151
|
Arita Y, Harkness SH, Kazzaz JA, Koo HC, Joseph A, Melendez JA, Davis JM, Chander A, Li Y. Mitochondrial localization of catalase provides optimal protection from H2O2-induced cell death in lung epithelial cells. Am J Physiol Lung Cell Mol Physiol 2006; 290:L978-86. [PMID: 16387755 DOI: 10.1152/ajplung.00296.2005] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Reactive oxygen species (ROS) can cause cell injury and death via mitochondrial-dependent pathways, and supplementation with antioxidants has been shown to ameliorate these processes. The c-Jun NH2-terminal kinase (JNK) pathway has been shown to play a critical role in ROS-induced cell death. To determine if targeting catalase (CAT) to the mitochondria provides better protection than cytosolic expression against H2O2-induced injury, the following two approaches were taken: 1) adenoviral-mediated transduction was performed using cytosolic (CCAT) or mitochondrial (MCAT) CAT cDNAs and 2) stable cell lines were generated overexpressing CAT in mitochondria ( n = 3). Cells were exposed to 250 μM H2O2, and cell survival, mitochondrial function, cytochrome c release, and JNK activity were analyzed. Although all viral transduced cells had a transient twofold increase in CAT activity, MCAT cells had significantly higher survival rates, the best mitochondrial function, and lowest JNK activity compared with CCAT and LacZ controls. The improved protection with MCAT was observed in primary type II lung epithelial cells and in transformed lung epithelial cells. In the three stable cell lines, cell survival directly correlated with extent of mitochondrial localization ( r = 0.60572, P < 0.05) and not overall CAT activity ( r = −0.45501, P < 0.05). Data indicate that targeting of antioxidants directly to the mitochondria is more effective in protecting lung epithelial cells against ROS-induced injury. This has important implications in antioxidant supplementation trials to prevent ROS-induced lung injury in critically ill patients.
Collapse
Affiliation(s)
- Yuko Arita
- Department of Pediatrics, CardioPulmonary Research Institute, Winthrop University Hospital, SUNY Stony Brook School of Medicine, Suite 505, 222 Station Plaza North, Mineola, NY 11501, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
152
|
Inokuchi Y, Shimazawa M, Nakajima Y, Suemori S, Mishima S, Hara H. Brazilian green propolis protects against retinal damage in vitro and in vivo. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2006; 3:71-7. [PMID: 16550226 PMCID: PMC1375228 DOI: 10.1093/ecam/nek005] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2005] [Accepted: 12/22/2005] [Indexed: 01/07/2023]
Abstract
Propolis, a honeybee product, has gained popularity as a food and alternative medicine. Its constituents have been shown to exert pharmacological (anticancer, antimicrobial and anti-inflammatory) effects. We investigated whether Brazilian green propolis exerts neuroprotective effects in the retina in vitro and/or in vivo. In vitro, retinal damage was induced by 24 h hydrogen peroxide (H2O2) exposure, and cell viability was measured by Hoechst 33342 and YO-PRO-1 staining or by a resazurin–reduction assay. Propolis inhibited the neurotoxicity and apoptosis induced in cultured retinal ganglion cells (RGC-5, a rat ganglion cell line transformed using E1A virus) by 24 h H2O2 exposure. Propolis also inhibited the neurotoxicity induced in RGC-5 cultures by staurosporine. Regarding the possible underlying mechanism, in pig retina homogenates propolis protected against oxidative stress (lipid peroxidation), as also did trolox (water-soluble vitamin E). In mice in vivo, propolis (100 mg kg−1; intraperitoneally administered four times) reduced the retinal damage (decrease in retinal ganglion cells and in thickness of inner plexiform layer) induced by intravitreal in vivo N-methyl-d-aspartate injection. These findings indicate that Brazilian green propolis has neuroprotective effects against retinal damage both in vitro and in vivo, and that a propolis-induced inhibition of oxidative stress may be partly responsible for these neuroprotective effects.
Collapse
Affiliation(s)
- Yuta Inokuchi
- Department of Biofunctional Molecules, Gifu Pharmaceutical University, Mitahora-Higashi, Japan
| | | | | | | | | | | |
Collapse
|
153
|
Catterall JB, Rowan AD, Sarsfield S, Saklatvala J, Wait R, Cawston TE. Development of a novel 2D proteomics approach for the identification of proteins secreted by primary chondrocytes after stimulation by IL-1 and oncostatin M. Rheumatology (Oxford) 2006; 45:1101-9. [PMID: 16567360 DOI: 10.1093/rheumatology/kel060] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES To develop a proteomics approach to study changes in the secreted protein levels of primary human chondrocytes after stimulation by the pro-inflammatory cytokines interleukin-1 and oncostatin M. METHODS Using both the primary human articular and bovine nasal chondrocyte-conditioned mediums, methods were investigated to enable the separation of proteins by two-dimensional (2D) gel electrophoresis. Differentially regulated proteins were identified using tandem electrospray mass spectrometery. RESULTS We discovered that proteoglycans and glycosylaminoglycans (GAGs) secreted by chondrocytes significantly interfered with 2D gel focusing. Several different methods for GAG removal were attempted including enzymic digestion, cetyl pyridinium chloride precipitation and anion exchange in high salt. The anion exchange proved to be the most effective. Even from these initial gels, we were able to identify eight proteins produced by human chondrocytes: matrix metalloproteinase (MMP)-1, MMP-3, YKL40, cyclophilin A, beta2-microglobulin, transthyretin, S100A11, peroxidine 1 and cofilin. MMP-1, MMP-3, YKL40 and cyclophilin A were all identified as processed, smaller peptide fragments. CONCLUSIONS We were able to develop a novel sample preparation protocol to allow the reproducible sample preparation of secreted proteins from human chondrocytes. From the initial data, we were able to show that at least some of the proteins produced were cleaved to smaller fragments as a result of proteolysis. Therefore, this technique provides valuable information about protein processing which gene-based arrays do not.
Collapse
Affiliation(s)
- J B Catterall
- Musculoskeletal Research Group, School of Clinical Medical Sciences, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | | | | | | | | | | |
Collapse
|
154
|
Miller EW, Albers AE, Pralle A, Isacoff EY, Chang CJ. Boronate-based fluorescent probes for imaging cellular hydrogen peroxide. J Am Chem Soc 2006; 127:16652-9. [PMID: 16305254 PMCID: PMC1447675 DOI: 10.1021/ja054474f] [Citation(s) in RCA: 452] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The syntheses, properties, and biological applications of the Peroxysensor family, a new class of fluorescent probes for hydrogen peroxide, are presented. These reagents utilize a boronate deprotection mechanism to provide high selectivity and optical dynamic range for detecting H2O2 in aqueous solution over similar reactive oxygen species (ROS) including superoxide, nitric oxide, tert-butyl hydroperoxide, hypochlorite, singlet oxygen, ozone, and hydroxyl radical. Peroxyresorufin-1 (PR1), Peroxyfluor-1 (PF1), and Peroxyxanthone-1 (PX1) are first-generation probes that respond to H2O2 by an increase in red, green, and blue fluorescence, respectively. The boronate dyes are cell-permeable and can detect micromolar changes in H2O2 concentrations in living cells, including hippocampal neurons, using confocal microscopy and two-photon microscopy. The unique combination of ROS selectivity, membrane permeability, and a range of available excitation/emission colors establishes the potential value of PR1, PF1, PX1, and related probes for interrogating the physiology and pathology of cellular H2O2.
Collapse
Affiliation(s)
- Evan W Miller
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | | | | | | | | |
Collapse
|
155
|
Kim YK, Bae GU, Kang JK, Park JW, Lee EK, Lee HY, Choi WS, Lee HW, Han JW. Cooperation of H2O2-mediated ERK activation with Smad pathway in TGF-β1 induction of p21WAF1/Cip1. Cell Signal 2006; 18:236-43. [PMID: 15979845 DOI: 10.1016/j.cellsig.2005.04.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2005] [Revised: 04/16/2005] [Accepted: 04/19/2005] [Indexed: 11/20/2022]
Abstract
Although it has been demonstrated that p21WAF1/Cip1 could be induced by transforming growth factor-beta1 (TGF-beta1) in a Smad-dependent manner, the cross-talk of Smad signaling pathway with other signaling pathways still remains poorly understood. In this study, we investigated a possible role of hydrogen peroxide (H2O2)-ERK pathway in TGF-beta1 induction of p21WAF1/Cip1 in human keratinocytes HaCaT cells. Using pharmacological inhibitors specific for MAP kinase family members, we found that ERK, but not JNK or p38, is required for TGF-beta1 induction of p21WAF1/Cip1. ERK activation by TGF-beta1 was significantly attenuated by treatment with N-acetyl-l-cysteine or catalase, indicating that reactive oxygen species (ROS) generated by TGF-beta1, mainly H2O2, stimulates ERK signaling pathway to induce the p21WAF1/Cip1 expression. In support of this, TGF-beta1 stimulation caused an increase in intracellular ROS level, which was completely abolished by pretreatment with catalase. ERK activation does not appear to be associated with nuclear translocation of Smad-3, because ERK inhibition did not affect nuclear translocation of Smads by TGF-beta1, and H2O2 treatment alone did not cause nuclear translocation of Smad-3. On the other hand, ERK inhibition ablated the phosphorylation of Sp1 by TGF-beta1, which was accompanied with the disruption of interaction between Smad-3 and Sp1 as well as of the recruitment of Sp1 to the p21WAF1/Cip1 promoter induced by TGF-beta1, indicating that ERK signaling pathway might be necessary for their interaction. Taken together, these results suggest that activation of H2O2-mediated ERK signaling pathway is required for p21WAF1/Cip1 expression by TGF-beta1 and led us to propose a cooperative model whereby TGF-beta1-induced receptor activation stimulates not only a Smad pathway but also a parallel H2O2-mediated ERK pathway that acts as a key determinant for association between Smads and Sp1 transcription factor.
Collapse
Affiliation(s)
- Yong Kee Kim
- College of Medicine, Kwandong University, Gangneung 210-701, Republic of Korea.
| | | | | | | | | | | | | | | | | |
Collapse
|
156
|
Morales LD, Martin C, Cruz MA. The interaction of von Willebrand factor-A1 domain with collagen: mutation G1324S (type 2M von Willebrand disease) impairs the conformational change in A1 domain induced by collagen. J Thromb Haemost 2006; 4:417-25. [PMID: 16420575 DOI: 10.1111/j.1538-7836.2006.01742.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
BACKGROUND It is established that the A3 domain in von Willebrand factor (VWF) contains the major collagen-binding site. However, there are conflicting reports describing the capacity of the A1 domain to interact with collagen types I and III. METHODS In this study, we have used recombinant VWF-A1 polypeptides, as well as conformation-specific monoclonal antibodies (mAb), to analyze the A1-collagen interaction. RESULTS The A1 domain bound to collagen with K(d) approximately 8.0 nm and this binding was blocked by the mAb 6G1, which blocks the interaction between ristocetin and VWF. In addition, collagen-bound A1 protein was able to support flow-dependent adhesion of platelets, demonstrating that the binding sites for collagen and glycoprotein (GP)Ib are different. Analysis with two conformation-specific mAb demonstrated that the structure of the A1 domain changed as a result of the binding to collagen. In contrast, the antibodies failed to detect conformational change in the G1324S mutant (type 2M von Willebrand disease). Thus, direct binding to collagen induces a change in the structural conformation within the VWF-A1 domain, and the G1324S substitution prevents this conformational change. CONCLUSION This study has shown that the isolated A1 domain can simultaneously bind to collagen and platelet GPIb, supporting platelet adhesion under high-flow conditions. In addition, this study has used mAb to demonstrate that the binding of the isolated A1 domain or full-length VWF to collagen is accompanied by a conformational change in A1 domain.
Collapse
Affiliation(s)
- L D Morales
- Department of Medicine, Thrombosis Research Section, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | |
Collapse
|
157
|
Hong SK, Cha MK, Kim IH. Specific protein interaction of human Pag with Omi/HtrA2 and the activation of the protease activity of Omi/HtrA2. Free Radic Biol Med 2006; 40:275-84. [PMID: 16413409 DOI: 10.1016/j.freeradbiomed.2005.08.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2005] [Revised: 08/01/2005] [Accepted: 08/16/2005] [Indexed: 11/24/2022]
Abstract
The human PAG gene product (hPag), one member of the TSA/AhpC family, is overexpressed by oxidative stress, which causes apoptosis. To investigate the apoptotic signal transduction mediated by hPag, hPag-binding protein was screened using the yeast two-hybrid system. Omi/HtrA2 was identified as the hPag-binding protein. Omi/HtrA2, a potent proapoptotic factor, is released from the mitochondria into the cytoplasm as the mature form showing serine protease activity during apoptosis in response to oxidative stress. We found that hPag was able to interact with the mature form of Omi/HtrA2, not with the precursor form of Omi/HtrA2. The binding of Omi/HtrA2 to hPag was shown to involve the PDZ-binding domain in Omi/HtrA2. Also, the carboxyl-terminal domain of hPag was shown to be critical for the protein interaction. Using the yeast two-hybrid system and in vitro binding assay, the reduced form of hPag was able to interact with Omi/HtrA2. Interestingly, the protease activity given by the mature form of Omi/HtrA2 was significantly activated by the binding to hPag. Taken together, these results suggest that the specific protein interaction may participate as a molecular switch in modulating cell death in response to oxidative stress.
Collapse
Affiliation(s)
- Seung-Keun Hong
- Department of Biochemistry, Paichai University, 439-6 Doma-2-Dong Seo-Gu, Taejon 302-735, Korea
| | | | | |
Collapse
|
158
|
Segal MS, Shah R, Afzal A, Perrault CM, Chang K, Schuler A, Beem E, Shaw LC, Li Calzi S, Harrison JK, Tran-Son-Tay R, Grant MB. Nitric oxide cytoskeletal-induced alterations reverse the endothelial progenitor cell migratory defect associated with diabetes. Diabetes 2006. [PMID: 16380482 DOI: 10.2337/diabetes.55.01.06.db05-0803] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Stromal-derived factor-1 (SDF-1) is a critical chemokine for endothelial progenitor cell (EPC) recruitment to areas of ischemia, allowing these cells to participate in compensatory angiogenesis. The SDF-1 receptor, CXCR4, is expressed in developing blood vessels as well as on CD34+ EPCs. We describe that picomolar and nanomolar concentrations of SDF-1 differentially influence neovascularization, inducing CD34+ cell migration and EPC tube formation. CD34+ cells isolated from diabetic patients demonstrate a marked defect in migration to SDF-1. This defect is associated, in some but not all patients, with a cell surface activity of CD26/dipeptidyl peptidase IV, an enzyme that inactivates SDF-1. Diabetic CD34+ cells also do not migrate in response to vascular endothelial growth factor and are structurally rigid. However, incubating CD34+ cells with a nitric oxide (NO) donor corrects this migration defect and corrects the cell deformability. In addition, exogenous NO alters vasodilator-stimulated phosphoprotein and mammalian-enabled distribution in EPCs. These data support a common downstream cytoskeletal alteration in diabetic CD34+ cells that is independent of growth factor receptor activation and is correctable with exogenous NO. This inability of diabetic EPCs to respond to SDF-1 may contribute to aberrant tissue vascularization and endothelial repair in diabetic patients.
Collapse
Affiliation(s)
- Mark S Segal
- Division of Nephrology, Hypertension & Transplantation, University of Florida, P.O. Box 100224, Gainesville, FL 32610-0267, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
159
|
Stevenson CS, Koch LG, Britton SL. Aerobic capacity, oxidant stress, and chronic obstructive pulmonary disease--a new take on an old hypothesis. Pharmacol Ther 2005; 110:71-82. [PMID: 16343638 DOI: 10.1016/j.pharmthera.2005.09.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2005] [Accepted: 09/23/2005] [Indexed: 02/07/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is a smoking-related disorder that is a leading cause of death worldwide. It is associated with an accelerated rate of age-related decline in lung function due to the occurrence of destructive pathological changes such as emphysema, small airway remodeling, and mucus hypersecretion. Smokers are exposed to trillions of radicals and thousands of reactive chemicals and particles with every cigarette, thus oxidant stress is believed to be a central factor in the pathogenesis of COPD. The molecular activities of radicals, reactive oxygen, and nitrogen species can, over time, lead to a number of the detrimental changes in the lung. For instance, smoke can directly damage the mitochondrion, an organelle that has long been linked to age-related diseases associated with oxidant stress. Mitochondria are involved in a number of important cellular processes and are the largest source of endogenous reactive oxygen species (ROS) in the cell; therefore, any impairment of mitochondrial function can lead to greater oxidant damage, cellular dysfunction, and eventually to disease. Only a subset of smokers (15-50%) develops COPD, suggesting that there are polygenetic and/or environmental susceptibility factors involved in this complex disease. Here, we propose that the aerobic capacity for an individual may determine whether one is susceptible to developing COPD. Aerobic capacity is a polygenetic trait closely associated with mitochondrial function, and we suggest antioxidant defenses. Thus, those smokers who have the greatest aerobic capacity will be most resistant to the effects of chronic cigarette smoke exposure and be less likely to develop COPD.
Collapse
Affiliation(s)
- Christopher S Stevenson
- Novartis Institutes for BioMedical Research, Respiratory Disease Area, Wimblehurst Road, Horsham, West Sussex RH12 5AB, UK.
| | | | | |
Collapse
|
160
|
Galle J, Hansen-Hagge T, Wanner C, Seibold S. Impact of oxidized low density lipoprotein on vascular cells. Atherosclerosis 2005; 185:219-26. [PMID: 16288760 DOI: 10.1016/j.atherosclerosis.2005.10.005] [Citation(s) in RCA: 158] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2005] [Revised: 09/29/2005] [Accepted: 10/03/2005] [Indexed: 10/25/2022]
Abstract
Oxidized LDL (OxLDL) is a proatherogenic lipoprotein, accumulating in the vascular wall and contributing to the pathogenesis of vascular dysfunction early in the development of atherosclerosis. Enhanced serum levels of OxLDL, as well as antibodies against its epitopes, are predictive for endothelial dysfunction and coronary heart disease. While enhanced oxidative stress is one factor triggering formation of OxLDL, OxLDL itself has been identified as a potent stimulus for vascular oxygen radical formation, causing a vicious circle. OxLDL-induced O(2)(-) formation, largely through activation of NADPH oxidase, but also through uncoupling of endothelial NO-synthase and through direct O(2)(-) release, leads to endothelial dysfunction. Furthermore, OxLDL-induced O(2)(-) formation has a strong impact on tissue remodeling, resulting in either cell growth - proliferation or hyperplasia - or apoptotic cell death. The effect of OxLDL on cell cycle regulation is mediated by activation of the small GTPase RhoA and consequent regulation of p27(KIP1), a key enzyme of the cell cycle. In addition, OxLDL-induced activation of RhoA sensitizes the contractile apparatus of the vessel wall, enhancing the contractile tonus and favoring vasospasm. Thus, through a variety of mechanisms, OxLDL importantly contributes to vascular dysfunction and remodeling.
Collapse
Affiliation(s)
- Jan Galle
- Department of Medicine, Division of Nephrology, Julius-Maximilians-University, Würzburg, Germany.
| | | | | | | |
Collapse
|
161
|
Regan E, Flannelly J, Bowler R, Tran K, Nicks M, Carbone BD, Glueck D, Heijnen H, Mason R, Crapo J. Extracellular superoxide dismutase and oxidant damage in osteoarthritis. ARTHRITIS AND RHEUMATISM 2005; 52:3479-91. [PMID: 16255039 PMCID: PMC2755499 DOI: 10.1002/art.21387] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE To use human cartilage samples and a mouse model of osteoarthritis (OA) to determine whether extracellular superoxide dismutase (EC-SOD) is a constituent of cartilage and to evaluate whether there is a relationship between EC-SOD deficiency and OA. METHODS Samples of human cartilage were obtained from femoral heads at the time of joint replacement surgery for OA or femoral neck fracture. Samples of mouse tibial cartilage obtained from STR/ort mice and CBA control mice were compared at 5, 15, and 35 weeks of age. EC-SOD was measured by enzyme-linked immunosorbent assay, Western blotting, and immunohistochemistry techniques. Real-time quantitative reverse transcription-polymerase chain reaction was used to measure messenger RNA for EC-SOD and for endothelial cell, neuronal, and inducible nitric oxide synthases. Nitrotyrosine formation was assayed by Western blotting in mouse cartilage and by fluorescence immunohistochemistry in human cartilage. RESULTS Human articular cartilage contained large amounts of EC-SOD (mean +/- SEM 18.8 +/- 3.8 ng/gm wet weight of cartilage). Cartilage from patients with OA had an approximately 4-fold lower level of EC-SOD compared with cartilage from patients with hip fracture. Young STR/ort mice had decreased levels of EC-SOD in tibial cartilage before histologic evidence of disease occurred, as well as significantly more nitrotyrosine formation at all ages studied. CONCLUSION EC-SOD, the major scavenger of reactive oxygen species in extracellular spaces, is decreased in humans with OA and in an animal model of OA. Our findings suggest that inadequate control of reactive oxygen species plays a role in the pathophysiology of OA.
Collapse
Affiliation(s)
- Elizabeth Regan
- Department of Medicine, National Jewish Medical and Research Center, 1400 Jackson Street, Denver, CO 80206, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
162
|
Sauer H, Wartenberg M. Reactive oxygen species as signaling molecules in cardiovascular differentiation of embryonic stem cells and tumor-induced angiogenesis. Antioxid Redox Signal 2005; 7:1423-34. [PMID: 16356105 DOI: 10.1089/ars.2005.7.1423] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Besides the well known pathophysiological impact of oxidative stress in cardiovascular disease, reactive oxygen species (ROS) generated at low concentrations exert a role as signaling molecules that are involved in signal transduction cascades of numerous growth factor-, cytokine-, and hormone-mediated pathways, and regulate biological effects such as apoptosis, cell proliferation, and differentiation. Embryonic stem cells have the capacity to differentiate into the cardiovascular cell lineage. Furthermore, upon confrontation culture with tumor tissue, they form blood vessel-like structures that induce tumor-induced angiogenesis within tumor tissues. The role of ROS in cardiovascular differentiation of embryonic stem cells appears to be antagonistic. Whereas continuous exposure to ROS results in inhibition of cardiomyogenesis and vasculogenesis, pulse chase exposure to low-level ROS enhances differentiation toward the cardiomyogenic as well as vascular cell lineage. This review summarizes the current knowledge of ROS-induced cardiovascular differentiation of embryonic stem cells as well as the role of ROS in tumor-induced angiogenesis.
Collapse
Affiliation(s)
- Heinrich Sauer
- Department of Physiology, Justus-Liebig-University Giessen, Giessen, Germany.
| | | |
Collapse
|
163
|
Abstract
The phosphorylation of tyrosine, and to a lesser extent threonine and serine, plays a key role in the regulation of signal transduction during a plethora of eukaryotic cell functions, including cell activation, cell-cycle progression, cytoskeletal rearrangement and cell movement, differentiation, apoptosis and metabolic homeostasis. In vivo, tyrosine phosphorylation is reversible and dynamic; the phosphorylation states are governed by the opposing activities of protein tyrosine kinases (PTKs)2 and protein tyrosine phosphatases (PTPs). Reactive oxygen species (ROS) act as cellular messengers in cellular processes such as mitogenic signal transduction, gene expression, regulation of cell proliferation, senescence and apoptosis. Redox regulated proteins include PTPs and PTKs, although with opposite regulation of enzymatic activity. Transient oxidation of thiols in PTPs leads to their inactivation by the formation of either an intramolecular S-S bridge or a sulfenyl-amide bond. Conversely, oxidation of PTKs leads to their activation, either by direct SH modification or, indirectly, by concomitant inhibition of PTPs that guides to sustained activation of PTKs. This review focuses on the redox regulation of both PTPs and PTKs and the interplay of their specular regulation.
Collapse
Affiliation(s)
- Paola Chiarugi
- Department of Biochemical Sciences, University of Florence, viale Morgagni 50, 50134, Firenze, Italy.
| |
Collapse
|
164
|
Shimazawa M, Yamashima T, Agarwal N, Hara H. Neuroprotective effects of minocycline against in vitro and in vivo retinal ganglion cell damage. Brain Res 2005; 1053:185-94. [PMID: 16051195 DOI: 10.1016/j.brainres.2005.06.053] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2005] [Revised: 06/17/2005] [Accepted: 06/20/2005] [Indexed: 12/21/2022]
Abstract
The purpose of this study was to determine whether minocycline, a semi-synthetic tetracycline derivative, reduces (a) the in vitro neuronal damage occurring after serum deprivation in cultured retinal ganglion cells (RGC-5, a rat ganglion cell line transformed using E1A virus) and/or (b) the in vivo retinal damage induced by N-methyl-D-aspartate (NMDA) intravitreal injection in mice. In addition, we examined minocycline's putative mechanisms of action against oxidative stress and endoplasmic reticulum (ER) stress. In vitro, retinal damage was induced by 24-h serum deprivation, and cell viability was measured by Hoechst 33342 staining or resazurin reduction assay. In cultures of RGC-5 cells maintained in serum-free medium for up to 24 h, the number of cells undergoing cell death was reduced by minocycline (0.2-20 microM). Serum deprivation resulted in increased oxidative stress, as revealed by an increase in the fluorescence intensity for 5-(and-6)-chloromethyl-2', 7'-dichlorodihydrofluorescein diacetate (CM-H2DCFDA), a reactive oxygen species (ROS) indicator. Minocycline at 2 and 20 microM inhibited this ROS production. However, even at 20 microM minocycline did not inhibit the retinal damage induced by tunicamycin (an ER stress inducer). Furthermore, in mice in vivo minocycline at 90 mg/kg intraperitoneally administered 60 min before an NMDA intravitreal injection reduced the NMDA-induced retinal damage. These findings indicate that minocycline has neuroprotective effects against in vitro and in vivo retinal damage, and that an inhibitory effect on ROS production may contribute to the underlying mechanisms.
Collapse
Affiliation(s)
- Masamitsu Shimazawa
- Department of Biofunctional Molecules, Gifu Pharmaceutical University, 5-6-1 Mitahora-higashi, Gifu 502-8585, Japan
| | | | | | | |
Collapse
|
165
|
Kim HH, Shin CM, Park CH, Kim KH, Cho KH, Eun HC, Chung JH. Eicosapentaenoic acid inhibits UV-induced MMP-1 expression in human dermal fibroblasts. J Lipid Res 2005; 46:1712-20. [PMID: 15930517 DOI: 10.1194/jlr.m500105-jlr200] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Ultraviolet (UV) irradiation regulates UV-responsive genes, including matrix metalloproteinases (MMPs). Moreover, UV-induced MMPs cause connective tissue damage and the skin to become wrinkled and aged. Here, we investigated the effect of eicosapentaenoic acid (EPA), a dietary omega-3 fatty acid, on UV-induced MMP-1 expression in human dermal fibroblasts (HDFs). We found that UV radiation increases MMP-1 expression and that this is mediated by p44 and p42 MAP kinase (ERK) and Jun-N-terminal kinase (JNK) activation but not by p38 activation. Pretreatment of HDFs with EPA inhibited UV-induced MMP-1 expression in a dose-dependent manner and also inhibited the UV-induced activation of ERK and JNK by inhibiting ERK kinase (MEK1) and SAPK/ERK kinase 1 (SEK1) activation, respectively. Moreover, inhibition of ERK and JNK by EPA resulted in the decrease of c-Fos expression and c-Jun phosphorylation/expression induced by UV, respectively, which led to the inhibition of UV-induced activator protein-1 DNA binding activity. This inhibitory effect of EPA on MMP-1 was not mediated by an antioxidant effect. We also found that EPA inhibited 12-O-tetradecanoylphorbol-13-acetate- or tumor necrosis factor-alpha-induced MMP-1 expression in HDFs and UV-induced MMP-1 expression in HaCaT cells. In conclusion, our results demonstrate that EPA can inhibit UV-induced MMP-1 expression by inhibiting the MEK1/ERK/c-Fos and SEK1/JNK/c-Jun pathways. Therefore, EPA is a potential agent for the prevention and treatment of skin aging.
Collapse
Affiliation(s)
- Hyeon Ho Kim
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
166
|
Shimozawa M, Naito Y, Manabe H, Uchiyama K, Kuroda M, Katada K, Yoshida N, Yoshikawa T. 7-Ketocholesterol enhances the expression of adhesion molecules on human aortic endothelial cells by increasing the production of reactive oxygen species. Redox Rep 2005; 9:370-5. [PMID: 15720835 DOI: 10.1179/135100004225006902] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The aim of the present study was to assess the expression of intracellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1), monocytic adhesion of human aortic endothelial cells (HAECs), and the production of intracellular reactive oxygen species (ROS), when HAECs were stimulated by 7-ketocholesterol. 7-ketocholesterol enhances surface expression of ICAM-1 and VCAM-1 as determined by EIA, induces their mRNA expression by RT-PCR, and stimulates adhesiveness of HAECs to U937 monocytic cells. We confirmed up-regulation of ROS production of HAECs treated with 7-ketocholesterol. Although the surface expression of ICAM-1 and VCAM-1 on HAECs treated with 7-ketocholesterol increased in a time-dependent manner, alpha-tocopherol inhibited this increase of the surface expression of ICAM-1 and VCAM-1. In the monocytic adhesion assay, adhesion of U937 to HAECs treated with 7-ketocholesterol was enhanced, but monoclonal anti-ICAM-1 and VCAM-1 antibodies reduced the endothelial adhesiveness. In conclusion, this study suggests that the endothelial adhesiveness to monocytic cells that was increased by 7-ketocholesterol was associated with enhanced expression of ICAM-1 and VCAM-1 mediated by ROS production.
Collapse
Affiliation(s)
- Makoto Shimozawa
- Department of Inflammation and Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | | | | | | | | | | | | | | |
Collapse
|
167
|
Lin Y, Kikuchi S, Obata Y, Yagyu K. A case-control study exploring the role of serum manganese superoxide dismutase (MnSOD) levels in gastric cancer. J Epidemiol 2005; 15:90-5. [PMID: 15930805 PMCID: PMC7851062 DOI: 10.2188/jea.15.90] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND: The role of serum manganese superoxide dismutase (MnSOD) in the development of gastric cancer has not been clearly defined. METHODS: We conducted a case-control study to address the potential relationship between serum MnSOD levels and gastric cancer. Cases were 275 gastric cancer patients and controls were 275 sex- and age-matched healthy persons. Serum MnSOD levels were determined by a commercially available enzyme-linked immunosorbent assay (ELISA). RESULTS: The mean(±standard deviation) of serum MnSOD levels was 177.4±87.3 ng/mL among cases and 169.4±56.7 ng/mL among controls. Gastric cancer patients had slightly higher serum MnSOD levels than the controls. After adjustment for pack-years of cigarette smoking and Helicobacter pylori infection, the odds ratio was 1.54(95% confidence interval; 0.79-3.01) for subjects in the highest quartile versus the lowest quartile. No significant differences were observed for serum MnSOD levels in gastric cancer patients according to clinicopathological factors such as disease stage, histological type, venous invasion, and lymph node metastasis. CONCLUSION: Our study suggested that serum MnSOD levels are not significantly associated with the increased risk of gastric cancer, although a weak association may exist.
Collapse
Affiliation(s)
- Yingsong Lin
- Department of Public Health, Aichi Medical University School of Medicine, Japan
| | | | | | | |
Collapse
|
168
|
Mehdi MZ, Pandey NR, Pandey SK, Srivastava AK. H2O2-induced phosphorylation of ERK1/2 and PKB requires tyrosine kinase activity of insulin receptor and c-Src. Antioxid Redox Signal 2005; 7:1014-20. [PMID: 15998256 DOI: 10.1089/ars.2005.7.1014] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Hydrogen peroxide (H2O2) mimics many physiological responses of insulin, and increased H2O2 generation via the Nox-4 subunit of NAD(P)H oxidase was recently demonstrated to serve as a critical early step in the insulin signaling pathway. Exogenously added H2O2 has also been shown to activate several key components of the insulin signaling cascade. H2O2-induced signaling responses have been found to be associated with the activation of receptor and nonreceptor protein tyrosine kinases (PTK), including the insulin receptor (IR)-beta subunit. Therefore, in the present studies on Chinese hamster ovary cells overexpressing wild-type IR-PTK (CHO-IR) or a PTK-inactive form of IR (CHO-1018), we investigated whether IR-PTK plays a role in H2O2-induced signaling events. Treatment of CHO-IR cells with H2O2 increased the phosphorylation of extracellular signal-regulated kinases 1 and 2 (ERK1/2), protein kinase B (PKB), and glycogen synthase kinase-3beta while enhancing tyrosine phosphorylation of the IR-beta subunit and the p85 subunit of phosphatidylinositol 3-kinase (PI3K). Compared with CHO-IR cells, the stimulatory effect of H2O2 on ERK1/2 and PKB was partially reduced in CHO-1018 cells. However, pharmacological inhibition of Src family PTK by 4-amino-5-(4-chlorophenyl)-7-(tert-butyl)pyrazolo[3,4-d]pyrimidine (PP-2) almost completely blocked H2O2-stimulated phosphorylation of the p85 subunit of PI3K, ERK1/2, and PKB. Moreover, H2O2, but not insulin, induced Tyr-418 phosphorylation of Src, which was also suppressed by PP-2. Taken together, these data suggest that both IR-PTK and Src family PTKs contribute to H2O2-induced signaling in CHO-IR cells albeit IR-PTK has a less dominant role in this process.
Collapse
Affiliation(s)
- Mohamad Z Mehdi
- Laboratory of Cell Signaling, Research Centre, Centre hospitalier de l'Université de Montréal-Hôtel-Dieu and Department of Medicine, Université de Montréal, Montréal, Quebec, Canada
| | | | | | | |
Collapse
|
169
|
Nkabyo YS, Go YM, Ziegler TR, Jones DP. Extracellular cysteine/cystine redox regulates the p44/p42 MAPK pathway by metalloproteinase-dependent epidermal growth factor receptor signaling. Am J Physiol Gastrointest Liver Physiol 2005; 289:G70-8. [PMID: 15746213 DOI: 10.1152/ajpgi.00280.2004] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Previous research shows that stimulation of proliferation of colon carcinoma (Caco-2) cells by a more reduced extracellular cysteine/cystine (Cys/CySS) redox state occurs with no apparent effect on intracellular glutathione and that this stimulation is lost on addition of epidermal growth factor. The purpose of the present study was to determine whether a more reduced extracellular Cys/CySS redox state activates the mitogenic p44/p42 mitogen-activated protein kinase (MAPK) pathway and whether this is signaled through the epidermal growth factor receptor (EGFR). Caco-2 cells were exposed to a range of physiological extracellular redox conditions from -150 to 0 mV. In the absence of added growth factors, the most reduced (-150 mV) redox state induced an 80% increase in EGFR phosphorylation, and this was followed by a marked increase in phosphorylation of p44/p42 MAPK. Inhibitors of EGFR (AG1478) and p44/p42 MAPK (U0126) phosphorylation blocked redox-dependent p44/p42 phosphorylation, indicating that signaling occurred by EGFR. These effects were inhibited by pretreatment with a nonpermeant alkylating agent, showing that signaling involved thiols accessible to the extracellular space. The EGFR ligand TGF-alpha was increased in culture medium at more reduced redox states. Redox-dependent phosphorylation of EGFR was completely prevented by a metalloproteinase inhibitor (GM6001), and an antibody to TGF-alpha partially inhibited the phosphorylation of p44/p42 MAPK by redox. Thus the data show that a redox-dependent activation of metalloproteinase can stimulate the mitogenic p44/p42 MAPK pathway by a TGF-alpha-dependent mechanism. Because Cys availability and Cys/CySS redox are dependent on nutrition, disease, and environmental exposures, the results suggest that cell proliferation could be influenced physiologically by Cys-dependent redox effects on growth factor signaling pathways.
Collapse
Affiliation(s)
- Yvonne S Nkabyo
- Graduate Program in Molecular and Systems Pharmacology, Emory University, Atlanta, Georgia 30322, USA
| | | | | | | |
Collapse
|
170
|
Attene-Ramos MS, Kitiphongspattana K, Ishii-Schrade K, Gaskins HR. Temporal changes of multiple redox couples from proliferation to growth arrest in IEC-6 intestinal epithelial cells. Am J Physiol Cell Physiol 2005; 289:C1220-8. [PMID: 15958525 DOI: 10.1152/ajpcell.00164.2005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Changes in intracellular redox couples and redox reactive molecules have been implicated in the regulation of a variety of cellular processes, including cell proliferation and growth arrest by contact inhibition. However, the magnitude, direction, and temporal relationship of redox changes to cellular responses are incompletely defined. The present work sought to characterize redox and metabolic changes associated with proliferative stages to contact inhibition of growth in rat IEC-6 intestinal epithelial cells. From the first day of culture until 1 day before confluence, an increase in GSH concentrations and a significant reduction in the redox potential of the GSSG/2GSH couple were observed. These changes were accompanied by a decrease in relative reactive oxygen species (ROS) and nitric oxide (NO) concentrations and oxidation of the redox potential of the NADP(+)/reduced NADP and NAD(+)/NADH couples. Postconfluent cells exhibited a significant decrease in GSH concentrations and a significant oxidation of the GSSG/2GSH couple. When cell proliferation decreased, relative ROS concentrations increased (P < 0.01), whereas NO concentrations remained unchanged, and the NAD(+)/NADH couple became more reduced. Together, these data indicate that the redox potential of distinct couples varies differentially in both magnitude and direction during successive stages of IEC-6 growth. This finding points out the difficulty of defining intracellular redox status at particular stages of cell growth by examining only one redox species. In addition, the data provide a numerical framework for future research of regulatory mechanisms governed by distinct intracellular redox couples.
Collapse
Affiliation(s)
- Matias S Attene-Ramos
- Department of Animal Sciences, University of Illinois, 1207 W. Gregory Drive, Urbana, IL 61801, USA
| | | | | | | |
Collapse
|
171
|
Chiarugi P, Giannoni E. Anchorage-dependent cell growth: tyrosine kinases and phosphatases meet redox regulation. Antioxid Redox Signal 2005; 7:578-92. [PMID: 15890002 DOI: 10.1089/ars.2005.7.578] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Recent data have provided new insight concerning the regulation of nontransformed cell proliferation in response to both soluble growth factors and adhesive cues. Nontransformed cells are anchorage-dependent for the execution of the complete mitotic program and cannot avoid the concomitant signals starting from mitogenic molecules, as growth factors, and adhesive agents belonging to the extracellular matrix. Protein tyrosine kinases (PTKs) and phosphotyrosine phosphatases (PTPs) together with soluble small molecules have been included among intracellular signal transducers of growth factor and extracellular matrix receptors. Reactive oxygen species retain a key role during both growth factor and integrin receptor signaling, and these second messengers are recognized to be a synergistic point of confluence for anchorage-dependent growth signaling. Redox-regulated proteins include PTPs and PTKs, although with opposite regulation of enzymatic activity. Transient oxidation of PTPs leads to their inactivation, through the formation of an intramolecular S-S bridge. Conversely, oxidation of PTKs leads to their activation, either by direct SH modification or, indirectly, by concomitant inhibition of PTPs that leads to sustained activation of PTKs. This review will focus on the redox regulation of PTPs and PTKs during anchorage-dependent cell growth and its implications for tumor biology.
Collapse
Affiliation(s)
- Paola Chiarugi
- Department of Biochemical Sciences, University of Florence, Florence, Italy.
| | | |
Collapse
|
172
|
Lv R, Zhou W, Zhang LD, Xu JG. Effects of hydroxyethyl starch on hepatic production of cytokines and activation of transcription factors in lipopolysaccharide-administered rats. Acta Anaesthesiol Scand 2005; 49:635-42. [PMID: 15836676 DOI: 10.1111/j.1399-6576.2005.00668.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Hydroxyethyl starch (HES) is one of the most frequently used plasma substitutes. Some studies have indicated that HES may have anti-inflammatory effects. The present in vivo study was performed to investigate the effects of HES on hepatic production of cytokines and activation of transcription factors in sepsis. METHODS Adult male Sprague-Dawley rats were randomly divided into four groups: rats challenged with lipopolysaccharide (LPS) (5 mg kg(-1)) and treated with saline (64 ml kg(-1)); challenged with LPS (5 mg kg(-1)) and treated with HES (16 ml kg(-1)); injected with saline and treated with HES (16 ml kg(-1)); and saline control. Each hepatic tissue was collected in groups of rats 2 h after induction of endotoxemia for determination of tumour necrosis factor (TNF)-alpha levels, TNF-alpha mRNA expressions, and nuclear factor (NF)-kappaB, activator protein (AP)-1 activities or 3 h after LPS challenge for IL-1beta, IL-6, IL-8, IL-10 levels and the mRNA expressions. RESULTS Endotoxemia was associated with significant increases in hepatic proinflammatory cytokine productions and transcription factor activities. HES significantly reduced the increased hepatic levels of TNF-alpha, IL-1beta, IL-6, IL-8 and the mRNAs in the endotoxemic rats. Similarly, HES could inhibit hepatic NF-kappaB and AP-1 activations. CONCLUSION The results suggest that in sepsis HES may down-regulate hepatic inflammatory mediators production and these anti-inflammatory effects may act through inhibition of NF-kappaB and AP-1 activations.
Collapse
Affiliation(s)
- R Lv
- Nanjing University School of Medicine, Jinling Hospital, 305 East Zhongshan Road, Nanjing 210 002, China
| | | | | | | |
Collapse
|
173
|
Rhee SG, Yang KS, Kang SW, Woo HA, Chang TS. Controlled elimination of intracellular H(2)O(2): regulation of peroxiredoxin, catalase, and glutathione peroxidase via post-translational modification. Antioxid Redox Signal 2005; 7:619-26. [PMID: 15890005 DOI: 10.1089/ars.2005.7.619] [Citation(s) in RCA: 305] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The predominant enzymes responsible for elimination of hydrogen peroxide (H(2)O(2)) in cells are peroxiredoxins (Prxs), catalase, and glutathione peroxidases (GPxs). Evidence suggests that catalytic activities of certain isoforms of these H(2)O(2)-eliminating enzymes are extensively regulated via posttranslational modification. Prx I and Prx II become inactivated when phosphorylated on Thr(90) by cyclin B-dependent kinase Cdc2. In addition, the active-site cysteine of Prx I-IV undergoes a reversible sulfinylation (oxidation to cysteine sulfinic acid) in cells. Desulfinylation (reduction to cysteine) is achieved by a novel enzyme named sulfiredoxin. c-Abl and Arg nonreceptor protein tyrosine kinases associate with catalase in cells treated with H(2)O(2) by mechanisms involving the SH3 domains of the kinases and the Pro(293)PheAsnPro motif of catalase and activate catalase by phosphorylating it on Tyr(231) and Tyr(386). Similarily, GPx1 is activated by c-Abl- and Arg-mediated phosphorylation. The tyrosine phosphorylation is critical for ubiquitination-dependent degradation of catalase.
Collapse
Affiliation(s)
- Sue Goo Rhee
- Laboratory of Cell Signaling, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | |
Collapse
|
174
|
Shimazawa M, Chikamatsu S, Morimoto N, Mishima S, Nagai H, Hara H. Neuroprotection by Brazilian Green Propolis against In vitro and In vivo Ischemic Neuronal Damage. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2005; 2:201-207. [PMID: 15937561 PMCID: PMC1142190 DOI: 10.1093/ecam/neh078] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2005] [Accepted: 03/06/2005] [Indexed: 11/18/2022]
Abstract
We examined whether Brazilian green propolis, a widely used folk medicine, has a neuroprotective function in vitro and/or in vivo. In vitro, propolis significantly inhibited neurotoxicity induced in neuronally differentiated PC12 cell cultures by either 24 h hydrogen peroxide (H2O2) exposure or 48 h serum deprivation. Regarding the possible underlying mechanism, propolis protected against oxidative stress (lipid peroxidation) in mouse forebrain homogenates and scavenged free radicals [induced by diphenyl-p-picrylhydrazyl (DPPH). In mice in vivo, propolis [30 or 100 mg/kg; intraperitoneally administered four times (at 2 days, 1 day and 60 min before, and at 4 h after induction of focal cerebral ischemia by permanent middle cerebral artery occlusion)] reduced brain infarction at 24 h after the occlusion. Thus, a propolis-induced inhibition of oxidative stress may be partly responsible for its neuroprotective function against in vitro cell death and in vivo focal cerebral ischemia.
Collapse
Affiliation(s)
- Masamitsu Shimazawa
- Department of Biofunctional Molecules, Gifu Pharmaceutical UniversityGifu, Japan
| | - Satomi Chikamatsu
- Department of Biofunctional Molecules, Gifu Pharmaceutical UniversityGifu, Japan
| | - Nobutaka Morimoto
- Department of Biofunctional Molecules, Gifu Pharmaceutical UniversityGifu, Japan
- Department of Pharmacology, Gifu Pharmaceutical UniversityGifu, Japan
| | | | - Hiroichi Nagai
- Department of Pharmacology, Gifu Pharmaceutical UniversityGifu, Japan
| | - Hideaki Hara
- Department of Biofunctional Molecules, Gifu Pharmaceutical UniversityGifu, Japan
- For reprints and all correspondence: Professor H. Hara, PhD, Department of Biofunctional Molecules, Gifu Pharmaceutical University, 5-6-1 Mitahora-higashi, Gifu, 502-8585 Japan. Tel: +81-58-237-3931; Fax: +81-58-237-5979; E-mail:
| |
Collapse
|
175
|
|
176
|
Shibanuma M, Mori K, Kim-Kaneyama JR, Nose K. Involvement of FAK and PTP-PEST in the regulation of redox-sensitive nuclear-cytoplasmic shuttling of a LIM protein, Hic-5. Antioxid Redox Signal 2005; 7:335-47. [PMID: 15706082 DOI: 10.1089/ars.2005.7.335] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The LIM protein Hic-5 is a focal adhesion protein shuttling in and out of the nucleus through the redox-sensitive nuclear export signal, and unlike other focal adhesion proteins including paxillin, the protein most homologous to Hic-5, it accumulates in the nucleus under oxidative conditions and participates in the transcription of c-fos and p21(Cip1) genes. Here, we examined the roles of the interacting partners of Hic-5, focal adhesion kinase (FAK) and protein tyrosine phosphatase PEST (PTP-PEST), in the nuclear translocation of Hic-5 and found that they were inhibitory. Interestingly, the interaction of Hic-5 with FAK was regulated by specific cysteines near the binding site and decreased in cells under oxidative conditions. Its interaction with PTP-PEST was also sensitive to the oxidant. These results suggest that the nuclear-cytoplasmic shuttling of Hic-5 is regulated by its interacting partners at focal adhesions or in the cytoplasm in a redox-sensitive manner, coordinating its role at focal adhesions with that in the nucleus, depending on the redox state of cells. Cytochalasin D or a phorbol ester also induced nuclear accumulation of Hic-5, which was inhibited by scavengers of reactive oxygen species (ROS), suggesting that besides oxidants, endogenously produced ROS induced the nuclear accumulation of Hic-5.
Collapse
Affiliation(s)
- Motoko Shibanuma
- Department of Microbiology, Showa University School of Pharmaceutical Sciences, Hatanodai 1-5-8, Shinagawa-ku, Tokyo 142-8555, Japan.
| | | | | | | |
Collapse
|
177
|
Chatterjee S, Berliner JA, Subbanagounder GG, Bhunia AK, Koh S. Identification of a biologically active component in minimally oxidized low density lipoprotein (MM-LDL) responsible for aortic smooth muscle cell proliferation. Glycoconj J 2005; 20:331-8. [PMID: 15229397 DOI: 10.1023/b:glyc.0000033629.54962.68] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Although low concentrations (10 microg/ml) of oxidized LDL density lipoproteins (Ox-LDL) and minimally modified LDL (MM-LDL) can stimulate the proliferation of aortic smooth muscle cells the biologically active component responsible for this phenomena has not been identified. Here we report that the 1-palmitoyl-2-(5-oxovaleroyl)-sn-glycero-4-phosphocholine (m/e594.3) (POVPC) present in MM-LDL but not 1-palmitoyl-2-glutaryl-sn-glycero-3-phophochline (m/e610.2)(PGPC) can stimulate the activity of UDP-galactose:glucosylceramide (beta 1-->4) galactosyltransferase (GalT-2) and produce lactosyceramide (LacCer). LacCer, in turn, generated superoxide radicals (O(2)(.-)). This is accompanied by the phosphorylation/activation of a cytosolic transcriptional factor p(44) MAPK and the subsequent proliferation of human aortic smooth muscle cells. D-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (D-PDMP), an inhibitor of GalT-2, impaired the induction of GalT-2 activity, O(2)(.-)generation, and cell proliferation. Thus POVPC may serve as a surrogate in MM-LDL mediated induction of aortic smooth muscle cells (A-SMC) proliferation via GalT-2 activation. The LacCer produced as a consequence of GalT-2 activation may serve as a lipid second messenger in the activation of an oxidant sensitive transcriptional pahtway that ultimately leads to cell proliferation and may contribute to the pathophysiology of atherosclerosis.
Collapse
Affiliation(s)
- Subroto Chatterjee
- Department of Pediatrics, Lipid Signaling and Vascular Biology Laboratory, Lipid Research-Atherosclerosis Division, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | | | | | | | |
Collapse
|
178
|
Lim SD, Sun C, Lambeth JD, Marshall F, Amin M, Chung L, Petros JA, Arnold RS. Increased Nox1 and hydrogen peroxide in prostate cancer. Prostate 2005; 62:200-7. [PMID: 15389790 DOI: 10.1002/pros.20137] [Citation(s) in RCA: 237] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Reactive oxygen species (ROS) are emerging as candidate mediators of growth and angiogenesis in cancer. Increased ROS often correlates with cell growth, e.g., Ras-transformed cells and cells treated with growth factors. While non-transformed cells respond to growth factors/cytokines with the regulated production of ROS, tumor cells in culture frequently overproduce H(2)O(2). We propose that NADPH oxidases (Nox) account for increased levels of ROS in some cancers. Previously, transfection of Nox1 into a prostate cancer cell line dramatically enhanced tumor growth (Arbiser et al.: PNAS 99:715-720, 2001). METHODS Using immunohistochemistry, immunofluorescence, dihydroethidium staining, and Flow cytometry, we investigated the correlation between Nox1 and ROS in prostate cancer. RESULTS Here, we demonstrate that human prostate tumors show increased H(2)O(2) levels. Furthermore, 80% of human prostate tumor samples show markedly increased Nox1 protein levels and increased mRNA levels. In addition, a series of cell lines developed from LNCaP prostate cancer cells that demonstrate increasing tumor and metastatic potential, show increased Nox1 and a parallel increase in H(2)O(2) levels. CONCLUSIONS The results illustrate that human prostate cancer frequently show both increased H(2)O(2) and Nox1, and that in an animal model system increased Nox1/H(2)O(2) correlates with increased tumorigenicity.
Collapse
Affiliation(s)
- So Dug Lim
- Department of Pathology and Laboratory Medicine, Emory Clinic Building B, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | | | | | | | | | | | | |
Collapse
|
179
|
Vijayvargia R, Kaur S, Krishnasastry MV. alpha-Hemolysin-induced dephosphorylation of EGF receptor of A431 cells is carried out by rPTPsigma. Biochem Biophys Res Commun 2005; 325:344-52. [PMID: 15522239 DOI: 10.1016/j.bbrc.2004.10.038] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2004] [Indexed: 10/26/2022]
Abstract
Earlier we have shown that the epidermal growth factor receptor was unable to retain its phospho Tyr signal after the assembly of staphylococcal alpha-hemolysin (alpha-HL). However, the nature of the protein tyrosine phosphatase (PTPase) or its identity is not known. In this report, we demonstrate that the alpha-HL elevates the activity of receptor like protein tyrosine phosphatase sigma (rPTPsigma). The alpha-HL induced dephosphorylation is prominent only in intact A431 cells. The PTPase activity is not inhibited if the alpha-HL treatment precedes PTPase inhibitor treatments. The anti-EGFr immunoprecipitates have exhibited higher PTPase activity after alpha-HL treatment of A431 cells. Interestingly, PTPase activity of anti-EGFr immunoprecipitates from the A431 cells expressing the antisense message of rPTPsigma has not increased despite alpha-HL treatment, confirming the role of rPTPsigma in the dephosphorylation of EGFr. The studies presented here will be useful in understanding the process of signal modulation by the assembly of alpha-HL.
Collapse
Affiliation(s)
- Ravi Vijayvargia
- National Centre for Cell Science, Ganeshkhind Road, Pune 411007, India
| | | | | |
Collapse
|
180
|
Sigaud S, Evelson P, González-Flecha B. H2O2-induced proliferation of primary alveolar epithelial cells is mediated by MAP kinases. Antioxid Redox Signal 2005; 7:6-13. [PMID: 15650391 DOI: 10.1089/ars.2005.7.6] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Exposure to supraphysiological oxygen concentrations during ventilatory oxygen therapy often causes tissue damage. Alveolar type II (AT II) cells are a major target for oxidant injury, and their ability to proliferate plays a critical role during the repair phase following injury. We hypothesized that reactive oxygen species (ROS), which are produced during hyperoxia, not only cause cellular damage, but may also play a role in the repair process by promoting AT II cell proliferation. We have tested the ability of ROS to induce proliferation in primary cultures of AT II cells by using a wide range of chronic and acute hydrogen peroxide (H2O2) exposures to mimic different types of oxidative stress. We found that chronic exposure to an extracellular flux of 10 microM H2O2/h can significantly increase the intracellular concentration of oxidants, DNA synthesis, and cell proliferation. H2O2-induced AT II cell proliferation was preceded by activation of the mitogen-activated protein kinase ERK (extracellular signal-regulated kinase). Inhibition of ERK and p38 activation prevented H2O2-induced proliferation. These results show that changes in intracellular oxidant concentrations can modulate downstream signaling pathways controlling AT II cell proliferation. This mechanism could be important in the repair process following hyperoxia-induced injury.
Collapse
Affiliation(s)
- Samuel Sigaud
- Physiology Program, Department of Environmental Health, Harvard School of Public Health, Boston, MA 02115, USA
| | | | | |
Collapse
|
181
|
Seo JH, Ahn Y, Lee SR, Yeol Yeo C, Chung Hur K. The major target of the endogenously generated reactive oxygen species in response to insulin stimulation is phosphatase and tensin homolog and not phosphoinositide-3 kinase (PI-3 kinase) in the PI-3 kinase/Akt pathway. Mol Biol Cell 2005; 16:348-57. [PMID: 15537704 PMCID: PMC539178 DOI: 10.1091/mbc.e04-05-0369] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2004] [Revised: 10/22/2004] [Accepted: 10/27/2004] [Indexed: 12/22/2022] Open
Abstract
Phosphoinositide-3 kinase (PI-3 kinase) and its downstream signaling molecules PDK-1 and Akt were analyzed in SK-N-SH and SK-N-BE(2) human neuroblastoma cell lines. When cells were stimulated with insulin, PI-3 kinase was activated in both cell lines, whereas the translocation of PDK-1 to the membrane fraction and phosphorylated Akt were observed only in SK-N-SH cells. Analyses of the insulin-mediated reactive oxygen species (ROS) generation and Phosphatase and Tensin homolog (PTEN) oxidation indicate that PTEN oxidation occurred in SK-N-SH cells, which can produce ROS, but not in SK-N-BE(2) cells, which cannot increase ROS in response to insulin stimulation. When SK-N-SH cells were pretreated with the NADPH oxidase inhibitor diphenyleneiodonium chloride before insulin stimulation, insulin-mediated translocation of PDK-1 to the membrane fraction and phosphorylation of Akt were remarkably reduced, whereas PI-3 kinase activity was not changed significantly. These results indicate that not only PI-3 kinase activation but also inhibition of PTEN by ROS is needed to increase cellular level of phosphatidylinositol 3,4,5-trisphosphate for recruiting downstream signaling molecules such as PDK-1 and Akt in insulin-mediated signaling. Moreover, the ROS generated by insulin stimulation mainly contributes to the inactivation of PTEN and not to the activation of PI-3 kinase in the PI-3 kinase/Akt pathway.
Collapse
Affiliation(s)
- Ji Hae Seo
- Department of Biology, Ewha Women's University, Seoul 120-750, Korea
| | | | | | | | | |
Collapse
|
182
|
Hurd H, Carter V, Nacer A. Interactions between malaria and mosquitoes: the role of apoptosis in parasite establishment and vector response to infection. Curr Top Microbiol Immunol 2005; 289:185-217. [PMID: 15791957 DOI: 10.1007/3-540-27320-4_9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Malaria parasites of the genus Plasmodium are transmitted from host to host by mosquitoes. Sexual reproduction occurs in the blood meal and the resultant motile zygote, the ookinete, migrates through the midgut epithelium and transforms to an oocyst under the basal lamina. After sporogony, sporozoites are released into the mosquito haemocoel and invade the salivary gland before injection when next the mosquito feeds on a host. Interactions between parasite and vector occur at all stages of the establishment and development of the parasite and some of these result in the death of parasite and host cells by apoptosis. Infection-induced programmed cell death occurs in patches of follicular epithelial cells in the ovary, resulting in follicle resorption and thus a reduction in egg production. We argue that fecundity reduction will result in a change in resource partitioning that may benefit the parasite. Apoptosis also occurs in cells of the midgut epithelium that have been invaded by the parasite and are subsequently expelled into the midgut. In addition, the parasite itself dies by a process of programmed cell death (PCD) in the lumen of the midgut before invasion has occurred. Caspase-like activity has been detected in the cytoplasm of the ookinetes, despite the absence of genes homologous to caspases in the genome of this, or any, unicellular eukaryote. The putative involvement of other cysteine proteases in ancient apoptotic pathways is discussed. Potential signal pathways for induction of apoptosis in the host and parasite are reviewed and we consider the evidence that nitric oxide may play a role in this induction. Finally, we consider the hypothesis that death of some parasites in the midgut will limit infection and thus prevent vector death before the parasites have developed into mature sporozoites.
Collapse
Affiliation(s)
- H Hurd
- Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Staffordshire, ST5 5BG, UK.
| | | | | |
Collapse
|
183
|
Bae GU, Kim YK, Kwon HK, Park JW, Lee EK, Paek SJ, Choi WS, Jung ID, Lee HY, Cho EJ, Lee HW, Han JW. Hydrogen peroxide mediates Rac1 activation of S6K1. Exp Cell Res 2004; 300:476-84. [PMID: 15475011 DOI: 10.1016/j.yexcr.2004.07.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2004] [Revised: 07/19/2004] [Indexed: 11/25/2022]
Abstract
We previously reported that hydrogen peroxide (H2O2) mediates mitogen activation of ribosomal protein S6 kinase 1 (S6K1) which plays an important role in cell proliferation and growth. In this study, we investigated a possible role of H2O2 as a molecular linker in Rac1 activation of S6K1. Overexpression of recombinant catalase in NIH-3T3 cells led to the drastic inhibition of H2O2 production by PDGF, which was accompanied by a decrease in S6K1 activity. Similarly, PDGF activation of S6K1 was significantly inhibited by transient transfection or stable transfection of the cells with a dominant-negative Rac1 (Rac1N17), while overexpression of constitutively active Rac1 (Rac1V12) in the cells led to an increase in basal activity of S6K1. In addition, stable transfection of Rat2 cells with Rac1N17 dramatically attenuated the H2O2 production by PDGF as compared with that in the control cells. In contrast, Rat2 cells stably transfected with Rac1V12 produced high level of H2O2 in the absence of PDGF, comparable to that in the control cells stimulated with PDGF. More importantly, elimination of H2O2 produced in Rat2 cells overexpressing Rac1V12 inhibited the Rac1V12 activation of S6K1, indicating the possible role of H2O2 as a mediator in the activation of S6K1 by Rac1. However, H2O2 could be also produced via other pathway, which is independent of Rac1 or PI3K, because in Rat2 cells stably transfected with Rac1N17, H2O2 could be produced by arsenite, which has been shown to be a stimulator of H2O2 production. Taken together, these results suggest that H2O2 plays a pivotal role as a mediator in Rac1 activation of S6K1.
Collapse
Affiliation(s)
- Gyu-Un Bae
- College of Pharmacy, Sungkyunkwan University, Suwon 440-746, South Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
184
|
Kanellakis P, Nestel P, Bobik A. Angioplasty-induced superoxide anions and neointimal hyperplasia in the rabbit carotid artery: suppression by the isoflavone trans-tetrahydrodaidzein. Atherosclerosis 2004; 176:63-72. [PMID: 15306176 DOI: 10.1016/j.atherosclerosis.2004.05.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2003] [Revised: 02/27/2004] [Accepted: 05/12/2004] [Indexed: 11/30/2022]
Abstract
Reactive oxygen species (ROS) may contribute to the development of stenosis in balloon catheter injured arteries. As isoflavones exhibit effects on ROS and cell proliferation In vitro that appear useful in preventing such stenosis, we examined the effects of the isoflavone trans-tetrahydrodaidzein (trans-THD) on development of neointimal lesions in relation to elevations in ROS in balloon catheter injured arteries. Carotid arteries of rabbits treated with either vehicle or trans-THD were injured with an inflated balloon catheter and cell proliferation, collagen content, ROS and vessel structure determined over the ensuing 28 days. Seven days after injury neointimal smooth muscle cell proliferation was reduced by 50% (p < 0.05) whilst medial cell proliferation was largely unaffected (p > 0.10). At this time ROS levels in vehicle-treated rabbits were elevated 3-fold compared to uninjured arteries (p < 0.05). Treatment with trans-THD reduced ROS levels to those seen in uninjured arteries (p > 0.05). The antiproliferative effects of trans-THD on intimal cell proliferation persisted 14 days after the injury, and twenty eight days after injury the size of the lumen in trans-THD-treated animals was 27% greater (p < 0.05) and the intima area: vessel area reduced by 40% (p < 0.05). The small effects of trans-THD on collagen accumulation was not statistically significant, indicating that effects on neointimal cell proliferation was the major mechanism by which this isoflavone attenuated development of the neointima. Intimal smooth muscle cells and ROS represent potentially important targets for the antiproliferative actions of trans-THD in injured arteries. Strategies using such isoflavones may be useful for preventing restenosis after vascular manipulations in humans.
Collapse
Affiliation(s)
- Peter Kanellakis
- Cell Biology Laboratory, Baker Heart Research Institute, AMREP, Alfred Hospital Campus, P.O. Box 6492, St. Kilda Road Central, Melbourne, Vic. 8008, Australia
| | | | | |
Collapse
|
185
|
Koo BS, Lee WC, Chung KH, Ko JH, Kim CH. A water extract of Curcuma longa L. (Zingiberaceae) rescues PC12 cell death caused by pyrogallol or hypoxia/reoxygenation and attenuates hydrogen peroxide induced injury in PC12 cells. Life Sci 2004; 75:2363-75. [PMID: 15350833 DOI: 10.1016/j.lfs.2004.07.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2004] [Accepted: 07/12/2004] [Indexed: 11/25/2022]
Abstract
A number of studies indicate that free radicals are involved in the neurodegeneration in Alzheimer's disease (AD). The role of superoxide anion (O2*-) in neuronal cell injury induced by reactive oxygen species (ROS) was examined in PC12 cells using pyrogallol (1,2,3-benzenetrior), a donor to release O2*-. Pyrogallol induced PC12 cell death at concentrations, which evidently increased intracellular O2*-, as assessed by O2*- sensitive fluorescent precursor hydroethidine (HEt). A water extract of Curcuma longa L. (Zingiberaceae) (CLE), having O2*- scavenging activity rescued PC12 cells from pyrogallol-induced cell death. Hypoxia/reoxygenation injury of PC12 cells was also blocked by CLE. The present study was also conducted to examine the effect of CLE on H2O2 -induced toxicity in rat pheochromocytoma line PC12 by measuring cell lesion, level of lipid peroxidation and antioxidant enzyme activities. Following a 30 min exposure of the cells to H2O2 (150 microM), a marked decrease in cell survival, activities of glutathione peroxidase and catalase as well as increased production of malondialdehyde (MDA) were found. Pretreatment of the cells with CLE (0.5-10 microg/ml) prior to H2O2 exposure significantly elevated the cell survival, antioxidant enzyme activities and decreased the level of MDA. The above-mentioned neuroprotective effects are also observed with tacrine (THA, 1 microM), suggesting that the neuroprotective effects of cholinesterase inhibitor might partly contribute to the clinical efficacy in AD treatment. Further understanding of the underlying mechanism of the protective effects of these radical scavengers reducing intracellular O2*- on neuronal cell death may lead to development of new therapeutic treatments for hypoxic/ischemic brain injury.
Collapse
Affiliation(s)
- Byung-Soo Koo
- Department of Biochemistry, Molecular Biology and Neurobiology, College of Oriental Medicine, DongGuk University, Kyungju City, Kyungbuk 780-714, Republic of Korea
| | | | | | | | | |
Collapse
|
186
|
Bova MP, Mattson MN, Vasile S, Tam D, Holsinger L, Bremer M, Hui T, McMahon G, Rice A, Fukuto JM. The oxidative mechanism of action of ortho-quinone inhibitors of protein-tyrosine phosphatase α is mediated by hydrogen peroxide. Arch Biochem Biophys 2004; 429:30-41. [PMID: 15288807 DOI: 10.1016/j.abb.2004.05.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2004] [Revised: 05/11/2004] [Indexed: 01/06/2023]
Abstract
Here, we report the identification and characterization of five ortho-quinone inhibitors of PTPalpha. We observed that the potency of these compounds in biochemical assays was markedly enhanced by the presence of DTT. A kinetic analysis suggested that they were functioning as irreversible inhibitors and that the inhibition was targeted to the catalytic site of PTPalpha. The inhibition observed by these compounds was sensitive to superoxide dismutase and catalase, suggesting that reactive oxygen species may be mediators of their inhibition. We observed that in the presence of DTT, these compounds would produce up to 2.5mM hydrogen peroxide (H(2)O(2)). The levels of H(2)O(2) produced were sufficient to completely inactivate PTPalpha. In contrast, without a reducing agent the compounds did not generate H(2)O(2) and showed little activity towards PTPalpha. In addition, these compounds inhibited PTPalpha-dependent cell spreading in NIH 3T3 cells at concentrations that were similar to their activity in biochemical assays. The biological implications of these results are discussed as they support growing evidence that H(2)O(2) is a key regulator of PTPs.
Collapse
Affiliation(s)
- Michael P Bova
- Drug Discovery, SUGEN Inc., 230 East Grand Avenue, South San Francisco, CA 94080, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
187
|
Dimova EY, Samoylenko A, Kietzmann T. Oxidative stress and hypoxia: implications for plasminogen activator inhibitor-1 expression. Antioxid Redox Signal 2004; 6:777-91. [PMID: 15242559 DOI: 10.1089/1523086041361596] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Plasminogen activator inhibitor-1 (PAI-1) is the major physiological inhibitor of urokinase-type and tissue-type plasminogen activators. It has gained special interest among clinicians because a number of pathological conditions, such as myocardial infarction, atherosclerosis, thrombosis, several types of cancer, and the metabolic syndrome, as well as type 2 diabetes mellitus, are associated with increased PAI-1 levels. Interestingly, a number of these diseases are also accompanied by oxidative stress and the enhanced production of reactive oxygen species or tissue hypoxia. This article tries to summarize some aspects leading to enhanced PAI-1 production under oxidative stress or hypoxia.
Collapse
Affiliation(s)
- Elitsa Y Dimova
- Institut für Biochemie und Molekulare Zellbiologie, Göttingen, Germany
| | | | | |
Collapse
|
188
|
Morazzani M, de Carvalho DD, Kovacic H, Smida-Rezgui S, Briand C, Penel C. Monolayer versus aggregate balance in survival process for EGF-induced apoptosis in A431 carcinoma cells: Implication of ROS-P38 MAPK-integrin alpha2beta1 pathway. Int J Cancer 2004; 110:788-99. [PMID: 15170659 DOI: 10.1002/ijc.20198] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A431 cells escape EGF-induced apoptosis by forming cell aggregates. We show that these clusters migrate and merge with neighboring ones, resulting in larger structures composed of a multilayer central (3D) population surrounded by a cell monolayer (2D). We found that after 48 hr of 10 nM EGF treatment, 3D structure formation correlates with alpha2beta1 integrin upregulation. Blockade of alpha2 integrin impairs 3D structure formation. We studied the involvement of reactive oxygen species (ROS) in this process. We show that A431 cells express the NADPH oxidase catalytic subunits Nox1. EGF-induced dose-dependent ROS production was inhibited by the NADPH oxidase inhibitor, diphenylene iodonium (DPI), in these cells while rotenone was ineffective. Inhibition of ROS level in A431 cells with DPI or ebselen (glutathione peroxydase mimic) as well as P38 MAP kinase inhibition by SB203580 decreases alpha2 integrin subunit expression and induces a shift to 3D versus 2D populations. Cell cycle analysis of 2D cells shows that DPI, ebselen and SB203580 decrease the number of cells in S/G2 phase without affecting the cell number in mitosis phase. On the contrary, for 3D cells, these treatments increased the proportion of cells in mitosis without modification of the cell number in S/G2 phase. For both populations, apoptosis was increased by DPI and ebselen. Resistance of cell aggregates by paclitaxel to cell death is usually described. We show that DPI abolishes paclitaxel resistance of 3D cell aggregates. We observed a greater than additive effect between paclitaxel and DPI resulting in an increased proportion of cells in S/G2 phase for 3D populations. These results suggested that the ROS-P38 MAP kinase-alpha2beta1 integrin pathway was implicated in the A431 survival process by modulating the balance between 2D/3D cells.
Collapse
Affiliation(s)
- Marie Morazzani
- UMR-CNRS 6032, Faculté de Pharmacie, Université de la Méditerranée, 27 Boulevard Jean Moulin, 13385 Marseille Cedex 05, France
| | | | | | | | | | | |
Collapse
|
189
|
Daou GB, Srivastava AK. Reactive oxygen species mediate Endothelin-1-induced activation of ERK1/2, PKB, and Pyk2 signaling, as well as protein synthesis, in vascular smooth muscle cells. Free Radic Biol Med 2004; 37:208-15. [PMID: 15203192 DOI: 10.1016/j.freeradbiomed.2004.04.018] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2004] [Revised: 03/31/2004] [Accepted: 04/16/2004] [Indexed: 11/22/2022]
Abstract
Reactive oxygen species (ROS) have been shown to mediate the effects of several growth factors and vasoactive peptides, such as epidermal growth factor, platelet-derived growth factor, and angiotensin II (AII). Endothelin-1 (ET-1) is a vasoactive peptide which also exhibits mitogenic activity in vascular smooth muscle cells (VSMCs), and is believed to contribute to the pathogenesis of vascular abnormalities such as atherosclerosis, hypertension, and restenosis after angioplasty. However, a possible role for ROS generation in mediating the ET-1 response on extracellular signal-regulated kinases 1 and 2 (ERK1/2), protein kinase B (PKB), and protein tyrosine kinase 2 (Pyk2), key components of the growth-promoting and proliferative signaling pathways, has not been examined in detail. Our aim was to investigate the involvement of ROS in ET-1-mediated activation of ERK1/2, PKB, and Pyk2 in A-10 VSMCs. ET-1 stimulated ERK1/2, PKB, and Pyk2 phosphorylation in a dose- and time-dependent manner. Pretreatment of A-10 VSMCs with diphenyleneiodonium (DPI), an inhibitor of reduced nicotinamide adenine dinucleotide phosphate oxidase, attenuated ET-1-enhanced ERK1/2, PKB, and Pyk2 phosphorylation. In addition, in parallel with an inhibitory effect on the above signaling components, DPI also blocked ET-1-induced protein synthesis. ET-1 was also found to increase ROS production, which was suppressed by DPI treatment. N-Acetylcysteine, a ROS scavenger, exhibited a response similar to that of DPI and inhibited ET-1-stimulated ERK1/2, PKB, and Pyk2 phosphorylation. These results demonstrate that ROS are critical mediators of ET-1-induced signaling events linked to growth-promoting proliferative and hypertrophic pathways in VSMCs.
Collapse
Affiliation(s)
- Grace Bou Daou
- Research Center, Centre hospitalier de l'Université de Montréal - Hôtel-Dieu, Department of Medicine and Physiology, Université de Montréal, Quebec, Canada
| | | |
Collapse
|
190
|
Li WQ, Qureshi HY, Liacini A, Dehnade F, Zafarullah M. Transforming growth factor Beta1 induction of tissue inhibitor of metalloproteinases 3 in articular chondrocytes is mediated by reactive oxygen species. Free Radic Biol Med 2004; 37:196-207. [PMID: 15203191 DOI: 10.1016/j.freeradbiomed.2004.04.028] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2003] [Revised: 04/20/2004] [Accepted: 04/22/2004] [Indexed: 12/20/2022]
Abstract
Transforming growth factor beta1 (TGF-beta1) stimulates cartilage extracellular matrix synthesis but, in excess, evokes synovial inflammation, hyperplasia, and osteophyte formation in arthritic joints. TGF-beta1 induces tissue inhibitor of metalloproteinases 3 (TIMP-3), an inhibitor of cartilage-damaging matrix metalloproteianases and aggrecanases. We investigated the role of reactive oxygen species (ROS) in TIMP-3 induction by TGF-beta1. In primary human and bovine chondrocytes, ROS scavenger and antioxidant N-acetylcysteine (NAC) inhibited TGF-beta1-induced TIMP-3 mRNA and protein increases. Ebselen and ascorbate also reduced this induction. TGF-beta1 time-dependently induced ROS production that was suppressed by NAC. Hydrogen peroxide, a ROS, induced TIMP-3 RNA. The TIMP-3 increase induced by TGF-beta1 was partly Smad2-dependent. TGF-beta1-stimulated Smad2 phosphorylation was inhibited by NAC. Reduced glutathione and L-cysteine also blocked Smad2 and TIMP-3 induction by TGF-beta1, whereas a nonthiol, N-acetylalanine, did not. Smad2 was not activated by H2O2. Smad2 phosphorylation was independent, and TIMP-3 expression was dependent, on new protein synthesis. TGF-beta-stimulated ERK and JNK phosphorylation was also inhibited by NAC. However, inhibitory actions of NAC were not mediated by ERK activation. Thus, ROS mediate TGF-beta1-induced TIMP-3 gene expression. Blocking TGF-beta1-induced gene expression by modulating cellular redox status with thiols can be potentially beneficial for treating arthritic and other disorders caused by excessive TGF-beta1.
Collapse
Affiliation(s)
- Wen Qing Li
- Department of Medicine, Notre-Dame Hospital, Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|
191
|
Cheng SM, Yang SP, Ho LJ, Tsao TP, Chang DM, Lai JH. Irbesartan inhibits human T-lymphocyte activation through downregulation of activator protein-1. Br J Pharmacol 2004; 142:933-42. [PMID: 15210574 PMCID: PMC1575109 DOI: 10.1038/sj.bjp.0705785] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2003] [Revised: 02/20/2004] [Accepted: 03/09/2004] [Indexed: 11/08/2022] Open
Abstract
1 Irbesartan is a promising antihypertensive drug with beneficial effects on atherosclerotic processes. In the progression of atherosclerosis, human T-lymphocytes play an important role, but it is not yet known how irbesartan modulates human T-lymphocytes activation. To gain insight into the mechanisms by which irbesartan acts, we investigated its effects on human T-lymphocytes. 2 Primary human T-lymphocytes were isolated from whole blood. Cytokines were determined by ELISA. Activator protein-1 (AP-1) and related protein activities were determined by electrophoretic mobility shift assays, kinase assays, Western blotting and transfection assays. 3 Irbesartan inhibited the production of both tumor necrosis factor-alpha and interferon-gamma by activated T-cells, especially at therapeutic concentrations. Further investigation at the molecular level indicated that the inhibition of activated human T-lymphocytes specifically correlated with the downregulation of AP-1 DNA-binding activity. In the Jurkat T-cell line, irbesartan also inhibited AP-1 transcriptional activity. Finally, we revealed that irbesartan is unique in its ability to inhibit the activation of both c-Jun NH2-terminal protein kinase and p38 MAPK. 4 Our studies show that irbesartan may modulate inflammation-based atherosclerotic diseases through a cell-mediated mechanism involving suppression of human T-lymphocytes activation via downregulation of AP-1 activity.
Collapse
Affiliation(s)
- Shu-Meng Cheng
- Division of Cardiology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, No 325, Section 2, Cheng-Kung Road, Neihu 114, Taipei, Taiwan, ROC
| | - Shih-Ping Yang
- Division of Cardiology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, No 325, Section 2, Cheng-Kung Road, Neihu 114, Taipei, Taiwan, ROC
| | - Ling-Jun Ho
- Division of Gerontology Research, National Health Research Institute, No 325, Section 2, Cheng-Kung Road, Neihu 114, Taipei, Taiwan, ROC
| | - Tien-Ping Tsao
- Division of Cardiology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, No 325, Section 2, Cheng-Kung Road, Neihu 114, Taipei, Taiwan, ROC
| | - Deh-Ming Chang
- Division of Rheumatology/Immunology & Allergy, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, No 325, Section 2, Cheng-Kung Road, Neihu 114, Taipei, Taiwan, ROC
| | - Jenn-Haung Lai
- Division of Rheumatology/Immunology & Allergy, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, No 325, Section 2, Cheng-Kung Road, Neihu 114, Taipei, Taiwan, ROC
| |
Collapse
|
192
|
Chen KCW, Zhou Y, Xing K, Krysan K, Lou MF. Platelet derived growth factor (PDGF)-induced reactive oxygen species in the lens epithelial cells: the redox signaling. Exp Eye Res 2004; 78:1057-67. [PMID: 15109912 DOI: 10.1016/j.exer.2004.02.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2003] [Accepted: 02/11/2004] [Indexed: 12/12/2022]
Abstract
Low level of reactive oxygen species (ROS) has been shown to play an important role in host defense and mediating mitogen-stimulated cell signaling in several cell types. This study is to identify the mitogen-induced endogenous ROS generation and the range of exogenous H(2)O(2) that initiate redox signaling and cell proliferation in human lens epithelial cells (HLE B3), using platelet-derived growth factor (PDGF) as a model. To detect ROS generation, serum starved HLE cells (1.6 million) were loaded with fluorescent dye, 2',7'-dichlorofluorescin diacetate (DCFH-DA), before exposing to PDGF (1 ng ml(-1)). The fluorescence generated from the oxidant-sensitive DCFH, the intracellular product of DCFH-DA hydrolysate, was immediately measured in live cells by confocal laser light microscopy (lambda(Ex)=488 nm, lambda(Em)=522 nm, laser power=10%). PDGF-stimulated cells showed strong transient fluorescence during the 60 min while no fluorescence could be seen in the unstimulated cells. The PDGF-induced fluorescence could be suppressed with cells preloaded with N-acetyl-L-cysteine (NAC, 30 mm), catalase (1 mg ml(-1)), or D-mannitol (100mm). The ability of catalase to penetrate and function in HLE cells was confirmed by western blot, enzyme activity and immunofluorescence microscopic analyses. PDGF induced DNA synthesis within one hour as measured by (3)H-thymidine incorporation, and transiently activated the mitogen-activated protein kinases (MAPKs) of ERK1/2 and JNK. PDGF-stimulated DNA synthesis and MAPK activation were eliminated in the presence of catalase or mannitol. Low levels of H(2)O(2) (10-20 microm) mimicked PDGF in both MAPK stimulation and cell proliferation. In conclusion, the mitogenic stimulus function of PDGF in HLE cells appears to be mediated via ROS to activate MAPKs and cell proliferation, which can be mimicked by low levels of H(2)O(2). It is proposed that the physiological function of ROS, the redox signaling, is present in the HLE cells and may play an important role in the development and maintenance of the lens.
Collapse
Affiliation(s)
- Kate Chao-Wei Chen
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | | | | | | | | |
Collapse
|
193
|
Lee JR. Reactive oxygen species play roles on B cell surface receptor CD40-mediated proximal and distal signaling events: effects of an antioxidant, N-acetyl-L-cysteine treatment. Mol Cell Biochem 2004; 252:1-7. [PMID: 14577570 DOI: 10.1023/a:1025529704480] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Reactive oxygen species (ROS) have been indicated as important signal mediators for many cell surface receptors. We previously demonstrated that ROS are generated by cross-linking surface receptor CD40 and consequently induce c-Jun N-terminal kinase activation and interleukin-6 secretion in murine B cells. In this study, we investigated further the involvement of ROS in CD40-mediated signaling events in B cells. CD40-mediated proximal events, which include protein serine phosphorylation, protein translocation between membranes and cytosol, as well as receptor complex formation, were inhibited after the pre-incubation of cells with an antioxidant N-acetyl-L-cysteine (NAC). Additionally, B cell responses after long-term ligation of CD40, such as protein expression, nuclear transcription factor kappaB (NFkappaB) activation, and cell proliferation, were also affected when cells were treated with NAC. These data suggest that CD40-induced ROS play critical roles in CD40-mediated B cell regulation.
Collapse
Affiliation(s)
- Jong Ran Lee
- Division of Molecular Life Sciences, Center for Cell Signaling Research, Department of Life Science, College of Natural Sciences, Ewha Womans University, Daehyun-Dong, Seodaemoon-Gu, Seoul, Korea.
| |
Collapse
|
194
|
Nardi M, Feinmark SJ, Hu L, Li Z, Karpatkin S. Complement-independent Ab-induced peroxide lysis of platelets requires 12-lipoxygenase and a platelet NADPH oxidase pathway. J Clin Invest 2004; 113:973-80. [PMID: 15057303 PMCID: PMC379327 DOI: 10.1172/jci20726] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2003] [Accepted: 01/20/2004] [Indexed: 12/12/2022] Open
Abstract
Antiplatelet GPIIIa49-66 Ab of HIV-related thrombocytopenic patients induces thrombocytopenia and platelet fragmentation by the generation of peroxide and other reactive oxygen species (ROS). Here we report the presence of a functional platelet NADPH oxidase pathway that requires activation by the platelet 12-lipoxygenase (12-LO) pathway to fragment platelets. A new Ab-mediated mechanism is described in which the platelet 12-LO product, 12(S)-HETE activates the NADPH oxidase pathway to generate ROS.
Collapse
Affiliation(s)
- Michael Nardi
- Department of Pediatrics, New York University School of Medicine, New York, New York 10016, USA
| | | | | | | | | |
Collapse
|
195
|
Nair VD, Yuen T, Olanow CW, Sealfon SC. Early single cell bifurcation of pro- and antiapoptotic states during oxidative stress. J Biol Chem 2004; 279:27494-501. [PMID: 15078887 DOI: 10.1074/jbc.m312135200] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In a population of cells undergoing oxidative stress, an individual cell either succumbs to apoptotic cell death or maintains homeostasis and survives. Exposure of PC-12-D(2)R cells to 200 microm hydrogen peroxide (H(2)O(2)) induces apoptosis in about half of cells after 24 h. After 1-h exposure to 200 microm H(2)O(2), both antiapoptotic extracellular regulated kinase (ERK) phosphorylation and pro-apoptotic Ser-15-p53 phosphorylation are observed. Microarray and real-time PCR assays of gene expression after H(2)O(2) exposure identified several transcripts, including egr1, that are rapidly induced downstream of ERK. Single cell analysis of egr1 induction and of phospho-ERK and phospho-p53 formation revealed the presence of two distinct cellular programs. Whereas the proportion of cells activating ERK versus p53 at 1 h depended on H(2)O(2) concentration, individual cells showed exclusively either phospho-p53 formation or activation of ERK and egr1 induction. Exposure to H(2)O(2) for 1 h also elicited these two non-overlapping cellular responses in both dopaminergic SN4741 cells and differentiated postmitotic PC-12-D(2)R cells. Repressing p53 with pifithrin-alpha or small interfering RNA increased ERK phosphorylation by H(2)O(2), indicating that p53-dependent suppression of ERK activity may contribute to the bi-stable single cell responses observed. By 24 h, the subset of cells in which ERK activity was suppressed exhibit caspase 3 activation and the nuclear condensation characteristic of apoptosis. These studies suggest that the individual cell rapidly and stochastically processes the oxidative stress stimulus, leading to an all-or-none cytoprotective or pro-apoptotic signaling response.
Collapse
Affiliation(s)
- Venugopalan D Nair
- Department of Neurology, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | |
Collapse
|
196
|
Migita H, Satozawa N, Lin JH, Morser J, Kawai K. RORalpha1 and RORalpha4 suppress TNF-alpha-induced VCAM-1 and ICAM-1 expression in human endothelial cells. FEBS Lett 2004; 557:269-74. [PMID: 14741380 DOI: 10.1016/s0014-5793(03)01502-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Retinoic acid receptor-related orphan receptor-alpha (RORalpha) is a nuclear orphan receptor. Adenovirus-mediated overexpression of RORalpha1 and RORalpha4 suppressed tumor necrosis factor-alpha (TNF-alpha)-induced expression of vascular cell adhesion molecule-1 (VCAM-1) and intracellular adhesion molecule-1 (ICAM-1) in human umbilical vein endothelial cells. Overexpression of RORalpha1 and RORalpha4 also suppressed TNF-alpha-stimulated translocation of p50 and p65 to the nucleus. In contrast, dominant-negative deletion mutants of RORalpha1 and RORalpha4 failed to suppress the induction of VCAM-1 and ICAM-1 and translocations of p50 and p65. These results suggest that RORalpha1 and RORalpha4 regulate the inflammatory responses via inhibition of the nuclear factor-kappaB signaling pathway in endothelial cells.
Collapse
Affiliation(s)
- Hideyuki Migita
- Cardiovascular Research, Drug Discovery Institute, Nihon Schering KK, 1900-1, Togo Mobara, Chiba 297-0017, Japan.
| | | | | | | | | |
Collapse
|
197
|
Samoto H, Shimizu E, Matsuda-Honjo Y, Saito R, Yamazaki M, Kasai K, Furuyama S, Sugiya H, Sodek J, Ogata Y. TNF-alpha suppresses bone sialoprotein (BSP) expression in ROS17/2.8 cells. J Cell Biochem 2004; 87:313-23. [PMID: 12397613 DOI: 10.1002/jcb.10301] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Tumor necrosis factor-alpha (TNF-alpha) is a major mediator of inflammatory responses in many diseases that inhibits bone formation and stimulates bone resorption. To determine molecular mechanisms involved in the suppression of bone formation we have analyzed the effects of TNF-alpha on BSP gene expression. Bone sialoprotein (BSP) is a mineralized tissue-specific protein that appears to function in the initial mineralization of bone. Previous studies have demonstrated that BSP mRNA expression is essentially restricted to fully-differentiated cells of mineralized connective tissues and that the expression of BSP is developmentally regulated. Treatment of rat osteosarcoma ROS 17/2.8 cells with TNF-alpha (10 ng/ml) for 24 h caused a marked reduction in BSP mRNA levels. The addition of antioxidant N-acetylcysteine (NAC; 20 mM) 30 min prior to stimulation with TNF-alpha attenuated the inhibition of BSP mRNA levels. Transient transfection analyses, using chimeric constructs of the rat BSP gene promoter linked to a luciferase reporter gene, revealed that TNF-alpha (10 ng/ml) suppressed expression in all constructs, including a short construct (pLUC3; nts -116 to +60), transfected into ROS17/2.8 cells. Further deletion analysis of the BSP promoter showed that a region within nts -84 to -60 was targeted by TNF-alpha, the effects which were inhibited by NAC and the tyrosine kinase inhibitor, herbimycin A (HA). Introduction of 2bp mutations in the inverted CCAAT box (ATTGG; nts -50 and -46), a putative cAMP response element (CRE; nts -75 to -68), and a FGF response element (FRE; nts -92 to -85) showed that the TNF-alpha effects were mediated by the CRE. These results were supported by gel mobility shift assays, using a radiolabeled double-stranded CRE oligonucleotide, which revealed decreased binding of a nuclear protein from TNF-alpha-stimulated ROS 17/2.8 cells. Further, the inhibitory effect of TNF-alpha on CRE DNA-protein complex was completely abolished by NAC or HA treatment. These studies, therefore, show that TNF-alpha suppresses BSP gene transcription through a tyrosine kinase-dependent pathway that generates reactive oxygen species and that the TNF-alpha effects are mediated by a CRE element in the proximal BSP gene promoter.
Collapse
Affiliation(s)
- Hiroshi Samoto
- Department of Orthodontics, Nihon University School of Dentistry at Matsudo, Chiba, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
198
|
Blanc A, Pandey NR, Srivastava AK. Distinct roles of Ca2+, calmodulin, and protein kinase C in H2O2-induced activation of ERK1/2, p38 MAPK, and protein kinase B signaling in vascular smooth muscle cells. Antioxid Redox Signal 2004; 6:353-66. [PMID: 15025937 DOI: 10.1089/152308604322899422] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
We have shown earlier that extracellular signal-regulated kinases 1 and 2 (ERK1/2) and protein kinase B (PKB), two key mediators of growth-promoting and proliferative responses, are activated by hydrogen peroxide (H(2)O(2)) in A10 vascular smooth muscle cells (VSMC). In the present studies, using a series of pharmacological inhibitors, we explored the upstream mechanisms responsible for their activation in response to H(2)O(2). H(2)O(2) treatment of VSMC stimulated ERK1/2, p38 mitogen-activated protein kinase (MAPK), and PKB phosphorylation in a dose- and time-dependent fashion. BAPTA-AM and EGTA, chelators of intracellular and extracellular Ca(2+), respectively, inhibited H(2)O(2)-stimulated ERK1/2, p38 MAPK, and PKB phosphorylation. Fluphenazine, an antagonist of the Ca(2+)-binding protein calmodulin, also suppressed the enhanced phosphorylation of ERK1/2, p38 MAPK, and PKB. In contrast, the protein kinase C (PKC) inhibitors Gö 6983 and Rö 31-8220 attenuated H(2)O(2)-induced ERK1/2 phosphorylation, but had no effect on p38 MAPK and PKB phosphorylation. Taken together, these data demonstrate that the activation of Ca(2+)/calmodulin-dependent pathways represents a key component mediating the stimulatory action of H(2)O(2) on ERK1/2, p38 MAPK, and PKB phosphorylation. On the other hand, PKC appears to be an upstream modulator of the increased ERK1/2 phosphorylation, but not of p38 MAPK and PKB in response to H(2)O(2) in VSMC.
Collapse
Affiliation(s)
- Antoine Blanc
- Centre de recherche, Centre hospitalier de l'Université de Montréal (CHUM)-Hôtel-Dieu and Department of Medicine, Université de Montréal, Montréal, Québec, Canada
| | | | | |
Collapse
|
199
|
Piacentini MP, Piatti E, Fraternale D, Ricci D, Albertini MC, Accorsi A. Phospholipase C-dependent phosphoinositide breakdown induced by ELF-EMF in Peganum harmala calli. Biochimie 2004; 86:343-9. [PMID: 15194239 DOI: 10.1016/j.biochi.2004.02.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2003] [Revised: 02/10/2004] [Accepted: 02/10/2004] [Indexed: 11/18/2022]
Abstract
With the aim of examining the response of plant cells to extremely low frequency (ELF) electromagnetic fields (EMF), we investigated the behaviour of the phosphatidylinositol 4,5 bisphosphate (PtdIns 4,5-P(2)) molecule (the precursor of the phosphoinositide signal transduction cascade) by exposing callus cells from Peganum harmala to 50 Hz, 1 gauss EMF for 10 min and by examining the level and the fatty acid composition of PtdIns 4,5-P(2) after the exposure. Our results evidenced a statistically significant decrease in PtdIns 4,5-P(2) concentrations and a different involvement of the constituting fatty acids in the induced breakdown. The manipulation of the lipid-based signalling pathway by phosphoinositide-phospholipase C (PI-PLC) inhibitors (i.e., neomycin, U-73122 and ET-18-OCH(3)) seems to support the hypothesis that, as in animals, also in plants, the cell membrane is the primary impact site of ELF electromagnetic stimulus and that this interaction could probably involve the activation of PI signal transduction pathway including a heterotrimeric G protein.
Collapse
Affiliation(s)
- Maria Piera Piacentini
- Istituto di Chimica Biologica Giorgio Fornaini, Università degli Studi di Urbino, Via Saffi 2, 61029 Urbino, Italy
| | | | | | | | | | | |
Collapse
|
200
|
van Rossum GSAT, Drummen GPC, Verkleij AJ, Post JA, Boonstra J. Activation of cytosolic phospholipase A2 in Her14 fibroblasts by hydrogen peroxide: a p42/44MAPK-dependent and phosphorylation-independent mechanism. Biochim Biophys Acta Mol Cell Biol Lipids 2004; 1636:183-95. [PMID: 15164766 DOI: 10.1016/j.bbalip.2003.12.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2003] [Accepted: 12/03/2003] [Indexed: 11/24/2022]
Abstract
Reactive oxygen species (ROS) have been implicated in the pathogenesis of diseases as well as various normal cellular processes. It has been suggested that ROS function as mediators of signal transduction, given that they can mimic growth factor-induced signaling. The ROS H2O2 has been reported to activate phospholipase A2 (PLA2) and, therefore, we investigated if and through which pathway ROS activate cytosolic PLA2 (cPLA2) in Her14 fibroblasts. cPLA2 was activated concentration-dependently by H2O2 in a transient manner. In addition, the lipophilic cumene hydroperoxide was shown to induce cPLA2 activity in the same manner. H2O2-induced cPLA2 activity in Her14 cells was partially phosphorylation-dependent, which was mediated through the Raf-MEK-p42/44(MAPK) pathway and occurred partially through a phosphorylation-independent mechanism. ROS can lead to changes in the (micro) viscosity of membranes due to the presence oxidized lipids, thereby increasing the substrate availability for cPLA2. In support of this, treatment of Her14 cells with H2O2 induced lipid peroxidation time-dependently as determined from degradation of lipid arachidonate and linoleate and the formation of aldehydic degradation products. Furthermore, H2O2 induced translocation of cPLA2 to the membrane fraction in a calcium-independent fashion, with a concomitant increase in cPLA2 activity. Collectively, the results suggest that oxidative stress-induced cPLA2 activity is partially phosphorylation-dependent and is further increased due to increased substrate availability by the action of ROS on membranes.
Collapse
Affiliation(s)
- Gerda S A T van Rossum
- Department of Molecular Cell Biology, Institute and Graduate School of Biomembranes, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|