151
|
Shichiri M, Fukai N, Kono Y, Tanaka Y. Rifampicin as an Oral Angiogenesis Inhibitor Targeting Hepatic Cancers. Cancer Res 2009; 69:4760-8. [DOI: 10.1158/0008-5472.can-08-3417] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
152
|
Lin X, Kim YA, Lee BL, Söderhäll K, Söderhäll I. Identification and properties of a receptor for the invertebrate cytokine astakine, involved in hematopoiesis. Exp Cell Res 2009; 315:1171-80. [PMID: 19353765 DOI: 10.1016/j.yexcr.2009.01.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
We have recently isolated an invertebrate cytokine from a freshwater crayfish, which we named astakine 1. Interestingly this protein is expressed exclusively in hemocytes and hematopoietic tissue and is essential for the release of new hemocytes into the open circulatory system of these animals. This astakine has a prokineticin (PK) domain but lacks the N-terminal AVIT amino acids and hence receptor binding may differ from vertebrate PKs. Accordingly, here we report that a receptor for astakine 1 on hematopoietic tissue (Hpt) cells is identical to the beta-subunit of F1ATP synthase. In this study we have used several different methods to clearly demonstrate that ATP-synthase is located on the plasma membrane of a subpopulation of Hpt cells and there may function as a receptor for astakine, whereas mature blood cells (hemocytes) do not have any ATP-synthase on the outside of their plasma membranes. Our results clearly show that ATP synthase beta subunits are present on the cell surface of Hpt cells and highlight the need for more detailed studies on intracellular traffic connections between mitochondria and other membrane compartments.
Collapse
Affiliation(s)
- Xionghui Lin
- Department of Comparative Physiology, Uppsala University, Uppsala, Sweden
| | | | | | | | | |
Collapse
|
153
|
Lindqvist A, Berger K, Erlanson-Albertsson C. Enterostatin up-regulates the expression of the beta-subunit of F(1)F(o)-ATPase in the plasma membrane of INS-1 cells. Nutr Neurosci 2009; 11:55-60. [PMID: 18510804 DOI: 10.1179/147683008x301397] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Exposure to high-fat diet easily promotes overeating while at the same time disrupting insulin secretion and islet function. Enterostatin is a peptide which is secreted from the pancreas in response to high-fat feeding and has been shown to inhibit fat intake as well as insulin secretion in experimental animal models. Until recently, there was no known receptor for enterostatin. In 2002, Berger and co-workers found enterostatin to target the beta-subunit of the F(1)-ATPase in rat brain membranes as well as in a clonal beta-cell line (INS-1). In this study, we found the beta-subunit of F(1)-ATPase to be ectopically expressed in the plasma membrane of INS-1 cells using both immunohistochemistry and Western blotting. Incubation with enterostatin for 60 min resulted in a 3.5-fold increase of the protein expression of the beta-subunit of F(1)-ATPase in the plasma membrane. Furthermore, we found ATP to be able to displace the binding of enterostatin to purified bovine F(1)-ATPase. This reported targeting of enterostatin to the beta-subunit of F(1)-ATPase in insulin cells may provide a link between high-fat intake and islet function.
Collapse
|
154
|
Upregulation of soluble vascular endothelial growth factor receptor type 1 by endogenous prostacyclin inhibitor coupling factor 6 in vascular endothelial cells: a role of acidosis-induced c-Src activation. Hypertens Res 2009; 32:182-7. [PMID: 19262480 DOI: 10.1038/hr.2008.24] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Vascular endothelial growth factor (VEGF) is a well-known promoter of angiogenesis, but its receptor VEGFR-1 and a soluble short form of VEGFR-1 (sFlt-1) play a negative role in the VEGF signal pathway by trapping VEGF. We recently showed that endogenous prostacyclin inhibitor coupling factor 6 (CF6) forces the clockwise rotation of F(1) motor of plasma membrane adenosine triphosphate synthase and induces intracellular acidosis and c-Src activation. We investigated the role of CF6 in regulation of sFlt-1, and its mechanism in human umbilical vein endothelial cells. The ratio of sFlt-1 to glyceraldehyde 3-phosphate dehydrogenase mRNA was increased at 24 h by 1.59+/-0.29-fold by 10(-7) M CF6 (P<0.05), concomitantly with the increases in intercellular adhesion molecule-1 and lectin-like oxidized low-density lipoprotein receptor-1 and no change in VEGF-A. When the dose of CF6 was increased to 10(-6) M, no further increase in sFlt-1 mRNA was observed. The release of sFlt-1 protein was increased by 1.72+/-0.24-fold (P<0.05) at 48 h after exposure to CF6 at 10(-7) M, and it was blocked by pretreatment with anti-CF6 antibody. The immunoreactive bands for sFlt-1 and VEGFR-1 were both increased by CF6 to similar degrees. Pretreatment with PP1, an inhibitor of c-Src, and 10(-5) Mefrapeptin, an inhibitor of F(1) motor, inhibited CF6-induced increases in expression and release of sFlt-1 (P<0.05). In mice overexpressing CF6, the plasma level of sFlt-1 was increased by 1.36+/-0.29-fold compared with that in wild-type mice (P<0.05). These indicate that CF6 might increase the expression and release of sFlt-1 in the vessels through acidosis-induced c-Src activation.
Collapse
|
155
|
Lu ZJ, Song QF, Jiang SS, Song Q, Wang W, Zhang GH, Kan B, Chen LJ, Yang JL, Luo F, Qian ZY, Wei YQ, Gou LT. Identification of ATP synthase beta subunit (ATPB) on the cell surface as a non-small cell lung cancer (NSCLC) associated antigen. BMC Cancer 2009; 9:16. [PMID: 19144153 PMCID: PMC2654462 DOI: 10.1186/1471-2407-9-16] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2008] [Accepted: 01/14/2009] [Indexed: 02/05/2023] Open
Abstract
Background Antibody-based immuneotherapy has achieved some success for cancer. But the main problem is that only a few tumor-associated antigens or therapeutic targets have been known to us so far. It is essential to identify more immunogenic antigens (especially cellular membrane markers) for tumor diagnosis and therapy. Methods The membrane proteins of lung adenocarcinoma cell line A549 were used to immunize the BALB/c mice. A monoclonal antibody 4E7 (McAb4E7) was produced with hybridoma technique. MTT cell proliferation assay was carried out to evaluate the inhibitory effect of McAb4E7 on A549 cells. Flow cytometric assay, immunohistochemistry, western blot and proteomic technologies based on 2-DE and mass spectrometry were employed to detect and identify the corresponding antigen of McAb4E7. Results The monoclonal antibody 4E7 (McAb4E7) specific against A549 cells was produced, which exhibited inhibitory effect on the proliferation of A549 cells. By the proteomic technologies, we identified that ATP synthase beta subunit (ATPB) was the corresponding antigen of McAb4E7. Then, flow cytometric analysis demonstrated the localization of the targeting antigen of McAb4E7 was on the A549 cells surface. Furthermore, immunohistochemstry showed that the antigen of McAb4E7 mainly aberrantly expressed in tumor cellular membrane in non-small cell lung cancer (NSCLC), but not in small cell lung cancer (SCLC). The rate of ectopic expressed ATPB in the cellular membrane in lung adenocarcinoma, squamous carcinoma and their adjacent nontumourous lung tissues was 71.88%, 66.67% and 25.81% respectively. Conclusion In the present study, we identified that the ectopic ATPB in tumor cellular membrane was the non-small cell lung cancer (NSCLC) associated antigen. ATPB may be a potential biomarker and therapeutic target for the immunotherapy of NSCLC.
Collapse
Affiliation(s)
- Ze-jun Lu
- Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, 37 Guoxue Xiang Street, Chengdu 610041, Sichuan, PR China.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
156
|
Proteomic Analysis of Endothelial Cell Autoantigens Recognized by Anti-Dengue Virus Nonstructural Protein 1 Antibodies. Exp Biol Med (Maywood) 2009; 234:63-73. [DOI: 10.3181/0805-rm-147] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
We previously showed the occurrence of autoimmune responses in dengue virus (DV) infection, which has potential implications for the pathogenesis of dengue hemorrhagic syndrome. In the present study, we have used a proteomic analysis to identify several candidate proteins on HMEC-1 endothelial cells recognized by anti-DV nonstructural protein 1 (NS1) antibodies. The target proteins, including ATP synthase β chain, protein disulfide isomerase, vimentin, and heat shock protein 60, co-localize with anti-NS1 binding sites on nonfixed HMEC-1 cells using immunohistochemical double staining and confocal microscopy. The cross-reactivity of anti-target protein antibodies with HMEC-1 cells was inhibited by NS1 protein pre-absorption. Furthermore, a cross-reactive epitope on NS1 amino acid residues 311–330 (P311–330) was predicted using homologous sequence alignment. The reactivity of dengue hemorrhagic patient sera with HMEC-1 cells was blocked by synthetic peptide P311–330 pre-absorption. Taken together, our results identify putative targets on endothelial cells recognized by anti-DV NS1 antibodies, where NS1 P311–330 possesses the shared epitope.
Collapse
|
157
|
Sodha NR, Clements RT, Boodhwani M, Xu SH, Laham RJ, Bianchi C, Sellke FW. Endostatin and angiostatin are increased in diabetic patients with coronary artery disease and associated with impaired coronary collateral formation. Am J Physiol Heart Circ Physiol 2008; 296:H428-34. [PMID: 19074676 DOI: 10.1152/ajpheart.00283.2008] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Coronary artery disease (CAD) is the leading cause of mortality in diabetic patients. Because of the diffuse nature of their disease, diabetic patients may be at risk for incomplete revascularization, highlighting a potential role for proangiogenic therapy in this group. This study investigates molecular mechanisms of angiogenesis in diabetic patients. Myocardial tissue was harvested from patients undergoing coronary artery bypass grafting [nondiabetic (ND) 11, type 2 diabetic (DM) 10]. Expression of angiostatin, endostatin, their precursors (plasminogen and collagen XVIII, respectively), enzymes leading to their production [matrix metalloprotease (MMP)-2 and -9, cathepsin L], and an inhibitor of MMPs (tissue inhibitor of metalloproteinase) was assessed with Western blotting. MMP activity was assessed. Coronary collateralization was graded by Rentrop scoring of angiograms. Plasminogen and collagen XVIII expression were similar between groups. Angiostatin expression trended to increase 1.24-fold (P = 0.07), and endostatin expression increased 2.02-fold in DM patients relative to ND (P = 0.02). MMP-9 expression was no different between groups, whereas MMP-2 expression decreased 1.8-fold in diabetics (P = 0.003). MMP-2 and -9 activity decreased 1.33-fold (P = 0.03) and 1.57-fold (P = 0.04), respectively, in diabetic patients. Cathepsin L expression was 1.38-fold higher in diabetic patients (P = 0.02). Coronary collateralization scores were ND 2.1 +/- 0.37 vs. DM 1.0 +/- 0.4 (P = 0.05). Myocardial endostatin expression correlated strongly with the percentage of hemoglobin A(1c) (r = 0.742, P = 0.0001). Myocardial expression of angiostatin and endostatin demonstrated significant negative linear correlations with coronary collateralization (angiostatin r = -0.531, P = 0.035, endostatin r = -0.794, P = 0.0002). Diabetic patients with CAD exhibit increased levels of the antiangiogenic proteins angiostatin and endostatin and differential regulation of the enzymes governing their production relative to ND patients. Myocardial levels of these proteins show significant correlation to coronary collateralization. These findings offer potential new therapeutic targets for enhancing proangiogenic therapy and insight into the angiogenic impairments seen in diabetes.
Collapse
Affiliation(s)
- Neel R Sodha
- Division of Cardiothoracic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | | | |
Collapse
|
158
|
Hong S, Pedersen PL. ATP synthase and the actions of inhibitors utilized to study its roles in human health, disease, and other scientific areas. Microbiol Mol Biol Rev 2008; 72:590-641, Table of Contents. [PMID: 19052322 PMCID: PMC2593570 DOI: 10.1128/mmbr.00016-08] [Citation(s) in RCA: 236] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
ATP synthase, a double-motor enzyme, plays various roles in the cell, participating not only in ATP synthesis but in ATP hydrolysis-dependent processes and in the regulation of a proton gradient across some membrane-dependent systems. Recent studies of ATP synthase as a potential molecular target for the treatment of some human diseases have displayed promising results, and this enzyme is now emerging as an attractive molecular target for the development of new therapies for a variety of diseases. Significantly, ATP synthase, because of its complex structure, is inhibited by a number of different inhibitors and provides diverse possibilities in the development of new ATP synthase-directed agents. In this review, we classify over 250 natural and synthetic inhibitors of ATP synthase reported to date and present their inhibitory sites and their known or proposed modes of action. The rich source of ATP synthase inhibitors and their known or purported sites of action presented in this review should provide valuable insights into their applications as potential scaffolds for new therapeutics for human and animal diseases as well as for the discovery of new pesticides and herbicides to help protect the world's food supply. Finally, as ATP synthase is now known to consist of two unique nanomotors involved in making ATP from ADP and P(i), the information provided in this review may greatly assist those investigators entering the emerging field of nanotechnology.
Collapse
Affiliation(s)
- Sangjin Hong
- Department of Biological Chemistry, Johns Hopkins University, School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205-2185, USA
| | | |
Collapse
|
159
|
Chen YH, Huang YH, Wu HL, Wu MP, Chang WT, Kuo YZ, Lu KC, Wu LW. Angiostatin K1-3 induces E-selectin via AP1 and Ets1: a mediator for anti-angiogenic action of K1-3. J Thromb Haemost 2008; 6:1953-61. [PMID: 18761727 DOI: 10.1111/j.1538-7836.2008.03139.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Angiostatin, a circulating angiogenic inhibitor, is an internal fragment of plasminogen and consists of several isoforms, K1-3 included. We previously showed that K1-3 was the most potent angiostatin to induce E-selectin mRNA expression. The purpose of this study was to identify the mechanism responsible for K1-3-induced E-selectin expression and investigate the role of E-selectin in the anti-angiogenic action of K1-3. METHODS AND RESULTS Quantitative real time RT-PCR and Western blotting analyses confirmed a time-dependent increase of E-selectin mRNA and protein induced by K1-3. Subcellular fractionation and immunofluorescence microscopy showed the co-localization of K1-3-induced E-selectin with caveolin 1 (Cav1) in lipid rafts in which E-selectin may behave as a signaling receptor. Promoter-driven reporter assays and site-directed mutagenesis showed that K1-3 induced E-selectin expression via promoter activation and AP1 and Ets-1 binding sites in the proximal E-selectin promoter were required for E-selectin induction. The in vivo binding of both protein complexes to the proximal promoter was confirmed by chromatin immunoprecipitation (ChIP). Although K1-3 induced the activation of ERK1/2 and JNK, only repression of JNK activation attenuated the induction of E-selectin by K1-3. A modulatory role of E-selectin in the anti-angiogenic action of K1-3 was manifested by both overexpression and knockdown of E-selectin followed by cell proliferation assay. CONCLUSIONS We show that K1-3 induced E-selectin expression via AP1 and Ets-1 binding to the proximal E-selectin promoter (-356/+1), which was positively mediated by JNK activation. Our findings also demonstrate E-selectin as a novel target for the anti-angiogenic therapy.
Collapse
Affiliation(s)
- Y-H Chen
- Institute of Basic Medical Sciences, College of Mdicine, National Cheng Kung University, Tainan, Taiwa, ROC
| | | | | | | | | | | | | | | |
Collapse
|
160
|
Schmidt C, Lepsverdize E, Chi SL, Das AM, Pizzo SV, Dityatev A, Schachner M. Amyloid precursor protein and amyloid beta-peptide bind to ATP synthase and regulate its activity at the surface of neural cells. Mol Psychiatry 2008; 13:953-69. [PMID: 17726461 DOI: 10.1038/sj.mp.4002077] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Amyloid precursor protein (APP) and amyloid beta-peptide (Abeta) have been implicated in a variety of physiological and pathological processes underlying nervous system functions. APP shares many features with adhesion molecules in that it is involved in neurite outgrowth, neuronal survival and synaptic plasticity. It is, thus, of interest to identify binding partners of APP that influence its functions. Using biochemical cross-linking techniques we have identified ATP synthase subunit alpha as a binding partner of the extracellular domain of APP and Abeta. APP and ATP synthase colocalize at the cell surface of cultured hippocampal neurons and astrocytes. ATP synthase subunit alpha reaches the cell surface via the secretory pathway and is N-glycosylated during this process. Transfection of APP-deficient neuroblastoma cells with APP results in increased surface localization of ATP synthase subunit alpha. The extracellular domain of APP and Abeta partially inhibit the extracellular generation of ATP by the ATP synthase complex. Interestingly, the binding sequence of APP and Abeta is similar in structure to the ATP synthase-binding sequence of the inhibitor of F1 (IF(1)), a naturally occurring inhibitor of the ATP synthase complex in mitochondria. In hippocampal slices, Abeta and IF(1) similarly impair both short- and long-term potentiation via a mechanism that could be suppressed by blockade of GABAergic transmission. These observations indicate that APP and Abeta regulate extracellular ATP levels in the brain, thus suggesting a novel mechanism in Abeta-mediated Alzheimer's disease pathology.
Collapse
Affiliation(s)
- C Schmidt
- Zentrum für Molekulare Neurobiologie, Universität Hamburg, Hamburg, Germany
| | | | | | | | | | | | | |
Collapse
|
161
|
Kim HK, Oh DS, Lee SB, Ha JM, Joe YA. Antimigratory effect of TK1-2 is mediated in part by interfering with integrin alpha2beta1. Mol Cancer Ther 2008; 7:2133-41. [PMID: 18645023 DOI: 10.1158/1535-7163.mct-07-2405] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The recombinant two kringle domain of human tissue-type plasminogen activator (TK1-2) has been shown to inhibit endothelial cell proliferation, angiogenesis, and tumor cell growth despite of sharing a low amino acid sequence homology with angiostatin. Here, we explored a possible inhibitory mechanism of action of TK1-2 by focusing on antimigratory effect. TK1-2 effectively inhibited endothelial cell migration induced by basic fibroblast growth factor or vascular endothelial growth factor in a dose-dependent manner and tube formation on Matrigel. It blocked basic fibroblast growth factor-induced or vascular endothelial growth factor-induced phosphorylation of extracellular signal-regulated kinase 1/2 and formation of actin stress fibers and focal adhesions. Interestingly, TK1-2 alone induced the weak phosphorylation of focal adhesion kinase, whereas it inhibited focal adhesion kinase phosphorylation induced by growth factors. When immobilized, TK1-2 promoted adhesion and spreading of endothelial cells compared with bovine serum albumin. However, treatment with anti-alpha(2)beta(1) blocking antibody markedly diminished endothelial cell adhesion to immobilized TK1-2 compared with anti-alpha(v)beta(3) or anti-alpha(5)beta(1) antibody. Pretreatment of soluble TK1-2 also altered the binding level of anti-alpha(2)beta(1) antibody to endothelial cells in fluorescence-activated cell sorting analysis. Indeed, a blocking antibody against integrin alpha(2)beta(1) or knocking down of integrin alpha(2) expression prevented the inhibitory effect of TK1-2 in cell migration. Therefore, these results suggest that TK1-2 inhibits endothelial cell migration through inhibition of signaling and cytoskeleton rearrangement in part by interfering with integrin alpha(2)beta(1).
Collapse
Affiliation(s)
- Hyun-Kyung Kim
- Cancer Research Institute and Department of Biomedical Science, College of Medicine, The Catholic University of Korea, Banpo-dong 505, Seocho-ku, Seoul 137-701, Korea
| | | | | | | | | |
Collapse
|
162
|
Mangiullo R, Gnoni A, Leone A, Gnoni GV, Papa S, Zanotti F. Structural and functional characterization of F(o)F(1)-ATP synthase on the extracellular surface of rat hepatocytes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2008; 1777:1326-35. [PMID: 18775409 DOI: 10.1016/j.bbabio.2008.08.003] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2008] [Revised: 07/22/2008] [Accepted: 08/05/2008] [Indexed: 11/25/2022]
Abstract
Extracellular ATP formation from ADP and inorganic phosphate, attributed to the activity of a cell surface ATP synthase, has so far only been reported in cultures of some proliferating and tumoral cell lines. We now provide evidence showing the presence of a functionally active ecto-F(o)F(1)-ATP synthase on the plasma membrane of normal tissue cells, i.e. isolated rat hepatocytes. Both confocal microscopy and flow cytometry analysis show the presence of subunits of F(1) (alpha/beta and gamma) and F(o) (F(o)I-PVP(b) and OSCP) moieties of ATP synthase at the surface of rat hepatocytes. This finding is confirmed by immunoblotting analysis of the hepatocyte plasma membrane fraction. The presence of the inhibitor protein IF(1) is also detected on the hepatocyte surface. Activity assays show that the ectopic-ATP synthase can work both in the direction of ATP synthesis and hydrolysis. A proton translocation assay shows that both these mechanisms are accompanied by a transient flux of H(+) and are inhibited by F(1) and F(o)-targeting inhibitors. We hypothesise that ecto-F(o)F(1)-ATP synthase may control the extracellular ADP/ATP ratio, thus contributing to intracellular pH homeostasis.
Collapse
Affiliation(s)
- Roberto Mangiullo
- Department of Medical Biochemistry, Biology and Physics, University of Bari, Italy
| | | | | | | | | | | |
Collapse
|
163
|
Zhang X, Gao F, Yu LL, Peng Y, Liu HH, Liu JY, Yin M, Ni J. Dual functions of a monoclonal antibody against cell surface F1F0 ATP synthase on both HUVEC and tumor cells. Acta Pharmacol Sin 2008; 29:942-50. [PMID: 18664327 DOI: 10.1111/j.1745-7254.2008.00830.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
AIM To generate a monoclonal antibody (McAb) against cell surface F1F0 ATP synthase (ATPase) and observe its antitumoral activity on both human umbilical vein endothelial cells (HUVEC) and tumor cells. METHODS Hybridoma cells secreting McAb against ATPase were produced by polyethylene glycol-mediated fusions and screened by ELISA. The specificity of McAb was demonstrated by immunofluorescence and confocal imaging, as well as flow cytometry analysis. After the blockade of surface ATPase with McAb on HUVEC and human breast adenocarcinoma MDA-MB-231 cells, an ATP determination kit and CellTiter96 AQueous Assay (MTS) assay were used to detect the effect of the antibody on extracellular ATP modification and cell proliferation. A cellular cytotoxicity assay in combination with doxorubicin, and a cell migration assay on MDA-MB-231 cells were used to determine the antitumoral activity. Finally, a HUVEC tube formation assay was used to detect the antiangiogenic effect of McAb178-5G10. RESULTS A monoclonal antibody (McAb178-5G10) against the beta-subunit of ATPase was generated, and its reactivity toward HUVEC and tumor cells was studied. We demonstrate that McAb178-5G10 binds to ATPase at the cell surface, where it is able to inhibit ATP synthesis. This antibody also prevents the proliferation of HUVEC and MDA-MB-231 cells. Furthermore, McAb178-5G10 enhances the tumoricidal effects of doxorubicin (P<0.05), inhibits the migration of MDA-MB- 231 in transwell assays (P<0.01), and disrupts HUVEC tube formation on Matrigel (P<0.01). CONCLUSION McAb178-5G10 binds preferentially to cell surface ATPase, blocks ATP synthesis, and exhibits both antiangiogenic and antitumorigenic effects.
Collapse
Affiliation(s)
- Xia Zhang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | | | | | | | | | | | | | | |
Collapse
|
164
|
Kucharczyk R, Zick M, Bietenhader M, Rak M, Couplan E, Blondel M, Caubet SD, di Rago JP. Mitochondrial ATP synthase disorders: molecular mechanisms and the quest for curative therapeutic approaches. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1793:186-99. [PMID: 18620007 DOI: 10.1016/j.bbamcr.2008.06.012] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2008] [Revised: 06/06/2008] [Accepted: 06/11/2008] [Indexed: 01/09/2023]
Abstract
In mammals, the majority of cellular ATP is produced by the mitochondrial F1F(O)-ATP synthase through an elaborate catalytic mechanism. While most subunits of this enzymatic complex are encoded by the nuclear genome, a few essential components are encoded in the mitochondrial genome. The biogenesis of this multi-subunit enzyme is a sophisticated multi-step process that is regulated on levels of transcription, translation and assembly. Defects that result in diminished abundance or functional impairment of the F1F(O)-ATP synthase can cause a variety of severe neuromuscular disorders. Underlying mutations have been identified in both the nuclear and the mitochondrial DNA. The pathogenic mechanisms are only partially understood. Currently, the therapeutic options are extremely limited. Alternative methods of treatment have however been proposed, but still encounter several technical difficulties. The application of novel scientific approaches promises to deepen our understanding of the molecular mechanisms of the ATP synthase, unravel novel therapeutic pathways and improve the unfortunate situation of the patients suffering from such diseases.
Collapse
Affiliation(s)
- Roza Kucharczyk
- Institut de Biochimie et Génétique Cellulaires, CNRS-Université Bordeaux2, Bordeaux 33077, France
| | | | | | | | | | | | | | | |
Collapse
|
165
|
Sodha NR, Boodhwani M, Clements RT, Xu SH, Khabbaz KR, Sellke FW. Increased antiangiogenic protein expression in the skeletal muscle of diabetic swine and patients. ACTA ACUST UNITED AC 2008; 143:463-70. [PMID: 18490555 DOI: 10.1001/archsurg.143.5.463] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
HYPOTHESIS Antiangiogenic protein expression is increased in skeletal muscle in the setting of diabetes. DESIGN, SETTING, AND PARTICIPANTS In animal studies, diabetes was induced in 8 Yucatan miniswine via single alloxan injection at age 8 months, followed by skeletal muscle harvest 15 weeks later. Eight nondiabetic Yucatan miniswine served as controls. In patient studies, skeletal muscle was harvested from 11 nondiabetic patients and 10 patients with type 2 diabetes mellitus undergoing initial elective coronary artery bypass graft surgery. Skeletal muscle samples were analyzed via Western blotting and zymography for protein expression and enzyme activity. The study was performed in an academic medical center. MAIN OUTCOME MEASURES Skeletal muscle expression of plasminogen, collagen XVIII, angiostatin, endostatin, matrix metalloproteinases 2 and 9, and tissue inhibitor of metalloproteinase 2. RESULTS Skeletal muscle expression of plasminogen and collagen XVIII (precursors of angiostatin and endostatin, respectively) remained similar between nondiabetic and diabetic swine and patients. Expression of angiostatin and endostatin was increased 1.70-fold and 1.84-fold, respectively, in diabetic swine relative to control swine. Endostatin expression was increased 1.69-fold in diabetic patients relative to nondiabetic patients. Matrix metalloproteinase 2 expression and activity were significantly increased in the skeletal muscle of diabetic swine and patients. CONCLUSIONS Antiangiogenic protein levels are increased in the skeletal muscle in the setting of diabetes. Angiostatin, endostatin, and matrix metalloproteinases may offer novel therapeutic targets to improve collateral formation in patients with diabetes.
Collapse
Affiliation(s)
- Neel R Sodha
- Division of Cardiothoracic Surgery, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | | | | | | | | | | |
Collapse
|
166
|
Abstract
Abstract
Background
Antiangiogenic therapy has become a reality with the recent introduction of bevacizumab, a monoclonal antibody against vascular endothelial growth factor.
Methods
Relevant medical literature from PubMed, National Institute for Health and Clinical Excellence and National Institutes of Health websites to August 2007 was reviewed.
Results and conclusions
Although often described as the fourth modality of treatment after surgery, radiotherapy and chemotherapy, many antiangiogenic drugs have failed to live up to expectations. Nevertheless, research continues and there are reasons to believe that antiangiogenic therapy may yet have a future in the clinical setting.
Collapse
Affiliation(s)
- A R John
- Queen Elizabeth Hospital, University Hospital Birmingham NHS Foundation Trust, Birmingham, UK
- Division of Medical Sciences, The Medical School, University of Birmingham, Birmingham, UK
| | - S R Bramhall
- Queen Elizabeth Hospital, University Hospital Birmingham NHS Foundation Trust, Birmingham, UK
| | - M C Eggo
- Division of Medical Sciences, The Medical School, University of Birmingham, Birmingham, UK
| |
Collapse
|
167
|
Transport ATPases into the year 2008: a brief overview related to types, structures, functions and roles in health and disease. J Bioenerg Biomembr 2008; 39:349-55. [DOI: 10.1007/s10863-007-9123-9] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
168
|
Devenish RJ, Prescott M, Rodgers AJW. The structure and function of mitochondrial F1F0-ATP synthases. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 267:1-58. [PMID: 18544496 DOI: 10.1016/s1937-6448(08)00601-1] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We review recent advances in understanding of the structure of the F(1)F(0)-ATP synthase of the mitochondrial inner membrane (mtATPase). A significant achievement has been the determination of the structure of the principal peripheral or stator stalk components bringing us closer to achieving the Holy Grail of a complete 3D structure for the complex. A major focus of the field in recent years has been to understand the physiological significance of dimers or other oligomer forms of mtATPase recoverable from membranes and their relationship to the structure of the cristae of the inner mitochondrial membrane. In addition, the association of mtATPase with other membrane proteins has been described and suggests that further levels of functional organization need to be considered. Many reports in recent years have concerned the location and function of ATP synthase complexes or its component subunits on the external surface of the plasma membrane. We consider whether the evidence supports complete complexes being located on the cell surface, the biogenesis of such complexes, and aspects of function especially related to the structure of mtATPase.
Collapse
Affiliation(s)
- Rodney J Devenish
- Department of Biochemistry and Molecular Biology, and ARC Centre of Excellence in Microbial Structural and Functional Genomics, Monash University, Clayton Campus, Victoria, 3800, Australia
| | | | | |
Collapse
|
169
|
Schindler J, Lewandrowski U, Sickmann A, Friauf E. Aqueous Polymer Two-Phase Systems for the Proteomic Analysis of Plasma Membranes from Minute Brain Samples. J Proteome Res 2008; 7:432-42. [DOI: 10.1021/pr0704736] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
170
|
Buxton ILO. Inhibition of Nm23H2 gene product (NDPK-B) by angiostatin, polyphenols and nucleoside analogs. PROCEEDINGS OF THE WESTERN PHARMACOLOGY SOCIETY 2008; 51:30-34. [PMID: 19544670 PMCID: PMC2702708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Human breast cancer cells (MDA-MB-435s) secrete a nucleoside diphosphate kinase (NDPK-B) as a phosphoprotein capable of converting diphosphate nucleosides to triphosphate nucleotides for one round in the absence of a phosphoryl donor. Incubation of the partially purified NDPK-B (Nm23-H2 by Western blot) from [gamma32P]Pi-labeled cells with non-radioactive ADP results in the formation of [gamma32P]ATP (Proc. West. Pharmacol. Soc. 44: 61-63, 2001). The presence of a secreted protein that can maintain ATP levels in the vicinity of capillary and lymph vessels may support cancer metastasis in several ways based on the known actions of ATP at P2Y receptors: facilitate intravasation of breast cancer cells that migrate from a solid tumor, support their extravasation at a distal site, and stimulate angiogenesis. The putative role of angiostatin (AS) as an ATP-synthase inhibitor led us to test the notion that AS blocks NDPK-B activity. Addition of commercial AS (kringles 1-4) did not alter enzyme activity. However, AS produced by us and never lyophilized, blocked NDPK activity in a dose-dependent fashion consistent with the notion that extracellular ATP generation by tumor cells may be important to the development of metastases. The ability of 0.5 mg/ml angiostatin to block NDPK-B activity to approximately 75% of control activity compared poorly with the polyphenol inhibitors of. The catechin gallates, theaflavins and ellagic acid inhibited NDPK-B completely with the rank order of potency: EA > theaflavins > EGCG > ECG > PAPS. Our results suggest that the biological activity of angiostatin as a putative metastasis inhibitor may be in part the result of nm23 inhibition and that the production, lyophilization, packaging or storage of commercial angiostatin leads to the alteration of its biological activity against NDPK-B. Ellagic acid is a potent (IC50 = 10.5 microM) NDPK-B inhibitor that may prove useful in elucidating the role of cancer-cell secreted NDPK-B in tumor development.
Collapse
Affiliation(s)
- Iain L O Buxton
- Department of Pharmacology, University of Nevada School of Medicine, Reno, NV 89557, USA.
| |
Collapse
|
171
|
|
172
|
|
173
|
Vantourout P, Martinez LO, Fabre A, Collet X, Champagne E. Ecto-F1-ATPase and MHC-class I close association on cell membranes. Mol Immunol 2008; 45:485-92. [PMID: 17643490 DOI: 10.1016/j.molimm.2007.05.026] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2007] [Accepted: 05/21/2007] [Indexed: 11/17/2022]
Abstract
Subunits of the mitochondrial ATP synthase complex are expressed on the surface of tumors, bind the TCR of human Vgamma9/Vdelta2 lymphocytes and promote their cytotoxicity. Present experiments show that detection of the complex (called ecto-F1-ATPase) at the cell surface by immunofluorescence correlates with low MHC-class I antigen expression. Strikingly, the alpha and beta chains of ecto-F1-ATPase are detected in membrane protein precipitates from immunofluorescence-negative cells, suggesting that ATPase epitopes are masked. Removal of beta2-microglobulin by mild acid treatment so that most surface MHC-I molecules become free heavy chains reveals F1-ATPase epitopes on MHC-I+ cell lines. Ecto-F1-ATPase is detected by immunofluorescence on primary fibroblasts which express moderate levels of MHC-I antigens. Up-regulation of MHC-I on these cells following IFN-gamma and/or TNF-alpha treatment induces a dose-dependent disappearance of F1-ATPase epitopes. Finally, biotinylated F1-ATPase cell surface components co-immunoprecipitate with MHC-I molecules confirming the association of both complexes on Raji cells. Confocal microscopy analysis of MHC-I and ecto-F1-ATPase beta chain expression on HepG2 cells shows a co-localization of both complexes in punctate membrane domains. This demonstrates that the TCR target F1-ATPase is in close contact with MHC-I antigens which are known to control Vgamma9/Vdelta2 T cell activity through binding to natural killer inhibitory receptors.
Collapse
|
174
|
Yokoyama Y, Sedgewick G, Ramakrishnan S. Endostatin Binding to Ovarian Cancer Cells Inhibits Peritoneal Attachment and Dissemination. Cancer Res 2007; 67:10813-22. [DOI: 10.1158/0008-5472.can-07-0172] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
175
|
Griffioen AW. Therapeutic approaches of angiogenesis inhibition: are we tackling the problem at the right level? Trends Cardiovasc Med 2007; 17:171-6. [PMID: 17574125 DOI: 10.1016/j.tcm.2007.03.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A growing body of evidence now demonstrates that inhibition of angiogenesis is a promising way for treatment of disease. Although the field of angiogenesis research is strongly linked to cancer biology, many other diseases were found to be dependent on angiogenesis as well, introducing a potential benefit from antiangiogenesis treatment. Recently, the first specific angiogenesis inhibitor was approved by the Food and Drug Administration for the treatment of colorectal cancer. Currently, several compounds with angiostatic activity are approved, and many are in late-stage clinical development. Most of these are indirect inhibitors, either clearing angiogenic growth factors from the circulation or blocking the signaling pathways activated by these growth factors. Although these compounds seem to represent an efficient strategy in cancer treatment, they possess an intrinsic threat to induce resistance. Therefore, it remains to be seen whether this strategy will be the most attractive in the future. Advancing insights into fundamental mechanisms will be necessary in the development of novel anticancer strategies based on inhibition of angiogenesis.
Collapse
Affiliation(s)
- Arjan W Griffioen
- Department of Pathology, Angiogenesis Laboratory, Research Institute For Growth and Development (GROW), Maastricht University, University Hospital Maastricht, The Netherlands.
| |
Collapse
|
176
|
Jung KH, Song SH, Paik JY, Koh BH, Choe YS, Lee EJ, Kim BT, Lee KH. Direct Targeting of Tumor Cell F1F0 ATP-Synthase by Radioiodine Angiostatin In Vitro and In Vivo. Cancer Biother Radiopharm 2007; 22:704-12. [DOI: 10.1089/cbr.2007.369] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Kyung-Ho Jung
- Department of Nuclear Medicine, Samsung Medical Center, and Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sung-Hee Song
- Department of Nuclear Medicine, Samsung Medical Center, and Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jin-Young Paik
- Department of Nuclear Medicine, Samsung Medical Center, and Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Bong-Ho Koh
- Department of Nuclear Medicine, Samsung Medical Center, and Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Yearn Seong Choe
- Department of Nuclear Medicine, Samsung Medical Center, and Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Eun Jung Lee
- Department of Nuclear Medicine, Samsung Medical Center, and Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Byung-Tae Kim
- Department of Nuclear Medicine, Samsung Medical Center, and Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Kyung-Han Lee
- Department of Nuclear Medicine, Samsung Medical Center, and Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
177
|
Isayeva T, Chanda D, Kallman L, Eltoum IEA, Ponnazhagan S. Effects of sustained antiangiogenic therapy in multistage prostate cancer in TRAMP model. Cancer Res 2007; 67:5789-97. [PMID: 17575146 DOI: 10.1158/0008-5472.can-06-3637] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Antiangiogenic therapy is a promising alternative for prostate cancer growth and metastasis and holds great promise as an adjuvant therapy. The present study evaluated the potential of stable expression of angiostatin and endostatin before the onset of neoplasia and during the early and late stages of prostate cancer progression in transgenic adenocarcinoma of mouse prostate (TRAMP) mice. Groups of 5-, 10-, and 18-week-old male TRAMP mice received recombinant adeno-associated virus-6 encoding mouse endostatin plus angiostatin (E+A) by i.m. injection. The effects of therapy were determined by sacrificing groups of treated mice at defined stages of tumor progression and following cohorts of similarly treated mice for long-term survival. Results indicated remarkable survival after recombinant adeno-associated virus-(E+A) therapy only when the treatment was given at an earlier time, before the onset of high-grade neoplasia, compared with treatment given for invasive cancer. Interestingly, early-stage antiangiogenic therapy arrested the progression of moderately differentiated carcinoma to poorly differentiated state and distant metastasis. Immunohistochemical analysis of the prostate from treated mice indicated significantly lower endothelial cell proliferation and increased tumor cell apoptosis. Vascular endothelial growth factor receptor (VEGFR)-2 expression was significantly down-regulated in tumor endothelium after treatment but not VEGFR-1. Analysis of the neuroendocrine marker synaptophysin expression indicated that antiangiogenic therapy given at an early-stage disease reduced neuroendocrine transition of the epithelial tumors. These studies indicate that stable endostatin and angiostatin gene therapy may be more effective for minimally invasive tumors rather than advanced-stage disease.
Collapse
Affiliation(s)
- Tatyana Isayeva
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, Alabama 35294-0007, USA
| | | | | | | | | |
Collapse
|
178
|
Pearce JW, Janardhan KS, Caldwell S, Singh B. Angiostatin and integrin ?v?3 in the feline, bovine, canine, equine, porcine and murine retina and cornea. Vet Ophthalmol 2007; 10:313-9. [PMID: 17760712 DOI: 10.1111/j.1463-5224.2007.00560.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PURPOSE Angiogenesis is tightly controlled in the ocular tissues of domestic animals but its mechanisms are not fully understood. This is largely because of insufficient data on the expression of molecules that impact angiogenesis. Because angiostatin and one of its receptors integrin alphavbeta3 inhibit and promote angiogenesis, respectively, we hypothesized that the normal retina and cornea of domestic animals would express angiostatin but not integrin alphavbeta3. PROCEDURE Normal eyes of the cat, cow, dog, horse, pig and rat were evaluated for angiostatin and integrin alphavbeta3 by light and electron immunocytochemistry and estern blots. RESULTS Angiostatin was detected in the corneal epithelium of the cat, dog, horse, pig and rat, but was not found in cow corneal epithelium. Angiostatin was localized in the nerve fiber layer, ganglion cell layer, inner and outer plexiform layers, and the photoreceptor layer of the cat, cow, dog and rat. Horse and pig retinas showed additional staining in the matrix of the inner nuclear layer. Immunogold electron microscopy further confirmed angiostatin in cat retina. Western blots showed angiostatin in corneal and retinal homogenates. Integrin alphavbeta3 was absent in cornea and retina of all the species studied. CONCLUSION These data show that angiostatin, an inhibitor of angiogenesis, is present while integrin alphavbeta3, which promotes angiogenesis, is absent in normal cornea and retina of the domestic animals in this study with the exception being angiostatin absence in cow corneal epithelium. Therefore, angiostatin may contribute to the anti-angiogenic environment in the normal domestic animal eye while its absence in the cow may contribute to greater propensity for corneal vascularization. Because integrin alphavbeta3 is one of the receptors for angiostatin, its absence may prevent angiostatin from killing normal retinal and corneal cells.
Collapse
Affiliation(s)
- Jacqueline W Pearce
- Immunology Research Group, Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, Canada
| | | | | | | |
Collapse
|
179
|
Contessi S, Comelli M, Cmet S, Lippe G, Mavelli I. IF(1) distribution in HepG2 cells in relation to ecto-F(0)F (1)ATPsynthase and calmodulin. J Bioenerg Biomembr 2007; 39:291-300. [PMID: 17851741 DOI: 10.1007/s10863-007-9091-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2007] [Accepted: 05/09/2007] [Indexed: 12/01/2022]
Abstract
F(0)F(1)ATPsynthase is now known to be expressed as a plasma membrane receptor for several extracellular ligands. On hepatocytes, ecto-F(0)F(1)ATPsynthase binds apoA-I and triggers HDL endocytosis concomitant with ATP hydrolysis. Considering that inhibitor protein IF(1) was shown to regulate the hydrolytic activity of ecto-F(0)F(1)ATPsynthase and to interact with calmodulin (CaM) in vitro, we investigated the subcellular distributions of IF(1), calmodulin (CaM), OSCP and beta subunits of F(0)F(1)ATPsynthase in HepG2 cells. Using immunofluorescence and Western blotting, we found that around 50% of total cellular IF(1) is localized outside mitochondria, a relevant amount of which is associated to the plasma membrane where we also found Ca(2+)-CaM, OSCP and beta. Confocal microscopy showed that IF(1) colocalized with Ca(2+)-CaM on plasma membrane but not in mitochondria, suggesting that Ca(2+)-CaM may modulate the cell surface availability of IF(1) and thus its ability to inhibit ATP hydrolysis by ecto-F(0)F(1)ATPsynthase. These observations support a hypothesis that the IF(1)-Ca(2+)-CaM complex, forming on plasma membrane, functions in the cellular regulation of HDL endocytosis by hepatocytes.
Collapse
Affiliation(s)
- Stefania Contessi
- Department of Biomedical Sciences and Technologies, MATI Centre of Excellence, University of Udine, Piazzale Kolbe 4, 33100 Udine, Italy
| | | | | | | | | |
Collapse
|
180
|
Chi SL, Wahl ML, Mowery YM, Shan S, Mukhopadhyay S, Hilderbrand SC, Kenan DJ, Lipes BD, Johnson CE, Marusich MF, Capaldi RA, Dewhirst MW, Pizzo SV. Angiostatin-like activity of a monoclonal antibody to the catalytic subunit of F1F0 ATP synthase. Cancer Res 2007; 67:4716-24. [PMID: 17510399 DOI: 10.1158/0008-5472.can-06-1094] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The antiangiogenic protein angiostatin inhibits ATP synthase on the endothelial cell surface, blocking cellular proliferation. To examine the specificity of this interaction, we generated monoclonal antibodies (mAb) directed against ATP synthase. mAb directed against the beta-catalytic subunit of ATP synthase (MAb3D5AB1) inhibits the activity of the F(1) domain of ATP synthase and recognizes the catalytic beta-subunit of ATP synthase. We located the antibody recognition site of MAb3D5AB1 in domains containing the active site of the beta-subunit. MAb3D5AB1 also binds to purified Escherichia coli F(1) with an affinity 25-fold higher than the affinity of angiostatin for this protein. MAb3D5AB1 inhibits the hydrolytic activity of F(1) ATP synthase at lower concentrations than angiostatin. Like angiostatin, MAb3D5AB1 inhibits ATP generation by ATP synthase on the endothelial cell surface in acidic conditions, the typical tumor microenvironment where cell surface ATP synthase exhibits greater activity. MAb3D5AB1 disrupts tube formation and decreases intracellular pH in endothelial cells exposed to low extracellular pH. Neither angiostatin nor MAb3D5AB1 showed an antiangiogenic effect in the corneal neovascularization assay; however, both were effective in the low-pH environment of the chicken chorioallantoic membrane assay. Thus, MAb3D5AB1 shows angiostatin-like properties superior to angiostatin and may be exploited in cancer chemotherapy.
Collapse
Affiliation(s)
- Sulene L Chi
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
181
|
Arakaki N, Kita T, Shibata H, Higuti T. Cell-surface H+-ATP synthase as a potential molecular target for anti-obesity drugs. FEBS Lett 2007; 581:3405-9. [PMID: 17612527 DOI: 10.1016/j.febslet.2007.06.041] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2007] [Accepted: 06/18/2007] [Indexed: 11/25/2022]
Abstract
Here we show that the cell-surface expression of the alpha subunit of H(+)-ATP synthase is markedly increased during adipocyte differentiation. Treatment of differentiated adipocytes with small molecule inhibitors of H(+)-ATP synthase or antibodies against alpha and beta subunits of H(+)-ATP synthase leads to a decrease in cytosolic lipid droplet accumulation. Apolipoprotein A-I, which has been shown to bind to the ectopic beta-chain of H(+)-ATP synthase and inhibit the activity of cell-surface H(+)-ATP synthase, also was found to inhibit cytosolic lipid accumulation. These results suggest that the cell-surface H(+)-ATP synthase has a previously unsuspected role in lipid metabolism in adipocytes.
Collapse
Affiliation(s)
- Naokatu Arakaki
- Department of Molecular Cell Biology and Medicine, Institute of Health Bioscience, The University of Tokushima Graduate School, Tokushima, Japan.
| | | | | | | |
Collapse
|
182
|
Yamamoto K, Shimizu N, Obi S, Kumagaya S, Taketani Y, Kamiya A, Ando J. Involvement of cell surface ATP synthase in flow-induced ATP release by vascular endothelial cells. Am J Physiol Heart Circ Physiol 2007; 293:H1646-53. [PMID: 17545472 DOI: 10.1152/ajpheart.01385.2006] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Endothelial cells (ECs) release ATP in response to shear stress, a mechanical force generated by blood flow, and the ATP released modulates EC functions through activation of purinoceptors. The molecular mechanism of the shear stress-induced ATP release, however, has not been fully elucidated. In this study, we have demonstrated that cell surface ATP synthase is involved in shear stress-induced ATP release. Immunofluorescence staining of human pulmonary arterial ECs (HPAECs) showed that cell surface ATP synthase is distributed in lipid rafts and co-localized with caveolin-1, a marker protein of caveolae. Immunoprecipitation indicated that cell surface ATP synthase and caveolin-1 are physically associated. Measurement of the extracellular metabolism of [(3)H]ADP confirmed that cell surface ATP synthase is active in ATP generation. When exposed to shear stress, HPAECs released ATP in a dose-dependent manner, and the ATP release was markedly suppressed by the membrane-impermeable ATP synthase inhibitors angiostatin and piceatannol and by an anti-ATP synthase antibody. Depletion of plasma membrane cholesterol with methyl-beta-cyclodextrin (MbetaCD) disrupted lipid rafts and abolished co-localization of ATP synthase with caveolin-1, which resulted in a marked reduction in shear stress-induced ATP release. Pretreatment of the cells with cholesterol prevented these effects of MbetaCD. Downregulation of caveolin-1 expression by transfection of caveolin-1 siRNA also markedly suppressed ATP-releasing responses to shear stress. Neither MbetaCD, MbetaCD plus cholesterol, nor caveolin-1 siRNA had any effect on the amount of cell surface ATP synthase. These results suggest that the localization and targeting of ATP synthase to caveolae/lipid rafts is critical for shear stress-induced ATP release by HPAECs.
Collapse
Affiliation(s)
- Kimiko Yamamoto
- Department of Biomedical Engineering, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | | | |
Collapse
|
183
|
Thedrez A, Sabourin C, Gertner J, Devilder MC, Allain-Maillet S, Fournié JJ, Scotet E, Bonneville M. Self/non-self discrimination by human gammadelta T cells: simple solutions for a complex issue? Immunol Rev 2007; 215:123-35. [PMID: 17291284 DOI: 10.1111/j.1600-065x.2006.00468.x] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Although gammadelta T cells express clonally distributed T-cell receptors (TCRs), a hallmark of adaptive immunity, they are classically considered as innate-like effectors, owing to the high frequency of preactivated gammadelta T cells, with restricted antigen recognition repertoire in particular tissue locations. Actually, such features are shared only by a fraction of gammadelta T-cell subsets located in the skin and reproductive organ mucosa in rodents or in peripheral blood in humans. By contrast, other gammadelta subsets, e.g. those found in rodent and human spleen, show diverse antigenic reactivity patterns and mixed naive/memory phenotypes. Thus, gammadelta T cells are made of both 'primitive' subsets endowed with innate-like properties and 'evolved' subsets able to mount anamnestic responses like conventional major histocompatibility complex-restricted alphabeta T cells. In this article, we show that human gammadelta T cells, although heterogeneous, do share recurrent innate features that distinguish them from mainstream alphabeta T cells. In particular, most of them are activated on TCR- or natural killer receptor-mediated recognition of a restricted set of conserved yet poorly defined endogenous stress determinants. This rather simple recognition mechanism allows human gammadelta T cells to discriminate healthy cells from altered cells and to exert a variety of immunostimulatory or regulatory functions. The recent availability of synthetic gammadelta T-cell agonists mimicking these natural stress-induced ligands have fostered development of immunotherapeutic strategies, with broad indications against infectious and tumor diseases, which are briefly reviewed here.
Collapse
Affiliation(s)
- Aurélie Thedrez
- INSERM U601, Département de Recherche en Cancérologie, Institut de Biologie/CHU, Nantes, France
| | | | | | | | | | | | | | | |
Collapse
|
184
|
Li X, Xing S, Zhang L, Xing Q, Yan S, Dai H, You S, Pang Y, Tang C. High glucose promotes the release and expression of novel vasoactive peptide, coupling factor 6, in human umbilical vein endothelial cells. Peptides 2007; 28:683-90. [PMID: 17174010 DOI: 10.1016/j.peptides.2006.11.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2006] [Revised: 11/10/2006] [Accepted: 11/13/2006] [Indexed: 11/20/2022]
Abstract
As a novel vasoactive peptide, plasma coupling factor 6 (CF6) was shown to be elevated in patients with diabetes mellitus, yet the mechanism involved is unknown. We studied CF6 protein release and its potential mechanism in human umbilical vein endothelial cells (HUVECs) incubated with high glucose levels. High glucose level enhanced CF6 expression and peptide secretion in HUVECs in a time- and concentration-dependent manner, which was independent of increased osmolarity. PKC or p38 MAPK inhibition significantly suppressed high glucose-mediated CF6 release in HUVECs, and the inhibition rate was -45% and -30%, respectively. Also, high glucose-induced CF6 production was antagonized by insulin treatment. Hence, high glucose increases the expression and secretion of CF6 in endothelial cells and appears to be mediated by PKC and p38 MAPK activity.
Collapse
Affiliation(s)
- Xiaolu Li
- Shandong University School of Medicine, Ji'nan 250012, China
| | | | | | | | | | | | | | | | | |
Collapse
|
185
|
Syed SP, Martin AM, Haupt HM, Arenas-Elliot CP, Brooks JJ. Angiostatin receptor annexin II in vascular tumors including angiosarcoma. Hum Pathol 2007; 38:508-13. [PMID: 17239928 DOI: 10.1016/j.humpath.2006.09.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2006] [Revised: 09/07/2006] [Accepted: 09/08/2006] [Indexed: 11/27/2022]
Abstract
Inhibitors of angiogenesis, such as angiostatin, are increasingly used for targeting the tumor neovasculature and have had mixed success. Annexin II (ANX2), a 36KDa calcium and phospholipid binding protein, is a cell surface receptor for angiostatin. We hypothesized that, like normal vascular endothelium, vascular neoplasms would express ANX2, implying the potential usefulness of angiostatins in the therapy of this family of soft tissue tumors. Thirty-eight (38) vascular tumors tested included: hemangiomas - capillary [4], cavernous [6], lobular capillary [6], intramuscular hemangioma [3], spindle cell [1], and epithelioid hemangioma [4]; epithelioid hemangioendothelioma [3]; angiosarcoma [7], 4 of which were epithelioid; and angiolipomas [4]. ANX2 antibody (Zymed) was used (1/50 dilution, Ventana ES autostainer). Reactivity location (cytoplasmic, nuclear, membrane), intensity (1+/2+/3+), and quantity (focal, diffuse) was recorded. ANX2 was expressed in 97% of cases (37/38); mostly diffuse [35/37] and focal in 2 cases. Staining was strong (2+ or 3+) in 87%, and 1+ in 5/37 (14%), all benign tumors. Location was mostly cytoplasmic and membranous; no nuclear staining was seen. Both endothelium and pericytes were positive. Epithelioid angiosarcomas showed predominantly membranous staining. To our knowledge this is the first demonstration of an angiostatin receptor (ANX2) in vascular endothelial tumors including angiosarcoma. Diffuse and strong reactivity signified the absence of any down-regulation of ANX2 in both benign and malignant tumors. ANX2 reactivity may be the basis of treatment for a variety of benign tumors, especially in pediatric patients, and may offer a new and potentially less toxic therapy for angiosarcoma.
Collapse
Affiliation(s)
- Sajjad P Syed
- Department of Pathology & Laboratory Medicine, Kaiser Permanente Baldwin Park Medical Center, Baldwin Park, CA 91706, USA.
| | | | | | | | | |
Collapse
|
186
|
Persano L, Crescenzi M, Indraccolo S. Anti-angiogenic gene therapy of cancer: current status and future prospects. Mol Aspects Med 2007; 28:87-114. [PMID: 17306361 DOI: 10.1016/j.mam.2006.12.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2006] [Accepted: 12/18/2006] [Indexed: 12/14/2022]
Abstract
The discovery of endogenous inhibitors of angiogenesis has made it possible to test the hypothesis that blocking the angiogenic switch may keep tumor growth in check, and has added a new investigational arm to the field of cancer gene therapy. Angiogenesis inhibitors are heterogeneous in origin and potency, and their growing list includes proteolysis products of larger molecules with a different function, such as angiostatin, endostatin and vasostatin, modulators of vascular endothelial growth factor activity, such as sFLT-1, and some cytokines/chemokines with marked anti-endothelial activity, such as IL-12, IFN-alpha, and CXCL10. Pre-clinical studies have clearly indicated that these factors are essentially cytostatic and that they need long-term administration in order to obtain prolonged anti-tumor effects, representing a rational basis for their delivery by a gene therapy approach. The experimental approaches attempted to date, reviewed herein, indicate overall that anti-angiogenic gene therapy has efficacy mainly as an early intervention strategy and that a better understanding of the biological mechanisms underlying resistance to angiogenesis inhibition, as well as appropriate combined treatments, are required to generate a conceptual advancement which could drive the field towards successful management of established tumors.
Collapse
Affiliation(s)
- Luca Persano
- Department of Oncology and Surgical Sciences, Oncology Section, University of Padova, Via Gattamelata, 64, 35128 Padova, Italy
| | | | | |
Collapse
|
187
|
Dudani AK, Mehic J, Martyres A. Plasminogen and angiostatin interact with heat shock proteins. Mol Cell Biochem 2007; 300:197-205. [PMID: 17206383 DOI: 10.1007/s11010-006-9384-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2006] [Accepted: 11/21/2006] [Indexed: 10/23/2022]
Abstract
Previous studies from this laboratory have demonstrated that plasminogen and angiostatin bind to endothelial cell (EC) surface-associated actin via their kringles in a specific manner. Heat shock proteins (hsps) like hsp 27 are constitutively expressed by vascular ECs and regulate actin polymerization, cell growth, and migration. Since many hsps have also been found to be highly abundant on cell surfaces and there is evidence that bacterial surface hsps may interact with human plasminogen, the purpose of this study was to determine whether human plasminogen and angiostatin would interact with human hsps. ELISAs were developed in our laboratory to assess these interactions. It was observed that plasminogen bound to hsps 27, 60, and 70. In all cases, binding was inhibited (85-90%) by excess (50 mM) lysine indicating kringle involvement. Angiostatin predominantly bound to hsp 27 and to hsp 70 in a concentration- and kringle-dependent manner. As observed previously for actin, there was concentration-dependent inhibition of angiostatin's interaction with hsp 27 by plasminogen. In addition, 30-fold molar excess actin inhibited (up to 50%), the interaction of plasminogen with all hsps. However, 30-fold molar excess actin could only inhibit the interaction of angiostatin with hsp 27 by 15-20%. Collectively, these data indicate that (i) while plasminogen interacts specifically with hsp 27, 60, and 70, angiostatin interacts predominantly with hsp 27 and to some extent with hsp 70; (ii) plasminogen only partially displaces angiostatin's binding to hsp 27 and (iii) actin only partially displaces plasminogen/angiostatin binding to hsps. It is conceivable therefore that surface-associated hsps could mediate the binding of these ligands to cells like ECs.
Collapse
Affiliation(s)
- Anil K Dudani
- Centre for Biologics Research, Biologics and Genetic Therapies Directorate, Sir Frederick Banting Research Centre, Health Canada, 251 Sir Frederick Banting Way, Tunney's Pasture, Ottawa, Ontario, Canada.
| | | | | |
Collapse
|
188
|
Zhang SX, Ma JX. Ocular neovascularization: Implication of endogenous angiogenic inhibitors and potential therapy. Prog Retin Eye Res 2007; 26:1-37. [PMID: 17074526 DOI: 10.1016/j.preteyeres.2006.09.002] [Citation(s) in RCA: 148] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Ocular neovascularization (NV) is the primary cause of blindness in a wide range of ocular diseases, such as diabetic retinopathy (DR) and age-related macular degeneration (AMD). The exact mechanism underlying the pathogenesis of ocular NV is not yet well understood, and as a consequence, there is no satisfactory therapy for ocular NV. In the last 10 years, a number of studies provided increasing evidence demonstrating that the imbalance between angiogenic stimulating factors and angiogenic inhibitors is a major contributor to the angiogenesis induced by various insults, such as hypoxia or ischemia, inflammation and tumor. The angiogenic inhibitors alone or in combination with other existing therapies are, therefore, believed to be promising in the treatment of ocular NV in the near future. This article reviews recent progress in studies on the mechanisms and treatment of ocular NV, focusing on the implication and therapeutic potential of endogenous angiogenic inhibitors in ocular NV.
Collapse
Affiliation(s)
- Sarah X Zhang
- Department of Medicine Endocrinology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | | |
Collapse
|
189
|
Cao Y, Liu Q. Therapeutic Targets of Multiple Angiogenic Factors for the Treatment of Cancer and Metastasis. Adv Cancer Res 2007; 97:203-24. [PMID: 17419947 DOI: 10.1016/s0065-230x(06)97009-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Like any growing healthy tissues, tumors build up their blood vessels by three mechanisms: angiogenesis, vasculogenesis, and intersucception. Vascular endothelial growth factor-A (VEGF-A) is one of the key factors responsible for stimulation and maintenance of the disorganized, leaky, and torturous tumor vasculature. In addition to VEGF-A, tumors produce multiple other factors to stimulate blood vessel growth. These include members in the platelet-derived growth factor (PDGF), fibroblast growth factor (FGF), VEGF-C, insulin-like growth factor (IGF), angiopoietin (Ang), and hepatocyte growth factor (HGF) families. Recent studies show that these angiogenic factors can also promote lymphangiogenesis and potentially lymphatic metastasis. Understanding the roles of individual and combined angiogenic factors in promoting tumor angiogenesis is crucial for defining therapeutic targets and antiangiogenic drug development for the treatment of cancer.
Collapse
Affiliation(s)
- Yihai Cao
- Laboratory of Angiogenesis Research, Microbiology and Tumor Biology Center, Karolinska Institutet, 171 77 Stockholm, Sweden
| | | |
Collapse
|
190
|
Yonally SK, Capaldi RA. The F1F0 ATP synthase and mitochondrial respiratory chain complexes are present on the plasma membrane of an osteosarcoma cell line: An immunocytochemical study. Mitochondrion 2006; 6:305-14. [PMID: 17113362 DOI: 10.1016/j.mito.2006.10.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2006] [Revised: 08/28/2006] [Accepted: 10/04/2006] [Indexed: 11/22/2022]
Abstract
F(1)F(0) ATP synthase is ectopically expressed on the surface of several cell types, including endothelium and cancer cells. This study uses immunocytochemical detection methods via highly specific monoclonal antibodies to explore the possibility of plasma membrane localization of other mitochondrial proteins using an osteosarcoma cell line in which the location of the mitochondrial reticulum can be clearly traced by green fluorescent protein tagging of the organelle. We found that subunits of three of the four respiratory chain complexes were present on the surface of these cells. Additionally, we show for the first time that F(0) subunits d and OSCP of the ATP synthase are ectopically expressed. In all cases the OXPHOS proteins show a punctate distribution, consistent with data from proteome analysis of isolated lipid rafts that place the various mitochondrial proteins in plasma membrane microdomains. We also examined the cell surface for marker membrane proteins from several other intracellular organelles including ER, golgi and nuclear envelope. They were not found on the surface of the osteosarcoma cells. We conclude that mitochondrial membrane proteins are ectopically expressed, but not proteins from other cellular organelles. A specific mechanism by which the mitochondrion and plasma membrane fuse to deliver organellar proteins is suggested.
Collapse
Affiliation(s)
- Sarah K Yonally
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403-1229, United States
| | | |
Collapse
|
191
|
Campostrini N, Marimpietri D, Totolo A, Mancone C, Fimia GM, Ponzoni M, Righetti PG. Proteomic analysis of anti-angiogenic effects by a combined treatment with vinblastine and rapamycin in an endothelial cell line. Proteomics 2006; 6:4420-31. [PMID: 16888724 DOI: 10.1002/pmic.200600119] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Angiogenesis controls the new blood supply routes into the tumor mass via the host endothelial cells (ECs). In this study, the EA.hy926 endothelial cell line has been treated with vinblastine (VBL) and rapamycin (RAP), both separately and in combination at low doses. Recently, we demonstrated the synergistic antiangiogenic effects of a combination of VBL and RAP at very low doses in vitro and in vivo. Herein, we confirm the ability of this combined treatment to statistically inhibit the proliferation of ECs, in a synergistic manner, by inducing apoptosis. The aim of this study was to substantiate these findings at the protein level. Differential proteomic analysis was performed on untreated control cells, treated with VBL, incubated with RAP, or subjected to a drug combination. Differentially expressed 113 polypeptide chains were visualized and 65 were identified via MALDI-TOF analysis. Some of the regulated proteins are involved in the processes of angiogenesis, proliferation, migration, and apoptosis. The down-modulation of ATP synthase, annexin A2, heat shock p70, glucose-6-phosphate dehydrogenase, vasodilator-stimulated phosphoprotein, proteasome 26S, tryptophanyl-tRNA synthetase, and stathmin/OP18, as well as the up-modulation of carbonyl reductase, Rho-GDI, and histone H1.0 correlates with the synergistic antiangiogenic activity of VBL and RAP.
Collapse
Affiliation(s)
- Natascia Campostrini
- Department of Agricultural and Industrial Biotechnologies, University of Verona, Verona, Italy
| | | | | | | | | | | | | |
Collapse
|
192
|
Sharma MR, Rothman V, Tuszynski GP, Sharma MC. Antibody-directed targeting of angiostatin's receptor annexin II inhibits Lewis Lung Carcinoma tumor growth via blocking of plasminogen activation: Possible biochemical mechanism of angiostatin's action. Exp Mol Pathol 2006; 81:136-45. [PMID: 16643891 DOI: 10.1016/j.yexmp.2006.03.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2005] [Revised: 12/09/2005] [Accepted: 03/06/2006] [Indexed: 10/24/2022]
Abstract
Angiostatin, the N-terminal four kringles (K1-4) of parent molecule plasminogen, is reported to block Lewis Lung Carcinoma (LLC) tumor growth and metastasis. However, angiostatin's mechanism of action is unclear. We earlier reported that angiostatin binds to cell surface annexin II through the lysine-binding domain (kringles 1-4) [Tuszynski, G.P., Sharma, M., Rothman, V.L., Sharma, M.C., 2002. Angiostatin binds to tyrosine kinase substrate annexin II through the lysine-binding domain in endothelial cells. Microvasc. Res. 64:448-462.]). We now show that annexin II on the cell surface of LLC cells regulates conversion of plasminogen to plasmin. Activation of plasminogen to plasmin is time-dependent, with the linear activation lasting up to 120 min. Monoclonal antibodies to annexin II reduced plasminogen activation by 92.6%, suggesting a specific role of annexin II in plasmin generation. Angiostatin also reduced plasmin generation by 81.6%, suggesting that angiostatin may be competing with plasminogen through lysine-binding domain. epsilon-Aminocaproic acid, a lysine analogue, effectively blocked plasminogen activation indicating that, indeed, the lysine-binding site of the kringles domain is required for activation. These data suggest that annexin II may be a receptor target for angiostatin's action. Therefore, we tested the effect of high affinity monoclonal antibody to annexin II in mouse model of LLC. A single dose of antibody treatment inhibited LLC tumor growth almost 70% with concomitant inhibition of circulating plasmin generation and its proteolytic activity. Taken together, it is possible that inhibition of LLC tumor growth and metastasis reported by angiostatin therapy may be due to blocking of annexin-II-dependent plasmin generation. Plasmin is known to influence angiogenic, invasive and metastatic capability of tumors.
Collapse
|
193
|
Konigshofer Y, Chien YH. γδ T cells — innate immune lymphocytes? Curr Opin Immunol 2006; 18:527-33. [PMID: 16879956 DOI: 10.1016/j.coi.2006.07.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2006] [Accepted: 07/19/2006] [Indexed: 11/28/2022]
Abstract
It is unclear what the antigen recognition determinants of gammadelta T-cell receptors (TCRs) are. Compared with immunoglobulin and alphabeta TCRs, gammadelta TCRs have the highest potential CDR3 diversity generated by VDJ recombination. However, gammadelta T-cell reactivities seem to segregate with V gene usage, which has been taken to suggest that rearrangement has little role in generating different antigen specificities. During the past year, the CDR3 regions were found to determine the antigen specificities of T10- and T22-reactive gammadelta TCRs, a surface protein complex was identified as a ligand for human phosphoantigen-reactive gammadelta T cells, and the first co-crystal structure of a gammadelta TCR bound to its ligand was reported. These advances warrant a fresh look at gammadelta T-cell antigen recognition.
Collapse
Affiliation(s)
- Yves Konigshofer
- The Department of Microbiology and Immunology, Stanford University, Beckman B255, Stanford, CA 94305, USA
| | | |
Collapse
|
194
|
Young N, Hahn CN, Poh A, Dong C, Wilhelm D, Olsson J, Muscat GEO, Parsons P, Gamble JR, Koopman P. Effect of disrupted SOX18 transcription factor function on tumor growth, vascularization, and endothelial development. J Natl Cancer Inst 2006; 98:1060-7. [PMID: 16882943 DOI: 10.1093/jnci/djj299] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The growth of solid tumors depends on establishing blood supply; thus, inhibiting tumor angiogenesis has been a long-term goal in cancer therapy. The SOX18 transcription factor is a key regulator of murine and human blood vessel formation. METHODS We established allograft melanoma tumors in wild-type mice, Sox18-null mice, and mice expressing a dominant-negative form of Sox18 (Sox18RaOp) (n = 4 per group) and measured tumor growth and microvessel density by immunohistochemical analysis with antibodies to the endothelial marker CD31 and the pericyte marker NG2. We also assessed the affects of disrupted SOX18 function on MCF-7 human breast cancer and human umbilical vein endothelial cell (HUVEC) proliferation by measuring BrdU incorporation and by MTS assay, cell migration using Boyden chamber assay, and capillary tube formation in vitro. All statistical tests were two-sided. RESULTS Allograft tumors in Sox18-null and Sox18RaOp mice grew more slowly than those in wild-type mice (tumor volume at day 14, Sox18 null, mean = 486 mm3, 95% confidence interval [CI] = 345 mm3 to 627 mm3, P = .004; Sox18RaOp, mean = 233 mm3, 95% CI = 73 mm3 to 119 mm3, P<.001; versus wild-type, mean = 817 mm3, 95% CI = 643 mm3 to 1001 mm3) and had fewer CD31- and NG2-expressing vessels. Expression of dominant-negative Sox18 reduced the proliferation of MCF-7 cells (BrdU incorporation: MCF-7(Ra) = 20%, 95% CI = 15% to 25% versus MCF-7 = 41%, 95% CI = 35% to 45%; P = .013) and HUVECs (optical density at 490 nm, empty vector, mean = 0.46 versus SOX18 mean = 0.29; difference = 0.17, 95% CI = 0.14 to 0.19; P = .001) compared with control subjects. Overexpression of wild-type SOX18 promoted capillary tube formation of HUVECs in vitro, whereas expression of dominant-negative SOX18 impaired tube formation of HUVECs and the migration of MCF-7 cells via the disruption of the actin cytoskeleton. CONCLUSIONS SOX18 is a potential target for antiangiogenic therapy of human cancers.
Collapse
Affiliation(s)
- Neville Young
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
195
|
Quillen EE, Haslam GC, Samra HS, Amani-Taleshi D, Knight JA, Wyatt DE, Bishop SC, Colvert KK, Richter ML, Kitos PA. Ectoadenylate Kinase and Plasma Membrane ATP Synthase Activities of Human Vascular Endothelial Cells. J Biol Chem 2006; 281:20728-20737. [PMID: 16714292 DOI: 10.1074/jbc.m513042200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Formation of ATP from ADP on the external surface of vascular endothelial cells has been attributed to plasma membrane ATP synthase, ectoadenylate kinase (ecto-AK), and/or ectonucleoside diphosphokinase. These enzymes or their catalytic products have been causatively linked to the elaboration of vascular networks and the regulation of capillary function. The amount of ATP generated extracellularly is small, requiring sensitive analytical methods for quantification. Human umbilical vein endothelial cells were used to revisit extracellular ATP synthesis using a reliable tetrazolium reduction assay and multiwell plate cultures. Test conditions compatible with AK stability were established. Extracellular AK activity was found to be <1% of the total (intracellular and extracellular), raising the possibility that the external enzyme could have leaked from living cells and/or a few dying cells. To determine whether AK inadvertently leaked from the cells, the activity of another cytoplasmic enzyme, glucose-6-phosphate dehydrogenase (G6PD), was also measured. G6PD is present in the cytoplasm in similar abundance to AK. The activity ratio of G6PD (extracellular/total) was found to be similar to that of AK. Because G6PD in the medium was probably due to leakage, other cytoplasmic macromolecules, including AK, should be released proportionately from the cells. The role of plasma membrane ATP synthase in extracellular ATP formation was examined using Hanks' balanced salt solution with and without selective inhibitors of AK and ATP synthase activities. With P(1),P(5)-di(adenosine 5')-pentaphosphate (inhibitor of AK activity), no extracellular ATP synthesis was detected, whereas with oligomycin, piceatannol, and aurovertin (inhibitors of F(1)F(0)-ATP synthase and F(1)-ATPase activities), no inhibition of extracellular ATP synthesis was observed. AK activity alone could account for the observed extracellular ATP synthesis. The possible impact of ADP impurity in the assays is discussed.
Collapse
Affiliation(s)
- Ellen E Quillen
- Department of Molecular Biosciences, Kansas University, Lawrence, Kansas 66045-7534
| | - Gale C Haslam
- Department of Molecular Biosciences, Kansas University, Lawrence, Kansas 66045-7534
| | - Hardeep S Samra
- Department of Molecular Biosciences, Kansas University, Lawrence, Kansas 66045-7534
| | - Darius Amani-Taleshi
- Department of Molecular Biosciences, Kansas University, Lawrence, Kansas 66045-7534
| | - Jeffrey A Knight
- Department of Molecular Biosciences, Kansas University, Lawrence, Kansas 66045-7534
| | - Diane E Wyatt
- Department of Molecular Biosciences, Kansas University, Lawrence, Kansas 66045-7534
| | - Stephanie C Bishop
- Department of Molecular Biosciences, Kansas University, Lawrence, Kansas 66045-7534
| | - Kim K Colvert
- Department of Physical Sciences, Ferris State University, Big Rapids, Michigan 49307
| | - Mark L Richter
- Department of Molecular Biosciences, Kansas University, Lawrence, Kansas 66045-7534.
| | - Paul A Kitos
- Department of Molecular Biosciences, Kansas University, Lawrence, Kansas 66045-7534
| |
Collapse
|
196
|
Kim KB, Lee JW, Lee CS, Kim BW, Choo HJ, Jung SY, Chi SG, Yoon YS, Yoon G, Ko YG. Oxidation-reduction respiratory chains and ATP synthase complex are localized in detergent-resistant lipid rafts. Proteomics 2006; 6:2444-53. [PMID: 16526083 DOI: 10.1002/pmic.200500574] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In order to detect and identify ubiquitous lipid raft marker proteins, we isolated lipid rafts from different mouse organs, including the liver, lung, large brain, and kidney, and analyzed their proteins via 2-DE. Many protein spots were determined to be ubiquitous in all of the lipid rafts, and were annotated via LC and MS/MS. Twelve proteins were identified as ubiquitous raft proteins, and most of these were determined to be mitochondrial proteins, including mortalin, prohibitin, voltage-dependent anion channel, ATP synthase, NADH dehydrogenase, and ubiquinol-cytochrome c reductase. Via immunoblotting, these proteins were shown to exist in detergent-resistant lipid rafts prepared using different organ tissues. Since these oxidation-reduction respiratory chains and ATP synthase complex were detected in detergent-resistant lipid raft fractions which had been isolated from the plasma membrane but not from the mitochondria, and found in the cell surface when determined by immunofluoresence and immunohistochemistry, we conclude that plasma membrane lipid rafts might contain oxidation-reduction respiratory chains and ATP synthase complex.
Collapse
Affiliation(s)
- Ki-Bum Kim
- School of Life Sciences and Biotechnology, Korea University, Anam-Dong, Sungbook-Ku, Seoul, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
197
|
Balaggan KS, Binley K, Esapa M, MacLaren RE, Iqball S, Duran Y, Pearson RA, Kan O, Barker SE, Smith AJ, Bainbridge JWB, Naylor S, Ali RR. EIAV vector-mediated delivery of endostatin or angiostatin inhibits angiogenesis and vascular hyperpermeability in experimental CNV. Gene Ther 2006; 13:1153-65. [PMID: 16572190 DOI: 10.1038/sj.gt.3302769] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We evaluated the efficacy of equine infectious anaemia virus (EIAV)-based lentiviral vectors encoding endostatin (EIAV.endostatin) or angiostatin (EIAV.angiostatin) in inhibiting angiogenesis and vascular hyperpermeability in the laser-induced model of choroidal neovascularisation (CNV). Equine infectious anaemia virus.endostatin, EIAV.angiostatin or control (EIAV.null) vectors were administered into the subretinal space of C57Bl/6J mice. Two weeks after laser injury CNV areas and the degree of vascular hyperpermeability were measured by image analysis of in vivo fluorescein angiograms. Compared with EIAV.null-injected eyes, EIAV.endostatin resulted in a 59.5% (P<0.001) reduction in CNV area and a reduction in hyperpermeability of 25.6% (P<0.05). Equine infectious anaemia virus.angiostatin resulted in a 50.0% (P<0.05) reduction in CNV area and a 23.9% (P<0.05) reduction in hyperpermeability. Equine infectious anaemia virus.endostatin, but not EIAV.angiostatin significantly augmented the frequency of apoptosis within the induced CNV as compared with injected controls. TdT-dUTP terminal nick end labeling analysis 5 weeks post-injection, and histological and retinal flatmount analysis 12 months post-injection revealed no evidence of vector- or transgene expression-related deleterious effects on neurosensory retinal cells, or mature retinal vasculature in non-lasered eyes. Highly expressing EIAV-based vectors encoding endostatin or angiostatin effectively control angiogenesis and hyperpermeability in experimental CNV without long-term deleterious effects, supporting the use of such a strategy in the management of patients with exudative age-related macular degeneration.
Collapse
Affiliation(s)
- K S Balaggan
- Division of Molecular Therapy, Institute of Ophthalmology, London, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
198
|
Champagne E, Martinez LO, Collet X, Barbaras R. Ecto-F1Fo ATP synthase/F1 ATPase: metabolic and immunological functions. Curr Opin Lipidol 2006; 17:279-84. [PMID: 16680033 DOI: 10.1097/01.mol.0000226120.27931.76] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Until recently, F1Fo ATP synthase expression was believed to be strictly confined to mitochondria where it generates most cellular ATP. This paper reviews the recent evidence for an extra-mitochondrial expression of its components by immunofluorescence, biochemistry and proteomics studies. It discusses its possible implications in an ecto-nucleotide metabolism and its pathophysiological role in normal and tumoral cells. RECENT FINDINGS F1Fo ATP synthase components have been identified as cell-surface receptors for apparently unrelated ligands in the course of studies carried out on angiogenesis, lipoprotein metabolism, innate immunity, hypertension, or regulation of food intake. SUMMARY F1Fo ATP synthase is expressed on endothelial cells where it binds angiostatin, regulates surface ATP levels, and modulates endothelial cell proliferation and differentiation. Through binding of apolipoprotein A-I, a similar complex, expressed on hepatocytes, regulates lipoprotein internalization. On tumors, it is recognized in association with apolipoprotein A-I by the antigen receptor of circulating cytotoxic lymphocytes of the gammadelta subtype and thus promotes an innate tumor cell recognition and lysis. It binds enterostatin on brain cells. Biochemistry and proteomics studies indicate an enrichment of F1Fo components in lipid rafts selectively with some other mitochondrial proteins, suggesting intracellular traffic connections between mitochondria and other membrane compartments. Finally, depending on cell type and environment, it can generate ATP or ADP which may transfer a downstream signal to purinergic receptors.
Collapse
|
199
|
Jurasz P, Santos-Martinez MJ, Radomska A, Radomski MW. Generation of platelet angiostatin mediated by urokinase plasminogen activator: effects on angiogenesis. J Thromb Haemost 2006; 4:1095-106. [PMID: 16689764 DOI: 10.1111/j.1538-7836.2006.01878.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Angiogenesis, the growth of new capillaries from pre-existing blood vessels, is regulated by a balance between its promoters and inhibitors. Platelets are an important circulating store of angiogenesis regulators. We have previously identified the angiogenesis inhibitor angiostatin in human platelets. AIM To identify the mechanism of platelet angiostatin generation and its pharmacological regulation. METHODS Platelet aggregometry, flow cytometry, Western blot, zymography, immunofluorescence microscopy, matrigel-induced angiogenesis of human umbilical vein endothelial cells (HUVECs), and a panel of selective proteinase inhibitors were used to study the mechanism of angiostatin generation by platelets, its pharmacological regulation, and effects on angiogenesis. Release of pro-MMP-2 by HUVECs was also used to quantify angiogenesis. RESULTS Platelet membranes were identified as the site of angiostatin generation from plasminogen. Generation of angiostatin by platelet membranes was not affected by a matrix metalloproteinase (MMP) inhibitor, phenanthroline, but was inhibited by serine proteinase inhibitors aprotinin, leupeptin, plasminogen activator inhibitor-1, and selective inhibitor of urokinase plasminogen activator (uPA), uPA-STOP(TM). Angiostatin generation by intact platelets was inhibited by aprotinin, and the resulting incubate promoted angiogenesis to a greater extent than incubate where angiostatin generation occurred. Furthermore, HUVECs incubated with reaction mixture, where angiostatin generation was inhibited, released more pro-MMP-2 than HUVECs incubated with supernatants, where angiostatin generation occurred. CONCLUSIONS We conclude that; (i) platelets constitutively generate angiostatin on their membranes; (ii) this mechanism is dependent on uPA, but not, MMPs; and (iii) inhibition of platelet angiostatin generation can further promote angiogenesis.
Collapse
Affiliation(s)
- P Jurasz
- Institute of Molecular Medicine for the Prevention of Human Diseases, Vascular Biology Section, University of Texas Health Sciences Center at Houston, Houston, TX 77030, USA.
| | | | | | | |
Collapse
|
200
|
Youn MR, Park MH, Choi CK, Ahn BC, Kim HY, Kang SS, Hong YK, Joe YA, Kim JS, You WK, Lee HS, Chung SI, Chang SI. Direct binding of recombinant plasminogen kringle 1–3 to angiogenin inhibits angiogenin-induced angiogenesis in the chick embryo CAM. Biochem Biophys Res Commun 2006; 343:917-23. [PMID: 16564503 DOI: 10.1016/j.bbrc.2006.03.043] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2006] [Accepted: 03/06/2006] [Indexed: 10/24/2022]
Abstract
Angiogenin is one of the most potent angiogenesis-inducing proteins. Angiostatin is one of the most potent angiogenesis inhibitors, and it contains the first four kringle domains of plasminogen (K1-4). Recombinant human plasminogen kringle 1-3 (rK1-3) was expressed in Escherichia coli and purified to homogeneity. The binding of t-4-aminomethylcyclohexanecarboxylic acid with the purified kringle 1-3 was determined by changes in intrinsic fluorescence. rK1-3 exhibits comparable ligand-binding properties as native human plasminogen kringle 1-3. The purified rK1-3 inhibits neovascularization in the chick embryo chorioallantoic membrane (CAM) assay. Interaction of angiogenin with rK1-3 was examined by immunological binding assay and surface plasmon resonance kinetic analysis, and the equilibrium dissociation constants for the complex, Kd, are 0.89 and 0.18 microM, respectively. rK1-3 inhibits angiogenin-induced angiogenesis in the chick embryo CAM in a concentration-dependent manner. These results indicate that rK1-3 directly binds to angiogenin and thus rK1-3 inhibits the angiogenic activity of angiogenin.
Collapse
Affiliation(s)
- Mi-Ran Youn
- Department of Biochemistry, Chungbuk National University, Cheongju 361-763, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|