In vivo gene silencing of DDAH-1 in the rat and DDAH +/- mice both have increased circulating ADMA, whereas gene silencing of DDAH-2 reduces vascular NO generation and endothelium-derived relaxation factor responses. DDAH-2 also is expressed in the kidney in the macula densa and distal nephron. Angiotensin type 1 receptor activation in kidneys reduces the expression of DDAH-1 but increases the expression of DDAH-2. This rapidly evolving evidence of isoform-specific distribution and regulation of DDAH expression in the kidney and blood vessels provides potential mechanisms for nephron site-specific regulation of NO production. In this review, the recent advances in the regulation and function of DDAH enzymes, their roles in the regulation of NO generation, and their possible contribution to endothelial dysfunction in patients with cardiovascular and kidney diseases are discussed.
Collapse
Affiliation(s)
- Fredrik Palm
- Division of Nephrology and Hypertension, Georgetown University, 3800 Reservoir Road N.W., Washington, DC 20007, USA
| | | | | | | |
Collapse
|
179
|
Rouyer O, Zoll J, Daussin F, Damgé C, Helms P, Talha S, Rasseneur L, Piquard F, Geny B. Effect of angiotensin-converting enzyme inhibition on skeletal muscle oxidative function and exercise capacity in streptozotocin-induced diabetic rats. Exp Physiol 2007; 92:1047-56. [PMID: 17675412 DOI: 10.1113/expphysiol.2007.038851] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Since exercise capacity is related to the mitochondrial respiration rate in skeletal muscle and both parameters are potentially modulated by the onset of diabetes and by inhibition of the angiotensin-converting enzyme (ACE), we investigated whether skeletal muscle oxidative functions and exercise capacities are impaired in chronic streptozotocin-induced diabetic (STZ) rats and whether ACE inhibition could reverse such abnormalities. The ACE inhibitor perindopril (2 mg kg(-1) day(-1)) was given for a period of 5 weeks to 7-month-old STZ rats (DIA-PE, n = 8) whose haemodynamic function, skeletal muscle mitochondrial function and exercise capacity were compared with those of untreated diabetic (DIA, n = 8) and control rats (CONT, n = 8). Increased arterial blood pressure (157 +/- 12 versus 130 +/- 6 mmHg, P < 0.05) and reduced exercise capacity (29 +/- 2 versus 91 +/- 2 min, respectively, P < 0.01) were observed in DIA compared with CONT. The oxidative capacity of the gastrocnemius muscle was significantly reduced in DIA compared with CONT rats (5.4 +/- 0.5 versus 10.6 +/- 0.7 micromol O(2) min(-1)(g dry weight)(-1), respectively, P < 0.001). Moreover, the coupling between oxidation and phosphorylation was significantly impaired in DIA (-52%, P < 0.001). Angiotensin-converting enzyme inhibition (ACEi) normalized blood pressure without improving mitochondrial function (4.3 +/- 0.8 micromol O(2) min(-1) (g dry weight)(-1) in DIA-PE rats) but reduced exercise capacity to even lower levels (10 +/- 1 min, P < 0.01). Exercise capacity correlated positively with blood pressure in DIA-PE (r = 0.79, P < 0.05). In experimental type 1 diabetic rats, both skeletal muscle mitochondrial respiration and exercise capacity are impaired. The ACEi failed to restore the muscular function and worsened exercise capacity. Further studies will be useful to determine whether an inadequate muscular blood flow secondary to the reduction in mean systemic blood pressure can explain these results.
Collapse
Affiliation(s)
- Olivier Rouyer
- Physiology Institute and CHRU-Strasbourg, 1 PL de l'Hôpital, Strasbourg 67091, France
| | | | | | | | | | | | | | | | | |
Collapse
|
180
|
Tojo A, Asaba K, Onozato ML. Suppressing renal NADPH oxidase to treat diabetic nephropathy. Expert Opin Ther Targets 2007; 11:1011-8. [PMID: 17665974 DOI: 10.1517/14728222.11.8.1011] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Renal nicotinamide adenine dinucleotide phosphate reduced form (NADPH) oxidase is an important source of oxidative stress and its expression is enhanced in the glomerulus and distal tubules of diabetic nephropathy. High glucose-induced protein kinase C signalling or renal angiotensin II signalling increases the membrane translocation of cytosolic component p47phox. NADPH oxidase-derived reactive oxygen species (ROS) in the podocytes damage the glomerular basement membrane and the slit diaphragm causing proteinuria, and mesangial and glomerular endothelial NADPH oxidase increase TGF-beta and cause collagen and fibronectin accumulation. Tubular NADPH oxidase stimulated by angiotensin II or aldosterone contributes to sodium retention and to tubulointerstitial damage. Thus, inhibition of the renal renin-angiotensin II-aldosterone system with angiotensin-converting enzyme inhibitor, angiotensin II type 1 receptor blocker or selective aldosterone inhibitor indirectly suppresses NADPH oxidase reducing renal ROS, proteinuria and glomerulosclerosis. Statins are also effective in blocking the membrane translocation of Rac, especially in diabetes with hypercholesterolemia where ROS is produced by the intrinsic NADPH oxidase and by the activated macrophages. A medical herb, picrorhiza, inhibits the membrane translocation of p47phox, is a specific inhibitor of NADPH oxidase and, more so than superoxide dismutase mimetics, may be a promising strategy for the treatment of diabetic nephropathy.
Collapse
Affiliation(s)
- Akihiro Tojo
- University of Tokyo, Division of Nephrology and Endocrinology, Division of Nephrology and Endocrinology, Japan.
| | | | | |
Collapse
|
181
|
Hart PD, Bakris GL. Should β-Blockers Be Used to Control Hypertension in People With Chronic Kidney Disease? Semin Nephrol 2007; 27:555-64. [PMID: 17868793 DOI: 10.1016/j.semnephrol.2007.07.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Activation of the sympathetic nervous system is common in patients with chronic kidney disease, plays an important role in the genesis of hypertension, the rate of decrease of renal function, and is associated with the increased cardiovascular morbidity and mortality seen in these patients. beta-blockers are potent antihypertensive agents but differ in their hemodynamic effects on renal function. The cardioselective beta-blockers such as atenolol and metoprolol are known to retard the progression of renal diseases, but to a lesser degree compared with blockers of the renin-angiotensin-aldosterone system. However, the newer vasodilating beta-blockers such as carvedilol and nebivolol have different effects on renal hemodynamics and function primarily because of its greater adjunctive alpha1-blocking activity. Carvedilol decreases renal vascular resistance and prevents reductions in the glomerular filtration rate and renal blood flow in patients with hypertension with or without impaired kidney function. In addition, carvedilol may retard progression of albuminuria, and provide cardiorenal protection in chronic kidney disease patients with hypertension, congestive heart failure, and at high risk for sudden cardiac death.
Collapse
Affiliation(s)
- Peter D Hart
- Division of Nephrology, Department of Medicine, Cook County Hospital, Chicago, IL, USA
| | | |
Collapse
|
182
|
Son SM. Role of vascular reactive oxygen species in development of vascular abnormalities in diabetes. Diabetes Res Clin Pract 2007; 77 Suppl 1:S65-70. [PMID: 17467110 DOI: 10.1016/j.diabres.2007.01.036] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/29/2007] [Indexed: 02/07/2023]
Abstract
Macrovascular and microvascular diseases are currently the principal causes of morbidity and mortality in patients with diabetes. Oxidative stress has been postulated to be a major contributor to the pathogenesis of these events. There is considerable evidence that many biochemical pathways adversely affected by hyperglycemia and other substances that are found at elevated levels in diabetic patients are associated with the generation of reactive oxygen species, ultimately leading to increased oxidative stress in a variety of tissues. In the absence of an appropriate compensation by the endogenous antioxidant defense network, increased oxidative stress leads to the activation of stress-sensitive intracellular signaling pathways and the formation of gene products that cause cellular damage and contribute to the late complications of diabetes. It has recently been suggested that diabetic subjects with vascular complications may have a defective cellular antioxidant response against the oxidative stress generated by hyperglycemia. This raises the concept that antioxidant therapy may be of great interest in these patients. Although our understanding of how hyperglycemia-induced oxidative stress ultimately leads to tissue damage has advanced considerably in recent years, effective therapeutic strategies to prevent or delay the development of this damage remain limited. Thus, further investigations of therapeutic interventions to prevent or delay the progression of diabetic vascular complications are needed.
Collapse
Affiliation(s)
- Seok Man Son
- Department of Internal Medicine, Pusan National University School of Medicine, 1Ga-10, Ami-dong, Seo-ku, Busan 602-739, Korea.
| |
Collapse
|
183
|
Abstract
Oxidative and inflammatory stresses are cardinal in the pathogenesis of hypertension and atherosclerosis. Oxidative stress also leads to the induction of inflammation through the activation of proinflammatory transcription factors. Understanding the mechanisms leading to oxidative stress and the means of suppressing it are important in controlling complications related to atherogenesis, since oxidative and inflammatory stress are important in the pathogenesis of atherosclerosis. The failure of chemical antioxidants [which scavenge reactive oxygen species (ROS)], such as vitamins E and C, has led to further exploration of the ROS-suppressive effects of drugs used in the treatment of cardiovascular disease. Carvedilol has been shown to possess both ROS-scavenging and ROS-suppressive effects, and its use is associated with a reduction in oxidative stress. Furthermore, anti-inflammatory effects of carvedilol have now been described. Although further clinical investigations are required, these properties may contribute to the improvement in clinical outcomes observed with carvedilol.
Collapse
Affiliation(s)
- Paresh Dandona
- Division of Endocrinology, Diabetes and Metabolism, State University of New York at Buffalo, New York 14209, USA.
| | | | | |
Collapse
|
184
|
Abstract
There is increasing evidence that reactive oxygen species (ROS) play a major role in the development of diabetic complications. Oxidative stress is increased in diabetes and in chronic kidney disease (CKD). High glucose upregulates transforming growth factor-beta1 (TGF-beta1) and angiotensin II (Ang II) in renal cells and high glucose, TGF-beta1, and Ang II all generate and signal through ROS. ROS mediate high glucose-induced activation of protein kinase C and nuclear factor-kappaB in renal cells. Intensive glycemic control and inhibition of Ang II delay the onset and progression of diabetic nephropathy, in part, through antioxidant activity. Conventional and catalytic antioxidants were shown to prevent or delay the onset of diabetic nephropathy. Transketolase activators and poly (ADP-ribose) polymerase inhibitors were shown to block major biochemical pathways of hyperglycemic damage. Combination of strategies to prevent overproduction of ROS, to increase the removal of preformed ROS, and to block ROS-induced activation of biochemical pathways leading to cellular damage may prove to the effective in preventing the development and progression of CKD in diabetes.
Collapse
Affiliation(s)
- H B Lee
- Hyonam Kidney Laboratory, Soon Chun Hyang University, Seoul, Korea
| | | | | | | | | |
Collapse
|
185
|
Ohtake K, Ishiyama Y, Uchida H, Muraki E, Kobayashi J. Dietary nitrite inhibits early glomerular injury in streptozotocin-induced diabetic nephropathy in rats. Nitric Oxide 2007; 17:75-81. [PMID: 17681477 DOI: 10.1016/j.niox.2007.06.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2007] [Revised: 06/21/2007] [Accepted: 06/22/2007] [Indexed: 01/27/2023]
Abstract
Increased production of reactive oxygen species (ROS) is a key event leading to microvascular complications, including nephropathy, in diabetes mellitus (DM). Excessive ROS and oxidative stress in DM have been reported to be associated with subsequent impaired nitric oxide (NO) bioavailability. The aim of this study is to examine the beneficial function of dietary nitrite supplementation as an interventional NO donor to attenuate early progression of diabetic nephropathy. To test this hypothesis, male Sprague-Dawley rats were randomly divided into four groups: non-diabetic rats given water with or without nitrite (nitrite-treated or untreated, respectively), and streptozotocin-induced diabetic rats given water with or without nitrite (nitrite-treated or untreated, respectively). After a 4 week experimental period, untreated diabetic rats exhibited significantly higher malondialdehyde (MDA) levels in the kidney compared with untreated non-diabetic rats, accompanied by a reduction in levels of endogenous NO synthase-derived nitrite. However, dietary nitrite supplementation to diabetic rats not only decreased MDA levels but also increased nitrite levels in the kidney to the same levels as in the non-diabetic kidney. These improvements accompanied an improvement in the parameters of glomerular injury, including urinary protein and albumin excretion, histopathological glomerular hypertrophy, and mesangial matrix accumulation. These results indicate that dietary nitrite is effective in the prevention of early diabetic glomerular injury in which NO bioavailability is impaired.
Collapse
Affiliation(s)
- Kazuo Ohtake
- Division of Pathophysiology, Department of Clinical Dietetics and Human Nutrition, Faculty of Pharmaceutical Science, Josai University, Saitama, Japan
| | | | | | | | | |
Collapse
|
186
|
Abstract
Diabetic nephropathy is a major cause of morbidity and mortality in diabetic patients. Two key mechanisms implicated in the development of diabetic nephropathy include advanced glycation and oxidative stress. Advanced glycation is the irreversible attachment of reducing sugars onto amino groups of proteins to form advanced glycation end products (AGEs). AGE modification of proteins may lead to alterations in normal function by inducing cross-linking of extracellular matrices. Intracellular formation of AGEs also can cause generalized cellular dysfunction. Furthermore, AGEs can mediate their effects via specific receptors, such as the receptor for AGE (RAGE), activating diverse signal transduction cascades and downstream pathways, including generation of reactive oxygen species (ROS). Oxidative stress occurs as a result of the imbalance between ROS production and antioxidant defenses. Sources of ROS include the mitochondria, auto-oxidation of glucose, and enzymatic pathways including nicotinamide adenine dinucleotide phosphate reduced (NAD[P]H) oxidase. Beyond the current treatments to treat diabetic complications such as the optimization of blood pressure and glycemic control, it is predicted that new therapies designed to target AGEs, including AGE formation inhibitors and cross-link breakers, as well as targeting ROS using novel highly specific antioxidants, will become part of the treatment regimen for diabetic renal disease.
Collapse
Affiliation(s)
- Adeline L Y Tan
- Albert Einstein Centre for Diabetes Complications, Baker Heart Research Institute, St. Kilda Road, Central Melbourne, Victoria 8008, Australia
| | | | | |
Collapse
|
187
|
Sebeková K, Eifert T, Klassen A, Heidland A, Amann K. Renal effects of S18886 (Terutroban), a TP receptor antagonist, in an experimental model of type 2 diabetes. Diabetes 2007; 56:968-74. [PMID: 17267764 DOI: 10.2337/db06-1136] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Thromboxane A(2) (TxA(2)) is assumed to contribute to the development of diabetes complications, including nephropathy. We investigated whether the selective thromboxane-prostanoid endoperoxide receptor antagonist, S18886, ameliorates renal damage in uninephrectomized (UNX) obese Zucker rats (OZR). S18886, at doses of 10 (S18886-10) and 30 (S18886-30) mg x kg(-1) x day(-1), was administered to UNX-OZR by gavage over 8 weeks (n = 8 each group). UNX lean rats (n = 12) and OZR rats that received placebo (OZR-PLAC, n = 8) served as controls. As compared with the OZR-PLAC, S18886 had no significant effect on the elevated blood pressure and the enhanced creatinine clearance, while augmented proteinuria was partially prevented (-12 and -37%, low and high dose, respectively; NS). The increased excretion of transforming growth factor beta(1) (TGF-beta(1)) and of the thromboxane metabolite 2,3-dinor thromboxane B(2) (TxB(2)) was lowered (P < 0.05). S18886 prevented both the enhanced mesangiolysis (P < 0.01) in the OZR-PLAC as well as enlargement and degeneration of podocytes. In the blood, S18886-30 augmented the antioxidant enzymes (P < 0.01) and lessened the increase of plasma advanced oxidation protein products (-25%, NS). Body weight, hyperglycemia, and dyslipidemia remained uninfluenced under both doses of treatment. S18886 has renoprotective properties in the model of UNX-OZR. It prevents mesangiolysis, reduces urinary TGF-beta(1) and 2,3-dinor-TxB(2) excretion, and enhances the antioxidative defense.
Collapse
Affiliation(s)
- Katarína Sebeková
- Slovak Medical University, Department of Clinical and Experimental Pharmacotherapy, Limbová 12, 83303 Bratislava, Slovakia.
| | | | | | | | | |
Collapse
|
188
|
Oksala NKJ, Lappalainen J, Laaksonen DE, Khanna S, Kaarniranta K, Sen CK, Atalay M. Alpha-lipoic Acid modulates heat shock factor-1 expression in streptozotocin-induced diabetic rat kidney. Antioxid Redox Signal 2007; 9:497-506. [PMID: 17280490 DOI: 10.1089/ars.2006.1450] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Increased oxidative stress and impaired heat shock protein (HSP) synthesis may contribute to diabetic nephropathy. The question of whether 8-week thiol antioxidant alpha-lipoic acid (LA) supplementation modulates HSP response and oxidative stress was studied in the kidney of streptozotocin-induced diabetic (SID) and nondiabetic rats. SID caused a histological mesangial expansion, tubular dilatation, and increased levels of transforming growth factor-beta (TGF-beta), a mediator of glomerulosclerosis. SID increased 4-hydroxynonenal (4-HNE) protein adduct formation, a marker of lipid peroxidation, and heme oxygenase-1 (HO-1), also a marker of oxidative stress. Moreover, SID increased the DNA-binding activity of heat shock factor-1 (HSF-1) and expression of heat shock protein 60 (HSP60). In contrast, LA supplementation partially reversed histological findings of glomerulosclerosis and decreased TGF-beta. LA also increased HSF-1 and decreased HO-1 protein expression, without affecting 4-HNE protein adduct levels. At the mRNA level, LA increased expression of HSF-1, HSP90, and glucose-regulated protein (GRP75) in both control and diabetic animals and HSP72 in SID rats. However, LA supplementation did not affect these HSPs at the protein level. These findings suggest that in addition to its antiglomerulosclerotic effects, LA can induce cytoprotective response in SID.
Collapse
Affiliation(s)
- Niku K J Oksala
- Institute of Biomedicine, Physiology, University of Kuopio, Kuopio, Finland
| | | | | | | | | | | | | |
Collapse
|
189
|
Abstract
Diabetic nephropathy remains a major cause of morbidity and mortality in the diabetic population and is the leading cause of end-stage renal failure in the Western World. Despite current therapeutics including intensified glycemic control and blood pressure lowering agents, renal disease continues to progress relentlessly in diabetic patients, albeit at a lower rate. It is well recognized that metabolic and hemodynamic factors play a central role in accelerating renal disease in diabetes. However, recent experimental studies have suggested that increased generation of reactive oxygen species (ROS) as a result of the diabetic milieu may play a central role in the progression of diabetic microvascular complications. These ROS appear to be generated primarily from mitochondrial sources and via the enzyme, NADPH oxidase. This review focuses on how ROS play a deleterious role in the diabetic kidney and how they are involved in crosstalk among various signaling pathways, ultimately leading to renal dysfunction and structural injury.
Collapse
Affiliation(s)
- Melinda T Coughlan
- Albert Einstein Centre for Diabetes Complications, Wynn Domain, Baker Heart Research Institute, Melbourne, Victoria, Australia.
| | | | | |
Collapse
|
190
|
Tomohiro T, Kumai T, Sato T, Takeba Y, Kobayashi S, Kimura K. Hypertension aggravates glomerular dysfunction with oxidative stress in a rat model of diabetic nephropathy. Life Sci 2007; 80:1364-72. [PMID: 17331548 DOI: 10.1016/j.lfs.2006.11.054] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2006] [Revised: 11/06/2006] [Accepted: 11/24/2006] [Indexed: 12/20/2022]
Abstract
Oxidative stress may contribute to the pathogenesis of diabetic nephropathy (DN), although the detailed mechanism of reactive oxygen species (ROS) regulation is still unclear. This study examined the effect of high-salt diet on ROS production and expression of antioxidant enzymes in control and experimentally diabetic rats. Wistar fatty rats (WFR) as a type 2 diabetes mellitus model and Wistar lean rats (WLR) as a control were fed a normal-salt diet (NS) and high-salt diet (HS) from the age of 6 to 14 weeks. We then examined the blood pressure, urinary albumin excretion (UAE), and urinary 8-hydroxy-2'-deoxyguanosine (8-OHdG) levels. The expression of antioxidant enzymes including alpha-catalase (CAT), Cu-Zn superoxide dismutase (SOD), Mn SOD, and glutathione peroxidase (GPx) were analyzed in the glomeruli of the rats using Western blotting. The expression of NAD(P)H oxidase p47(phox) and NFkappaB p65 was evaluated using immunohistochemical staining. By 14 weeks of age, the WFR-HS group exhibited hypertension and markedly increased UAE. The level of 8-OHdG, a marker of oxidative damage, in the WFR-HS group was also higher than that in the WLR groups or WFR-NS group. The expression of alpha-CAT and Mn SOD proteins was significantly decreased in isolated glomeruli in the WFR-HS group. GPx and Cu-Zn SOD expression did not differ between the WFR and WLR groups. High expression of ROS and decreases in antioxidants were seen in the glomeruli of diabetic rats with hypertension, suggesting that oxidative stress may be involved in the development of DN.
Collapse
|
191
|
Koike N, Takamura T, Kaneko S. Induction of reactive oxygen species from isolated rat glomeruli by protein kinase C activation and TNF-alpha stimulation, and effects of a phosphodiesterase inhibitor. Life Sci 2007; 80:1721-8. [PMID: 17346751 DOI: 10.1016/j.lfs.2007.02.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2006] [Revised: 11/27/2006] [Accepted: 02/02/2007] [Indexed: 12/16/2022]
Abstract
Diabetic nephropathy is a major complication of diabetes leading to end-stage renal disease, which requires hemodialysis. Although the mechanism by which it progresses is largely unknown, the role of hyperglycemia-derived oxidative stress has recently been the focus of attention as the cause of diabetic complications. Constituent cells of the renal glomeruli have the capacity to release reactive oxygen species (ROS) upon stimulation of NADPH oxidase activated by protein kinase C (PKC). Hyperglycemia and insulin resistance in the diabetic state are often associated with activation of PKC and tumor necrosis factor (TNF)-alpha, respectively. The aim of this study is to clarify the signaling pathway leading to ROS production by PKC and TNF-alpha in rat glomeruli. Isolated rat glomeruli were stimulated with phorbol 12-myristate 13-acetate (PMA) and TNF-alpha, and the amount of ROS was measured using a chemiluminescence method. Stimulation with PMA (10 ng/ml) generated ROS with a peak value of 136+/-1.2 cpm/mg protein (mean+/-SEM). The PKC inhibitor H-7, the NADPH oxidase inhibitor diphenylene iodonium and the phosphatidylinositol-3 (PI-3) kinase inhibitor wortmannin inhibited PMA-induced ROS production by 100%, 100% and 80%, respectively. In addition, TNF-alpha stimulated ROS production (283+/-5.8/mg protein/20 min). The phosphodiesterase inhibitor cilostazol activates protein kinase A and is reported to improve albuminuria in diabetic rats. Cilostazol (100 microg/ml) inhibited PMA, and TNF-alpha-induced ROS production by 78+/-1.8, and 19+/-2.7%, respectively. The effects of cilostazol were not additive with wortmannin. Cilostazol arrests oxidative stress induced by PKC activation by inhibiting the PI-3 kinase-dependent pathway, and may thus prevent the development of diabetic nephropathy.
Collapse
Affiliation(s)
- Nobuhiko Koike
- Department of Disease Control and Homeostasis, Kanazawa University Graduate School of Medical Science, 13-1 Takara-Machi, Kanazawa, Ishikawa, Japan
| | | | | |
Collapse
|
192
|
Harwood SM, Allen DA, Raftery MJ, Yaqoob MM. High glucose initiates calpain-induced necrosis before apoptosis in LLC-PK1 cells. Kidney Int 2007; 71:655-63. [PMID: 17290296 DOI: 10.1038/sj.ki.5002106] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Cells exposed to high ambient glucose concentrations are subject to increases in intracellular calcium ([Ca(2+)](i)). We therefore considered it likely that the calcium-dependent cysteine protease calpain would play a role in the development of high glucose-induced cell injury. After 3 and 24 h, high glucose concentrations (25 mM D-glucose) produced almost identical increases in the degree of necrotic cell death in kidney proximal tubular epithelial cells (LLC-PK(1)) compared to cells treated with control glucose (5 mM D-glucose). Necrotic cell death could be restricted by inhibiting the activity of calpain. High glucose-treated LLC-PK(1) cells were found to have significantly elevated [Ca(2+)](i) concentrations within 1 h, and elevated calpain activity within 2 h compared to control treated cells. The DNA nick sensor poly(ADP-ribose) polymerase (PARP) has previously been shown to be an important driver of high glucose-induced cell death, but here we found that although PARP activity was increased after 24 h, it was unaltered after 3 h. Furthermore, PARP inhibition with PJ-34 did not restrict early high glucose-induced necrosis. Using a gene knockdown strategy with small interference RNA, we found that silencing calpain was effective in reducing the degree of early high glucose-induced necrosis. We conclude that high glucose concentrations evoke an early, calpain-mediated necrosis in cultured proximal tubular cells that is PARP-independent, and precedes the previously recognized activation of apoptosis.
Collapse
Affiliation(s)
- S M Harwood
- Centre for Experimental Medicine, Nephrology and Critical Care, Queen Mary, University of London, William Harvey Research Institute, London, UK.
| | | | | | | |
Collapse
|
193
|
Tanimoto M, Gohda T, Kaneko S, Hagiwara S, Murakoshi M, Aoki T, Yamada K, Ito T, Matsumoto M, Horikoshi S, Tomino Y. Effect of pyridoxamine (K-163), an inhibitor of advanced glycation end products, on type 2 diabetic nephropathy in KK-A(y)/Ta mice. Metabolism 2007; 56:160-7. [PMID: 17224327 DOI: 10.1016/j.metabol.2006.08.026] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2006] [Accepted: 08/20/2006] [Indexed: 02/02/2023]
Abstract
Advanced glycation end products (AGEs) from the Maillard reaction contribute to the pathogenesis of diabetes-associated complications such as diabetic nephropathy. In therapeutic interventions for reducing AGEs, many compounds have been reported as AGE inhibitors. The objective of the present study was to examine the effect of pyridoxamine (K-163), an AGE inhibitor, in type 2 diabetic KK-A(y)/Ta mice. KK-A(y)/Ta mice were given pyridoxamine (200 or 400 mg/kg per day) starting at 8 weeks of age for 12 weeks. They were divided into 3 groups as follows: pyridoxamine 200 mg/kg per day treatment group (n = 10), pyridoxamine 400 mg/kg per day treatment group (n = 10), and a tap water group as the control group (n = 20). The urinary albumin/creatinine ratio (ACR), body weight (BW), levels of fasting and casual blood glucose, blood glycated hemoglobin (HbA(1c)), fasting serum insulin, triglyceride (TG), total cholesterol (T-Cho), and 3-deoxyglucosone (3DG), and systemic blood pressure were measured as biochemical parameters. N(epsilon)-(Carboxymethyl)lysine (CML) and nitrotyrosine accumulations in glomeruli were evaluated by immunohistochemical analyses. Transforming growth factor beta1 (TGF-beta1) and laminin-beta1 messenger RNA expressions in the kidneys were evaluated by real-time polymerase chain reaction. Pyridoxamine, especially at 400 mg/kg per day, improved the levels of urinary ACR, fasting serum TG, and 3DG. CML and nitrotyrosine accumulations in glomeruli were decreased. Furthermore, large doses of pyridoxamine prevented not only urinary ACR but also increases of BW, casual blood glucose, and HbA(1c). TGF-beta1 and laminin-beta1 messenger RNA expressions in kidneys were significantly lower than those in the controls. There were no significant changes in the levels of fasting blood glucose, serum T-Cho, and systemic blood pressure among all groups. It appears that pyridoxamine improved urinary ACR by its anti-AGE and anti-oxidant effects in the kidneys of KK-A(y)/Ta mice.
Collapse
Affiliation(s)
- Mitsuo Tanimoto
- Division of Nephrology, Department of Internal Medicine, Juntendo University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
194
|
Abstract
Oxidative stress plays an important role in the pathogenesis of diabetic complications, and we investigated the effect of superoxide dismutase (SOD) mimetic, tempol, in diabetic nephropathy. Streptozotocin-induced diabetic rats were treated with tempol from 2 weeks until 8 weeks. The expression of NADPH oxidase, catalase, and myeloperoxidase (MPO), superoxide dismutase activity, and production of peroxide and hypochlorite were evaluated. Tempol treatment prevented the increase in NADPH oxidase and peroxide production in the glomeruli of diabetic rat. Catalase was decreased without change in SOD activity, and MPO was enhanced in the kidney of diabetic rats. Tempol treatment stimulated SOD activity and increased the conversion of superoxide to hydrogen peroxide, and hydrogen peroxide on its hand was converted to hypochlorite by the increased MPO. The reduction of peroxide by tempol was followed by the decrease in TGF-beta and mesangial matrix expansion. However, tempol did not reduce hypochlorite or urinary protein excretion. In conclusion, tempol inhibited glomerular matrix expansion via suppression of peroxide production and TGF-beta, but it failed to reduce proteinuria, probably due to the increased hypochlorite production in diabetic nephropathy.
Collapse
Affiliation(s)
- Kensuke Asaba
- Division of Nephrology and Endocrinology, University of Tokyo, Tokyo, Japan
| | | | | | | | | |
Collapse
|
195
|
Yalcin O, Üstündag S, Sen S, Usta U, Huseyinova G, Puyan F, Kutlu K, Tudan M. The Effects of Enalapril and Irbesartan in Experimental Diabetic Nephropathy. BIOTECHNOL BIOTEC EQ 2007. [DOI: 10.1080/13102818.2007.10817475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
196
|
Abstract
The discovery that mammalian cells have the ability to synthesize the free radical nitric oxide (NO) has stimulated an extraordinary impetus for scientific research in all the fields of biology and medicine. Since its early description as an endothelial-derived relaxing factor, NO has emerged as a fundamental signaling device regulating virtually every critical cellular function, as well as a potent mediator of cellular damage in a wide range of conditions. Recent evidence indicates that most of the cytotoxicity attributed to NO is rather due to peroxynitrite, produced from the diffusion-controlled reaction between NO and another free radical, the superoxide anion. Peroxynitrite interacts with lipids, DNA, and proteins via direct oxidative reactions or via indirect, radical-mediated mechanisms. These reactions trigger cellular responses ranging from subtle modulations of cell signaling to overwhelming oxidative injury, committing cells to necrosis or apoptosis. In vivo, peroxynitrite generation represents a crucial pathogenic mechanism in conditions such as stroke, myocardial infarction, chronic heart failure, diabetes, circulatory shock, chronic inflammatory diseases, cancer, and neurodegenerative disorders. Hence, novel pharmacological strategies aimed at removing peroxynitrite might represent powerful therapeutic tools in the future. Evidence supporting these novel roles of NO and peroxynitrite is presented in detail in this review.
Collapse
Affiliation(s)
- Pál Pacher
- Section on Oxidative Stress Tissue Injury, Laboratory of Physiologic Studies, National Institutes of Health, National Institute of Alcohol Abuse and Alcoholism, Bethesda, Maryland, USA.
| | | | | |
Collapse
|
197
|
Abstract
The sympathetic nervous system modulates renal function through its receptors namely beta1 (cardiac output and renin release), alpha1 (systemic and renovascular constriction), and beta2 renovascular dilation. Sympathetic overactivity is commonly seen in chronic kidney disease (CKD) and is an important contributor to increasing the risk of cardiovascular events as well as increasing renal disease progression. Recent evaluations of drug use in people with CKD shows a remarkably low percentage of patients receiving beta-blockers, especially in more advanced stage CKD when cardiovascular risk is higher. This is in large part due to tolerability of these agents. Moreover, water-soluble beta-blockers such as atenolol and metoprolol are dialyzable and require supplementation to avoid exacerbation of arrhythmias following dialysis. Newer vasodilating beta-blockers have better tolerability and different effects on renal hemodynamics as well as metabolic variables. These effects are related to the relative alpha1-blocking effect of agents such as carvedilol and labetolol, with carvedilol having relatively greater alpha-blocking effects. Few studies evaluate beta-blockers on cardiovascular risk in CKD patients. Studies with carvedilol demonstrate attenuated increases in albuminuria as well as reduction in cardiovascular events in CKD patients with hypertension. This paper reviews the animal and clinical trial data that evaluate beta-blockers in CKD highlighting the vasodilating beta-blockers. It is apparent that greater use of this drug class for blood pressure control would further enhance reduction of risk of heart failure, the most common cause of death in the first year of starting dialysis.
Collapse
Affiliation(s)
- G L Bakris
- Department of Medicine, Hypertension Center, Endocrine Division, University of Chicago School of Medicine, Chicago, Illinois 60637, USA.
| | | | | |
Collapse
|
198
|
Abstract
Reactive oxygen species (ROS) play a key role in the pathophysiological processes of renal diseases. The cellular damage is mediated by an alteration in the antioxidant status, which increases the concentration of ROS in the stationary state (oxidative stress). Oxidative stress mediates a wide range of renal impairments, from acute renal failure, rhabdomyolysis, obstructive nephropathy, hyperlipidemia, and glomerular damage to chronic renal failure and hemodialysis. Therefore, interventions favoring the scavenging and/or depuration of ROS (dietary and pharmacological antioxidants) should attenuate or prevent the oxidative stress, thereby mitigating against the subsequent renal damage.
Collapse
Affiliation(s)
- Devinder Singh
- Department of Medical Pharmacology & Toxicology, University of California Davis, Davis, CA, USA.
| | | | | | | |
Collapse
|
199
|
Ichihara A, Kaneshiro Y, Suzuki F. Prorenin receptor blockers: effects on cardiovascular complications of diabetes and hypertension. Expert Opin Investig Drugs 2006; 15:1137-9. [PMID: 16989590 DOI: 10.1517/13543784.15.10.1137] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
When the 'handle region' of the prorenin prosegment interacts with the (pro)renin receptor, the prorenin molecule partially changes the conformation to an enzymatically active state. On the other hand, the receptor triggers its own intracellular signalling pathways independent of the renin-angiotensin system (RAS). The 'handle region' peptide competitively binds to the receptor as a decoy peptide and inhibits both the non-proteolytic activation of prorenin and the RAS-independent intracellular signals. Therefore, prorenin receptor blockers including the decoy peptide may have superior benefits on end-organ damage in diabetes and hypertension compared with conventional RAS inhibitors.
Collapse
|
200
|
Suzaki Y, Ozawa Y, Kobori H. Intrarenal oxidative stress and augmented angiotensinogen are precedent to renal injury in Zucker diabetic fatty rats. Int J Biol Sci 2006; 3:40-6. [PMID: 17200690 PMCID: PMC1657083 DOI: 10.7150/ijbs.3.40] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2006] [Accepted: 10/27/2006] [Indexed: 12/31/2022] Open
Abstract
The Zucker diabetic fatty (ZDF) rat is a model of type II diabetes and metabolic syndrome based on impaired glucose tolerance caused by the inherited insulin-resistance gene. The ZDF rat exhibits progressive nephropathy; however, the detailed mechanisms have remained unclear. This study was performed to examine the possible involvement of enhanced intrarenal angiotensinogen in the development of renal injury in ZDF rats. Genetic pairs of male ZDF rats and control lean rats (N=6 each) were maintained from 12 to 17 weeks of age. At 17 weeks of age, fasting blood glucose and urinary 8-isoprostane levels were significantly higher in ZDF rats compared with the controls. Systolic blood pressure progressively increased in ZDF rats from 120+/-1 to 137+/-1 mmHg during this period. In contrast, systolic blood pressure did not increase in the controls. Kidney angiotensinogen protein levels were significantly increased in ZDF rats compared with the controls (1.83+/-0.34 vs. 1.00+/-0.17, relative ratio). Expression of angiotensin II type 1a receptor mRNA was similar between these groups. The measured indices of renal damage in the present study (glomerular sclerosis, interstitial expansion, glomerular macrophage infiltration, and renal arterial proliferation) were not significantly increased at this stage in ZDF rats. However, we previously showed that the increased reactive oxygen species-related angiotensinogen enhancement plays an important role in the development of renal injury in a genetic salt-sensitive hypertension. Thus, the present data suggest that elevated reactive oxygen species and reactive oxygen species-associated augmentation of intrarenal angiotensinogen may initiate the development of renal injury in ZDF rats.
Collapse
Affiliation(s)
- Yuki Suzaki
- Department of Physiology, and Hypertension and Renal Center of Excellence, Tulane University Health Sciences Center, New Orleans, LA 70112-2699, USA
| | | | | |
Collapse
|