151
|
Quillard T, Araújo HA, Franck G, Shvartz E, Sukhova G, Libby P. TLR2 and neutrophils potentiate endothelial stress, apoptosis and detachment: implications for superficial erosion. Eur Heart J 2015; 36:1394-404. [PMID: 25755115 DOI: 10.1093/eurheartj/ehv044] [Citation(s) in RCA: 258] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 02/01/2015] [Indexed: 12/12/2022] Open
Abstract
AIMS Superficial erosion of atheromata causes many acute coronary syndromes, but arises from unknown mechanisms. This study tested the hypothesis that Toll-like receptor-2 (TLR2) activation contributes to endothelial apoptosis and denudation and thus contributes to the pathogenesis of superficial erosion. METHODS AND RESULTS Toll-like receptor-2 and neutrophils localized at sites of superficially eroded human plaques. In vitro, TLR2 ligands (including hyaluronan, a matrix macromolecule abundant in eroded lesions) induced endothelial stress, characterized by reactive oxygen species production, endoplasmic reticulum (ER) stress, and apoptosis. Co-incubation of neutrophils with endothelial cells (ECs) potentiated these effects and induced EC apoptosis and detachment. We then categorized human atherosclerotic plaques (n = 56) based on morphologic features associated with superficial erosion, 'stable' fibrotic, or 'vulnerable' lesions. Morphometric analyses of the human atheromata localized neutrophils and neutrophil extracellular traps (NETs) near clusters of apoptotic ECs in smooth muscle cell (SMC)-rich plaques. The number of luminal apoptotic ECs correlated with neutrophil accumulation, amount of NETs, and TLR2 staining in SMC-rich plaques, but not in 'vulnerable' atheromata. CONCLUSION These in vitro observations and analyses of human plaques indicate that TLR2 stimulation followed by neutrophil participation may render smooth muscle cell-rich plaques susceptible to superficial erosion and thrombotic complications by inducing ER stress, apoptosis, and favouring detachment of EC.
Collapse
Affiliation(s)
- Thibaut Quillard
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA INSERM, UMR957, Université de Nantes, Nantes Atlantique Universités, EA3822, 1 Rue Gaston Veil, Nantes 44035, France
| | - Haniel Alves Araújo
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Gregory Franck
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Eugenia Shvartz
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Galina Sukhova
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Peter Libby
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
152
|
Kepp O, Semeraro M, Bravo-San Pedro JM, Bloy N, Buqué A, Huang X, Zhou H, Senovilla L, Kroemer G, Galluzzi L. eIF2α phosphorylation as a biomarker of immunogenic cell death. Semin Cancer Biol 2015; 33:86-92. [PMID: 25749194 DOI: 10.1016/j.semcancer.2015.02.004] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 02/13/2015] [Accepted: 02/21/2015] [Indexed: 12/20/2022]
Abstract
Cancer cells exposed to some forms of chemotherapy and radiotherapy die while eliciting an adaptive immune response. Such a functionally peculiar variant of apoptosis has been dubbed immunogenic cell death (ICD). One of the central events in the course of ICD is the activation of an endoplasmic reticulum (ER) stress response. This is instrumental for cells undergoing ICD to emit all the signals that are required for their demise to be perceived as immunogenic by the host, and culminates with the phosphorylation of eukaryotic translation initiation factor 2α (eIF2α). In particular, eIF2α phosphorylation is required for the pre-apoptotic exposure of the ER chaperone calreticulin (CALR) on the cell surface, which is a central determinant of ICD. Importantly, phosphorylated eIF2α can be quantified in both preclinical and clinical samples by immunoblotting or immunohistochemistry using phosphoneoepitope-specific monoclonal antibodies. Of note, the phosphorylation of eIF2α and CALR exposure do not necessarily correlate with each other, and neither of these parameters is sufficient for cell death to be perceived as immunogenic. Nonetheless, accumulating data indicate that assessing the degree of phosphorylation of eIF2α provides a convenient parameter to monitor ICD. Here, we discuss the role of the ER stress response in ICD and the potential value of eIF2α phosphorylation as a biomarker for this clinically relevant variant of apoptosis.
Collapse
Affiliation(s)
- Oliver Kepp
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France; INSERM, U1138, Paris, France; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
| | - Michaela Semeraro
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France; Gustave Roussy Cancer Campus, Villejuif, France; INSERM, U1015, Paris, France
| | - José Manuel Bravo-San Pedro
- INSERM, U1138, Paris, France; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France; Gustave Roussy Cancer Campus, Villejuif, France
| | - Norma Bloy
- INSERM, U1138, Paris, France; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France; Gustave Roussy Cancer Campus, Villejuif, France
| | - Aitziber Buqué
- INSERM, U1138, Paris, France; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France; Gustave Roussy Cancer Campus, Villejuif, France
| | - Xing Huang
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France; INSERM, U1138, Paris, France; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
| | - Heng Zhou
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France; INSERM, U1138, Paris, France; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
| | - Laura Senovilla
- INSERM, U1138, Paris, France; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France; Gustave Roussy Cancer Campus, Villejuif, France
| | - Guido Kroemer
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France; INSERM, U1138, Paris, France; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France; Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France; Université Pierre et Marie Curie/Paris VI, Paris, France.
| | - Lorenzo Galluzzi
- INSERM, U1138, Paris, France; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France; Gustave Roussy Cancer Campus, Villejuif, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France; Université Pierre et Marie Curie/Paris VI, Paris, France.
| |
Collapse
|
153
|
Hartmann M, Parra LM, Ruschel A, Böhme S, Li Y, Morrison H, Herrlich A, Herrlich P. Tumor Suppressor NF2 Blocks Cellular Migration by Inhibiting Ectodomain Cleavage of CD44. Mol Cancer Res 2015; 13:879-90. [PMID: 25652588 DOI: 10.1158/1541-7786.mcr-15-0020-t] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 01/16/2015] [Indexed: 11/16/2022]
Abstract
UNLABELLED Ectodomain cleavage (shedding) of transmembrane proteins by metalloproteases (MMP) generates numerous essential signaling molecules, but its regulation is not totally understood. CD44, a cleaved transmembrane glycoprotein, exerts both antiproliferative or tumor-promoting functions, but whether proteolysis is required for this is not certain. CD44-mediated contact inhibition and cellular proliferation are regulated by counteracting CD44 C-terminal interacting proteins, the tumor suppressor protein merlin (NF2) and ERM proteins (ezrin, radixin, moesin). We show here that activation or overexpression of constitutively active merlin or downregulation of ERMs inhibited 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced [as well as serum, hepatocyte growth factor (HGF), or platelet-derived growth factor (PDGF)] CD44 cleavage by the metalloprotease ADAM10, whereas overexpressed ERM proteins promoted cleavage. Merlin- and ERM-modulated Ras or Rac activity was not required for this function. However, latrunculin (an actin-disrupting toxin) or an ezrin mutant which is unable to link CD44 to actin, inhibited CD44 cleavage, identifying a cytoskeletal C-terminal link as essential for induced CD44 cleavage. Cellular migration, an important tumor property, depended on CD44 and its cleavage and was inhibited by merlin. These data reveal a novel function of merlin and suggest that CD44 cleavage products play a tumor-promoting role. Neuregulin, an EGF ligand released by ADAM17 from its pro-form NRG1, is predominantly involved in regulating cellular differentiation. In contrast to CD44, release of neuregulin from its pro-form was not regulated by merlin or ERM proteins. Disruption of the actin cytoskeleton however, also inhibited NRG1 cleavage. This current study presents one of the first examples of substrate-selective cleavage regulation. IMPLICATIONS Investigating transmembrane protein cleavage and their regulatory pathways have provided new molecular insight into their important role in cancer formation and possible treatment.
Collapse
Affiliation(s)
- Monika Hartmann
- Leibniz Institute for Age Research, Fritz Lipmann Institute, Jena, Germany
| | - Liseth M Parra
- Leibniz Institute for Age Research, Fritz Lipmann Institute, Jena, Germany. Harvard Institutes of Medicine, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Anne Ruschel
- Leibniz Institute for Age Research, Fritz Lipmann Institute, Jena, Germany
| | - Sandra Böhme
- Leibniz Institute for Age Research, Fritz Lipmann Institute, Jena, Germany
| | - Yong Li
- Leibniz Institute for Age Research, Fritz Lipmann Institute, Jena, Germany
| | - Helen Morrison
- Leibniz Institute for Age Research, Fritz Lipmann Institute, Jena, Germany
| | - Andreas Herrlich
- Harvard Institutes of Medicine, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.
| | - Peter Herrlich
- Leibniz Institute for Age Research, Fritz Lipmann Institute, Jena, Germany.
| |
Collapse
|
154
|
Abstract
The erosion and breakdown of cartilage is generally recognized to be an integral manifestation of arthritic disease, which is often accompanied by the development and progression of inflammation associated with it. Commercial shark cartilage (SC) is a popular dietary supplement taken for the prevention and/or control of chronic disease, including arthritis. The efficacy of SC in maintaining joint health remains questionable; there is a lack of sufficient reliable information on its effect on immunocompetent cells, and the potential health risks involved have not been adequately assessed. Our earlier in vitro studies showed that SC extracts induce a Th1-type inflammatory cytokine response in human leucocytes, and collagen type II alpha 1 protein was shown to be an active cytokine-inducing component in SC. In this study, we further define the cellular response to SC stimulation by classifying leucocytes into primary and secondary responders employing enriched leucocyte subpopulations. Inhibitors of specific signaling pathways were used to verify the functional effect of SC on specific pathway(s) utilized. Results indicate the monocyte/macrophage as the initially responding cell, followed by lymphocytes and the production of interferon-γ. Chemokines, MCP-1 and RANTES, were produced at significant levels in stimulated leucocyte cultures. Initial cellular activation is likely followed by activation of Jun Kinase and p38 mitogen-activated protein kinase signal transduction pathways. This study presents evidence of significant immunological reactivity of components of commercial SC supplement, which could pose a potential health risk for consumers, particularly those with underlying inflammatory disease such as irritable bowel syndrome and arthritis.
Collapse
Affiliation(s)
- Liza Merly
- Department of Biological Sciences, Florida International University , Miami, FL , USA
| | | |
Collapse
|
155
|
Zandieh Z, Ashrafi M, Jameie B, Amanpour S, Mosaffa N, Salman Yazdi R, Pacey A, Aflatoonian R. Evaluation of immunological interaction between spermatozoa and fallopian tube epithelial cells. Andrologia 2015; 47:1120-30. [DOI: 10.1111/and.12391] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2014] [Indexed: 12/12/2022] Open
Affiliation(s)
- Z. Zandieh
- Anatomy Department; School of Medicine; Iran University of Medical Sciences; Tehran Iran
| | - M. Ashrafi
- Obstetrics and Gynecology Department; School of Medicine; Iran University of Medical Sciences; Tehran Iran
| | - B. Jameie
- Anatomy Department; School of Medicine; Iran University of Medical Sciences; Tehran Iran
| | - S. Amanpour
- Valie-Asr Reproductive Health Research Center; Tehran University of Medical Sciences; Tehran Iran
| | - N. Mosaffa
- Department of Immunology; Faculty of Medicine; Shaheed Beheshti University of Medical Sciences; Tehran Iran
| | - R. Salman Yazdi
- Department of Andrology at Reproductive Biomedicine Research Center; Royan Institute for Reproductive Biomedicine; ACECR; Tehran Iran
| | - A. Pacey
- Academic Unit of Reproductive and Developmental Medicine; University of Sheffield; Sheffield UK
| | - R. Aflatoonian
- Department of Endocrinology and Female Infertility at Reproductive Biomedicine Research Center; Royan Institute for Reproductive Biomedicine; ACECR; Tehran Iran
| |
Collapse
|
156
|
Ghosh S, Hoselton SA, Dorsam GP, Schuh JM. Hyaluronan fragments as mediators of inflammation in allergic pulmonary disease. Immunobiology 2014; 220:575-88. [PMID: 25582403 DOI: 10.1016/j.imbio.2014.12.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Revised: 12/10/2014] [Accepted: 12/15/2014] [Indexed: 12/22/2022]
Abstract
Asthma is frequently caused and/or exacerbated by sensitization to allergens, which are ubiquitous in many indoor and outdoor environments. Severe asthma is characterized by airway hyperresponsiveness and bronchial constriction in response to an inhaled allergen, leading to a disease course that is often very difficult to treat with standard asthma therapies. As a result of interactions among inflammatory cells, structural cells, and the intercellular matrix of the allergic lung, patients with sensitization to allergens may experience a greater degree of tissue injury followed by airway wall remodeling and progressive, accumulated pulmonary dysfunction as part of the disease sequela. In addition, turnover of extracellular matrix (ECM) components is a hallmark of tissue injury and repair. This review focuses on the role of the glycosaminoglycan hyaluronan (HA), a component of the ECM, in pulmonary injury and repair with an emphasis on allergic asthma. Both the synthesis and degradation of the ECM are critical contributors to tissue repair and remodeling. Fragmented HA accumulates during tissue injury and functions in ways distinct from the larger native polymer. There is gathering evidence that HA degradation products are active participants in stimulating the expression of inflammatory genes in a variety of immune cells at the injury site. In this review, we will consider recent advances in the understanding of the mechanisms that are associated with HA accumulation and inflammatory cell recruitment in the asthmatic lung.
Collapse
Affiliation(s)
- Sumit Ghosh
- Department of Veterinary and Microbiological Sciences, North Dakota State University, Fargo, ND 58108, USA.
| | - Scott A Hoselton
- Department of Veterinary and Microbiological Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Glenn P Dorsam
- Department of Veterinary and Microbiological Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Jane M Schuh
- Department of Veterinary and Microbiological Sciences, North Dakota State University, Fargo, ND 58108, USA
| |
Collapse
|
157
|
Anderegg U, Simon JC, Averbeck M. More than just a filler - the role of hyaluronan for skin homeostasis. Exp Dermatol 2014; 23:295-303. [PMID: 24628940 DOI: 10.1111/exd.12370] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2014] [Indexed: 12/20/2022]
Abstract
In recent years, hyaluronan (HA) has become an increasingly attractive substance as a non-immunogenic filler and scaffolding material in cosmetic dermatology. Despite its wide use for skin augmentation and rejuvenation, relatively little is known about the molecular structures and interacting proteins of HA in normal and diseased skin. However, a comprehensive understanding of cutaneous HA homeostasis is required for future the development of HA-based applications for skin regeneration. This review provides an update on HA-based structures, expression, metabolism and its regulation, function and pharmacological targeting of HA in skin.
Collapse
Affiliation(s)
- Ulf Anderegg
- Department of Dermatology, Venerology and Allergology, University of Leipzig, Leipzig, Germany
| | | | | |
Collapse
|
158
|
Campo GM, Avenoso A, D'Ascola A, Scuruchi M, Nastasi G, Calatroni A, Campo S. Inhibition of the hyaluronan oligosaccharides inflammatory response: reduction of adenosine 2A receptor activation by EPAC and PKA. Cell Biochem Funct 2014; 32:692-701. [PMID: 25367782 DOI: 10.1002/cbf.3073] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 10/03/2014] [Accepted: 10/06/2014] [Indexed: 02/05/2023]
Abstract
The aim of this study was to investigate the involvement of exchange proteins directly activated by cyclic adenosine (ADO) monophosphate (EPAC) in 4-mer hyaluronan (HA) oligosaccharide-induced inflammatory response in mouse normal synovial fibroblasts (NSF). Treatment of NSF with 4-mer HA increased Toll-like receptor-4, TNF-alpha and IL-1beta mRNA expression and of the related proteins, as well as nuclear factor kappaB (NF-kB) activation. Addition to NSF, previously stimulated with 4-mer HA oligosaccharides, of ADO significantly reduced NF-kB activation, TNF-alpha and IL-1beta expression. The pre-treatment of NSF with cyclic ADO monophosphate and/or PKA and/or EPAC-specific inhibitors significantly inhibited the anti-inflammatory effect exerted by ADO. In particular, the EPAC inhibitor reduced the ADO effect to a major extent than the PKA inhibitor. These results mean that both PKA and EPAC pathways are involved in ADO-induced NF-kB inhibition although EPAC seems to be more involved than PKA.
Collapse
Affiliation(s)
- Giuseppe M Campo
- Department of Biomedical Sciences and Morphological and Functional Images, Section of Medical Biotechnologies and Preventive Medicine, University of Messina, Messina, Italy
| | | | | | | | | | | | | |
Collapse
|
159
|
Wang J, Wang X, Wei J, Wang M. Hyaluronan tetrasaccharide exerts neuroprotective effect and promotes functional recovery after acute spinal cord injury in rats. Neurochem Res 2014; 40:98-108. [PMID: 25373446 DOI: 10.1007/s11064-014-1470-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 09/11/2014] [Accepted: 10/30/2014] [Indexed: 12/11/2022]
Abstract
The objective of this study was to explore the therapeutic efficiency of hyaluronan tetrasaccharide (HA4) treatment after spinal cord injury (SCI) in rats and to investigate the underlying mechanism. Locomotor functional and electrophysiological evaluations revealed that the behavioral function of rats in the HA4-treated group was significantly improved compared with the vehicle-treated group. The expression of brain-derived neurotrophic factor (BDNF), vascular endothelial growth factor (VEGF), cluster determinant (CD44) and Toll-like receptor-4 (TLR-4) was obviously upregulated in the HA4-treated group than that in the sham and vehicle-treated group. Furthermore, HA4 could induce BDNF and VEGF expression in the astrocytes in vitro. In addition, the high expression of BDNF and VEGF could be inhibited by blocking CD44 and TLR-4. These findings indicate that HA4 could be useful as a promising therapeutic agent for SCI and might exert the effect by interaction with the CD44 and TLR-4.
Collapse
Affiliation(s)
- Jun Wang
- Traumatology Department,Beijing Jishuitan Hospital, No. 31 East Street of Xin Jie Kou Beijing, Beijing, 100035, People's Republic of China
| | | | | | | |
Collapse
|
160
|
The immune system and the remodeling infarcted heart: cell biological insights and therapeutic opportunities. J Cardiovasc Pharmacol 2014; 63:185-95. [PMID: 24072174 DOI: 10.1097/fjc.0000000000000003] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Extensive necrosis of ischemic cardiomyocytes in the infarcted myocardium activates the innate immune response triggering an intense inflammatory reaction. Release of danger signals from dying cells and damaged matrix activates the complement cascade and stimulates Toll-like receptor/interleukin-1 signaling, resulting in the activation of the nuclear factor-κB system and induction of chemokines, cytokines, and adhesion molecules. Subsequent infiltration of the infarct with neutrophils and mononuclear cells serves to clear the wound from dead cells and matrix debris, while stimulating reparative pathways. In addition to its role in repair of the infarcted heart and formation of a scar, the immune system is also involved in adverse remodeling of the infarcted ventricle. Overactive immune responses and defects in suppression, containment, and resolution of the postinfarction inflammatory reaction accentuate dilative remodeling in experimental models and may be associated with chamber dilation, systolic dysfunction, and heart failure in patients surviving a myocardial infarction. Interventions targeting the inflammatory response to attenuate adverse remodeling may hold promise in patients with myocardial infarction that exhibit accentuated, prolonged, or dysregulated immune responses to the acute injury.
Collapse
|
161
|
Abstract
High-mobility group box 1 (HMGB1) was originally defined as a ubiquitous nuclear protein, but it was later determined that the protein has different roles both inside and outside of cells. Nuclear HMGB1 regulates chromatin structure and gene transcription, whereas cytosolic HMGB1 is involved in inflammasome activation and autophagy. Extracellular HMGB1 has drawn attention because it can bind to related cell signalling transduction receptors, such as the receptor for advanced glycation end products, Toll-like receptor (TLR)2, TLR4 and TLR9. It also participates in the development and progression of a variety of diseases. HMGB1 is actively secreted by stimulation of the innate immune system, and it is passively released by ischaemia or cell injury. This review focuses on the important role of HMGB1 in the pathogenesis of acute and chronic sterile inflammatory conditions. Strategies that target HMGB1 have been shown to significantly decrease inflammation in several disease models of sterile inflammation, and this may represent a promising clinical approach for treatment of certain conditions associated with sterile inflammation.
Collapse
Affiliation(s)
- A Tsung
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | | | | |
Collapse
|
162
|
Kepp O, Senovilla L, Vitale I, Vacchelli E, Adjemian S, Agostinis P, Apetoh L, Aranda F, Barnaba V, Bloy N, Bracci L, Breckpot K, Brough D, Buqué A, Castro MG, Cirone M, Colombo MI, Cremer I, Demaria S, Dini L, Eliopoulos AG, Faggioni A, Formenti SC, Fučíková J, Gabriele L, Gaipl US, Galon J, Garg A, Ghiringhelli F, Giese NA, Guo ZS, Hemminki A, Herrmann M, Hodge JW, Holdenrieder S, Honeychurch J, Hu HM, Huang X, Illidge TM, Kono K, Korbelik M, Krysko DV, Loi S, Lowenstein PR, Lugli E, Ma Y, Madeo F, Manfredi AA, Martins I, Mavilio D, Menger L, Merendino N, Michaud M, Mignot G, Mossman KL, Multhoff G, Oehler R, Palombo F, Panaretakis T, Pol J, Proietti E, Ricci JE, Riganti C, Rovere-Querini P, Rubartelli A, Sistigu A, Smyth MJ, Sonnemann J, Spisek R, Stagg J, Sukkurwala AQ, Tartour E, Thorburn A, Thorne SH, Vandenabeele P, Velotti F, Workenhe ST, Yang H, Zong WX, Zitvogel L, Kroemer G, Galluzzi L. Consensus guidelines for the detection of immunogenic cell death. Oncoimmunology 2014; 3:e955691. [PMID: 25941621 PMCID: PMC4292729 DOI: 10.4161/21624011.2014.955691] [Citation(s) in RCA: 624] [Impact Index Per Article: 56.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 08/04/2014] [Indexed: 02/07/2023] Open
Abstract
Apoptotic cells have long been considered as intrinsically tolerogenic or unable to elicit immune responses specific for dead cell-associated antigens. However, multiple stimuli can trigger a functionally peculiar type of apoptotic demise that does not go unnoticed by the adaptive arm of the immune system, which we named "immunogenic cell death" (ICD). ICD is preceded or accompanied by the emission of a series of immunostimulatory damage-associated molecular patterns (DAMPs) in a precise spatiotemporal configuration. Several anticancer agents that have been successfully employed in the clinic for decades, including various chemotherapeutics and radiotherapy, can elicit ICD. Moreover, defects in the components that underlie the capacity of the immune system to perceive cell death as immunogenic negatively influence disease outcome among cancer patients treated with ICD inducers. Thus, ICD has profound clinical and therapeutic implications. Unfortunately, the gold-standard approach to detect ICD relies on vaccination experiments involving immunocompetent murine models and syngeneic cancer cells, an approach that is incompatible with large screening campaigns. Here, we outline strategies conceived to detect surrogate markers of ICD in vitro and to screen large chemical libraries for putative ICD inducers, based on a high-content, high-throughput platform that we recently developed. Such a platform allows for the detection of multiple DAMPs, like cell surface-exposed calreticulin, extracellular ATP and high mobility group box 1 (HMGB1), and/or the processes that underlie their emission, such as endoplasmic reticulum stress, autophagy and necrotic plasma membrane permeabilization. We surmise that this technology will facilitate the development of next-generation anticancer regimens, which kill malignant cells and simultaneously convert them into a cancer-specific therapeutic vaccine.
Collapse
Key Words
- APC, antigen-presenting cell
- ATF6, activating transcription factor 6
- ATP release
- BAK1, BCL2-antagonist/killer 1
- BAX, BCL2-associated X protein
- BCL2, B-cell CLL/lymphoma 2 protein
- CALR, calreticulin
- CTL, cytotoxic T lymphocyte
- DAMP, damage-associated molecular pattern
- DAPI, 4′,6-diamidino-2-phenylindole
- DiOC6(3), 3,3′-dihexyloxacarbocyanine iodide
- EIF2A, eukaryotic translation initiation factor 2A
- ER, endoplasmic reticulum
- FLT3LG, fms-related tyrosine kinase 3 ligand
- G3BP1, GTPase activating protein (SH3 domain) binding protein 1
- GFP, green fluorescent protein
- H2B, histone 2B
- HMGB1
- HMGB1, high mobility group box 1
- HSP, heat shock protein
- HSV-1, herpes simplex virus type I
- ICD, immunogenic cell death
- IFN, interferon
- IL, interleukin
- MOMP, mitochondrial outer membrane permeabilization
- PDIA3, protein disulfide isomerase family A
- PI, propidium iodide
- RFP, red fluorescent protein
- TLR, Toll-like receptor
- XBP1, X-box binding protein 1
- autophagy
- calreticulin
- endoplasmic reticulum stress
- immunotherapy
- member 3
- Δψm, mitochondrial transmembrane potential
Collapse
Affiliation(s)
- Oliver Kepp
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Center de Recherche des Cordeliers; Paris, France
- INSERM; U1138; Paris, France
- Metabolomics and Cell Biology Platforms; Gustave Roussy Cancer Campus; Villejuif, France
| | - Laura Senovilla
- INSERM; U1138; Paris, France
- Metabolomics and Cell Biology Platforms; Gustave Roussy Cancer Campus; Villejuif, France
- INSERM; U1015; Villejuif, France
| | - Ilio Vitale
- Regina Elena National Cancer Institute; Rome, Italy
| | - Erika Vacchelli
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Center de Recherche des Cordeliers; Paris, France
- INSERM; U1138; Paris, France
- Gustave Roussy Cancer Campus; Villejuif, France
| | - Sandy Adjemian
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Center de Recherche des Cordeliers; Paris, France
- INSERM; U1138; Paris, France
- Gustave Roussy Cancer Campus; Villejuif, France
- Molecular Cell Biology Laboratory; Department of Immunology; Institute of Biomedical Sciences; University of São Paulo; São Paulo, Brazil
| | - Patrizia Agostinis
- Cell Death Research and Therapy (CDRT) Laboratory; Department of Cellular and Molecular Medicine; University of Leuven; Leuven, Belgium
| | - Lionel Apetoh
- INSERM; UMR866; Dijon, France
- Centre Georges François Leclerc; Dijon, France
- Université de Bourgogne; Dijon, France
| | - Fernando Aranda
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Center de Recherche des Cordeliers; Paris, France
- INSERM; U1138; Paris, France
- Gustave Roussy Cancer Campus; Villejuif, France
| | - Vincenzo Barnaba
- Departement of Internal Medicine and Medical Sciences; University of Rome La Sapienza; Rome, Italy
- Istituto Pasteur; Fondazione Cenci Bolognetti; Rome, Italy
| | - Norma Bloy
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Center de Recherche des Cordeliers; Paris, France
- INSERM; U1138; Paris, France
- Gustave Roussy Cancer Campus; Villejuif, France
| | - Laura Bracci
- Department of Hematology; Oncology and Molecular Medicine; Istituto Superiore di Sanità (ISS); Rome, Italy
| | - Karine Breckpot
- Laboratory of Molecular and Cellular Therapy (LMCT); Department of Biomedical Sciences Medical School of the Free University of Brussels (VUB); Jette, Belgium
| | - David Brough
- Faculty of Life Sciences; University of Manchester; Manchester, UK
| | - Aitziber Buqué
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Center de Recherche des Cordeliers; Paris, France
- INSERM; U1138; Paris, France
- Gustave Roussy Cancer Campus; Villejuif, France
| | - Maria G. Castro
- Department of Neurosurgery and Cell and Developmental Biology; University of Michigan School of Medicine; Ann Arbor, MI USA
| | - Mara Cirone
- Department of Experimental Medicine; University of Rome La Sapienza; Rome, Italy
| | - Maria I. Colombo
- Laboratorio de Biología Celular y Molecular; Instituto de Histología y Embriología (IHEM); Facultad de Ciencias Médicas; Universidad Nacional de Cuyo; CONICET; Mendoza, Argentina
| | - Isabelle Cremer
- INSERM; U1138; Paris, France
- Université Pierre et Marie Curie/Paris VI; Paris, France
- Equipe 13; Center de Recherche des Cordeliers; Paris, France
| | - Sandra Demaria
- Department of Pathology; New York University School of Medicine; New York, NY USA
| | - Luciana Dini
- Department of Biological and Environmental Science and Technology (DiSTeBA); University of Salento; Lecce, Italy
| | - Aristides G. Eliopoulos
- Molecular and Cellular Biology Laboratory; Division of Basic Sciences; University of Crete Medical School; Heraklion, Greece
- Institute of Molecular Biology and Biotechnology; Foundation of Research and Technology - Hellas; Heraklion, Greece
| | - Alberto Faggioni
- Department of Experimental Medicine; University of Rome La Sapienza; Rome, Italy
| | - Silvia C. Formenti
- Department of Radiation Oncology; NewYork University School of Medicine and Langone Medical Center; New York, NY USA
| | - Jitka Fučíková
- Department of Immunology; 2 Faculty of Medicine and University Hospital Motol, Charles University; Prague, Czech Republic
- Sotio; Prague, Czech Republic
| | - Lucia Gabriele
- Department of Hematology; Oncology and Molecular Medicine; Istituto Superiore di Sanità (ISS); Rome, Italy
| | - Udo S. Gaipl
- Department of Radiation Oncology; University Hospital Erlangen; University of Erlangen-Nürnberg; Erlangen, Germany
| | - Jérôme Galon
- INSERM; U1138; Paris, France
- Université Pierre et Marie Curie/Paris VI; Paris, France
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France
- Laboratory of Integrative Cancer Immunology; Center de Recherche des Cordeliers; Paris, France
| | - Abhishek Garg
- Cell Death Research and Therapy (CDRT) Laboratory; Department of Cellular and Molecular Medicine; University of Leuven; Leuven, Belgium
| | - François Ghiringhelli
- INSERM; UMR866; Dijon, France
- Centre Georges François Leclerc; Dijon, France
- Université de Bourgogne; Dijon, France
| | - Nathalia A. Giese
- European Pancreas Center; Department of Surgery; University Hospital Heidelberg; Heidelberg, Germany
| | - Zong Sheng Guo
- Department of Surgery; University of Pittsburgh; Pittsburgh, PA USA
| | - Akseli Hemminki
- Cancer Gene Therapy Group; Transplantation laboratory; Haartman Institute; University of Helsinki; Helsinki, Finland
| | - Martin Herrmann
- Department of Internal Medicine 3; University of Erlangen-Nuremberg; Erlangen, Germany
| | - James W. Hodge
- Laboratory of Tumor Immunology and Biology; Center for Cancer Research; National Cancer Institute (NCI), National Institutes of Health (NIH); Bethesda, MD USA
| | - Stefan Holdenrieder
- Institute of Clinical Chemistry and Clinical Pharmacology; University Hospital Bonn; Bonn, Germany
| | - Jamie Honeychurch
- Faculty of Medical and Human Sciences, Institute of Cancer Studies; Manchester Academic Health Sciences Center; University of Manchester; Manchester, UK
| | - Hong-Min Hu
- Cancer Research and Biotherapy Center; Second Affiliated Hospital of Southeast University; Nanjing, China
- Laboratory of Cancer Immunobiology; Earle A. Chiles Research Institute; Providence Portland Medical Center; Portland, OR USA
| | - Xing Huang
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Center de Recherche des Cordeliers; Paris, France
- INSERM; U1138; Paris, France
- Metabolomics and Cell Biology Platforms; Gustave Roussy Cancer Campus; Villejuif, France
| | - Tim M. Illidge
- Faculty of Medical and Human Sciences, Institute of Cancer Studies; Manchester Academic Health Sciences Center; University of Manchester; Manchester, UK
| | - Koji Kono
- Department of Surgery; National University of Singapore; Singapore, Singapore
- Cancer Science Institute of Singapore; National University of Singapore; Singapore, Singapore
| | | | - Dmitri V. Krysko
- VIB Inflammation Research Center; Ghent, Belgium
- Department of Biomedical Molecular Biology; Ghent University; Ghent, Belgium
| | - Sherene Loi
- Division of Cancer Medicine and Division of Research; Peter MacCallum Cancer Center; East Melbourne; Victoria, Australia
| | - Pedro R. Lowenstein
- Department of Neurosurgery and Cell and Developmental Biology; University of Michigan School of Medicine; Ann Arbor, MI USA
| | - Enrico Lugli
- Unit of Clinical and Experimental Immunology; Humanitas Clinical and Research Center; Milan, Italy
- Department of Medical Biotechnologies and Translational Medicine, University of Milan; Rozzano, Italy
| | - Yuting Ma
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Center de Recherche des Cordeliers; Paris, France
- INSERM; U1138; Paris, France
- Gustave Roussy Cancer Campus; Villejuif, France
| | - Frank Madeo
- Institute of Molecular Biosciences; University of Graz; Graz, Austria
| | - Angelo A. Manfredi
- University Vita-Salute San Raffaele; Milano, Italy
- San Raffaele Scientific Institute; Milano, Italy
| | - Isabelle Martins
- Gustave Roussy Cancer Campus; Villejuif, France
- INSERM, U1030; Villejuif, France
- Faculté de Médecine; Université Paris-Sud/Paris XI; Kremlin-Bicêtre, France
| | - Domenico Mavilio
- Unit of Clinical and Experimental Immunology; Humanitas Clinical and Research Center; Milan, Italy
- Department of Medical Biotechnologies and Translational Medicine, University of Milan; Rozzano, Italy
| | - Laurie Menger
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Center de Recherche des Cordeliers; Paris, France
- INSERM; U1138; Paris, France
- Gustave Roussy Cancer Campus; Villejuif, France
- Cancer Immunology Unit, Research Department of Haematology; University College London (UCL) Cancer Institute; London, UK
| | - Nicolò Merendino
- Department of Ecological and Biological Sciences (DEB), Tuscia University; Viterbo, Italy
| | - Michael Michaud
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Center de Recherche des Cordeliers; Paris, France
- INSERM; U1138; Paris, France
- Gustave Roussy Cancer Campus; Villejuif, France
| | - Gregoire Mignot
- Cellular and Molecular Immunology and Endocrinology, Oniris; Nantes, France
| | - Karen L. Mossman
- Department of Pathology and Molecular Medicine; McMaster Immunology Research Center; Hamilton, Canada
- Institute for Infectious Disease Research; McMaster University; Hamilton, Canada
| | - Gabriele Multhoff
- Department of Radiation Oncology; Klinikum rechts der Isar; Technical University of Munich; Munich, Germany
| | - Rudolf Oehler
- Comprehensive Cancer Center; Medical University of Vienna; Vienna, Austria
| | - Fabio Palombo
- Departement of Internal Medicine and Medical Sciences; University of Rome La Sapienza; Rome, Italy
- Istituto Pasteur; Fondazione Cenci Bolognetti; Rome, Italy
| | | | - Jonathan Pol
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Center de Recherche des Cordeliers; Paris, France
- INSERM; U1138; Paris, France
- Gustave Roussy Cancer Campus; Villejuif, France
| | - Enrico Proietti
- Department of Hematology; Oncology and Molecular Medicine; Istituto Superiore di Sanità (ISS); Rome, Italy
| | - Jean-Ehrland Ricci
- INSERM; U1065; Nice, France
- Equipe “Contrôle Métabolique des Morts Cellulaires,” Center Méditerranéen de Médecine Moléculaire (C3M); Nice, France
- Faculté de Médecine; Université de Nice Sophia Antipolis; Nice, France
- Centre Hospitalier Universitaire de Nice; Nice, France
| | - Chiara Riganti
- Department of Oncology and Subalpine Center for Research and Experimental Medicine (CeRMS); University of Turin; Turin, Italy
| | - Patrizia Rovere-Querini
- University Vita-Salute San Raffaele; Milano, Italy
- San Raffaele Scientific Institute; Milano, Italy
| | - Anna Rubartelli
- Cell Biology Unit; Azienda Ospedaliera Universitaria San Martino; Istituto Nazionale per la Ricerca sul Cancro; Genova, Italy
| | | | - Mark J. Smyth
- Immunology in Cancer and Infection Laboratory; QIMR Berghofer Medical Research Institute; Herston, Australia
- School of Medicine, University of Queensland; Herston, Australia
| | - Juergen Sonnemann
- Department of Pediatric Haematology and Oncology; Jena University Hospital, Children's Clinic; Jena, Germany
| | - Radek Spisek
- Department of Immunology; 2 Faculty of Medicine and University Hospital Motol, Charles University; Prague, Czech Republic
- Sotio; Prague, Czech Republic
| | - John Stagg
- Centre de Recherche du Center Hospitalier de l’Université de Montréal; Faculté de Pharmacie, Université de Montréal; Montréal, Canada
| | - Abdul Qader Sukkurwala
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Center de Recherche des Cordeliers; Paris, France
- INSERM; U1138; Paris, France
- Gustave Roussy Cancer Campus; Villejuif, France
- Department of Pathology, Dow International Medical College; Dow University of Health Sciences; Karachi, Pakistan
| | - Eric Tartour
- INSERM; U970; Paris, France
- Pôle de Biologie; Hôpital Européen Georges Pompidou; AP-HP; Paris, France
| | - Andrew Thorburn
- Department of Pharmacology; University of Colorado School of Medicine; Aurora, CO USA
| | | | - Peter Vandenabeele
- VIB Inflammation Research Center; Ghent, Belgium
- Department of Biomedical Molecular Biology; Ghent University; Ghent, Belgium
- Methusalem Program; Ghent University; Ghent, Belgium
| | - Francesca Velotti
- Department of Ecological and Biological Sciences (DEB), Tuscia University; Viterbo, Italy
| | - Samuel T. Workenhe
- Department of Pathology and Molecular Medicine; McMaster Immunology Research Center; Hamilton, Canada
- Institute for Infectious Disease Research; McMaster University; Hamilton, Canada
| | - Haining Yang
- University of Hawaii Cancer Center; Honolulu, HI USA
| | - Wei-Xing Zong
- Department of Molecular Genetics and Microbiology; Stony Brook University; Stony Brook, NY USA
| | - Laurence Zitvogel
- INSERM; U1015; Villejuif, France
- Gustave Roussy Cancer Campus; Villejuif, France
- Centre d’Investigation Clinique Biothérapie 507 (CICBT507); Gustave Roussy Cancer Campus; Villejuif, France
| | - Guido Kroemer
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Center de Recherche des Cordeliers; Paris, France
- INSERM; U1138; Paris, France
- Metabolomics and Cell Biology Platforms; Gustave Roussy Cancer Campus; Villejuif, France
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France
- Pôle de Biologie; Hôpital Européen Georges Pompidou; AP-HP; Paris, France
| | - Lorenzo Galluzzi
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Center de Recherche des Cordeliers; Paris, France
- INSERM; U1138; Paris, France
- Gustave Roussy Cancer Campus; Villejuif, France
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France
| |
Collapse
|
163
|
Rizzo M, Bayo J, Piccioni F, Malvicini M, Fiore E, Peixoto E, García MG, Aquino JB, Gonzalez Campaña A, Podestá G, Terres M, Andriani O, Alaniz L, Mazzolini G. Low molecular weight hyaluronan-pulsed human dendritic cells showed increased migration capacity and induced resistance to tumor chemoattraction. PLoS One 2014; 9:e107944. [PMID: 25238610 PMCID: PMC4169605 DOI: 10.1371/journal.pone.0107944] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 08/18/2014] [Indexed: 12/12/2022] Open
Abstract
We have shown that ex vivo pre-conditioning of bone marrow-derived dendritic cells (DC) with low molecular weight hyaluronan (LMW HA) induces antitumor immunity against colorectal carcinoma (CRC) in mice. In the present study we investigated the effects of LMW HA priming on human-tumor-pulsed monocytes-derived dendritic cells (DC/TL) obtained from healthy donors and patients with CRC. LMW HA treatment resulted in an improved maturation state of DC/TL and an enhanced mixed leucocyte reaction activity in vivo. Importantly, pre-conditioning of DC/TL with LMW HA increased their ability to migrate and reduced their attraction to human tumor derived supernatants. These effects were associated with increased CCR7 expression levels in DC. Indeed, a significant increase in migratory response toward CCL21 was observed in LMW HA primed tumor-pulsed monocyte-derived dendritic cells (DC/TL/LMW HA) when compared to LWM HA untreated cells (DC/TL). Moreover, LMW HA priming modulated other mechanisms implicated in DC migration toward lymph nodes such as the metalloproteinase activity. Furthermore, it also resulted in a significant reduction in DC migratory capacity toward tumor supernatant and IL8 in vitro. Consistently, LMW HA dramatically enhanced in vivo DC recruitment to tumor-regional lymph nodes and reduced DC migration toward tumor tissue. This study shows that LMW HA--a poorly immunogenic molecule--represents a promising candidate to improve human DC maturation protocols in the context of DC-based vaccines development, due to its ability to enhance their immunogenic properties as well as their migratory capacity toward lymph nodes instead of tumors.
Collapse
Affiliation(s)
- Manglio Rizzo
- Gene Therapy Laboratory, Facultad de Ciencias Biomédicas, Universidad Austral, Derqui-Pilar, Buenos Aires, Argentina
| | - Juan Bayo
- Gene Therapy Laboratory, Facultad de Ciencias Biomédicas, Universidad Austral, Derqui-Pilar, Buenos Aires, Argentina
| | - Flavia Piccioni
- Gene Therapy Laboratory, Facultad de Ciencias Biomédicas, Universidad Austral, Derqui-Pilar, Buenos Aires, Argentina
| | - Mariana Malvicini
- Gene Therapy Laboratory, Facultad de Ciencias Biomédicas, Universidad Austral, Derqui-Pilar, Buenos Aires, Argentina
- CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), CABA, Buenos Aires, Argentina
| | - Esteban Fiore
- Gene Therapy Laboratory, Facultad de Ciencias Biomédicas, Universidad Austral, Derqui-Pilar, Buenos Aires, Argentina
| | - Estanislao Peixoto
- Gene Therapy Laboratory, Facultad de Ciencias Biomédicas, Universidad Austral, Derqui-Pilar, Buenos Aires, Argentina
| | - Mariana G. García
- Gene Therapy Laboratory, Facultad de Ciencias Biomédicas, Universidad Austral, Derqui-Pilar, Buenos Aires, Argentina
- CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), CABA, Buenos Aires, Argentina
| | - Jorge B. Aquino
- Gene Therapy Laboratory, Facultad de Ciencias Biomédicas, Universidad Austral, Derqui-Pilar, Buenos Aires, Argentina
- CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), CABA, Buenos Aires, Argentina
| | - Ariel Gonzalez Campaña
- Department of Surgery, Hospital Austral, Universidad Austral, Derqui-Pilar, Buenos Aires, Argentina
| | - Gustavo Podestá
- Department of Surgery, Hospital Austral, Universidad Austral, Derqui-Pilar, Buenos Aires, Argentina
| | - Marcelo Terres
- Department of Surgery, Hospital Austral, Universidad Austral, Derqui-Pilar, Buenos Aires, Argentina
| | - Oscar Andriani
- Department of Surgery, Hospital Austral, Universidad Austral, Derqui-Pilar, Buenos Aires, Argentina
| | - Laura Alaniz
- CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), CABA, Buenos Aires, Argentina
- CIT NOBA, Universidad Nacional del Noroeste de la Pcia de Bs. As (UNNOBA), Junín, Buenos Aires, Argentina
- * E-mail: (GM); (LA)
| | - Guillermo Mazzolini
- Gene Therapy Laboratory, Facultad de Ciencias Biomédicas, Universidad Austral, Derqui-Pilar, Buenos Aires, Argentina
- CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), CABA, Buenos Aires, Argentina
- * E-mail: (GM); (LA)
| |
Collapse
|
164
|
van Golen RF, Reiniers MJ, Vrisekoop N, Zuurbier CJ, Olthof PB, van Rheenen J, van Gulik TM, Parsons BJ, Heger M. The mechanisms and physiological relevance of glycocalyx degradation in hepatic ischemia/reperfusion injury. Antioxid Redox Signal 2014; 21:1098-118. [PMID: 24313895 PMCID: PMC4123469 DOI: 10.1089/ars.2013.5751] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
SIGNIFICANCE Hepatic ischemia/reperfusion (I/R) injury is an inevitable side effect of major liver surgery that can culminate in liver failure. The bulk of I/R-induced liver injury results from an overproduction of reactive oxygen and nitrogen species (ROS/RNS), which inflict both parenchymal and microcirculatory damage. A structure that is particularly prone to oxidative attack and modification is the glycocalyx (GCX), a meshwork of proteoglycans and glycosaminoglycans (GAGs) that covers the lumenal endothelial surface and safeguards microvascular homeostasis. ROS/RNS-mediated degradation of the GCX may exacerbate I/R injury by, for example, inducing vasoconstriction, facilitating leukocyte adherence, and directly activating innate immune cells. RECENT ADVANCES Preliminary experiments revealed that hepatic sinusoids contain a functional GCX that is damaged during murine hepatic I/R and major liver surgery in patients. There are three ROS that mediate GCX degradation: hydroxyl radicals, carbonate radical anions, and hypochlorous acid (HOCl). HOCl converts GAGs in the GCX to GAG chloramides that become site-specific targets for oxidizing and reducing species and are more efficiently fragmented than the parent molecules. In addition to ROS/RNS, the GAG-degrading enzyme heparanase acts at the endothelial surface to shed the GCX. CRITICAL ISSUES The GCX seems to be degraded during major liver surgery, but the underlying cause remains ill-defined. FUTURE DIRECTIONS The relative contribution of the different ROS and RNS intermediates to GCX degradation in vivo, the immunogenic potential of the shed GCX fragments, and the role of heparanase in liver I/R injury all warrant further investigation.
Collapse
Affiliation(s)
- Rowan F van Golen
- 1 Department of Surgery, Surgical Laboratory, Academic Medical Center, University of Amsterdam , Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
165
|
Vigetti D, Karousou E, Viola M, Deleonibus S, De Luca G, Passi A. Hyaluronan: Biosynthesis and signaling. Biochim Biophys Acta Gen Subj 2014; 1840:2452-9. [DOI: 10.1016/j.bbagen.2014.02.001] [Citation(s) in RCA: 223] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Revised: 01/30/2014] [Accepted: 02/01/2014] [Indexed: 12/28/2022]
|
166
|
Chuang CY, Degendorfer G, Davies MJ. Oxidation and modification of extracellular matrix and its role in disease. Free Radic Res 2014; 48:970-89. [DOI: 10.3109/10715762.2014.920087] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
167
|
Lennon FE, Mirzapoiazova T, Mambetsariev N, Mambetsariev B, Salgia R, Singleton PA. Transactivation of the receptor-tyrosine kinase ephrin receptor A2 is required for the low molecular weight hyaluronan-mediated angiogenesis that is implicated in tumor progression. J Biol Chem 2014; 289:24043-58. [PMID: 25023279 DOI: 10.1074/jbc.m114.554766] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Angiogenesis or the formation of new blood vessels is important in the growth and metastatic potential of various cancers. Therefore, understanding the mechanism(s) by which angiogenesis occurs can have important therapeutic implications in numerous malignancies. We and others have demonstrated that low molecular weight hyaluronan (LMW-HA, ∼2500 Da) promotes endothelial cell (EC) barrier disruption and angiogenesis. However, the mechanism(s) by which this occurs is poorly defined. Our data indicate that treatment of human EC with LMW-HA induced CD44v10 association with the receptor-tyrosine kinase, EphA2, transactivation (tyrosine phosphorylation) of EphA2, and recruitment of the PDZ domain scaffolding protein, PATJ, to the cell periphery. Silencing (siRNA) CD44, EphA2, PATJ, or Dbs (RhoGEF) expression blocked LMW-HA-mediated angiogenesis (EC proliferation, migration, and tubule formation). In addition, silencing EphA2, PATJ, Src, or Dbs expression blocked LMW-HA-mediated RhoA activation. To translate our in vitro findings, we utilized a novel anginex/liposomal targeting of murine angiogenic endothelium with either CD44 or EphA2 siRNA and observed inhibition of LMW-HA-induced angiogenesis in implanted Matrigel plugs. Taken together, these results indicate LMW-HA-mediated transactivation of EphA2 is required for PATJ and Dbs membrane recruitment and subsequent RhoA activation required for angiogenesis. These results suggest that targeting downstream effectors of LMW-HA could be a useful therapeutic intervention for angiogenesis-associated diseases including tumor progression.
Collapse
Affiliation(s)
- Frances E Lennon
- From the Department of Medicine, Section of Pulmonary and Critical Care and
| | | | | | - Bolot Mambetsariev
- From the Department of Medicine, Section of Pulmonary and Critical Care and
| | - Ravi Salgia
- Section of Hematology and Oncology University of Chicago, Chicago Illinois 60637
| | | |
Collapse
|
168
|
Sikorski K, Chmielewski S, Olejnik A, Wesoly JZ, Heemann U, Baumann M, Bluyssen H. STAT1 as a central mediator of IFNγ and TLR4 signal integration in vascular dysfunction. JAKSTAT 2014; 1:241-9. [PMID: 24058779 PMCID: PMC3670280 DOI: 10.4161/jkst.22469] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Atherosclerosis is characterized by early endothelial dysfunction and altered vascular smooth muscle cells (VSMCs) contractility. The forming atheroma is a site of excessive production of cytokines and inflammatory ligands by various cell types that mediate inflammation and immune responses. Key factors contributing to early stages of plaque development are IFNγ and TLR4. This review provides insight in the differential STAT1-dependent signal integration between IFNγ and TLR4 signals in vascular cells and atheroma interacting immune cells. This results in increased leukocyte attraction and adhesion and VSMC proliferation and migration, which are important characteristics of EC dysfunction and early triggers of atherosclerosis.
Collapse
Affiliation(s)
- Krzysztof Sikorski
- Department of Human Molecular Genetics; Institute of Molecular Biology and Biotechnology; Faculty of Biology; Adam Mickiewicz University; Poznan, Poland
| | | | | | | | | | | | | |
Collapse
|
169
|
Schmaus A, Klusmeier S, Rothley M, Dimmler A, Sipos B, Faller G, Thiele W, Allgayer H, Hohenberger P, Post S, Sleeman JP. Accumulation of small hyaluronan oligosaccharides in tumour interstitial fluid correlates with lymphatic invasion and lymph node metastasis. Br J Cancer 2014; 111:559-67. [PMID: 24937668 PMCID: PMC4119989 DOI: 10.1038/bjc.2014.332] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 04/09/2014] [Accepted: 05/15/2014] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Association studies have implicated the glycosaminoglycan hyaluronan (hyaluronic acid, HA) and its degrading enzymes the hyaluronidases in tumour progression and metastasis. Oligosaccharides of degraded HA have been ascribed a number of biological functions that are not exerted by high-molecular-weight HA (HMW-HA). However, whether these small HA oligosaccharides (sHA) have a role in tumour progression currently remains uncertain due to an inability to analyse their concentration in tumours. METHODS We report a novel method to determine the concentration of sHA ranging from 6 to 25 disaccharides in tumour interstitial fluid (TIF). Levels of sHA were measured in TIF from experimental rat tumours and human colorectal tumours. RESULTS While the majority of HA in TIF is HMW-HA, concentrations of sHA up to 6 μg ml(-1) were detected in a subset of tumours, but not in interstitial fluid from healthy tissues. In a cohort of 72 colorectal cancer patients we found that increased sHA concentrations in TIF are associated with lymphatic vessel invasion by tumour cells and the formation of lymph node metastasis. CONCLUSIONS These data document for the first time the pathophysiological concentration of sHA in tumours, and provide evidence of a role for sHA in tumour progression.
Collapse
Affiliation(s)
- A Schmaus
- 1] Medical Faculty Mannheim, University of Heidelberg, Ludolf-Krehl-Strasse 13-17, 68167 Mannheim, Germany [2] Karlsruhe Institute for Technology (KIT), Campus Nord, Institut für Toxikologie und Genetik, Postfach 3640, 76021 Karlsruhe, Germany
| | - S Klusmeier
- 1] Medical Faculty Mannheim, University of Heidelberg, Ludolf-Krehl-Strasse 13-17, 68167 Mannheim, Germany [2] Karlsruhe Institute for Technology (KIT), Campus Nord, Institut für Toxikologie und Genetik, Postfach 3640, 76021 Karlsruhe, Germany
| | - M Rothley
- 1] Medical Faculty Mannheim, University of Heidelberg, Ludolf-Krehl-Strasse 13-17, 68167 Mannheim, Germany [2] Karlsruhe Institute for Technology (KIT), Campus Nord, Institut für Toxikologie und Genetik, Postfach 3640, 76021 Karlsruhe, Germany
| | - A Dimmler
- Institut und Gemeinschaftspraxis für Pathologie an den St Vincentiuskliniken Karlsruhe, Südendstrasse 37, 76137 Karlsruhe, Germany
| | - B Sipos
- Universitätsklinikum Tübingen, Department of Pathology, Liebermeisterstrasse 8, 72076 Tübingen, Germany
| | - G Faller
- Institut und Gemeinschaftspraxis für Pathologie an den St Vincentiuskliniken Karlsruhe, Südendstrasse 37, 76137 Karlsruhe, Germany
| | - W Thiele
- 1] Medical Faculty Mannheim, University of Heidelberg, Ludolf-Krehl-Strasse 13-17, 68167 Mannheim, Germany [2] Karlsruhe Institute for Technology (KIT), Campus Nord, Institut für Toxikologie und Genetik, Postfach 3640, 76021 Karlsruhe, Germany
| | - H Allgayer
- Medical Faculty Mannheim, University of Heidelberg, Ludolf-Krehl-Strasse 13-17, 68167 Mannheim, Germany
| | - P Hohenberger
- Medical Faculty Mannheim, University of Heidelberg, Ludolf-Krehl-Strasse 13-17, 68167 Mannheim, Germany
| | - S Post
- Medical Faculty Mannheim, University of Heidelberg, Ludolf-Krehl-Strasse 13-17, 68167 Mannheim, Germany
| | - J P Sleeman
- 1] Medical Faculty Mannheim, University of Heidelberg, Ludolf-Krehl-Strasse 13-17, 68167 Mannheim, Germany [2] Karlsruhe Institute for Technology (KIT), Campus Nord, Institut für Toxikologie und Genetik, Postfach 3640, 76021 Karlsruhe, Germany
| |
Collapse
|
170
|
Peverill W, Powell LW, Skoien R. Evolving concepts in the pathogenesis of NASH: beyond steatosis and inflammation. Int J Mol Sci 2014; 15:8591-638. [PMID: 24830559 PMCID: PMC4057750 DOI: 10.3390/ijms15058591] [Citation(s) in RCA: 260] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Revised: 03/20/2014] [Accepted: 04/17/2014] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic steatohepatitis (NASH) is characterised by hepatic steatosis and inflammation and, in some patients, progressive fibrosis leading to cirrhosis. An understanding of the pathogenesis of NASH is still evolving but current evidence suggests multiple metabolic factors critically disrupt homeostasis and induce an inflammatory cascade and ensuing fibrosis. The mechanisms underlying these changes and the complex inter-cellular interactions that mediate fibrogenesis are yet to be fully elucidated. Lipotoxicity, in the setting of excess free fatty acids, obesity, and insulin resistance, appears to be the central driver of cellular injury via oxidative stress. Hepatocyte apoptosis and/or senescence contribute to activation of the inflammasome via a variety of intra- and inter-cellular signalling mechanisms leading to fibrosis. Current evidence suggests that periportal components, including the ductular reaction and expansion of the hepatic progenitor cell compartment, may be involved and that the Th17 response may mediate disease progression. This review aims to provide an overview of the pathogenesis of NASH and summarises the evidence pertaining to key mechanisms implicated in the transition from steatosis and inflammation to fibrosis. Currently there are limited treatments for NASH although an increasing understanding of its pathogenesis will likely improve the development and use of interventions in the future.
Collapse
Affiliation(s)
- William Peverill
- Department of Gastroenterology and Hepatology, Royal Brisbane and Women's Hospital, Brisbane 4029, Australia.
| | - Lawrie W Powell
- Department of Gastroenterology and Hepatology, Royal Brisbane and Women's Hospital, Brisbane 4029, Australia.
| | - Richard Skoien
- Department of Gastroenterology and Hepatology, Royal Brisbane and Women's Hospital, Brisbane 4029, Australia.
| |
Collapse
|
171
|
Muto J, Morioka Y, Yamasaki K, Kim M, Garcia A, Carlin AF, Varki A, Gallo RL. Hyaluronan digestion controls DC migration from the skin. J Clin Invest 2014; 124:1309-19. [PMID: 24487587 DOI: 10.1172/jci67947] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 11/14/2013] [Indexed: 12/11/2022] Open
Abstract
The breakdown and release of hyaluronan (HA) from the extracellular matrix has been hypothesized to act as an endogenous signal of injury. To test this hypothesis, we generated mice that conditionally overexpressed human hyaluronidase 1 (HYAL1). Mice expressing HYAL1 in skin either during early development or by inducible transient expression exhibited extensive HA degradation, yet displayed no evidence of spontaneous inflammation. Further, HYAL1 expression activated migration and promoted loss of DCs from the skin. We subsequently determined that induction of HYAL1 expression prior to topical antigen application resulted in a lack of an antigenic response due to the depletion of DCs from the skin. In contrast, induction of HYAL1 expression concurrent with antigen exposure accelerated allergic sensitization. Administration of HA tetrasaccharides, before or simultaneously with antigen application, recapitulated phenotypes observed in HYAL1-expressing animals, suggesting that the generation of small HA fragments, rather than the loss of large HA molecules, promotes DC migration and subsequent modification of allergic responses. Furthermore, mice lacking TLR4 did not exhibit HA-associated phenotypes, indicating that TLR4 mediates these responses. This study provides direct evidence that HA breakdown controls the capacity of the skin to present antigen. These events may influence DC function in injury or disease and have potential to be exploited therapeutically for modification of allergic responses.
Collapse
|
172
|
Borkowski AW, Gallo RL. UVB radiation illuminates the role of TLR3 in the epidermis. J Invest Dermatol 2014; 134:2315-2320. [PMID: 24786223 PMCID: PMC4133277 DOI: 10.1038/jid.2014.167] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 03/19/2014] [Accepted: 03/24/2014] [Indexed: 12/18/2022]
Abstract
UV radiation poses a significant risk to human health. The mechanisms that help repair UV-damaged cells have recently been more clearly defined with the observation that Toll-like receptor 3 can sense self RNA released from necrotic keratinocytes following UV damage. TLR3 activation in the skin induces inflammation and increases expression of genes involved in skin barrier repair. Activation of TLR2 in the skin by commensal microbial products prevents excessive inflammation by blocking downstream TLR3 signaling. This review highlights how UV damage induced inflammation in the skin is propagated by host products and regulated by host inhabitants.
Collapse
Affiliation(s)
- Andrew W Borkowski
- Division of Dermatology, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Richard L Gallo
- Division of Dermatology, Department of Medicine, University of California, San Diego, La Jolla, California, USA.
| |
Collapse
|
173
|
Jonnalagadda VG, Ram Raju AVS, Pittala S, Shaik A, Selkar NA. The prelude on novel receptor and ligand targets involved in the treatment of diabetes mellitus. Adv Pharm Bull 2014; 4:209-17. [PMID: 24754003 DOI: 10.5681/apb.2014.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 12/09/2013] [Accepted: 12/30/2013] [Indexed: 12/17/2022] Open
Abstract
Metabolic disorders are a group of disorders, due to the disruption of the normal metabolic process at a cellular level. Diabetes Mellitus and Tyrosinaemia are the majorly reported metabolic disorders. Among them, Diabetes Mellitus is a one of the leading metabolic syndrome, affecting 5 to 7 % of the population worldwide and mainly characterised by elevated levels of glucose and is associated with two types of physiological event disturbances such as impaired insulin secretion and insulin resistance. Up to now, various treatment strategies are like insulin, alphaglucosidase inhibitors, biguanides, incretins were being followed. Concurrently, various novel therapeutic strategies are required to advance the therapy of Diabetes mellitus. For the last few decades, there has been an extensive research in understanding the metabolic pathways involved in Diabetes Mellitus at the cellular level and having the profound knowledge on cell-growth, cell-cycle, and apoptosis at a molecular level provides new targets for the treatment of Diabetes Mellitus. Receptor signalling has been involved in these mechanisms, to translate the information coming from outside. To understand the various receptors involved in these pathways, we must have a sound knowledge on receptors and ligands involved in it. This review mainly summarises the receptors and ligands which are involved the Diabetes Mellitus. Finally, researchers have to develop the alternative chemical moieties that retain their affinity to receptors and efficacy. Diabetes Mellitus being a metabolic disorder due to the glucose surfeit, demands the need for regular exercise along with dietary changes.
Collapse
Affiliation(s)
- Venu Gopal Jonnalagadda
- Shree Dhootapapeshwar Ayurvedic Research Foundation (SDARF), Panvel, Navi Mumbai-410206, Maharastra, India
| | - Allam Venkata Sita Ram Raju
- National Institute of Pharmaceutical Education and Research, Bala Nagar, Hyderabad, Andhra Pradhesh-500037, India
| | - Srinivas Pittala
- CSIR-Institute of Genomics and Integrative Biology, Near Jubilee Hall, Mall Road, Delhi-110 007, India
| | - Afsar Shaik
- Gokula Krishna college of Pharmacy, Sullurpet - 524121, Nellore dist, A.P, India
| | - Nilakash Annaji Selkar
- National Institute for Research in Reproductive Health, Parel, Mumbai-400012, Maharastra, India
| |
Collapse
|
174
|
Dicker KT, Gurski LA, Pradhan-Bhatt S, Witt RL, Farach-Carson MC, Jia X. Hyaluronan: a simple polysaccharide with diverse biological functions. Acta Biomater 2014; 10:1558-70. [PMID: 24361428 PMCID: PMC3960342 DOI: 10.1016/j.actbio.2013.12.019] [Citation(s) in RCA: 418] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 12/04/2013] [Accepted: 12/10/2013] [Indexed: 01/24/2023]
Abstract
Hyaluronan (HA) is a linear polysaccharide with disaccharide repeats of d-glucuronic acid and N-acetyl-d-glucosamine. It is evolutionarily conserved and abundantly expressed in the extracellular matrix (ECM), on the cell surface and even inside cells. Being a simple polysaccharide, HA exhibits an astonishing array of biological functions. HA interacts with various proteins or proteoglycans to organize the ECM and to maintain tissue homeostasis. The unique physical and mechanical properties of HA contribute to the maintenance of tissue hydration, the mediation of solute diffusion through the extracellular space and the lubrication of certain tissues. The diverse biological functions of HA are manifested through its complex interactions with matrix components and resident cells. Binding of HA with cell surface receptors activates various signaling pathways, which regulate cell function, tissue development, inflammation, wound healing and tumor progression and metastasis. Taking advantage of the inherent biocompatibility and biodegradability of HA, as well as its susceptibility to chemical modification, researchers have developed various HA-based biomaterials and tissue constructs with promising and broad clinical potential. This paper illustrates the properties of HA from a matrix biology perspective by first introducing the principles underlying the biosynthesis and biodegradation of HA, as well as the interactions of HA with various proteins and proteoglycans. It next highlights the roles of HA in physiological and pathological states, including morphogenesis, wound healing and tumor metastasis. A deeper understanding of the mechanisms underlying the roles of HA in various physiological processes can provide new insights and tools for the engineering of complex tissues and tissue models.
Collapse
Affiliation(s)
- Kevin T Dicker
- Department of Materials Science and Engineering, 201 DuPont Hall, University of Delaware, Newark, DE 19716, USA
| | - Lisa A Gurski
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Swati Pradhan-Bhatt
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA; Helen F. Graham Cancer Center, Christiana Care Health Systems (CCHS), Newark, DE 19713, USA
| | - Robert L Witt
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA; Helen F. Graham Cancer Center, Christiana Care Health Systems (CCHS), Newark, DE 19713, USA; Otolaryngology - Head & Neck Surgery, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Mary C Farach-Carson
- Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77251, USA; Department of Bioengineering, Rice University, Houston, TX 77251, USA
| | - Xinqiao Jia
- Department of Materials Science and Engineering, 201 DuPont Hall, University of Delaware, Newark, DE 19716, USA; Biomedical Engineering Program, University of Delaware, Newark, DE 19716, USA; Delaware Biotechnology Institute, University of Delaware, Newark, DE 19711, USA.
| |
Collapse
|
175
|
Olczyk P, Mencner Ł, Komosinska-Vassev K. The role of the extracellular matrix components in cutaneous wound healing. BIOMED RESEARCH INTERNATIONAL 2014; 2014:747584. [PMID: 24772435 PMCID: PMC3977088 DOI: 10.1155/2014/747584] [Citation(s) in RCA: 201] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 02/13/2014] [Accepted: 02/17/2014] [Indexed: 11/25/2022]
Abstract
Wound healing is the physiologic response to tissue trauma proceeding as a complex pathway of biochemical reactions and cellular events, secreted growth factors, and cytokines. Extracellular matrix constituents are essential components of the wound repair phenomenon. Firstly, they create a provisional matrix, providing a structural integrity of matrix during each stage of healing process. Secondly, matrix molecules regulate cellular functions, mediate the cell-cell and cell-matrix interactions, and serve as a reservoir and modulator of cytokines and growth factors' action. Currently known mechanisms, by which extracellular matrix components modulate each stage of the process of soft tissue remodeling after injury, have been discussed.
Collapse
Affiliation(s)
- Pawel Olczyk
- Department of Community Pharmacy, Medical University of Silesia, ul. Kasztanowa 3, 41-200 Sosnowiec, Poland
| | - Łukasz Mencner
- Department of Clinical Chemistry and Laboratory Diagnostics, Medical University of Silesia, ul. Jednosci 8, 41-200 Sosnowiec, Poland
| | - Katarzyna Komosinska-Vassev
- Department of Clinical Chemistry and Laboratory Diagnostics, Medical University of Silesia, ul. Jednosci 8, 41-200 Sosnowiec, Poland
| |
Collapse
|
176
|
Govindan J, Iovine MK. Hapln1a is required for connexin43-dependent growth and patterning in the regenerating fin skeleton. PLoS One 2014; 9:e88574. [PMID: 24533114 PMCID: PMC3922931 DOI: 10.1371/journal.pone.0088574] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 01/08/2014] [Indexed: 01/23/2023] Open
Abstract
Cell–cell communication, facilitating the exchange of small metabolites, ions and second messengers, takes place via aqueous proteinaceous channels called gap junctions. Connexins (cx) are the subunits of a gap junction channel. Mutations in zebrafish cx43 produces the short fin (sof b123) phenotype and is characterized by short fins due to reduced segment length of the bony fin rays and reduced cell proliferation. Previously established results from our lab demonstrate that Cx43 plays a dual role regulating both cell proliferation (growth) and joint formation (patterning) during the process of skeletal morphogenesis. In this study, we show that Hapln1a (Hyaluronan and Proteoglycan Link Protein 1a) functions downstream of cx43. Hapln1a belongs to the family of link proteins that play an important role in stabilizing the ECM by linking the aggregates of hyaluronan and proteoglycans. We validated that hapln1a is expressed downstream of cx43 by in situ hybridization and quantitative RT-PCR methods. Moreover, in situ hybridization at different time points revealed that hapln1a expression peaks at 3 days post amputation. Expression of hapln1a is located in the medial mesenchyme and the in the lateral skeletal precursor cells. Furthermore, morpholino mediated knock-down of hapln1a resulted in reduced fin regenerate length, reduced bony segment length and reduced cell proliferation, recapitulating all the phenotypes of cx43 knock-down. Moreover, Hyaluronic Acid (HA) levels are dramatically reduced in hapln1a knock-down fins, attesting the importance of Hapln1a in stabilizing the ECM. Attempts to place hapln1a in our previously defined cx43–sema3d pathway suggest that hapln1a functions in a parallel genetic pathway. Collectively, our data suggest that Cx43 mediates independent Sema3d and Hapln1a pathways in order to coordinate skeletal growth and patterning.
Collapse
Affiliation(s)
- Jayalakshmi Govindan
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, United States of America
| | - M. Kathryn Iovine
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
177
|
Cole JE, Mitra AT, Monaco C. Treating atherosclerosis: the potential of Toll-like receptors as therapeutic targets. Expert Rev Cardiovasc Ther 2014; 8:1619-35. [DOI: 10.1586/erc.10.149] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
178
|
Cam C, Segura T. Chemical sintering generates uniform porous hyaluronic acid hydrogels. Acta Biomater 2014; 10:205-13. [PMID: 24120847 DOI: 10.1016/j.actbio.2013.10.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 09/21/2013] [Accepted: 10/01/2013] [Indexed: 01/08/2023]
Abstract
The implantation of scaffolds for tissue repair has achieved only limited success due primarily to the inability to achieve vascularization within the construct. Many strategies have therefore moved to incorporate pores into the scaffolds to encourage rapid cellular infiltration and subsequent vascular ingrowth. We utilized an efficient chemical sintering technique to create a uniform network of polymethyl methacrylate (PMMA) microspheres for porous hyaluronic acid hydrogel formation. The porous hydrogels generated from chemical sintering possessed pore uniformity and interconnectivity comparable to the commonly used non- and heat sintering techniques. Moreover, a similar cell response to the porous hydrogels generated from each sintering approach was observed in cell viability, spreading and proliferation in vitro, as well as cellular invasion in vivo. We propose chemical sintering of PMMA microspheres using a dilute acetone solution as an alternative method to generate porous hyaluronic acid hydrogels since it requires equal or 10-fold less processing time as the currently used non-sintering or heat sintering technique, respectively.
Collapse
|
179
|
Savic S, Ouboussad L, Dickie LJ, Geiler J, Wong C, Doody GM, Churchman SM, Ponchel F, Emery P, Cook GP, Buch MH, Tooze RM, McDermott MF. TLR dependent XBP-1 activation induces an autocrine loop in rheumatoid arthritis synoviocytes. J Autoimmun 2013; 50:59-66. [PMID: 24387801 PMCID: PMC4012140 DOI: 10.1016/j.jaut.2013.11.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 11/14/2013] [Accepted: 11/17/2013] [Indexed: 01/24/2023]
Abstract
X-box binding protein 1 (XBP1) is a central regulator of the endoplasmic reticulum (ER) stress response. It is induced via activation of the IRE1 stress sensor as part of the unfolded protein response (UPR) and has been implicated in several diseases processes. XBP1 can also be activated in direct response to Toll-like receptor (TLR) ligation independently of the UPR but the pathogenic significance of this mode of XBP1 activation is not well understood. Here we show that TLR-dependent XBP1 activation is operative in the synovial fibroblasts (SF) of patients with active rheumatoid arthritis (RA). We investigated the expression of ER stress response genes in patients with active RA and also in patients in remission. The active (spliced) form of (s)XBP1 was significantly overexpressed in the active RA group compared to healthy controls and patients in remission. Paradoxically, expression of nine other ER stress response genes was reduced in active RA compared to patients in remission, suggestive of a UPR-independent process. However, sXBP1 was induced in SF by TLR4 and TLR2 stimulation, resulting in sXBP1-dependent interleukin-6 and tumour necrosis factor (TNF) production. We also show that TNF itself induces sXBP1 in SF, thus generating a potential feedback loop for sustained SF activation. These data confirm the first link between TLR-dependent XBP1 activation and human inflammatory disease. sXBP1 appears to play a central role in this process by providing a convergence point for two different stimuli to maintain activation of SF. sXBP1 is upregulated in PBMC from patients with active RA. TLR2 and TLR4 mediated sXBP1 activation in synovial fibroblasts. SNAPIN-induced cytokine production is dependent on sXBP1. Proinflammatory cytokines cause XBP1 activation in synovial fibroblasts.
Collapse
Affiliation(s)
- Sinisa Savic
- NIHR-Leeds Musculoskeletal Biomedical Research Unit (NIHR-LMBRU), Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), Wellcome Trust Brenner Building, St James's University Hospital, Beckett Street, Leeds LS9 7TF, UK
| | - Lylia Ouboussad
- NIHR-Leeds Musculoskeletal Biomedical Research Unit (NIHR-LMBRU), Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), Wellcome Trust Brenner Building, St James's University Hospital, Beckett Street, Leeds LS9 7TF, UK
| | - Laura J Dickie
- NIHR-Leeds Musculoskeletal Biomedical Research Unit (NIHR-LMBRU), Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), Wellcome Trust Brenner Building, St James's University Hospital, Beckett Street, Leeds LS9 7TF, UK
| | - Janina Geiler
- NIHR-Leeds Musculoskeletal Biomedical Research Unit (NIHR-LMBRU), Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), Wellcome Trust Brenner Building, St James's University Hospital, Beckett Street, Leeds LS9 7TF, UK
| | - Chi Wong
- NIHR-Leeds Musculoskeletal Biomedical Research Unit (NIHR-LMBRU), Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), Wellcome Trust Brenner Building, St James's University Hospital, Beckett Street, Leeds LS9 7TF, UK
| | - Gina M Doody
- Leeds Institute of Cancer and Pathology, University of Leeds, Wellcome Trust Brenner Building, St James's University Hospital, Leeds LS9 7TF, UK
| | - Sarah M Churchman
- NIHR-Leeds Musculoskeletal Biomedical Research Unit (NIHR-LMBRU), Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), Wellcome Trust Brenner Building, St James's University Hospital, Beckett Street, Leeds LS9 7TF, UK
| | - Frederique Ponchel
- NIHR-Leeds Musculoskeletal Biomedical Research Unit (NIHR-LMBRU), Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), Wellcome Trust Brenner Building, St James's University Hospital, Beckett Street, Leeds LS9 7TF, UK
| | - Paul Emery
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Chapel Allerton Hospital, Chapeltown Road, Leeds LS7 4SA, UK; NIHR Leeds Musculoskeletal Biomedical Research Unit, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Graham P Cook
- Leeds Institute of Cancer and Pathology, University of Leeds, Wellcome Trust Brenner Building, St James's University Hospital, Leeds LS9 7TF, UK
| | - Maya H Buch
- NIHR-Leeds Musculoskeletal Biomedical Research Unit (NIHR-LMBRU), Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), Wellcome Trust Brenner Building, St James's University Hospital, Beckett Street, Leeds LS9 7TF, UK
| | - Reuben M Tooze
- Leeds Institute of Cancer and Pathology, University of Leeds, Wellcome Trust Brenner Building, St James's University Hospital, Leeds LS9 7TF, UK
| | - Michael F McDermott
- NIHR-Leeds Musculoskeletal Biomedical Research Unit (NIHR-LMBRU), Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), Wellcome Trust Brenner Building, St James's University Hospital, Beckett Street, Leeds LS9 7TF, UK.
| |
Collapse
|
180
|
Sokolowska M, Chen LY, Eberlein M, Martinez-Anton A, Liu Y, Alsaaty S, Qi HY, Logun C, Horton M, Shelhamer JH. Low molecular weight hyaluronan activates cytosolic phospholipase A2α and eicosanoid production in monocytes and macrophages. J Biol Chem 2013; 289:4470-88. [PMID: 24366870 DOI: 10.1074/jbc.m113.515106] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Hyaluronan (HA) is the major glycosaminoglycan in the extracellular matrix. During inflammation, there is an increased breakdown of HA, resulting in the accumulation of low molecular weight (LMW) HA and activation of monocytes and macrophages. Eicosanoids, derived from the cytosolic phospholipase A2 group IVA (cPLA2α) activation, are potent lipid mediators also attributed to acute and chronic inflammation. The aim of this study was to determine the effect of LMW HA on cPLA2α activation, arachidonic acid (AA) release, and subsequent eicosanoid production and to examine the receptors and downstream mechanisms involved in these processes in monocytes and differently polarized macrophages. LMW HA was a potent stimulant of AA release in a time- and dose-dependent manner, induced cPLA2α, ERK1/2, p38, and JNK phosphorylation, as well as activated COX2 expression and prostaglandin (PG) E2 production in primary human monocytes, murine RAW 264.7, and wild-type bone marrow-derived macrophages. Specific cPLA2α inhibitor blocked HA-induced AA release and PGE2 production in all of these cells. Using CD44, TLR4, TLR2, MYD88, RHAMM or STAB2 siRNA-transfected macrophages and monocytes, we found that AA release, cPLA2α, ERK1/2, p38, and JNK phosphorylation, COX2 expression, and PGE2 production were activated by LMW HA through a TLR4/MYD88 pathway. Likewise, PGE2 production and COX2 expression were blocked in Tlr4(-/-) and Myd88(-/-) mice, but not in Cd44(-/-) mice, after LMW HA stimulation. Moreover, we demonstrated that LMW HA activated the M1 macrophage phenotype with the unique cPLA2α/COX2(high) and COX1/ALOX15/ALOX5/LTA4H(low) gene and PGE2/PGD2/15-HETE(high) and LXA4(low) eicosanoid profile. These findings reveal a novel link between HA-mediated inflammation and lipid metabolism.
Collapse
Affiliation(s)
- Milena Sokolowska
- From the Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland 20892 and
| | | | | | | | | | | | | | | | | | | |
Collapse
|
181
|
Zhou Y, Wang Y, Wang J, Anne Stetler R, Yang QW. Inflammation in intracerebral hemorrhage: from mechanisms to clinical translation. Prog Neurobiol 2013; 115:25-44. [PMID: 24291544 DOI: 10.1016/j.pneurobio.2013.11.003] [Citation(s) in RCA: 455] [Impact Index Per Article: 37.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 11/15/2013] [Accepted: 11/18/2013] [Indexed: 02/07/2023]
Abstract
Intracerebral hemorrhage (ICH) accounts for 10-15% of all strokes and is associated with high mortality and morbidity. Currently, no effective medical treatment is available to improve functional outcomes in patients with ICH. Potential therapies targeting secondary brain injury are arousing a great deal of interest in translational studies. Increasing evidence has shown that inflammation is the key contributor of ICH-induced secondary brain injury. Inflammation progresses in response to various stimuli produced after ICH. Hematoma components initiate inflammatory signaling via activation of microglia, subsequently releasing proinflammatory cytokines and chemokines to attract peripheral inflammatory infiltration. Hemoglobin (Hb), heme, and iron released after red blood cell lysis aggravate ICH-induced inflammatory injury. Danger associated molecular patterns such as high mobility group box 1 protein, released from damaged or dead cells, trigger inflammation in the late stage of ICH. Preclinical studies have identified inflammatory signaling pathways that are involved in microglial activation, leukocyte infiltration, toll-like receptor (TLR) activation, and danger associated molecular pattern regulation in ICH. Recent advances in understanding the pathogenesis of ICH-induced inflammatory injury have facilitated the identification of several novel therapeutic targets for the treatment of ICH. This review summarizes recent progress concerning the mechanisms underlying ICH-induced inflammation. We focus on the inflammatory signaling pathways involved in microglial activation and TLR signaling, and explore potential therapeutic interventions by targeting the removal of hematoma components and inhibition of TLR signaling.
Collapse
Affiliation(s)
- Yu Zhou
- Department of Neurology, Xinqiao Hospital & The Second Affiliated Hospital, The Third Military Medical University, Chongqing, China
| | - Yanchun Wang
- Department of Neurology, Xinqiao Hospital & The Second Affiliated Hospital, The Third Military Medical University, Chongqing, China
| | - Jian Wang
- Department of Anesthesiology/Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | - R Anne Stetler
- Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Qing-Wu Yang
- Department of Neurology, Xinqiao Hospital & The Second Affiliated Hospital, The Third Military Medical University, Chongqing, China.
| |
Collapse
|
182
|
Lin M, Tang SCW. Toll-like receptors: sensing and reacting to diabetic injury in the kidney. Nephrol Dial Transplant 2013; 29:746-54. [PMID: 24203812 DOI: 10.1093/ndt/gft446] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Accumulating evidence indicates that immunologic and inflammatory elements play an important role in initiating and orchestrating the development of diabetic nephropathy (DN), but until recently, the identity of specific innate immune pattern recognition receptors or sensors that recognize diverse diabetic 'danger signals' to trigger the proinflammatory cascade during DN remains unknown. Toll-like receptors (TLRs) are an emerging family of receptors that recognize pathogen-associated molecular patterns as well as damage-associated molecular patterns to promote the activation of leukocytes and intrinsic renal cells in non-immune kidney disease. Recent data from in vitro and in vivo studies have highlighted the critical role of TLRs, mainly TLR2 and TLR4, in the pathogenesis of DN. This review focuses on emerging findings elucidating how TLR signaling could sense and react to the metabolic stress and endogenous ligands activated by the diabetic state, thereby initiating and perpetuating renal inflammation and fibrogenesis in diabetic kidney disease. Novel strategies potentially targeting TLR signaling that could have therapeutic implications in DN are also discussed.
Collapse
Affiliation(s)
- Miao Lin
- Division of Nephrology, Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong
| | | |
Collapse
|
183
|
TLR4, rather than TLR2, regulates wound healing through TGF-β and CCL5 expression. J Dermatol Sci 2013; 73:117-24. [PMID: 24252748 DOI: 10.1016/j.jdermsci.2013.10.009] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 10/22/2013] [Accepted: 10/23/2013] [Indexed: 01/04/2023]
Abstract
BACKGROUND Toll-like receptors (TLRs) have a crucial role in early host defense against invading pathogens. Recent studies suggest that TLRs play important roles in non-infections inflammation and tissue repair and regeneration. OBJECTIVE To determine the roles of TLR2 and TLR4 in mouse wound healing using TLR2-deficient (TLR2(-/-)), TLR4-deficient (TLR4(-/-)), and TLR2/TLR4-deficient (TLR2/4(-/-)) mice. METHODS Open wounds made in TLR2(-/-), TLR4(-/-), and TLR2/4(-/-) mice were examined clinically and histologically. Cytokine expression in the wounded skin was also investigated. TGF-β production from macrophages stimulated by hyaluronan, a ligand for TLR2 and TLR4, was evaluated by real-time PCR. RESULTS Wound areas in TLR2(-/-), TLR4(-/-), and TLR2/4(-/-) mice were larger than wild-type mice both at days 3 and 7 after wounding, accompanied by decreased numbers of infiltrating macrophages in the dermis and decreased TGF-β and CCL5 mRNA expression in the wounded skin. Immunohistochemistry showed decreased numbers of macrophages expressing TGF-β and reduced CCL5 expression by keratinocytes in the wounded skin from TLR2(-/-), TLR4(-/-), and TLR2/4(-/-) mice compared to wild-type mice. Moreover, TGF-β production from macrophages induced by hyaluronan stimulation in vitro was significantly decreased in the absence of TLRs, especially TLR4. Interestingly, macrophages and wounded skin from TLR2(-/-) mice showed decreased TLR4 mRNA expression compared to wild-type mice, suggesting that the effect of TLR2 deficiency was at least partially dependent on decrease in TLR4. Topical application of TGF-β and CCL5 significantly improved wound healing in TLR-deficient mice. CONCLUSION TLR4, rather than TLR2, regulates wound healing through TGF-β and CCL5 expression.
Collapse
|
184
|
Velayutham TS, Kolli D, Ivanciuc T, Garofalo RP, Casola A. Critical role of TLR4 in human metapneumovirus mediated innate immune responses and disease pathogenesis. PLoS One 2013; 8:e78849. [PMID: 24205331 PMCID: PMC3812158 DOI: 10.1371/journal.pone.0078849] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 09/16/2013] [Indexed: 11/18/2022] Open
Abstract
Human metapneumovirus (hMPV) is one of the main causes of acute respiratory tract infections in children, elderly and immunocompromised patients. The mammalian Toll-like receptors (TLR) were identified as critical regulators of innate immunity to a variety of microbes, including viruses. We have recently shown that hMPV-induced cytokine, chemokine and type I interferon secretion in dendritic cells occurs via TLR4, however, its role in hMPV-induced disease is unknown. In this study, wild-type(WT) and TLR4-deficient mice (TLR4−/−) were infected with hMPV and examined for clinical disease parameters, such as body weight loss and airway obstruction, viral clearance, lung inflammation, dendritic cell maturation, T-cell proliferation and antibody production. Our results demonstrate that absence of TLR4 in hMPV-infected mice significantly reduced the inflammatory response as well as disease severity, shown by reduced body weight loss and airway obstruction and hyperresponsiveness (AHR), compared to WT mice. Levels of cytokines and chemokines were also significantly lower in the TLR4−/− mice. Accordingly, recruitment of inflammatory cells in the BAL, lungs, as well as in lymph nodes, was significantly reduced in the TLR4−/− mice, however, viral replication and clearance, as well as T-cell proliferation and neutralizing antibody production, were not affected. Our findings indicate that TLR4 is important for the activation of the innate immune response to hMPV, however it does play a role in disease pathogenesis, as lack of TLR4 expression is associated with reduced clinical manifestations of hMPV disease, without affecting viral protection.
Collapse
Affiliation(s)
- Thangam Sudha Velayutham
- Department of Pediatrics, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Deepthi Kolli
- Department of Pediatrics, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Teodora Ivanciuc
- Department of Pediatrics, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Roberto P. Garofalo
- Department of Pediatrics, University of Texas Medical Branch, Galveston, Texas, United States of America
- Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Antonella Casola
- Department of Pediatrics, University of Texas Medical Branch, Galveston, Texas, United States of America
- Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, Texas, United States of America
- * E-mail:
| |
Collapse
|
185
|
McCarthy CG, Goulopoulou S, Wenceslau CF, Spitler K, Matsumoto T, Webb RC. Toll-like receptors and damage-associated molecular patterns: novel links between inflammation and hypertension. Am J Physiol Heart Circ Physiol 2013; 306:H184-96. [PMID: 24163075 DOI: 10.1152/ajpheart.00328.2013] [Citation(s) in RCA: 137] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Low-grade systemic inflammation is a common manifestation of hypertension; however, the exact mechanisms that initiate this pathophysiological response, thereby contributing to further increases in blood pressure, are not well understood. Aberrant vascular inflammation and reactivity via activation of the innate immune system may be the first step in the pathogenesis of hypertension. One of the functions of the innate immune system is to recognize and respond to danger. Danger signals can arise from not only pathogenic stimuli but also endogenous molecules released following cell injury and/or death [damage-associated molecular patterns (DAMPs)]. In the short-term, activation of the innate immune system is beneficial in the vasculature by providing cytoprotective mechanisms and facilitating tissue repair following injury or infection. However, sustained or excessive immune system activation, such as in autoimmune diseases, may be deleterious and can lead to maladaptive, irreversible changes to vascular structure and function. An initial source of DAMPs that enter the circulation to activate the innate immune system could arise from modest elevations in peripheral vascular resistance. These stimuli could subsequently lead to ischemic- or pressure-induced events aggravating further cell injury and/or death, providing more DAMPs for innate immune system activation. This review will address and critically evaluate the current literature on the role of the innate immune system in hypertension pathogenesis. The role of Toll-like receptor activation on somatic cells of the vasculature in response to the release of DAMPs and the consequences of this activation on inflammation, vasoreactivity, and vascular remodeling will be specifically discussed.
Collapse
Affiliation(s)
- Cameron G McCarthy
- Department of Physiology, Georgia Regents University, Augusta, Georgia; and
| | | | | | | | | | | |
Collapse
|
186
|
The interplay between pathogen-associated and danger-associated molecular patterns: an inflammatory code in cancer? Immunol Cell Biol 2013; 91:601-10. [PMID: 24100386 DOI: 10.1038/icb.2013.58] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 09/02/2013] [Accepted: 09/02/2013] [Indexed: 12/21/2022]
Abstract
There is increasing evidence of a close link between inflammation and cancer, and at the core of inflammation there are both pathogen-associated molecular patterns (PAMPs) and danger (or damage)-associated molecular patterns (DAMPs). Microorganisms harbor molecules structurally conserved within groups called PAMPs that are recognized by specific receptors present on immune cells, such as monocytes and dendritic cells (DCs); these are the pattern recognition receptors (PRRs). Activation through different PRRs leads to production of pro-inflammatory cytokines. A robust immune response also requires the presence of endogenous molecules that pose 'danger' to self-tissues and are produced by damaged or stressed cells; these are the DAMPs, which act also as inducers of inflammation. PAMPs and DAMPs are each recognized by a limited set of receptors that in number probably do not exceed 100. PAMPs and DAMPs interact with each other, and a single PRR can bind to a PAMP as well as a DAMP. Within this framework, we propose that PAMPs and DAMPs act in synchrony, modifying the activation threshold of one another. Thus, the range of PAMP-DAMP partnerships defines the course of inflammation, in a predictable manner, in an 'inflammatory code'. The definition of relevant PAMP-DAMP complexes is important for the understanding of inflammatory disorders in general, and of cancer in particular. Here, we review relevant findings that support the notion of a PAMP-DAMP-based inflammatory code, with emphasis on cancer immunology and immunotherapy.
Collapse
|
187
|
Hill DR, Rho HK, Kessler SP, Amin R, Homer CR, McDonald C, Cowman MK, de la Motte CA. Human milk hyaluronan enhances innate defense of the intestinal epithelium. J Biol Chem 2013; 288:29090-104. [PMID: 23950179 PMCID: PMC3790008 DOI: 10.1074/jbc.m113.468629] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 08/06/2013] [Indexed: 12/18/2022] Open
Abstract
Breast-feeding is associated with enhanced protection from gastrointestinal disease in infants, mediated in part by an array of bioactive glycan components in milk that act through molecular mechanisms to inhibit enteric pathogen infection. Human milk contains hyaluronan (HA), a glycosaminoglycan polymer found in virtually all mammalian tissues. We have shown that synthetic HA of a specific size range promotes expression of antimicrobial peptides in intestinal epithelium. We hypothesize that hyaluronan from human milk also enhances innate antimicrobial defense. Here we define the concentration of HA in human milk during the first 6 months postpartum. Importantly, HA isolated from milk has a biological function. Treatment of HT-29 colonic epithelial cells with human milk HA at physiologic concentrations results in time- and dose-dependent induction of the antimicrobial peptide human β-defensin 2 and is abrogated by digestion of milk HA with a specific hyaluronidase. Milk HA induction of human β-defensin 2 expression is also reduced in the presence of a CD44-blocking antibody and is associated with a specific increase in ERK1/2 phosphorylation, suggesting a role for the HA receptor CD44. Furthermore, oral administration of human milk-derived HA to adult, wild-type mice results in induction of the murine Hβ D2 ortholog in intestinal mucosa and is dependent upon both TLR4 and CD44 in vivo. Finally, treatment of cultured colonic epithelial cells with human milk HA enhances resistance to infection by the enteric pathogen Salmonella typhimurium. Together, our observations suggest that maternally provided HA stimulates protective antimicrobial defense in the newborn.
Collapse
Affiliation(s)
- David R. Hill
- From the Department of Molecular Medicine and
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195 and
| | - Hyunjin K. Rho
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195 and
| | - Sean P. Kessler
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195 and
| | - Ripal Amin
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195 and
| | - Craig R. Homer
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195 and
| | - Christine McDonald
- From the Department of Molecular Medicine and
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195 and
| | - Mary K. Cowman
- the Department of Chemical and Biological Sciences, Polytechnic Institute of New York University, Brooklyn, New York, 11201
| | - Carol A. de la Motte
- From the Department of Molecular Medicine and
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195 and
| |
Collapse
|
188
|
Campo GM, Avenoso A, D'Ascola A, Nastasi G, Micali A, Puzzolo D, Pisani A, Prestipino V, Scuruchi M, Calatroni A, Campo S. Combined treatment with hyaluronan inhibitor Pep-1 and a selective adenosine A2 receptor agonist reduces inflammation in experimental arthritis. Innate Immun 2013; 19:462-78. [PMID: 23283732 DOI: 10.1177/1753425912470391] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Investigations have suggested degradation of native hyaluronan (HA) into small oligosaccharides as being involved in the development and progression of inflammatory diseases, particularly rheumatoid arthritis (RA). Inflammatory responses occur by modulating the TLR4 and 2, and the CD44 natural HA receptor. As reported recently, the adenosine A2 receptor (A2AR) plays an important anti-inflammatory role in arthritis. TLR4, TLR2 and CD44 stimulation activate NF-κB, which stimulates the production of pro-inflammatory cytokines and other mediators. In contrast, A2AR stimulation inhibits NF-κB activation. The aim of this study was to investigate the effect of combined treatment of HA inhibitor Pep-1 and a selective A2AR agonist (CV-1808) in collagen-induced arthritis (CIA) in mice. Arthritis was induced via intradermal injection of bovine collagen-II. Mice were treated with Pep-1 plus CV-1808 intraperitoneally daily for 20 d. CIA increased TLR4, TLR2, CD44 and A2AR mRNA expression and the related proteins in the joint cartilage of arthritic mice, where significantly increased concentrations were of TNF-α, IL-1-β, IL-17, matrix metalloprotease-13 and inducible nitric oxide synthase. Pep-1 with CV-1808 treatment significantly reduced CIA damage and all the up-regulated biochemical parameters. These reductions were supported by microscopic analysis and synovial fluid HA levels.
Collapse
Affiliation(s)
- Giuseppe M Campo
- Department of Biomedical Sciences and Morphological and Functional Images, School of Medicine, University of Messina, Messina, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
189
|
Romão M, Weel IC, Lifshitz SJ, Peraçoli MTS. Elevated hyaluronan and extracellular matrix metalloproteinase inducer levels in women with preeclampsia. Arch Gynecol Obstet 2013; 289:575-9. [PMID: 24022523 DOI: 10.1007/s00404-013-3021-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 08/28/2013] [Indexed: 12/22/2022]
Abstract
PURPOSE Preeclampsia (PE) is a specific syndrome of pregnancy clinically identified by hypertension and proteinuria from the 20th week of gestation associated with a systemic inflammatory response and oxidative stress. While pro-inflammatory cytokines have been extensively studied in PE, other factors in the circulation that also influence the magnitude of inflammation have received much less attention. The present study compared serum concentrations of five immune-regulatory compounds in normotensive pregnant women and in women with gestational hypertension (GH) or PE. METHODS Sixty women with PE, 53 with GH and 40 normotensive women paired by gestational age were evaluated. Sera were evaluated for concentrations of extracellular matrix metalloproteinase inducer (EMMPRIN), hyaluronan, gelsolin, visfatin and histone 2B by ELISA. Differences between groups were analyzed by nonparametric tests, with a significance level of 5%. RESULTS Increased levels of EMMPRIN and hyaluronan were present in preeclamptic women as compared to the GH and normotensive groups. There was no difference between groups in gelsolin, visfatin or histone 2B. CONCLUSION Increased release of EMMPRIN and hyaluronan may contribute to an elevated pro-inflammatory response and tissue damage in women with PE.
Collapse
|
190
|
Dasu MR, Jialal I. Amelioration in wound healing in diabetic toll-like receptor-4 knockout mice. J Diabetes Complications 2013; 27:417-21. [PMID: 23773694 PMCID: PMC3770740 DOI: 10.1016/j.jdiacomp.2013.05.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 05/06/2013] [Accepted: 05/07/2013] [Indexed: 12/31/2022]
Abstract
Toll-like receptor-4 (TLR4) is a sentinel pathogen recognition receptor with a pivotal role in inflammation, tissue injury, diabetes and its complications. The aim of the study was to examine the contribution of TLR4 expression and activation to the prolonged inflammation observed in diabetic wounds. Diabetes was induced in male C57BL/6J and TLR4 knockout (KO) mice using streptozotocin (STZ) with matching non-diabetic mice as control. After 2weeks of persistent hyperglycemia in the mice, full-thickness excision wounds were made on the backs aseptically. Total RNA and protein were subjected to real-time PCR and western blot analyses. Wound sizes were measured using digital planimetry. TLR4 mRNA and protein expression increased significantly in wounds of diabetic mice compared with non-diabetic mice (P<0.05). IL-6, TNF-α concentration and nuclear factor-κB (NF-κB) activation were increased in diabetic wounds compared to non-diabetic wounds and knockout of TLR4 alleviates wound healing and decreases inflammation in diabetic TLR4 KO mice. Collectively, our findings show that increased TLR4 mRNA and protein expression and activation contribute to the prolonged inflammation in the diabetic wounds and that absence of TLR4 may result in decreased inflammation and improved wound healing.
Collapse
Affiliation(s)
- Mohan R Dasu
- Department of Dermatology, University of California at Davis, Sacramento, CA 95816, USA.
| | | |
Collapse
|
191
|
Abstract
Accumulative evidence demonstrates the crucial role of evolutionary conserved Toll-like receptors (TLRs) in identifying microbial or viral compounds. TLRs are also able to recognise endogenous molecules which are released upon cell damage or stress and have been shown to play a key role in numerous autoimmune diseases including systemic sclerosis (SSc). A classic feature of SSc, is vascular injury manifested as Raynaud's phenomenon and ischaemia of the skin, resulting in the release of endogenous TLR ligands during inflammation and local tissue damage. These locally released TLR ligands bind TLRs possibly complexed to autoantibodies, and initiate intracellular signalling pathways and may be one of the mechanisms that initiate and drive autoimmunity and subsequent fibrosis. Activation of the immune system results in interferon (IFN) sensitive gene transcription. There is also an IFN gene signature in SSc peripheral blood. TLRs may represent the link between immune activation, common in SSc, and tissue fibrosis. Therefore, a better understanding of the mechanisms of TLR-mediated pathogenesis and therapies targeting individual TLRs, may provide a more specific approach of treating multi-systemic autoimmune diseases. This review aims to integrate the current knowledge of TLR function in the autoimmune disorders with particular emphasis on SSc. We suggest the TLR system as a new therapeutic target.
Collapse
|
192
|
Hoffmann A, Hoing JL, Newman M, Simman R. Role of Hyaluronic Acid Treatment in the Prevention of Keloid Scarring. J Am Coll Clin Wound Spec 2013; 4:23-31. [PMID: 24936445 DOI: 10.1016/j.jccw.2013.06.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 06/16/2013] [Accepted: 06/16/2013] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Keloids are benign dermal scars characterized by enhanced growth factor signaling, hyperproliferation activity and reduced extracellular matrix (ECM) deposition of hyaluronic acid. Our hypothesis is that high molecular weight HA can be used to replenish HA deposition in keloids thereby normalizing the keloid fibroblast phenotype. METHODS One normal (NF1) fibroblast culture and five keloid (KF1, KF2, KF3, KF4, KF5) fibroblast cultures were analyzed for changes in hyperproliferation, growth factor production and extracellular matrix deposition following 72 hour treatment with or without 10 μg/ml HA. RESULTS Proliferation activity decreased significantly in KF3 following HA treatment. Pro-collagen I expression in KF2 was decreased following HA treatment in association with changes in fiber arrangement to more parallel collagen bundles. In addition, HA demonstrated a downregulation on TGF-b1 growth factor expression in KF3 and KF4 and a decrease in active TGF-b1 release in KF2 and KF5 using ELISA. CONCLUSION Our data demonstrates that HA has the potential to normalize keloid fibroblast characteristic features such as hyperproliferation, growth factor production and ECM deposition depending on the specific genotype of the keloid fibroblast cell line. This study suggests that high molecular weight HA can be used to replenish HA deposition in keloid fibroblasts thereby decreasing fibrosis and ultimately decreasing keloid manifestation.
Collapse
Affiliation(s)
- Andrea Hoffmann
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA ; Department of Surgery, Division of Plastic Surgery, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| | - Jessica Lynn Hoing
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| | - Mackenzie Newman
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| | - Richard Simman
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA ; Department of Surgery, Division of Plastic Surgery, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| |
Collapse
|
193
|
Thaete LG, Qu XW, Jilling T, Crawford SE, Fitchev P, Hirsch E, Khan S, Neerhof MG. Impact of toll-like receptor 4 deficiency on the response to uterine ischemia/reperfusion in mice. Reproduction 2013; 145:517-26. [PMID: 23509372 DOI: 10.1530/rep-12-0433] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Our objective was to determine the role of toll-like receptor 4 (TLR4) in uterine ischemia/reperfusion (I/R)-induced fetal growth restriction (FGR). Pregnant TLR4-deficient and wild-type mice were subjected to I/R or a sham procedure. Fetal and placental weights were recorded and tissues were collected. Pep-1 (inhibits low-molecular-weight hyaluronan (LMW-HA) binding to TLR4) was used to determine whether LMW-HA-TLR4 interaction has a role in FGR. TLR4-deficient mice exhibited significantly lower baseline fetal weights compared with wild-type mice (P<0.05), along with extensive placental calcification that was not present in wild-type mice. Following I/R, fetal and placental weights were significantly reduced in wild-type (P<0.05) but not in TLR4-deficient mice. However, I/R increased fetal loss (P<0.05) only in TLR4-deficient mice. Corresponding with the reduced fetal weights, uterine myeloperoxidase activity increased in wild-type mice (P<0.001), indicating an inflammatory response, which was absent in TLR4-deficient mice. TLR4 was shown to have a regulatory role for two anti-inflammatory cytokines: interferon-B1 decreased only in wild-type mice (P<0.01) and interleukin-10 increased only in TLR4-deficient mice (P<0.001), in response to I/R. Pep-1 completely prevented I/R-induced FGR (P<0.001), indicating a potential role for the endogenous TLR4 ligand LMW-HA in I/R-induced FGR. In conclusion, uterine I/R in pregnancy produces FGR that is dependent on TLR4 and endogenous ligand(s), including breakdown products of HA. In addition, TLR4 may play a role in preventing pregnancy loss after uterine I/R.
Collapse
Affiliation(s)
- Larry G Thaete
- Department of Obstetrics and Gynecology, NorthShore University HealthSystem, Evanston, Illinois 60201, USA.
| | | | | | | | | | | | | | | |
Collapse
|
194
|
Love RJ, Jones KS. The recognition of biomaterials: pattern recognition of medical polymers and their adsorbed biomolecules. J Biomed Mater Res A 2013; 101:2740-52. [PMID: 23613455 DOI: 10.1002/jbm.a.34577] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 01/04/2013] [Indexed: 12/31/2022]
Abstract
All biomedical materials are recognized as foreign entities by the host immune system despite the substantial range of different materials that have been developed by material scientists and engineers. Hydrophobic biomaterials, hydrogels, biomaterials with low protein binding surfaces, and those that readily adsorb a protein layer all seem to incite similar host responses in vivo that may differ in magnitude, but ultimately result in encapsulation by fibrotic tissue. The recognition of medical materials by the host is explained by the very intricate pattern recognition system made up of integrins, toll-like receptors, scavenger receptors, and other surface proteins that enable leukocytes to perceive almost any foreign body. In this review, we describe the various pattern recognition receptors and processes that occur on biomedical material surfaces that permit detection of a range of materials within the host.
Collapse
Affiliation(s)
- Ryan J Love
- School of Biomedical Engineering, McMaster University, Hamilton, Ontarion, Canada
| | | |
Collapse
|
195
|
Interleukin-1β induces hyaluronan and CD44-dependent cell protrusions that facilitate fibroblast-monocyte binding. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 182:2223-40. [PMID: 23583650 DOI: 10.1016/j.ajpath.2013.02.038] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 02/05/2013] [Accepted: 02/11/2013] [Indexed: 11/21/2022]
Abstract
Persistent inflammation is a well-known determinant of progressive tissue fibrosis; however, the mechanisms underlying this process remain unclear. There is growing evidence indicating a role of the cytokine IL-1β in profibrotic responses. We previously demonstrated that fibroblasts stimulated with IL-1β increased their generation of the polysaccharide hyaluronan (HA) and increased their expression of the HA synthase enzyme (HAS-2). The aim of this study was to determine the significance of IL-1β-induced changes in HA and HAS-2 generation. In this study, we found that stimulation of fibroblasts with IL-1β results in the relocalization of HA associated with the cell to the outer cell membrane, where it forms HAS2- and CD44-dependent cell membrane protrusions. CD44 is concentrated within the membrane protrusions, where it co-localizes with the intracellular adhesion molecule 1. Furthermore, we have identified that these cell protrusions enhance IL-1β-dependent fibroblast-monocyte binding through MAPK/ERK signaling. Although previous data have indicated the importance of the HA-binding protein TSG-6 in maintaining the transforming growth factor β1-dependent HA coat, TSG-6 was not essential for the formation of the IL-1β-dependent HA protrusions, thus identifying it as a key difference between IL-1β- and transforming growth factor β1-dependent HA matrices. In summary, these data suggest that IL-1β-dependent HA generation plays a role in fibroblast immune activation, leading to sequestration of monocytes within inflamed tissue and providing a possible mechanism for perpetual inflammation.
Collapse
|
196
|
Preston M, Gong X, Su W, Matsumoto SG, Banine F, Winkler C, Foster S, Xing R, Struve J, Dean J, Baggenstoss B, Weigel PH, Montine TJ, Back SA, Sherman LS. Digestion products of the PH20 hyaluronidase inhibit remyelination. Ann Neurol 2013; 73:266-80. [PMID: 23463525 DOI: 10.1002/ana.23788] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 09/25/2012] [Accepted: 10/08/2012] [Indexed: 01/30/2023]
Abstract
OBJECTIVE Oligodendrocyte progenitor cells (OPCs) recruited to demyelinating lesions often fail to mature into oligodendrocytes (OLs) that remyelinate spared axons. The glycosaminoglycan hyaluronan (HA) accumulates in demyelinating lesions and has been implicated in the failure of OPC maturation and remyelination. We tested the hypothesis that OPCs in demyelinating lesions express a specific hyaluronidase, and that digestion products of this enzyme inhibit OPC maturation. METHODS Mouse OPCs grown in vitro were analyzed for hyaluronidase expression and activity. Gain of function studies were used to define the hyaluronidases that blocked OPC maturation. Mouse and human demyelinating lesions were assessed for hyaluronidase expression. Digestion products from different hyaluronidases and a hyaluronidase inhibitor were tested for their effects on OPC maturation and functional remyelination in vivo. RESULTS OPCs demonstrated hyaluronidase activity in vitro and expressed multiple hyaluronidases, including HYAL1, HYAL2, and PH20. HA digestion by PH20 but not other hyaluronidases inhibited OPC maturation into OLs. In contrast, inhibiting HA synthesis did not influence OPC maturation. PH20 expression was elevated in OPCs and reactive astrocytes in both rodent and human demyelinating lesions. HA digestion products generated by the PH20 hyaluronidase but not another hyaluronidase inhibited remyelination following lysolecithin-induced demyelination. Inhibition of hyaluronidase activity lead to increased OPC maturation and promoted increased conduction velocities through lesions. INTERPRETATION We determined that PH20 is elevated in demyelinating lesions and that increased PH20 expression is sufficient to inhibit OPC maturation and remyelination. Pharmacological inhibition of PH20 may therefore be an effective way to promote remyelination in multiple sclerosis and related conditions.
Collapse
Affiliation(s)
- Marnie Preston
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR 97006, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
197
|
κ-Opioid receptor stimulation modulates TLR4/NF-κB signaling in the rat heart subjected to ischemia–reperfusion. Cytokine 2013; 61:842-8. [DOI: 10.1016/j.cyto.2013.01.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 08/23/2012] [Accepted: 01/04/2013] [Indexed: 01/04/2023]
|
198
|
Milošev I, Hmeljak J, Cör A. Hyaluronic acid stimulates the formation of calcium phosphate on CoCrMo alloy in simulated physiological solution. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2013; 24:555-571. [PMID: 23250579 DOI: 10.1007/s10856-012-4827-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 11/30/2012] [Indexed: 06/01/2023]
Abstract
The behaviour of CoCrMo alloy has been studied in two simulated physiological solutions-NaCl and Hanks' solutions-each containing the sodium salt of hyaluronic acid. Hyaluronic acid is a component of synovial joint fluid, so the behaviour of orthopaedic alloys in its presence needs to be assessed. Electrochemical methods, X-ray photoelectron spectroscopy and scanning electron microscopy have been used to analyse the composition, thickness and morphology of any layers formed on the alloy. The addition of hyaluronic acid shifts the corrosion potential and increases the value of polarization resistance. The presence of hyaluronic acid in simulated Hanks' physiological solution stimulates the formation of a calcium phosphate layer, opening up the possibility for tailoring the surface properties of CoCrMo alloy. The viability of human osteoblast-like was determined using the Alamar(®) Blue Assay, while the osteogenic activity was evaluated by alkaline phosphatase activity. The presence of hyaluronic acid affects the alkaline phosphatase activity.
Collapse
Affiliation(s)
- Ingrid Milošev
- Department of Physical and Organic Chemistry, Jožef Stefan Institute, Ljubljana, Slovenia.
| | | | | |
Collapse
|
199
|
Fang H, Wang PF, Zhou Y, Wang YC, Yang QW. Toll-like receptor 4 signaling in intracerebral hemorrhage-induced inflammation and injury. J Neuroinflammation 2013; 10:27. [PMID: 23414417 PMCID: PMC3598479 DOI: 10.1186/1742-2094-10-27] [Citation(s) in RCA: 152] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 12/31/2012] [Indexed: 12/20/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is a common type of fatal stroke, accounting for about 15% to 20% of all strokes. Hemorrhagic strokes are associated with high mortality and morbidity, and increasing evidence shows that innate immune responses and inflammatory injury play a critical role in ICH-induced neurological deficits. However, the signaling pathways involved in ICH-induced inflammatory responses remain elusive. Toll-like receptor 4 (TLR4) belongs to a large family of pattern recognition receptors that play a key role in innate immunity and inflammatory responses. In this review, we summarize recent findings concerning the involvement of TLR4 signaling in ICH-induced inflammation and brain injury. We discuss the key mechanisms associated with TLR4 signaling in ICH and explore the potential for therapeutic intervention by targeting TLR4 signaling.
Collapse
Affiliation(s)
- Huang Fang
- Department of Neurology, Second Affiliated Hospital and Xinqiao Hospital, Third Military Medical University, Xinqiao Zhengjie No,183, Shapingba District, Chongqing 400037, China
| | | | | | | | | |
Collapse
|
200
|
Tolle LB, Standiford TJ. Danger-associated molecular patterns (DAMPs) in acute lung injury. J Pathol 2013; 229:145-56. [PMID: 23097158 DOI: 10.1002/path.4124] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 10/02/2012] [Accepted: 10/03/2012] [Indexed: 12/22/2022]
Abstract
Danger-associated molecular patterns (DAMPs) are host-derived molecules that can function to regulate the activation of pathogen recognition receptors (PRRs). These molecules play a critical role in modulating the lung injury response. DAMPs originate from multiple sources, including injured and dying cells, the extracellular matrix, or exist as immunomodulatory proteins within the airspace and interstitium. DAMPs can function as either toll-like receptor (TLR) agonists or antagonists, and can modulate both TLR and nod-like receptor (NLR) signalling cascades. Collectively, this diverse group of molecules may represent important therapeutic targets in the prevention and/or treatment of acute lung injury (ALI) and its more severe form, acute respiratory distress syndrome (ARDS).
Collapse
Affiliation(s)
- Leslie B Tolle
- Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, USA
| | | |
Collapse
|