151
|
Gonzalo-Gil E, Criado G, Santiago B, Dotor J, Pablos JL, Galindo M. Transforming growth factor (TGF)-β signalling is increased in rheumatoid synovium but TGF-β blockade does not modify experimental arthritis. Clin Exp Immunol 2013; 174:245-55. [PMID: 23869798 DOI: 10.1111/cei.12179] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2013] [Indexed: 12/22/2022] Open
Abstract
The aim of this study was to analyse the distribution of regulatory and inhibitory mothers against decapentaplegic homologue (Smad) proteins as markers of active transforming growth factor (TGF)-β signalling in rheumatoid arthritis (RA) synovial tissue and to investigate the effect of TGF-β blockade in the development and progression of collagen-induced arthritis. The expression of Smad proteins in synovial tissues from RA, osteoarthritic and healthy controls was analysed by immunohistochemistry. Arthritis was induced in DBA/1 mice by immunization with chicken type-II collagen (CII). TGF-β was blocked in vivo with the specific peptide p17 starting at the time of immunization or on the day of arthritis onset. T cell population frequencies and specific responses to CII were analysed. The expression of cytokines and transcription factors was quantified in spleen and joint samples. Statistical differences between groups were compared using the Mann-Whitney U-test or one-way analysis of variance (anova) using the Kruskal-Wallis test. p-Smad-2/3 and inhibitory Smad-7 expression were detected in RA and control tissues. In RA, most lymphoid infiltrating cells showed nuclear p-Smad-2/3 without Smad-7 expression. Treatment with TGF-β antagonist did not affect clinical severity, joint inflammation and cartilage damage in collagen-induced arthritis. Frequency of T cell subsets, mRNA levels of cytokines and transcription factors, specific proliferation to CII, serum interleukin (IL)-6 and anti-CII antibodies were comparable in p17 and phosphate-buffered saline (PBS)-treated groups. The pattern of Smad proteins expression demonstrates active TGF-β signalling in RA synovium. However, specific TGF-β blockade does not have a significant effect in the mice model of collagen-induced arthritis.
Collapse
Affiliation(s)
- E Gonzalo-Gil
- Hospital 12 de Octubre, 'i+12', Instituto de Investigación, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
152
|
Abstract
The cytokine TGF-β plays an integral role in regulating immune responses. TGF-β has pleiotropic effects on adaptive immunity, especially in the regulation of effector and regulatory CD4(+) T cell responses. Many immune and nonimmune cells can produce TGF-β, but it is always produced as an inactive complex that must be activated to exert functional effects. Thus, activation of latent TGF-β provides a crucial layer of regulation that controls TGF-β function. In this review, we highlight some of the important functional roles for TGF-β in immunity, focusing on its context-specific roles in either dampening or promoting T cell responses. We also describe how activation of TGF-β controls its function in the immune system, with a focus on the key roles for members of the integrin family in this process.
Collapse
Affiliation(s)
- Mark A Travis
- Manchester Collaborative Center for Inflammation Research
| | | |
Collapse
|
153
|
Daniel V, Wang H, Sadeghi M, Opelz G. Interferon-gamma producing regulatory T cells as a diagnostic and therapeutic tool in organ transplantation. Int Rev Immunol 2013; 33:195-211. [PMID: 24266365 DOI: 10.3109/08830185.2013.845181] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
There is increasing evidence that IFNg plays a major role in both induction of Tregs as well as immunosuppression mediated by IFNg-producing Tregs. The present review focuses on a small subset of iTregs that produces IFNg, comprises only 0.04% of all CD4(+) T lymphocytes in the blood of healthy individuals, and increases strongly during an immune response. IFNg(+) Tregs are induced by IFNg and IL12, making them sensors for inflammatory cytokines. They develop rapidly during inflammation and represent the first line of Tregs that suppress initial immune responses. The pool of IFNg(+) Tregs consists of activated stable immunosuppressive thymus-derived nTregs as well as peripherally proliferating iTregs with in part only transient immunosuppressive function, which limits their diagnostic and therapeutic usefulness in organ transplantation. Apparently, a part of IFNg(+) Tregs dies during the immune response, whereas others, after efficient immunosuppression with resolution of the immune response, differentiate toward Th1 lymphocytes. Goals of further research are the development of appropriate diagnostic tests for rapid and exact determinination of immunosuppressive IFNg(+) iTregs, as well as the induction and propagation of stable immunosuppressive IFNg(+) Tregs that establish and maintain good long-term graft function in transplant recipients.
Collapse
Affiliation(s)
- Volker Daniel
- Department of Transplantation-Immunology, Institute of Immunology, University of Heidelberg, Heidelberg, Germany
| | | | | | | |
Collapse
|
154
|
Śledzińska A, Hemmers S, Mair F, Gorka O, Ruland J, Fairbairn L, Nissler A, Müller W, Waisman A, Becher B, Buch T. TGF-β signalling is required for CD4⁺ T cell homeostasis but dispensable for regulatory T cell function. PLoS Biol 2013; 11:e1001674. [PMID: 24115907 PMCID: PMC3792861 DOI: 10.1371/journal.pbio.1001674] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 08/23/2013] [Indexed: 12/16/2022] Open
Abstract
Signalling by the cytokine TGF-β regulates mature CD4+ T cell populations but is not involved in the survival and function of regulatory T cells. TGF-β is widely held to be critical for the maintenance and function of regulatory T (Treg) cells and thus peripheral tolerance. This is highlighted by constitutive ablation of TGF-β receptor (TR) during thymic development in mice, which leads to a lethal autoimmune syndrome. Here we describe that TGF-β–driven peripheral tolerance is not regulated by TGF-β signalling on mature CD4+ T cells. Inducible TR2 ablation specifically on CD4+ T cells did not result in a lethal autoinflammation. Transfer of these TR2-deficient CD4+ T cells to lymphopenic recipients resulted in colitis, but not overt autoimmunity. In contrast, thymic ablation of TR2 in combination with lymphopenia led to lethal multi-organ inflammation. Interestingly, deletion of TR2 on mature CD4+ T cells does not result in the collapse of the Treg cell population as observed in constitutive models. Instead, a pronounced enlargement of both regulatory and effector memory T cell pools was observed. This expansion is cell-intrinsic and seems to be caused by increased T cell receptor sensitivity independently of common gamma chain-dependent cytokine signals. The expression of Foxp3 and other regulatory T cells markers was not dependent on TGF-β signalling and the TR2–deficient Treg cells retained their suppressive function both in vitro and in vivo. In summary, absence of TGF-β signalling on mature CD4+ T cells is not responsible for breakdown of peripheral tolerance, but rather controls homeostasis of mature T cells in adult mice. TGF-β is a cytokine thought to be critical for the maintenance and function of tolerance in the immune system. In many studies the disruption of TGF-β signalling in CD4+ T cells (a type of white blood cell that coordinates immune responses) has resulted in autoimmune syndromes. We show here that the induced removal of this cytokine's receptor from these specialised blood cells results in an astonishingly mild outcome. Contrary to expectations, the number of regulatory T cells is actually increased, and we find that these cells are not dependent on TGF-β signalling. We also show that removal of the receptor from mature CD4+ T cells does not lead to lethal autoinflammation; only when we removed the receptor during development of the cells did we see the characteristic lethal multi-organ inflammation reported previously in constitutive models of TGF-β receptor ablation. In summary, our findings indicate that although TGF-β regulates maintenance of mature CD4+ T cells, its signals are dispensable for immune tolerance within this cell population.
Collapse
Affiliation(s)
- Anna Śledzińska
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Saskia Hemmers
- Institute for Genetics, University of Cologne, Cologne, Germany
| | - Florian Mair
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Oliver Gorka
- Clinical Chemistry, Klinikum rechts der Isar, Technische Universität München, Germany
| | - Jürgen Ruland
- Clinical Chemistry, Klinikum rechts der Isar, Technische Universität München, Germany
| | - Lynsey Fairbairn
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München, Germany
| | - Anja Nissler
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Werner Müller
- Department of Experimental Immunology, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Ari Waisman
- Institute for Genetics, University of Cologne, Cologne, Germany
- Institute for Molecular Medicine, University Medical Center of the Johannes-Gutenberg University of Mainz, Mainz, Germany
| | - Burkhard Becher
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
- * E-mail: (TB); (BB)
| | - Thorsten Buch
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
- Institute for Genetics, University of Cologne, Cologne, Germany
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München, Germany
- * E-mail: (TB); (BB)
| |
Collapse
|
155
|
Fernando J, Faber TW, Pullen NA, Falanga YT, Kolawole EM, Oskeritzian CA, Barnstein BO, Bandara G, Li G, Schwartz LB, Spiegel S, Straus DB, Conrad DH, Bunting KD, Ryan JJ. Genotype-dependent effects of TGF-β1 on mast cell function: targeting the Stat5 pathway. THE JOURNAL OF IMMUNOLOGY 2013; 191:4505-13. [PMID: 24068671 DOI: 10.4049/jimmunol.1202723] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We previously demonstrated that TGF-β1 suppresses IgE-mediated signaling in human and mouse mast cells in vitro, an effect that correlated with decreased expression of the high-affinity IgE receptor, FcεRI. The in vivo effects of TGF-β1 and the means by which it suppresses mast cells have been less clear. This study shows that TGF-β1 suppresses FcεRI and c-Kit expression in vivo. By examining changes in cytokine production concurrent with FcεRI expression, we found that TGF-β1 suppresses TNF production independent of FcεRI levels. Rather, IgE-mediated signaling was altered. TGF-β1 significantly reduced expression of Fyn and Stat5, proteins critical for cytokine induction. These changes may partly explain the effects of TGF-β1, because Stat5B overexpression blocked TGF-mediated suppression of IgE-induced cytokine production. We also found that Stat5B is required for mast cell migration toward stem cell factor, and that TGF-β1 reduced this migration. We found evidence that genetic background may alter TGF responses. TGF-β1 greatly reduced mast cell numbers in Th1-prone C57BL/6, but not Th2-prone 129/Sv mice. Furthermore, TGF-β1 did not suppress IgE-induced cytokine release and did increase c-Kit-mediated migration in 129/Sv mast cells. These data correlated with high basal Fyn and Stat5 expression in 129/Sv cells, which was not reduced by TGF-β1 treatment. Finally, primary human mast cell populations also showed variable sensitivity to TGF-β1-mediated changes in Stat5 and IgE-mediated IL-6 secretion. We propose that TGF-β1 regulates mast cell homeostasis, and that this feedback suppression may be dependent on genetic context, predisposing some individuals to atopic disease.
Collapse
Affiliation(s)
- Josephine Fernando
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
156
|
Lunn RA, Sumar N, Bansal AS, Treleaven J. Cytokine profiles in stem cell transplantation: Possible use as a predictor of graft-versus-host disease. Hematology 2013; 10:107-14. [PMID: 16019456 DOI: 10.1080/10245330400001975] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Graft-versus-host disease (GvHD) complicates many allogeneic stem cell transplants (alloSCT), and several factors are known to be associated with the development of GvHD besides human leucocyte antigen (HLA) incompatibility. We investigated whether changes in serum levels of soluble IL-2 receptor (sIL-2Ralpha), tumour necrosis factor-alpha (TNF-alpha), transforming growth factor-beta (TGF-beta), vascular endothelial growth factor (VEGF) and soluble Fas (sFas) correlated with the development of GvHD in patients undergoing SCT, and might thus be potentially of use to anticipate the development of GvHD, allowing early modification of immunosuppressive therapy.sIL2Ralpha and sFas levels were significantly raised in allograft, autograft (allo and auto) and non-graft groups compared to the normal controls (HC), but there was no statistical difference between the three patient groups. TNF-alpha was raised in the auto and allo groups and the non-graft patients compared to the HC group (median 4.37 pg/ml), but only reached significance in the allo group (median 6.02 pg/ml; p = 0.008) when this was compared with the non-graft patients. There was no significant difference in TGF-ss levels between any of the groups. The median serum VEGF levels were decreased in allo and auto patients compared to HC, (31 and 62 pg/ml versus 90 pg/ml, respectively), with a significant difference in the auto group (p = 0.007). VEGF levels were significantly lower in the auto versus the allo group (p = 0.008) and also in the auto versus the non-graft group (median 104 pg/ml; p = 0.011). When the allo group was divided into patients who developed GvHD and those who did not, serum VEGF levels were significantly higher in those with GvHD (p = 0.028).
Collapse
Affiliation(s)
- R A Lunn
- Department of Clinical Immunology, St Helier Hospital, Surrey, SM5 1AA, Carshalton, UK
| | | | | | | |
Collapse
|
157
|
Clozel T, Yang S, Elstrom RL, Tam W, Martin P, Kormaksson M, Banerjee S, Vasanthakumar A, Culjkovic B, Scott DW, Wyman S, Leser M, Shaknovich R, Chadburn A, Tabbo F, Godley LA, Gascoyne RD, Borden KL, Inghirami G, Leonard JP, Melnick A, Cerchietti L. Mechanism-based epigenetic chemosensitization therapy of diffuse large B-cell lymphoma. Cancer Discov 2013; 3:1002-19. [PMID: 23955273 PMCID: PMC3770813 DOI: 10.1158/2159-8290.cd-13-0117] [Citation(s) in RCA: 152] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
UNLABELLED Although aberrant DNA methylation patterning is a hallmark of cancer, the relevance of targeting DNA methyltransferases (DNMT) remains unclear for most tumors. In diffuse large B-cell lymphoma (DLBCL) we observed that chemoresistance is associated with aberrant DNA methylation programming. Prolonged exposure to low-dose DNMT inhibitors (DNMTI) reprogrammed chemoresistant cells to become doxorubicin sensitive without major toxicity in vivo. Nine genes were recurrently hypermethylated in chemoresistant DLBCL. Of these, SMAD1 was a critical contributor, and reactivation was required for chemosensitization. A phase I clinical study was conducted evaluating azacitidine priming followed by standard chemoimmunotherapy in high-risk patients newly diagnosed with DLBCL. The combination was well tolerated and yielded a high rate of complete remission. Pre- and post-azacitidine treatment biopsies confirmed SMAD1 demethylation and chemosensitization, delineating a personalized strategy for the clinical use of DNMTIs. SIGNIFICANCE The problem of chemoresistant DLBCL remains the most urgent challenge in the clinical management of patients with this disease. We describe a mechanism-based approach toward the rational translation of DNMTIs for the treatment of high-risk DLBCL.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Antimetabolites, Antineoplastic/therapeutic use
- Azacitidine/adverse effects
- Azacitidine/therapeutic use
- Cell Line, Tumor
- DNA Damage/drug effects
- DNA Methylation/genetics
- DNA Modification Methylases/antagonists & inhibitors
- DNA Modification Methylases/metabolism
- Doxorubicin/pharmacology
- Drug Resistance, Neoplasm/genetics
- Epigenesis, Genetic
- Humans
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/genetics
- Middle Aged
- RNA Interference
- RNA, Small Interfering
- Smad1 Protein/genetics
- Young Adult
Collapse
Affiliation(s)
- Thomas Clozel
- Division of Hematology and Oncology, Medicine Department, Weill Cornell Medical College, Cornell University, United States
| | - ShaoNing Yang
- Division of Hematology and Oncology, Medicine Department, Weill Cornell Medical College, Cornell University, United States
| | - Rebecca L. Elstrom
- Division of Hematology and Oncology, Medicine Department, Weill Cornell Medical College, Cornell University, United States
- Weill Cornell Cancer Center, Weill Cornell Medical College, Cornell University, United States
| | - Wayne Tam
- Pathology Department, Weill Cornell Medical College, Cornell University, United States
| | - Peter Martin
- Division of Hematology and Oncology, Medicine Department, Weill Cornell Medical College, Cornell University, United States
| | | | - Samprit Banerjee
- Division of Biostatistics and Epidemiology, Public Health Department, Weill Cornell Medical College, Cornell University, United States
| | - Aparna Vasanthakumar
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, United States
| | - Biljana Culjkovic
- Institute for Research in Immunology and Cancer & Department of Pathology and Cell Biology, University of Montreal, Canada
| | - David W. Scott
- Centre for Lymphoid Cancer, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Sarah Wyman
- Division of Hematology and Oncology, Medicine Department, Weill Cornell Medical College, Cornell University, United States
| | - Michael Leser
- Division of Hematology and Oncology, Medicine Department, Weill Cornell Medical College, Cornell University, United States
| | - Rita Shaknovich
- Pathology Department, Weill Cornell Medical College, Cornell University, United States
| | - Amy Chadburn
- Department of Pathology, Northwestern University, Chicago, United States
| | - Fabrizio Tabbo
- Department of Oncological Sciences, University of Turin, Turin, Italy
| | - Lucy A. Godley
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, United States
| | - Randy D. Gascoyne
- Centre for Lymphoid Cancer, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Katherine L. Borden
- Institute for Research in Immunology and Cancer & Department of Pathology and Cell Biology, University of Montreal, Canada
| | - Giorgio Inghirami
- Department of Oncological Sciences, University of Turin, Turin, Italy
| | - John P. Leonard
- Division of Hematology and Oncology, Medicine Department, Weill Cornell Medical College, Cornell University, United States
- Weill Cornell Cancer Center, Weill Cornell Medical College, Cornell University, United States
| | - Ari Melnick
- Division of Hematology and Oncology, Medicine Department, Weill Cornell Medical College, Cornell University, United States
- Weill Cornell Cancer Center, Weill Cornell Medical College, Cornell University, United States
- Department of Pharmacology, Weill Cornell Medical College, Cornell University, United States
| | - Leandro Cerchietti
- Division of Hematology and Oncology, Medicine Department, Weill Cornell Medical College, Cornell University, United States
- Weill Cornell Cancer Center, Weill Cornell Medical College, Cornell University, United States
| |
Collapse
|
158
|
Abstract
The first successful kidney transplantation between monozygotic identical twins did not require any immunosuppressive drugs. Clinical application of azathioprine and glucocorticosteroids allowed the transfer of organs between genetically disparate donors and recipients. Transplantation is now the standard of care, a life-saving procedure for patients with failed organs. Progress in our understanding of the immunobiology of rejection has been translated to the development of immunosuppressive agents targeting T cells, B cells, plasma cells, costimulatory signals, complement products, and antidonor antibodies. Modern immunopharmacologic interventions have contributed to the clinical success observed following transplantation but challenges remain in personalizing immunosuppressive therapy.
Collapse
Affiliation(s)
- Choli Hartono
- Division of Nephrology and Hypertension, Departments of Medicine and Transplantation Medicine, New York Presbyterian Hospital-Weill Cornell Medical College, New York, New York 10065
| | | | | |
Collapse
|
159
|
Takai S, Schlom J, Tucker J, Tsang KY, Greiner JW. Inhibition of TGF-β1 signaling promotes central memory T cell differentiation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2013; 191:2299-307. [PMID: 23904158 PMCID: PMC3889640 DOI: 10.4049/jimmunol.1300472] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
This study affirmed that isolated CD8(+) T cells express mRNA and produce TGF-β following cognate peptide recognition. Blockage of endogenous TGF-β with either a TGF-β-blocking Ab or a small molecule inhibitor of TGF-βRI enhances the generation of CD62L(high)/CD44(high) central memory CD8(+) T cells accompanied with a robust recall response. Interestingly, the augmentation within the central memory T cell pool occurs in lieu of cellular proliferation or activation, but with the expected increase in the ratio of the Eomesoderm/T-bet transcriptional factors. Yet, the signal transduction pathway(s) seems to be noncanonical, independent of SMAD or mammalian target of rapamycin signaling. Enhancement of central memory generation by TGF-β blockade is also confirmed in human PBMCs. The findings underscore the role(s) that autocrine TGF-β plays in T cell homeostasis and, in particular, the balance of effector/memory and central/memory T cells. These results may provide a rationale to targeting TGF-β signaling to enhance Ag-specific CD8(+) T cell memory against a lethal infection or cancer.
Collapse
Affiliation(s)
- Shinji Takai
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
160
|
Sumitomo S, Fujio K, Okamura T, Morita K, Ishigaki K, Suzukawa K, Kanaya K, Kondo K, Yamasoba T, Furukawa A, Kitahara N, Shoda H, Shibuya M, Okamoto A, Yamamoto K. Transcription factor early growth response 3 is associated with the TGF-β1 expression and the regulatory activity of CD4-positive T cells in vivo. THE JOURNAL OF IMMUNOLOGY 2013; 191:2351-9. [PMID: 23904169 DOI: 10.4049/jimmunol.1202106] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
TGF-β1 is an important anti-inflammatory cytokine, and several regulatory T cell (Treg) subsets including CD4(+)CD25(+)Foxp3(+) Tregs and Th3 cells have been reported to exert regulatory activity via the production of TGF-β1. However, it has not yet been elucidated which transcription factor is involved in TGF-β1 transcription. Early growth response 3 (Egr-3) is a zinc-finger transcription factor that creates and maintains T cell anergy. In this study, we found that Egr-3 induces the expression of TGF-β1 in both murine and human CD4(+) T cells. Egr-3 overexpression in murine CD4(+) T cells induced the production of TGF-β1 and enhanced the phosphorylation of STAT3, which is associated with TGF-β1 transcription. Moreover, Egr-3 conferred Ag-specific regulatory activity on murine CD4(+) T cells. In collagen-induced arthritis and delayed-type hypersensitivity model mice, Egr-3-transduced CD4(+) T cells exhibited significant regulatory activity in vivo. In particular, the suppression of delayed-type hypersensitivity depended on TGF-β1. In human tonsils, we found that CD4(+)CD25(-)CD45RO(-)lymphocyte activation gene 3 (LAG3)(-) T cells express membrane-bound TGF-β1 in an EGR3-dependent manner. Gene-expression analysis revealed that CD4(+)CD25(-)CD45RO(-)LAG3(-) T cells are quite different from conventional CD4(+)CD25(+)Foxp3(+) Tregs. Intriguingly, the CD4(+)CD25(-)CD45RO(-)LAG3(-) T cells suppressed graft-versus-host disease in immunodeficient mice transplanted with human PBMCs. Our results suggest that Egr-3 is a transcription factor associated with TGF-β1 expression and in vivo regulatory activity in both mice and humans.
Collapse
Affiliation(s)
- Shuji Sumitomo
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
161
|
Abstract
Active, but dysfunctional, immune responses in patients with cancer have been studied in several tumour types, but owing to the heterogeneity of cancer theories of common reaction mechanisms seem to be obsolete. In this Review of published clinical studies of patients with cancer, expression and interplay of the following cytokines are examined: interleukin 2, interleukin 6, interleukin 8, interleukin 10, interleukin 12, interleukin 18, tumour necrosis factor α (TNFα), transforming growth factor β (TGFβ), interferon-γ, HLA-DR, macrophage migration inhibitory factor (MIF), and C-X-C motif chemokine receptor 4 (CXCR4). Clinical data were analysed in a non-quantitative descriptive manner and interpreted with regard to experimentally established physiological cytokine interactions. The clinical cytokine pattern that emerged suggests that simultaneous immunostimulation and immunosuppression occur in patients with cancer, with increased concentrations of the cytokines MIF, TNFα, interleukin 6, interleukin 8, interleukin 10, interleukin 18, and TGFβ. This specific cytokine pattern seems to have a prognostic effect, since high interleukin 6 or interleukin 10 serum concentrations are associated with negative prognoses in independent cancer types. Although immunostimulatory cytokines are involved in local cancer-associated inflammation, cancer cells seem to be protected from immunological eradication by cytokine-mediated local immunosuppression and a resulting defect of the interleukin 12-interferon-γ-HLA-DR axis. Cytokines produced by tumours might have a pivotal role in this defect. A working hypothesis is that the cancer-specific and histology-independent uniform cytokine cascade is one of the manifestations of the underlying paraneoplastic systemic disease, and this hypothesis links the stage of cancer with both the functional status of the immune system and the patient's prognosis. Neutralisation of this cytokine pattern could offer novel and so far unexploited treatment approaches for cancer.
Collapse
|
162
|
|
163
|
Zhao H, Karman J, Jiang JL, Zhang J, Gumlaw N, Lydon J, Zhou Q, Qiu H, Jiang C, Cheng SH, Zhu Y. A bispecific protein capable of engaging CTLA-4 and MHCII protects non-obese diabetic mice from autoimmune diabetes. PLoS One 2013; 8:e63530. [PMID: 23704916 PMCID: PMC3660570 DOI: 10.1371/journal.pone.0063530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 04/03/2013] [Indexed: 11/20/2022] Open
Abstract
Crosslinking ligand-engaged cytotoxic T lymphocyte antigen-4 (CTLA-4) to the T cell receptor (TCR) with a bispecific fusion protein (BsB) comprised of a mutant mouse CD80 and lymphocyte activation antigen-3 (LAG-3) has been shown to attenuate TCR signaling and to direct T-cell differentiation toward Foxp3+ regulatory T cells (Tregs) in an allogenic mixed lymphocyte reaction (MLR). Here, we show that antigen-specific Tregs can also be induced in an antigen-specific setting in vitro. Treatment of non-obese diabetic (NOD) female mice between 9–12 weeks of age with a short course of BsB elicited a transient increase of Tregs in the blood and moderately delayed the onset of autoimmune type 1 diabetes (T1D). However, a longer course of treatment (10 weeks) of 4–13 weeks-old female NOD animals with BsB significantly delayed the onset of disease or protected animals from developing diabetes, with only 13% of treated animals developing diabetes by 35 weeks of age compared to 80% of the animals in the control group. Histopathological analysis of the pancreata of the BsB-treated mice that remained non-diabetic revealed the preservation of insulin-producing β-cells despite the presence of different degrees of insulitis. Thus, a bifunctional protein capable of engaging CTLA-4 and MHCII and indirectly co-ligating CTLA-4 to the TCR protected NOD mice from developing T1D.
Collapse
Affiliation(s)
- Hongmei Zhao
- Genzyme, a Sanofi Company, Framingham, Massachusetts, United States of America
| | - Jozsef Karman
- Genzyme, a Sanofi Company, Framingham, Massachusetts, United States of America
| | - Ji-Lei Jiang
- Genzyme, a Sanofi Company, Framingham, Massachusetts, United States of America
| | - Jinhua Zhang
- Genzyme, a Sanofi Company, Framingham, Massachusetts, United States of America
| | - Nathan Gumlaw
- Genzyme, a Sanofi Company, Framingham, Massachusetts, United States of America
| | - John Lydon
- Genzyme, a Sanofi Company, Framingham, Massachusetts, United States of America
| | - Qun Zhou
- Genzyme, a Sanofi Company, Framingham, Massachusetts, United States of America
| | - Huawei Qiu
- Genzyme, a Sanofi Company, Framingham, Massachusetts, United States of America
| | - Canwen Jiang
- Genzyme, a Sanofi Company, Framingham, Massachusetts, United States of America
| | - Seng H. Cheng
- Genzyme, a Sanofi Company, Framingham, Massachusetts, United States of America
| | - Yunxiang Zhu
- Genzyme, a Sanofi Company, Framingham, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
164
|
Haykal S, Zhou Y, Marcus P, Salna M, Machuca T, Hofer SOP, Waddell TK. The effect of decellularization of tracheal allografts on leukocyte infiltration and of recellularization on regulatory T cell recruitment. Biomaterials 2013; 34:5821-32. [PMID: 23663928 DOI: 10.1016/j.biomaterials.2013.04.044] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 04/23/2013] [Indexed: 12/12/2022]
Abstract
Tracheal transplantation without immunosuppressive therapy has been accomplished with a tissue-engineering approach using decellularized biological scaffolds in combination with recipient progenitor cells. The mechanisms of immune response directed towards these tracheal allografts have not been fully determined. In this study, we evaluated the immunogenicity of these grafts at the protein level, and functionally, in vitro and in vivo in a large animal model. Long-segment circumferential tracheal allografts were decellularized using two different protocols and recellularized using recipient mesenchymal stromal cells (MSC) and tracheal epithelial progenitor cells (TEC). Residual MHCI and MHCII immunostaining was found surrounding the submucosal glands despite cyclical decellularization. In an in vitro lymphocyte proliferation assay, CD4+ T cells continued to proliferate on decellularized pieces and this proliferation was inhibited by co-culture with autologous MSC. Allografts were heterotopically transplanted under a muscle flap in the neck of the recipients and decellularization was found to delay leukocyte infiltration but resulted in eventual cartilage degradation. Recellularization prevented this infiltration up to 3 weeks post-transplantation and allowed for preservation of the cartilage. The immune cells found within these grafts included a significant number of CD4+CD25+Foxp3+ regulatory T cells. Furthermore, gene expression of anti-inflammatory cytokines, such as IL-10 and TGF-β1, involved in proliferation, differentiation and function of regulatory T cells was found in these grafts. These results indicate that the immunological modification induced by recellularized tracheal scaffolds is an active process involving the recruitment of immunosuppressive cells, rather than simply the removal of donor-derived antigenic components.
Collapse
Affiliation(s)
- Siba Haykal
- Latner Thoracic Surgery Research Laboratories, Division of Thoracic Surgery, University Health Network and McEwen Centre for Regenerative Medicine, Toronto, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
165
|
Zhou AX, Kozhaya L, Fujii H, Unutmaz D. GARP-TGF-β complexes negatively regulate regulatory T cell development and maintenance of peripheral CD4+ T cells in vivo. THE JOURNAL OF IMMUNOLOGY 2013; 190:5057-64. [PMID: 23576681 DOI: 10.4049/jimmunol.1300065] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The role of surface-bound TGF-β on regulatory T cells (Tregs) and the mechanisms that mediate its functions are not well defined. We recently identified a cell-surface molecule called Glycoprotein A Repetitions Predominant (GARP), which is expressed specifically on activated Tregs and was found to bind latent TGF-β and mediate a portion of Treg suppressive activity in vitro. In this article, we address the role of GARP in regulating Treg and conventional T cell development and immune suppression in vivo using a transgenic mouse expressing GARP on all T cells. We found that, despite forced expression of GARP on all T cells, stimulation through the TCR was required for efficient localization of GARP to the cell surface. In addition, IL-2 signals enhanced GARP cell surface expression specifically on Tregs. GARP-transgenic CD4(+) T cells and Tregs, especially those expressing higher levels of GARP, were significantly reduced in the periphery. Mature Tregs, but not conventional CD4(+) T cells, were also reduced in the thymus. CD4(+) T cell reduction was more pronounced within the effector/memory subset, especially as the mouse aged. In addition, GARP-overexpressing CD4(+) T cells stimulated through the TCR displayed reduced proliferative capacity, which was restored by inhibiting TGF-β signaling. Furthermore, inhibiting TGF-β signals greatly enhanced surface expression of GARP on Tregs and blocked the induction of Foxp3 in activated CD4(+) T cells overexpressing GARP. These findings suggest a role for GARP in natural and induced Treg development through activation of bound latent TGF-β and signaling, which negatively regulates GARP expression on Tregs.
Collapse
Affiliation(s)
- Angela X Zhou
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA
| | | | | | | |
Collapse
|
166
|
Bonnamain V, Mathieux E, Thinard R, Thébault P, Nerrière-Daguin V, Lévêque X, Anegon I, Vanhove B, Neveu I, Naveilhan P. Expression of heme oxygenase-1 in neural stem/progenitor cells as a potential mechanism to evade host immune response. Stem Cells 2013; 30:2342-53. [PMID: 22888011 DOI: 10.1002/stem.1199] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Besides their therapeutic benefit as cell source, neural stem/progenitor cells (NSPCs) exhibit immunosuppressive properties of great interest for modulating immune response in the central nervous system. To decipher the mechanisms of NSPC-mediated immunosuppression, activated T cells were exposed to NSPCs isolated from fetal rat brains. Analyses revealed that NSPCs inhibited T-cell proliferation and interferon-gamma production in a dose-dependent manner. A higher proportion of helper T cells (CD4+ T cells) was found in the presence of NSPCs, but analyses of FoxP3 population indicated that T-cell suppression was not secondary to an induction of suppressive regulatory T cells (FoxP3+ CD4+ CD25+). Conversely, induction of the high affinity interleukin-2 (IL-2) receptor (CD25) and the inability of IL-2 to rescue T-cell proliferation suggest that NSPCs display immunosuppressive activity without affecting T-cell activation. Cultures in Transwell chambers or addition of NSPC-conditioned medium to activated T cells indicated that part of the suppressive activity was not contact dependent. We therefore searched for soluble factors that mediate NSPC immunosuppression. We found that NSPCs express several immunosuppressive molecules, but the ability of these cells to inhibit T-cell proliferation was only counteracted by heme oxygenase (HO) inhibitors in association or not with nitric oxide synthase inhibitors. Taken together, our findings highlight a dynamic crosstalk between NSPCs and T lymphocytes and provide the first evidence of an implication of HO-1 in mediating the immunosuppressive effects of the NSPCs.
Collapse
|
167
|
Abstract
Various physiologically relevant processes are regulated by the interaction of the receptor tyrosine kinase (c-Kit) and its ligand stem cell factor (SCF), with SCF known to be the most important growth factor for mast cells (MCs). In spite of their traditional role in allergic disorders and innate immunity, MCs have lately emerged as versatile modulators of a variety of physiologic and pathologic processes. Here we show that MCs are critical for pregnancy success. Uterine MCs presented a unique phenotype, accumulated during receptivity and expanded upon pregnancy establishment. KitW-sh/W-sh mice, whose MC deficiency is based on restricted c-Kit gene expression, exhibited severely impaired implantation, which could be completely rescued by systemic or local transfer of wild-type bone marrow-derived MCs. Transferred wild-type MCs favored normal implantation, induced optimal spiral artery remodeling and promoted the expression of MC proteases, transforming growth factor-β and connective tissue growth factor. MCs contributed to trophoblast survival, placentation and fetal growth through secretion of the glycan-binding protein galectin-1. Our data unveil unrecognized roles for MCs at the fetomaternal interface with critical implications in reproductive medicine.
Collapse
|
168
|
Dunn GP, Fecci PE, Curry WT. Cancer immunoediting in malignant glioma. Neurosurgery 2013; 71:201-22; discussion 222-3. [PMID: 22353795 DOI: 10.1227/neu.0b013e31824f840d] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Significant work from many laboratories over the last decade in the study of cancer immunology has resulted in the development of the cancer immunoediting hypothesis. This contemporary framework of the naturally arising immune system-tumor interaction is thought to comprise 3 phases: elimination, wherein immunity subserves an extrinsic tumor suppressor function and destroys nascent tumor cells; equilibrium, wherein tumor cells are constrained in a period of latency under immune control; and escape, wherein tumor cells outpace immunity and progress clinically. In this review, we address in detail the relevance of the cancer immunoediting concept to neurosurgeons and neuro-oncologists treating and studying malignant glioma by exploring the de novo immune response to these tumors, how these tumors may persist in vivo, the mechanisms by which these cells may escape/attenuate immunity, and ultimately how this concept may influence our immunotherapeutic approaches.
Collapse
Affiliation(s)
- Gavin P Dunn
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | |
Collapse
|
169
|
Wiegering V, Winkler B, Haubitz I, Wölfl M, Schlegel PG, Eyrich M. Lower TGFß serum levels and higher frequency of IFNγ-producing T cells during early immune reconstitution in surviving children after allogeneic stem cell transplantation. Pediatr Blood Cancer 2013; 60:121-8. [PMID: 22623061 DOI: 10.1002/pbc.24208] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Accepted: 05/02/2012] [Indexed: 01/22/2023]
Abstract
BACKGROUND Allogeneic hematopoietic stem cell transplantation (SCT) is increasingly used as a salvage therapy for patients with high-risk malignancies as well as life-threatening non-malignant diseases. However, only limited data about the association between outcome and functional parameters of recovering lymphocytes are available so far. PROCEDURES In this prospective study of 19 pediatric SCT recipients, we serially evaluated immune parameters quantitatively and qualitatively before and throughout allogeneic SCT. These data were analyzed with respect to survival. RESULTS Age, gender, GvHD, and type of graft were not different between surviving and non-surviving patients. Notably, in our cohort there was no case of transplant-related or infectious mortality. However, with the exception of two patients with advanced MDS, all patients not in complete remission (CR) relapsed in addition to three patients in higher CR (n = 7). All seven patients relapsing after allogeneic SCT later succumbed to their disease recurrence. Uni- and multivariate analysis showed that relapsing patients had higher TGFß serum levels as well as lower percentages of IFNγ-producing T cells before and early after transplantation. Furthermore, relapsing patients had a further decline in their thymic function between day 60 and 120 whereas non-relapsing patients already showed increasing TREC values during this time interval. CONCLUSIONS Collectively, patients who later relapse show a different pattern of immune reconstitution before and at early time points post-transplantation.
Collapse
Affiliation(s)
- Verena Wiegering
- Pediatric Stem Cell Transplant Unit, University Children's Hospital, Germany
| | | | | | | | | | | |
Collapse
|
170
|
Lebrun JJ. The Dual Role of TGFβ in Human Cancer: From Tumor Suppression to Cancer Metastasis. ISRN MOLECULAR BIOLOGY 2012; 2012:381428. [PMID: 27340590 PMCID: PMC4899619 DOI: 10.5402/2012/381428] [Citation(s) in RCA: 254] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 10/12/2012] [Indexed: 12/31/2022]
Abstract
The transforming growth factor-beta (TGFβ) superfamily encompasses widespread and evolutionarily conserved polypeptide growth factors that regulate and orchestrate growth and differentiation in all cell types and tissues. While they regulate asymmetric cell division and cell fate determination during early development and embryogenesis, TGFβ family members play a major regulatory role in hormonal and immune responses, cell growth, cell death and cell immortalization, bone formation, tissue remodeling and repair, and erythropoiesis throughout adult life. The biological and physiological functions of TGFβ, the founding member of this family, and its receptors are of central importance to human diseases, particularly cancer. By regulating cell growth, death, and immortalization, TGFβ signaling pathways exert tumor suppressor effects in normal cells and early carcinomas. Thus, it is not surprising that a high number of human tumors arise due to mutations or deletions in the genes coding for the various TGFβ signaling components. As tumors develop and progress, these protective and cytostatic effects of TGFβ are often lost. TGFβ signaling then switches to promote cancer progression, invasion, and tumor metastasis. The molecular mechanisms underlying this dual role of TGFβ in human cancer will be discussed in depth in this paper, and it will highlight the challenge and importance of developing novel therapeutic strategies specifically aimed at blocking the prometastatic arm of the TGFβ signaling pathway without affecting its tumor suppressive effects.
Collapse
Affiliation(s)
- Jean-Jacques Lebrun
- Division of Medical Oncology, Department of Medicine, Royal Victoria Hospital, McGill University Health Center, Montreal, QC, Canada H3A 1A1
| |
Collapse
|
171
|
Unresponsiveness of Mycobacterium w vaccine in managing acute and chronic Leishmania donovani infections in mouse and hamster. Parasitology 2012; 140:435-44. [PMID: 23253783 DOI: 10.1017/s0031182012001850] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The role of Mycobacterium w (Mw) vaccine as an immunomodulator and immunoprophylactant in the treatment of mycobacterial diseases (leprosy and pulmonary tuberculosis) is well established. The fact that it shares common antigens with leishmanial parasites prompted its assessment as an immunostimulant and as an adjunct to known anti-leishmanials that may help in stimulating the suppressed immune status of Leishmania donovani-infected individuals. The efficacy of Mw vaccine was assessed as an immunomodulator, prophylactically either alone or in combination with anti-leishmanial vaccine, as well as therapeutically as an adjunct to anti-leishmanial treatment in L. donovani-infected hamsters, representing a chronic human Visceral Leishmaniasis (VL) model. Similarly, its efficacy was also evaluated in L. donovani-infected BALB/c mice, representing an acute VL model. The preliminary studies revealed that Mw was ineffective as an immunostimulant and/or immunoprophylactant in hamsters infected with L. donovani, as estimated by T-cell immunological responses. However, in the BALB/c mice-VL model it appeared as an effective immunostimulant but a futile prophylactic agent. It is therefore inferred that, contrary to its role in managing tuberculosis and leprosy infections, Mw vaccine has not been successful in controlling VL infection, emphasizing the need to find detailed explanations for the failure of this vaccine against the disease.
Collapse
|
172
|
|
173
|
Tachibana Y, Nakano Y, Nagaoka K, Kikuchi M, Nambo Y, Haneda S, Matsui M, Miyake YI, Imakawa K. Expression of endometrial immune-related genes possibly functioning during early pregnancy in the mare. J Reprod Dev 2012; 59:85-91. [PMID: 23138119 PMCID: PMC3943239 DOI: 10.1262/jrd.2012-142] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Despite enormous efforts, biochemical and molecular mechanisms associated with equine
reproduction, particularly processes of pregnancy establishment, have not been well
characterized. Previously, PCR-selected suppression subtraction hybridization analysis was
executed to identify unique molecules functioning in the equine endometrium during periods
of pregnancy establishment, and granzyme B (GZMB) cDNA was found in the
pregnant endometrial cDNA library. Because GZMB is produced from natural killer (NK)
cells, endometrial expression of GZMB and immune-related transcripts were
characterized in this study. The level of GZMB mRNA is higher in the
pregnant endometrium than in non-pregnant ones. This expression was also confirmed through
Western blot and immunohistochemical analyses. IL-2 mRNA declined as
pregnancy progressed, while IL-15, IFNG and
TGFB1 transcripts increased on day 19 and/or 25. Analyses of
IL-4 and IL-12 mRNAs demonstrated the increase in
these transcripts as pregnancy progressed. Increase in CCR5 and
CCR4 mRNAs indicated that both Th1 and Th2 cells coexisted in the day
25 pregnant endometrium. Taken together, the endometrial expression of immune-related
transcripts suggests that immunological responses are present even before the
trophectoderm actually attaches to the uterine epithelial cells.
Collapse
Affiliation(s)
- Yurika Tachibana
- Laboratory of Animal Breeding, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
174
|
Human monocytes differentiate into dendritic cells subsets that induce anergic and regulatory T cells in sepsis. PLoS One 2012; 7:e47209. [PMID: 23071758 PMCID: PMC3468528 DOI: 10.1371/journal.pone.0047209] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 09/11/2012] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Sepsis is a multifactorial pathology with high susceptibility to secondary infections. Innate and adaptive immunity are affected in sepsis, including monocyte deactivation. METHODOLOGY/PRINCIPAL FINDINGS To better understand the effects of alterations in monocytes on the regulation of immune responses during sepsis, we analyzed their differentiation in dendritic cell (DC). Cells from septic patients differentiated overwhelmingly into CD1a-negative DC, a population that was only a minor subset in controls and that is so far poorly characterized. Analysis of T cell responses induced with purified CD1a-negative and CD1a+ DC indicated that (i) CD1a-negative DC from both healthy individuals and septic patients fail to induce T cell proliferation, (ii) TGFβ and IL-4 were strongly produced in mixed leukocyte reaction (MLR) with control CD1a-negative DC; reduced levels were produced with patients DC together with a slight induction of IFNγ, (iii) compared to controls, CD1a+ DC derived from septic patients induced 3-fold more Foxp3+ T cells. CONCLUSION/SIGNIFICANCE Our results indicate a strong shift in DC populations derived from septic patients' monocytes with expanded cell subsets that induce either T cell anergy or proliferation of T cells with regulatory potential. Lower regulatory cytokines induction on a per cell basis by CD1a-negative dendritic cells from patients points however to a down regulation of immune suppressive abilities in these cells.
Collapse
|
175
|
Chou CK, Schietinger A, Liggitt HD, Tan X, Funk S, Freeman GJ, Ratliff TL, Greenberg NM, Greenberg PD. Cell-intrinsic abrogation of TGF-β signaling delays but does not prevent dysfunction of self/tumor-specific CD8 T cells in a murine model of autochthonous prostate cancer. THE JOURNAL OF IMMUNOLOGY 2012; 189:3936-46. [PMID: 22984076 DOI: 10.4049/jimmunol.1201415] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Adoptive T cell therapy (ACT) for the treatment of established cancers is actively being pursued in clinical trials. However, poor in vivo persistence and maintenance of antitumor activity of transferred T cells remain major problems. TGF-β is a potent immunosuppressive cytokine that is often expressed at high levels within the tumor microenvironment, potentially limiting T cell-mediated antitumor activity. In this study, we used a model of autochthonous murine prostate cancer to evaluate the effect of cell-intrinsic abrogation of TGF-β signaling in self/tumor-specific CD8 T cells used in ACT to target the tumor in situ. We found that persistence and antitumor activity of adoptively transferred effector T cells deficient in TGF-β signaling were significantly improved in the cancerous prostate. However, over time, despite persistence in peripheral lymphoid organs, the numbers of transferred cells in the prostate decreased and the residual prostate-infiltrating T cells were no longer functional. These findings reveal that TGF-β negatively regulates the accumulation and effector function of transferred self/tumor-specific CD8 T cells and highlight that, when targeting a tumor Ag that is also expressed as a self-protein, additional substantive obstacles are operative within the tumor microenvironment, potentially hampering the success of ACT for solid tumors.
Collapse
Affiliation(s)
- Cassie K Chou
- Department of Immunology, School of Medicine, University of Washington, Seattle, WA 98105, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
176
|
Carli C, Giroux M, Delisle JS. Roles of Transforming Growth Factor-β in Graft-versus-Host and Graft-versus-Tumor Effects. Biol Blood Marrow Transplant 2012; 18:1329-40. [DOI: 10.1016/j.bbmt.2012.01.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 01/27/2012] [Indexed: 01/07/2023]
|
177
|
T cell- but not tumor cell-produced TGF-β1 promotes the development of spontaneous mammary cancer. Oncotarget 2012; 2:1339-51. [PMID: 22248703 PMCID: PMC3282091 DOI: 10.18632/oncotarget.403] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
During their development, tumors acquire multiple capabilities that enable them to proliferate, disseminate and evade immunosurveillance. A putative mechanism is through the production of the cytokine TGF-β1. We showed in our recent studies that T cell-produced TGF-β1 inhibits antitumor T cell responses to foster tumor growth raising the question of the precise function of TGF-β1 produced by tumor cells in tumor development. Here, using a transgenic model of mammary cancer, we report that deletion of TGF-β1 from tumor cells did not protect mice from tumor development. However, ablation of TGF-β1 from T cells significantly inhibited mammary tumor growth. Additionally, absence of TGF-β1 in T cells prevented tumors from advancing to higher pathological grades and further suppressed secondary tumor development in the lungs. These findings reveal T cells but not tumor cells as a critical source of TGF-β1 that promotes tumor development.
Collapse
|
178
|
Zhu Y, Zhao S, Zhao H, Yao Y. Gene Expression Profiles of HLA-G1 Overexpressed in hES Cells. Biochem Genet 2012; 50:809-21. [DOI: 10.1007/s10528-012-9522-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 02/22/2012] [Indexed: 11/30/2022]
|
179
|
Patsoukis N, Brown J, Petkova V, Liu F, Li L, Boussiotis VA. Selective effects of PD-1 on Akt and Ras pathways regulate molecular components of the cell cycle and inhibit T cell proliferation. Sci Signal 2012; 5:ra46. [PMID: 22740686 DOI: 10.1126/scisignal.2002796] [Citation(s) in RCA: 412] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The receptor programmed death 1 (PD-1) inhibits T cell proliferation and plays a critical role in suppressing self-reactive T cells, and it also compromises antiviral and antitumor responses. To determine how PD-1 signaling inhibits T cell proliferation, we used human CD4(+) T cells to examine the effects of PD-1 signaling on the molecular control of the cell cycle. The ubiquitin ligase SCF(Skp2) degrades p27(kip1), an inhibitor of cyclin-dependent kinases (Cdks), and PD-1 blocked cell cycle progression through the G(1) phase by suppressing transcription of SKP2, which encodes a component of this ubiquitin ligase. Thus, in T cells stimulated through PD-1, Cdks were not activated, and two critical Cdk substrates were not phosphorylated. Activation of PD-1 inhibited phosphorylation of the retinoblastoma gene product, which suppressed expression of E2F target genes. PD-1 also inhibited phosphorylation of the transcription factor Smad3, which increased its activity. These events induced additional inhibitory checkpoints in the cell cycle by increasing the abundance of the G(1) phase inhibitor p15(INK4) and repressing the Cdk-activating phosphatase Cdc25A. PD-1 suppressed SKP2 transcription by inhibiting phosphoinositide 3-kinase-Akt and Ras-mitogen-activated and extracellular signal-regulated kinase kinase (MEK)-extracellular signal-regulated kinase (ERK) signaling. Exposure of cells to the proliferation-promoting cytokine interleukin-2 restored activation of MEK-ERK signaling, but not Akt signaling, and only partially restored SKP2 expression. Thus, PD-1 blocks cell cycle progression and proliferation of T lymphocytes by affecting multiple regulators of the cell cycle.
Collapse
Affiliation(s)
- Nikolaos Patsoukis
- Department of Hematology-Oncology and Cancer Biology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | | | | | | | | | | |
Collapse
|
180
|
de Pablo R, Monserrat J, Reyes E, Díaz D, Rodríguez-Zapata M, la Hera AD, Prieto A, Alvarez-Mon M. Sepsis-induced acute respiratory distress syndrome with fatal outcome is associated to increased serum transforming growth factor beta-1 levels. Eur J Intern Med 2012; 23:358-62. [PMID: 22560386 DOI: 10.1016/j.ejim.2011.10.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 08/30/2011] [Accepted: 10/02/2011] [Indexed: 11/28/2022]
Abstract
BACKGROUND TGF-β1 is a promoter of pulmonary fibrosis in many chronic inflammatory diseases. TGF-β1 circulating levels in patients with sepsis-induced Acute Respiratory Distress Syndrome (ARDS) have not been established. METHODS In this prospective pilot cohort study, serum bioactive TGF-β1 concentration, determined by sandwich ELISA, was analyzed in 52 patients who fulfilled criteria for septic shock at admission and on days 3 and 7. RESULTS Of the 52 patients enrolled in the study, 46.1% fulfilled the criteria for ARDS on admission. At ICU admission, there were not statistical differences in TGF-β1 concentrations between septic shock patients with or without ARDS. After 7 days of follow-up in ICU, circulating TGF-β1 levels were significantly higher in patients with sepsis and ARDS than in those without ARDS [55.47 (35.04-79.48 pg/ml) versus 31.65 (22.89-45.63 pg/ml), respectively] (p = 0.002). Furthermore, in septic shock associated ARDS patients, TGF-β1 levels were significantly higher in nonsurvivors than in survivors [85.23 (78.19-96.30 pg/ml) versus 36.41 (30.21-55.47 pg/ml), respectively] (p = 0.006) on day 7 of ICU follow-up. CONCLUSIONS In patients with septic shock, persistent ARDS is accompanied with increased circulating TGF-β1 levels. Furthermore, ARDS patients with fatal outcome show higher TGF-β1 concentrations than survivors. These results suggest the relevance of TGF-β1 levels found in the pathogenesis of persistent sepsis-induced ARDS.
Collapse
Affiliation(s)
- Raúl de Pablo
- Intensive Care Unit, Hospital Universitario Príncipe de Asturias, Department of Medicine, University of Alcalá, Alcalá de Henares, Madrid, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
181
|
Pullen NA, Falanga YT, Morales JK, Ryan JJ. The Fyn-STAT5 Pathway: A New Frontier in IgE- and IgG-Mediated Mast Cell Signaling. Front Immunol 2012; 3:117. [PMID: 22593761 PMCID: PMC3350083 DOI: 10.3389/fimmu.2012.00117] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 04/23/2012] [Indexed: 01/21/2023] Open
Abstract
Mast cells are central players in immune surveillance and activation, positioned at the host–environment interface. Understanding the signaling events controlling mast cell function, especially those that maintain host homeostasis, is an important and still less understood area of mast cell-mediated disease. With respect to allergic disease, it is well established that IgE and its high affinity receptor FcεRI are major mediators of mast cell activation. However, IgG-mediated signals can also modulate mast cell activities. Signals elicited by IgG binding to its cognate receptors (FcγR) are the basis for autoimmune disorders such as lupus and rheumatoid arthritis. Using knowledge of IgE-mediated mast cell signaling, recent work has begun to illuminate potential overlap between FcεRI and FcγR signal transduction. Herein we review the importance of Src family kinases in FcεRI and FcγR signaling, the role of the transcription factor STAT5, and impingement of the regulatory cytokines IL-4, IL-10, and TGFβ1 upon this network.
Collapse
Affiliation(s)
- Nicholas A Pullen
- Department of Biology, The Asthma and Allergic Disease Cooperative Research Center, Virginia Commonwealth University Richmond, VA, USA
| | | | | | | |
Collapse
|
182
|
Therapeutic blockade of transforming growth factor beta fails to promote clearance of a persistent viral infection. J Virol 2012; 86:7060-71. [PMID: 22553324 DOI: 10.1128/jvi.00164-12] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Persistent viral infections often overburden the immune system and are a major cause of disease in humans. During many persistent infections, antiviral T cells are maintained in a state of immune exhaustion characterized by diminished effector and helper functions. In mammalian systems, an extensive immune regulatory network exists to limit unwanted, potentially fatal immunopathology by inducing T cell exhaustion. However, this regulatory network at times overprotects the host and fosters viral persistence by severely dampening adaptive immune responsiveness. Importantly, recent studies have shown that T cell exhaustion is mediated in part by host immunoregulatory pathways (e.g., programmed death 1 [PD-1], interleukin 10 [IL-10]) and that therapeutic blockade of these pathways either before or during persistent infection can promote viral clearance. Transforming growth factor beta (TGF-β) is another immunosuppressive cytokine known to impede both self- and tumor-specific T cells, but its role in regulating antiviral immunity is not entirely understood. In this study, we inhibited TGF-β with three potent antagonists to determine whether neutralization of this regulatory molecule is a viable approach to control a persistent viral infection. Our results revealed that these inhibitors modestly elevate the number of antiviral T cells following infection with a persistent variant of lymphocytic choriomeningitis virus (LCMV) but have no impact on viral clearance. These data suggest that therapeutic neutralization of TGF-β is not an efficacious means to promote clearance of a persistent viral infection.
Collapse
|
183
|
Liu YH, Vaghjiani V, Tee JY, To K, Cui P, Oh DY, Manuelpillai U, Toh BH, Chan J. Amniotic epithelial cells from the human placenta potently suppress a mouse model of multiple sclerosis. PLoS One 2012; 7:e35758. [PMID: 22563398 PMCID: PMC3338525 DOI: 10.1371/journal.pone.0035758] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 03/23/2012] [Indexed: 01/28/2023] Open
Abstract
Human amniotic epithelial cells (hAEC) have stem cell-like features and immunomodulatory properties. Here we show that hAEC significantly suppressed splenocyte proliferation in vitro and potently attenuated a mouse model of multiple sclerosis (MS). Central nervous system (CNS) CD3(+) T cell and F4/80(+) monocyte/macrophage infiltration and demyelination were significantly reduced with hAEC treatment. Besides the known secretion of prostaglandin E2 (PGE2), we report the novel finding that hAEC utilize transforming growth factor-β (TGF-β) for immunosuppression. Neutralization of TGF-β or PGE2 in splenocyte proliferation assays significantly reduced hAEC-induced suppression. Splenocytes from hAEC-treated mice showed a Th2 cytokine shift with significantly elevated IL-5 production. While transferred CFSE-labeled hAEC could be detected in the lung, none were identified in the CNS or in lymphoid organs. This is the first report documenting the therapeutic effect of hAEC in a MS-like model and suggest that hAEC may have potential for use as therapy for MS.
Collapse
Affiliation(s)
- Yu Han Liu
- Centre for Inflammatory Diseases, Department of Medicine, Monash University, Clayton, Victoria, Australia
| | - Vijesh Vaghjiani
- Center for Reproduction and Development, Monash Institute of Medical Research, Monash University, Clayton, Victoria, Australia,
| | - Jing Yang Tee
- Center for Reproduction and Development, Monash Institute of Medical Research, Monash University, Clayton, Victoria, Australia,
| | - Kelly To
- Centre for Inflammatory Diseases, Department of Medicine, Monash University, Clayton, Victoria, Australia
| | - Peng Cui
- Centre for Inflammatory Diseases, Department of Medicine, Monash University, Clayton, Victoria, Australia
| | - Ding Yuan Oh
- Centre for Inflammatory Diseases, Department of Medicine, Monash University, Clayton, Victoria, Australia
| | - Ursula Manuelpillai
- Center for Reproduction and Development, Monash Institute of Medical Research, Monash University, Clayton, Victoria, Australia,
| | - Ban-Hock Toh
- Centre for Inflammatory Diseases, Department of Medicine, Monash University, Clayton, Victoria, Australia
| | - James Chan
- Centre for Inflammatory Diseases, Department of Medicine, Monash University, Clayton, Victoria, Australia
- * E-mail:
| |
Collapse
|
184
|
Garlick DS, Li J, Sansoucy B, Wang T, Griffith L, FitzGerald TJ, Butterfield J, Charbonneau B, Violette SM, Weinreb PH, Ratliff TL, Liao CP, Roy-Burman P, Vietri M, Lian JB, Stein GS, Altieri DC, Languino LR. α(V)β(6) integrin expression is induced in the POET and Pten(pc-/-) mouse models of prostatic inflammation and prostatic adenocarcinoma. Am J Transl Res 2012; 4:165-174. [PMID: 22611469 PMCID: PMC3353537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 04/06/2012] [Indexed: 06/01/2023]
Abstract
Chronic inflammation is proposed to prime the development of prostate cancer. However, the mechanisms of prostate cancer initiation and development are not completely understood. The α(v)β(6) integrin has been shown to play a role in epithelial development, wound healing and some epithelial cancers [1, 2]. Here, we investigate the expression of α(v)β(6) in mouse models of prostatic inflammation and prostate cancer to establish a possible relationship between inflammation of the prostate, α(v)β(6) expression and the progression of prostate cancer. Using immunohistochemical techniques, we show expression of α(v)β(6) in two in vivo mouse models; the Pten(pc)-/- model containing a prostate- specific Pten tumor suppressor deletion that causes cancer, and the prostate ovalbumin-expressing transgenic (POET) inflammation mouse model. We show that the α(v)β(6) integrin is induced in prostate cancer and inflammation in vivo in these two mouse models. α(v)β(6) is expressed in all the mice with cancer in the Pten(pc-/-) model but not in age-matched wild-type mice. In the POET inflammation model, α(v)β(6) is expressed in mice injected with activated T-cells, but in none of the control mice. In the POET model, we also used real time PCR to assess the expression of Transforming Growth Factor Beta 1 (TGFβ1), a factor in inflammation that is activated by α(v)β(6). In conclusion, through in vivo evidence, we conclude that α(v)β(6) integrin may be a crucial link between prostatic inflammation and prostatic adenocarcinoma.
Collapse
Affiliation(s)
- David S Garlick
- Department of Cancer Biology and Cancer Center, University of Massachusetts Medical SchoolWorcester, MA
| | - Jing Li
- Department of Cancer Biology and Cancer Center, University of Massachusetts Medical SchoolWorcester, MA
| | - Brian Sansoucy
- Department of Cancer Biology and Cancer Center, University of Massachusetts Medical SchoolWorcester, MA
| | - Tao Wang
- Department of Radiation Oncology, University of Massachusetts Medical SchoolWorcester, MA
| | - Leeanne Griffith
- Prostate Cancer Discovery and Development Program, Department of Cancer Biology, Kimmel Cancer Center, Thomas Jefferson UniversityPhiladelphia, PA.
| | - TJ FitzGerald
- Department of Radiation Oncology, University of Massachusetts Medical SchoolWorcester, MA
| | - Julie Butterfield
- Department of Cancer Biology and Cancer Center, University of Massachusetts Medical SchoolWorcester, MA
| | - Bridget Charbonneau
- Purdue University Center for Cancer Research, Department of Comparative Pathobiology, School of Veterinary Medicine, Purdue UniversityWest Lafayette, IN
| | | | | | - Timothy L Ratliff
- Purdue University Center for Cancer Research, Department of Comparative Pathobiology, School of Veterinary Medicine, Purdue UniversityWest Lafayette, IN
| | - Chun-Peng Liao
- Department of Pathology, Keck School of Medicine, University of Southern CaliforniaLos Angeles, CA
| | - Pradip Roy-Burman
- Department of Pathology, Keck School of Medicine, University of Southern CaliforniaLos Angeles, CA
| | - Michele Vietri
- Department of Cancer Biology and Cancer Center, University of Massachusetts Medical SchoolWorcester, MA
| | - Jane B Lian
- Prostate Cancer Discovery and Development Program, Department of Cell Biology and Cancer Center, University of Massachusetts Medical SchoolWorcester, MA
| | - Gary S Stein
- Prostate Cancer Discovery and Development Program, Department of Cell Biology and Cancer Center, University of Massachusetts Medical SchoolWorcester, MA
| | - Dario C Altieri
- Prostate Cancer Discovery and Development Program, The Wistar Institute Cancer CenterPhiladelphia, PA
| | - Lucia R Languino
- Prostate Cancer Discovery and Development Program, Department of Cancer Biology, Kimmel Cancer Center, Thomas Jefferson UniversityPhiladelphia, PA.
| |
Collapse
|
185
|
Abstract
Myocardial necrosis triggers an inflammatory reaction that clears the wound from dead cells and matrix debris, while activating reparative pathways necessary for scar formation. A growing body of evidence suggests that accentuation, prolongation, or expansion of the postinfarction inflammatory response results in worse remodeling and dysfunction following myocardial infarction. This review manuscript discusses the cellular effectors and endogenous molecular signals implicated in suppression and containment of the inflammatory response in the infarcted heart. Clearance of apoptotic neutrophils, recruitment of inhibitory monocyte subsets and regulatory T cells, macrophage differentiation and pericyte/endothelial interactions may play an active role in restraining postinfarction inflammation. Multiple molecular signals may be involved in suppressing the inflammatory cascade. Negative regulation of toll-like receptor signaling, downmodulation of cytokine responses, and termination of chemokine signals may be mediated through the concerted action of multiple suppressive pathways that prevent extension of injury and protect from adverse remodeling. Expression of soluble endogenous antagonists, decoy receptors, and posttranslational processing of bioactive molecules may limit cytokine and chemokine actions. Interleukin-10, members of the transforming growth factor-β family, and proresolving lipid mediators (such as lipoxins, resolvins, and protectins) may suppress proinflammatory signaling. In human patients with myocardial infarction, defective suppression, and impaired resolution of inflammation may be important mechanisms in the pathogenesis of remodeling and in progression to heart failure. Understanding of inhibitory and proresolving signals in the infarcted heart and identification of patients with uncontrolled postinfarction inflammation and defective cardiac repair is needed to design novel therapeutic strategies.
Collapse
Affiliation(s)
- Nikolaos G Frangogiannis
- Family Cardiovascular Research Institute, Division of Cardiology, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
186
|
Monoclonal antibody therapy for malignant glioma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 746:121-41. [PMID: 22639164 DOI: 10.1007/978-1-4614-3146-6_10] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Monoclonal antibody (mAb) therapy is a rapidly evolving treatment immunotherapy modality for malignant gliomas. Many studies have provided evidence that the blood brain barrier-both at baseline and in the context of malignancy-is permissive for mAbs, thus providing a rationale for their use in treating intracranial malignancy. Furthermore, techniques such as convection enhanced delivery (CED) are being implemented to maximize exposure of tumor cells to mAb therapy. The mechanisms and designs of mAbs are widely varying, including unarmed immunoglobulins as well as immunoglobulins conjugated to radioisotopes, biological toxins, boronated dendrimers and immunoliposomes. The very structure of the immunoglobulin molecule has also been manipulated to generate a diverse armamentarium including single-chain Fv, bispecific T-cell engagers and chimeric antigen receptors. The targeted neutralization capacity of mAbs has been employed to modulate the immunologic milieu in hopes of optimizing other immunotherapy platforms. Many clinical trials have evaluated these mAb strategies to treat malignant gliomas, and the implementation of mAb therapy seems imminent and optimistic.
Collapse
|
187
|
Tran DQ. TGF-β: the sword, the wand, and the shield of FOXP3(+) regulatory T cells. J Mol Cell Biol 2011; 4:29-37. [PMID: 22158907 DOI: 10.1093/jmcb/mjr033] [Citation(s) in RCA: 192] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Since its rediscovery in the mid-1990s, FOXP3(+) regulatory T cells (Tregs) have climbed the rank to become commander-in-chief of the immune system. They possess diverse power and ability to orchestrate the immune system in time of inflammation and infection as well as in time of harmony and homeostasis. To be the commander-in-chief, they must be equipped with both offensive and defensive weaponry. This review will focus on the function of transforming growth factor-β (TGF-β) as the sword, the wand, and the shield of Tregs. Functioning as a sword, this review will begin with a discussion of the evidence that supports how Tregs utilize TGF-β to paralyze cell activation and differentiation to suppress immune response. It will next provide evidence on how TGF-β from Tregs acts as a wand to convert naïve T cells into iTregs and Th17 to aid in their combat against inflammation and infection. Lastly, the review will present evidence on the role of TGF-β produced by Tregs in providing a shield to protect and maintain Tregs against apoptosis and destabilization when surrounded by inflammation and constant stimulation. This triadic function of TGF-β empowers Tregs with the responsibility and burden to maintain homeostasis, promote immune tolerance, and regulate host defense against foreign pathogens.
Collapse
Affiliation(s)
- Dat Q Tran
- Division of Pediatric Research Center, Department of Pediatrics, The University of Texas Medical School at Houston, Houston, TX 77030, USA.
| |
Collapse
|
188
|
Niaudet P. [Immunosuppressive treatment]. Nephrol Ther 2011; 7:592-8. [PMID: 22118788 DOI: 10.1016/j.nephro.2011.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Immunosuppressive treatment following renal transplantation includes induction therapy during the initial period when the risk of rejection is higher. Depleting anti-lymphocyte antibodies are indicated mostly in patients who developped anti-HLA antibodies and following a second graft. Anti-IL2 receptor antibodies may be used in non-responders. After the first month, maintenance therapy mostly consists in the association of several immunosuppressants, mainly corticosteroids, an antimetabolic agent (azathioprine or mycophenolate mofetil) and a calcineurin inhibitor (cyclosporine or tacrolimus). Side effects associated with these treatments led to the development of new immunosuppressive protocols, with the reduction or withdrawal of corticosteroids treatment due to its deleterious effects on statural growth, and decreased doses of anti-calcineurin agents to reduce their nephrotoxic effect. These therapeutic options are possible in patients at low immunological risk.
Collapse
Affiliation(s)
- Patrick Niaudet
- Service de Néphrologie Pédiatrique, Hôpital Necker-Enfants Malades, Université Paris-Descartes, Paris, France.
| |
Collapse
|
189
|
Lee HH, Yoon NA, Vo MT, Kim CW, Woo JM, Cha HJ, Cho YW, Lee BJ, Cho WJ, Park JW. Tristetraprolin down-regulates IL-17 through mRNA destabilization. FEBS Lett 2011; 586:41-6. [PMID: 22138182 DOI: 10.1016/j.febslet.2011.11.021] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 11/16/2011] [Accepted: 11/17/2011] [Indexed: 12/31/2022]
Abstract
An excess of interleukin 17 (IL-17) may contribute to chronic inflammatory disorders, but mechanisms that regulate IL-17 in immune cells are unclear. Here we report that tristetraprolin (TTP) inhibits IL-17 production in human T cell lines. Overexpression of TTP decreased the expression of IL-17. Conversely, TTP inhibition by siRNA increased IL-17 production. IL-17 mRNA contains eight AREs within its 3'UTR. TTP bound directly to the IL-17 mRNA 3'UTR at a location between the fourth and seventh AREs and enhanced decay of IL-17 transcripts. These results suggest that TTP could control IL-17-mediated inflammation.
Collapse
Affiliation(s)
- Hyun Hee Lee
- Department of Biological Sciences, University of Ulsan, Ulsan 680-749, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
190
|
Mejri N, Müller J, Gottstein B. Intraperitoneal murine Echinococcus multilocularis infection induces differentiation of TGF-β-expressing DCs that remain immature. Parasite Immunol 2011; 33:471-82. [PMID: 21609335 DOI: 10.1111/j.1365-3024.2011.01303.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Intraperitoneal larval infection (alveolar echinococcosis, AE) with Echinococcus multilocularis in mice impairs host immunity. Metacestode metabolites may modulate immunity putatively via dendritic cells. During murine AE, a relative increase of peritoneal DCs (pe-DCs) in infected mice (AE-pe-DCs; 4% of total peritoneal cells) as compared to control mice (naïve pe-DCs; 2%) became apparent in our study. The differentiation of AE-pe-DCs into TGF-β-expressing cells and the higher level of IL-4 than IFN-γ/IL-2 mRNA expression in AE-CD4+pe-T cells indicated a Th2 orientation. Analysis of major accessory molecule expression on pe-DCs from AE-infected mice revealed that CD80 and CD86 were down-regulated on AE-pe-DCs, while ICAM-1(CD54) remained practically unchanged. Moreover, AE-pe-DCs had a weaker surface expression of MHC class II (Ia) molecules as compared to naïve pe-DCs. The gene expression level of molecules involved in MHC class II (Ia) synthesis and formation of MHC class II (Ia)-peptide complexes were down-regulated. In addition, metacestodes excreted/secreted (E/S) or vesicle-fluid (V/F) antigens were found to alter MHC class II molecule expression on the surface of BMDCs. Finally, conversely to naïve pe-DCs, an increasing number of AE-pe-DCs down-regulated Con A-induced proliferation of naïve CD4+pe-T cells. These findings altogether suggested that TGF-β-expressing immature AE-pe-DCs might play a significant role in the generation of a regulatory immune response within the peritoneal cavity of AE-infected mice.
Collapse
Affiliation(s)
- N Mejri
- Institute of Parasitology, University of Berne, Bern, Switzerland
| | | | | |
Collapse
|
191
|
Tumor evasion from T cell surveillance. J Biomed Biotechnol 2011; 2011:918471. [PMID: 22190859 PMCID: PMC3228689 DOI: 10.1155/2011/918471] [Citation(s) in RCA: 119] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Accepted: 08/29/2011] [Indexed: 12/17/2022] Open
Abstract
An intact immune system is essential to prevent the development and progression of neoplastic cells in a process termed immune surveillance. During this process the innate and the adaptive immune systems closely cooperate and especially T cells play an important role to detect and eliminate tumor cells. Due to the mechanism of central tolerance the frequency of T cells displaying appropriate arranged tumor-peptide-specific-T-cell receptors is very low and their activation by professional antigen-presenting cells, such as dendritic cells, is frequently hampered by insufficient costimulation resulting in peripheral tolerance. In addition, inhibitory immune circuits can impair an efficient antitumoral response of reactive T cells. It also has been demonstrated that large tumor burden can promote a state of immunosuppression that in turn can facilitate neoplastic progression. Moreover, tumor cells, which mostly are genetically instable, can gain rescue mechanisms which further impair immune surveillance by T cells. Herein, we summarize the data on how tumor cells evade T-cell immune surveillance with the focus on solid tumors and describe approaches to improve anticancer capacity of T cells.
Collapse
|
192
|
Knubel CP, Martínez FF, Acosta Rodríguez EV, Altamirano A, Rivarola HW, Diaz Luján C, Fretes RE, Cervi L, Motrán CC. 3-Hydroxy kynurenine treatment controls T. cruzi replication and the inflammatory pathology preventing the clinical symptoms of chronic Chagas disease. PLoS One 2011; 6:e26550. [PMID: 22028903 PMCID: PMC3197528 DOI: 10.1371/journal.pone.0026550] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2011] [Accepted: 09/28/2011] [Indexed: 01/05/2023] Open
Abstract
Background 3-Hydroxy Kynurenine (3-HK) administration during the acute phase of Trypanosoma. cruzi infection decreases the parasitemia of lethally infected mice and improves their survival. However, due to the fact that the treatment with 3-HK is unable to eradicate the parasite, together with the known proapoptotic and immunoregulatory properties of 3-HK and their downstream catabolites, it is possible that the 3-HK treatment is effective during the acute phase of the infection by controlling the parasite replication, but at the same time suppressed the protective T cell response before pathogen clearance worsening the chronic phase of the infection. Therefore, in the present study, we investigated the effect of 3-HK treatment on the development of chronic Chagas’ disease. Principal Findings In the present study, we treated mice infected with T. cruzi with 3-HK at day five post infection during 5 consecutive days and investigated the effect of this treatment on the development of chronic Chagas disease. Cardiac functional (electrocardiogram) and histopathological studies were done at 60 dpi. 3-HK treatment markedly reduced the incidence and the severity of the electrocardiogram alterations and the inflammatory infiltrates and fibrosis in heart and skeletal muscle. 3-HK treatment modulated the immune response at the acute phase of the infection impairing the Th1- and Th2-type specific response and inducing TGF-β-secreting cells promoting the emergence of regulatory T cells and long-term specific IFN-γ secreting cells. 3-HK in vitro induced regulatory phenotype in T cells from T. cruzi acutely infected mice. Conclusions Our results show that the early 3-HK treatment was effective in reducing the cardiac lesions as well as altering the pattern of the immune response in experimental Chagas’ disease. Thus, we propose 3-HK as a novel therapeutic treatment able to control both the parasite replication and the inflammatory response.
Collapse
Affiliation(s)
- Carolina P. Knubel
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, Argentina
| | - Fernando F. Martínez
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, Argentina
| | - Eva V. Acosta Rodríguez
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, Argentina
| | - Andrés Altamirano
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, Argentina
| | - Héctor W. Rivarola
- Cátedra de Física Biomédica, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Santa Rosa, Córdoba, Argentina
| | - Cintia Diaz Luján
- Facultad de Medicina, Instituto de Biología Celular, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Ricardo E. Fretes
- Facultad de Medicina, Instituto de Biología Celular, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Laura Cervi
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, Argentina
| | - Claudia C. Motrán
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, Argentina
- * E-mail:
| |
Collapse
|
193
|
Vaccine candidates for leishmaniasis: A review. Int Immunopharmacol 2011; 11:1464-88. [DOI: 10.1016/j.intimp.2011.05.008] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Revised: 04/13/2011] [Accepted: 05/09/2011] [Indexed: 01/08/2023]
|
194
|
Dobaczewski M, Chen W, Frangogiannis NG. Transforming growth factor (TGF)-β signaling in cardiac remodeling. J Mol Cell Cardiol 2011; 51:600-6. [PMID: 21059352 PMCID: PMC3072437 DOI: 10.1016/j.yjmcc.2010.10.033] [Citation(s) in RCA: 743] [Impact Index Per Article: 53.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Revised: 10/28/2010] [Accepted: 10/29/2010] [Indexed: 12/12/2022]
Abstract
Myocardial TGF-β expression is upregulated in experimental models of myocardial infarction and cardiac hypertrophy, and in patients with dilated or hypertrophic cardiomyopathy. Through its effects on cardiomyocytes, mesenchymal and immune cells, TGF-β plays an important role in the pathogenesis of cardiac remodeling and fibrosis. TGF-β overexpression in the mouse heart is associated with fibrosis and hypertrophy. Endogenous TGF-β plays an important role in the pathogenesis of cardiac fibrotic and hypertrophic remodeling, and modulates matrix metabolism in the pressure-overloaded heart. In the infarcted heart, TGF-β deactivates inflammatory macrophages, while promoting myofibroblast transdifferentiation and matrix synthesis through Smad3-dependent pathways. Thus, TGF-β may serve as the "master switchThis article is part of a special issue entitled "Key Signaling Molecules in Hypertrophy and Heart Failure". for the transition of the infarct from the inflammatory phase to formation of the scar. Because of its crucial role in cardiac remodeling, the TGF-β system may be a promising therapeutic target for patients with heart failure. However, efforts to translate these concepts into therapeutic strategies, in order to prevent cardiac hypertrophy and fibrosis, are hampered by the complex, pleiotropic and diverse effects of TGF-β signaling, by concerns regarding deleterious actions of TGF-β inhibition and by the possibility of limited benefit in patients receiving optimal treatment with ACE inhibitors and β-adrenergic blockers. Dissection of the pathways responsible for specific TGF-β-mediated actions and understanding of cell-specific actions of TGF-β are needed to design optimal therapeutic strategies. This article is part of a special issue entitled "Key Signaling Molecules in Hypertrophy and Heart Failure".
Collapse
Affiliation(s)
- Marcin Dobaczewski
- Division of Cardiology, Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | | |
Collapse
|
195
|
Mirandola P, Gobbi G, Masselli E, Micheloni C, Di Marcantonio D, Queirolo V, Chiodera P, Meschi T, Vitale M. Protein kinase Cε regulates proliferation and cell sensitivity to TGF-1β of CD4+ T lymphocytes: implications for Hashimoto thyroiditis. THE JOURNAL OF IMMUNOLOGY 2011; 187:4721-32. [PMID: 21964026 DOI: 10.4049/jimmunol.1003258] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We have studied the functional role of protein kinase Cε (PKCε) in the control of human CD4(+) T cell proliferation and in their response to TGF-1β. We demonstrate that PKCε sustains CD4(+) T cell proliferation triggered in vitro by CD3 stimulation. Transient knockdown of PKCε expression decreases IL-2R chain transcription, and consequently cell surface expression levels of CD25. PKCε silencing in CD4 T cells potentiates the inhibitory effects of TGF-1β, whereas in contrast, the forced expression of PKCε virtually abrogates the inhibitory effects of TGF-1β. Being that PKCε is therefore implicated in the response of CD4 T cells to both CD3-mediated proliferative stimuli and TGF-1β antiproliferative signals, we studied it in Hashimoto thyroiditis (HT), a pathology characterized by abnormal lymphocyte proliferation and activation. When we analyzed CD4 T cells from HT patients, we found a significant increase of PKCε expression, accounting for their enhanced survival, proliferation, and decreased sensitivity to TGF-1β. The increased expression of PKCε in CD4(+) T cells of HT patients, which is described for the first time, to our knowledge, in this article, viewed in the perspective of the physiological role of PKCε in normal Th lymphocytes, adds knowledge to the molecular pathophysiology of HT and creates potentially new pharmacological targets for the therapy of this disease.
Collapse
Affiliation(s)
- Prisco Mirandola
- Department of Anatomy, Pharmacology and Forensic Medicine, University of Parma, 43126 Parma, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
196
|
Iempridee T, Das S, Xu I, Mertz JE. Transforming growth factor beta-induced reactivation of Epstein-Barr virus involves multiple Smad-binding elements cooperatively activating expression of the latent-lytic switch BZLF1 gene. J Virol 2011; 85:7836-48. [PMID: 21593157 PMCID: PMC3147924 DOI: 10.1128/jvi.01197-10] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Transforming growth factor β (TGF-β) physiologically induces Epstein-Barr virus (EBV) lytic infection by activating the expression of EBV's latent-lytic switch BZLF1 gene. Liang et al. (J. Biol. Chem. 277:23345-23357, 2002) previously identified a Smad-binding element (SBE) within the BZLF1 promoter, Zp; however, it accounts for only 20 to 30% of TGF-β-mediated activation of transcription from Zp. Here, we identified additional factors responsible for the rest of this activation. The incubation of EBV-positive MutuI cells with a TGF-β neutralizing antibody or inhibitors of the TGF-β type I receptor (TβRI) or Smad3 eliminated the TGF-β-induced reactivation of EBV. The coexpression of Smad2, Smad3, and Smad4 together with a constitutively active form of TβRI induced 15- to 25-fold transcription from Zp in gastric carcinoma AGS cells. By electrophoretic mobility shift assays, we identified four additional Smad-binding elements, named SBE2 to SBE5. Substitution mutations in individual SBEs reduced Smad-mediated activation of Zp by 20 to 60%; together, these mutations essentially eliminated it. Chromatin immunoprecipitation assays confirmed that Smad4 newly bound the Zp region of the EBV genome following the incubation of MutuI cells with TGF-β. SBE2 overlaps the ZEB-binding ZV silencing element of Zp. Depending upon posttranslational modifications, Smad4 either competed with ZEB1 for binding or formed a complex with ZEB1 on the Zp ZV element in a cell-free assay system. In transiently transfected cells, exogenously expressed ZEB1 inhibited Smad-mediated transcriptional activation from Zp. We conclude that TGF-β induces EBV lytic reactivation via the canonical Smad pathway by activating BZLF1 gene expression through multiple SBEs acting in concert.
Collapse
Affiliation(s)
| | | | | | - Janet E. Mertz
- Corresponding author. Mailing address:
McArdle Laboratory for Cancer Research, 1400 University Ave., Madison, WI 53706-1599. Phone:
(608) 262-2383. Fax:
(608) 262-2824. E-mail:
| |
Collapse
|
197
|
A Novel Mechanism of PPARgamma Regulation of TGFbeta1: Implication in Cancer Biology. PPAR Res 2011; 2008:762398. [PMID: 18615188 PMCID: PMC2443397 DOI: 10.1155/2008/762398] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Revised: 04/28/2008] [Accepted: 06/09/2008] [Indexed: 02/08/2023] Open
Abstract
Peroxisome proliferator-activated receptor-γ (PPARγ) and retinoic acid X-receptor (RXR) heterodimer, which regulates cell growth and differentiation, represses the TGFβ1 gene that encodes for the protein involved in cancer biology. This review will introduce the novel mechanism associated with the inhibition of the TGFβ1 gene by PPARγ activation, which regulates the dephosphorylation of Zf9 transcription factor. Pharmacological manipulation of TGFβ1 by PPARγ activators can be applied for treating TGFβ1-induced pathophysiologic disorders such as cancer metastasis and fibrosis. In this article, we will discuss the opposing effects of TGFβ on tumor growth and metastasis, and address the signaling pathways regulated by PPARγ for tumor progression and suppression.
Collapse
|
198
|
Autocrine transforming growth factor-β1 promotes in vivo Th17 cell differentiation. Immunity 2011; 34:396-408. [PMID: 21435587 DOI: 10.1016/j.immuni.2011.03.005] [Citation(s) in RCA: 213] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 12/10/2010] [Accepted: 12/23/2010] [Indexed: 12/11/2022]
Abstract
TGF-β1 is a regulatory cytokine that has an important role in controlling T cell differentiation. T cell-produced TGF-β1 acts on T cells to promote Th17 cell differentiation and the development of experimental autoimmune encephalomyelitis (EAE). However, the exact TGF-β1-producing T cell subset required for Th17 cell generation and its cellular mechanism of action remain unknown. Here we showed that deletion of the Tgfb1 gene from activated T cells and Treg cells, but not Treg cells alone, abrogated Th17 cell differentiation, resulting in almost complete protection from EAE. Furthermore, differentiation of T cells both in vitro and in vivo demonstrated that TGF-β1 was highly expressed by Th17 cells and acted in a predominantly autocrine manner to maintain Th17 cells in vivo. These findings reveal an essential role for activated T cell-produced TGF-β1 in promoting the differentiation of Th17 cells and controlling inflammatory diseases.
Collapse
|
199
|
Resistance to exogenous TGF-β effects in patients with systemic lupus erythematosus. J Clin Immunol 2011; 31:574-83. [PMID: 21503670 DOI: 10.1007/s10875-011-9531-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Accepted: 04/03/2011] [Indexed: 12/23/2022]
Abstract
BACKGROUND The mechanisms underlying the loss of self-tolerance in systemic lupus erythematosus (SLE) are incompletely deciphered. TGF-β plays a key role in self-tolerance demonstrated by the onset of a fatal autoimmune syndrome associated with lupus autoantibodies in mice lacking a functional TGF-β receptor. The present work aims to define whether resistance to TGF-β might contribute to the pathogenesis of SLE. METHODS Twenty-two patients with active SLE, 16 with other connective tissue diseases, and 10 healthy controls were prospectively included in this study. The effects of exogenous TGF-β1 on IL-2-dependent T-cell proliferation, IFN-γ secretion, and target gene transcription were analyzed on peripheral blood mononuclear cells. RESULTS Our results showed that 75% of patients with SLE or other connective tissue diseases were totally or partially resistant to the effects of TGF-β1. The responses to the anti-proliferative and transcriptional effects of TGF-β were, however, discordant in a high proportion of our patients. Hence, we distinguish three distinct profiles of resistance to TGF-β1 and suggest that patients may exhibit different defects affecting distinct points of TGF-β1 signaling pathways. CONCLUSION Our data demonstrate the presence of an impaired response of peripheral cells to TGF-β1 in patients with active SLE that may participate to the pathogenesis of the disease. Further studies will be necessary to delineate the mechanisms underlying the lymphocyte resistance to TGF-β1 in SLE.
Collapse
|
200
|
Kim JI, O'connor MR, Duff PE, Zhao G, Lee KM, Eliades P, Deng S, Yeh H, Caton AJ, Markmann JF. Generation of adaptive regulatory T cells by alloantigen is required for some but not all transplant tolerance protocols. Transplantation 2011; 91:707-13. [PMID: 21386770 PMCID: PMC3727173 DOI: 10.1097/tp.0b013e31820e50b3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND Because CD4CD25Foxp3 regulatory T cells (Tregs) are essential for the maintenance of self-tolerance, significant interest surrounds the developmental cues for thymic-derived natural Tregs (nTregs) and periphery-generated adaptive Tregs (aTregs). In the transplant setting, the allograft may play a role in the generation of alloantigen-specific Tregs, but this role remains undefined. We examined whether the immune response to a transplant allograft results in the peripheral generation of aTregs. METHODS To identify generation of aTregs, purified graft-reactive CD4CD25 T cells were adoptively transferred to mice-bearing skin allograft. To demonstrate that aTregs are necessary for tolerance, DBA/2 skin was transplanted onto C57BL/6-RAG-1-deficient recipients adoptively transferred with purified sorted CD4CD25 T cells; half of the recipients undergo tolerance induction treatment. RESULTS By tracking adoptively transferred cells, we show that purified graft-reactive CD4CD25 T lymphocytes up-regulate Foxp3 in mice receiving skin allografts in the absence of any treatment. Interestingly, cotransfer of antigen-specific nTregs suppresses the up-regulation of Foxp3 by inhibiting the proliferation of allograft-responsive T cells. In vitro data are consistent with our in vivo data-Foxp3 cells are generated on antigen activation, and this generation is suppressed on coculture with antigen-specific nTregs. Finally, blocking aTreg generation in grafted, rapamycin-treated mice disrupts alloantigen-specific tolerance induction. In contrast, blocking aTreg generation in grafted mice treated with nondepleting anti-CD4 plus anti-CD40L antibodies does not disrupt graft tolerance. CONCLUSIONS We conclude that graft alloantigen stimulates the de novo generation of aTregs, and this generation may represent a necessary step in some but not all protocols of tolerance induction.
Collapse
Affiliation(s)
- James I Kim
- Department of Surgery, Harvard Medical School, Massachusetts General Hospital, Boston, MA 02114, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|