151
|
Holmberg JC, Haddad S, Wünsche V, Yang Y, Aldo PB, Gnainsky Y, Granot I, Dekel N, Mor G. An in vitro model for the study of human implantation. Am J Reprod Immunol 2012; 67:169-78. [PMID: 22151560 PMCID: PMC3703643 DOI: 10.1111/j.1600-0897.2011.01095.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
PROBLEM Implantation remains the rate-limiting step for the success of in vitro fertilization. Appropriate models to study the molecular aspects of human implantation are necessary in order to improve fertility. METHODS First trimester trophoblast cells are differentiated into blastocyst-like spheroids (BLS) by culturing them in low attachment plates. Immortalized human endometrial stromal cells and epithelial cells (ECC-1) were stably transfected with GFP or tdTomato. Co-culture experiments were monitored using Volocity imaging analysis system. RESULTS This method demonstrates attachment and invasion of BLS, formed by trophoblast cells, into stromal cells, but not to uterine epithelial cells. CONCLUSION We have developed an in vitro model of uterine implantation. The manipulation of this system allows for dual color monitoring of the cells over time. Additionally, specific compounds can be added to the culture media to test how this may affect implantation and invasion. This model is a helpful tool in understanding the complexity of human implantation.
Collapse
Affiliation(s)
- Jennie C. Holmberg
- Department of Obstetrics and Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven CT 06510
| | - Severina Haddad
- Department of Obstetrics and Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven CT 06510
| | - Vera Wünsche
- Department of Obstetrics and Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven CT 06510
| | - Yang Yang
- Department of Obstetrics and Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven CT 06510
| | - Paulomi B. Aldo
- Department of Obstetrics and Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven CT 06510
| | - Yulia Gnainsky
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, 76100 Israel
| | - Irit Granot
- Department of Obstetrics and Gynecology, IVF Unit, Kaplan Medical Center, Rehovot, 76100 Israel
| | - Nava Dekel
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, 76100 Israel
| | - Gil Mor
- Department of Obstetrics and Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven CT 06510
| |
Collapse
|
152
|
Low-molecular-weight heparins induce decidual heparin-binding epidermal growth factor–like growth factor expression and promote survival of decidual cells undergoing apoptosis. Fertil Steril 2012; 97:169-77.e1. [DOI: 10.1016/j.fertnstert.2011.10.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 10/17/2011] [Accepted: 10/20/2011] [Indexed: 01/12/2023]
|
153
|
Harendra GG, Jayasekara RW, Dissanayake VHW. Haplotypes of heparin-binding epidermal-growth-factor-like growth factor gene are associated with pre-eclampsia. J Obstet Gynaecol Res 2011; 38:239-46. [DOI: 10.1111/j.1447-0756.2011.01700.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
154
|
Straub RH, Cutolo M, Fleck M. Rheumatoid Arthritis Recapitulates Events Relevant in Blastocyst Implantation and Embryogenesis: A Pathogenetic Theory. Semin Arthritis Rheum 2011; 41:382-92. [DOI: 10.1016/j.semarthrit.2011.04.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Revised: 04/05/2011] [Accepted: 04/18/2011] [Indexed: 01/07/2023]
|
155
|
Daikoku T, Cha J, Sun X, Tranguch S, Xie H, Fujita T, Hirota Y, Lydon J, DeMayo F, Maxson R, Dey SK. Conditional deletion of Msx homeobox genes in the uterus inhibits blastocyst implantation by altering uterine receptivity. Dev Cell 2011; 21:1014-25. [PMID: 22100262 DOI: 10.1016/j.devcel.2011.09.010] [Citation(s) in RCA: 171] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Revised: 08/31/2011] [Accepted: 09/20/2011] [Indexed: 12/15/2022]
Abstract
An effective bidirectional communication between an implantation-competent blastocyst and the receptive uterus is a prerequisite for mammalian reproduction. The blastocyst will implant only when this molecular cross-talk is established. Here we show that the muscle segment homeobox gene (Msh) family members Msx1 and Msx2, which are two highly conserved genes critical for epithelial-mesenchymal interactions during development, also play crucial roles in embryo implantation. Loss of Msx1/Msx2 expression correlates with altered uterine luminal epithelial cell polarity and affects E-cadherin/β-catenin complex formation through the control of Wnt5a expression. Application of Wnt5a in vitro compromised blastocyst invasion and trophoblast outgrowth on cultured uterine epithelial cells. The finding that Msx1/Msx2 genes are critical for conferring uterine receptivity and readiness to implantation could have clinical significance, because compromised uterine receptivity is a major cause of pregnancy failure in IVF programs.
Collapse
Affiliation(s)
- Takiko Daikoku
- Division of Reproductive Sciences, Perinatal Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
156
|
Migone FF, Ren Y, Cowan RG, Harman RM, Nikitin AY, Quirk SM. Dominant activation of the hedgehog signaling pathway alters development of the female reproductive tract. Genesis 2011; 50:28-40. [PMID: 21809434 DOI: 10.1002/dvg.20786] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 06/08/2011] [Accepted: 07/01/2011] [Indexed: 12/16/2022]
Abstract
The role of hedgehog (HH) signaling in reproductive tract development was studied in mice in which a dominant active allele of the signal transducer smoothened (SmoM2) was conditionally expressed in the Müllerian duct and ovary. Mutant females are infertile, primarily because they fail to ovulate. Levels of mRNA for targets of HH signaling, Gli1, Ptch1, and Hhip, were elevated in reproductive tracts of 24-day-old mutant mice, confirming overactivation of HH signaling. The tracts of mutant mice developed abnormally. The uterine luminal epithelium had a simple columnar morphology in control mice, but in mutants contained stratified squamous cells typical of the cervix and vagina. In mutant mice, the number of uterine glands were reduced and the oviducts were not coiled. Expression of genes within the Hox and Wnt families that regulate patterning of the reproductive tract were altered. Hoxa13, which is normally expressed primarily in the vagina and cervix, was expressed at 12-fold higher levels in the uterus of mutant mice compared with controls. Wnt5a, which is required for development of the cervix and vagina and postnatal differentiation of the uterus, was expressed at higher levels in the oviduct and uterus of mutant mice compared with controls. Mating mutant females with fertile or vasectomized males induced a severe inflammatory response in the tract. In summary, overactivation of HH signaling causes aberrant development of the reproductive tract. The phenotype observed could be mediated by ectopic expression of Hoxa13 in the uterus and elevated levels of Wnt5a in the oviducts and uterus.
Collapse
Affiliation(s)
- Fernando F Migone
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York
| | | | | | | | | | | |
Collapse
|
157
|
Berlanga O, Bradshaw H, Vilella-Mitjana F, Garrido-Gómez T, Simón C. How endometrial secretomics can help in predicting implantation. Placenta 2011; 32 Suppl 3:S271-5. [DOI: 10.1016/j.placenta.2011.06.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 06/01/2011] [Accepted: 06/02/2011] [Indexed: 01/06/2023]
|
158
|
Velazquez MA, Hadeler KG, Herrmann D, Kues WA, Ulbrich SE, Ulbrich S, Meyer HHD, Rémy B, Beckers JF, Sauerwein H, Niemann H. In vivo oocyte developmental competence is reduced in lean but not in obese superovulated dairy cows after intraovarian administration of IGF1. Reproduction 2011; 142:41-52. [PMID: 21543511 DOI: 10.1530/rep-10-0512] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The present study investigated the role of IGF1 in lactating lean and non-lactating obese dairy cows by injecting 1 μg IGF1 into the ovaries prior to superovulation. This amount of IGF1 has been linked with pregnancy loss in women with the polycystic ovary syndrome (PCOS) and was associated with impaired bovine oocyte competence in vitro. Transcript abundance and protein expression of selected genes involved in apoptosis, glucose metabolism, and the IGF system were analyzed. Plasma concentrations of IGF1 and leptin, and IGF1 in uterine luminal fluid (ULF), were also measured. IGF1 treatment decreased embryo viability in lean cows to the levels observed in obese cows. Obese cows were not affected by IGF1 treatment and showed elevated levels of IGF1 (in both plasma and ULF) and leptin. Blastocysts from lean cows treated with IGF1 showed a higher abundance of SLC2A1 and IGFBP3 transcripts. IGF1 treatment reduced protein expression of tumor protein 53 in blastocysts of lean cows, whereas the opposite was observed in obese cows. IGF1 in plasma and ULF was correlated only in the control groups. Blastocyst transcript abundance of IGF1 receptor and IGFBP3 correlated positively with IGF1 concentrations in both plasma and ULF in lean cows. The detrimental microenvironment created by IGF1 injection in lean cows and the lack of effect in obese cows resemble to a certain extent the situation observed in PCOS patients, where IGF1 bioavailability is increased in normal-weight women but reduced in obese women, suggesting that this bovine model could be useful for studying IGF1 involvement in PCOS.
Collapse
Affiliation(s)
- Miguel A Velazquez
- Department of Biotechnology, Friedrich-Loeffler-Institut (FLI), Neustadt, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
159
|
Abstract
A signaling pathway connects ovarian hormones to preparation of the mammalian uterus for pregnancy.
Collapse
Affiliation(s)
- Sylvia C. Hewitt
- National Institute of Environmental Health Science, National Institutes
of Health, Research Triangle Park, NC 27709, USA
| | - Kenneth S. Korach
- National Institute of Environmental Health Science, National Institutes
of Health, Research Triangle Park, NC 27709, USA
| |
Collapse
|
160
|
Sinclair DC, Mastroyannis A, Taylor HS. Leiomyoma simultaneously impair endometrial BMP-2-mediated decidualization and anticoagulant expression through secretion of TGF-β3. J Clin Endocrinol Metab 2011; 96:412-421. [PMID: 21084396 PMCID: PMC3048319 DOI: 10.1210/jc.2010-1450] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Accepted: 10/05/2010] [Indexed: 11/19/2022]
Abstract
CONTEXT Uterine leiomyomas occur in 30-70% of reproductive-age women. Leiomyoma reduce implantation, increase miscarriage risk, and increase menstrual bleeding. We hypothesized that endometrial defects induced by leiomyoma result in menorrhagia and reproductive dysfunction. OBJECTIVES We evaluated the effect of leiomyoma on endometrial gene expression essential for implantation and hemostasis both in vivo and in primary endometrial stromal cells (ESC). DESIGN AND SETTING We conducted a case control and in vitro study at a university medical center. PATIENTS The study included 24 subjects with or without leiomyoma. INTERVENTION/MAIN OUTCOME MEASURED: Endometrium, myometrium, leiomyoma, and ESC were obtained. Immunohistochemistry was used to evaluate TGF-β3, bone morphogenetic protein (BMP) receptors (BMPRs), plasminogen activator inhibitor 1 (PAI-1), and thrombomodulin in vivo. BMP-2 secretion was assessed by ELISA. ESC were treated with recombinant human (rh) BMP-2 or rhTGF-β3. Expression of HOXA10, LIF, BMPRs, antithrombin III (ATIII), thrombomodulin, and PAI-1 was assessed by quantitative RT-PCR. RESULTS ESC from controls secreted more BMP-2 than those from women with leiomyoma. HOXA10 and LIF expression increased after rhBMP-2 treatment of normal but not leiomyoma-associated ESC. In vivo leiomyoma-associated endometrium expressed lower levels of BMPR 1A, 1B, and 2 than controls. Leiomyoma expressed high levels of TGF-β3; TGF-β3 treatment of ESC reduced expression of BMPRs. Similarly, leiomyoma-associated endometrium expressed less PAI-1 and thrombomodulin in vivo. In ESC, TGF-β3 reduced expression of PAI-1, ATIII, and thrombomodulin. CONCLUSIONS Leiomyoma-secreted TGF-β3 induces BMP-2 resistance in endometrium by down-regulation of BMPR-2, likely causing defective endometrial decidualization. TGF-β3 also reduces expression of PAI-1, ATIII, and thrombomodulin in endometrium, likely contributing to menorrhagia. A single molecular signal targeting endometrium may mediate both leiomyoma-induced infertility and bleeding.
Collapse
Affiliation(s)
- Donna C Sinclair
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06520, USA
| | | | | |
Collapse
|
161
|
Blois SM, Klapp BF, Barrientos G. Decidualization and angiogenesis in early pregnancy: unravelling the functions of DC and NK cells. J Reprod Immunol 2011; 88:86-92. [PMID: 21227511 DOI: 10.1016/j.jri.2010.11.002] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 10/29/2010] [Accepted: 11/04/2010] [Indexed: 11/28/2022]
Abstract
Differentiation of endometrial stromal cells and formation of new maternal blood vessels at the time of embryo implantation are critical for the establishment and maintenance of gestation. The regulatory functions of decidual leukocytes during early pregnancy, particularly dendritic cells (DC) and NK cells, may be important not only for the generation of maternal immunological tolerance but also in the regulation of stromal cell differentiation and the vascular responses associated with the implantation process. However, the specific contributions of DC and NK cells during implantation are still difficult to dissect mainly due to reciprocal regulatory interactions established between them within the decidualizing microenvironment. The present review article discusses current evidence on the regulatory pathways driving decidualization in mice, suggesting that NK cells promote uterine vascular modifications that assist decidual growth but DC directly control stromal cell proliferation, angiogenesis and the homing and maturation of NK cell precursors in the pregnant uterus. Thus, successful implantation appears to result from an interplay between cellular components of the decidualizing endometrium involving immunoregulatory and pro-angiogenic functions of DC and NK cells.
Collapse
Affiliation(s)
- Sandra M Blois
- Charité Centrum 12 für Innere Medizin und Dermatologie, Reproductive Immunology Research Group, University Medicine of Berlin, Germany.
| | | | | |
Collapse
|
162
|
Heng S, Paule S, Hardman B, Li Y, Singh H, Rainczuk A, Stephens AN, Nie G. Posttranslational activation of bone morphogenetic protein 2 is mediated by proprotein convertase 6 during decidualization for pregnancy establishment. Endocrinology 2010; 151:3909-17. [PMID: 20555025 DOI: 10.1210/en.2010-0326] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Bone morphogenetic proteins (BMPs) require major posttranslational modifications to become biologically active. One such key modification is endoproteolytic cleavage of the initially synthesized nonactive precursor protein to release the mature ligand. Here we show in a physiological context of uterine stromal decidualization that BMP2 cleavage is mediated by proprotein convertase 5/6 (PC6). Decidualization is a uterine remodeling event critical for embryo implantation. Deletion or knockdown of either BMP2 or PC6 inhibits decidualization causing implantation failure and female infertility. In this study we provide biochemical and physiological evidence that PC6 proteolytically activates BMP2. We used freshly isolated primary human endometrial stromal cells and demonstrated that PC6 was the sole member of the PC family significantly up-regulated during decidualization. The precursor form of BMP2 was reduced, whereas its active form was increased during decidualization. Inhibition of PC6 activity inhibited decidualization, and this was accompanied by a total blockade of BMP2 activation. Addition of recombinant active BMP2 partially rescued the decidualization arrest caused by PC6 inhibition. PC6 processed BMP2 at the KREKR(282) downward arrow cleavage site, and mutating this site prevented the cleavage. This study thus demonstrates for the first time that the proteolytic activation and thus bioavailability of BMP2 is controlled by PC6.
Collapse
Affiliation(s)
- Sophea Heng
- Prince Henry's Institute of Medical Research, Clayton, Victoria 3168, Australia
| | | | | | | | | | | | | | | |
Collapse
|
163
|
Das SK. Regional development of uterine decidualization: molecular signaling by Hoxa-10. Mol Reprod Dev 2010; 77:387-96. [PMID: 19921737 DOI: 10.1002/mrd.21133] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Uterine decidualization, a key event in implantation, is critically controlled by stromal cell proliferation and differentiation. Although the molecular mechanism that controls this event is not well understood, the general consensus is that the factors derived locally at the site of implantation influence aspects of decidualization. Hoxa-10, a developmentally regulated homeobox transcription factor, is highly expressed in decidualizing stromal cells, and targeted deletion of Hoxa-10 in mice shows severe decidualization defects, primarily due to the reduced stromal cell responsiveness to progesterone (P(4)). While the increased stromal cell proliferation is considered to be an initiator of decidualization, the establishment of a full-grown functional decidua appears to depend on the aspects of regional proliferation and differentiation. In this regard, this article provides an overview of potential signaling mechanisms mediated by Hoxa-10 that can influence a host of genes and cell functions necessary for propagating regional decidual development.
Collapse
Affiliation(s)
- Sanjoy K Das
- Reproductive Sciences, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229-3039, USA.
| |
Collapse
|
164
|
Pabona JMP, Zeng Z, Simmen FA, Simmen RCM. Functional differentiation of uterine stromal cells involves cross-regulation between bone morphogenetic protein 2 and Kruppel-like factor (KLF) family members KLF9 and KLF13. Endocrinology 2010; 151:3396-406. [PMID: 20410205 PMCID: PMC2903926 DOI: 10.1210/en.2009-1370] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The inability of the uterine epithelium to enter a state of receptivity for the embryo to implant is a significant underlying cause of early pregnancy loss. We previously showed that mice null for the progesterone receptor (PGR)-interacting protein Krüppel-like factor (KLF) 9 are subfertile and exhibit reduced uterine progesterone sensitivity. KLF9 expression is high in predecidual stroma, undetectable in decidua, and enhanced in uteri of mice with conditional ablation of bone morphogenetic protein 2 (BMP2). Given the individual importance of KLF9 and BMP2 for implantation success, we hypothesized that the establishment of uterine receptivity involves KLF9 and BMP2 functional cross-regulation. To address this, we used early pregnant wild-type and Klf9 null mice and KLF9 small interfering RNA-transfected human endometrial stromal cells (HESCs) induced to differentiate under standard conditions. Loss of KLF9 in mice and HESCs enhanced BMP2 expression, whereas recombinant BMP2 treatment of HESCs attenuated KLF9 mRNA levels. IGFBP1 and KLF9-related KLF13 expression were positively associated with BMP2 and inversely associated with KLF9. Prolonged, but not short-term, knockdown of KLF9 in HESCs reduced IGFBP1 expression. Mouse uterine Igfbp1 expression was similarly reduced with Klf9 ablation. PGR-A and PGR-B expression were positively associated with KLF9 in predecidual HESCs but not decidualizing HESCs. KLF13 knockdown attenuated BMP2 and PGR-B and abrogated BMP2-mediated inhibition of KLF9 expression. Results support cross-regulation among BMP2, KLF9, and KLF13 to maintain progesterone sensitivity in stromal cells undergoing differentiation and suggest that loss of this regulatory network compromises establishment of uterine receptivity and implantation success.
Collapse
Affiliation(s)
- John Mark P Pabona
- Department of Physiology and Biophysics, and Arkansas Children's Nutrition Center, 15 Children's Way, Little Rock, AR 72202, USA
| | | | | | | |
Collapse
|
165
|
Abstract
Blastocyst implantation is a process of interaction between embryo and the uterus. To understand this process, this review tries to summarize what blastocyst implantation essential factors (BIEFs) play what roles, as well as where in the uterus and at what stage of implantation process. Addition of more new data to this kind of compilation of information will help the development of diagnosis and treatment of infertility caused by implantation failure. The major, important cells of the endometrial cells that interact with invading blastocyst (trophoblast) are luminal epithelial cells, stromal cells (decidual cells) and resident immune cells. BIEFs regulate these cells to successfully maintain pregnancy.
Collapse
Affiliation(s)
- Koji Yoshinaga
- Reproductive Sciences Branch, Center for Population Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, DHHS, MD 20892-7510, USA.
| |
Collapse
|
166
|
Lim HJ, Wang H. Uterine disorders and pregnancy complications: insights from mouse models. J Clin Invest 2010; 120:1004-15. [PMID: 20364098 DOI: 10.1172/jci41210] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Much of our knowledge of human uterine physiology and pathology has been extrapolated from the study of diverse animal models, as there is no ideal system for studying human uterine biology in vitro. Although it remains debatable whether mouse models are the most suitable system for investigating human uterine function(s), gene-manipulated mice are considered by many the most useful tool for mechanistic analysis, and numerous studies have identified many similarities in female reproduction between the two species. This Review brings together information from studies using animal models, in particular mouse models, that shed light on normal and pathologic aspects of uterine biology and pregnancy complications.
Collapse
Affiliation(s)
- Hyunjung Jade Lim
- Department of Biomedical Science and Technology, IBST, RCTC, Konkuk University, 1 Hwayang-dong, Kwangjin-gu, Seoul 143-701, Korea.
| | | |
Collapse
|
167
|
Hirota Y, Daikoku T, Tranguch S, Xie H, Bradshaw HB, Dey SK. Uterine-specific p53 deficiency confers premature uterine senescence and promotes preterm birth in mice. J Clin Invest 2010; 120:803-15. [PMID: 20124728 DOI: 10.1172/jci40051] [Citation(s) in RCA: 190] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Accepted: 12/09/2009] [Indexed: 01/26/2023] Open
Abstract
Many signaling pathways that contribute to tumorigenesis are also functional in pregnancy, although they are dysregulated in the former and tightly regulated in the latter. Transformation-related protein 53 (Trp53), which encodes p53, is a tumor suppressor gene whose mutation is strongly associated with cancer. However, its role in normal physiological processes, including female reproduction, is poorly understood. Mice that have a constitutive deletion of Trp53 exhibit widespread development of carcinogenesis at early reproductive ages, compromised spermatogenesis, and fetal exencephaly, rendering them less amenable to studying the role of p53 in reproduction. To overcome this obstacle, we generated mice that harbor a conditional deletion of uterine Trp53 and examined pregnancy outcome in females with this genotype. These mice had normal ovulation, fertilization, and implantation; however, postimplantation uterine decidual cells showed terminal differentiation and senescence-associated growth restriction with increased levels of phosphorylated Akt and p21, factors that are both known to participate in these processes in other systems. Strikingly, uterine deletion of Trp53 increased the incidence of preterm birth, a condition that was corrected by oral administration of the selective COX2 inhibitor celecoxib. We further generated evidence to suggest that deletion of uterine Trp53 induces preterm birth through a COX2/PGF synthase/PGF(2alpha) pathway. Taken together, our observations underscore what we believe to be a new critical role of uterine p53 in parturition.
Collapse
Affiliation(s)
- Yasushi Hirota
- The Perinatal Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Ohio, USA
| | | | | | | | | | | |
Collapse
|
168
|
Knöfler M. Critical growth factors and signalling pathways controlling human trophoblast invasion. THE INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY 2010; 54:269-80. [PMID: 19876833 DOI: 10.1387/ijdb.082769mk] [Citation(s) in RCA: 241] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Invasion of placental trophoblasts into uterine tissue and vessels is an essential process of human pregnancy and fetal development. Due to their remarkable plasticity invasive trophoblasts fulfil numerous functions, i.e. anchorage of the placenta, secretion of hormones, modulation of decidual angiogenesis/lymphangiogenesis and remodelling of maternal spiral arteries. The latter is required to increase blood flow to the placenta, thereby ensuring appropriate transfer of nutrients and oxygen to the developing fetus. Since failures in vascular changes of the placental bed are associated with pregnancy diseases such as preeclampsia or intrauterine growth restriction, basic research in this particular field focuses on molecular mechanisms controlling trophoblast invasion under physiological and pathological conditions. Throughout the years, an increasing number of growth factors, cytokines and angiogenic molecules controlling trophoblast motility have been identified. These factors are secreted from numerous cells such as trophoblast, maternal epithelial and stromal cells, as well as uterine NK cells and macrophages, suggesting that a complex network of cell types, mediators and signalling pathways regulates trophoblast invasiveness. Whereas essential features of the invasive trophoblast such as expression of critical proteases and adhesion molecules have been well characterised, the interplay between different cell types and growth factors and the cross-talk between distinct signalling cascades remain largely elusive. Similarly, key-regulatory transcription factors committing and differentiating invasive trophoblasts are mostly unknown. This review will summarise our current understanding of growth factors and signal transduction pathways regulating human trophoblast invasion/migration, as well as give insights into novel mechanisms involved in the particular differentiation process.
Collapse
Affiliation(s)
- Martin Knöfler
- Department of Obstetrics and Fetal-Maternal Medicine, Reproductive Biology Unit, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
169
|
Fitzgerald JS, Germeyer A, Huppertz B, Jeschke U, Knöfler M, Moser G, Scholz C, Sonderegger S, Toth B, Markert UR. Governing the invasive trophoblast: current aspects on intra- and extracellular regulation. Am J Reprod Immunol 2010; 63:492-505. [PMID: 20236263 DOI: 10.1111/j.1600-0897.2010.00824.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
This review summarizes several aspects especially of regulating factors governing trophoblast invasion. Those include the composition of the extracellular matrix containing a variety of matrix metalloproeinases and their inhibitors, but also intracellular signals. Furthermore, a newly described trophoblast subtype, the endoglandular trophoblast, is presented. Its presence may provide a possible mechanism for opening and connecting uterine glands into the intervillous space. Amongst others, two intracellular signalling pathways are crucial for regulation of trophoblast functions and development: Wnt- and signal transducer and activator of transcription (STAT)3 signalling. Wnt signalling promotes implantation, placentation and trophoblast differentiation. Several Wnt-dependent cascades and regulatory mechanisms display different functions in trophoblast cells. The STAT3 signalling system is fundamental for induction and regulation of invasiveness in physiological trophoblastic cells, but also in tumours. The role of galectins (Gal) in trophoblast regulation and placenta development comes increasingly into focus. The Gal- 1-4, 7-10 and 12-14 have been detected in humans. Detailed information is only available for Gal-1, -2, -3, -4, -9 and -12 in endometrium and decidua. Gal-1, -3 and -13 (-14) have been detected and studied in trophoblast cells.
Collapse
Affiliation(s)
- Justine S Fitzgerald
- Department of Obstetrics, Placenta Laboratory, University Hospital, Jena, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
170
|
Fesenko EE, Mezhevikina LM, Osipenko MA, Gordon RY, Khutzian SS. Effect of the “zero” Magnetic Field on Early Embryogenesis in Mice. Electromagn Biol Med 2010; 29:1-8. [DOI: 10.3109/15368371003627290] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
171
|
Ramathal CY, Bagchi IC, Taylor RN, Bagchi MK. Endometrial decidualization: of mice and men. Semin Reprod Med 2010; 28:17-26. [PMID: 20104425 DOI: 10.1055/s-0029-1242989] [Citation(s) in RCA: 371] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In murine and human pregnancies, embryos implant by attaching to the luminal epithelium and invading into the stroma of the endometrium. Under the influence of the steroid hormones estrogen and progesterone, the stromal cells surrounding the implanting embryo undergo a remarkable transformation event. This process, known as decidualization, is an essential prerequisite for implantation. It comprises morphogenetic, biochemical, and vascular changes driven by the estrogen and progesterone receptors. The development of mutant mouse models lacking these receptors has firmly established the necessity of steroid signaling for decidualization. Genomic profiling of mouse and human endometrium has uncovered a complex yet highly conserved network of steroid-regulated genes that supports decidualization. To advance our understanding of the mechanisms regulating implantation and better address the clinical challenges of infertility and endometrial diseases such as endometriosis, it is important to integrate the information gained from the mouse and human models.
Collapse
Affiliation(s)
- Cyril Y Ramathal
- Department of Cell and Developmental Biology, University of Illinois-Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | | | |
Collapse
|
172
|
Kodama A, Yoshino O, Osuga Y, Harada M, Hasegawa A, Hamasaki K, Takamura M, Koga K, Hirota Y, Hirata T, Takemura Y, Yano T, Taketani Y. Progesterone decreases bone morphogenetic protein (BMP) 7 expression and BMP7 inhibits decidualization and proliferation in endometrial stromal cells. Hum Reprod 2010; 25:751-6. [DOI: 10.1093/humrep/dep455] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
173
|
Eiselleova L, Matulka K, Kriz V, Kunova M, Schmidtova Z, Neradil J, Tichy B, Dvorakova D, Pospisilova S, Hampl A, Dvorak P. A complex role for FGF-2 in self-renewal, survival, and adhesion of human embryonic stem cells. Stem Cells 2010; 27:1847-57. [PMID: 19544431 PMCID: PMC2798073 DOI: 10.1002/stem.128] [Citation(s) in RCA: 159] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The transcription program that is responsible for the pluripotency of human ESCs (hESCs) is believed to be comaintained by exogenous fibroblast growth factor-2 (FGF-2), which activates FGF receptors (FGFRs) and stimulates the mitogen-activated protein kinase (MAPK) pathway. However, the same pathway is stimulated by insulin receptors, insulin-like growth factor 1 receptors, and epidermal growth factor receptors. This mechanism is further complicated by intracrine FGF signals. Thus, the molecular mechanisms by which FGF-2 promotes the undifferentiated growth of hESCs are unclear. Here we show that, in undifferentiated hESCs, exogenous FGF-2 stimulated the expression of stem cell genes while suppressing cell death and apoptosis genes. Inhibition of autocrine FGF signaling caused upregulation of differentiation-related genes and downregulation of stem cell genes. Thus, exogenous FGF-2 reinforced the pluripotency maintenance program of intracrine FGF-2 signaling. Consistent with this hypothesis, expression of endogenous FGF-2 decreased during hESC differentiation and FGF-2 knockdown-induced hESC differentiation. In addition, FGF-2 signaling via FGFR2 activated MAPK kinase/extracellular signal-regulated kinase and AKT kinases, protected hESC from stress-induced cell death, and increased hESC adhesion and cloning efficiency. This stimulation of self-renewal, cell survival, and adhesion by exogenous and endogenous FGF-2 may synergize to maintain the undifferentiated growth of hESCs. Stem Cells2009;27:1847–1857
Collapse
Affiliation(s)
- Livia Eiselleova
- Department of Biology, Faculty of Medicine University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
174
|
Sonderegger S, Haslinger P, Sabri A, Leisser C, Otten JV, Fiala C, Knöfler M. Wingless (Wnt)-3A induces trophoblast migration and matrix metalloproteinase-2 secretion through canonical Wnt signaling and protein kinase B/AKT activation. Endocrinology 2010; 151:211-20. [PMID: 19887570 PMCID: PMC2974214 DOI: 10.1210/en.2009-0557] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Invasion of human trophoblasts is promoted through activation of wingless (Wnt) signaling, suggesting a role of the pathway in placental development and morphogenesis. However, details on the process such as involvement of canonical and/or noncanonical Wnt signaling cascades as well as their target genes are largely unknown. Hence, signal transduction via canonical Wnt signaling or phosphatidylinositide 3-kinase (PI3K)/AKT and their cross talk as well as trophoblast-specific protease expression were investigated in trophoblastic SGHPL-5 cells and primary extravillous trophoblasts purified from first-trimester placentas. Western blot analyses revealed that the recombinant Wnt ligand Wnt-3A increased phosphorylation of AKT and the downstream kinase glycogen synthase kinase (GSK)-3beta as well as accumulation of activated, nuclear beta-catenin. In accordance, luciferase expression of a canonical Wnt/TCF reporter and cell migration in first-trimester villous explant cultures and of SGHPL-5 cells were stimulated. Chemical inhibition of PI3K abolished Wnt-dependent phosphorylation of AKT and GSK-3beta and trophoblast motility but did not affect appearance of activated beta-catenin or Wnt/TCF reporter activity. In contrast, inhibition of the canonical pathway through soluble Dickkopf-1 did not influence AKT and GSK-3beta phosphorylation but reduced Wnt reporter activity, accumulation of active beta-catenin, and cell migration. Both inhibitors decreased Wnt-3A-induced secretion of pro- and active matrix metalloproteinase-2 from SGHPL-5 cells and pure EVT. The data suggest that Wnt-3A may activate canonical Wnt signaling and PI3K/AKT through distinct receptors. The two signaling cascades act independently in trophoblasts; however, both pathways promote Wnt-dependent migration and the release of matrix metalloproteinase-2, which has been identified as novel Wnt target in invasive trophoblasts.
Collapse
Affiliation(s)
- Stefan Sonderegger
- Department of Obstetrics and Fetal-Maternal Medicine, Reproductive Biology Unit, Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
175
|
|
176
|
Abstract
The establishment of pregnancy requires an intimate physical interaction and a molecular dialogue between the conceptus and the maternal reproductive tract that commences at implantation and continues until the placenta is formed and fully functional. Failure of the regulatory processes that ensure the fidelity of this relationship can precipitate a catastrophic pregnancy loss. One of the earliest identified molecular mediators of blastocyst implantation is heparin-binding epidermal growth factor (EGF)-like growth factor (HBEGF), which signals between the endometrium and implanting trophoblast cells to synchronize their corresponding developmental programs. HBEGF expression by trophoblast cells of the developing placenta appears to regulate extravillous differentiation and provide cytoprotection in a sometimes-hostile environment. This versatile member of the EGF signaling system will be examined in light of its associations with key events during early pregnancy.
Collapse
Affiliation(s)
- Philip Jessmon
- Department of Obstetrics and Gynecology, C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, Michigan
- Department of Anatomy and Cell Biology, C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, Michigan
- Program in Reproductive and Adult Endocrinology, Eunice Kennedy Shriver National Institute for Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland
| | - Richard E. Leach
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, Michigan
| | - D. Randall Armant
- Department of Obstetrics and Gynecology, C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, Michigan
- Department of Anatomy and Cell Biology, C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, Michigan
- Program in Reproductive and Adult Endocrinology, Eunice Kennedy Shriver National Institute for Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland
| |
Collapse
|
177
|
Herington JL, Underwood T, McConaha M, Bany BM. Paracrine signals from the mouse conceptus are not required for the normal progression of decidualization. Endocrinology 2009; 150:4404-13. [PMID: 19520782 PMCID: PMC2736086 DOI: 10.1210/en.2009-0036] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Accepted: 06/04/2009] [Indexed: 11/19/2022]
Abstract
The purpose of this study was to determine whether the conceptus directs the formation of a tight- and adherens-dependent permeability barrier formed by the primary decidual zone and normal progression of decidual cell differentiation during embryo implantation. Four artificial models of decidualization were used, some apparently more physiological than others. The results show that both the formation of the permeability barrier and decidual cell differentiation of three of the artificial models were quite different from that of pregnant uteri. One artificial model of decidualization, namely pseudopregnant animals receiving concanavalin A-coated Sepharose bead transfers on d 2.5 of pseudopregnancy, better recapitulated the decidual changes that occur in the pregnant uterus undergoing decidualization. This included the formation of a primary decidual zone-like permeability barrier and decidual growth. This model also exhibited similar temporal changes of the expression of genes involved in decidualization that are markers of decidual cell differentiation. Overall, the results of this study indicate that some models of inducing decidualization artificially produce responses that are more similar to those occurring in the pregnant uterus, whereas others are quite different. More importantly, the results suggest that concanavalin A-coated Sepharose beads can provide an equivalent stimulus as the trophectoderm to cause the formation of the primary decidual zone permeability barrier.
Collapse
Affiliation(s)
- Jennifer L Herington
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois 62901, USA
| | | | | | | |
Collapse
|
178
|
Das SK. Cell cycle regulatory control for uterine stromal cell decidualization in implantation. Reproduction 2009; 137:889-99. [PMID: 19307426 DOI: 10.1530/rep-08-0539] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Uterine stromal cell decidualization is integral to successful embryo implantation, which is a gateway to pregnancy establishment. This process is characterized by stromal cell proliferation and differentiation into decidual cells with polyploidy. The molecular mechanisms that are involved in these events remain poorly understood. The current concept is that locally induced factors with the onset of implantation influence uterine stromal cell proliferation and/or differentiation through modulation of core cell cycle regulators. This review will aim to address the currently available knowledge on interaction between growth factor/homeobox and cell cycle regulatory signaling in the progression of various aspects of decidualization.
Collapse
Affiliation(s)
- Sanjoy K Das
- Reproductive Sciences, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229-3039, USA.
| |
Collapse
|
179
|
Chen Q, Zhang Y, Lu J, Wang Q, Wang S, Cao Y, Wang H, Duan E. Embryo-uterine cross-talk during implantation: the role of Wnt signaling. Mol Hum Reprod 2009; 15:215-21. [PMID: 19223336 DOI: 10.1093/molehr/gap009] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
During mammalian pregnancy, it has been demonstrated that the quality of embryo implantation determines the quality of ongoing pregnancy and fetal development. Recent studies have provided increasing evidence that differential Wnt signaling plays diverse roles in multiple peri-implantation events. This review focuses on recent progress on various aspects of Wnt signaling in preimplantation embryo development, blastocyst activation for implantation and uterine decidualization. Future studies with conditional deletion of Wnt family members are hoped to provide deeper insight on the pathophysiological significance of Wnt proteins on early pregnancy events.
Collapse
Affiliation(s)
- Qi Chen
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
180
|
Lim HJ, Dey SK. HB-EGF: a unique mediator of embryo-uterine interactions during implantation. Exp Cell Res 2009; 315:619-26. [PMID: 18708050 PMCID: PMC2672567 DOI: 10.1016/j.yexcr.2008.07.025] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Revised: 07/18/2008] [Accepted: 07/22/2008] [Indexed: 11/19/2022]
Abstract
An implantation-competent blastocyst, several hours prior to its attachment on the uterine wall, transmits signals to surrounding uterine cells and vice-versa to initiate a two-way interaction. The language of this precocious dialogue is versatile, taking advantage of secreted molecules for long-range interactions and membrane-bound molecules for more immediate interactions. Heparin-binding epidermal growth factor-like growth factor (HB-EGF) was identified as an early messenger of implantation which uses both modes of communication. In this review, we discuss the footprint of HB-EGF as to how it was initially identified as a mediator of implantation and how it initiates embryo-uterine interactions during this process.
Collapse
Affiliation(s)
- Hyunjung Jade Lim
- Department of Biomedical Science & Technology, Research Center for Drugs, IBST, Konkuk University, 1 Hwayang-dong, Kwangjin-gu, Seoul 143-701 Korea.
| | | |
Collapse
|
181
|
Hayashi K, Erikson DW, Tilford SA, Bany BM, Maclean JA, Rucker EB, Johnson GA, Spencer TE. Wnt genes in the mouse uterus: potential regulation of implantation. Biol Reprod 2009; 80:989-1000. [PMID: 19164167 DOI: 10.1095/biolreprod.108.075416] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Wnt genes are involved in critical developmental and growth processes. The present study comprehensively analyzed temporal and spatial alterations in Wnt and Fzd gene expression in the mouse uterus during peri-implantation of pregnancy. Expression of Wnt4, Wnt5a, Wnt7a, Wnt7b, Wnt11, Wnt16, Fzd2, Fzd4, and Fzd6 was detected in the uterus during implantation. Wnt4 mRNA was most abundant in the decidua, whereas Wnt5a mRNA was restricted to the mesometrial decidua during decidualization. Wnt7a, Wnt7b, and Wnt11 mRNAs were abundantly detected in the endometrial epithelia. The expression of Wnt7b was robust in the luminal epithelium (LE) at the implantation site on Gestational Day 5, whereas Wnt11 mRNA disappeared in the LE adjacent to the embryo in the antimesometrial implantation chamber but remained abundant in the LE. Wnt16 mRNA was localized to the stroma surrounding the LE on Day 4 and remained in the stroma adjacent to the LE but not in areas undergoing the decidual reaction. Fzd2 mRNA was detected in the decidua, Fzd4 mRNA was in the vessels and stroma surrounding the embryo, and Fzd6 mRNA was observed in the endometrial epithelia, stroma, and some blood vessels during implantation. Ovarian steroid hormone treatment was found to regulate Wnt genes and Fzd receptors in ovariectomized mice. Especially, single injections of progesterone stimulated Wnt11 mRNA, and estrogen stimulated Wnt4 and Wnt7b. The temporal and spatial alterations in Wnt genes likely play a critical role during implantation and decidualization in mice.
Collapse
Affiliation(s)
- Kanako Hayashi
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois, USA.
| | | | | | | | | | | | | | | |
Collapse
|
182
|
Abstract
The epidermal growth factor receptor (EGFR) regulates key processes of cell biology, including proliferation, survival, and differentiation during development, tissue homeostasis, and tumorigenesis. Canonical EGFR activation involves the binding of seven peptide growth factors. These ligands are synthesized as transmembrane proteins comprising an N-terminal extension, the EGF module, a short juxtamembrane stalk, a hydrophobic transmembrane domain, and a carboxy-terminal fragment. The central structural and functional feature is the EGF module, a sequence containing six cysteines in a conserved spacement which is responsible for binding to the EGFR. While the membrane-anchored peptide can be biologically active by juxtacrine signaling, in most cases the EGF module is proteolytically cleaved (a process termed ectodomain shedding) to release the soluble growth factor, which may act in an endocrine, paracrine, or autocrine fashion. This review summarizes the structural and functional properties of these fascinating molecules and presents selected examples to illustrate their roles in development, physiology, and pathology.
Collapse
Affiliation(s)
- Marlon R Schneider
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, LMU Munich, Munich, Germany.
| | | |
Collapse
|
183
|
Singh AP, Castranio T, Scott G, Guo D, Harris MA, Ray M, Harris SE, Mishina Y. Influences of reduced expression of maternal bone morphogenetic protein 2 on mouse embryonic development. Sex Dev 2008; 2:134-41. [PMID: 18769073 PMCID: PMC2632600 DOI: 10.1159/000143431] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2008] [Accepted: 06/23/2008] [Indexed: 11/19/2022] Open
Abstract
Bone morphogenetic protein 2 (BMP2) was originally found by its osteoinductive ability, and recent genetic analyses have revealed that it plays critical roles during early embryogenesis, cardiogenesis, decidualization as well as skeletogenesis. In the course of evaluation of the conditional allele for Bmp2, we found that the presence of a neo cassette, a selection marker needed for gene targeting events in embryonic stem cells, in the 3' untranslated region of exon 3 of Bmp2, reduced the expression levels of Bmp2 both in embryonic and maternal mouse tissues. Some of the embryos that were genotyped as transheterozygous for the floxed allele with the neo cassette over the conventional null allele (fn/-) showed a lethal phenotype including defects in cephalic neural tube closure and ventral abdominal wall closure. The number of embryos exhibiting these abnormalities was increased when, due to different genotypes, expression levels of Bmp2 in maternal tissues were lower. These results suggest that the expression levels of Bmp2 in both embryonic and maternal tissues influence the normal neural tube closure and body wall closure with different thresholds.
Collapse
Affiliation(s)
- Ajeet P. Singh
- Molecular Developmental Biology Group, Laboratory of Reproductive and Developmental Toxicology, National Institutes of Health, Research Triangle Park, NC, U.S.A
| | - Trisha Castranio
- Molecular Developmental Biology Group, Laboratory of Reproductive and Developmental Toxicology, National Institutes of Health, Research Triangle Park, NC, U.S.A
| | - Greg Scott
- Knockout Mouse Core, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, U.S.A
| | - Dayong Guo
- University of Missouri at Kansas City, Kansas City, MO, U.S.A
| | - Marie A. Harris
- University of Texas Health Science Center at San Antonio, San Antonio, TX, U.S.A
| | - Manas Ray
- Knockout Mouse Core, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, U.S.A
| | - Stephan E. Harris
- University of Texas Health Science Center at San Antonio, San Antonio, TX, U.S.A
| | - Yuji Mishina
- Molecular Developmental Biology Group, Laboratory of Reproductive and Developmental Toxicology, National Institutes of Health, Research Triangle Park, NC, U.S.A
- Knockout Mouse Core, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, U.S.A
| |
Collapse
|
184
|
Imudia AN, Kilburn BA, Petkova A, Edwin SS, Romero R, Armant DR. Expression of heparin-binding EGF-like growth factor in term chorionic villous explants and its role in trophoblast survival. Placenta 2008; 29:784-9. [PMID: 18691754 PMCID: PMC2576289 DOI: 10.1016/j.placenta.2008.06.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2008] [Revised: 06/26/2008] [Accepted: 06/27/2008] [Indexed: 01/13/2023]
Abstract
Heparin-binding EGF-like growth factor (HBEGF) induces trophoblast extravillous differentiation and prevents apoptosis. These functions are compromised in preeclampsia. Because HBEGF is downregulated in placentas delivered by women with preeclampsia, we have examined its expression and cytoprotective activity in term villous explants. Chorionic villous explants prepared from non-pathological placentas collected by cesarean section at term were cultured at either 20% or 2% O2 and treated with the HBEGF antagonist CRM197 or recombinant HBEGF. Paraffin sections were assayed for trophoblast death, proliferation and HBEGF expression using the TUNEL method, immunohistochemistry for nuclear Ki67 expression and semi-quantitative immunohistochemistry with image analysis, respectively. Trophoblast cell death was increased significantly after 8h of culture with CRM197 or by culture for 2h at 2% O2. Exogenous HBEGF prevented cell death due to hypoxia. Proliferative capacity was not affected by culture at either 20% or 2% O2. Contrary to first trimester placenta, term trophoblasts do not elevate HBEGF expression in response to hypoxia. However, low endogenous levels of HBEGF are required to maintain survival. Therefore, HBEGF-mediated signaling significantly reduces trophoblast cell death at term and its deficiency in preeclampsia could negatively impact trophoblast survival.
Collapse
Affiliation(s)
- Anthony N. Imudia
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Brian A. Kilburn
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Anelia Petkova
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Samuel S. Edwin
- Perinatology Research Branch, National Institute of Child Health and Human Development (NICHHD), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Roberto Romero
- Perinatology Research Branch, National Institute of Child Health and Human Development (NICHHD), National Institutes of Health (NIH), Bethesda, MD, USA
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA
| | - D. Randall Armant
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Reproductive Biology and Medicine Branch, NICHHD, NIH, Bethesda, MD, USA
| |
Collapse
|
185
|
Aghajanova L, Bjuresten K, Altmäe S, Landgren BM, Stavreus-Evers A. HB-EGF but not amphiregulin or their receptors HER1 and HER4 is altered in endometrium of women with unexplained infertility. Reprod Sci 2008; 15:484-92. [PMID: 18579857 DOI: 10.1177/1933719108314624] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Heparin-binding epidermal growth factor-like growth factor (HB-EGF) and its receptors (HER1 and HER4) play a role in the human implantation process. Amphiregulin is a member of the EGF family but with unknown function in human fertility. It has been suggested that some women with unexplained infertility have defective endometrial development. The aim of this study is to determine the presence of amphiregulin and the receptors HER1 and HER4 in normal human endometrium throughout the menstrual cycle. In addition, the present study aims to compare endometrium from women with unexplained infertility with endometrium from women with male factor infertility and healthy fertile controls. Immunohistochemistry and real-time polymerase chain reaction were used to determine the expression of HB-EGF, HER1, HER4, and amphiregulin. The stromal staining of HER1 and the epithelial staining of HER4 were most intense in the mid- and late-secretory-phase endometrium. Amphiregulin did not vary during the menstrual cycle. In the mid-secretory phase, the protein expression of HB-EGF was lower in endometrium from women with unexplained infertility versus normal endometrium and endometrium from women with male factor infertility. HB-EGF and HER4 mRNA expression in mid-secretory endometrium of women with unexplained and male factor infertility were increased compared with normal controls. Impaired endometrial expression of certain members of the EGF family may contribute to infertility in some women with unexplained infertility.
Collapse
Affiliation(s)
- Lusine Aghajanova
- Department of Clinical Science, Intervention and Technology, Division of Obstetrics and Gynaecology, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
186
|
Zhang Y, Peng S, Kuang H, Chen Q, Liu S, Zhang L, Duan E. Expression and regulation of Dickkopf2 during periimplantation in mice. J Reprod Dev 2008; 55:17-22. [PMID: 18689976 DOI: 10.1262/jrd.20043] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Successful implantation depends on active dialogue between the maternal endometrium and the implanting blastocysts that is well controlled by groups of regulators at the molecular level. Dickkopf2 (Dkk2) is a member of Dickkopf family normally acting as an antagonist of canonical Wnt/beta-catenin signaling, which has been proven to participate in tumorigenesis and early embryo development. In order to explore the potential function of Dkk2 in embryo implantation, the present study investigated the uterine expression and regulation profiles of Dkk2 during periimplantation in mice. Using reverse transcription-polymerase chain reaction, immunohistochemistry and Western blotting, we showed that the mRNA and protein levels of Dkk2 began to increase in the glandular epithelium on day 4, continued to increase on day 5 and then decreased from day 6 of pregnancy. Moreover, on days 5-8 of pregnancy, Dkk2 was increasingly expressed in the deciduum of the uterus, especially around the implanting embryos. In addition, upregulation of Dkk2 was also observed in uteri treated with estrogen (estradiol-17beta) as well as in oil-induced artificial decidualization, indicating that the expression of Dkk2 could be induced by both steroid hormone (estrogen) and the process of decidualization. Furthermore, in the postimplantation uterus, the Dkk2 protein showed an inversed expression with active beta-catenin from day 6 onward, supporting the notion that Dkk2 plays an inhibitory role against canonical Wnt signaling in the context of the decidualizing stroma. Collectively, our data suggests that Dkk2 expression is associated with uterine receptivity changes as well as the process of decidualization and that it might play important roles through inhibition of canonical Wnt signaling in the periimplantation uterus.
Collapse
Affiliation(s)
- Ying Zhang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
187
|
Siemer J, Binder H, Willeke C, Dorn C, Reinsberg J, Fimmers R, van der Ven H, Schild RL. Three-dimensional power Doppler sonography of the (sub)endometrium and angiogenic cytokine concentrations. Reprod Biomed Online 2008; 17:249-58. [PMID: 18682000 DOI: 10.1016/s1472-6483(10)60202-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The aim of this study was to determine the correlation between three-dimensional power Doppler sonography (3D-PDS) of the (sub)endometrium and concentrations of angiogenic cytokines in patients attending an IVF programme. A total of 42 patients was included in a prospective, non-randomized clinical study. 3D-PDS of the (sub)endometrium was performed on the day of oocyte aspiration, with and without contrast agent. Quantitative assessment included the following 3D Doppler parameters: vascularization index, flow intensity, and vascularization flow index. On the same day, concentrations of oestradiol (serum only), vascular endothelial growth factor (VEGF), insulin-like growth factor (IGF) 1, IGF-binding protein 3 (IGFBP-3) and leptin were determined in the serum and in the follicular fluid. All 3D-PDS indices were significantly higher with contrast enhancement (P < 0.05). Follicular fluid concentrations of VEGF and IGFBP-3, as well as serum concentrations of leptin, showed significant P-values when correlated with (sub)endometrial Doppler indices. A weak linear dependency appeared between flow intensity and VEGF and leptin. Furthermore, weak dependencies were apparent between 3D Doppler parameters and high follicular fluid concentrations of VEGF and IGFBP-3. It is concluded that there is only little evidence for an association between (sub)endometrial Doppler indices as assessed by 3D-PDS and concentrations of angiogenic cytokines.
Collapse
Affiliation(s)
- J Siemer
- Department of Obstetrics and Gynaecology, Mannheim University Hospital, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
188
|
Kubota K, Yamauchi N, Matsumoto K, Watanabe R, Oozono S, Aramaki S, Wood C, Soh T, Hattori MA. Expression of hedgehog family genes in the rat uterus during early pregnancy. J Reprod Dev 2008; 54:340-5. [PMID: 18612197 DOI: 10.1262/jrd.20054] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hedgehog (Hh) plays a pivotal role in various tissues during embryonic development, tissue homeostasis and tumorigenesis. In mammals, Hh exists in three homologs: Desert hedgehog (Dhh), Indian hedgehog (Ihh) and Sonic hedgehog (Shh). In this study, we cloned full-length cDNAs encoding Dhh and Ihh from the rat uterus. Their amino acid sequences have a high homology with those of the mouse and human. In addition, the changes of Hh gene expression in the rat uterus during early pregnancy were analyzed. The results showed that all three hedgehog mRNAs were detected in the rat uterus at the proestrus stage and during early pregnancy (1.5, 3.5, 5.5 and 7.5 days post coitus: dpc). Ihh mRNA expression varied and peaked at 3.5 dpc in the luminal and glandular epithelium. Expression was decreased on 5.5 dpc with the exception of sustained expression in the glandular epithelium. Despite such Ihh variability, the expressions of Dhh and Shh mRNA remained unchanged. This indicated that Ihh was mainly expressed in the rat uterus during early pregnancy. Moreover, the Hh target gene (glioma-associated oncogene homolog 1; Gli1) was also highly expressed at 3.5 dpc in the epithelium and periepithelial stroma in a manner similar to the temporal pattern of Ihh expression. This suggests that Ihh signaling axis play a role in the rat uterus during early pregnancy. In summary, our results elucidate that Ihh is a predominant Hh protein in the rat uterus during early pregnancy and that other Hhs have the potential to be expressed. This observation will help to elucidate the basic molecular mechanism of rat uterus during early pregnancy.
Collapse
Affiliation(s)
- Kaiyu Kubota
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
189
|
Wang B, Sheng JZ, He RH, Qian YL, Jin F, Huang HF. ORIGINAL ARTICLE: High Expression of l-Selectin Ligand in Secretory Endometrium is Associated with Better Endometrial Receptivity and Facilitates Embryo Implantation in Human Being. Am J Reprod Immunol 2008; 60:127-34. [DOI: 10.1111/j.1600-0897.2008.00604.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
190
|
Abstract
Determining molecular mechanisms of human embryo implantation is an extremely challenging task due to the limitation of materials and significant differences underlying this process among mammalian species. Recently, L-selectin and its ligand carbohydrate have been proposed as a system that mediates initial adhesion of human blastocysts to the uterine epithelia. We have also identified trophinin as a unique apical cell adhesion molecule potentially involved in the initial adhesion of trophectoderm of the human blastocyst to endometrial surface epithelia. In the mouse, the binding between ErbB4 on the blastocyst and heparin-binding epidermal growth factor-like growth factor on the endometrial surface enables the initial step of the blastocyst implantation. The evidence suggests that L-selectin and trophinin are included in human embryo implantation. This review summarizes findings relevant to the functions of L-selectin and trophinin in human embryo implantation, and proposes a model that reconciles these cell adhesion mechanisms.
Collapse
Affiliation(s)
- Michiko N Fukuda
- Glycobiology Unit, Tumor Microenvironment Program, NCI Cancer Center, Burnham Institute for Medical Research, La Jolla, California 92037, USA.
| | | |
Collapse
|
191
|
Kirn-Safran CB, D'Souza SS, Carson DD. Heparan sulfate proteoglycans and their binding proteins in embryo implantation and placentation. Semin Cell Dev Biol 2008; 19:187-93. [PMID: 17766150 PMCID: PMC2275896 DOI: 10.1016/j.semcdb.2007.07.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2007] [Accepted: 07/20/2007] [Indexed: 12/23/2022]
Abstract
Complex interactions occur among embryonic, placental and maternal tissues during embryo implantation. Many of these interactions are controlled by growth factors, extracellular matrix and cell surface components that share the ability to bind heparan sulfate (HS) polysaccharides. HS is carried by several classes of cell surface and secreted proteins called HS proteoglycan that are expressed in restricted patterns during implantation and placentation. This review will discuss the expression of HS proteoglycans and various HS binding growth factors as well as extracellular matrix components and HS-modifying enzymes that can release HS-bound proteins in the context of implantation and placentation.
Collapse
|
192
|
Reese J, Wang H, Ding T, Paria BC. The hamster as a model for embryo implantation: insights into a multifaceted process. Semin Cell Dev Biol 2008; 19:194-203. [PMID: 18178492 PMCID: PMC2288742 DOI: 10.1016/j.semcdb.2007.11.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2007] [Revised: 11/21/2007] [Accepted: 11/25/2007] [Indexed: 11/19/2022]
Abstract
Defects in preimplantation embryonic development, uterine receptivity, and implantation are the leading cause of infertility, pregnancy problems and birth defects. Significant progress has been made in our basic understanding of these processes using the mouse model, where implantation is ovarian estrogen-dependent in the presence of progesterone. However, an animal model where implantation is progesterone-dependent must also be studied to gain a full understanding of the embryo and uterine events that are required for implantation. In this regard, the hamster is a useful model and this review summarizes the information currently available regarding mechanisms involved in synchronous preimplantation embryo and uterine development for implantation in this species.
Collapse
Affiliation(s)
- Jeff Reese
- Division of Neonatology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232-0656, USA
| | | | | | | |
Collapse
|
193
|
Schneider MR, Wolf E. The epidermal growth factor receptor and its ligands in female reproduction: Insights from rodent models. Cytokine Growth Factor Rev 2008; 19:173-81. [DOI: 10.1016/j.cytogfr.2008.01.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
194
|
Franco HL, Jeong JW, Tsai SY, Lydon JP, DeMayo FJ. In vivo analysis of progesterone receptor action in the uterus during embryo implantation. Semin Cell Dev Biol 2008; 19:178-86. [DOI: 10.1016/j.semcdb.2007.12.001] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2007] [Accepted: 12/29/2007] [Indexed: 11/17/2022]
|
195
|
Wise LD, Spence S, Saldutti LP, Kerr JS. Assessment of female and male fertility in Sprague-Dawley rats administered vorinostat, a histone deacetylase inhibitor. ACTA ACUST UNITED AC 2008; 83:19-26. [PMID: 18092367 DOI: 10.1002/bdrb.20139] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BACKGROUND Histone deacetylase (HDAC) inhibitors have been shown to mediate the regulation of gene expression, induce cell growth, cell differentiation, and apoptosis of tumor cells. These compounds are now marketed or are in clinical development. One such HDAC inhibitor, vorinostat (suberoylanilide hydroxamic acid [SAHA], Zolinza), was assessed for its potential effects on fertility in Sprague-Dawley rats. METHODS Female rats were administered oral dose levels of 0 (vehicle only), 15, 50, or 150 mg/kg/day of vorinostat for 14 days before cohabitation, during cohabitation, and through Gestation Day (GD) 7. In a separate study, male rats were administered oral dose levels of 0 (vehicle only), 20, 50, or 150 mg/kg/day for 10 weeks before cohabitation, during cohabitation, and until the day before scheduled sacrifice (approximately 14 weeks total). In both studies, % peri-implantation loss and % postimplantation loss were evaluated on GD 15-17. Testicular weight and histomorphology, cauda epididymal sperm count, and sperm motility were evaluated in the male rat study at termination. RESULTS There were treatment-related decreases in body weight gain at 150 mg/kg/day in both studies. There were no effects on mating or fertility indices in either study. In the female study there were increased numbers of corpora lutea in all drug-treated groups (only 1 or 2 affected dams in low and mid-dose groups), and a marked increase in percent postimplantation loss only in the high-dose group. No treatment-related effects were observed on litter or sperm parameters of the male study. CONCLUSIONS Vorinostat had no effects on mating or fertility in rats up to 150 mg/kg/day. There were no indications of reproductive toxicity in drug-treated male rats. Increases in corpora lutea or resorptions were observed in treated female rats.
Collapse
Affiliation(s)
- L David Wise
- Merck Research Laboratories, West Point, Pennsylvania 19486, USA.
| | | | | | | |
Collapse
|
196
|
Roles of Dickkopf-1 and its receptor Kremen1 during embryonic implantation in mice. Fertil Steril 2008; 90:1470-9. [PMID: 18068158 DOI: 10.1016/j.fertnstert.2007.09.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2007] [Revised: 09/04/2007] [Accepted: 09/04/2007] [Indexed: 01/22/2023]
Abstract
OBJECTIVE To determine the roles of Dickkopf-1 (Dkk1) in mouse embryo implantation. DESIGN Experimental prospective study. SETTING Animal research and institute laboratory facility. PATIENT(S) Virgin Kunming female mice and adult male mice. INTERVENTION(S) The expression of Dkk1 and its receptor Kremen1 in embryos and uteri was observed by immunofluorescence or immunohistochemistry. Then, Dkk1 or Kremen1 antisense oligodeoxynucleotides (ODNs) were used to assess their effects on embryo implantation in in vitro or in vivo assays. MAIN OUTCOME MEASURE(S) Dynamic changes of Dkk1 and Kremen1 in embryos and uterine stroma during the window of implantation. RESULT(S) Dickkopf-1 and Kremen1 are expressed dynamically in both embryos and uterine stroma during embryonic implantation. Dickkopf-1 or Kremen1 antisense ODNs significantly inhibited the adhesion and outgrowth of hatched blastocysts on fibronectin. The expressional patterns of Dkk1 and Kremen1 proteins in the uterine stroma of pseudopregnant, implantation-delayed, and artificially decidualized mice imply the roles of these proteins in uterine receptivity and decidualization. Time-dependent increases of Dkk1 and Kremen1 in uterine stromal cells of ovariectomized mice treated with steroids further suggest that their expression was under the control of maternal steroids E(2) and P. Embryo implantation also was inhibited when Dkk1 antisense ODNs were injected into mouse uterine horns on day 3 of pregnancy. CONCLUSION(S) These results suggest an important role of Dkk1 and Kremen1 in blastocyst activation and uterine receptivity during the window of implantation.
Collapse
|
197
|
Xie H, Tranguch S, Jia X, Zhang H, Das SK, Dey SK, Kuo CJ, Wang H. Inactivation of nuclear Wnt-beta-catenin signaling limits blastocyst competency for implantation. Development 2008; 135:717-27. [PMID: 18199579 PMCID: PMC2829274 DOI: 10.1242/dev.015339] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The activation of the blastocyst, a process by which it gains competency to attach with the receptive uterus, is a prerequisite for successful implantation. However, the molecular basis of blastocyst activation remains largely unexplored. Combining molecular, pharmacological and physiological approaches, we show here that silencing of Wnt-beta-catenin signaling in mice does not adversely affect the development of preimplantation embryos to blastocysts and uterine preparation for receptivity, but, remarkably, blocks blastocyst competency to implantation. Using the physiologically relevant delayed implantation model and trophoblast stem cells in culture, we further demonstrate that a coordinated activation of canonical Wnt-beta-catenin signaling with attenuation of the non-canonical Wnt-RhoA signaling pathway ensures blastocyst competency to implantation. These findings constitute novel evidence that Wnt signaling is at least one pathway that determines blastocyst competency for implantation.
Collapse
Affiliation(s)
- Huirong Xie
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | | | | | | | | | | | | |
Collapse
|
198
|
Costa L, Machado M, Oliveira J, Silva J, Loguercio R, Gonçalves P. Profile and regulation of annexin II expression during early embryogenesis in cattle. ARQ BRAS MED VET ZOO 2007. [DOI: 10.1590/s0102-09352007000600023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The presence of annexin II (Ann-II) during the initial stages of bovine embryo development and the regulation of Ann-II expression by retinol and insulin-like growth factor I (IGF-I) were studied. Bovine embryos at different stages of development were produced in vitro on Synthetic Oviductal Fluid (SOF) medium (control group), SOF supplemented with retinol (retinol group; 0.1ng/ml), or IGF-I (IGF-I group; 10ng/ml). The embryos were processed for mRNA extraction, cDNA production and polymerase chain reaction (PCR) using Ann-II-specific oligonucleotides. Ann-II was detected in all stages of early embryo development, except for the 16-cell stage. The blastocyst rates were significantly higher (P<0.05) in the group supplemented with retinol (37.8%, 45/119) during in vitro embryo culture (IVC) than in those cultured in SOF (20.5%, 24/117) or SOF with IGF-I (25.8%, 24/93). Semiquantitative analysis of Ann-II expression in embryos produced in medium supplemented with IGF-I or retinol revealed a lower expression of this gene when compared with embryos cultured in SOF (P<0.05). The Ann-II expression was not different in embryos cultured in the presence of retinol and IGF-I. The presence of retinol increased the production of embryos in vitro by decreasing the expression of Ann-II in early-stage of bovine embryo.
Collapse
|
199
|
Kurihara I, Lee DK, Petit FG, Jeong J, Lee K, Lydon JP, DeMayo FJ, Tsai MJ, Tsai SY. COUP-TFII mediates progesterone regulation of uterine implantation by controlling ER activity. PLoS Genet 2007; 3:e102. [PMID: 17590085 PMCID: PMC1892047 DOI: 10.1371/journal.pgen.0030102] [Citation(s) in RCA: 155] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2007] [Accepted: 05/09/2007] [Indexed: 11/29/2022] Open
Abstract
Progesterone and estrogen are critical regulators of uterine receptivity. To facilitate uterine remodeling for embryo attachment, estrogen activity in the uterine epithelia is attenuated by progesterone; however, the molecular mechanism by which this occurs is poorly defined. COUP-TFII (chicken ovalbumin upstream promoter transcription factor II; also known as NR2F2), a member of the nuclear receptor superfamily, is highly expressed in the uterine stroma and its expression is regulated by the progesterone–Indian hedgehog–Patched signaling axis that emanates from the epithelium. To further assess COUP-TFII uterine function, a conditional COUP-TFII knockout mouse was generated. This mutant mouse is infertile due to implantation failure, in which both embryo attachment and uterine decidualization are impaired. Using this animal model, we have identified a novel genetic pathway in which BMP2 lies downstream of COUP-TFII. Epithelial progesterone-induced Indian hedgehog regulates stromal COUP-TFII, which in turn controls BMP2 to allow decidualization to manifest in vivo. Interestingly, enhanced epithelial estrogen activity, which impedes maturation of the receptive uterus, was clearly observed in the absence of stromal-derived COUP-TFII. This finding is consistent with the notion that progesterone exerts its control of implantation through uterine epithelial-stromal cross-talk and reveals that stromal-derived COUP-TFII is an essential mediator of this complex cross-communication pathway. This finding also provides a new signaling paradigm for steroid hormone regulation in female reproductive biology, with attendant implications for furthering our understanding of the molecular mechanisms that underlie dysregulation of hormonal signaling in such human reproductive disorders as endometriosis and endometrial cancer. Pregnancy is established and maintained through a series of precisely choreographed cellular and molecular events that are controlled by two sex hormones, estrogen and progesterone. Both hormones exert their actions through their distinct nuclear receptors. During the peri-implantation period, estrogen activity is attenuated by progesterone to facilitate epithelial remodeling and embryo attachment, but the detailed molecular mechanism of how this process is achieved remains largely undefined. COUP-TFII (chicken ovalbumin upstream promoter transcription factor II; also known as NR2F2), a member of the nuclear receptor superfamily, is highly expressed in the uterine stroma, and its expression is controlled by progesterone–Indian hedgehog–Patched signaling from the epithelium to the stroma. To assess the uterine function of COUP-TFII, uterine-specific COUP-TFII knockout mice were generated. These mutant mice are infertile due to failure of implantation. We identified a novel genetic pathway in which the epithelial Ihh regulates the stroma COUP-TFII to control BMP2 and regulates decidualization. Interestingly, enhanced epithelial estrogen activity, which impedes the maturation of receptive uterus, was clearly noted in the absence of COUP-TFII. This finding reveals that COUP-TFII plays a critical role in maintaining the balance between estrogen and progesterone activities to establish proper implantation. This finding also provides new insights into women's health care associated with uncontrolled estrogen activity, such as breast cancer and endometriosis.
Collapse
Affiliation(s)
- Isao Kurihara
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Dong-Kee Lee
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Fabrice G Petit
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Jaewook Jeong
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Kevin Lee
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - John P Lydon
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Francesco J DeMayo
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Program of Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Ming-Jer Tsai
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Program of Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
- * To whom correspondence should be addressed. E-mail: (MJT); (SYT)
| | - Sophia Y Tsai
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Program of Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
- * To whom correspondence should be addressed. E-mail: (MJT); (SYT)
| |
Collapse
|
200
|
Maternal heparin-binding-EGF deficiency limits pregnancy success in mice. Proc Natl Acad Sci U S A 2007; 104:18315-20. [PMID: 17986609 DOI: 10.1073/pnas.0707909104] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
An intimate discourse between the blastocyst and uterus is essential for successful implantation. However, the molecular basis of this interaction is not clearly understood. Exploiting genomic Hbegf mutant mice, we show here that maternal deficiency of heparin-binding EGF-like growth factor (HB-EGF) defers on-time implantation, leading to compromised pregnancy outcome. We also demonstrate that amphiregulin, but not epiregulin, partially compensates for the loss of HB-EGF during implantation. In search of the mechanism of this compensation, we found that reduced preimplantation estrogen secretion from ovarian HB-EGF deficiency is a cause of sustained expression of uterine amphiregulin before the initiation of implantation. To explore the significance specifically of uterine HB-EGF in implantation, we examined this event in mice with conditional deletion of uterine HB-EGF and found that this specific loss of HB-EGF in the uterus still defers on-time implantation without altering preimplantation ovarian estrogen secretion. The observation of normal induction of uterine amphiregulin surrounding the blastocyst at the time of attachment in these conditional mutant mice suggests a compensatory role of amphiregulin for uterine loss of HB-EGF, preventing complete failure of pregnancy. Our study provides genetic evidence that HB-EGF is critical for normal implantation. This finding has high clinical relevance, because HB-EGF signaling is known to be important for human implantation.
Collapse
|