151
|
Repetto G, Zurita JL, Roncel M, Ortega JM. Thermoluminescence as a complementary technique for the toxicological evaluation of chemicals in photosynthetic organisms. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 158:88-97. [PMID: 25461748 DOI: 10.1016/j.aquatox.2014.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 10/25/2014] [Accepted: 11/01/2014] [Indexed: 05/13/2023]
Abstract
Thermoluminescence is a simple technique very useful for studying electron transfer reactions on photosystem II (standard thermoluminescence) or the level of lipid peroxidation in membranes (high temperature thermoluminescence) in photosynthetic organisms. Both techniques were used to investigate the effects produced on Chlorella vulgaris cells by six compounds: the chemical intermediates bromobenzene and diethanolamine, the antioxidant propyl gallate, the semiconductor indium nitrate, the pesticide sodium monofluoroacetate and the antimalarial drug chloroquine. Electron transfer activity of the photosystem II significantly decreased after the exposure of Chlorella cells to all the six chemicals used. Lipid peroxidation was slightly decreased by the antioxidant propyl gallate, not changed by indium nitrate and very potently stimulated by diethanolamine, chloroquine, sodium monofluoroacetate and bromobenzene. For five of the chemicals studied (not bromobenzene) there is a very good correlation between the cytotoxic effects in Chlorella cells measured by the algal growth inhibition test, and the inhibition of photosystem II activity. The results suggest that one very important effect of these chemicals in Chlorella cells is the inhibition of photosynthetic metabolism by the blocking of photosystem II functionality. In the case of sodium monofluoroacetate, diethanolamine and chloroquine this inhibition seems to be related with the induction of high level of lipid peroxidation in cells that may alter the stability of photosystem II. The results obtained by both techniques supply information that can be used as a supplement to the growth inhibition test and allows a more complete assessment of the effects of a chemical in photosynthetic organisms of aquatic ecosystems.
Collapse
Affiliation(s)
- Guillermo Repetto
- Departamento de Biología Molecular e Ingeniería Bioquímica, Área de Toxicología, Universidad Pablo de Olavide, Carretera de Utrera km. 1, 41013 Seville, Spain.
| | - Jorge L Zurita
- Departamento de Biología Molecular e Ingeniería Bioquímica, Área de Toxicología, Universidad Pablo de Olavide, Carretera de Utrera km. 1, 41013 Seville, Spain
| | - Mercedes Roncel
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla-CSIC, Américo Vespucio 49, 41092 Seville, Spain
| | - José M Ortega
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla-CSIC, Américo Vespucio 49, 41092 Seville, Spain
| |
Collapse
|
152
|
Sylak-Glassman EJ, Malnoë A, De Re E, Brooks MD, Fischer AL, Niyogi KK, Fleming GR. Distinct roles of the photosystem II protein PsbS and zeaxanthin in the regulation of light harvesting in plants revealed by fluorescence lifetime snapshots. Proc Natl Acad Sci U S A 2014; 111:17498-503. [PMID: 25422428 PMCID: PMC4267351 DOI: 10.1073/pnas.1418317111] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The photosystem II (PSII) protein PsbS and the enzyme violaxanthin deepoxidase (VDE) are known to influence the dynamics of energy-dependent quenching (qE), the component of nonphotochemical quenching (NPQ) that allows plants to respond to fast fluctuations in light intensity. Although the absence of PsbS and VDE has been shown to change the amount of quenching, there have not been any measurements that can detect whether the presence of these proteins alters the type of quenching that occurs. The chlorophyll fluorescence lifetime probes the excited-state chlorophyll relaxation dynamics and can be used to determine the amount of quenching as well as whether two different genotypes with the same amount of NPQ have similar dynamics of excited-state chlorophyll relaxation. We measured the fluorescence lifetimes on whole leaves of Arabidopsis thaliana throughout the induction and relaxation of NPQ for wild type and the qE mutants, npq4, which lacks PsbS; npq1, which lacks VDE and cannot convert violaxanthin to zeaxanthin; and npq1 npq4, which lacks both VDE and PsbS. These measurements show that although PsbS changes the amount of quenching and the rate at which quenching turns on, it does not affect the relaxation dynamics of excited chlorophyll during quenching. In addition, the data suggest that PsbS responds not only to ΔpH but also to the Δψ across the thylakoid membrane. In contrast, the presence of VDE, which is necessary for the accumulation of zeaxanthin, affects the excited-state chlorophyll relaxation dynamics.
Collapse
Affiliation(s)
- Emily J Sylak-Glassman
- Departments of Chemistry and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Alizée Malnoë
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 Plant and Microbial Biology
| | - Eleonora De Re
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 Graduate Group in Applied Science and Technology, and
| | - Matthew D Brooks
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 Plant and Microbial Biology, Howard Hughes Medical Institute, University of California, Berkeley, CA 94720; and
| | - Alexandra Lee Fischer
- Departments of Chemistry and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Krishna K Niyogi
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 Plant and Microbial Biology, Howard Hughes Medical Institute, University of California, Berkeley, CA 94720; and
| | - Graham R Fleming
- Departments of Chemistry and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 Graduate Group in Applied Science and Technology, and
| |
Collapse
|
153
|
Yaakoubi H, Hamdani S, Bekalé L, Carpentier R. Protective action of spermine and spermidine against photoinhibition of photosystem I in isolated thylakoid membranes. PLoS One 2014; 9:e112893. [PMID: 25420109 PMCID: PMC4242612 DOI: 10.1371/journal.pone.0112893] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 10/16/2014] [Indexed: 11/18/2022] Open
Abstract
The photo-stability of photosystem I (PSI) is of high importance for the photosynthetic processes. For this reason, we studied the protective action of two biogenic polyamines (PAs) spermine (Spm) and spermidine (Spd) on PSI activity in isolated thylakoid membranes subjected to photoinhibition. Our results show that pre-loading thylakoid membranes with Spm and Spd reduced considerably the inhibition of O2 uptake rates, P700 photooxidation and the accumulation of superoxide anions (O2(-)) induced by light stress. Spm seems to be more effective than Spd in preserving PSI photo-stability. The correlation of the extent of PSI protection, photosystem II (PSII) inhibition and O2(-) generation with increasing Spm doses revealed that PSI photo-protection is assumed by two mechanisms depending on the PAs concentration. Given their antioxidant character, PAs scavenge directly the O2(-) generated in thylakoid membranes at physiological concentration (1 mM). However, for non-physiological concentration, the ability of PAs to protect PSI is due to their inhibitory effect on PSII electron transfer.
Collapse
Affiliation(s)
- Hnia Yaakoubi
- Groupe de Recherche en Biologie-Végétale, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
| | - Saber Hamdani
- Groupe de Recherche en Biologie-Végétale, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
| | - Laurent Bekalé
- Groupe de Recherche en Biologie-Végétale, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
| | - Robert Carpentier
- Groupe de Recherche en Biologie-Végétale, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
- * E-mail:
| |
Collapse
|
154
|
Fini A, Guidi L, Giordano C, Baratto MC, Ferrini F, Brunetti C, Calamai L, Tattini M. Salinity stress constrains photosynthesis in Fraxinus ornus more when growing in partial shading than in full sunlight: consequences for the antioxidant defence system. ANNALS OF BOTANY 2014; 114:525-38. [PMID: 25006177 PMCID: PMC4204663 DOI: 10.1093/aob/mcu130] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 05/12/2014] [Indexed: 05/10/2023]
Abstract
BACKGROUND AND AIMS A major challenge in plant ecophysiology is understanding the effects of multiple sub-optimal environmental conditions on plant performance. In most Mediterranean areas soil salinity builds up during the summer because of low availability of soil water coupled with hot temperatures. Although sunlight and soil salinity may strongly interact in determining a plant's performance, this has received relatively little attention. METHODS Two-year-old seedlings of Fraxinus ornus were grown outdoors in pots during a Mediterranean summer in either 45 % (shaded plants) or 100 % (sun plants) sunlight irradiance and were supplied with either deionized water or deionized water plus 75 mm NaCl. Morpho-anatomical traits, water and ionic relations, gas exchange and photosystem II performance, concentrations of individual carotenoids, activity of antioxidant enzymes, concentrations of ascorbic acid and individual polyphenols were measured in leaves. Leaf oxidative stress and damage were estimated by in vivo analysis of stable free radicals and ultrastructural analyses. KEY RESULTS Leaf concentrations of potentially toxic ions did not markedly differ in shaded or sun plants in response to salinity. Leaves of sun plants displayed superior water use efficiency compared with leaves of shaded plants, irrespective of salinity treatment, and had both better stomatal control and higher CO2 carboxylation efficiency than leaves of shaded plants. In the salt-treated groups, the adverse effects of excess midday irradiance were greater in shade than in sun plants. The activity of enzymes responsible for detoxifying hydrogen peroxide decreased in shaded plants and increased in sun plants as a result of salinity stress. In contrast, the activity of guaiacol peroxidase and the concentration of phenylpropanoids increased steeply in response to salinity in shaded plants but were unaffected in sun plants. CONCLUSIONS It is concluded that salinity may constrain the performance of plants growing under partial shading more severely than that of plants growing under full sun during summer. The results suggest co-ordination within the antioxidant defence network aimed at detoxifying salt-induced generation of reactive oxygen species.
Collapse
Affiliation(s)
- Alessio Fini
- Department of Agri-Food and Environmental Science, University of Florence, Viale delle Idee 30, I-50019, Sesto Fiorentino, Florence, Italy
| | - Lucia Guidi
- Department of Agricultural, Food and Agro-Environmental Sciences, University of Pisa, Via del Borghetto 80, I-56124, Pisa, Italy
| | - Cristiana Giordano
- The National Research Council of Italy, Centre for Electron Microscopy (Ce.M.E.), Via Madonna del Piano 10, I-50019, Sesto Fiorentino, Florence Italy
| | - Maria Camilla Baratto
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, I-53100 Siena, Italy
| | - Francesco Ferrini
- Department of Agri-Food and Environmental Science, University of Florence, Viale delle Idee 30, I-50019, Sesto Fiorentino, Florence, Italy
| | - Cecilia Brunetti
- Department of Agri-Food and Environmental Science, University of Florence, Viale delle Idee 30, I-50019, Sesto Fiorentino, Florence, Italy The National Research Council of Italy, Department of Biology, Agriculture and Food Sciences, Institute for Plant Protection, Via Madonna del Piano 10, I-50019, Sesto Fiorentino, Florence Italy
| | - Luca Calamai
- Department of Agri-Food and Environmental Science, University of Florence, Viale delle Idee 30, I-50019, Sesto Fiorentino, Florence, Italy
| | - Massimiliano Tattini
- The National Research Council of Italy, Department of Biology, Agriculture and Food Sciences, Institute for Plant Protection, Via Madonna del Piano 10, I-50019, Sesto Fiorentino, Florence Italy
| |
Collapse
|
155
|
Pospíšil P, Prasad A. Formation of singlet oxygen and protection against its oxidative damage in Photosystem II under abiotic stress. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2014; 137:39-48. [DOI: 10.1016/j.jphotobiol.2014.04.025] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Revised: 04/25/2014] [Accepted: 04/27/2014] [Indexed: 01/10/2023]
|
156
|
Abstract
AbstractA pot experiment was conducted to compare the responses of a non-transgenic tobacco plant (WT) and plants with genetically prolonged life-span (SAG) to risk elements of As, Cd and Zn. Plants were grown in control soil and in soil with higher levels of risk elements. The pigment contents were established by HPLC and chlorophyll fluorescence parameters were measured from slow kinetics after a 15 min dark period with the PAM fluorometer. Top (i.e. young) leaves of both WT and SAG plants were more sensitive to photoinhibition caused by these risk elements but plants showed acclimation to such elements in the bottom leaves. Plants differed in the participation of individual pigments of xanthophyll cycle: increased levels of risk elements seem to stimulate especially first (violaxanthin to antheraxanthin) and second (anhtheraxanthin to zeaxanthin) steps of the cycle in WT plants. In SAG plants, toxic elements caused an increase in the content, particularly of the initial compound of the cycle — violaxanthin.
Collapse
|
157
|
Toledo-Ortiz G, Johansson H, Lee KP, Bou-Torrent J, Stewart K, Steel G, Rodríguez-Concepción M, Halliday KJ. The HY5-PIF regulatory module coordinates light and temperature control of photosynthetic gene transcription. PLoS Genet 2014; 10:e1004416. [PMID: 24922306 PMCID: PMC4055456 DOI: 10.1371/journal.pgen.1004416] [Citation(s) in RCA: 286] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 04/16/2014] [Indexed: 12/27/2022] Open
Abstract
The ability to interpret daily and seasonal alterations in light and temperature signals is essential for plant survival. This is particularly important during seedling establishment when the phytochrome photoreceptors activate photosynthetic pigment production for photoautotrophic growth. Phytochromes accomplish this partly through the suppression of PHYTOCHROME INTERACTING FACTORS (PIFs), negative regulators of chlorophyll and carotenoid biosynthesis. While the bZIP transcription factor LONG HYPOCOTYL 5 (HY5), a potent PIF antagonist, promotes photosynthetic pigment accumulation in response to light. Here we demonstrate that by directly targeting a common promoter cis-element (G-box), HY5 and PIFs form a dynamic activation-suppression transcriptional module responsive to light and temperature cues. This antagonistic regulatory module provides a simple, direct mechanism through which environmental change can redirect transcriptional control of genes required for photosynthesis and photoprotection. In the regulation of photopigment biosynthesis genes, HY5 and PIFs do not operate alone, but with the circadian clock. However, sudden changes in light or temperature conditions can trigger changes in HY5 and PIFs abundance that adjust the expression of common target genes to optimise photosynthetic performance and growth. Plants, as sessile and photosynthetic organisms, have to constantly adjust their growth and development in response to the environment. While light and temperature are recognized as the most prominent environmental factors modulating plant photosynthetic metabolism, how the seasonal and daily adjustments are achieved is not understood. Global climate alterations will bring together the combination of light and temperature changes and will require an understanding of signal convergence. If we are to mitigate the impact of variable weather patterns on agriculture, it is critical to advance our understanding of the basis of plant responses to environmental variations. In our study we show that the antagonistic activity of key plant transcription factors involved in phytochrome red light photoreceptors signaling (PIFs and HY5) optimize photosynthetic pigment production in response to environmental cues. These light and temperature responsive transcription factors operate in cooperation with the circadian clock to regulate photosynthetic pigment production through a common gene promoter element.
Collapse
Affiliation(s)
- Gabriela Toledo-Ortiz
- Institute of Structural and Molecular Biology, SynthSys, University of Edinburgh, Edinburgh, United Kingdom
- * E-mail: (GTO); (KJH)
| | - Henrik Johansson
- Institute of Structural and Molecular Biology, SynthSys, University of Edinburgh, Edinburgh, United Kingdom
- Plant Physiology, Justus Liebig University, Senckernbergstr, Giessen, Germany
| | - Keun Pyo Lee
- Institute of Structural and Molecular Biology, SynthSys, University of Edinburgh, Edinburgh, United Kingdom
| | - Jordi Bou-Torrent
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, Barcelona, Spain
| | - Kelly Stewart
- Institute of Structural and Molecular Biology, SynthSys, University of Edinburgh, Edinburgh, United Kingdom
| | - Gavin Steel
- Institute of Structural and Molecular Biology, SynthSys, University of Edinburgh, Edinburgh, United Kingdom
| | - Manuel Rodríguez-Concepción
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, Barcelona, Spain
| | - Karen J. Halliday
- Institute of Structural and Molecular Biology, SynthSys, University of Edinburgh, Edinburgh, United Kingdom
- * E-mail: (GTO); (KJH)
| |
Collapse
|
158
|
Abstract
In oxygenic photosynthetic eukaryotes, the hydroxylated carotenoid zeaxanthin is produced from preexisting violaxanthin upon exposure to excess light conditions. Zeaxanthin binding to components of the photosystem II (PSII) antenna system has been investigated thoroughly and shown to help in the dissipation of excess chlorophyll-excited states and scavenging of oxygen radicals. However, the functional consequences of the accumulation of the light-harvesting complex I (LHCI) proteins in the photosystem I (PSI) antenna have remained unclarified so far. In this work we investigated the effect of zeaxanthin binding on photoprotection of PSI-LHCI by comparing preparations isolated from wild-type Arabidopsis thaliana (i.e., with violaxanthin) and those isolated from the A. thaliana nonphotochemical quenching 2 mutant, in which violaxanthin is replaced by zeaxanthin. Time-resolved fluorescence measurements showed that zeaxanthin binding leads to a previously unrecognized quenching effect on PSI-LHCI fluorescence. The efficiency of energy transfer from the LHCI moiety of the complex to the PSI reaction center was down-regulated, and an enhanced PSI resistance to photoinhibition was observed both in vitro and in vivo. Thus, zeaxanthin was shown to be effective in inducing dissipative states in PSI, similar to its well-known effect on PSII. We propose that, upon acclimation to high light, PSI-LHCI changes its light-harvesting efficiency by a zeaxanthin-dependent quenching of the absorbed excitation energy, whereas in PSII the stoichiometry of LHC antenna proteins per reaction center is reduced directly.
Collapse
|
159
|
Chen Z, Jolley B, Caldwell C, Gallie DR. Eukaryotic translation initiation factor eIFiso4G is required to regulate violaxanthin De-epoxidase expression in Arabidopsis. J Biol Chem 2014; 289:13926-36. [PMID: 24706761 PMCID: PMC4022864 DOI: 10.1074/jbc.m114.555151] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 03/21/2014] [Indexed: 11/06/2022] Open
Abstract
The eukaryotic translation initiation factor (eIF) 4G is a scaffold protein that organizes the assembly of those initiation factors needed to recruit the 40 S ribosomal subunit to an mRNA. Plants, like many eukaryotes, express two eIF4G isoforms. eIFiso4G, one of the isoforms specific to plants, is unique among eukaryotic eIF4G proteins in that it is highly divergent and unusually small in size, raising the possibility of functional specialization. In this study, the role of eIFiso4G in plant growth was investigated using null mutants for the eIF4G isoforms in Arabidopsis. eIFiso4G loss of function mutants exhibited smaller cell, leaf, plant size, and biomass accumulation that correlated with its reduced photosynthetic activity, phenotypes not observed with the eIF4G loss of function mutant. Although no change in photorespiration or dark respiration was observed in the eIFiso4G loss of function mutant, a reduction in chlorophyll levels and an increase in the level of nonphotochemical quenching were observed. An increase in xanthophyll cycle activity and the generation of reactive oxygen species contributed to the qE and qI components of nonphotochemical quenching, respectively. An increase in the transcript and protein levels of violaxanthin de-epoxidase in the eIFiso4G loss of function mutant and an increase in its xanthophyll de-epoxidation state correlated with the higher qE associated with loss of eIFiso4G expression. These observations indicate that eIFiso4G expression is required to regulate violaxanthin de-epoxidase expression and to support photosynthetic activity.
Collapse
Affiliation(s)
- Zhong Chen
- From the Department of Biochemistry, University of California, Riverside, California 92521-0129
| | - Blair Jolley
- From the Department of Biochemistry, University of California, Riverside, California 92521-0129
| | - Christian Caldwell
- From the Department of Biochemistry, University of California, Riverside, California 92521-0129
| | - Daniel R Gallie
- From the Department of Biochemistry, University of California, Riverside, California 92521-0129
| |
Collapse
|
160
|
Zhang G, Liu Y, Ni Y, Meng Z, Lu T, Li T. Exogenous calcium alleviates low night temperature stress on the photosynthetic apparatus of tomato leaves. PLoS One 2014; 9:e97322. [PMID: 24828275 PMCID: PMC4020824 DOI: 10.1371/journal.pone.0097322] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 04/16/2014] [Indexed: 11/29/2022] Open
Abstract
The effect of exogenous CaCl2 on photosystem I and II (PSI and PSII) activities, cyclic electron flow (CEF), and proton motive force of tomato leaves under low night temperature (LNT) was investigated. LNT stress decreased the net photosynthetic rate (Pn), effective quantum yield of PSII [Y(II)], and photochemical quenching (qP), whereas CaCl2 pretreatment improved Pn, Y(II), and qP under LNT stress. LNT stress significantly increased the non-regulatory quantum yield of energy dissipation [Y(NO)], whereas CaCl2 alleviated this increase. Exogenous Ca2+ enhanced stimulation of CEF by LNT stress. Inhibition of oxidized PQ pools caused by LNT stress was alleviated by CaCl2 pretreatment. LNT stress reduced zeaxanthin formation and ATPase activity, but CaCl2 pretreatment reversed both of these effects. LNT stress caused excess formation of a proton gradient across the thylakoid membrane, whereas CaCl2 pretreatment decreased the said factor under LNT. Thus, our results showed that photoinhibition of LNT-stressed plants could be alleviated by CaCl2 pretreatment. Our findings further revealed that this alleviation was mediated in part by improvements in carbon fixation capacity, PQ pools, linear and cyclic electron transports, xanthophyll cycles, and ATPase activity.
Collapse
Affiliation(s)
- Guoxian Zhang
- Horticulture Department, Shenyang Agricultural University, Shenyang, Liaoning Province, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning Province, China
- Key Laboratory of Protected Horticulture of Liaoning Province, Shenyang, Liaoning Province, China
| | - Yufeng Liu
- Horticulture Department, Shenyang Agricultural University, Shenyang, Liaoning Province, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning Province, China
- Key Laboratory of Protected Horticulture of Liaoning Province, Shenyang, Liaoning Province, China
| | - Yang Ni
- Horticulture Department, Shenyang Agricultural University, Shenyang, Liaoning Province, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning Province, China
- Key Laboratory of Protected Horticulture of Liaoning Province, Shenyang, Liaoning Province, China
| | - Zhaojuan Meng
- Horticulture Department, Shenyang Agricultural University, Shenyang, Liaoning Province, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning Province, China
- Key Laboratory of Protected Horticulture of Liaoning Province, Shenyang, Liaoning Province, China
| | - Tao Lu
- Horticulture Department, Shenyang Agricultural University, Shenyang, Liaoning Province, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning Province, China
- Key Laboratory of Protected Horticulture of Liaoning Province, Shenyang, Liaoning Province, China
| | - Tianlai Li
- Horticulture Department, Shenyang Agricultural University, Shenyang, Liaoning Province, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning Province, China
- Key Laboratory of Protected Horticulture of Liaoning Province, Shenyang, Liaoning Province, China
| |
Collapse
|
161
|
Effect of light exposure on sensorial quality, concentrations of bioactive compounds and antioxidant capacity of radish microgreens during low temperature storage. Food Chem 2014; 151:472-9. [DOI: 10.1016/j.foodchem.2013.11.086] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Revised: 11/14/2013] [Accepted: 11/15/2013] [Indexed: 11/20/2022]
|
162
|
Guerrero F, Zurita JL, Roncel M, Kirilovsky D, Ortega JM. The role of the high potential form of the cytochrome b559: Study of Thermosynechococcus elongatus mutants. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:908-19. [PMID: 24613347 DOI: 10.1016/j.bbabio.2014.02.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 02/21/2014] [Accepted: 02/26/2014] [Indexed: 10/25/2022]
Abstract
Cytochrome b559 is an essential component of the photosystem II reaction center in photosynthetic oxygen-evolving organisms, but its function still remains unclear. The use of photosystem II preparations from Thermosynechococcus elongatus of high integrity and activity allowed us to measure for the first time the influence of cytochrome b559 mutations on its midpoint redox potential and on the reduction of the cytochrome b559 by the plastoquinone pool (or QB). In this work, five mutants having a mutation in the α-subunit (I14A, I14S, R18S, I27A and I27T) and one in the β-subunit (F32Y) of cytochrome b559 have been investigated. All the mutations led to a destabilization of the high potential form of the cytochrome b559. The midpoint redox potential of the high potential form was significantly altered in the αR18S and αI27T mutant strains. The αR18S strain also showed a high sensitivity to photoinhibitory illumination and an altered oxidase activity. This was suggested by measurements of light induced oxidation and dark re-reduction of the cytochrome b559 showing that under conditions of a non-functional water oxidation system, once the cytochrome is oxidized by P680(+), the yield of its reduction by QB or the PQ pool was smaller and the kinetic slower in the αR18S mutant than in the wild-type strain. Thus, the extremely positive redox potential of the high potential form of cytochrome b559 could be necessary to ensure efficient oxidation of the PQ pool and to function as an electron reservoir replacing the water oxidation system when it is not operating.
Collapse
Affiliation(s)
- Fernando Guerrero
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla-CSIC, Américo Vespucio 49, 41092 Seville, Spain; Laboratoire de Bioénergétique Moléculaire et Photosynthèse, Institut de Biologie et de Technologies de Saclay (iBiTec-S), CEA Saclay, 91191 Gif-sur-Yvette cedex, France.
| | - Jorge L Zurita
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla-CSIC, Américo Vespucio 49, 41092 Seville, Spain; Laboratoire de Bioénergétique Moléculaire et Photosynthèse, Institut de Biologie et de Technologies de Saclay (iBiTec-S), CEA Saclay, 91191 Gif-sur-Yvette cedex, France.
| | - Mercedes Roncel
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla-CSIC, Américo Vespucio 49, 41092 Seville, Spain.
| | - Diana Kirilovsky
- Laboratoire de Bioénergétique Moléculaire et Photosynthèse, Institut de Biologie et de Technologies de Saclay (iBiTec-S), CEA Saclay, 91191 Gif-sur-Yvette cedex, France.
| | - José M Ortega
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla-CSIC, Américo Vespucio 49, 41092 Seville, Spain.
| |
Collapse
|
163
|
Ruban AV, Belgio E. The relationship between maximum tolerated light intensity and photoprotective energy dissipation in the photosynthetic antenna: chloroplast gains and losses. Philos Trans R Soc Lond B Biol Sci 2014; 369:20130222. [PMID: 24591709 DOI: 10.1098/rstb.2013.0222] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The principle of quantifying the efficiency of protection of photosystem II (PSII) reaction centres against photoinhibition by non-photochemical energy dissipation (NPQ) has been recently introduced by Ruban & Murchie (2012 Biochim. Biophys. Acta 1817, 977-982 (doi:10.1016/j.bbabio.2012.03.026)). This is based upon the assessment of two key parameters: (i) the relationship between the PSII yield and NPQ, and (ii) the fraction of intact PSII reaction centres in the dark after illumination. In this paper, we have quantified the relationship between the amplitude of NPQ and the light intensity at which all PSII reaction centres remain intact for plants with different levels of PsbS protein, known to play a key role in the process. It was found that the same, nearly linear, relationship exists between the levels of the protective NPQ component (pNPQ) and the tolerated light intensity in all types of studied plants. This approach allowed for the quantification of the maximum tolerated light intensity, the light intensity at which all plant leaves become photoinhibited, the fraction of (most likely) unnecessary or 'wasteful' NPQ, and the fraction of photoinhibited PSII reaction centres under conditions of prolonged illumination by full sunlight. It was concluded that the governing factors in the photoprotection of PSII are the level and rate of protective pNPQ formation, which are often in discord with the amplitude of the conventional measure of photoprotection, the quickly reversible NPQ component, qE. Hence, we recommend pNPQ as a more informative and less ambiguous parameter than qE, as it reflects the effectiveness and limitations of the major photoprotective process of the photosynthetic membrane.
Collapse
Affiliation(s)
- Alexander V Ruban
- School of Biological and Chemical Sciences, Queen Mary University of London, , Mile End Road, London E1 4NS, UK
| | | |
Collapse
|
164
|
Krause GH, Winter K, Krause B, Virgo A. Light-stimulated heat tolerance in leaves of two neotropical tree species, Ficus insipida and Calophyllum longifolium. FUNCTIONAL PLANT BIOLOGY : FPB 2014; 42:42-51. [PMID: 32480652 DOI: 10.1071/fp14095] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 06/25/2014] [Indexed: 06/11/2023]
Abstract
Previous heat tolerance tests of higher plants have been mostly performed with darkened leaves. However, under natural conditions, high leaf temperatures usually occur during periods of high solar radiation. In this study, we demonstrate small but significant increases in the heat tolerance of illuminated leaves. Leaf disks of mature sun leaves from two neotropical tree species, Ficus insipida Willd. and Calophyllum longifolium Willd., were subjected to 15min of heat treatment in the light (500µmol photons m-2s-1) and in the dark. Tissue temperatures were controlled by floating the disks on the surface of a water bath. PSII activity was determined 24h and 48h after heating using chlorophyll a fluorescence. Permanent tissue damage was assessed visually during long-term storage of leaf sections under dim light. In comparison to heat treatments in the dark, the critical temperature (T50) causing a 50% decline of the fluorescence ratio Fv/Fm was increased by ~1°C (from ~52.5°C to ~53.5°C) in the light. Moreover, illumination reduced the decline of Fv/Fm as temperatures approached T50. Visible tissue damage was reduced following heat treatment in the light. Experiments with attached leaves of seedlings exposed to increasing temperatures in a gas exchange cuvette also showed a positive effect of light on heat tolerance.
Collapse
Affiliation(s)
- G Heinrich Krause
- Smithsonian Tropical Research Institute, Apartado Postal 0843-03092, Panama City, Republic of Panama
| | - Klaus Winter
- Smithsonian Tropical Research Institute, Apartado Postal 0843-03092, Panama City, Republic of Panama
| | - Barbara Krause
- Smithsonian Tropical Research Institute, Apartado Postal 0843-03092, Panama City, Republic of Panama
| | - Aurelio Virgo
- Smithsonian Tropical Research Institute, Apartado Postal 0843-03092, Panama City, Republic of Panama
| |
Collapse
|
165
|
Boca S, Koestler F, Ksas B, Chevalier A, Leymarie J, Fekete A, Mueller MJ, Havaux M. Arabidopsis lipocalins AtCHL and AtTIL have distinct but overlapping functions essential for lipid protection and seed longevity. PLANT, CELL & ENVIRONMENT 2014; 37:368-81. [PMID: 23837879 DOI: 10.1111/pce.12159] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 07/02/2013] [Accepted: 07/02/2013] [Indexed: 05/21/2023]
Abstract
Lipocalins are a group of multifunctional proteins, recognized as carriers of small lipophilic molecules, which have been characterized in bacteria and animals. Two true lipocalins have been recently identified in plants, the temperature-induced lipocalin (TIL) and the chloroplastic lipocalin (CHL), the expression of which is induced by various abiotic stresses. Each lipocalin appeared to be specialized in the responses to specific stress conditions in Arabidopsis thaliana, with AtTIL and AtCHL playing a protective role against heat and high light, respectively. The double mutant AtCHL KO × AtTIL KO deficient in both lipocalins was more sensitive to temperature, drought and light stresses than the single mutants, exhibiting intense lipid peroxidation. AtCHL deficiency dramatically enhanced the photosensitivity of mutants (vte1, npq1) affected in lipid protection mechanisms (tocopherols, zeaxanthin), confirming the role of lipocalins in the prevention of lipid peroxidation. Seeds of the AtCHL KO × AtTIL KO double mutant were very sensitive to natural and artificial ageing, and again this phenomenon was associated with the oxidation of polyunsaturated lipids. The presented results show that the Arabidopsis lipocalins AtTIL and AtCHL have overlapping functions in lipid protection which are essential for stress resistance and survival.
Collapse
Affiliation(s)
- Simona Boca
- CEA, DSV, IBEB, Laboratoire d'Ecophysiologie Moléculaire des Plantes, Saint-Paul-lez-Durance, F-13108, France; CNRS, UMR 7265 Biologie Végétale et Microbiologie Environnementales, Saint-Paul-lez-Durance, F-13108, France; Aix-Marseille Université, Saint-Paul-lez-Durance, F-13108, France
| | | | | | | | | | | | | | | |
Collapse
|
166
|
Havaux M, García-Plazaola JI. Beyond Non-Photochemical Fluorescence Quenching: The Overlapping Antioxidant Functions of Zeaxanthin and Tocopherols. ADVANCES IN PHOTOSYNTHESIS AND RESPIRATION 2014. [DOI: 10.1007/978-94-017-9032-1_26] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
167
|
The chloroplast protein LTO1/AtVKOR is involved in the xanthophyll cycle and the acceleration of D1 protein degradation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2014; 130:68-75. [DOI: 10.1016/j.jphotobiol.2013.11.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2013] [Revised: 10/11/2013] [Accepted: 11/05/2013] [Indexed: 11/19/2022]
|
168
|
Non-Photochemical Quenching Mechanisms in Intact Organisms as Derived from Ultrafast-Fluorescence Kinetic Studies. ADVANCES IN PHOTOSYNTHESIS AND RESPIRATION 2014. [DOI: 10.1007/978-94-017-9032-1_5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
169
|
Ramalho JC, Zlatev ZS, Leitão AE, Pais IP, Fortunato AS, Lidon FC. Moderate water stress causes different stomatal and non-stomatal changes in the photosynthetic functioning of Phaseolus vulgaris L. genotypes. PLANT BIOLOGY (STUTTGART, GERMANY) 2014; 16:133-46. [PMID: 23647987 DOI: 10.1111/plb.12018] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 01/16/2013] [Indexed: 05/05/2023]
Abstract
The impact of moderate water deficit on the photosynthetic apparatus of three Phaseolus vulgaris L. cultivars, Plovdiv 10 (P10), Dobrudjanski Ran (DR) and Prelom (Prel), was investigated. Water shortage had less impact on leaf hydration, RWC (predawn and midday) and predawn water potential in Prel. RWC and Ψ(p) were more reduced in P10, while there was no osmotic adjustment in any cultivar. Although drought drastically reduced stomatal opening in P10 and DR, reduced A(max) indicated non-stomatal limitations that contributed to the negligible P(n). These limitations were on potential thylakoid electron transport rates of PSI and II, pointing to photosystem functioning as a major limiting step in photosynthesis. This agrees with decreases in actual photochemical efficiency of PSII (F(v)'/F(m)'), quantum yield of photosynthetic non-cyclic electron transport (ϕ(e)) and energy-driven photochemical events (q(P)), although the impact on these parameters would also include down-regulation processes. When compared to DR, Prel retained a higher functional state of the photosynthetic machinery, justifying reduced need for photoprotective mechanisms (non-photochemical quenching, zeaxanthin, lutein, β-carotene) and maintenance of the balance between energy capture and dissipative pigments. The highest increases in fructose, glucose, arabinose and sorbitol in Prel might be related to tolerance to a lower oxidative state. All cultivars had reduced A(max) due to daytime stomatal closure in well-watered conditions. Under moderate drought, Prel had highest tolerance, higher leaf hydration and maintenance of important photochemical use of energy. However, water shortage caused appreciable non-stomatal limitations to photosynthesis linked to regulation/imbalance at the metabolic level (and growth) in all cultivars. This included damage, as reflected in decreased potential photosystem functioning, pointing to higher sensitivity of photosynthesis to drought than is commonly assumed.
Collapse
Affiliation(s)
- J C Ramalho
- Grupo Interações Planta-Ambiente, Centro Ambiente, Agricultura e Desenvolvimento/Instituto de Investigação Científica Tropical, I.P. (BioTrop/IICT), Oeiras, Portugal
| | - Z S Zlatev
- Department of Plant Physiology and Biochemistry, Agricultural University of Plovdiv, Plovdiv, Bulgaria
| | - A E Leitão
- Grupo Interações Planta-Ambiente, Centro Ambiente, Agricultura e Desenvolvimento/Instituto de Investigação Científica Tropical, I.P. (BioTrop/IICT), Oeiras, Portugal
| | - I P Pais
- URGEMP/Instituto Nacional de Investigação Agrária e Veterinária, I.P., Oeiras, Portugal
| | - A S Fortunato
- Grupo Interações Planta-Ambiente, Centro Ambiente, Agricultura e Desenvolvimento/Instituto de Investigação Científica Tropical, I.P. (BioTrop/IICT), Oeiras, Portugal
| | - F C Lidon
- Department of Ciências e Tecnologia da Biomassa, Fac. Ciências e Tecnologia, University of Nova de Lisboa, Monte de Caparica, Portugal
| |
Collapse
|
170
|
Othman R, Mohd Zaifuddin FA, Hassan NM. Carotenoid Biosynthesis Regulatory Mechanisms in Plants. J Oleo Sci 2014; 63:753-60. [DOI: 10.5650/jos.ess13183] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
171
|
Garab G. Hierarchical organization and structural flexibility of thylakoid membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1837:481-94. [PMID: 24333385 DOI: 10.1016/j.bbabio.2013.12.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 11/26/2013] [Accepted: 12/02/2013] [Indexed: 10/25/2022]
Abstract
Chloroplast thylakoid membranes accommodate densely packed protein complexes in ordered, often semi-crystalline arrays and are assembled into highly organized multilamellar systems, an organization warranting a substantial degree of stability. At the same time, they exhibit remarkable structural flexibility, which appears to play important - yet not fully understood - roles in different short-term adaptation mechanisms in response to rapidly changing environmental conditions. In this review I will focus on dynamic features of the hierarchically organized photosynthetic machineries at different levels of structural complexity: (i) isolated light harvesting complexes, (ii) molecular macroassemblies and supercomplexes, (iii) thylakoid membranes and (iv) their multilamellar membrane systems. Special attention will be paid to the most abundant systems, the major light harvesting antenna complex, LHCII, and to grana. Two physical mechanisms, which are less frequently treated in the literature, will receive special attention: (i) thermo-optic mechanism -elementary structural changes elicited by ultrafast local heat transients due to the dissipation of photon energy, which operates both in isolated antenna assemblies and the native thylakoid membranes, regulates important enzymatic functions and appears to play role in light adaptation and photoprotection mechanisms; and (ii) the mechanism by which non-bilayer lipids and lipid phases play key role in the functioning of xanthophyll cycle de-epoxidases and are proposed to regulate the protein-to-lipid ratio in thylakoid membranes and contribute to membrane dynamics. This article is part of a Special Issue entitled: Dynamic and ultrastructure of bioenergetic membranes and their components.
Collapse
Affiliation(s)
- Győző Garab
- Institute of Plant Biology, Biological Research Center, Hungarian Academy of Sciences, P.O. Box 521, H-6701 Szeged, Hungary.
| |
Collapse
|
172
|
Meessen J, Sánchez FJ, Sadowsky A, de la Torre R, Ott S, de Vera JP. Extremotolerance and resistance of lichens: comparative studies on five species used in astrobiological research II. Secondary lichen compounds. ORIGINS LIFE EVOL B 2013; 43:501-26. [PMID: 24362711 DOI: 10.1007/s11084-013-9348-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 10/25/2013] [Indexed: 10/25/2022]
Abstract
Lichens, which are symbioses of a fungus and one or two photoautotrophs, frequently tolerate extreme environmental conditions. This makes them valuable model systems in astrobiological research to fathom the limits and limitations of eukaryotic symbioses. Various studies demonstrated the high resistance of selected extremotolerant lichens towards extreme, non-terrestrial abiotic factors including space exposure, hypervelocity impact simulations as well as space and Martian parameter simulations. This study focusses on the diverse set of secondary lichen compounds (SLCs) that act as photo- and UVR-protective substances. Five lichen species used in present-day astrobiological research were compared: Buellia frigida, Circinaria gyrosa, Rhizocarpon geographicum, Xanthoria elegans, and Pleopsidium chlorophanum. Detailed investigation of secondary substances including photosynthetic pigments was performed for whole lichen thalli but also for axenically cultivated mycobionts and photobionts by methods of UV/VIS-spectrophotometry and two types of high performance liquid chromatography (HPLC). Additionally, a set of chemical tests is presented to confirm the formation of melanic compounds in lichen and mycobiont samples. All investigated lichens reveal various sets of SLCs, except C. gyrosa where only melanin was putatively identified. Such studies will help to assess the contribution of SLCs on lichen extremotolerance, to understand the adaptation of lichens to prevalent abiotic stressors of the respective habitat, and to form a basis for interpreting recent and future astrobiological experiments. As most of the identified SLCs demonstrated a high capacity in absorbing UVR, they may also explain the high resistance of lichens towards non-terrestrial UVR.
Collapse
Affiliation(s)
- J Meessen
- Institut für Botanik, Heinrich-Heine-Universität (HHU), Universitätsstr.1, 40225, Düsseldorf, Germany,
| | | | | | | | | | | |
Collapse
|
173
|
Abstract
AbstractPlants are redox systems and redox-active compounds control and regulate all aspects of their life. Recent studies have shown that changes in reactive oxygen species (ROS) concentration mediated by enzymatic and non-enzymatic antioxidants are transferred into redox signals used by plants to activate various physiological responses. An overview of the main antioxidants and redox signaling in plant cells is presented. In this review, the biological effects of ROS and related redox signals are discussed in the context of acclimation to changing environmental conditions. Special attention is paid to the role of thiol/disulfide exchange via thioredoxins (Trxs), glutaredoxins (Grxs) and peroxiredoxins (Prxs) in the redox regulatory network. In plants, chloroplasts and mitochondria occupying a chloroplasts and mitochondria play key roles in cellular metabolism as well as in redox regulation and signaling. The integrated redox functions of these organelles are discussed with emphasis on the importance of the chloroplast and mitochondrion to the nucleus retrograde signaling in acclimatory and stress response.
Collapse
|
174
|
Antal TK, Kovalenko IB, Rubin AB, Tyystjärvi E. Photosynthesis-related quantities for education and modeling. PHOTOSYNTHESIS RESEARCH 2013; 117:1-30. [PMID: 24162971 DOI: 10.1007/s11120-013-9945-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Accepted: 10/07/2013] [Indexed: 05/24/2023]
Abstract
A quantitative understanding of the photosynthetic machinery depends largely on quantities, such as concentrations, sizes, absorption wavelengths, redox potentials, and rate constants. The present contribution is a collection of numbers and quantities related mainly to photosynthesis in higher plants. All numbers are taken directly from a literature or database source and the corresponding reference is provided. The numerical values, presented in this paper, provide ranges of values, obtained in specific experiments for specific organisms. However, the presented numbers can be useful for understanding the principles of structure and function of photosynthetic machinery and for guidance of future research.
Collapse
Affiliation(s)
- Taras K Antal
- Biological Faculty, Moscow State University, Vorobyevi Gory, 119992, Moscow, Russia
| | | | | | | |
Collapse
|
175
|
Cazzaniga S, Dall' Osto L, Kong SG, Wada M, Bassi R. Interaction between avoidance of photon absorption, excess energy dissipation and zeaxanthin synthesis against photooxidative stress in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 76:568-79. [PMID: 24033721 DOI: 10.1111/tpj.12314] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Revised: 08/06/2013] [Accepted: 08/12/2013] [Indexed: 05/22/2023]
Abstract
Plants evolved photoprotective mechanisms in order to counteract the damaging effects of excess light in oxygenic environments. Among them, chloroplast avoidance and non-photochemical quenching concur in reducing the concentration of chlorophyll excited states in the photosynthetic apparatus to avoid photooxidation. We evaluated their relative importance in regulating excitation pressure on photosystem II. To this aim, genotypes were constructed carrying mutations impairing the chloroplast avoidance response (phot2) as well as mutations affecting the biosynthesis of the photoprotective xanthophyll zeaxanthin (npq1) or the activation of non-photochemical quenching (npq4), followed by evaluation of their photosensitivity in vivo. Suppression of avoidance response resulted in oxidative stress under excess light at low temperature, while removing either zeaxanthin or PsbS had a milder effect. The double mutants phot2 npq1 and phot2 npq4 showed the highest sensitivity to photooxidative stress, indicating that xanthophyll cycle and qE have additive effects over the avoidance response. The interactions between non-photochemical quenching and avoidance responses were studied by analyzing the kinetics of fluorescence decay and recovery at different light intensities. phot2 fluorescence decay lacked a component, here named as qM. This kinetic component linearly correlated with the leaf transmittance changes due to chloroplast relocation induced by white light and was absent when red light was used as actinic source. On these basis we conclude that a decrease in leaf optical density affects the apparent non-photochemical quenching (NPQ) rise kinetic. Thus, excess light-induced fluorescence decrease is in part due to avoidance of photon absorption rather than to a genuine quenching process.
Collapse
|
176
|
Agati G, Brunetti C, Di Ferdinando M, Ferrini F, Pollastri S, Tattini M. Functional roles of flavonoids in photoprotection: new evidence, lessons from the past. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 72:35-45. [PMID: 23583204 DOI: 10.1016/j.plaphy.2013.03.014] [Citation(s) in RCA: 261] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 03/18/2013] [Indexed: 05/18/2023]
Abstract
We discuss on the relative significance of different functional roles potentially served by flavonoids in photoprotection, with special emphasis to their ability to scavenge reactive oxygen species (ROS) and control the development of individual organs and whole plant. We propose a model in which chloroplast-located flavonoids scavenge H2O2 and singlet oxygen generated under excess light-stress, thus avoiding programmed cell death. We also draw a picture in which vacuolar flavonoids in conjunction with peroxidases and ascorbic acid constitute a secondary antioxidant system aimed at detoxifying H2O2, which may diffuse out of the chloroplast at considerable rates and enter the vacuole following excess light stress-induced depletion of ascorbate peroxidase. We hypothesize for flavonols key roles as developmental regulators in early and current-day land-plants, based on their ability to modulate auxin movement and auxin catabolism. We show that antioxidant flavonoids display the greatest capacity to regulate key steps of cell growth and differentiation in eukaryotes. These regulatory functions of flavonoids, which are shared by plants and animals, are fully accomplished in the nM concentration range, as likely occurred in early land plants. We therefore conclude that functions of flavonoids as antioxidants and/or developmental regulators flavonoids are of great value in photoprotection. We also suggest that UV-B screening was just one of the multiple functions served by flavonoids when early land-plants faced an abrupt increase in sunlight irradiance.
Collapse
Affiliation(s)
- Giovanni Agati
- Istituto di Fisica Applicata 'Carrara', IFAC, Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, I-50019 Sesto Fiorentino, Firenze, Italy
| | | | | | | | | | | |
Collapse
|
177
|
Pinnola A, Dall’Osto L, Gerotto C, Morosinotto T, Bassi R, Alboresi A. Zeaxanthin binds to light-harvesting complex stress-related protein to enhance nonphotochemical quenching in Physcomitrella patens. THE PLANT CELL 2013; 25:3519-34. [PMID: 24014548 PMCID: PMC3809547 DOI: 10.1105/tpc.113.114538] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Nonphotochemical quenching (NPQ) dissipates excess energy to protect the photosynthetic apparatus from excess light. The moss Physcomitrella patens exhibits strong NPQ by both algal-type light-harvesting complex stress-related (LHCSR)-dependent and plant-type S subunit of Photosystem II (PSBS)-dependent mechanisms. In this work, we studied the dependence of NPQ reactions on zeaxanthin, which is synthesized under light stress by violaxanthin deepoxidase (VDE) from preexisting violaxanthin. We produced vde knockout (KO) plants and showed they underwent a dramatic reduction in thermal dissipation ability and enhanced photoinhibition in excess light conditions. Multiple mutants (vde lhcsr KO and vde psbs KO) showed that zeaxanthin had a major influence on LHCSR-dependent NPQ, in contrast with previous reports in Chlamydomonas reinhardtii. The PSBS-dependent component of quenching was less dependent on zeaxanthin, despite the near-complete violaxanthin to zeaxanthin exchange in LHC proteins. Consistent with this, we provide biochemical evidence that native LHCSR protein binds zeaxanthin upon excess light stress. These findings suggest that zeaxanthin played an important role in the adaptation of modern plants to the enhanced levels of oxygen and excess light intensity of land environments.
Collapse
Affiliation(s)
- Alberta Pinnola
- Dipartimento di Biotecnologie, Università degli Studi di Verona, 37134 Verona, Italy
| | - Luca Dall’Osto
- Dipartimento di Biotecnologie, Università degli Studi di Verona, 37134 Verona, Italy
| | - Caterina Gerotto
- Dipartimento di Biologia, Università degli Studi di Padova, 35131 Padua, Italy
| | - Tomas Morosinotto
- Dipartimento di Biologia, Università degli Studi di Padova, 35131 Padua, Italy
| | - Roberto Bassi
- Dipartimento di Biotecnologie, Università degli Studi di Verona, 37134 Verona, Italy
- Address correspondence to
| | - Alessandro Alboresi
- Dipartimento di Biotecnologie, Università degli Studi di Verona, 37134 Verona, Italy
| |
Collapse
|
178
|
Zbierzak AM, Porfirova S, Griebel T, Melzer M, Parker JE, Dörmann P. A TIR-NBS protein encoded by Arabidopsis Chilling Sensitive 1 (CHS1) limits chloroplast damage and cell death at low temperature. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 75:539-52. [PMID: 23617639 DOI: 10.1111/tpj.12219] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 04/18/2013] [Accepted: 04/22/2013] [Indexed: 05/26/2023]
Abstract
Survival of plants at low temperature depends on mechanisms for limiting physiological damage and maintaining growth. We mapped the chs1-1 (chilling sensitive1-1) mutation in Arabidopsis accession Columbia to the TIR-NBS gene At1g17610. In chs1-1, a single amino acid exchange at the CHS1 N-terminus close to the conserved TIR domain creates a stable mutant protein that fails to protect leaves against chilling stress. The sequence of another TIR-NBS gene (At5g40090) named CHL1 (CHS1-like 1) is related to that of CHS1. Over-expression of CHS1 or CHL1 alleviates chilling damage and enhances plant growth at moderate (24°C) and chilling (13°C) temperatures, suggesting a role for both proteins in growth homeostasis. chs1-1 mutants show induced salicylic acid production and defense gene expression at 13°C, indicative of autoimmunity. Genetic analysis of chs1-1 in combination with defense pathway mutants shows that chs1-1 chilling sensitivity requires the TIR-NBS-LRR and basal resistance regulators encoded by EDS1 and PAD4 but not salicylic acid. By following the timing of metabolic, physiological and chloroplast ultrastructural changes in chs1-1 leaves during chilling, we have established that alterations in photosynthetic complexes and thylakoid membrane integrity precede leaf cell death measured by ion leakage. At 24°C, the chs1-1 mutant appears normal but produces a massive necrotic response to virulent Pseudomonas syringae pv. tomato infection, although this does not affect bacterial proliferation. Our results suggest that CHS1 acts at an intersection between temperature sensing and biotic stress pathway activation to maintain plant performance over a range of conditions.
Collapse
Affiliation(s)
- Anna Maria Zbierzak
- Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, 53115, Bonn, Germany
| | | | | | | | | | | |
Collapse
|
179
|
Slavov C, Reus M, Holzwarth AR. Two different mechanisms cooperate in the desiccation-induced excited state quenching in Parmelia lichen. J Phys Chem B 2013; 117:11326-36. [PMID: 23841476 DOI: 10.1021/jp402881f] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The highly efficient desiccation-induced quenching in the poikilohydric lichen Parmelia sulcata has been studied by ultrafast fluorescence spectroscopy at room temperature (r.t.) and cryogenic temperatures in order to elucidate the quenching mechanism(s) and kinetic reaction models. Analysis of the r.t. data by kinetic target analysis reveals that two different quenching mechanisms contribute to the protection of photosystem II (PS II). The first mechanism is a direct quenching of the PS II antenna and is related to the characteristic F740 nm fluorescence band. Based on the temperature dependence of its spectra and the kinetics, this mechanism is proposed to reflect the formation of a fluorescent (F740) chlorophyll-chlorophyll charge-transfer state. It is discussed in relation to a similar fluorescence band and quenching mechanism observed in light-induced nonphotochemical quenching in higher plants. The second and more efficient quenching process (providing more than 70% of the total PS II quenching) is shown to involve an efficient spillover (energy transfer) from PS II to PS I which can be prevented by a short glutaraldehyde treatment. Desiccation causes a thylakoid-membrane rearrangement which brings into direct contact the PS II and PS I units. The energy transferred to PS I in the spillover process is then quenched highly efficiently in PS I due to the formation of a long-lived P700(+) state in the dried state in the light. As a consequence, both PS II and PS I are protected very efficiently against photodestruction. This dual quenching mechanism is supported by the low temperature kinetics data.
Collapse
Affiliation(s)
- Chavdar Slavov
- Max Planck Institute for Chemical Energy Conversion , D-45470 Mülheim a.d. Ruhr, Germany
| | | | | |
Collapse
|
180
|
Ballottari M, Mozzo M, Girardon J, Hienerwadel R, Bassi R. Chlorophyll triplet quenching and photoprotection in the higher plant monomeric antenna protein Lhcb5. J Phys Chem B 2013; 117:11337-48. [PMID: 23786371 DOI: 10.1021/jp402977y] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In oxygenic photosynthetic organisms, chlorophyll triplets are harmful excited states readily reacting with molecular oxygen to yield the reactive oxygen species (ROS) singlet oxygen. Carotenoids have a photoprotective role in photosynthetic membranes by preventing photoxidative damage through quenching of chlorophyll singlets and triplets. In this work we used mutation analysis to investigate the architecture of chlorophyll triplet quenching sites within Lhcb5, a monomeric antenna protein of Photosystem II. The carotenoid and chlorophyll triplet formation as well as the production of ROS molecules were studied in a family of recombinant Lhcb5 proteins either with WT sequence, mutated into individual chlorophyll binding residues or refolded in vitro to bind different xanthophyll complements. We observed a site-specific effect in the efficiency of chlorophyll-carotenoid triplet-triplet energy transfer. Thus chlorophyll (Chl) 602 and 603 appear to be particularly important for triplet-triplet energy transfer to the xanthophyll bound into site L2. Surprisingly, mutation on Chl 612, the chlorophyll with the lower energy associated and in close contact with lutein in site L1, had no effect on quenching chlorophyll triplet excited states. Finally, we present evidence for an indirect role of neoxanthin in chlorophyll triplet quenching and show that quenching of both singlet and triplet states is necessary for minimizing singlet oxygen formation.
Collapse
Affiliation(s)
- Matteo Ballottari
- Dipartimento di Biotecnologie, Università di Verona , Ca' Vignal 1, strada le Grazie 15, I-37134 Verona, Italy
| | | | | | | | | |
Collapse
|
181
|
Demmig-Adams B, Adams RB. Eye nutrition in context: mechanisms, implementation, and future directions. Nutrients 2013; 5:2483-501. [PMID: 23857222 PMCID: PMC3738983 DOI: 10.3390/nu5072483] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 06/04/2013] [Accepted: 06/21/2013] [Indexed: 12/12/2022] Open
Abstract
Carotenoid-based visual cues and roles of carotenoids in human vision are reviewed, with an emphasis on protection by zeaxanthin and lutein against vision loss, and dietary sources of zeaxanthin and lutein are summarized. In addition, attention is given to synergistic interactions of zeaxanthin and lutein with other dietary factors affecting human vision (such as antioxidant vitamins, phenolics, and poly-unsaturated fatty acids) and the emerging mechanisms of these interactions. Emphasis is given to lipid oxidation products serving as messengers with functions in gene regulation. Lastly, the photo-physics of light collection and photoprotection in photosynthesis and vision are compared and their common principles identified as possible targets of future research.
Collapse
Affiliation(s)
- Barbara Demmig-Adams
- Department of Ecology & Evolutionary Biology, University of Colorado, Boulder, CO 80309-0334, USA.
| | | |
Collapse
|
182
|
Fernández-Marín B, Kranner I, San Sebastián M, Artetxe U, Laza JM, Vilas JL, Pritchard HW, Nadajaran J, Míguez F, Becerril JM, García-Plazaola JI. Evidence for the absence of enzymatic reactions in the glassy state. A case study of xanthophyll cycle pigments in the desiccation-tolerant moss Syntrichia ruralis. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:3033-43. [PMID: 23761488 PMCID: PMC3697941 DOI: 10.1093/jxb/ert145] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Desiccation-tolerant plants are able to withstand dehydration and resume normal metabolic functions upon rehydration. These plants can be dehydrated until their cytoplasm enters a 'glassy state' in which molecular mobility is severely reduced. In desiccation-tolerant seeds, longevity can be enhanced by drying and lowering storage temperature. In these conditions, they still deteriorate slowly, but it is not known if deteriorative processes include enzyme activity. The storage stability of photosynthetic organisms is less studied, and no reports are available on the glassy state in photosynthetic tissues. Here, the desiccation-tolerant moss Syntrichia ruralis was dehydrated at either 75% or <5% relative humidity, resulting in slow (SD) or rapid desiccation (RD), respectively, and different residual water content of the desiccated tissues. The molecular mobility within dry mosses was assessed through dynamic mechanical thermal analysis, showing that at room temperature only rapidly desiccated samples entered the glassy state, whereas slowly desiccated samples were in a 'rubbery' state. Violaxanthin cycle activity, accumulation of plastoglobules, and reorganization of thylakoids were observed upon SD, but not upon RD. Violaxanthin cycle activity critically depends on the activity of violaxanthin de-epoxidase (VDE). Hence, it is proposed that enzymatic activity occurred in the rubbery state (after SD), and that in the glassy state (after RD) no VDE activity was possible. Furthermore, evidence is provided that zeaxanthin has some role in recovery apparently independent of its role in non-photochemical quenching of chlorophyll fluorescence.
Collapse
Affiliation(s)
- Beatriz Fernández-Marín
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Aptdo. 644, 48080 Bilbao, Spain.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
183
|
Czyczyło-Mysza I, Tyrka M, Marcińska I, Skrzypek E, Karbarz M, Dziurka M, Hura T, Dziurka K, Quarrie SA. Quantitative trait loci for leaf chlorophyll fluorescence parameters, chlorophyll and carotenoid contents in relation to biomass and yield in bread wheat and their chromosome deletion bin assignments. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2013; 32:189-210. [PMID: 23794940 PMCID: PMC3684715 DOI: 10.1007/s11032-013-9862-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 03/16/2013] [Indexed: 05/04/2023]
Abstract
Relatively little is known of the genetic control of chlorophyll fluorescence (CF) and pigment traits important in determining efficiency of photosynthesis in wheat and its association with biomass productivity. A doubled haploid population of 94 lines from the wheat cross Chinese Spring × SQ1 was trialled under optimum glasshouse conditions for 4 years to identify quantitative trait loci (QTL) for CF traits including, for the first time in wheat, JIP-test parameters per excited cross section (CSm): ABS/CSm, DIo/CSm, TRo/CSm, RC/CSm and ETo/CSm, key parameters determining efficiency of the photosynthetic apparatus, as well as chlorophyll and carotenoid contents to establish associations with biomass and grain yield. The existing genetic map was extended to 920 loci by adding Diversity Arrays Technology markers. Markers and selected genes for photosynthetic light reactions, pigment metabolism and biomass accumulation were located to chromosome deletion bins. Across all CF traits and years, 116 QTL for CF were located on all chromosomes except 7B, and 39 QTL were identified for pigments on the majority of chromosomes, excluding 1A, 2A, 4A, 3B, 5B, 1D, 2D, 5D, 6D and 7D. Thirty QTL for plant productivity traits were mapped on chromosomes 3A, 5A, 6A, 7A, 1B, 2B, 4B, 6B, 7B, 3D and 4D. A region on chromosome 6B was identified where 14 QTL for CF parameters coincided with QTL for chlorophyll content and grain weight per ear. Thirty-five QTL regions were coincident with candidate genes. The environment was shown to dominate in determining expression of genes for those traits.
Collapse
Affiliation(s)
- I. Czyczyło-Mysza
- The F. Górski Institute of Plant Physiology, Polish Academy of Sciences, Kraków, Poland
| | - M. Tyrka
- Department of Biochemistry and Biotechnology, Rzeszow University of Technology, Rzeszów, Poland
| | - I. Marcińska
- The F. Górski Institute of Plant Physiology, Polish Academy of Sciences, Kraków, Poland
| | - E. Skrzypek
- The F. Górski Institute of Plant Physiology, Polish Academy of Sciences, Kraków, Poland
| | - M. Karbarz
- Institute of Applied Biotechnology and Basic Sciences, University of Rzeszow, Rzeszów, Poland
| | - M. Dziurka
- The F. Górski Institute of Plant Physiology, Polish Academy of Sciences, Kraków, Poland
| | - T. Hura
- The F. Górski Institute of Plant Physiology, Polish Academy of Sciences, Kraków, Poland
| | - K. Dziurka
- The F. Górski Institute of Plant Physiology, Polish Academy of Sciences, Kraków, Poland
| | - S. A. Quarrie
- Faculty of Biology, Belgrade University, Belgrade, Serbia
- Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
184
|
Fernàndez-Martínez J, Zacchini M, Elena G, Fernández-Marín B, Fleck I. Effect of environmental stress factors on ecophysiological traits and susceptibility to pathogens of five Populus clones throughout the growing season. TREE PHYSIOLOGY 2013; 33:618-627. [PMID: 23824242 DOI: 10.1093/treephys/tpt039] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The variability of ecophysiological traits associated with productivity (e.g., water relations, leaf structure, photosynthesis and nitrogen (N) content) and susceptibility to fungal and insect infection were investigated in five poplar clones (Populus deltoides Batr.-Lux clone; Populus nigra L.-58-861 clone and Populus × canadensis Mönch.-Luisa Avanzo, I-214 and Adige clones) during their growing season. The objective of the study was to determine their physiological responses under summer constraints (characteristic of the Mediterranean climate) and to propose clone candidates for environmental restoration activities such as phytoremediation. Relative water content, the radiometric water index and (13)C isotope discrimination (Δ(13)C) results reflected improved water relations in Adige and Lux during summer drought. Leaf structural parameters such as leaf area, leaf mass per area, density (D) and thickness (T) indicated poorer structural adaptations to summer drought in clone 58-861. Nitrogen content and Δ(13)C results pointed to a stomatal component as the main limitant of photosynthesis in all clones. Adige and Lux showed enhanced photoprotection as indicated by the size and the de-epoxidation index of the xanthophyll-cycle pool, and also improved antioxidant defence displayed by higher ascorbate, reduced glutathione, total phenolics and α-tocopherol levels. Photoprotective and antioxidative responses allowed all clones to maintain a high maximum quantum yield of PSII (Fv/Fm) with the exception of Luisa Avanzo and 58-861 which experienced slight photoinhibition in late spring. The study of susceptibility to rust (Melampsora sp.) and lace bug (Monosteira unicostata Muls. and Rey) infections showed Adige and Lux to be the most tolerant. Overall, these two clones presented high adaptability to summer conditions and improved resistance to abiotic and biotic stress, thereby making them highly commendable clones for use in environmental remediation programmes.
Collapse
Affiliation(s)
- Jordi Fernàndez-Martínez
- Facultat de Biologia, Unitat de Fisiologia Vegetal, Departament de Biologia Vegetal, Universitat de Barcelona, Diagonal 643, E-08028 Barcelona, Spain
| | | | | | | | | |
Collapse
|
185
|
Tóth SZ, Schansker G, Garab G. The physiological roles and metabolism of ascorbate in chloroplasts. PHYSIOLOGIA PLANTARUM 2013; 148:161-75. [PMID: 23163968 DOI: 10.1111/ppl.12006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 10/30/2012] [Accepted: 10/31/2012] [Indexed: 05/03/2023]
Abstract
Ascorbate is a multifunctional metabolite in plants. It is essential for growth control, involving cell division and cell wall synthesis and also involved in redox signaling, in the modulation of gene expression and regulation of enzymatic activities. Ascorbate also fulfills crucial roles in scavenging reactive oxygen species, both enzymatically and nonenzymatically, a well-established phenomenon in the chloroplasts stroma. We give an overview on these important physiological functions and would like to give emphasis to less well-known roles of ascorbate, in the thylakoid lumen, where it also plays multiple roles. It is essential for photoprotection as a cofactor for violaxanthin de-epoxidase, a key enzyme in the formation of nonphotochemical quenching. Lumenal ascorbate has recently also been shown to act as an alternative electron donor of photosystem II once the oxygen-evolving complex is inactivated and to protect the photosynthetic machinery by slowing down donor-side induced photoinactivation; it is yet to be established if ascorbate has a similar role in the case of other stress effects, such as high light and UV-B stress. In bundle sheath cells, deficient in oxygen evolution, ascorbate provides electrons to photosystem II, thereby poising cyclic electron transport around photosystem I. It has also been shown that, by supporting linear electron transport through photosystem II in sulfur-deprived Chlamydomonas reinhardtii cells, in which oxygen evolution is largely inhibited, externally added ascorbate enhances hydrogen production. For fulfilling its multiple roles, Asc has to be transported into the thylakoid lumen and efficiently regenerated; however, very little is known yet about these processes.
Collapse
Affiliation(s)
- Szilvia Z Tóth
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, Szeged, P.O. Box 521, H-6701, Hungary.
| | | | | |
Collapse
|
186
|
Li X, Zhao W, Sun X, Huang H, Kong L, Niu D, Sui X, Zhang Z. Molecular cloning and characterization of violaxanthin de-epoxidase (CsVDE) in cucumber. PLoS One 2013; 8:e64383. [PMID: 23717606 PMCID: PMC3661449 DOI: 10.1371/journal.pone.0064383] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 04/11/2013] [Indexed: 11/18/2022] Open
Abstract
Violaxanthin de-epoxidase (VDE) plays an important role in protecting the photosynthetic apparatus from photo-damage by dissipating excessively absorbed light energy as heat, via the conversion of violaxanthin (V) to intermediate product antheraxanthin (A) and final product zeaxanthin (Z) under high light stress. We have cloned a violaxanthin de-epoxidase gene (CsVDE) from cucumber. The amino acid sequence of CsVDE has high homology with VDEs in other plants. RT-PCR analysis and histochemical staining show that CsVDE is expressed in all green tissues in cucumber and Arabidopsis. Using GFP fusion protein and immunogold labeling methods, we show that CsVDE is mainly localized in chloroplasts in cucumber. Under high light stress, relative expression of CsVDE and the de-epoxidation ratio (A+Z)/(V+A+Z) is increased rapidly, and abundance of the gold particles was also increased. Furthermore, CsVDE is quickly induced by cold and drought stress, reaching maximum levels at the 2(nd) hour and the 9(th) day, respectively. The ratio of (A+Z)/(V+A+Z) and non-photochemical quenching (NPQ) is reduced in transgenic Arabidopsis down-regulated by the antisense fragment of CsVDE, compared to wild type (WT) Arabidopsis under high light stress. This indicates decreased functionality of the xanthophyll cycle and increased sensitivity to photoinhibition of photosystem II (PSII) in transgenic Arabidopsis under high light stress.
Collapse
Affiliation(s)
- Xin Li
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, China
| | - Wenchao Zhao
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, China
| | - Xiyan Sun
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, China
| | - Hongyu Huang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, China
| | - Lingcui Kong
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, China
| | - Dandan Niu
- Ecological Laboratory, Ecotech Ecological Technology Ltd, Beijing, China
| | - Xiaolei Sui
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, China
| | - Zhenxian Zhang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, China
- * E-mail:
| |
Collapse
|
187
|
Bidussi M, Gauslaa Y, Solhaug KA. Prolonging the hydration and active metabolism from light periods into nights substantially enhances lichen growth. PLANTA 2013; 237:1359-66. [PMID: 23389675 DOI: 10.1007/s00425-013-1851-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 01/18/2013] [Indexed: 05/15/2023]
Abstract
This study investigates how hydration during light and dark periods influences growth in two epiphytic old forest lichens, the green algal Lobaria pulmonaria and the cyanobacterial L. scrobiculata. The lichens were cultivated in growth chambers for 14 days (200 μmol m(-1) s(-2); 12 h photoperiod) at four temperature regimes (25/20 °C, 21/16 °C, 13/8 °C, and 6/1 °C; day/night temperatures) and two hydration regimes (12 h day-time hydration; 12 h day-time + 12 h night-time hydration). Growth was highly dynamic, showing that short-term growth experiments in growth cabinets have a high, but largely unexplored potential in functional lichen studies. The highest measured growth rates were not far from the maximal dry matter gain estimated from published net photosynthetic CO2 uptake data. For the entire data set, photobiont type, temperature, hydration regime and specific thallus mass accounted for 46.6 % of the variation in relative growth rate (RGR). Both species showed substantially higher relative growth rates based on both biomass (RGR) and thallus area (RTAGR) when they were hydrated day and night compared to hydration in light only. Chronic photoinhibition was substantial in thalli hydrated only during the day time and kept at the highest and lowest temperature regimes, resulting in exponential increases in RGR with increasing maximal PSII efficiency (F v/F m) in both species. However, the depression in F v/F m was stronger for the cyanolichen than for the cephalolichen at extreme temperatures. The growth-stimulating effect of night-time hydration suggests that nocturnal metabolic activity improves recovery of photoinhibition and/or enhances the conversion rate of photosynthates into thallus extension.
Collapse
Affiliation(s)
- Massimo Bidussi
- Department of Ecology and Natural Resource Management, Norwegian University of Life Sciences, PO Box 5003, 1432, Ås, Norway.
| | | | | |
Collapse
|
188
|
Marok MA, Tarrago L, Ksas B, Henri P, Abrous-Belbachir O, Havaux M, Rey P. A drought-sensitive barley variety displays oxidative stress and strongly increased contents in low-molecular weight antioxidant compounds during water deficit compared to a tolerant variety. JOURNAL OF PLANT PHYSIOLOGY 2013; 170:633-45. [PMID: 23541087 DOI: 10.1016/j.jplph.2012.12.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 11/13/2012] [Accepted: 12/18/2012] [Indexed: 05/21/2023]
Abstract
Barley displays a great genetic diversity, constituting a valuable source to delineate the responses of contrasted genotypes to environmental constraints. Here, we investigated the level of oxidative stress and the participation of antioxidant systems in two barley genotypes: Express, a variety known to be sensitive to drought, and Saïda, an Algerian landrace selected for its tolerance to water deficit. Soil-grown 15-day-old plants were subjected to water deficit for 8 days and then rewatered. We observed that upon water stress Express exhibits compared to Saïda accelerated wilting and a higher level of oxidative stress evaluated by HPLC measurements of lipid peroxidation and by imaging techniques. In parallel, Express plants also display lower levels of catalase and superoxide dismutase activity. No great difference was observed regarding peroxiredoxins and methionine sulfoxide reductases, enzymes detoxifying peroxides and repairing oxidized proteins, respectively. In contrast, upon water stress and recovery, much higher contents and oxidation ratios of glutathione and ascorbate were measured in Express compared to Saïda. Express also shows during water deficit greater increases in the pools of lipophilic antioxidants like xantophyll carotenoids and α-tocopherol. Altogether, these data show that the differential behavior of the two genotypes involves distinct responses regarding antioxidant mechanisms. Indeed, the drought sensitivity of Express compared with Saïda is associated with oxidative damage and a lower enzymatic ROS-scavenging capacity, but in parallel with a much stronger enhancement of most mechanisms involving low-molecular weight antioxidant compounds.
Collapse
Affiliation(s)
- Mohamed Amine Marok
- CEA, DSV, IBEB, Lab Ecophysiol Molecul Plantes, Saint-Paul-lez-Durance, F-13108, France
| | | | | | | | | | | | | |
Collapse
|
189
|
Horton P. Optimization of light harvesting and photoprotection: molecular mechanisms and physiological consequences. Philos Trans R Soc Lond B Biol Sci 2013; 367:3455-65. [PMID: 23148272 DOI: 10.1098/rstb.2012.0069] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The distinctive lateral organization of the protein complexes in the thylakoid membrane investigated by Jan Anderson and co-workers is dependent on the balance of various attractive and repulsive forces. Modulation of these forces allows critical physiological regulation of photosynthesis that provides efficient light-harvesting in limiting light but dissipation of excess potentially damaging radiation in saturating light. The light-harvesting complexes (LHCII) are central to this regulation, which is achieved by phosphorylation of stromal residues, protonation on the lumen surface and de-epoxidation of bound violaxanthin. The functional flexibility of LHCII derives from a remarkable pigment composition and configuration that not only allow efficient absorption of light and efficient energy transfer either to photosystem II or photosystem I core complexes, but through subtle configurational changes can also exhibit highly efficient dissipative reactions involving chlorophyll-xanthophyll and/or chlorophyll-chlorophyll interactions. These changes in function are determined at a macroscopic level by alterations in protein-protein interactions in the thylakoid membrane. The capacity and dynamics of this regulation are tuned to different physiological scenarios by the exact protein and pigment content of the light-harvesting system. Here, the molecular mechanisms involved will be reviewed, and the optimization of the light-harvesting system in different environmental conditions described.
Collapse
Affiliation(s)
- Peter Horton
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield, UK.
| |
Collapse
|
190
|
Peguero-Pina JJ, Gil-Pelegrín E, Morales F. Three pools of zeaxanthin in Quercus coccifera leaves during light transitions with different roles in rapidly reversible photoprotective energy dissipation and photoprotection. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:1649-61. [PMID: 23390289 PMCID: PMC3617831 DOI: 10.1093/jxb/ert024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Under excess light, the efficient PSII light-harvesting antenna is switched into a photoprotected state in which potentially harmful absorbed energy is thermally dissipated. Changes occur rapidly and reversibly, enhanced by de-epoxidation of violaxanthin (V) to zeaxanthin (Z). This process is usually measured as non-photochemical quenching (NPQ) of chlorophyll (Chl) fluorescence. Using instrumentation for instantaneous leaf freezing, NPQ, spectral reflectance, and interconversions within the xanthophyll cycle with time resolution of seconds were recorded from Quercus coccifera leaves during low light (LL) to high light (HL) transitions, followed by relaxation at LL. During the first 30 s of both the LL to HL and HL to LL transitions, no activity of the xanthophyll cycle was detected, whereas 70-75% of the NPQ was formed and relaxed, respectively, by that time, the latter being traits of a rapidly reversible photoprotective energy dissipation. Three different Z pools were identified, which play different roles in energy dissipation and photoprotection. In conclusion, ΔpH was crucial to NPQ formation and relaxation in Q. coccifera during light transitions. Only a minor fraction of Z was associated to quenching, whereas the largest Z pool was not related to thermal dissipation. The latter is proposed to participate in photoprotection acting as antioxidant.
Collapse
Affiliation(s)
- José Javier Peguero-Pina
- Unidad de Recursos Forestales, Centro de Investigación y Tecnología Agroalimentaria, Gobierno de Aragón, Apdo. 727, 50080 Zaragoza, Spain
- Departament de Biologia, Universitat de les Illes Balears, Carretera de Valldemossa, km 7.5, 07071, Palma de Mallorca, Balears, Spain
| | - Eustaquio Gil-Pelegrín
- Unidad de Recursos Forestales, Centro de Investigación y Tecnología Agroalimentaria, Gobierno de Aragón, Apdo. 727, 50080 Zaragoza, Spain
| | - Fermín Morales
- Department of Plant Nutrition, Experimental Station of Aula Dei, CSIC, Apdo. 13034, 50080 Zaragoza, Spain
| |
Collapse
|
191
|
Hennige SJ, Coyne KJ, MacIntyre H, Liefer J, Warner ME. The photobiology of Heterosigma akashiwo. Photoacclimation, diurnal periodicity, and its ability to rapidly exploit exposure to high light. JOURNAL OF PHYCOLOGY 2013; 49:349-360. [PMID: 27008521 DOI: 10.1111/jpy.12043] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2012] [Accepted: 12/14/2012] [Indexed: 06/05/2023]
Abstract
Periodic and seasonal exposure to high light is a common occurrence for many near-shore and estuarine phytoplankton. Rapid acclimatization to shifts in light may provide an axis by which some species of phytoplankton can outcompete other microalgae. Patterns of photoacclimation and photosynthetic capacity in the raphidophyte Heterosigma akashiwo (Hada) Hada ex Hara et Chihara isolated from the mid-Atlantic of the United States were followed in continuous cultures at low- and high-light intensities, followed by reciprocal shifts to the opposite light level. The maximum quantum yield (Fv /Fm ) as well as the photosynthetic cross-section (σPSII ) of photosystem II was higher in high-light cultures compared to low-light cultures. Significant diurnal variability in photochemistry and photoprotection was noted at both light levels, and high-light-acclimated cultures displayed greater variability in photoprotective pathways. When shifted from low to high light, there was only a slight and temporary decline in maximum quantum yield, while cell specific growth more than doubled within 24 h. Rapid acclimation to high light was facilitated by short-term photoprotection (nonphotochemical quenching), reduced PSII reaction center connectivity, and electron transport. Short-term increases in de-epoxidated xanthophyll pigments contributed to nonphotochemical protection, but lagged behind initial increases in nonphotochemical quenching and were not the primary pathway of photoprotection in this alga. By 48 h, photochemistry of cultures shifted from low to high light resembled long-term high-light-acclimated cultures. This isolate of H. akashiwo appears well poised to exploit rapid shifts in light by using unique cellular adjustments in light harvesting and photochemistry.
Collapse
Affiliation(s)
- Sebastian J Hennige
- Centre for Marine Biodiversity and Biotechnology, Heriot-Watt University, Edinburgh, EH14 4AS, UK
- College of Earth, Ocean and Environment, University of Delaware, 700 Pilottown Rd., Lewes, Deleware, 19958, USA
| | - Kathryn J Coyne
- College of Earth, Ocean and Environment, University of Delaware, 700 Pilottown Rd., Lewes, Deleware, 19958, USA
| | - Hugh MacIntyre
- Department of Oceanography, Dalhousie University, PO Box 15000, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Justin Liefer
- Dauphin Island Sea Lab, 102 B Bienville Blvd., Dauphin Island, Alabama, 36528, USA
| | - Mark E Warner
- College of Earth, Ocean and Environment, University of Delaware, 700 Pilottown Rd., Lewes, Deleware, 19958, USA
| |
Collapse
|
192
|
Béraud E, Gevaert F, Rottier C, Ferrier-Pagès C. The response of the scleractinian coral Turbinaria reniformis to thermal stress depends on the nitrogen status of the coral holobiont. ACTA ACUST UNITED AC 2013; 216:2665-74. [PMID: 23531826 DOI: 10.1242/jeb.085183] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The physiological response of the scleractinian coral Turbinaria reniformis to ammonium enrichment (3 μmol l(-1)) was examined at 26°C as well as during a 7 day increase in temperature to 31°C (thermal stress). At 26°C, ammonium supplementation had little effect on the coral physiology. It induced a decrease in symbiont density, compensated by an increase in chlorophyll content per symbiont cell. Organic carbon release was reduced, likely because of a better utilization of the photosynthesized carbon (i.e. incorporation into proteins, kept in the coral tissue). The δ(15)N signatures of the ammonium-enriched symbionts and host tissue were also significantly decreased, by 4 and 2‰, respectively, compared with the non-enriched conditions, suggesting a significant uptake of inorganic nitrogen by the holobiont. Under thermal stress, coral colonies that were not nitrogen enriched experienced a drastic decrease in photosynthetic and photoprotective pigments (chlorophyll a, β-carotene, diadinoxanthin, diatoxanthin and peridinin), followed by a decrease in the rates of photosynthesis and calcification. Organic carbon release was not affected by this thermal stress. Conversely, nitrogen-enriched corals showed an increase in their pigment concentrations, and maintained rates of photosynthesis and calcification at ca. 60% and 100% of those measured under control conditions, respectively. However, these corals lost more organic carbon into the environment. Overall, these results indicate that inorganic nitrogen availability can be important to determining the resilience of some scleractinian coral species to thermal stress, and can have a function equivalent to that of heterotrophic feeding concerning the maintenance of coral metabolism under stress conditions.
Collapse
Affiliation(s)
- Eric Béraud
- Centre Scientifique de Monaco, Avenue Saint Martin, MC-98000 Monaco.
| | | | | | | |
Collapse
|
193
|
Magyar A, Bowman MK, Molnár P, Kispert L. Neutral carotenoid radicals in photoprotection of wild-type Arabidopsis thaliana. J Phys Chem B 2013; 117:2239-46. [PMID: 23343478 DOI: 10.1021/jp306387e] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The deprotonation of naturally occurring zeaxanthin (Zea) radical cations (Zea(•+)) to form neutral radicals (#Zea(•)) and their involvement in the qE portion of nonphotochemical quenching (NPQ) was examined. The radical cations are weak acids, and readily deprotonate to a long-lived neutral radical (#Zea(•)) that could serve as long-lived quenching sites. When #Zea(•) is eventually neutralized and Zea is reformed in the presence of D2O, the Zea has an opportunity to undergo H/D exchange. This paper examines evidence for H/D exchange specific to qE activity in Arabidopsis thaliana . We demonstrate that Zea(•+) formed chemically via oxidation of Zea by Fe(III) in the presence of D2O undergoes H/D exchange with a significant intensity increase of the M+1 (d1Zea) and M+2 (d2Zea) mass peaks in the mass spectrum. Then leaves from wild-type A. thaliana were infiltrated with either D2O or H2O and exposed to light. The carotenoids were extracted and analyzed via electrospray ionization liquid chromatography/mass spectrometry (LC/MS) to examine the mass peak distribution of Zea. Only leaves exposed to light intensity that triggers qE in A. thaliana (>300 μE m(-2)s(-1)) showed H/D exchange. This result suggests that #Zea(•) can form by the deprotonation of the weak acid Zea(•+) during qE, and its possible impact on qE must be considered.
Collapse
Affiliation(s)
- Adam Magyar
- Department of Chemistry, The University of Alabama, Box 870336, Tuscaloosa, Alabama 35487-0336, United States
| | | | | | | |
Collapse
|
194
|
Brunetti C, Di Ferdinando M, Fini A, Pollastri S, Tattini M. Flavonoids as antioxidants and developmental regulators: relative significance in plants and humans. Int J Mol Sci 2013; 14:3540-55. [PMID: 23434657 PMCID: PMC3588057 DOI: 10.3390/ijms14023540] [Citation(s) in RCA: 233] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 01/30/2013] [Accepted: 01/31/2013] [Indexed: 12/26/2022] Open
Abstract
Phenylpropanoids, particularly flavonoids have been recently suggested as playing primary antioxidant functions in the responses of plants to a wide range of abiotic stresses. Furthermore, flavonoids are effective endogenous regulators of auxin movement, thus behaving as developmental regulators. Flavonoids are capable of controlling the development of individual organs and the whole-plant; and, hence, to contribute to stress-induced morphogenic responses of plants. The significance of flavonoids as scavengers of reactive oxygen species (ROS) in humans has been recently questioned, based on the observation that the flavonoid concentration in plasma and most tissues is too low to effectively reduce ROS. Instead, flavonoids may play key roles as signaling molecules in mammals, through their ability to interact with a wide range of protein kinases, including mitogen-activated protein kinases (MAPK), that supersede key steps of cell growth and differentiation. Here we discuss about the relative significance of flavonoids as reducing agents and signaling molecules in plants and humans. We show that structural features conferring ROS-scavenger ability to flavonoids are also required to effectively control developmental processes in eukaryotic cells.
Collapse
Affiliation(s)
- Cecilia Brunetti
- DiSPAA, Department of Agri-Food and Environmental Science, University of Florence, Viale delle Idee 30, 50019 Sesto Fiorentino (FI), Italy; E-Mails: (C.B.); (M.D.F.); (A.F.)
| | - Martina Di Ferdinando
- DiSPAA, Department of Agri-Food and Environmental Science, University of Florence, Viale delle Idee 30, 50019 Sesto Fiorentino (FI), Italy; E-Mails: (C.B.); (M.D.F.); (A.F.)
| | - Alessio Fini
- DiSPAA, Department of Agri-Food and Environmental Science, University of Florence, Viale delle Idee 30, 50019 Sesto Fiorentino (FI), Italy; E-Mails: (C.B.); (M.D.F.); (A.F.)
| | - Susanna Pollastri
- IPP, Institute for Plant Protection, National Research Council, Via Madonna del Piano 10, 50019 Sesto Fiorentino (FI), Italy; E-Mail:
| | - Massimiliano Tattini
- IPP, Institute for Plant Protection, National Research Council, Via Madonna del Piano 10, 50019 Sesto Fiorentino (FI), Italy; E-Mail:
| |
Collapse
|
195
|
CALIANDRO ROSANNA, NAGEL KERSTINA, KASTENHOLZ BERND, BASSI ROBERTO, LI ZHIRONG, NIYOGI KRISHNAK, POGSON BARRYJ, SCHURR ULRICH, MATSUBARA SHIZUE. Effects of altered α- and β-branch carotenoid biosynthesis on photoprotection and whole-plant acclimation of Arabidopsis to photo-oxidative stress. PLANT, CELL & ENVIRONMENT 2013; 36:438-53. [PMID: 22860767 PMCID: PMC3640260 DOI: 10.1111/j.1365-3040.2012.02586.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 07/16/2012] [Indexed: 05/07/2023]
Abstract
Functions of α- and β-branch carotenoids in whole-plant acclimation to photo-oxidative stress were studied in Arabidopsis thaliana wild-type (wt) and carotenoid mutants, lutein deficient (lut2, lut5), non-photochemical quenching1 (npq1) and suppressor of zeaxanthin-less1 (szl1) npq1 double mutant. Photo-oxidative stress was applied by exposing plants to sunflecks. The sunflecks caused reduction of chlorophyll content in all plants, but more severely in those having high α- to β-branch carotenoid composition (α/β-ratio) (lut5, szl1npq1). While this did not alter carotenoid composition in wt or lut2, which accumulates only β-branch carotenoids, increased xanthophyll levels were found in the mutants with high α/β-ratios (lut5, szl1npq1) or without xanthophyll-cycle operation (npq1, szl1npq1). The PsbS protein content increased in all sunfleck plants but lut2. These changes were accompanied by no change (npq1, szl1npq1) or enhanced capacity (wt, lut5) of NPQ. Leaf mass per area increased in lut2, but decreased in wt and lut5 that showed increased NPQ. The sunflecks decelerated primary root growth in wt and npq1 having normal α/β-ratios, but suppressed lateral root formation in lut5 and szl1npq1 having high α/β-ratios. The results highlight the importance of proper regulation of the α- and β-branch carotenoid pathways for whole-plant acclimation, not only leaf photoprotection, under photo-oxidative stress.
Collapse
Affiliation(s)
- ROSANNA CALIANDRO
- IBG-2: Pflanzenwissenschaften, Forschungszentrum Jülich52425 Jülich, Germany
| | - KERSTIN A NAGEL
- IBG-2: Pflanzenwissenschaften, Forschungszentrum Jülich52425 Jülich, Germany
| | - BERND KASTENHOLZ
- IBG-2: Pflanzenwissenschaften, Forschungszentrum Jülich52425 Jülich, Germany
| | - ROBERTO BASSI
- IBG-2: Pflanzenwissenschaften, Forschungszentrum Jülich52425 Jülich, Germany
- Dipartimento di Biotecnologie, Università degli Studi di Verona37134 Verona, Italy
| | - ZHIRONG LI
- Department of Plant and Microbial Biology, Howard Hughes Medical InstituteUniversity of California
- Physical Biosciences Division, Lawrence Berkeley National LaboratoryBerkeley, CA 94720-3102, USA
| | - KRISHNA K NIYOGI
- Department of Plant and Microbial Biology, Howard Hughes Medical InstituteUniversity of California
- Physical Biosciences Division, Lawrence Berkeley National LaboratoryBerkeley, CA 94720-3102, USA
| | - BARRY J POGSON
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National UniversityCanberra, ACT 0200, Australia
| | - ULRICH SCHURR
- IBG-2: Pflanzenwissenschaften, Forschungszentrum Jülich52425 Jülich, Germany
| | - SHIZUE MATSUBARA
- IBG-2: Pflanzenwissenschaften, Forschungszentrum Jülich52425 Jülich, Germany
| |
Collapse
|
196
|
Demmig-Adams B, Cohu CM, Amiard V, Zadelhoff G, Veldink GA, Muller O, Adams WW. Emerging trade-offs - impact of photoprotectants (PsbS, xanthophylls, and vitamin E) on oxylipins as regulators of development and defense. THE NEW PHYTOLOGIST 2013; 197:720-9. [PMID: 23418633 DOI: 10.1111/nph.12100] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
This review summarizes evidence for a mechanistic link between plant photoprotection and the synthesis of oxylipin hormones as regulators of development and defense. Knockout mutants of Arabidopsis, deficient in various key components of the chloroplast photoprotection system, consistently produced greater concentrations of the hormone jasmonic acid or its precursor 12- oxo-phytodienoic acid (OPDA), both members of the oxylipin messenger family. Characterized plants include several mutants deficient in PsbS (an intrinsic chlorophyll-binding protein of photosystem II) or pigments (zeaxanthin and/or lutein) required for photoprotective thermal dissipation of excess excitation energy in the chloroplast and a mutant deficient in reactive oxygen detoxification via the antioxidant vitamin E (tocopherol). Evidence is also presented that certain plant defenses against herbivores or pathogens are elevated for these mutants. This evidence furthermore indicates that wild-type Arabidopsis plants possess less than maximal defenses against herbivores or pathogens, and suggest that plant lines with superior defenses against abiotic stress may have lower biotic defenses. The implications of this apparent trade-off between abiotic and biotic plant defenses for plant ecology as well as for plant breeding/engineering are explored, and the need for research further addressing this important issue is highlighted.
Collapse
Affiliation(s)
- Barbara Demmig-Adams
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309-0334, USA.
| | | | | | | | | | | | | |
Collapse
|
197
|
Dall'Osto L, Piques M, Ronzani M, Molesini B, Alboresi A, Cazzaniga S, Bassi R. The Arabidopsis nox mutant lacking carotene hydroxylase activity reveals a critical role for xanthophylls in photosystem I biogenesis. THE PLANT CELL 2013; 25:591-608. [PMID: 23396829 PMCID: PMC3608780 DOI: 10.1105/tpc.112.108621] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Revised: 01/15/2013] [Accepted: 01/18/2013] [Indexed: 05/05/2023]
Abstract
Carotenes, and their oxygenated derivatives xanthophylls, are essential components of the photosynthetic apparatus. They contribute to the assembly of photosynthetic complexes and participate in light absorption and chloroplast photoprotection. Here, we studied the role of xanthophylls, as distinct from that of carotenes, by characterizing a no xanthophylls (nox) mutant of Arabidopsis thaliana, which was obtained by combining mutations targeting the four carotenoid hydroxylase genes. nox plants retained α- and β-carotenes but were devoid in xanthophylls. The phenotype included depletion of light-harvesting complex (LHC) subunits and impairment of nonphotochemical quenching, two effects consistent with the location of xanthophylls in photosystem II antenna, but also a decreased efficiency of photosynthetic electron transfer, photosensitivity, and lethality in soil. Biochemical analysis revealed that the nox mutant was specifically depleted in photosystem I function due to a severe deficiency in PsaA/B subunits. While the stationary level of psaA/B transcripts showed no major differences between genotypes, the stability of newly synthesized PsaA/B proteins was decreased and translation of psaA/B mRNA was impaired in nox with respect to wild-type plants. We conclude that xanthophylls, besides their role in photoprotection and LHC assembly, are also needed for photosystem I core translation and stability, thus making these compounds indispensable for autotrophic growth.
Collapse
Affiliation(s)
- Luca Dall'Osto
- Dipartimento di Biotecnologie, Università di Verona, 37134 Verona, Italy.
| | | | | | | | | | | | | |
Collapse
|
198
|
Johansson Jänkänpää H, Frenkel M, Zulfugarov I, Reichelt M, Krieger-Liszkay A, Mishra Y, Gershenzon J, Moen J, Lee CH, Jansson S. Non-photochemical quenching capacity in Arabidopsis thaliana affects herbivore behaviour. PLoS One 2013; 8:e53232. [PMID: 23301046 PMCID: PMC3534670 DOI: 10.1371/journal.pone.0053232] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Accepted: 11/29/2012] [Indexed: 01/05/2023] Open
Abstract
Under natural conditions, plants have to cope with numerous stresses, including light-stress and herbivory. This raises intriguing questions regarding possible trade-offs between stress defences and growth. As part of a program designed to address these questions we have compared herbivory defences and damage in wild type Arabidopsis thaliana and two “photoprotection genotypes”, npq4 and oePsbS, which respectively lack and overexpress PsbS (a protein that plays a key role in qE-type non-photochemical quenching). In dual-choice feeding experiments both a specialist (Plutella xylostella) and a generalist (Spodoptera littoralis) insect herbivore preferred plants that expressed PsbS most strongly. In contrast, although both herbivores survived equally well on each of the genotypes, for oviposition female P. xylostella adults preferred plants that expressed PsbS least strongly. However, there were no significant differences between the genotypes in levels of the 10 most prominent glucosinolates; key substances in the Arabidopsis anti-herbivore chemical defence arsenal. After transfer from a growth chamber to the field we detected significant differences in the genotypes’ metabolomic profiles at all tested time points, using GC-MS, but no consistent “metabolic signature” for the lack of PsbS. These findings suggest that the observed differences in herbivore preferences were due to differences in the primary metabolism of the plants rather than their contents of typical “defence compounds”. A potentially significant factor is that superoxide accumulated most rapidly and to the highest levels under high light conditions in npq4 mutants. This could trigger changes in planta that are sensed by herbivores either directly or indirectly, following its dismutation to H2O2.
Collapse
Affiliation(s)
| | - Martin Frenkel
- Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden
| | - Ismayil Zulfugarov
- Department of Molecular Biology, Pusan National University, Busan, Republic of Korea
- Institute of Botany, Azerbaijan National Academy of Sciences, Baku, Azerbaijan
| | - Michael Reichelt
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Anja Krieger-Liszkay
- CEA, Institut de Biologie et Technologies de Saclay, Service de Bioénergétique Biologie Structurale et Mécanisme, Gif-sur-Yvette, France
| | - Yogesh Mishra
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Jonathan Gershenzon
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Jon Moen
- Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden
| | - Choon-Hwan Lee
- Department of Molecular Biology, Pusan National University, Busan, Republic of Korea
| | - Stefan Jansson
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
- * E-mail: Stefan,
| |
Collapse
|
199
|
Tyystjärvi E. Photoinhibition of Photosystem II. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 300:243-303. [PMID: 23273864 DOI: 10.1016/b978-0-12-405210-9.00007-2] [Citation(s) in RCA: 146] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Photoinhibition of Photosystem II (PSII) is the light-induced loss of PSII electron-transfer activity. Although photoinhibition has been studied for a long time, there is no consensus about its mechanism. On one hand, production of singlet oxygen ((1)O(2)) by PSII has promoted models in which this reactive oxygen species (ROS) is considered to act as the agent of photoinhibitory damage. These chemistry-based models have often not taken into account the photophysical features of photoinhibition-like light response and action spectrum. On the other hand, models that reproduce these basic photophysical features of the reaction have not considered the importance of data about ROS. In this chapter, it is shown that the evidence behind the chemistry-based models and the photophysically oriented models can be brought together to build a mechanism that confirms with all types of experimental data. A working hypothesis is proposed, starting with inhibition of the manganese complex by light. Inability of the manganese complex to reduce the primary donor promotes recombination between the oxidized primary donor and Q(A), the first stable quinone acceptor of PSII. (1)O(2) production due to this recombination may inhibit protein synthesis or spread the photoinhibitory damage to another PSII center. The production of (1)O(2) is transient because loss of activity of the oxygen-evolving complex induces an increase in the redox potential of Q(A), which lowers (1)O(2) production.
Collapse
Affiliation(s)
- Esa Tyystjärvi
- Molecular Plant Biology, Department of Biochemistry and Food Chemistry, University of Turku, Turku, Finland.
| |
Collapse
|
200
|
Nie XP, Liu BY, Yu HJ, Liu WQ, Yang YF. Toxic effects of erythromycin, ciprofloxacin and sulfamethoxazole exposure to the antioxidant system in Pseudokirchneriella subcapitata. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2013; 172:23-32. [PMID: 22982550 DOI: 10.1016/j.envpol.2012.08.013] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 07/04/2012] [Accepted: 08/18/2012] [Indexed: 05/17/2023]
Abstract
We tested antioxidant responses of the green microalga Pseudokirchneriella subcapitata exposed to different concentrations of the three antibiotics erythromycin (ETM), ciprofloxacin (CPF) and sulfamethoxazole (SMZ). Measurements included the level of lipid peroxidation, the total antioxidative capacity and three major antioxidant mechanisms: the ascorbate-glutathione cycle, the xanthophyll cycle and the enzyme activities of catalase (CAT), superoxide dismutase (SOD), guaiacol glutathione peroxidase (GPX) and glutathione-S-transferase (GST). Three antibiotics significantly affect the antioxidant system of P. subcapitata, but in different ways the alga was more tolerant to CPF and SMZ exposures than to ETM exposure. ETM caused reductions in AsA and GSH biosynthesis, ascorbate-glutathione cycle, xanthophylls cycle and antioxidant enzyme activities. The toxicity of CPF seems to be mainly overcome via induction of the ascorbate-glutathione cycle and CAT, SOD and GPX activities, while the toxicity of SMZ on the photosynthetic apparatus is predominantly reduced by the xanthophyll cycle and GST activity.
Collapse
Affiliation(s)
- Xiang-Ping Nie
- Department of Ecology, Jinan University, Guangzhou 510632, China
| | | | | | | | | |
Collapse
|