151
|
Choi EK, Cho YJ, Yang HJ, Kim KS, Lee IS, Jang JC, Kim KH, Bang JH, Kim Y, Kim SH, Cho YH, Yoon NY, Jang YP, Song MY, Jang HJ. Coix seed extract attenuates the high-fat induced mouse obesity via PPARγ and C/EBPα a downregulation. Mol Cell Toxicol 2015. [DOI: 10.1007/s13273-015-0020-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
152
|
Kim M, Kim JI, Kim JB, Choe S. The activin-βA/BMP-2 chimera AB204 is a strong stimulator of adipogenesis. J Tissue Eng Regen Med 2015; 11:1524-1531. [PMID: 26076766 DOI: 10.1002/term.2050] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 04/28/2015] [Accepted: 04/29/2015] [Indexed: 12/24/2022]
Abstract
Several of the bone morphogenetic proteins (BMPs) have been reported to induce white as well as brown adipogenesis. Here, we characterized the adipogenic potential of AB204, a recombinant chimeric protein of activin-βA and BMP-2, in in vitro, ex vivo and in vivo settings. BMP-2 is generally known to promote adipogenesis. When compared with BMP-2, which previously showed varying degrees of adipogenesis, AB204 displayed superior in vitro adipogenic differentiation of mouse 3 T3-L1 pre-adipocytes and human adipose-derived stem cells (hASCs). Surprisingly, implantation of hASCs, preconditioned with AB204 for as short a time as 48 h, into the subcutaneous space of athymic nude mice effectively produced fat pads, but not with BMP-2. When BMP-2 and AB204 were injected intraperitoneally, AB204 promoted dramatic systemic adipogenesis of C57BL/6 mice on a high-fat diet very effectively. The results implicate the novel clinical potential of AB204, including induction of fat tissue ex vivo or in vivo for tissue re-engineering and regenerative medicinal purposes, more than any known natural protein ligand. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Meejung Kim
- Joint Centre for Biosciences, Lee Gil Ya Cancer and Diabetes Research Institute, Gachon University of Medicine and Science, Incheon, Korea
| | - Jong In Kim
- National Creative Research Initiatives Centre for Adipose Tissue Remodelling, Department of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Republic of Korea
| | - Jae Bum Kim
- National Creative Research Initiatives Centre for Adipose Tissue Remodelling, Department of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Republic of Korea
| | - Senyon Choe
- Joint Centre for Biosciences, Lee Gil Ya Cancer and Diabetes Research Institute, Gachon University of Medicine and Science, Incheon, Korea.,Qualcomm Institute, University of California at San Diego, La Jolla, CA, USA
| |
Collapse
|
153
|
Bae J, Chen J, Zhao L. Chronic activation of pattern recognition receptors suppresses brown adipogenesis of multipotent mesodermal stem cells and brown pre-adipocytes. Biochem Cell Biol 2015; 93:251-61. [DOI: 10.1139/bcb-2014-0139] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Brown adipose tissue (BAT) holds promise to combat obesity through energy-spending, non-shivering thermogenesis. Understanding of regulation of BAT development can lead to novel strategies to increase BAT mass and function for obesity treatment and prevention. Here, we report the effects of chronic activation of PRR on brown adipogenesis of multipotent mesodermal stem C3H10T1/2 cells and immortalized brown pre-adipocytes from the classical interscapular BAT of mice. Activation of NOD1, TLR4, or TLR2 by their respective synthetic ligand suppressed brown marker gene expression and lipid accumulation during differentiation of brown-like adipocytes of C3H10T1/2. Activation of the PRR only during the commitment was sufficient to suppress the differentiation. PRR activation suppressed PGC-1α mRNA, but induced PRDM16 mRNA at the commitment. Consistently, PRR activation suppressed the differentiation of immortalized brown pre-adipocytes. Activation of PRR induced NF-κB activation in both cells, which correlated with their abilities to suppress PPARγ transactivation, a critical event for brown adipogenesis. Taken together, our results demonstrate that chronic PRR activation suppressed brown adipogenesis of multipotent mesodermal stem cells and brown pre-adipocytes, possibly through suppression of PPARγ transactivation. The results suggest that anti- inflammatory therapies targeting PRRs may be beneficial for the BAT development.
Collapse
Affiliation(s)
- Jiyoung Bae
- Department of Nutrition, The University of Tennessee, 1215 W. Cumberland Avenue, Knoxville, TN 37996-1920, USA
| | - Jiangang Chen
- Department of Nutrition, The University of Tennessee, 1215 W. Cumberland Avenue, Knoxville, TN 37996-1920, USA
- Department of Public Health, The University of Tennessee, 1914 Andy Holt Ave., Knoxville, TN 37996, USA
| | - Ling Zhao
- Department of Nutrition, The University of Tennessee, 1215 W. Cumberland Avenue, Knoxville, TN 37996-1920, USA
| |
Collapse
|
154
|
Watanabe M, Takahashi H, Saeki Y, Ozaki T, Itoh S, Suzuki M, Mizushima W, Tanaka K, Hatakeyama S. The E3 ubiquitin ligase TRIM23 regulates adipocyte differentiation via stabilization of the adipogenic activator PPARγ. eLife 2015; 4:e05615. [PMID: 25905670 PMCID: PMC4426667 DOI: 10.7554/elife.05615] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 04/21/2015] [Indexed: 12/19/2022] Open
Abstract
Adipocyte differentiation is a strictly controlled process regulated by a series of transcriptional activators. Adipogenic signals activate early adipogenic activators and facilitate the transient formation of early enhanceosomes at target genes. These enhancer regions are subsequently inherited by late enhanceosomes. PPARγ is one of the late adipogenic activators and is known as a master regulator of adipogenesis. However, the factors that regulate PPARγ expression remain to be elucidated. Here, we show that a novel ubiquitin E3 ligase, tripartite motif protein 23 (TRIM23), stabilizes PPARγ protein and mediates atypical polyubiquitin conjugation. TRIM23 knockdown caused a marked decrease in PPARγ protein abundance during preadipocyte differentiation, resulting in a severe defect in late adipogenic differentiation, whereas it did not affect the formation of early enhanceosomes. Our results suggest that TRIM23 plays a critical role in the switching from early to late adipogenic enhanceosomes by stabilizing PPARγ protein possibly via atypical polyubiquitin conjugation. DOI:http://dx.doi.org/10.7554/eLife.05615.001 The world is facing a global epidemic of obesity, which also increases the risk for diabetes and heart disease. Obesity is caused when excess fat is stored in fat cells, and overweight individuals have larger fat cells compared to healthy weight people. Therefore understanding how fat cells are created in the body can provide new ways to combat obesity. Fat cells, also known as adipocytes, arise from precursor cells via a process called adipogenesis. This requires the activity of proteins called transcription factors that bind to DNA and switch on the expression of genes. PPARγ is an important transcription factor that drives the expression of the genes that are needed to convert a precursor cell to a mature adipocyte. For adipogenesis to proceed, cells have to maintain the appropriate levels of PPARγ. If the amount of PPARγ bound to DNA is too low, then it is unable to activate gene expression. However, the mechanisms by which cells maintain the correct levels of PPARγ activity remain poorly understood. Watanabe et al. analyzed this process in mouse cells and identified a protein called TRIM23 that is produced in precursor cells. Cells in which the levels of TRIM23 were artificially lowered failed to mature into fat cells; this suggests that this protein is necessary for adipogenesis. Furthermore, in the absence of TRIM23, the amount of PPARγ that occupied regions of DNA was also markedly reduced. A direct consequence of this was a decline in the expression of several genes that are required for the later steps in the adipogenesis process. Watanabe et al. next analyzed the mechanism through which TRIM23 had an effect on the levels of PPARγ. It is known from previous work that TRIM23 belongs to a family of enzymes that attach a small molecular tag called ubiquitin onto other proteins. This ubiquitin tag typically marks these proteins for rapid destruction by a large molecular machine called the proteasome. Watanabe et al. found that TRIM23 also modified PPARγ with ubiquitin, but that it did so in an unusual manner that instead prevented the proteasome from recognizing PPARγ and destroying it. As such, TRIM23 stabilizes the levels of PPARγ in cells. By providing new insights into how adipogenesis is regulated, these findings suggest that TRIM23 may be a potential therapeutic target in the treatment of diabetes and disorders related to obesity. DOI:http://dx.doi.org/10.7554/eLife.05615.002
Collapse
Affiliation(s)
- Masashi Watanabe
- Department of Biochemistry, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Hidehisa Takahashi
- Department of Biochemistry, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Yasushi Saeki
- Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Takashi Ozaki
- Department of Biochemistry, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Shihori Itoh
- Department of Biochemistry, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Masanobu Suzuki
- Department of Biochemistry, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Wataru Mizushima
- Department of Biochemistry, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Keiji Tanaka
- Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Shigetsugu Hatakeyama
- Department of Biochemistry, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| |
Collapse
|
155
|
Turner PA, Tang Y, Weiss SJ, Janorkar AV. Three-dimensional spheroid cell model of in vitro adipocyte inflammation. Tissue Eng Part A 2015; 21:1837-47. [PMID: 25781458 DOI: 10.1089/ten.tea.2014.0531] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
To improve treatment of obesity, a contributing factor to multiple systemic and metabolic diseases, a better understanding of metabolic state and environmental stress at the cellular level is essential. This work presents development of a three-dimensional (3D) in vitro model of adipose tissue displaying induced lipid accumulation as a function of fatty acid supplementation that, subsequently, investigates cellular responses to a pro-inflammatory stimulus, thereby recapitulating key stages of obesity progression. Three-dimensional spheroid organization of adipose cells was induced by culturing 3T3-L1 mouse preadipocytes on an elastin-like polypeptide-polyethyleneimine (ELP-PEI)-coated surface. Results indicate a more differentiated phenotype in 3D spheroid cultures relative to two-dimensional (2D) monolayer analogues based on triglyceride accumulation, CD36 and CD40 protein expression, and peroxisome proliferator-activated receptor-γ (PPAR-γ) and adiponectin mRNA expression. The 3T3-L1 adipocyte spheroid model was then used to test the effects of a pro-inflammatory microenvironment, namely maturation in the presence of elevated fatty acid levels followed by acute exposure to tumor necrosis factor alpha (TNF-α). Under these conditions, we demonstrate that metabolic function was reduced across all cultures exposed to TNF-α, especially so when pre-exposed to linoleic acid. Further, in response to TNF-α, enhanced lipolysis, monitored as increased extracellular glycerol and fatty acids levels, was observed in adipocytes cultured in the presence of exogenous fatty acids. Taken together, our 3D spheroid model showed enhanced adipogenic differentiation and presents a platform for elucidating the key phenotypic responses that occur in pro-inflammatory microenvironments that characterize obesogenic states.
Collapse
Affiliation(s)
- Paul A Turner
- 1Department of Biomedical Materials Science, School of Dentistry, University of Mississippi Medical Center, Jackson, Mississippi
| | - Yi Tang
- 2Life Sciences Institute, University of Michigan, Ann Arbor, Michigan
| | - Stephen J Weiss
- 2Life Sciences Institute, University of Michigan, Ann Arbor, Michigan
| | - Amol V Janorkar
- 1Department of Biomedical Materials Science, School of Dentistry, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
156
|
Yamamoto J, Yamane T, Oishi Y, Shimizu M, Tadaishi M, Kobayashi-Hattori K. Chrysanthemum Promotes Adipocyte Differentiation, Adiponectin Secretion and Glucose Uptake. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2015; 43:255-67. [DOI: 10.1142/s0192415x15500172] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The adipose tissue is an endocrine organ, and its endocrine function is closely related to type 2 diabetes. Edible Chrysanthemum morifolium Ramat. (ECM) possesses several biological properties; however, its effect on adipocytes remains unclear. We investigated the effect of the hot water extract of ECM (HW-ECM) on 3T3-L1 adipocytes. HW-ECM enhanced adipocyte differentiation, adiponectin secretion, and glucose uptake in 3T3-L1 cells. It also increased the mRNA levels of peroxisome proliferator-activated receptor γ (PPARγ), a regulator of adipocyte differentiation, adiponectin transcription, and GLUT4 expression. In addition, HW-ECM increased the mRNA levels of CCAAT/enhancer-binding protein-delta (C/EBPδ), which induces PPARγ expression, but not C/EBPβ, during early adipocyte differentiation. These results suggest that HW-ECM enhances adipocyte differentiation, adiponectin secretion, and glucose uptake through C/EBPδ-induced PPARγ expression. These effects of HW-ECM on adipocytes suggest that HW-ECM is potentially beneficial for type 2 diabetes.
Collapse
Affiliation(s)
- Junpei Yamamoto
- Department of Nutritional Science, Faculty of Applied Bioscience, Tokyo University of Agriculture, Setagaya-ku, Tokyo 156-8502, Japan
| | - Takumi Yamane
- Department of Nutritional Science, Faculty of Applied Bioscience, Tokyo University of Agriculture, Setagaya-ku, Tokyo 156-8502, Japan
| | - Yuichi Oishi
- Department of Nutritional Science, Faculty of Applied Bioscience, Tokyo University of Agriculture, Setagaya-ku, Tokyo 156-8502, Japan
| | - Makoto Shimizu
- Department of Nutritional Science, Faculty of Applied Bioscience, Tokyo University of Agriculture, Setagaya-ku, Tokyo 156-8502, Japan
| | - Miki Tadaishi
- Department of Nutritional Science, Faculty of Applied Bioscience, Tokyo University of Agriculture, Setagaya-ku, Tokyo 156-8502, Japan
| | - Kazuo Kobayashi-Hattori
- Department of Nutritional Science, Faculty of Applied Bioscience, Tokyo University of Agriculture, Setagaya-ku, Tokyo 156-8502, Japan
| |
Collapse
|
157
|
de Picoli Souza K, da Silva ED, Batista EC, Reis FCG, Silva SMA, Castro CHM, Luz J, Pesquero JL, Dos Santos EL, Pesquero JB. Early pharmacological inhibition of angiotensin-I converting enzyme activity induces obesity in adulthood. Front Pharmacol 2015; 6:75. [PMID: 25926796 PMCID: PMC4396349 DOI: 10.3389/fphar.2015.00075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 03/19/2015] [Indexed: 01/05/2023] Open
Abstract
We have investigated early programming of body mass in order to understand the multifactorial etiology of obesity. Considering that the renin-angiotensin system (RAS) is expressed and functional in the white adipose tissue (WAT) and modulates its development, we reasoned whether early transitory inhibition of angiotensin-I converting enzyme activity after birth could modify late body mass development. Therefore, newborn Wistar rats were treated with enalapril (10 mg/kg of body mass) or saline, starting at the first day of life until the age of 16 days. Between days ninetieth and hundred and eightieth, a group of these animals received high fat diet (HFD). Molecular, biochemical, histological, and physiological data were collected. Enalapril treated animals presented hyperphagia, overweight, and increased serum level of triglycerides, total cholesterol and leptin, in adult life. Body composition analyses revealed higher fat mass with increased adipocyte size in these animals. Molecular analyses revealed that enalapril treatment increases neuropeptide Y (NPY) and cocaine- and amphetamine-regulated transcript (CART) gene expression in hypothalamus, fatty acid synthase (FAS), and hormone-sensitive lipase (HSL) gene expression in retroperitoneal WAT, and decreases peroxixome proliferators-activated receptor (PPAR)γ, PPARα, uncoupling protein (UCP)2, and UCP3 gene expression in WAT. The results of the current study indicate that enalapril administration during early postnatal development increases body mass, adiposity and serum lipids in adulthood associated with enhanced food intake and decreased metabolic activity in WAT, predisposing to obesity in adulthood.
Collapse
Affiliation(s)
- Kely de Picoli Souza
- School of Environmental and Biological Science, Universidade Federal da Grande Dourados Dourados, Brazil
| | - Elton D da Silva
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo São Paulo, Brazil
| | - Elice C Batista
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo São Paulo, Brazil
| | - Felipe C G Reis
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo São Paulo, Brazil
| | - Sylvia M A Silva
- Department of Physiology, Escola Paulista de Medicina, Universidade Federal de São Paulo São Paulo, Brazil
| | - Charlles H M Castro
- Department of Rheumatology, Escola Paulista de Medicina, Universidade Federal de São Paulo São Paulo, Brazil
| | - Jaqueline Luz
- Department of Physiology, Escola Paulista de Medicina, Universidade Federal de São Paulo São Paulo, Brazil
| | - Jorge L Pesquero
- Department of Physiology and Biophysics, Universidade Federal de Minas Gerais Belo Horizonte, Brazil
| | - Edson L Dos Santos
- School of Environmental and Biological Science, Universidade Federal da Grande Dourados Dourados, Brazil
| | - João B Pesquero
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo São Paulo, Brazil
| |
Collapse
|
158
|
Kobayashi S, Fukuhara A, Otsuki M, Suganami T, Ogawa Y, Morii E, Shimomura I. Fat/vessel-derived secretory protein (Favine)/CCDC3 is involved in lipid accumulation. J Biol Chem 2015; 290:7443-51. [PMID: 25605713 DOI: 10.1074/jbc.m114.592493] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We previously identified a novel gene encoding Favine/CCDC3 (NCBI protein entry NP_083080), a possible secretory factor, the mRNA of which is highly expressed in adipose tissue and the aorta. The Favine mRNA levels are increased in the course of differentiation of rat primary adipocytes and are more elevated in the adipose tissue of genetically obese and diet-induced obese mice than in lean mice. However, its biological function has not yet been elucidated until now. Here, we tested the hypothesis that Favine is involved in lipid metabolism in adipocytes. We found that overexpression of Favine promoted 3T3-L1 adipocyte differentiation. To further investigate the function of Favine in vivo, we generated Favine knock-out (KO) mice. Favine KO mice exhibited a lean phenotype as they aged. The weights of white adipose tissue and liver were less, and adipocyte size was smaller in Favine KO mice compared with wild-type littermates (WT). Expression levels of lipogenic genes, such as fatty-acid synthase (FAS), acetyl-CoA carboxylase α (ACC1), and diacylglycerol O-acyltransferase-2 (Dgat2), were decreased in adipose tissue of Favine KO mice. In 1-year-old mice, Favine deficiency decreased the number of inflammatory cells in white adipose tissue and diminished hepatic steatosis. In vitro, deficiency of Favine attenuated differentiation of primary adipocytes. Taken together, these data demonstrate that Favine has adipogenic and lipogenic effects on adipocytes.
Collapse
Affiliation(s)
| | | | | | | | - Yoshihiro Ogawa
- Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-545 Yushima, Bunkyo-ku, Tokyo, Japan
| | - Eiichi Morii
- Pathology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka and
| | | |
Collapse
|
159
|
Contador D, Ezquer F, Espinosa M, Arango-Rodriguez M, Puebla C, Sobrevia L, Conget P. Dexamethasone and rosiglitazone are sufficient and necessary for producing functional adipocytes from mesenchymal stem cells. Exp Biol Med (Maywood) 2015; 240:1235-46. [PMID: 25595190 DOI: 10.1177/1535370214566565] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 11/17/2014] [Indexed: 12/13/2022] Open
Abstract
The final product of adipogenesis is a functional adipocyte. This mature cell acquires the necessary machinery for lipid metabolism, loses its proliferation potential, increases its insulin sensitivity, and secretes adipokines. Multipotent mesechymal stromal cells have been recognized as a source of adipocytes both in vivo and in vitro. The in vitro adipogenic differentiation of human MSC (hMSC) has been induced up to now by using a complex stimulus which includes dexamethasone, 3-isobutyl-1-methylxanthine, indomethacin, and insulin (a classical cocktail) and evaluated according to morphological changes. The present work was aimed at demonstrating that the simultaneous activation of dexamethasone's canonical signaling pathways, through the glucocorticoid receptor and CCAAT-enhancer-binding proteins (C/EBPs) and rosiglitazone through peroxisome proliferator-activated receptor gamma (PPAR-gamma) is sufficient yet necessary for inducing hMSC adipogenic differentiation. It was also ascertained that hMSC exposed just to dexamethasone and rosiglitazone (D&R) differentiated into cells which accumulated neutral lipid droplets, expressed C/EBP-alpha, PPAR-gamma, aP2, lipoprotein lipase, acyl-CoA synthetase, phosphoenolpyruvate carboxykinase, adiponectin, and leptin genes but did not proliferate. Glucose uptake was dose dependent on insulin stimulus and high levels of adipokines were secreted (i.e. displaying not only the morphology but also expressing mature adipocytes' specific genes and functional characteristics). This work has demonstrated that (i) the activating C/EBPs and PPAR-gamma signaling pathways were sufficient to induce adipogenic differentiation from hMSC, (ii) D&R producing functional adipocytes from hMSC, (iii) D&R induce adipogenic differentiation from mammalian MSC (including those which are refractory to classical adipogenic differentiation stimuli). D&R would thus seem to be a useful tool for MSC characterization, studying adipogenesis pathways and producing functional adipocytes.
Collapse
Affiliation(s)
- David Contador
- Center for Regenerative Medicine, School of Medicine, Clínica Alemana Universidad del Desarrollo, Santiago 7710162, Chile
| | - Fernando Ezquer
- Center for Regenerative Medicine, School of Medicine, Clínica Alemana Universidad del Desarrollo, Santiago 7710162, Chile
| | - Maximiliano Espinosa
- Center for Regenerative Medicine, School of Medicine, Clínica Alemana Universidad del Desarrollo, Santiago 7710162, Chile
| | - Martha Arango-Rodriguez
- Center for Regenerative Medicine, School of Medicine, Clínica Alemana Universidad del Desarrollo, Santiago 7710162, Chile
| | - Carlos Puebla
- Cellular and Molecular Physiology Laboratory, Obstetrics and Gynecology Division, Faculty of Medicine, P. Universidad Católica de Chile, Santiago 8330024, Chile
| | - Luis Sobrevia
- Cellular and Molecular Physiology Laboratory, Obstetrics and Gynecology Division, Faculty of Medicine, P. Universidad Católica de Chile, Santiago 8330024, Chile
| | - Paulette Conget
- Center for Regenerative Medicine, School of Medicine, Clínica Alemana Universidad del Desarrollo, Santiago 7710162, Chile
| |
Collapse
|
160
|
Tamoxifen reduces fat mass by boosting reactive oxygen species. Cell Death Dis 2015; 6:e1586. [PMID: 25569103 PMCID: PMC4669751 DOI: 10.1038/cddis.2014.553] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 11/10/2014] [Accepted: 11/17/2014] [Indexed: 01/04/2023]
Abstract
As the pandemic of obesity is growing, a variety of animal models have been generated to study the mechanisms underlying the increased adiposity and development of metabolic disorders. Tamoxifen (Tam) is widely used to activate Cre recombinase that spatiotemporally controls target gene expression and regulates adiposity in laboratory animals. However, a critical question remains as to whether Tam itself affects adiposity and possibly confounds the functional study of target genes in adipose tissue. Here we administered Tam to Cre-absent forkhead box O1 (FoxO1) floxed mice (f-FoxO1) and insulin receptor substrate Irs1/Irs2 double floxed mice (df-Irs) and found that Tam induced approximately 30% reduction (P<0.05) in fat mass with insignificant change in body weight. Mechanistically, Tam promoted reactive oxygen species (ROS) production, apoptosis and autophagy, which was associated with downregulation of adipogenic regulator peroxisome proliferator-activated receptor gamma and dedifferentiation of mature adipocytes. However, normalization of ROS potently suppressed Tam-induced apoptosis, autophagy and adipocyte dedifferentiation, suggesting that ROS may account, at least in part, for the changes. Importantly, Tam-induced ROS production and fat mass reduction lasted for 4–5 weeks in the f-FoxO1 and df-Irs mice. Our data suggest that Tam reduces fat mass via boosting ROS, thus making a recovery period crucial for posttreatment study.
Collapse
|
161
|
Thyrotropin and obesity: increased adipose triglyceride content through glycerol-3-phosphate acyltransferase 3. Sci Rep 2015; 5:7633. [PMID: 25559747 PMCID: PMC4284501 DOI: 10.1038/srep07633] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 11/28/2014] [Indexed: 12/13/2022] Open
Abstract
Epidemiological evidence indicates that thyrotropin (TSH) is positively correlated with the severity of obesity. However, the mechanism remains unclear. Here, we show that TSH promoted triglyceride (TG) synthesis in differentiated adipocytes in a thyroid hormone-independent manner. Mice with subclinical hypothyroidism, which is characterized by elevated serum TSH but not thyroid hormone levels, demonstrated a 35% increase in the total white adipose mass compared with their wild-type littermates. Interestingly, Tshr KO mice, which had normal thyroid hormone levels after thyroid hormone supplementation, resisted high-fat diet-induced obesity. TSH could directly induce the activity of glycerol-3-phosphate-acyltransferase 3 (GPAT3), the rate-limiting enzyme in TG synthesis, in differentiated 3T3-L1 adipocytes. However, following either the knockdown of Tshr and PPARγ or the constitutive activation of AMPK, the changes to TSH-triggered GPAT3 activity and adipogenesis disappeared. The over-expression of PPARγ or the expression of an AMPK dominant negative mutant reversed the TSH-induced changes. Thus, TSH acted as a previously unrecognized master regulator of adipogenesis, indicating that modification of the AMPK/PPARγ/GPAT3 axis via the TSH receptor might serve as a potential therapeutic target for obesity.
Collapse
|
162
|
Uebi T, Umeda M, Imai T. Estrogen induces estrogen receptor alpha expression and hepatocyte proliferation in the livers of male mice. Genes Cells 2014; 20:217-23. [PMID: 25495062 DOI: 10.1111/gtc.12214] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Accepted: 11/16/2014] [Indexed: 12/19/2022]
Abstract
Estrogens play pivotal roles in sexual development, growth, reproduction, and sex differentiation and have been implicated in a number of physiological processes in various tissues. Most of the effects of estrogens are mediated by the estrogen receptors alpha (ERα), beta (ERβ), and G protein-coupled receptor 30 (GPR30). The liver is known to be a target tissue for estrogen signaling, but the physiological role of this signaling is not well characterized. Through analyses of an estradiol (E2)-treated hepatocyte cell line and mice, we showed that E2 signaling controls hepatocyte proliferation. Importantly, our data showed that the E2 signaling that is mediated through ERα is crucial for efficient liver regeneration after partial hepatectomy (PH). PH rapidly induced marked increases in circulating E2 and ERα transcripts in periportal hepatocytes, well before the onset of hepatocyte proliferation. Taken together, our results indicate that increased E2 is one of the initiating signals that trigger liver regeneration. We suggest that E2 treatment could be beneficial for stimulating liver regeneration in humans.
Collapse
Affiliation(s)
- Tatsuya Uebi
- Department of Aging Intervention, National Center for Geriatrics and Gerontology, Obu, 474-8511, Japan
| | | | | |
Collapse
|
163
|
Chase K, Sharma RP. Epigenetic developmental programs and adipogenesis. Epigenetics 2014; 8:1133-40. [DOI: 10.4161/epi.26027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
164
|
Induction of the nuclear receptor PPAR-γ by the cytokine GM-CSF is critical for the differentiation of fetal monocytes into alveolar macrophages. Nat Immunol 2014; 15:1026-37. [PMID: 25263125 DOI: 10.1038/ni.3005] [Citation(s) in RCA: 412] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 09/05/2014] [Indexed: 12/12/2022]
Abstract
Tissue-resident macrophages constitute heterogeneous populations with unique functions and distinct gene-expression signatures. While it has been established that they originate mostly from embryonic progenitor cells, the signals that induce a characteristic tissue-specific differentiation program remain unknown. We found that the nuclear receptor PPAR-γ determined the perinatal differentiation and identity of alveolar macrophages (AMs). In contrast, PPAR-γ was dispensable for the development of macrophages located in the peritoneum, liver, brain, heart, kidneys, intestine and fat. Transcriptome analysis of the precursors of AMs from newborn mice showed that PPAR-γ conferred a unique signature, including several transcription factors and genes associated with the differentiation and function of AMs. Expression of PPAR-γ in fetal lung monocytes was dependent on the cytokine GM-CSF. Therefore, GM-CSF has a lung-specific role in the perinatal development of AMs through the induction of PPAR-γ in fetal monocytes.
Collapse
|
165
|
James AW, Shen J, Khadarian K, Pang S, Chung G, Goyal R, Asatrian G, Velasco O, Kim J, Zhang X, Ting K, Soo C. Lentiviral delivery of PPARγ shRNA alters the balance of osteogenesis and adipogenesis, improving bone microarchitecture. Tissue Eng Part A 2014; 20:2699-710. [PMID: 24785569 DOI: 10.1089/ten.tea.2013.0736] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
INTRODUCTION Skeletal aging is associated not only with alterations in osteoblast (OB) and osteoclast (OC) number and activity within the basic metabolic unit, but also with increased marrow adiposity. Peroxisome proliferator-activated receptor gamma (PPARγ) is commonly considered the master transcriptional regulator of adipogenesis, however, it has known roles in osteoblast and osteoclast function as well. Here, we designed a lentiviral delivery system for PPARγ shRNA, and examined its effects in vitro on bone marrow stromal cells (BMSC) and in a mouse intramedullary injection model. METHODS PPARγ shRNA was delivered by a replication-deficient lentiviral vector, after in vitro testing to confirm purity, concentration, and efficacy for Pparg transcript reduction. Next, control green fluorescent protein lentivirus or PPARγ shRNA expressing lentivirus were delivered by intramedullary injection into the femoral bone marrow of male SCID mice. Analyses included daily monitoring of animal health, and postmortem analysis at 4 weeks. Postmortem analyses included high resolution microcomputed tomography (microCT) reconstructions and analysis, routine histology and histomorphometric analysis, quantitative real time polymerase chain reaction analysis of Pparg transcript levels, and immunohistochemical analysis for markers of adipocytes (PPARγ, fatty acid binding protein 4 [FABP4]), osteoblasts (alkaline phosphatase [ALP], osteocalcin [OCN]), and osteoclasts (tartrate-resistant acid phosphatase [TRAP], Cathepsin K). RESULTS In vitro, PPARγ shRNA delivery significantly reduced Pparg expression in mouse BMSC, accompanied by a significant reduction in lipid droplet accumulation. In vivo, a near total reduction in mature marrow adipocytes was observed at 4 weeks postinjection. This was accompanied by significant reductions in adipocyte-specific markers. Parameters of trabecular bone were significantly increased by both microCT and histomorphometric analysis. By immunohistochemical staining and semi-quantification, a significant increase in OCN+osteoblasts and decrease in TRAP+multinucleated osteoclasts was observed with PPARγ shRNA treatment. DISCUSSION These findings suggest that acute loss of PPARγ in the bone marrow compartment has a significant role beyond anti-adipose effects. Specifically, we found pro-osteoblastogenic, anti-osteoclastic effects after PPARγ shRNA treatment, resulting in improved trabecular bone architecture. Future studies will examine the isolated and direct effects of PPARγ shRNA on OB and OC cell types, and it may help determine whether PPARγ antagonists are potential therapeutic agents for osteoporotic bone loss.
Collapse
Affiliation(s)
- Aaron W James
- 1 Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California , Los Angeles, Los Angeles, California
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
166
|
Liu L, Jiang Q, Wang X, Zhang Y, Lin RCY, Lam SM, Shui G, Zhou L, Li P, Wang Y, Cui X, Gao M, Zhang L, Lv Y, Xu G, Liu G, Zhao D, Yang H. Adipose-specific knockout of SEIPIN/BSCL2 results in progressive lipodystrophy. Diabetes 2014; 63:2320-31. [PMID: 24622797 DOI: 10.2337/db13-0729] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Berardinelli-Seip congenital lipodystrophy type 2 (BSCL2) is the most severe form of human lipodystrophy, characterized by an almost complete loss of adipose tissue and severe insulin resistance. BSCL2 is caused by loss-of-function mutations in the BSCL2/SEIPIN gene, which is upregulated during adipogenesis and abundantly expressed in the adipose tissue. The physiological function of SEIPIN in mature adipocytes, however, remains to be elucidated. Here, we generated adipose-specific Seipin knockout (ASKO) mice, which exhibit adipocyte hypertrophy with enlarged lipid droplets, reduced lipolysis, adipose tissue inflammation, progressive loss of white and brown adipose tissue, insulin resistance, and hepatic steatosis. Lipidomic and microarray analyses revealed accumulation/imbalance of lipid species, including ceramides, in ASKO adipose tissue as well as increased endoplasmic reticulum stress. Interestingly, the ASKO mice almost completely phenocopy the fat-specific peroxisome proliferator-activated receptor-γ (Pparγ) knockout (FKO-γ) mice. Rosiglitazone treatment significantly improved a number of metabolic parameters of the ASKO mice, including insulin sensitivity. Our results therefore demonstrate a critical role of SEIPIN in maintaining lipid homeostasis and function of adipocytes and reveal an intimate relationship between SEIPIN and PPAR-γ.
Collapse
Affiliation(s)
- Lu Liu
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Peking University Health Science Center, Beijing, China
| | - Qingqing Jiang
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Peking University Health Science Center, Beijing, China
| | - Xuhong Wang
- Department of Endocrinology, Lu He Teaching Hospital of the Capital Medical University, Beijing, China
| | - Yuxi Zhang
- School of Biotechnology and Biomolecular Sciences, the University of New South Wales, Sydney, NSW, Australia
| | - Ruby C Y Lin
- School of Biotechnology and Biomolecular Sciences, the University of New South Wales, Sydney, NSW, Australia
| | - Sin Man Lam
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Linkang Zhou
- MOE Key Laboratory of Bioinformatics and Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Peng Li
- MOE Key Laboratory of Bioinformatics and Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yuhui Wang
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Peking University Health Science Center, Beijing, China
| | - Xin Cui
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Peking University Health Science Center, Beijing, China
| | - Mingming Gao
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Peking University Health Science Center, Beijing, China
| | - Ling Zhang
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Peking University Health Science Center, Beijing, China
| | - Ying Lv
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Guoheng Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - George Liu
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Peking University Health Science Center, Beijing, China
| | - Dong Zhao
- Department of Endocrinology, Lu He Teaching Hospital of the Capital Medical University, Beijing, China
| | - Hongyuan Yang
- School of Biotechnology and Biomolecular Sciences, the University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
167
|
Wagner M. A dangerous duo in adipose tissue: high-mobility group box 1 protein and macrophages. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2014; 87:127-33. [PMID: 24910558 PMCID: PMC4031786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
High-mobility group box 1 (HMGB1) protein first made headlines 40 years ago as a non-histone nuclear protein that regulates gene expression. Not so long ago, it was also shown that HMGB1 has an additional surprising function. When released into the extracellular milieu, HMGB1 triggers an inflammatory response by serving as an endogenous danger signal. The pro-inflammatory role of HMGB1 is now well-established and has been associated with several diseases, including sepsis, rheumatoid arthritis, and atherosclerosis. Yet very little is known about its role in obesity, wherein adipose tissue is typified by a persistent, smoldering inflammatory response instigated by high macrophage infiltrate that potentiates the risk of obesity-associated comorbidities. This mini-review focuses on the putative causal relationship between HMGB1 and macrophage pro-inflammatory activation in pathologically altered adipose tissue associated with obesity.
Collapse
Affiliation(s)
- Marek Wagner
- Department of Biomedicine, University of Bergen, Bergen, Norway
| |
Collapse
|
168
|
Lefterova MI, Haakonsson AK, Lazar MA, Mandrup S. PPARγ and the global map of adipogenesis and beyond. Trends Endocrinol Metab 2014; 25:293-302. [PMID: 24793638 PMCID: PMC4104504 DOI: 10.1016/j.tem.2014.04.001] [Citation(s) in RCA: 437] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 04/08/2014] [Accepted: 04/09/2014] [Indexed: 10/25/2022]
Abstract
Peroxisome proliferator-activated receptor γ (PPARγ) is a member of the nuclear receptor (NR) superfamily of ligand-dependent transcription factors (TFs) and function as a master regulator of adipocyte differentiation and metabolism. We review recent breakthroughs in the understanding of PPARγ gene regulation and function in the chromatin context. It is now clear that multiple TFs team up to induce PPARγ during adipogenesis, and that other TFs cooperate with PPARγ to ensure adipocyte-specific genomic binding and function. We discuss how this differs in other PPARγ-expressing cells such as macrophages and how these genome-wide mechanisms are preserved across species despite modest conservation of specific binding sites. These emerging considerations inform our understanding of PPARγ function as well as of adipocyte development and physiology.
Collapse
Affiliation(s)
- Martina I Lefterova
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Anders K Haakonsson
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| | - Mitchell A Lazar
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Susanne Mandrup
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark.
| |
Collapse
|
169
|
Lee JE, Ge K. Transcriptional and epigenetic regulation of PPARγ expression during adipogenesis. Cell Biosci 2014; 4:29. [PMID: 24904744 PMCID: PMC4046494 DOI: 10.1186/2045-3701-4-29] [Citation(s) in RCA: 167] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 05/16/2014] [Indexed: 12/25/2022] Open
Abstract
The nuclear receptor PPARγ is a master regulator of adipogenesis. PPARγ is highly expressed in adipose tissues and its expression is markedly induced during adipogenesis. In this review, we describe the current knowledge, as well as future directions, on transcriptional and epigenetic regulation of PPARγ expression during adipogenesis. Investigating the molecular mechanisms that control PPARγ expression during adipogenesis is critical for understanding the development of white and brown adipose tissues, as well as pathological conditions such as obesity and diabetes. The robust induction of PPARγ expression during adipogenesis also serves as an excellent model system for studying transcriptional and epigenetic regulation of cell-type-specific gene expression.
Collapse
Affiliation(s)
- Ji-Eun Lee
- Adipocyte Biology and Gene Regulation Section, Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kai Ge
- Adipocyte Biology and Gene Regulation Section, Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
170
|
Hong SH, Ahmadian M, Yu RT, Atkins AR, Downes M, Evans RM. Nuclear receptors and metabolism: from feast to famine. Diabetologia 2014; 57:860-7. [PMID: 24619218 PMCID: PMC3980036 DOI: 10.1007/s00125-014-3209-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 02/18/2014] [Indexed: 12/31/2022]
Abstract
The ability to adapt to cycles of feast and famine is critical for survival. Communication between multiple metabolic organs must be integrated to properly metabolise nutrients. By controlling networks of genes in major metabolic organs, nuclear hormone receptors (NHRs) play central roles in regulating metabolism in a tissue-specific manner. NHRs also establish daily rhythmicity by controlling the expression of core clock genes both centrally and peripherally. Recent findings show that many of the metabolic effects of NHRs are mediated through certain members of the fibroblast growth factor (FGF) family. This review focuses on the roles of NHRs in critical metabolic organs, including adipose tissue, liver and muscle, during the fed and fasted states, as well as their roles in circadian metabolism and downstream regulation of FGFs.
Collapse
Affiliation(s)
- Suk-Hyun Hong
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037 USA
| | - Maryam Ahmadian
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037 USA
| | - Ruth T. Yu
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037 USA
| | - Annette R. Atkins
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037 USA
| | - Michael Downes
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037 USA
| | - Ronald M. Evans
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037 USA
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA USA
| |
Collapse
|
171
|
Yi B, Wang J, Wang S, Yuan D, Sun J, Li Z, Mao Y, Hou Q, Liu W. Overexpression of Banna mini-pig inbred line fatty acid binding protein 3 promotes adipogenesis in 3T3-L1 preadipocytes. Cell Biol Int 2014; 38:918-23. [PMID: 24737696 DOI: 10.1002/cbin.10285] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 03/10/2014] [Indexed: 11/08/2022]
Abstract
Fatty acid binding protein 3 (H-FABP, FABP3) has been significantly associated with intramuscular fat (IMF) content in pigs, which is positively correlated with palatability of pork. However, its underlying function is not fully elucidated. We have investigated the effects of overexpression of the FABP3 gene on differentiation and adipogenesis of 3T3-L1 preadipocytes in the fat Banna mini-pig inbred line (fBMIL). Eukaryotic vectors that expressed the FABP3 protein were constructed, and stably established in the 3T3-L1 preadipocytes cell line. Cells were induced in a standard differentiation cocktail. Morphological changes and the degree of adipogenesis were measured by Oil Red O staining assay and triacylglycerol content measurement, respectively. mRNA expression levels of triacylglycerol metabolism-related genes were measured by qPCR. FABP3 significantly promoted differentiation of 3T3-L1 cells and enhanced triacylglycerol levels (P < 0.05). mRNA of the peroxisome proliferator-activated receptor γ (PPARγ), adipocyte fatty acid binding protein (422/aP2) and glycerol-3-phosphate dehydrogenase (GPDH) gene increased markedly (P < 0.05). In conclusion, expression of the FABP3 gene enhances adipogenesis in 3T3-L1 preadipocytes primarily by upregulating lipogenic PPARγ, 422/aP2 and GPDH genes.
Collapse
Affiliation(s)
- Bao Yi
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | | | | | | | | | | | | | | | | |
Collapse
|
172
|
Schneider C, Nobs SP, Heer AK, Kurrer M, Klinke G, van Rooijen N, Vogel J, Kopf M. Alveolar macrophages are essential for protection from respiratory failure and associated morbidity following influenza virus infection. PLoS Pathog 2014; 10:e1004053. [PMID: 24699679 PMCID: PMC3974877 DOI: 10.1371/journal.ppat.1004053] [Citation(s) in RCA: 249] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 02/24/2014] [Indexed: 12/23/2022] Open
Abstract
Alveolar macrophages (AM) are critical for defense against bacterial and fungal infections. However, a definitive role of AM in viral infections remains unclear. We here report that AM play a key role in survival to influenza and vaccinia virus infection by maintaining lung function and thereby protecting from asphyxiation. Absence of AM in GM-CSF-deficient (Csf2−/−) mice or selective AM depletion in wild-type mice resulted in impaired gas exchange and fatal hypoxia associated with severe morbidity to influenza virus infection, while viral clearance was affected moderately. Virus-induced morbidity was far more severe in Csf2−/− mice lacking AM, as compared to Batf3-deficient mice lacking CD8α+ and CD103+ DCs. Csf2−/− mice showed intact anti-viral CD8+ T cell responses despite slightly impaired CD103+ DC development. Importantly, selective reconstitution of AM development in Csf2rb−/− mice by neonatal transfer of wild-type AM progenitors prevented severe morbidity and mortality, demonstrating that absence of AM alone is responsible for disease severity in mice lacking GM-CSF or its receptor. In addition, CD11c-Cre/Ppargfl/fl mice with a defect in AM but normal adaptive immunity showed increased morbidity and lung failure to influenza virus. Taken together, our results suggest a superior role of AM compared to CD103+ DCs in protection from acute influenza and vaccinia virus infection-induced morbidity and mortality. Acute respiratory viral infections can cause severe morbidity and pneumonia in infected individuals. Alveolar macrophages and various subsets of dendritic cells have been implicated in innate immunity and induction of anti-viral T cell responses that contribute to host defense against influenza virus infection. However, their relative importance in protection from pathology and disease severity has never been compared side by side. In this report, we demonstrate that mice lacking alveolar macrophages succumb to infection with low dose influenza virus and vaccinia virus infection due to respiratory failure. In contrast, mice lacking lymphoid CD8α+ and lung CD103+ DCs survived and showed little if any differences in disease severity compared to infected wild-type mice. These results indicate that therapies supporting AM and lung function may be beneficial during severe respiratory viral infection.
Collapse
Affiliation(s)
- Christoph Schneider
- Molecular Biomedicine, Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Samuel P. Nobs
- Molecular Biomedicine, Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Alex K. Heer
- Molecular Biomedicine, Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, Switzerland
| | | | - Glynis Klinke
- Division of Clinical Chemistry and Biochemistry, University Children's Hospital Zurich, Zurich, Switzerland
| | - Nico van Rooijen
- Department of Molecular Cell Biology, Free University Medical Center, Amsterdam, The Netherlands
| | - Johannes Vogel
- Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland
| | - Manfred Kopf
- Molecular Biomedicine, Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, Switzerland
- * E-mail:
| |
Collapse
|
173
|
Sun L, Trajkovski M. MiR-27 orchestrates the transcriptional regulation of brown adipogenesis. Metabolism 2014; 63:272-82. [PMID: 24238035 DOI: 10.1016/j.metabol.2013.10.004] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 10/02/2013] [Accepted: 10/16/2013] [Indexed: 11/18/2022]
Abstract
OBJECTIVE Brown adipose tissue (BAT) produces heat using chemical energy of lipids and glucose, a function induced by cold exposure or diet. The brown adipogenesis is tightly controlled in a coordinated interplay between several transcriptional factors. It is not known what enables and coordinates this robust program of concerted cooperation between the transcriptional factors and co-regulators necessary for the brown adipogenesis. MATERIALS/METHODS A. In vivo studies--we investigated the expression levels of miR-27a and b in mice after cold exposure. B. Using gene expression and functional studies together with high throughput imaging in primary preadipocytes, and cell culture models, we investigated the role of miR-27 in beige and brown adipogenesis. C. Using gene silencing and rescue experiments we dissected the molecular mechanisms of the miR-27 action. RESULTS After cold exposure, miR-27 is downregulated in BAT and subcutaneous white adipose tissue (SAT). MiR-27 is also downregulated during brown adipogenesis of primary preadipocytes in vitro, and it directly targets and negatively regulates the essential components of the brown transcriptional network: Prdm16, Pparα, Creb, and in part Pgc1β. Together with its direct effect on Pparγ, and indirect on Pgc1α, mir-27 decreases brown differentiation of cultured cells and of primary SAT preadipocytes. CONCLUSIONS Our results point to miR-27 as a central upstream regulator of the transcriptional network involved in beige and brown adipogenesis after cold exposure, and suggest miR-27 inhibition as a novel therapeutic approach for metabolic diseases aiming at increasing the beige/brown fat mass.
Collapse
Affiliation(s)
- Lei Sun
- Duke-NUS Medical School Singapore, 8 College Rd, 169857, Singapore; Institute of Molecular and Cell Biology (IMCB), Agency for Science,Technology and Research, 61 Biopolis Drive, 138673, Singapore
| | - Mirko Trajkovski
- University of Geneva, Medical Faculty, Department of Cell Physiology and Metabolism, Centre Médical Universitaire (CMU), 1211 Geneva 4, Switzerland; University College London (UCL), Division of Biosciences, School of Life and Medical Sciences, Institute of Structural and Molecular Biology, Darwin Building, Gower Street, WC1E 6BT, London, UK.
| |
Collapse
|
174
|
Absence of intestinal PPARγ aggravates acute infectious colitis in mice through a lipocalin-2-dependent pathway. PLoS Pathog 2014; 10:e1003887. [PMID: 24465207 PMCID: PMC3900641 DOI: 10.1371/journal.ppat.1003887] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Accepted: 12/04/2013] [Indexed: 12/22/2022] Open
Abstract
To be able to colonize its host, invading Salmonella enterica serovar Typhimurium must disrupt and severely affect host-microbiome homeostasis. Here we report that S. Typhimurium induces acute infectious colitis by inhibiting peroxisome proliferator-activated receptor gamma (PPARγ) expression in intestinal epithelial cells. Interestingly, this PPARγ down-regulation by S. Typhimurium is independent of TLR-4 signaling but triggers a marked elevation of host innate immune response genes, including that encoding the antimicrobial peptide lipocalin-2 (Lcn2). Accumulation of Lcn2 stabilizes the metalloproteinase MMP-9 via extracellular binding, which further aggravates the colitis. Remarkably, when exposed to S. Typhimurium, Lcn2-null mice exhibited a drastic reduction of the colitis and remained protected even at later stages of infection. Our data suggest a mechanism in which S. Typhimurium hijacks the control of host immune response genes such as those encoding PPARγ and Lcn2 to acquire residence in a host, which by evolution has established a symbiotic relation with its microbiome community to prevent pathogen invasion. Enteric pathogens like S. Typhimurium convert the host intestine into an inflamed environment in which they are well adapted to thrive. However, the precise strategy that this pathogen employs to achieve such favorable conditions for its survival remains unclear. Here, we uncovered a novel mechanism whereby S. Typhimurium inhibits the expression of the transcription factor PPARγ in the host intestine, surprisingly without TLR-4 involvement; this inhibition worsened the severity of the host's colitis. Subsequent detailed analysis revealed that colitis severity was coupled with elevated levels of antimicrobials like Lcn2, which stabilized the pro-inflammatory endopeptidase MMP-9 in the intestinal milieu. Combination of this escalated antimicrobial action together with enhanced protease activity disrupted the intestinal homeostasis, promoting an inflamed environment suitable for S. Typhimurium. Interestingly, using Lcn2 mutant mice we show that lack of Lcn2 effectively reduced tissue damage and the degree of inflammation, thus supporting a pivotal role of Lcn2 and MMP-9 in infectious colitis. Our data suggests a model whereby the pathogenesis of S. Typhimurium involves manipulation of the host innate immune and protease system, here illustrated by PPARγ, Lcn2 and MMP-9, to establish colonization and infection within the host.
Collapse
|
175
|
Abstract
Adipose tissue plays a major role in metabolic homeostasis, which it coordinates through a number of local and systemic effectors. The burgeoning epidemic of metabolic disease, especially obesity and type 2 diabetes, has focused attention on the adipocyte. In this chapter, we review strategies for genetic overexpression and knockout of specific genes in adipose tissue. We also discuss these strategies in the context of different types of adipocytes, including brown, beige, and white fat cells.
Collapse
Affiliation(s)
- Sona Kang
- Division of Endocrinology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Xingxing Kong
- Division of Endocrinology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Evan D Rosen
- Division of Endocrinology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
176
|
Chiang MC, Cheng YC, Chen HM, Liang YJ, Yen CH. Rosiglitazone promotes neurite outgrowth and mitochondrial function in N2A cells via PPARgamma pathway. Mitochondrion 2014; 14:7-17. [DOI: 10.1016/j.mito.2013.12.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 12/09/2013] [Accepted: 12/12/2013] [Indexed: 12/21/2022]
|
177
|
Peroxisome proliferator-activated receptor γ and C/EBPα synergistically activate key metabolic adipocyte genes by assisted loading. Mol Cell Biol 2013; 34:939-54. [PMID: 24379442 DOI: 10.1128/mcb.01344-13] [Citation(s) in RCA: 173] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT/enhancer binding protein α (C/EBPα) are key activators of adipogenesis. They mutually induce the expression of each other and have been reported to cooperate in activation of a few adipocyte genes. Recently, genome-wide profiling revealed a high degree of overlap between PPARγ and C/EBPα binding in adipocytes, suggesting that cooperativeness could be mediated through common binding sites. To directly investigate the interplay between PPARγ and C/EBPα at shared binding sites, we established a fibroblastic model system in which PPARγ and C/EBPα can be independently expressed. Using RNA sequencing, we demonstrate that coexpression of PPARγ and C/EBPα leads to synergistic activation of many key metabolic adipocyte genes. This is associated with extensive C/EBPα-mediated reprogramming of PPARγ binding and vice versa in the vicinity of these genes, as determined by chromatin immunoprecipitation combined with deep sequencing. Our results indicate that this is at least partly mediated by assisted loading involving chromatin remodeling directed by the leading factor. In conclusion, we report a novel mechanism by which the key adipogenic transcription factors, PPARγ and C/EBPα, cooperate in activation of the adipocyte gene program.
Collapse
|
178
|
Nakamura MT, Yudell BE, Loor JJ. Regulation of energy metabolism by long-chain fatty acids. Prog Lipid Res 2013; 53:124-44. [PMID: 24362249 DOI: 10.1016/j.plipres.2013.12.001] [Citation(s) in RCA: 500] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 12/03/2013] [Accepted: 12/04/2013] [Indexed: 12/12/2022]
Abstract
In mammals, excess energy is stored primarily as triglycerides, which are mobilized when energy demands arise. This review mainly focuses on the role of long chain fatty acids (LCFAs) in regulating energy metabolism as ligands of peroxisome proliferator-activated receptors (PPARs). PPAR-alpha expressed primarily in liver is essential for metabolic adaptation to starvation by inducing genes for beta-oxidation and ketogenesis and by downregulating energy expenditure through fibroblast growth factor 21. PPAR-delta is highly expressed in skeletal muscle and induces genes for LCFA oxidation during fasting and endurance exercise. PPAR-delta also regulates glucose metabolism and mitochondrial biogenesis by inducing FOXO1 and PGC1-alpha. Genes targeted by PPAR-gamma in adipocytes suggest that PPAR-gamma senses incoming non-esterified LCFAs and induces the pathways to store LCFAs as triglycerides. Adiponectin, another important target of PPAR-gamma may act as a spacer between adipocytes to maintain their metabolic activity and insulin sensitivity. Another topic of this review is effects of skin LCFAs on energy metabolism. Specific LCFAs are required for the synthesis of skin lipids, which are essential for water barrier and thermal insulation functions of the skin. Disturbance of skin lipid metabolism often causes apparent resistance to developing obesity at the expense of normal skin function.
Collapse
Affiliation(s)
- Manabu T Nakamura
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, 905 South Goodwin Avenue, Urbana, IL 61801, USA.
| | - Barbara E Yudell
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, 905 South Goodwin Avenue, Urbana, IL 61801, USA
| | - Juan J Loor
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, 905 South Goodwin Avenue, Urbana, IL 61801, USA
| |
Collapse
|
179
|
Lipoatrophy and severe metabolic disturbance in mice with fat-specific deletion of PPARγ. Proc Natl Acad Sci U S A 2013; 110:18656-61. [PMID: 24167256 DOI: 10.1073/pnas.1314863110] [Citation(s) in RCA: 207] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Adipose tissue is an important metabolic organ, the dysfunction of which is associated with the development of obesity, diabetes mellitus, and cardiovascular disease. The nuclear receptor peroxisome proliferator-activated receptor gamma (PPARγ) is considered the master regulator of adipocyte differentiation and function. Although its cell-autonomous role in adipogenesis has been clearly demonstrated in cell culture, previous fat-specific knockouts of the murine PPARγ gene did not demonstrate a dramatic phenotype in vivo. Here, using Adipoq-Cre mice to drive adipose-specific recombination, we report a unique fat-specific PPARγ knockout (PPARγ FKO) mouse model with almost no visible brown and white adipose tissue at age 3 mo. As a consequence, PPARγ FKO mice had hugely enlarged pancreatic islets, massive fatty livers, and dramatically elevated levels of blood glucose and serum insulin accompanied by extreme insulin resistance. PPARγ FKO mice also exhibited delayed hair coat formation associated with absence of dermal fat, disrupted mammary gland development with loss of mammary fat pads, and high bone mass with loss of bone marrow fat, indicating the critical roles of adipose PPARγ in these tissues. Together, our data reveal the necessity of fat PPARγ in adipose formation, whole-body metabolic homeostasis, and normal development of fat-containing tissues.
Collapse
|
180
|
Nguyen MT, Csermely P, Sőti C. Hsp90 chaperones PPARγ and regulates differentiation and survival of 3T3-L1 adipocytes. Cell Death Differ 2013; 20:1654-63. [PMID: 24096869 DOI: 10.1038/cdd.2013.129] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 07/24/2013] [Accepted: 08/21/2013] [Indexed: 11/09/2022] Open
Abstract
Adipose tissue dysregulation has a major role in various human diseases. The peroxisome proliferator-activated receptor-γ (PPARγ) is a key regulator of adipocyte differentiation and function, as well as a target of insulin-sensitizing drugs. The Hsp90 chaperone stabilizes a diverse set of signaling 'client' proteins, thereby regulates various biological processes. Here we report a novel role for Hsp90 in controlling PPARγ stability and cellular differentiation. Specifically, we show that the Hsp90 inhibitors geldanamycin and novobiocin efficiently impede the differentiation of murine 3T3-L1 preadipocytes. Geldanamycin at higher concentrations also inhibits the survival of both developing and mature adipocytes, respectively. Further, Hsp90 inhibition disrupts an Hsp90-PPARγ complex, leads to the destabilization and proteasomal degradation of PPARγ, and inhibits the expression of PPARγ target genes, identifying PPARγ as an Hsp90 client. A similar destabilization of PPARγ and a halt of adipogenesis also occur in response to protein denaturing stresses caused by a single transient heat-shock or proteasome inhibition. Recovery from stress restores PPARγ stability and adipocyte differentiation. Thus, our findings reveal Hsp90 as a critical stress-responsive regulator of adipocyte biology and offer a potential therapeutic target in obesity and the metabolic syndrome.
Collapse
Affiliation(s)
- M T Nguyen
- Department of Medical Chemistry, Semmelweis University, Budapest, Hungary
| | | | | |
Collapse
|
181
|
Abstract
Adipose tissue has a central role in the regulation of energy balance and homoeostasis. There are two main types of adipose tissue: WAT (white adipose tissue) and BAT (brown adipose tissue). WAT from certain depots, in response to appropriate stimuli, can undergo a process known as browning where it takes on characteristics of BAT, notably the induction of UCP1 (uncoupling protein 1) expression and the presence of multilocular lipid droplets and multiple mitochondria. How browning is regulated is an intense topic of investigation as it has the potential to tilt the energy balance from storage to expenditure, a strategy that holds promise to combat the growing epidemic of obesity and metabolic syndrome. This review focuses on the transcriptional regulators as well as various proteins and secreted mediators that have been shown to play a role in browning. Emphasis is on describing how many of these factors exert their effects by regulating the three main transcriptional regulators of classical BAT development, namely PRDM16 (PR domain containing 16), PPARγ (peroxisome proliferator-activated receptor γ) and PGC-1α (peroxisome proliferator-activated receptor γ coactivator 1α), which have been shown to be the key nodes in the regulation of inducible brown fat.
Collapse
|
182
|
Chai JT, Choudhury RP. Cardiometabolic interventions - focus on transcriptional regulators. THE EUROPEAN JOURNAL OF CARDIOVASCULAR MEDICINE 2013; 2:212-218. [PMID: 24040490 PMCID: PMC3769682 DOI: 10.5083/ejcm.20424884.102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cardiovascular disease (CVD) remains the largest healthcare burden in the Western world; and the increasing prevalence of type II diabetes mellitus, at least partially driven by a trend in lifestyle changes associated with global economic development, is likely to fuel this CVD burden worldwide. Over the past two decades, there has been an increased awareness of the convergence of risk factors contributing to both cardiovascular disease and diabetes leading to the concept of the metabolic syndrome, and the realisation of the opportunity to intervene at this intersection to simultaneously target CVD and metabolic dysfunction. This brings together the fields of cardiovascular medicine, diabetology, and increasingly clinical immunology for a unified and concerted effort to reduce risk for both conditions simultaneously. The discovery of the targeted pathways of drugs already in clinical use such as fibrates and thiazolidinediones (TZD) has led to accelerated basic and clinical research into selective and dual PPAR-α and PPAR-γ agonists, which can theoretically target glucose, lipid and lipoprotein metabolism, as well as potentially exerting inhibitoryeffects in vascular inflammation, all of which might be predicted to reduce atherosclerosis. In this article, we will discuss the basic science as well as recent clinical development in the pursuit of optimal cardiometabolic intervention along with insight into strategies for future drug development.
Collapse
Affiliation(s)
- Joshua T Chai
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine University of Oxford, United Kingdom
| | | |
Collapse
|
183
|
Eldor R, DeFronzo RA, Abdul-Ghani M. In vivo actions of peroxisome proliferator-activated receptors: glycemic control, insulin sensitivity, and insulin secretion. Diabetes Care 2013; 36 Suppl 2:S162-74. [PMID: 23882042 PMCID: PMC3920780 DOI: 10.2337/dcs13-2003] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Roy Eldor
- Diabetes Division, Department of Medicine, University of Texas Health Science Center, San Antonio, Texas, USA
| | | | | |
Collapse
|
184
|
Rodrigues M, Blair H, Stockdale L, Griffith L, Wells A. Surface tethered epidermal growth factor protects proliferating and differentiating multipotential stromal cells from FasL-induced apoptosis. Stem Cells 2013; 31:104-16. [PMID: 22948863 DOI: 10.1002/stem.1215] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 07/25/2012] [Indexed: 12/20/2022]
Abstract
Multipotential stromal cells or mesenchymal stem cells (MSCs) have been proposed as aids in regenerating bone and adipose tissues, as these cells form osteoblasts and adipocytes. A major obstacle to this use of MSC is the initial loss of cells postimplantation. This cell death in part is due to ubiquitous nonspecific inflammatory cytokines such as FasL generated in the implant site. Our group previously found that soluble epidermal growth factor (sEGF) promotes MSC expansion. Furthermore, tethering EGF (tEGF) onto a two-dimensional surface altered MSC responses, by restricting epidermal growth factor receptor (EGFR) to the cell surface, causing sustained activation of EGFR, and promoting survival from FasL-induced death. sEGF by causing internalization of EGFR does not support MSC survival. However, for tEGF to be useful in bone regeneration, it needs to allow for MSC differentiation into osteoblasts while also protecting emerging osteoblasts from apoptosis. tEGF did not block induced differentiation of MSCs into osteoblasts, or adipocytes, a common default MSC-differentiation pathway. MSC-derived preosteoblasts showed increased Fas levels and became more susceptible to FasL-induced death, which tEGF prevented. Differentiating adipocytes underwent a reduction in Fas expression and became resistant to FasL-induced death, with tEGF having no further survival effect. tEGF protected undifferentiated MSC from combined insults of FasL, serum deprivation, and physiologic hypoxia. Additionally, tEGF was dominant in the face of sEGF to protect MSC from FasL-induced death. Our results suggest that MSCs and differentiating osteoblasts need protective signals to survive in the inflammatory wound milieu and that tEGF can serve this function.
Collapse
Affiliation(s)
- Melanie Rodrigues
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | |
Collapse
|
185
|
Tan JTM, McLennan SV, Williams PF, Rezaeizadeh A, Lo LWY, Bonner JG, Twigg SM. Connective tissue growth factor/CCN-2 is upregulated in epididymal and subcutaneous fat depots in a dietary-induced obesity model. Am J Physiol Endocrinol Metab 2013; 304:E1291-302. [PMID: 23571711 DOI: 10.1152/ajpendo.00654.2012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Connective tissue growth factor (CTGF), also known as CCN-2, is a cysteine-rich secreted protein that is involved in a range of biological processes, including regulation of cell growth and differentiation. Our previous in vitro studies have shown that CCN-2 inhibits adipocyte differentiation, although whether CCN-2 is regulated in vivo in adipogenesis is undetermined and was investigated in this study. C57BL/6 male mice were fed either standard laboratory chow (ND) or a diet high in fat (HFD; 45% fat) for 15 or 24 wk. HFD animals that gained >5 g in weight (termed HFD-fat) were insulin resistant and were compared with HFD-fed animals, which failed to gain weight (termed HFD-lean). HFD-fat mice had significantly increased CCN-2 mRNA levels in both the subcutaneous and epididymal fat pads, whereas CCN-2 mRNA was not induced in the epididymal site in HFD-lean mice. Also in HFD-fed animals, epididymal CCN-2 mRNA correlated positively with key genes involved in adipocyte differentiation, adiponectin and PPARγ (P < 0.001 and P < 0.002, respectively). Additionally, epididymal CCN-2 mRNA correlated positively with two markers of tissue turnover, PAI-1 in HFD-fat mice only and TIMP-1, but only in the HFD-lean mice. Collectively, these findings suggest that CCN-2 plays a role in adipocyte differentiation in vivo and thus in the pathogenesis of obesity linked with insulin resistance.
Collapse
Affiliation(s)
- Joanne T M Tan
- Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia; and
| | | | | | | | | | | | | |
Collapse
|
186
|
Tasdelen I, Berger R, Kalkhoven E. PPARγ regulates expression of carbohydrate sulfotransferase 11 (CHST11/C4ST1), a regulator of LPL cell surface binding. PLoS One 2013; 8:e64284. [PMID: 23696875 PMCID: PMC3655946 DOI: 10.1371/journal.pone.0064284] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 04/12/2013] [Indexed: 01/09/2023] Open
Abstract
The transcription factor PPARγ is the key regulator of adipocyte differentiation, function and maintenance, and the cellular target of the insulin-sensitizing thiazolidinediones. Identification and functional characterization of genes regulated by PPARγ will therefore lead to a better understanding of adipocyte biology and may also contribute to the development of new anti-diabetic drugs. Here, we report carbohydrate sulfotransferase 11 (Chst11/C4st1) as a novel PPARγ target gene. Chst11 can sulphate chondroitin, a major glycosaminoglycan involved in development and disease. The Chst11 gene contains two functional intronic PPARγ binding sites, and is up-regulated at the mRNA and protein level during 3T3-L1 adipogenesis. Chst11 knockdown reduced intracellular lipid accumulation in mature adipocytes, which is due to a lowered activity of lipoprotein lipase, which may associate with the adipocyte cell surface through Chst11-mediated sulfation of chondroitin, rather than impaired adipogenesis. Besides directly inducing Lpl expression, PPARγ may therefore control lipid accumulation by elevating the levels of Chst11-mediated proteoglycan sulfation and thereby increasing the binding capacity for Lpl on the adipocyte cell surface.
Collapse
Affiliation(s)
- Ismayil Tasdelen
- Department of Metabolic Diseases and The Netherlands Metabolomics Center, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Ruud Berger
- Department of Metabolic Diseases and The Netherlands Metabolomics Center, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Eric Kalkhoven
- Department of Metabolic Diseases and The Netherlands Metabolomics Center, University Medical Centre Utrecht, Utrecht, The Netherlands
- * E-mail:
| |
Collapse
|
187
|
Ahmadian M, Suh JM, Hah N, Liddle C, Atkins AR, Downes M, Evans RM. PPARγ signaling and metabolism: the good, the bad and the future. Nat Med 2013; 19:557-66. [PMID: 23652116 PMCID: PMC3870016 DOI: 10.1038/nm.3159] [Citation(s) in RCA: 1588] [Impact Index Per Article: 144.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 03/06/2013] [Indexed: 11/09/2022]
Abstract
Thiazolidinediones (TZDs) are potent insulin sensitizers that act through the nuclear receptor peroxisome proliferator-activated receptor-γ (PPARγ) and are highly effective oral medications for type 2 diabetes. However, their unique benefits are shadowed by the risk for fluid retention, weight gain, bone loss and congestive heart failure. This raises the question as to whether it is possible to build a safer generation of PPARγ-specific drugs that evoke fewer side effects while preserving insulin-sensitizing potential. Recent studies that have supported the continuing physiologic and therapeutic relevance of the PPARγ pathway also provide opportunities to develop newer classes of molecules that reduce or eliminate adverse effects. This review highlights key advances in understanding PPARγ signaling in energy homeostasis and metabolic disease and also provides new explanations for adverse events linked to TZD-based therapy.
Collapse
Affiliation(s)
- Maryam Ahmadian
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, California, USA
| | | | | | | | | | | | | |
Collapse
|
188
|
Flachs P, Rossmeisl M, Kuda O, Kopecky J. Stimulation of mitochondrial oxidative capacity in white fat independent of UCP1: A key to lean phenotype. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1831:986-1003. [DOI: 10.1016/j.bbalip.2013.02.003] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 02/06/2013] [Accepted: 02/09/2013] [Indexed: 02/06/2023]
|
189
|
Mandard S, Patsouris D. Nuclear control of the inflammatory response in mammals by peroxisome proliferator-activated receptors. PPAR Res 2013; 2013:613864. [PMID: 23577023 PMCID: PMC3614066 DOI: 10.1155/2013/613864] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 01/14/2013] [Accepted: 01/29/2013] [Indexed: 12/30/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors that play pivotal roles in the regulation of a very large number of biological processes including inflammation. Using specific examples, this paper focuses on the interplay between PPARs and innate immunity/inflammation and, when possible, compares it among species. We focus on recent discoveries establishing how inflammation and PPARs interact in the context of obesity-induced inflammation and type 2 diabetes, mostly in mouse and humans. We illustrate that PPAR γ ability to alleviate obesity-associated inflammation raises an interesting pharmacologic potential. In the light of recent findings, the protective role of PPAR α and PPAR β / δ against the hepatic inflammatory response is also addressed. While PPARs agonists are well-established agents that can treat numerous inflammatory issues in rodents and humans, surprisingly very little has been described in other species. We therefore also review the implication of PPARs in inflammatory bowel disease; acute-phase response; and central, cardiac, and endothelial inflammation and compare it along different species (mainly mouse, rat, human, and pig). In the light of the data available in the literature, there is no doubt that more studies concerning the impact of PPAR ligands in livestock should be undertaken because it may finally raise unconsidered health and sanitary benefits.
Collapse
Affiliation(s)
- Stéphane Mandard
- Centre de Recherche INSERM-UMR866 “Lipides, Nutrition, Cancer” Faculté de Médecine, Université de Bourgogne 7, Boulevard Jeanne d'Arc, 21079 Dijon Cedex, France
| | - David Patsouris
- Laboratoire CarMeN, UMR INSERM U1060/INRA 1235, Université Lyon 1, Faculté de Médecine Lyon Sud, 165 Chemin du Grand Revoyet, 69921 Oullins, France
- Department of Chemical Physiology, The Scripps Research Institute, MB-24, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
190
|
Lee KY, Russell SJ, Ussar S, Boucher J, Vernochet C, Mori MA, Smyth G, Rourk M, Cederquist C, Rosen ED, Kahn BB, Kahn CR. Lessons on conditional gene targeting in mouse adipose tissue. Diabetes 2013; 62:864-74. [PMID: 23321074 PMCID: PMC3581196 DOI: 10.2337/db12-1089] [Citation(s) in RCA: 272] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Conditional gene targeting has been extensively used for in vivo analysis of gene function in adipocyte cell biology but often with debate over the tissue specificity and the efficacy of inactivation. To directly compare the specificity and efficacy of different Cre lines in mediating adipocyte specific recombination, transgenic Cre lines driven by the adipocyte protein 2 (aP2) and adiponectin (Adipoq) gene promoters, as well as a tamoxifen-inducible Cre driven by the aP2 gene promoter (iaP2), were bred to the Rosa26R (R26R) reporter. All three Cre lines demonstrated recombination in the brown and white fat pads. Using different floxed loci, the individual Cre lines displayed a range of efficacy to Cre-mediated recombination that ranged from no observable recombination to complete recombination within the fat. The Adipoq-Cre exhibited no observable recombination in any other tissues examined, whereas both aP2-Cre lines resulted in recombination in endothelial cells of the heart and nonendothelial, nonmyocyte cells in the skeletal muscle. In addition, the aP2-Cre line can lead to germline recombination of floxed alleles in ~2% of spermatozoa. Thus, different "adipocyte-specific" Cre lines display different degrees of efficiency and specificity, illustrating important differences that must be taken into account in their use for studying adipose biology.
Collapse
Affiliation(s)
- Kevin Y. Lee
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts
| | - Steven J. Russell
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts
| | - Siegfried Ussar
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts
| | - Jeremie Boucher
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts
| | - Cecile Vernochet
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts
| | - Marcelo A. Mori
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts
| | - Graham Smyth
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts
| | - Michael Rourk
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts
| | - Carly Cederquist
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts
| | - Evan D. Rosen
- Division of Endocrinology, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Barbara B. Kahn
- Division of Endocrinology, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - C. Ronald Kahn
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts
- Corresponding author: C. Ronald Kahn,
| |
Collapse
|
191
|
Freise C, Trowitzsch-Kienast W, Erben U, Seehofer D, Kim KY, Zeitz M, Ruehl M, Somasundaram R. (+)-Episesamin inhibits adipogenesis and exerts anti-inflammatory effects in 3T3-L1 (pre)adipocytes by sustained Wnt signaling, down-regulation of PPARγ and induction of iNOS. J Nutr Biochem 2013; 24:550-5. [DOI: 10.1016/j.jnutbio.2012.02.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 01/30/2012] [Accepted: 02/10/2012] [Indexed: 01/26/2023]
|
192
|
Woldt E, Terrand J, Mlih M, Matz RL, Bruban V, Coudane F, Foppolo S, El Asmar Z, Chollet ME, Ninio E, Bednarczyk A, Thiersé D, Schaeffer C, Van Dorsselaer A, Boudier C, Wahli W, Chambon P, Metzger D, Herz J, Boucher P. The nuclear hormone receptor PPARγ counteracts vascular calcification by inhibiting Wnt5a signalling in vascular smooth muscle cells. Nat Commun 2013; 3:1077. [PMID: 23011131 DOI: 10.1038/ncomms2087] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 08/23/2012] [Indexed: 01/28/2023] Open
Abstract
Vascular calcification is a hallmark of advanced atherosclerosis. Here we show that deletion of the nuclear receptor PPARγ in vascular smooth muscle cells of low density lipoprotein receptor (LDLr)-deficient mice fed an atherogenic diet high in cholesterol, accelerates vascular calcification with chondrogenic metaplasia within the lesions. Vascular calcification in the absence of PPARγ requires expression of the transmembrane receptor LDLr-related protein-1 in vascular smooth muscle cells. LDLr-related protein-1 promotes a previously unknown Wnt5a-dependent prochondrogenic pathway. We show that PPARγ protects against vascular calcification by inducing the expression of secreted frizzled-related protein-2, which functions as a Wnt5a antagonist. Targeting this signalling pathway may have clinical implications in the context of common complications of atherosclerosis, including coronary artery calcification and valvular sclerosis.
Collapse
Affiliation(s)
- Estelle Woldt
- CNRS, UMR 7213, University of Strasbourg, 67401 Illkirch, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
193
|
Festuccia WT, Blanchard PG, Oliveira TB, Magdalon J, Paschoal VA, Richard D, Deshaies Y. PPARγ activation attenuates cold-induced upregulation of thyroid status and brown adipose tissue PGC-1α and D2. Am J Physiol Regul Integr Comp Physiol 2012; 303:R1277-85. [PMID: 23100029 PMCID: PMC3532587 DOI: 10.1152/ajpregu.00299.2012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 10/22/2012] [Indexed: 11/22/2022]
Abstract
Here, we investigated whether pharmacological PPARγ activation modulates key early events in brown adipose tissue (BAT) recruitment induced by acute cold exposure with the aim of unraveling the interrelationships between sympathetic and PPARγ signaling. Sprague-Dawley rats treated or not with the PPARγ ligand rosiglitazone (15 mg·kg(-1)·day(-1), 7 days) were kept at 23°C or exposed to cold (5°C) for 24 h and evaluated for BAT gene expression, sympathetic activity, thyroid status, and adrenergic signaling. Rosiglitazone did not affect the reduction in body weight gain and the increase in feed efficiency, Vo(2), and BAT sympathetic activity induced by 24-h cold exposure. Rosiglitazone strongly attenuated the increase in serum total and free T4 and T3 levels and BAT iodothyronine deiodinase type 2 (D2) and PGC-1α mRNA levels and potentiated the reduction in BAT thyroid hormone receptor (THR) β mRNA levels induced by cold. Administration of T3 to rosiglitazone-treated rats exacerbated the cold-induced increase in energy expenditure but did not restore a proper activation of D2 and PGC-1α, nor further increased uncoupling protein 1 expression. Regarding adrenergic signaling, rosiglitazone did not affect the changes in BAT cAMP content and PKA activity induced by cold. Rosiglitazone alone or in combination with cold increased CREB binding to DNA, but it markedly reduced the expression of one of its major coactivators, CREB binding protein. In conclusion, pharmacological PPARγ activation impairs short-term cold elicitation of BAT adrenergic and thyroid signaling, which may result in abnormal tissue recruitment and thermogenic activity.
Collapse
Affiliation(s)
- William T Festuccia
- Department of Physiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | | | | | | | | | | |
Collapse
|
194
|
Toubal A, Clément K, Fan R, Ancel P, Pelloux V, Rouault C, Veyrie N, Hartemann A, Treuter E, Venteclef N. SMRT-GPS2 corepressor pathway dysregulation coincides with obesity-linked adipocyte inflammation. J Clin Invest 2012; 123:362-79. [PMID: 23221346 DOI: 10.1172/jci64052] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 10/04/2012] [Indexed: 12/17/2022] Open
Abstract
Low-grade chronic inflammation is a major characteristic of obesity and results from deregulated white adipose tissue function. Consequently, there is interest in identifying the underlying regulatory mechanisms and components that drive adipocyte inflammation. Here, we report that expression of the transcriptional corepressor complex subunits GPS2 and SMRT was significantly reduced in obese adipose tissue, inversely correlated to inflammatory status, and was restored upon gastric bypass surgery-induced weight loss in morbid obesity. These alterations correlated with reduced occupancy of the corepressor complex at inflammatory promoters, providing a mechanistic explanation for elevated inflammatory transcription. In support of these correlations, RNAi-mediated depletion of GPS2 and SMRT from cultured human adipocytes promoted derepression of inflammatory transcription and elevation of obesity-associated inflammatory markers, such as IL-6 and MCP-1. Furthermore, we identified a regulatory cascade containing PPARγ and TWIST1 that controlled the expression of GPS2 and SMRT in human adipocytes. These findings were clinically relevant, because treatment of diabetic obese patients with pioglitazone, an antidiabetic and antiinflammatory PPARγ agonist, restored expression of TWIST1, GPS2, and SMRT in adipose tissue. Collectively, our findings identify alterations in a regulatory transcriptional network in adipocytes involving the dysregulation of a specific corepressor complex as among the initiating events promoting adipose tissue inflammation in human obesity.
Collapse
Affiliation(s)
- Amine Toubal
- Institute of Cardiometabolism and Nutrition, Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
195
|
Subauste AR, Das AK, Li X, Elliot B, Evans C, El Azzouny M, Treutelaar M, Oral E, Leff T, Burant CF. Alterations in lipid signaling underlie lipodystrophy secondary to AGPAT2 mutations. Diabetes 2012; 61:2922-31. [PMID: 22872237 PMCID: PMC3478532 DOI: 10.2337/db12-0004] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Congenital generalized lipodystrophy (CGL), secondary to AGPAT2 mutation is characterized by the absence of adipocytes and development of severe insulin resistance. In the current study, we investigated the adipogenic defect associated with AGPAT2 mutations. Adipogenesis was studied in muscle-derived multipotent cells (MDMCs) isolated from vastus lateralis biopsies obtained from controls and subjects harboring AGPAT2 mutations and in 3T3-L1 preadipocytes after knockdown or overexpression of AGPAT2. We demonstrate an adipogenic defect using MDMCs from control and CGL human subjects with mutated AGPAT2. This defect was rescued in CGL MDMCs with a retrovirus expressing AGPAT2. Both CGL-derived MDMCs and 3T3-L1 cells with knockdown of AGPAT2 demonstrated an increase in cell death after induction of adipogenesis. Lack of AGPAT2 activity reduces Akt activation, and overexpression of constitutively active Akt can partially restore lipogenesis. AGPAT2 modulated the levels of phosphatidic acid, lysophosphatidic acid, phosphatidylinositol species, as well as the peroxisome proliferator-activated receptor γ (PPARγ) inhibitor cyclic phosphatidic acid. The PPARγ agonist pioglitazone partially rescued the adipogenic defect in CGL cells. We conclude that AGPAT2 regulates adipogenesis through the modulation of the lipome, altering normal activation of phosphatidylinositol 3-kinase (PI3K)/Akt and PPARγ pathways in the early stages of adipogenesis.
Collapse
Affiliation(s)
- Angela R. Subauste
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Arun K. Das
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Xiangquan Li
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Brandon Elliot
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Charles Evans
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | | | - Mary Treutelaar
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Elif Oral
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Todd Leff
- Department of Pathology, Wayne State University, Detroit, Michigan
| | - Charles F. Burant
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
- Corresponding author: Charles F. Burant,
| |
Collapse
|
196
|
Ferrari A, Fiorino E, Giudici M, Gilardi F, Galmozzi A, Mitro N, Cermenati G, Godio C, Caruso D, De Fabiani E, Crestani M. Linking epigenetics to lipid metabolism: focus on histone deacetylases. Mol Membr Biol 2012; 29:257-66. [PMID: 23095054 DOI: 10.3109/09687688.2012.729094] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A number of recent studies revealed that epigenetic modifications play a central role in the regulation of lipid and of other metabolic pathways such as cholesterol homeostasis, bile acid synthesis, glucose and energy metabolism. Epigenetics refers to aspects of genome functions regulated in a DNA sequence-independent fashion. Chromatin structure is controlled by epigenetic mechanisms through DNA methylation and histone modifications. The main modifications are histone acetylation and deacetylation on specific lysine residues operated by two different classes of enzymes: Histone acetyltransferases (HATs) and histone deacetylases (HDACs), respectively. The interaction between these enzymes and histones can activate or repress gene transcription: Histone acetylation opens and activates chromatin, while deacetylation of histones and DNA methylation compact chromatin making it transcriptionally silent. The new evidences on the importance of HDACs in the regulation of lipid and other metabolic pathways will open new perspectives in the comprehension of the pathophysiology of metabolic disorders.
Collapse
Affiliation(s)
- Alessandra Ferrari
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
197
|
Regulation of lipid accumulation in 3T3-L1 cells: insulin-independent and combined effects of fatty acids and insulin. Animal 2012; 2:92-9. [PMID: 22444967 DOI: 10.1017/s1751731107000936] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The insulin-independent and combined effects of fatty acids (FA; linoleic and oleic acids) and insulin in modulating lipid accumulation and adipogenesis in 3T3-L1 cells was investigated using a novel protocol avoiding the effects of a complex hormone 'induction' mixture. 3T3-L1 cells were cultured in Dulbecco's modified Eagle's medium (DMEM) plus serum (control) or in DMEM plus either 0.3 mmol/l linoleic or oleic acids with 0.3 mmol/l FA-free bovine serum albumin in the presence or absence of insulin. Cells were cultured for 4 to 8 days and cell number, lipid accumulation, peroxisome proliferator-activated receptor-gamma (PPAR-γ) and glucose transporter 4 (GLUT-4) protein expression were determined. Cell number appeared to be decreased in comparison with control cultures. In both oleic acid and linoleic acid-treated cells, notably in the absence (and presence) of insulin, oil-red O stain-positive cells showed abundant lipid. The percentage of cells showing lipid accumulation was greater in FA-treated cultures compared with control cells grown in DMEM plus serum (P < 0.001). Treatment with both linoleic and oleic acid-containing media evoked higher levels of PPAR-γ than observed in control cultures (P < 0.05). GLUT-4 protein also increased in response to treatment with both linoleic and oleic acid-containing media (P < 0.001). Lipid accumulation in 3T3-L1 cells occurs in response to either oleic or linoleic acids independently of the presence of insulin. Both PPAR-γ and GLUT-4 protein expression were stimulated. Both proteins are considered markers of adipogenesis, and these observations suggest that these cells had entered the physiological state broadly accepted as differentiated. Furthermore, 3T3-L1 cells can be induced to accumulate lipid in a serum-free medium supplemented with FA, without the use of induction protocols using complex hormone mixtures. We have demonstrated a novel model for the study of lipid accumulation that will improve the understanding of adipogenesis in adipocyte lineage cells.
Collapse
|
198
|
Cell autonomous lipin 1 function is essential for development and maintenance of white and brown adipose tissue. Mol Cell Biol 2012; 32:4794-810. [PMID: 23028044 DOI: 10.1128/mcb.00512-12] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Through analysis of mice with spatially and temporally restricted inactivation of Lpin1, we characterized its cell autonomous function in both white (WAT) and brown (BAT) adipocyte development and maintenance. We observed that the lipin 1 inactivation in adipocytes of aP2(Cre/+)/Lp(fEx2)(-)(3/fEx2)(-)(3) mice resulted in lipodystrophy and the presence of adipocytes with multilocular lipid droplets. We further showed that time-specific loss of lipin 1 in mature adipocytes in aP2(Cre-ERT2/+)/Lp(fEx2)(-)(3/fEx2)(-)(3) mice led to their replacement by newly formed Lpin1-positive adipocytes, thus establishing a role for lipin 1 in mature adipocyte maintenance. Importantly, we observed that the presence of newly formed Lpin1-positive adipocytes in aP2(Cre-ERT2/+)/Lp(fEx2)(-)(3/fEx2)(-)(3) mice protected these animals against WAT inflammation and hepatic steatosis induced by a high-fat diet. Loss of lipin 1 also affected BAT development and function, as revealed by histological changes, defects in the expression of peroxisome proliferator-activated receptor alpha (PPARα), PGC-1α, and UCP1, and functionally by altered cold sensitivity. Finally, our data indicate that phosphatidic acid, which accumulates in WAT of animals lacking lipin 1 function, specifically inhibits differentiation of preadipocytes. Together, these observations firmly demonstrate a cell autonomous role of lipin 1 in WAT and BAT biology and indicate its potential as a therapeutical target for the treatment of obesity.
Collapse
|
199
|
Eeckhoute J, Oger F, Staels B, Lefebvre P. Coordinated Regulation of PPARγ Expression and Activity through Control of Chromatin Structure in Adipogenesis and Obesity. PPAR Res 2012; 2012:164140. [PMID: 22991504 PMCID: PMC3444001 DOI: 10.1155/2012/164140] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 07/10/2012] [Indexed: 12/14/2022] Open
Abstract
The nuclear receptor peroxisome proliferator-activated receptor gamma (PPARγ) is required for differentiation and function of mature adipocytes. Its expression is induced during adipogenesis where it plays a key role in establishing the transcriptome of terminally differentiated white fat cells. Here, we review findings indicating that PPARγ expression and activity are intricately regulated through control of chromatin structure. Hierarchical and combinatorial activation of transcription factors, noncoding RNAs, and chromatin remodelers allows for temporally controlled expression of PPARγ and its target genes through sequential chromatin remodelling. In obesity, these regulatory pathways may be altered and lead to modified PPARγ activity.
Collapse
Affiliation(s)
- Jérôme Eeckhoute
- Université Lille Nord de France, 59000 Lille, France
- Inserm, U1011, 59000 Lille, France
- UDSL, 59000 Lille, France
- Institut Pasteur de Lille, 59019 Lille, France
| | - Frédérik Oger
- Université Lille Nord de France, 59000 Lille, France
- Inserm, U1011, 59000 Lille, France
- UDSL, 59000 Lille, France
- Institut Pasteur de Lille, 59019 Lille, France
| | - Bart Staels
- Université Lille Nord de France, 59000 Lille, France
- Inserm, U1011, 59000 Lille, France
- UDSL, 59000 Lille, France
- Institut Pasteur de Lille, 59019 Lille, France
| | - Philippe Lefebvre
- Université Lille Nord de France, 59000 Lille, France
- Inserm, U1011, 59000 Lille, France
- UDSL, 59000 Lille, France
- Institut Pasteur de Lille, 59019 Lille, France
| |
Collapse
|
200
|
van Beekum O, Gao Y, Berger R, Koppen A, Kalkhoven E. A novel RNAi lethality rescue screen to identify regulators of adipogenesis. PLoS One 2012; 7:e37680. [PMID: 22679485 PMCID: PMC3367974 DOI: 10.1371/journal.pone.0037680] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Accepted: 04/25/2012] [Indexed: 01/14/2023] Open
Abstract
Adipogenesis, the differentiation of fibroblast-like mesenchymal stem cells into mature adipocytes, is tightly regulated by a complex cascade of transcription factors, including the nuclear receptor Peroxisome proliferator activator receptor γ (PPARγ). RNAi-mediated knock down libraries may present an atractive method for the identification of additional adipogenic factors. However, using in vitro adipogenesis model systems for high-throughput screening with siRNA libraries is limited since (i) differentiation is not homogeneous, but results in mixed cell populations, and (ii) the expression levels (and activity) of adipogenic regulators is highly dynamic during differentiation, indicating that the timing of RNAi-mediated knock down during differentiation may be extremely critical. Here we report a proof-of-principle for a novel RNAi screening method to identify regulators of adipogenesis that is based on lethality rescue rather than differentiation, using microRNA expression driven by a PPARγ responsive RNA polymerase II promoter. We validated this novel method through screening of a dedicated deubiquitinase knock down library, resulting in the identification of UCHL3 as an essential deubiquitinase in adipogenesis. This system therefore enables the identification of novel genes regulating PPARγ-mediated adipogenesis in a high-throughput setting.
Collapse
Affiliation(s)
- Olivier van Beekum
- Department of Metabolic Diseases, Netherlands Metabolomics Centre, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Yuan Gao
- Department of Metabolic Diseases, Netherlands Metabolomics Centre, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Ruud Berger
- Department of Metabolic Diseases, Netherlands Metabolomics Centre, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Arjen Koppen
- Department of Metabolic Diseases, Netherlands Metabolomics Centre, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Eric Kalkhoven
- Department of Metabolic Diseases, Netherlands Metabolomics Centre, University Medical Centre Utrecht, Utrecht, The Netherlands
- Centre for Molecular and Cellular Intervention, Wilhelmina Children’s Hospital, University Medical Centre Utrecht, Utrecht, The Netherlands
- * E-mail:
| |
Collapse
|