151
|
Lamarca V, Sanz-Clemente A, Pérez-Pé R, Martínez-Lorenzo MJ, Halaihel N, Muniesa P, Carrodeguas JA. Two isoforms of PSAP/MTCH1 share two proapoptotic domains and multiple internal signals for import into the mitochondrial outer membrane. Am J Physiol Cell Physiol 2007; 293:C1347-61. [PMID: 17670888 DOI: 10.1152/ajpcell.00431.2006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Presenilin 1-associated protein (PSAP) was first identified as a protein that interacts with presenilin 1. It was later reported that PSAP is a mitochondrial protein that induces apoptosis when overexpressed in cultured cells. PSAP is also known as mitochondrial carrier homolog 1 (Mtch1). In this study, we show that there are two proapoptotic PSAP isoforms generated by alternative splicing that differ in the length of a hydrophilic loop located between two predicted transmembrane domains. Using RT-PCR and Western blot assays, we determined that both isoforms are expressed in human and rat tissues as well as in culture cells. Our results indicate that PSAP is an integral mitochondrial outer membrane protein, although it contains a mitochondrial carrier domain conserved in several inner membrane carriers, which partially overlaps one of the predicted transmembrane segments. Deletion of this transmembrane segment impairs mitochondrial import of PSAP. Replacement of this segment with each of two transmembrane domains, with opposite membrane orientations, from an unrelated protein indicated that one of them allowed mitochondrial localization of the PSAP mutant, whereas the other one did not. Our interpretation of these results is that PSAP contains multiple mitochondrial targeting motifs dispersed along the protein but that a transmembrane domain in the correct position and orientation is necessary for membrane insertion. The amino acid sequence within this transmembrane domain may also be important. Furthermore, two independent regions in the amino terminal side of the protein are responsible for its proapoptotic activity. Possible implications of these findings in PSAP function are discussed.
Collapse
Affiliation(s)
- Violeta Lamarca
- Institute for Biocomputation and Physics of Complex Systems, University of Zaragoza, Corona de Aragón 42, Edificio Cervantes, 50009, Zaragoza, Spain
| | | | | | | | | | | | | |
Collapse
|
152
|
Cowburn RF, Popescu BO, Ankarcrona M, Dehvari N, Cedazo-Minguez A. Presenilin-mediated signal transduction. Physiol Behav 2007; 92:93-7. [PMID: 17568632 DOI: 10.1016/j.physbeh.2007.05.053] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Presenilin proteins, mutated forms of which cause early onset familial Alzheimer's disease, are capable of modulating various cell signal transduction pathways, the most extensively studied of which has been intracellular calcium signalling. Disease causing presenilin mutations can potentiate inositol(1,4,5)trisphosphate (InsP3) mediated endoplasmic reticulum release due to calcium overload in this organelle, as well as attenuate capacitative calcium entry. Our own studies have shown a novel function for presenilins that involves regulation of acetylcholine muscarinic receptor-stimulated phospholipase C upstream of InsP3 regulated calcium release. This article reviews the mechanisms by which presenilins modulate intracellular calcium signalling and the role that deregulated calcium homeostasis could play in the pathogenesis of Alzheimer's disease.
Collapse
Affiliation(s)
- Richard F Cowburn
- Karolinska Institutet, Department of Neurobiology, Care Sciences and Society, KI-Alzheimer's Disease Research Center, Novum, plan 5, S-141 57 Huddinge, Sweden.
| | | | | | | | | |
Collapse
|
153
|
LaFerla FM, Green KN, Oddo S. Intracellular amyloid-beta in Alzheimer's disease. Nat Rev Neurosci 2007; 8:499-509. [PMID: 17551515 DOI: 10.1038/nrn2168] [Citation(s) in RCA: 1446] [Impact Index Per Article: 85.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The primal role that the amyloid-beta (Abeta) peptide has in the development of Alzheimer's disease is now almost universally accepted. It is also well recognized that Abeta exists in multiple assembly states, which have different physiological or pathophysiological effects. Although the classical view is that Abeta is deposited extracellularly, emerging evidence from transgenic mice and human patients indicates that this peptide can also accumulate intraneuronally, which may contribute to disease progression.
Collapse
Affiliation(s)
- Frank M LaFerla
- Department of Neurobiology and Behaviour, and Institute for Brain Aging and Dementia, University of California, Irvine, California 92697-4545, USA.
| | | | | |
Collapse
|
154
|
Fiala JC, Feinberg M, Peters A, Barbas H. Mitochondrial degeneration in dystrophic neurites of senile plaques may lead to extracellular deposition of fine filaments. Brain Struct Funct 2007; 212:195-207. [PMID: 17717688 DOI: 10.1007/s00429-007-0153-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2007] [Accepted: 07/10/2007] [Indexed: 01/06/2023]
Abstract
Recent data show that amyloid precursor protein accumulates inside axons after disruption of fast axonal transport, but how this leads to mature plaques with extracellular amyloid remains unclear. To investigate this issue, primitive plaques in prefrontal cortex of aged rhesus monkeys were reconstructed using serial section electron microscopy. The swollen profiles of dystrophic neurites were found to be diverticula from the main axis of otherwise normal neurites. Microtubules extended from the main neurite axis into the diverticulum to form circular loops or coils, providing a transport pathway for trapping organelles. The quantity and morphology of organelles contained within diverticula suggested a progression of degeneration. Primitive diverticula contained microtubules and normal mitochondria, while larger, presumably older, diverticula contained large numbers of degenerating mitochondria. In advanced stages of degeneration, apparent autophagosomes derived from mitochondria exhibited a loose lamellar to filamentous internal structure. Similar filamentous material and remnants of mitochondria were visible in the extracellular spaces of plaques. This progression of degeneration suggests that extracellular filaments originate inside degenerating mitochondria of neuritic diverticula, which may be a common process in diverse diseases.
Collapse
Affiliation(s)
- John C Fiala
- Department of Health Sciences, Boston University, 635 Commonwealth Ave., Boston, MA 02215, USA.
| | | | | | | |
Collapse
|
155
|
Abstract
Many lines of evidence suggest that mitochondria have a central role in ageing-related neurodegenerative diseases. However, despite the evidence of morphological, biochemical and molecular abnormalities in mitochondria in various tissues of patients with neurodegenerative disorders, the question "is mitochondrial dysfunction a necessary step in neurodegeneration?" is still unanswered. In this review, we highlight some of the major neurodegenerative disorders (Alzheimer's disease, Parkinson's disease, Amyotrophic lateral sclerosis and Huntington's disease) and discuss the role of the mitochondria in the pathogenetic cascade leading to neurodegeneration.
Collapse
Affiliation(s)
- Lucia Petrozzi
- Department of Neuroscience, University of Pisa, Via Roma 67, Pisa, 56126, Italy.
| | | | | | | | | |
Collapse
|
156
|
Crouch PJ, Harding SME, White AR, Camakaris J, Bush AI, Masters CL. Mechanisms of A beta mediated neurodegeneration in Alzheimer's disease. Int J Biochem Cell Biol 2007; 40:181-98. [PMID: 17804276 DOI: 10.1016/j.biocel.2007.07.013] [Citation(s) in RCA: 185] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2007] [Revised: 06/30/2007] [Accepted: 07/24/2007] [Indexed: 11/24/2022]
Abstract
Development of a comprehensive therapeutic treatment for the neurodegenerative Alzheimer's disease (AD) is limited by our understanding of the underlying biochemical mechanisms that drive neuronal failure. Numerous dysfunctional mechanisms have been described in AD, ranging from protein aggregation and oxidative stress to biometal dyshomeostasis and mitochondrial failure. In this review we discuss the critical role of amyloid-beta (A beta) in some of these potential mechanisms of neurodegeneration. The 39-43 amino acid A beta peptide has attracted intense research focus since it was identified as a major constituent of the amyloid deposits that characterise the AD brain, and it is now widely recognised as central to the development of AD. Familial forms of AD involve mutations that lead directly to altered A beta production from the amyloid-beta A4 precursor protein, and the degree of AD severity correlates with specific pools of A beta within the brain. A beta contributes directly to oxidative stress, mitochondrial dysfunction, impaired synaptic transmission, the disruption of membrane integrity, and impaired axonal transport. Further study of the mechanisms of A beta mediated neurodegeneration will considerably improve our understanding of AD, and may provide fundamental insights needed for the development of more effective therapeutic strategies.
Collapse
Affiliation(s)
- Peter J Crouch
- Department of Pathology, The University of Melbourne, Victoria 3010, Australia.
| | | | | | | | | | | |
Collapse
|
157
|
Ratnayaka A, Paraoan L, Spiller DG, Hiscott P, Nelson G, White MRH, Grierson I. A dual Golgi- and mitochondria-localised Ala25Ser precursor cystatin C: An additional tool for characterising intracellular mis-localisation leading to increased AMD susceptibility. Exp Eye Res 2007; 84:1135-9. [PMID: 16635487 DOI: 10.1016/j.exer.2006.01.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2005] [Revised: 01/24/2006] [Accepted: 01/25/2006] [Indexed: 11/22/2022]
Abstract
An artificial mutant Ala25Ser precursor cystatin C was created to help elucidate the cause of intracellular mis-localisation of the biochemically related variant B (Ala25Thr) precursor cystatin C to the mitochondria. Homozygotes of variant B precursor cystatin C were reported to carry an increased susceptibility to developing the exudative form of AMD. Ala25Ser precursor cystatin C shows a dual distribution to the Golgi apparatus and to the mitochondria. This localisation is thus intermediary between that of wild-type cystatin C (targeted to ER/Golgi compartment) and that of variant B precursor cystatin C. Furthermore, the level of secretion of Ala25Ser cystatin C by RPE cells is intermediary between wild type and variant B cystatin C. Ala25Ser precursor cystatin C thus represents a biochemical intermediate between the wild type and the AMD-associated cystatin C and as such, is a novel tool for the investigation of the mechanism of intracellular mis-localisation of variant B cystatin C. Our findings further support the hypothesis that substitution of the alanine residue in the penultimate position of precursor cystatin C signal sequence with a less hydrophobic amino acid residue, such as threonine (as in variant B cystatin C) or serine is sufficient to impair the intracellular trafficking and processing of the protein.
Collapse
|
158
|
Norenberg MD, Rao KVR. The mitochondrial permeability transition in neurologic disease. Neurochem Int 2007; 50:983-97. [PMID: 17397969 PMCID: PMC4714712 DOI: 10.1016/j.neuint.2007.02.008] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2007] [Revised: 02/05/2007] [Accepted: 02/09/2007] [Indexed: 02/06/2023]
Abstract
Mitochondria, being the principal source of cellular energy, are vital for cell life. Yet, ironically, they are also major mediators of cell death, either by necrosis or apoptosis. One means by which these adverse effects occur is through the mitochondrial permeability transition (mPT) whereby the inner mitochondrial membrane suddenly becomes excessively permeable to ions and other solutes, resulting in a collapse of the inner membrane potential, ultimately leading to energy failure and cell necrosis. The mPT may also bring about the release of various factors known to cause apoptotic cell death. The principal factors leading to the mPT are elevated levels of intracellular Ca2+ and oxidative stress. Characteristically, the mPT is inhibited by cyclosporin A. This article will briefly discuss the concept of the mPT, its molecular composition, its inducers and regulators, agents that influence its activity and describe the consequences of its induction. Lastly, we will review its potential contribution to acute neurological disorders, including ischemia, trauma, and toxic-metabolic conditions, as well as its role in chronic neurodegenerative conditions such as Alzheimer's disease, Parkinson's disease, Huntington's disease and amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- M D Norenberg
- Veterans Affairs Medical Center, University of Miami Miller School of Medicine, Miami, FL 33101, USA.
| | | |
Collapse
|
159
|
Nizzari M, Venezia V, Bianchini P, Caorsi V, Diaspro A, Repetto E, Thellung S, Corsaro A, Carlo P, Schettini G, Florio T, Russo C. Amyloid precursor protein and Presenilin 1 interaction studied by FRET in human H4 cells. Ann N Y Acad Sci 2007; 1096:249-57. [PMID: 17405936 DOI: 10.1196/annals.1397.091] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The mayor pathologic hallmarks of Alzheimer's disease (AD) are senile plaque and neurofibrillary tangles. Senile plaque are primarily made up of deposits of amyloid-beta protein, a proteolytic product derived from the amyloid precursor protein (APP). APP is a transmembrane protein detected into the endoplasmic reticulum, in the Golgi apparatus, at the cell surface, recycled by endocytosis to endosomes, whose physiological function is unclear. Presenilins (PS), are a component of gamma-secretase complex that cleave alpha-CTFs (carboxy-terminal fragment), or beta-CTFs, leaving 40 or 42 amino acids amyloid-beta peptides and 58 or 56 amino acids intracellular domains (AICD). Where the amyloid-beta peptides is generated is not clear. The study of APP-PS interaction in specific cell compartments provides a good opportunity to light upon the molecular mechanisms regulating the activity of the "gamma-secretase complex," and where beta-amyloid is generated. In our study we used a biophysical assay of protein proximity: fluorescence resonance energy transfer (FRET), that can provide information about molecular interactions when two proteins are in the close proximity (<10 nm), to examine the subcellular localization and interaction between APP and PS1 in human neuroglioma cells (H4). Confocal microscopic analysis reveals extensive colocalization in different cells' compartment, and centrosomal or microtubule organizing center (MTOC) localization of APP and PS1, but not necessarily a close molecular interaction. We used FRET to determine if APP and PS1 interact at the cell centrosome. FRET data suggest a close interaction between APP and PS1 in subcellular compartments and at the centrosome of H4 cells. Using this approach we show that APP and PS1 are closely associated in the centrosomes of the H4 cell.
Collapse
Affiliation(s)
- Mario Nizzari
- Pharmacology, Department of Oncology, Biology and Genetics, University of Genova, Genova, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
160
|
Moreira PI, Santos MS, Seiça R, Oliveira CR. Brain mitochondrial dysfunction as a link between Alzheimer's disease and diabetes. J Neurol Sci 2007; 257:206-14. [PMID: 17316694 DOI: 10.1016/j.jns.2007.01.017] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
It has been argued that in late-onset Alzheimer's disease a disturbance in the control of neuronal glucose metabolism consequent to impaired insulin signalling strongly resembles the pathophysiology of type 2 diabetes in non-neural tissue. The fact that mitochondria are the major generators and direct targets of reactive oxygen species led several investigators to foster the idea that oxidative stress and damage in mitochondria are contributory factors to several disorders including Alzheimer's disease and diabetes. Since brain possesses high energetic requirements, any decline in brain mitochondria electron chain could have a severe impact on brain function and particularly on the etiology of neurodegenerative diseases. This review is primarily focused in the discussion of brain mitochondrial dysfunction as a link between diabetes and Alzheimer's disease.
Collapse
Affiliation(s)
- Paula I Moreira
- Center for Neuroscience and Cell Biology, Institute of Physiology, Faculty of Medicine, University of Coimbra, 3004-354 Coimbra, Portugal
| | | | | | | |
Collapse
|
161
|
|
162
|
Lin MT, Beal MF. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 2006; 443:787-95. [PMID: 17051205 DOI: 10.1038/nature05292] [Citation(s) in RCA: 4549] [Impact Index Per Article: 252.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Many lines of evidence suggest that mitochondria have a central role in ageing-related neurodegenerative diseases. Mitochondria are critical regulators of cell death, a key feature of neurodegeneration. Mutations in mitochondrial DNA and oxidative stress both contribute to ageing, which is the greatest risk factor for neurodegenerative diseases. In all major examples of these diseases there is strong evidence that mitochondrial dysfunction occurs early and acts causally in disease pathogenesis. Moreover, an impressive number of disease-specific proteins interact with mitochondria. Thus, therapies targeting basic mitochondrial processes, such as energy metabolism or free-radical generation, or specific interactions of disease-related proteins with mitochondria, hold great promise.
Collapse
Affiliation(s)
- Michael T Lin
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University, Room F-610, 525 East 68th Street, New York 10021, USA
| | | |
Collapse
|
163
|
Behbahani H, Shabalina IG, Wiehager B, Concha H, Hultenby K, Petrovic N, Nedergaard J, Winblad B, Cowburn RF, Ankarcrona M. Differential role of Presenilin-1 and -2 on mitochondrial membrane potential and oxygen consumption in mouse embryonic fibroblasts. J Neurosci Res 2006; 84:891-902. [PMID: 16883555 DOI: 10.1002/jnr.20990] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Increasing evidence indicates that mitochondrial alterations contribute to the neuronal death in Alzheimer's disease (AD). Presenilin 1 (PS1) and Presenilin 2 (PS2) mutations have been shown to sensitize cells to apoptosis by mechanisms suggested to involve impaired mitochondrial function. We have previously detected active gamma-secretase complexes in mitochondria. We investigated the impact of PS/gamma-secretase on mitochondrial function using mouse embryonal fibroblasts derived from wild-type, PS1-/-, PS2-/- and PS double knock-out (PSKO) embryos. Measurements of mitochondrial membrane potential (DeltaPsim) showed a higher percentage of fully functional mitochondria in PS1-/- and PSwt as compared to PS2-/- and PSKO cells. This result was evident both in whole cell preparations and in isolated mitochondria. Interestingly, pre-treatment of isolated mitochondria with the gamma-secretase inhibitor L-685,458 resulted in a decreased population of mitochondria with high DeltaPsim in PSwt and PS1-/- cells, indicating that PS2/gamma-secretase activity can modify DeltaPsim. PS2-/- cells showed a significantly lower basal respiratory rate as compared to other cell lines. However, all cell lines demonstrated competent bioenergetic function. These data point toward a specific role of PS2/gamma-secretase activity for proper mitochondrial function and indicate interplay between PS1 and PS2 in mitochondrial functionality.
Collapse
Affiliation(s)
- Homira Behbahani
- Department of Neurobiology, Karolinska Institutet Dainippon Sumitomo Pharmaceuticals Alzheimer Center, Caring Sciences and Society, Novum, Huddinge, Sweden.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
164
|
Crouch PJ, Barnham KJ, Duce JA, Blake RE, Masters CL, Trounce IA. Copper-dependent inhibition of cytochrome c oxidase by A?1?42requires reduced methionine at residue 35 of the A? peptide. J Neurochem 2006; 99:226-36. [PMID: 16987248 DOI: 10.1111/j.1471-4159.2006.04050.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
By altering key amino acid residues of the Alzheimer's disease-associated amyloid-beta peptide, we investigated the mechanism through which amyloid-beta inhibits cytochrome c oxidase (EC 1.9.3.1). Native amyloid-beta inhibited cytochrome oxidase by up to 65%, and the level of inhibition was determined by the period of amyloid-beta ageing before the cytochrome oxidase assay. Substituting tyrosine-10 with alanine did not affect maximal enzyme inhibition, but the altered peptide required a longer period of ageing. By contrast, oxidizing the sulfur of methionine-35 to a sulfoxide, or substituting methionine-35 with valine, completely abrogated the peptide's inhibitory potential towards cytochrome oxidase. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis revealed that the loss of inhibitory potential towards cytochrome oxidase with the methionine-35-altered peptides did not correlate with a substantially different distribution of amyloid-beta oligomeric species. Although the amyloid-beta-mediated inhibition of cytochrome oxidase was completely dependent on the presence of divalent Cu2+, it was not supported by monovalent Cu+, and experiments with catalase and H2O2 indicated that the mechanism of cytochrome oxidase inhibition does not involve amyloid-beta-mediated H2O2 production. We propose that amyloid-beta-mediated inhibition of cytochrome oxidase is dependent on the peptide's capacity to bind, then reduce Cu2+, and that it may involve the formation of a redox active amyloid-beta-methionine radical.
Collapse
Affiliation(s)
- Peter J Crouch
- Centre for Neuroscience, The University of Melbourne, Victoria, Australia
| | | | | | | | | | | |
Collapse
|
165
|
Coon KD, Valla J, Szelinger S, Schneider LE, Niedzielko TL, Brown KM, Pearson JV, Halperin R, Dunckley T, Papassotiropoulos A, Caselli RJ, Reiman EM, Stephan DA. Quantitation of heteroplasmy of mtDNA sequence variants identified in a population of AD patients and controls by array-based resequencing. Mitochondrion 2006; 6:194-210. [PMID: 16920408 DOI: 10.1016/j.mito.2006.07.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2006] [Revised: 06/30/2006] [Accepted: 07/13/2006] [Indexed: 01/03/2023]
Abstract
The role of mitochondrial dysfunction in the pathogenesis of Alzheimer's disease (AD) has been well documented. Though evidence for the role of mitochondria in AD seems incontrovertible, the impact of mitochondrial DNA (mtDNA) mutations in AD etiology remains controversial. Though mutations in mitochondrially encoded genes have repeatedly been implicated in the pathogenesis of AD, many of these studies have been plagued by lack of replication as well as potential contamination of nuclear-encoded mitochondrial pseudogenes. To assess the role of mtDNA mutations in the pathogenesis of AD, while avoiding the pitfalls of nuclear-encoded mitochondrial pseudogenes encountered in previous investigations and showcasing the benefits of a novel resequencing technology, we sequenced the entire coding region (15,452 bp) of mtDNA from 19 extremely well-characterized AD patients and 18 age-matched, unaffected controls utilizing a new, reliable, high-throughput array-based resequencing technique, the Human MitoChip. High-throughput, array-based DNA resequencing of the entire mtDNA coding region from platelets of 37 subjects revealed the presence of 208 loci displaying a total of 917 sequence variants. There were no statistically significant differences in overall mutational burden between cases and controls, however, 265 independent sites of statistically significant change between cases and controls were identified. Changed sites were found in genes associated with complexes I (30.2%), III (3.0%), IV (33.2%), and V (9.1%) as well as tRNA (10.6%) and rRNA (14.0%). Despite their statistical significance, the subtle nature of the observed changes makes it difficult to determine whether they represent true functional variants involved in AD etiology or merely naturally occurring dissimilarity. Regardless, this study demonstrates the tremendous value of this novel mtDNA resequencing platform, which avoids the pitfalls of erroneously amplifying nuclear-encoded mtDNA pseudogenes, and our proposed analysis paradigm, which utilizes the availability of raw signal intensity values for each of the four potential alleles to facilitate quantitative estimates of mtDNA heteroplasmy. This information provides a potential new target for burgeoning diagnostics and therapeutics that could truly assist those suffering from this devastating disorder.
Collapse
Affiliation(s)
- Keith D Coon
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ 85004, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
166
|
Falkevall A, Alikhani N, Bhushan S, Pavlov PF, Busch K, Johnson KA, Eneqvist T, Tjernberg L, Ankarcrona M, Glaser E. Degradation of the amyloid beta-protein by the novel mitochondrial peptidasome, PreP. J Biol Chem 2006; 281:29096-104. [PMID: 16849325 DOI: 10.1074/jbc.m602532200] [Citation(s) in RCA: 157] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Recently we have identified the novel mitochondrial peptidase responsible for degrading presequences and other short unstructured peptides in mitochondria, the presequence peptidase, which we named PreP peptidasome. In the present study we have identified and characterized the human PreP homologue, hPreP, in brain mitochondria, and we show its capacity to degrade the amyloid beta-protein (Abeta). PreP belongs to the pitrilysin oligopeptidase family M16C containing an inverted zinc-binding motif. We show that hPreP is localized to the mitochondrial matrix. In situ immuno-inactivation studies in human brain mitochondria using anti-hPreP antibodies showed complete inhibition of proteolytic activity against Abeta. We have cloned, overexpressed, and purified recombinant hPreP and its mutant with catalytic base Glu(78) in the inverted zinc-binding motif replaced by Gln. In vitro studies using recombinant hPreP and liquid chromatography nanospray tandem mass spectrometry revealed novel cleavage specificities against Abeta-(1-42), Abeta-(1-40), and Abeta Arctic, a protein that causes increased protofibril formation an early onset familial variant of Alzheimer disease. In contrast to insulin degrading enzyme, which is a functional analogue of hPreP, hPreP does not degrade insulin but does degrade insulin B-chain. Molecular modeling of hPreP based on the crystal structure at 2.1 A resolution of AtPreP allowed us to identify Cys(90) and Cys(527) that form disulfide bridges under oxidized conditions and might be involved in redox regulation of the enzyme. Degradation of the mitochondrial Abeta by hPreP may potentially be of importance in the pathology of Alzheimer disease.
Collapse
Affiliation(s)
- Annelie Falkevall
- Department of Biochemistry and Biophysics, Stockholm University SE-106 91 Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
167
|
Abstract
In the past decade, the genetic causes underlying familial forms of many neurodegenerative disorders, such as Huntington's disease, Parkinson's disease, Alzheimer's disease, amyotrophic lateral sclerosis, Friedreich ataxia, hereditary spastic paraplegia, dominant optic atrophy, Charcot-Marie-Tooth type 2A, neuropathy ataxia and retinitis pigmentosa, and Leber's hereditary optic atrophy have been elucidated. However, the common pathogenic mechanisms of neuronal death are still largely unknown. Recently, mitochondrial dysfunction has emerged as a potential 'lowest common denominator' linking these disorders. In this review, we discuss the body of evidence supporting the role of mitochondria in the pathogenesis of hereditary neurodegenerative diseases. We summarize the principal features of genetic diseases caused by abnormalities of mitochondrial proteins encoded by the mitochondrial or the nuclear genomes. We then address genetic diseases where mutant proteins are localized in multiple cell compartments, including mitochondria and where mitochondrial defects are likely to be directly caused by the mutant proteins. Finally, we describe examples of neurodegenerative disorders where mitochondrial dysfunction may be 'secondary' and probably concomitant with degenerative events in other cell organelles, but may still play an important role in the neuronal decay. Understanding the contribution of mitochondrial dysfunction to neurodegeneration and its pathophysiological basis will significantly impact our ability to develop more effective therapies for neurodegenerative diseases.
Collapse
Affiliation(s)
- Jennifer Q Kwong
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York, New York 10021, USA
| | | | | |
Collapse
|
168
|
Esposito L, Raber J, Kekonius L, Yan F, Yu GQ, Bien-Ly N, Puoliväli J, Scearce-Levie K, Masliah E, Mucke L. Reduction in mitochondrial superoxide dismutase modulates Alzheimer's disease-like pathology and accelerates the onset of behavioral changes in human amyloid precursor protein transgenic mice. J Neurosci 2006; 26:5167-79. [PMID: 16687508 PMCID: PMC6674260 DOI: 10.1523/jneurosci.0482-06.2006] [Citation(s) in RCA: 196] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2005] [Revised: 03/24/2006] [Accepted: 03/25/2006] [Indexed: 11/21/2022] Open
Abstract
Alzheimer's disease (AD) is associated with accumulations of amyloid-beta (Abeta) peptides, oxidative damage, mitochondrial dysfunction, neurodegeneration, and dementia. The mitochondrial antioxidant manganese superoxide dismutase-2 (Sod2) might protect against these alterations. To test this hypothesis, we inactivated one Sod2 allele (Sod2(+/-)) in human amyloid precursor protein (hAPP) transgenic mice, reducing Sod2 activity to approximately 50% of that in Sod2 wild-type (Sod2(+/+)) mice. A reduction in Sod2 activity did not obviously impair mice without hAPP/Abeta expression. In hAPP mice, however, it accelerated the onset of behavioral alterations and of deficits in prepulse inhibition of acoustic startle, a measure of sensorimotor gating. In these mice, it also worsened hAPP/Abeta-dependent depletion of microtubule-associated protein 2, a marker of neuronal dendrites. Sod2 reduction decreased amyloid plaques in the brain parenchyma but promoted the development of cerebrovascular amyloidosis, gliosis, and plaque-independent neuritic dystrophy. Sod2 reduction also increased the DNA binding activity of the transcription factor nuclear factor kappaB. These results suggest that Sod2 protects the aging brain against hAPP/Abeta-induced impairments. Whereas reductions in Sod2 would be expected to trigger or exacerbate neuronal and vascular pathology in AD, increasing Sod2 activity might be of therapeutic benefit.
Collapse
Affiliation(s)
- Luke Esposito
- Gladstone Institute of Neurological Disease, University of California, San Francisco, California 94158, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
169
|
Raschperger E, Thyberg J, Pettersson S, Philipson L, Fuxe J, Pettersson RF. The coxsackie- and adenovirus receptor (CAR) is an in vivo marker for epithelial tight junctions, with a potential role in regulating permeability and tissue homeostasis. Exp Cell Res 2006; 312:1566-80. [PMID: 16542650 DOI: 10.1016/j.yexcr.2006.01.025] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2005] [Revised: 01/16/2006] [Accepted: 01/18/2006] [Indexed: 10/24/2022]
Abstract
The coxsackie- and adenovirus receptor (CAR) is a transmembrane protein belonging to the immunoglobulin superfamily. The function of CAR as a virus receptor has been extensively analyzed, while its physiological role and expression pattern in adult tissues have remained less clear. CAR associates with epithelial tight junctions in vitro and mediates cell-cell adhesion. Using a set of affinity-purified antibodies, we show that CAR is predominantly expressed in epithelial cells lining the body cavities in adult mice, where it specifically co-localizes with the tight junction components ZO-1 and occludin. Notably, CAR could not be detected in endothelial cells of the vasculature, including brain capillaries. CAR expression correlated positively with the maturity of tight junctions and inversely with permeability. With a few exceptions, the two known CAR isoforms were co-expressed in most epithelial cells analyzed. A CAR mutant lacking the intracellular tail over-expressed in transgenic mice was diffusely localized over the plasma membrane, showing the importance of this domain for correct subcellular localization in vivo. We conclude that CAR is localized to epithelial tight junctions in vivo where it may play a role in the regulation of epithelial permeability and tissue homeostasis.
Collapse
|
170
|
Manczak M, Anekonda TS, Henson E, Park BS, Quinn J, Reddy PH. Mitochondria are a direct site of A beta accumulation in Alzheimer's disease neurons: implications for free radical generation and oxidative damage in disease progression. Hum Mol Genet 2006; 15:1437-49. [PMID: 16551656 DOI: 10.1093/hmg/ddl066] [Citation(s) in RCA: 839] [Impact Index Per Article: 46.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Alzheimer's disease (AD) is a complex, neurodegenerative disease characterized by the impairment of cognitive function in elderly individuals. In a recent global gene expression study of APP transgenic mice, we found elevated expression of mitochondrial genes, which we hypothesize represents a compensatory response because of mitochondrial oxidative damage caused by the over-expression of mutant APP and/or amyloid beta (Abeta). We investigated this hypothesis in a series of experiments examining what forms of APP and Abeta localize to the mitochondria, and whether the presence of these species is associated with mitochondrial dysfunction and oxidative damage. Using immunoblotting, digitonin fractionation, immunofluorescence, and electron microscopy techniques, we found a relationship between mutant APP derivatives and mitochondria in brain slices from Tg2576 mice and in mouse neuroblastoma cells expressing mutant human APP. Further, to determine the functional relationship between mutant APP/Abeta and oxidative damage, we quantified Abeta levels, hydrogen peroxide production, cytochrome oxidase activity and carbonyl proteins in Tg2576 mice and age-matched wild-type (WT) littermates. Hydrogen peroxide levels were found to be significantly increased in Tg2576 mice when compared with age-matched WT littermates and directly correlated with levels of soluble Abeta in Tg2576 mice, suggesting that soluble Abeta may be responsible for the production of hydrogen peroxide in AD progression in Tg2576 mice. Cytochrome c oxidase activity was found to be decreased in Tg2576 mice when compared with age-matched WT littermates, suggesting that mutant APP and soluble Abeta impair mitochondrial metabolism in AD development and progression. An increase in hydrogen peroxide and a decrease in cytochrome oxidase activity were found in young Tg2576 mice, prior to the appearance of Abeta plaques. These findings suggest that early mitochondrially targeted therapeutic interventions may be effective in delaying AD progression in elderly individuals and in treating AD patients.
Collapse
Affiliation(s)
- Maria Manczak
- Neurogenetics Laboratory, Neurological Sciences Institute, Oregon Health and Science University, 505 NW 185th Aveue, Beaverton, 97006, USA
| | | | | | | | | | | |
Collapse
|
171
|
Schuessel K, Frey C, Jourdan C, Keil U, Weber CC, Müller-Spahn F, Müller WE, Eckert A. Aging sensitizes toward ROS formation and lipid peroxidation in PS1M146L transgenic mice. Free Radic Biol Med 2006; 40:850-62. [PMID: 16520237 DOI: 10.1016/j.freeradbiomed.2005.10.041] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2005] [Revised: 09/13/2005] [Accepted: 10/10/2005] [Indexed: 02/07/2023]
Abstract
Mutations in the presenilins (PS) account for the majority of familial Alzheimer disease (FAD) cases. To test the hypothesis that oxidative stress can underlie the deleterious effects of presenilin mutations, we analyzed lipid peroxidation products (4-hydroxynonenal (HNE) and malondialdehyde) and antioxidant defenses in brain tissue and levels of reactive oxygen species (ROS) in splenic lymphocytes from transgenic mice bearing human PS1 with the M146L mutation (PS1M146L) compared to those from mice transgenic for wild-type human PS1 (PS1wt) and nontransgenic littermate control mice. In brain tissue, HNE levels were increased only in aged (19-22 months) PS1M146L transgenic animals compared to PS1wt mice and not in young (3-4 months) or middle-aged mice (13-15 months). Similarly, in splenic lymphocytes expressing the transgenic PS1 proteins, mitochondrial and cytosolic ROS levels were elevated to 142.1 and 120.5% relative to controls only in cells from aged PS1M146L animals. Additionally, brain tissue HNE levels were positively correlated with mitochondrial ROS levels in splenic lymphocytes, indicating that oxidative stress can be detected in different tissues of PS1 transgenic mice. Antioxidant defenses (activities of antioxidant enzymes Cu/Zn-SOD, GPx, or GR) or susceptibility to in vitro oxidative stimulation was unaltered. In summary, these results demonstrate that the PS1M146L mutation increases mitochondrial ROS formation and oxidative damage in aged mice. Hence, oxidative stress caused by the combined effects of aging and PS1 mutations may be causative for triggering neurodegenerative events in FAD patients.
Collapse
Affiliation(s)
- Katrin Schuessel
- Department of Pharmacology, Biocentre, University of Frankfurt, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
172
|
Wallace DC. A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu Rev Genet 2006; 39:359-407. [PMID: 16285865 PMCID: PMC2821041 DOI: 10.1146/annurev.genet.39.110304.095751] [Citation(s) in RCA: 2353] [Impact Index Per Article: 130.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Life is the interplay between structure and energy, yet the role of energy deficiency in human disease has been poorly explored by modern medicine. Since the mitochondria use oxidative phosphorylation (OXPHOS) to convert dietary calories into usable energy, generating reactive oxygen species (ROS) as a toxic by-product, I hypothesize that mitochondrial dysfunction plays a central role in a wide range of age-related disorders and various forms of cancer. Because mitochondrial DNA (mtDNA) is present in thousands of copies per cell and encodes essential genes for energy production, I propose that the delayed-onset and progressive course of the age-related diseases results from the accumulation of somatic mutations in the mtDNAs of post-mitotic tissues. The tissue-specific manifestations of these diseases may result from the varying energetic roles and needs of the different tissues. The variation in the individual and regional predisposition to degenerative diseases and cancer may result from the interaction of modern dietary caloric intake and ancient mitochondrial genetic polymorphisms. Therefore the mitochondria provide a direct link between our environment and our genes and the mtDNA variants that permitted our forbears to energetically adapt to their ancestral homes are influencing our health today.
Collapse
Affiliation(s)
- Douglas C Wallace
- Center for Molecular and Mitochondrial Medicine and Genetics, Department of Ecology and Evolutionary Biology, University of California, Irvine, California 92697-3940, USA.
| |
Collapse
|
173
|
Aleardi AM, Benard G, Augereau O, Malgat M, Talbot JC, Mazat JP, Letellier T, Dachary-Prigent J, Solaini GC, Rossignol R. Gradual alteration of mitochondrial structure and function by beta-amyloids: importance of membrane viscosity changes, energy deprivation, reactive oxygen species production, and cytochrome c release. J Bioenerg Biomembr 2005; 37:207-25. [PMID: 16167177 DOI: 10.1007/s10863-005-6631-3] [Citation(s) in RCA: 172] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2005] [Accepted: 03/15/2005] [Indexed: 01/08/2023]
Abstract
Intracellular amyloid beta-peptide (A beta) accumulation is considered to be a key pathogenic factor in sporadic Alzheimer's disease (AD), but the mechanisms by which it triggers neuronal dysfunction remain unclear. We hypothesized that gradual mitochondrial dysfunction could play a central role in both initiation and progression of sporadic AD. Thus, we analyzed changes in mitochondrial structure and function following direct exposure to increasing concentrations of A beta(1--42) and A beta(25--35) in order to look more closely at the relationships between mitochondrial membrane viscosity, ATP synthesis, ROS production, and cytochrome c release. Our results show the accumulation of monomeric A beta within rat brain and muscle mitochondria. Subsequently, we observed four different and additive modes of action of A beta, which were concentration dependent: (i) an increase in mitochondrial membrane viscosity with a concomitant decrease in ATP/O, (ii) respiratory chain complexes inhibition, (iii) a potentialization of ROS production, and (iv) cytochrome c release.
Collapse
Affiliation(s)
- A M Aleardi
- Scuola Superiore Sant'Anna, Piazza Martiri della libertà 33, Pisa, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
174
|
Smigrodzki RM, Khan SM. Mitochondrial microheteroplasmy and a theory of aging and age-related disease. Rejuvenation Res 2005; 8:172-98. [PMID: 16144471 DOI: 10.1089/rej.2005.8.172] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We implicate a recently described form of mitochondrial mutation, mitochondrial microheteroplasmy, as a candidate for the principal component of aging. Microheteroplasmy is the presence of hundreds of independent mutations in one organism, with each mutation usually found in 1-2% of all mitochondrial genomes. Despite the low abundance of single mutations, the vast majority of mitochondrial genomes in all adults are mutated. This mutational burden includes inherited mutations, de novo germline mutations, as well as somatic mutations acquired either during early embryonic development or later in adult life. We postulate that microheteroplasmy is sufficient to explain the pathomechanism of several age-associated diseases, especially in conditions with known mitochondrial involvement, such as diabetes (DM), cardiovascular disease, Parkinson's disease (PD), and Alzheimer's disease (AD) and cancer. The genetic properties of microheteroplasmy reconcile the results of disease models (cybrids, hypermutable PolG variants and mitochondrial toxins), with the relatively low levels of maternal inheritance in the aforementioned diseases, and provide an explanation of their delayed, progressive course.
Collapse
|
175
|
Jutras I, Laplante A, Boulais J, Brunet S, Thinakaran G, Desjardins M. γ-Secretase Is a Functional Component of Phagosomes. J Biol Chem 2005; 280:36310-7. [PMID: 16103123 DOI: 10.1074/jbc.m504069200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Gamma-secretase is a high molecular mass protein complex that catalyzes the intramembrane cleavage of its protein substrates. Two proteins involved in phagocytosis, CD44 and the low density lipoprotein receptor-related protein, are gamma-secretase substrates, suggesting that this complex might regulate some aspects of phagocytosis. Our results indicate that the four components of gamma-secretase, viz. presenilin, nicastrin, APH-1, and PEN-2, are present and enriched on phagosome membranes from both murine macrophages and Drosophila S2 phagocytes. The gamma-secretase components form high molecular mass complexes in lipid microdomains of the phagosome membrane with the topology expected for the functional enzyme. In contrast to the majority of the phagosome proteins studied so far, which appear to associate transiently with this organelle, gamma-secretase resides on newly formed phagosomes and remains associated throughout their maturation into phagolysosomes. Finally, our results indicate that interferon-gamma stimulates gamma-secretase-dependent cleavages on phagosomes and that gamma-secretase activity may be involved in the phagocytic response of macrophages to inflammatory cytokines.
Collapse
Affiliation(s)
- Isabelle Jutras
- Département de Pathologie et Biologie Cellulaire, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | | | | | | | | | | |
Collapse
|
176
|
Suga K, Saito A, Tomiyama T, Mori H, Akagawa K. Syntaxin 5 interacts specifically with presenilin holoproteins and affects processing of betaAPP in neuronal cells. J Neurochem 2005; 94:425-39. [PMID: 15998293 DOI: 10.1111/j.1471-4159.2005.03210.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The specific roles of syntaxin 5 (Syx 5) in the interaction with presenilin (PS) and the accumulation of beta-amyloid precursor protein (betaAPP), as well as the secretion of beta-amyloid peptide (Abeta peptide) were examined in NG108-15 cells. Syx 5, which localizes from the endoplasmic reticulum (ER) to the Golgi, bound to PS holoproteins, while the other Syxs studied did not. Among familial Alzheimer's disease (FAD)-linked PS mutants, PS1deltaE9, which lacks the endoproteolytic cleavage site, showed markedly decreased binding to Syx 5. The interaction domains in Syx 5 were mapped to the transmembrane region and to the cytoplasmic region containing the alpha-helical domains, which are distinct from the H3 (SNARE motif). Among all of the Syxs examined, only overexpression of Syx 5 resulted in the accumulation of betaAPP in the ER to cis-Golgi compartment, an attenuation of the amount of the C-terminal fragment (APP-CTF) of betaAPP, and a reduction in the secretion of Abeta peptides. Furthermore, co-expression of Syx 5 with C99 resulted in an increase in APP-CTF and suppressed Abeta secretion. Taken together, these results indicate that Syx 5 may play a specific role in the modulation of processing and/or trafficking of FAD-related proteins in neuronal cells by interaction with PS holoproteins in the early secretory compartment of neuronal cells.
Collapse
Affiliation(s)
- Kei Suga
- Department of Cell Physiology, Kyorin University School of Medicine, Mitaka, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
177
|
Trimmer PA, Borland MK. Differentiated Alzheimer's disease transmitochondrial cybrid cell lines exhibit reduced organelle movement. Antioxid Redox Signal 2005; 7:1101-9. [PMID: 16115014 DOI: 10.1089/ars.2005.7.1101] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The axonal transport and function of organelles like mitochondria and lysosomes may be impaired and play an important role in the pathogenesis of Alzheimer's disease (AD). Unique cybrid cell lines that model AD pathology were created by fusing platelets containing mitochondria from age-matched AD and control volunteers with mitochondrial DNA-free SH-SY5Y human neuroblastoma cells. These cybrid lines were differentiated to form process-bearing neuronal cells. Mitochondria and lysosomes in the neurites of each cybrid line were fluorescently labeled to determine the kinetics of organelle movement. The mitochondria in AD cybrid neurites were elongate, whereas the mitochondria in control cybrid neurites were short and more punctate. The mean velocity of mitochondrial movement, as well as the percentage of moving mitochondria, was significantly reduced in AD cybrids. The velocity of lysosomal movement was also reduced in the processes of AD cybrid cells, suggesting that the axonal transport machinery may be compromised in cybrid cell lines that contain mitochondrial DNA derived from AD patients. Reduced mitochondrial and lysosomal movement in susceptible neurons may compromise function in metabolically demanding structures like synaptic terminals and participate in the terminal degeneration that is characteristic of AD.
Collapse
Affiliation(s)
- Patricia A Trimmer
- Department of Neurology, University of Virginia, Charlottesville, VA 22908, USA.
| | | |
Collapse
|
178
|
Crouch PJ, Blake R, Duce JA, Ciccotosto GD, Li QX, Barnham KJ, Curtain CC, Cherny RA, Cappai R, Dyrks T, Masters CL, Trounce IA. Copper-dependent inhibition of human cytochrome c oxidase by a dimeric conformer of amyloid-beta1-42. J Neurosci 2005; 25:672-9. [PMID: 15659604 PMCID: PMC6725334 DOI: 10.1523/jneurosci.4276-04.2005] [Citation(s) in RCA: 271] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In studies of Alzheimer's disease pathogenesis there is an increasing focus on mechanisms of intracellular amyloid-beta (Abeta) generation and toxicity. Here we investigated the inhibitory potential of the 42 amino acid Abeta peptide (Abeta1-42) on activity of electron transport chain enzyme complexes in human mitochondria. We found that synthetic Abeta1-42 specifically inhibited the terminal complex cytochrome c oxidase (COX) in a dose-dependent manner that was dependent on the presence of Cu2+ and specific "aging" of the Abeta1-42 solution. Maximal COX inhibition occurred when using Abeta1-42 solutions aged for 3-6 h at 30 degrees C. The level of Abeta1-42-mediated COX inhibition increased with aging time up to approximately 6 h and then declined progressively with continued aging to 48 h. Photo-induced cross-linking of unmodified proteins followed by SDS-PAGE analysis revealed dimeric Abeta as the only Abeta species to provide significant temporal correlation with the observed COX inhibition. Analysis of brain and liver from an Alzheimer's model mouse (Tg2576) revealed abundant Abeta immunoreactivity within the brain mitochondria fraction. Our data indicate that endogenous Abeta is associated with brain mitochondria and that Abeta1-42, possibly in its dimeric conformation, is a potent inhibitor of COX, but only when in the presence of Cu2+. We conclude that Cu2+-dependent Abeta-mediated inhibition of COX may be an important contributor to the neurodegeneration process in Alzheimer's disease.
Collapse
Affiliation(s)
- Peter J Crouch
- Centre for Neuroscience, The University of Melbourne, Victoria 3010, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
179
|
Teng FYH, Tang BL. Widespread γ-secretase activity in the cell, but do we need it at the mitochondria? Biochem Biophys Res Commun 2005; 328:1-5. [PMID: 15670741 DOI: 10.1016/j.bbrc.2004.12.131] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2004] [Indexed: 12/16/2022]
Abstract
gamma-Secretase cleavage of the amyloid precursor protein already subjected to a prior beta-secretase cleavage generates beta-amyloid (Abeta) peptide fragments, which are major constituents of the amyloid plagues found in Alzheimer's disease brain tissues. gamma-Secretase activity and components of the gamma-secretase complex are found in the endoplasmic reticulum-Golgi intermediate compartment, the Golgi, the trans-Golgi network, the plasma membrane, the endosomal-lysosomal system and recently, the mitochondria. Abeta fragments have been shown to be neurotoxic, leading to mitochondrial dysfunction and enhanced apoptotic cell death. However, if Abeta fragments are indeed detrimental to neurons, the widespread presence of enzymatic activity that would result in their generation in the cell appears to make little sense. The presence of a gamma-secretase complex in the mitochondrion, an organelle that is particularly susceptible to Abeta toxicity, is even more puzzling. Emerging evidence suggests that both secreted and intracellular Abeta fragments have endogenous functions. Also, while the fibrillogenic Abeta1-42 is clearly neurotoxic, the more abundant and soluble Abeta1-40 is an antioxidant and could potentially be neuroprotective in several ways. A "physiological" amount of Abeta1-40 production by cellular gamma-secretase activity may be part of the neuron's natural counter against oxidative damage, in addition to endogenous roles in neuronal survival and modulation of synaptic transmission. In any case, whether Abeta is produced locally in the mitochondria and the function for mitochondrial Abeta, if produced, is yet unclear.
Collapse
Affiliation(s)
- Felicia Yu Hsuan Teng
- Department of Biochemistry and Programme in Neurobiology and Aging, National University of Singapore, 8 Medical Drive, Singapore 117597, Singapore
| | | |
Collapse
|
180
|
Abstract
A critical role of mitochondrial dysfunction and oxidative damage has been hypothesized in both aging and neurodegenerative diseases. Much of the evidence has been correlative, but recent evidence has shown that the accumulation of mitochondrial DNA mutations accelerates normal aging, leads to oxidative damage to nuclear DNA, and impairs gene transcription. Furthermore, overexpression of the antioxidant enzyme catalase in mitochondria increases murine life span. There is strong evidence from genetics and transgenic mouse models that mitochondrial dysfunction results in neurodegeneration and may contribute to the pathogenesis of Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, hereditary spastic paraplegia, and cerebellar degenerations. Therapeutic approaches targeting mitochondrial dysfunction and oxidative damage in these diseases therefore have great promise.
Collapse
Affiliation(s)
- M Flint Beal
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York-Presbyterian Hospital, New York, NY 10021, USA.
| |
Collapse
|
181
|
Srinivasan V, Pandi-Perumal SR, Maestroni GJ, Esquifino AI, Hardeland R, Cardinali DP. Role of melatonin in neurodegenerative diseases. Neurotox Res 2005; 7:293-318. [PMID: 16179266 DOI: 10.1007/bf03033887] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The pineal product melatonin has remarkable antioxidant properties. It scavenges hydroxyl, carbonate and various organic radicals, peroxynitrite and other reactive nitrogen species. Melatonyl radicals formed by scavenging combine with and, thereby, detoxify superoxide anions in processes terminating the radical reaction chains. Melatonin also enhances the antioxidant potential of the cell by stimulating the synthesis of antioxidant enzymes like superoxide dismutase, glutathione peroxidase and glutathione reductase, and by augmenting glutathione levels. The decline in melatonin production in aged individuals has been suggested as one of the primary contributing factors for the development of age-associated neurodegenerative diseases, e.g., Alzheimer's disease. Melatonin has been shown to be effective in arresting neurodegenerative phenomena seen in experimental models of Alzheimer's disease, Parkinsonism and ischemic stroke. Melatonin preserves mitochondrial homeostasis, reduces free radical generation, e.g., by enhancing mitochondrial glutathione levels, and safeguards proton potential and ATP synthesis by stimulating complex I and IV activities. Therapeutic trials with melatonin have been effective in slowing the progression of Alzheimer's disease but not of Parkinson's disease. Melatonin's efficacy in combating free radical damage in the brain suggests that it may be a valuable therapeutic agent in the treatment of cerebral edema after traumatic brain injury.
Collapse
Affiliation(s)
- V Srinivasan
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Kampus Kesihatan, 16150 Kubang Kerian, Kelantan, Malaysia
| | | | | | | | | | | |
Collapse
|