151
|
Szabo S, Zayachkivska O, Hussain A, Muller V. What is really 'Long COVID'? Inflammopharmacology 2023; 31:551-557. [PMID: 36964860 PMCID: PMC10039447 DOI: 10.1007/s10787-023-01194-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 03/26/2023]
Abstract
The previous acute respiratory diseases caused by viruses originating from China or the middle east (e.g., SARS, MERS) remained fast developing short diseases without major sequalae or any long-lasting complications. The new COVID-19, on the other hand, not only that it rapidly spread over the world, but some patients never fully recovered or even if they did, a few weeks later started to complain not only of shortness of breath, if any, but general weakness, muscle pains and 'brain fog', i.e., fuzzy memories. Thus, these signs and symptoms were eventually labelled 'long COVID', for which the most widely used definition is 'new signs and symptoms occurring 4-8 weeks after recovering from acute stage of COVID-19'. The other most frequent manifestations associated with long COVID include headache, loss of memory, smell and of hair, nausea, and vomiting. Thus, long COVID is not a simple disease, but complex disorder of several organ systems malfunctioning; hence, it is probably more appropriate to call this a syndrome. The pathogenesis of long COVID syndrome is poorly understood, but initial and persistent vascular endothelial injury that often triggers the formation of microthrombi that if dislodged as emboli, damage several organs, especially in the brain, heart and kidney, by creating microinfarcts. The other major contributory mechanistic factor is the persistent cytokine storm that may last longer in long COVID patients than in others, probably triggered by aggregates of SARS-Co-2 discovered recently in the adrenal cortex, kidney and brain. The prevalence of long COVID is relatively high, e.g., initially varied 3-30%, and recent data indicate that 2.5% of UK population suffers from this syndrome, while in the US 14.7% of acute COVID-19 patients continued to have symptoms longer than 2 months. Thus, the long COVID syndrome deserves to be further investigated, both from clinical and basic research perspectives.
Collapse
Affiliation(s)
- Sandor Szabo
- School of Medicine, American University of Health Sciences, 1600 East Hill St., Signal Hill/Long Beach, CA, 90755, USA.
| | - Oksana Zayachkivska
- School of Medicine, American University of Health Sciences, 1600 East Hill St., Signal Hill/Long Beach, CA, 90755, USA
| | - Alamdar Hussain
- School of Medicine, American University of Health Sciences, 1600 East Hill St., Signal Hill/Long Beach, CA, 90755, USA
| | - Veronika Muller
- School of Medicine, American University of Health Sciences, 1600 East Hill St., Signal Hill/Long Beach, CA, 90755, USA
- Department of Pulmonology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
152
|
Liang S, Bao C, Yang Z, Liu S, Sun Y, Cao W, Wang T, Schwantes-An TH, Choy JS, Naidu S, Luo A, Yin W, Black SM, Wang J, Ran P, Desai AA, Tang H. SARS-CoV-2 spike protein induces IL-18-mediated cardiopulmonary inflammation via reduced mitophagy. Signal Transduct Target Ther 2023; 8:108. [PMID: 36894537 PMCID: PMC9998025 DOI: 10.1038/s41392-023-01368-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 01/22/2023] [Accepted: 02/13/2023] [Indexed: 03/11/2023] Open
Abstract
Cardiopulmonary complications are major drivers of mortality caused by the SARS-CoV-2 virus. Interleukin-18, an inflammasome-induced cytokine, has emerged as a novel mediator of cardiopulmonary pathologies but its regulation via SARS-CoV-2 signaling remains unknown. Based on a screening panel, IL-18 was identified amongst 19 cytokines to stratify mortality and hospitalization burden in patients hospitalized with COVID-19. Supporting clinical data, administration of SARS-CoV-2 Spike 1 (S1) glycoprotein or receptor-binding domain (RBD) proteins into human angiotensin-converting enzyme 2 (hACE2) transgenic mice induced cardiac fibrosis and dysfunction associated with higher NF-κB phosphorylation (pNF-κB) and cardiopulmonary-derived IL-18 and NLRP3 expression. IL-18 inhibition via IL-18BP resulted in decreased cardiac pNF-κB and improved cardiac fibrosis and dysfunction in S1- or RBD-exposed hACE2 mice. Through in vivo and in vitro work, both S1 and RBD proteins induced NLRP3 inflammasome and IL-18 expression by inhibiting mitophagy and increasing mitochondrial reactive oxygenation species. Enhancing mitophagy prevented Spike protein-mediated IL-18 expression. Moreover, IL-18 inhibition reduced Spike protein-mediated pNF-κB and EC permeability. Overall, the link between reduced mitophagy and inflammasome activation represents a novel mechanism during COVID-19 pathogenesis and suggests IL-18 and mitophagy as potential therapeutic targets.
Collapse
Affiliation(s)
- Shuxin Liang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Changlei Bao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zi Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Shiyun Liu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yanan Sun
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Weitao Cao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ting Wang
- Department of Cellular Biology & Pharmacology, Herbert Wertheim College of Medicine, Miami, FL, USA
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work and Center for Translational Science, Florida International University, Port St. Lucie, FL, USA
| | - Tae-Hwi Schwantes-An
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - John S Choy
- Department of Biology, The Catholic University of America, Washington, DC, USA
| | - Samisubbu Naidu
- Krannert Institute of Cardiology, Department of Medicine, Indiana University, Indianapolis, IN, USA
| | - Ang Luo
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Wenguang Yin
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Stephen M Black
- Department of Cellular Biology & Pharmacology, Herbert Wertheim College of Medicine, Miami, FL, USA
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work and Center for Translational Science, Florida International University, Port St. Lucie, FL, USA
| | - Jian Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Pixin Ran
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou Laboratory, Guangzhou, China
| | - Ankit A Desai
- Krannert Institute of Cardiology, Department of Medicine, Indiana University, Indianapolis, IN, USA.
| | - Haiyang Tang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
153
|
Treating COVID-19: Targeting the Host Response, Not the Virus. Life (Basel) 2023; 13:life13030712. [PMID: 36983871 PMCID: PMC10054780 DOI: 10.3390/life13030712] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/19/2023] [Accepted: 01/31/2023] [Indexed: 03/09/2023] Open
Abstract
In low- and middle-income countries (LMICs), inexpensive generic drugs like statins, ACE inhibitors, and ARBs, especially if used in combination, might be the only practical way to save the lives of patients with severe COVID-19. These drugs will already be available in all countries on the first pandemic day. Because they target the host response to infection instead of the virus, they could be used to save lives during any pandemic. Observational studies show that inpatient statin treatment reduces 28–30-day mortality but randomized controlled trials have failed to show this benefit. Combination treatment has been tested for antivirals and dexamethasone but, with the exception of one observational study in Belgium, not for inexpensive generic drugs. Future pandemic research must include testing combination generic drug treatments that could be used in LMICs.
Collapse
|
154
|
Oudit GY, Wang K, Viveiros A, Kellner MJ, Penninger JM. Angiotensin-converting enzyme 2-at the heart of the COVID-19 pandemic. Cell 2023; 186:906-922. [PMID: 36787743 PMCID: PMC9892333 DOI: 10.1016/j.cell.2023.01.039] [Citation(s) in RCA: 50] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/06/2022] [Accepted: 01/26/2023] [Indexed: 02/05/2023]
Abstract
ACE2 is the indispensable entry receptor for SARS-CoV and SARS-CoV-2. Because of the COVID-19 pandemic, it has become one of the most therapeutically targeted human molecules in biomedicine. ACE2 serves two fundamental physiological roles: as an enzyme, it alters peptide cascade balance; as a chaperone, it controls intestinal amino acid uptake. ACE2's tissue distribution, affected by co-morbidities and sex, explains the broad tropism of coronaviruses and the clinical manifestations of SARS and COVID-19. ACE2-based therapeutics provide a universal strategy to prevent and treat SARS-CoV-2 infections, applicable to all SARS-CoV-2 variants and other emerging zoonotic coronaviruses exploiting ACE2 as their cellular receptor.
Collapse
Affiliation(s)
- Gavin Y Oudit
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, AB, Canada; Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada.
| | - Kaiming Wang
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, AB, Canada; Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada
| | - Anissa Viveiros
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, AB, Canada; Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada
| | - Max J Kellner
- Institute of Molecular Biotechnology of the Austrian Academy of Science, Vienna, Austria
| | - Josef M Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Science, Vienna, Austria; Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
155
|
Naeem A, Tabassum S, Gill S, Khan MZ, Mumtaz N, Qaiser Q, Karamat M, Arif M, Naeem F, Afifi A, Basit J, Nashwan AJ. COVID-19 and Cardiovascular Diseases: A Literature Review From Pathogenesis to Diagnosis. Cureus 2023; 15:e35658. [PMID: 37009373 PMCID: PMC10065369 DOI: 10.7759/cureus.35658] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2023] [Indexed: 03/05/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) took the world by storm after the first case of COVID-19 emerged in China on December 8, 2019. The disease is generally considered as an infection of the respiratory system, but serious life-threatening myocardial injuries have been reported with this infection. Coronavirus can damage cardiac myocytes by entering the cell through angiotensin-converting enzyme 2 (ACE-2) receptor binding. Myocardial infarction, myocarditis, heart failure, cardiac arrhythmias, and Takotsubo cardiomyopathy are cardiac clinical manifestations commonly seen among patients affected by COVID-19. These cardiac pathologies are seen both during ongoing infection and post-infection. Elevated levels of myoglobin, troponin, creatine kinase-MB, plasma interleukin-6, lactate dehydrogenase (LDH), and N-terminal pro-b-type natriuretic peptide (NT-proBNP) have been found in COVID-19-associated myocardial injuries. The diagnostic modalities used in myocardial injuries due to COVID-19 include electrocardiography (ECG), cardiac magnetic resonance imaging (CMR), endomyocardial biopsy, echocardiography (Echo), and computerized tomography (CT-Scan). This literature review will discuss, in detail, the pathogenesis, clinical manifestations, and diagnosis of myocardial injuries due to COVID-19.
Collapse
Affiliation(s)
- Aroma Naeem
- Internal Medicine, Mayo Hospital, Lahore, Lahore, PAK
| | | | - Saima Gill
- Internal Medicine, Mayo Hospital, Lahore, Lahore, PAK
| | | | - Nimra Mumtaz
- Internal Medicine, Mayo Hospital, Lahore, Lahore, PAK
| | - Qamoos Qaiser
- Medicine and Surgery, Lahore General Hospital, Lahore, PAK
| | | | - Mashhood Arif
- Internal Medicine, Aziz Fatimah Medical and Dental College, Faisalabad, PAK
| | - Farhan Naeem
- Internal Medicine, Mayo Hospital, Lahore, Lahore, PAK
| | | | - Jawad Basit
- Medicine, Holy Family Hospital, Rawalpindi, PAK
- Cardiology, Rawalpindi Medical University, Rawalpindi, PAK
| | | |
Collapse
|
156
|
Abstract
PURPOSE OF REVIEW Cardiac consequences occur in both acute COVID-19 and post-acute sequelae of COVID-19 (PASC). Here, we highlight the current understanding about COVID-19 cardiac effects, based upon clinical, imaging, autopsy, and molecular studies. RECENT FINDINGS COVID-19 cardiac effects are heterogeneous. Multiple, concurrent cardiac histopathologic findings have been detected on autopsies of COVID-19 non-survivors. Microthrombi and cardiomyocyte necrosis are commonly detected. Macrophages often infiltrate the heart at high density but without fulfilling histologic criteria for myocarditis. The high prevalences of microthrombi and inflammatory infiltrates in fatal COVID-19 raise the concern that recovered COVID-19 patients may have similar but subclinical cardiac pathology. Molecular studies suggest that SARS-CoV-2 infection of cardiac pericytes, dysregulated immunothrombosis, and pro-inflammatory and anti-fibrinolytic responses underlie COVID-19 cardiac pathology. The extent and nature by which mild COVID-19 affects the heart is unknown. Imaging and epidemiologic studies of recovered COVID-19 patients suggest that even mild illness confers increased risks of cardiac inflammation, cardiovascular disorders, and cardiovascular death. The mechanistic details of COVID-19 cardiac pathophysiology remain under active investigation. The ongoing evolution of SARS-CoV-2 variants and vast numbers of recovered COVID-19 patients portend a burgeoning global cardiovascular disease burden. Our ability to prevent and treat cardiovascular disease in the future will likely depend on comprehensive understanding of COVID-19 cardiac pathophysiologic phenotypes.
Collapse
Affiliation(s)
- Lorenzo R. Sewanan
- Department of Medicine, Columbia University Irving Medical Center, New York, NY USA
| | - Kevin J. Clerkin
- Center for Advanced Cardiac Care, Division of Cardiology, Columbia University Irving Medical Center, New York, NY USA
| | | | - Emily J. Tsai
- Center for Advanced Cardiac Care, Division of Cardiology, Columbia University Irving Medical Center, New York, NY USA
| |
Collapse
|
157
|
Zharkikh EV, Loktionova YI, Fedorovich AA, Gorshkov AY, Dunaev AV. Assessment of Blood Microcirculation Changes after COVID-19 Using Wearable Laser Doppler Flowmetry. Diagnostics (Basel) 2023; 13:920. [PMID: 36900064 PMCID: PMC10000665 DOI: 10.3390/diagnostics13050920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 03/05/2023] Open
Abstract
The present work is focused on the study of changes in microcirculation parameters in patients who have undergone COVID-19 by means of wearable laser Doppler flowmetry (LDF) devices. The microcirculatory system is known to play a key role in the pathogenesis of COVID-19, and its disorders manifest themselves long after the patient has recovered. In the present work, microcirculatory changes were studied in dynamics on one patient for 10 days before his disease and 26 days after his recovery, and data from the group of patients undergoing rehabilitation after COVID-19 were compared with the data from a control group. A system consisting of several wearable laser Doppler flowmetry analysers was used for the studies. The patients were found to have reduced cutaneous perfusion and changes in the amplitude-frequency pattern of the LDF signal. The obtained data confirm that microcirculatory bed dysfunction is present in patients for a long period after the recovery from COVID-19.
Collapse
Affiliation(s)
- Elena V. Zharkikh
- Research and Development Center of Biomedical Photonics, Orel State University, Komsomolskaya 95, Orel 302026, Russia
| | - Yulia I. Loktionova
- Research and Development Center of Biomedical Photonics, Orel State University, Komsomolskaya 95, Orel 302026, Russia
| | - Andrey A. Fedorovich
- Research and Development Center of Biomedical Photonics, Orel State University, Komsomolskaya 95, Orel 302026, Russia
- National Medical Research Center for Therapy and Preventive Medicine of the Ministry of Healthcare of the Russian Federation, Petroverigsky 10, Moscow 101990, Russia
| | - Alexander Y. Gorshkov
- National Medical Research Center for Therapy and Preventive Medicine of the Ministry of Healthcare of the Russian Federation, Petroverigsky 10, Moscow 101990, Russia
| | - Andrey V. Dunaev
- Research and Development Center of Biomedical Photonics, Orel State University, Komsomolskaya 95, Orel 302026, Russia
| |
Collapse
|
158
|
Non-Invasive Assessment of Vascular Circulation Based on Flow Mediated Skin Fluorescence (FMSF). BIOLOGY 2023; 12:biology12030385. [PMID: 36979077 PMCID: PMC10044925 DOI: 10.3390/biology12030385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 03/02/2023]
Abstract
Flow Mediated Skin Fluorescence (FMSF) is a new non-invasive method for assessing vascular circulation and/or metabolic regulation. It enables assessment of both vasoconstriction and vasodilation. The method measures stimulation of the circulation in response to post-occlusive reactive hyperemia (PORH). It analyzes the dynamical changes in the emission of NADH fluorescence from skin tissue, providing the information on mitochondrial metabolic status and intracellular oxygen delivery through the circulatory system. Assessment of the vascular state using the FMSF technique is based on three parameters: reactive hyperemia response (RHR), hypoxia sensitivity (HS), and normoxia oscillatory index (NOI). The RHR and HS parameters determine the risk of vascular circulatory disorders and are the main diagnostic parameters. The NOI parameter is an auxiliary parameter for evaluating the state of microcirculation under stress of various origins (e.g., emotional stress, physical exhaustion, or post-infection stress). The clinical data show that the risk of vascular complications is limited among people whose RHR, log(HS), and NOI parameters are not significantly below the mean values determined by the FMSF technique, especially if they simultaneously meet the conditions RHR > 30% and log(HS) > 1.5 (HS > 30), and NOI > 60%.
Collapse
|
159
|
Reștea PA, Mureșan M, Voicu A, Jurca T, Pallag A, Marian E, Vicaș LG, Jeican II, Crivii CB. Antidiabetic Treatment before Hospitalization and Admission Parameters in Patients with Type 2 Diabetes, Obesity, and SARS-CoV-2 Viral Infection. J Pers Med 2023; 13:jpm13030392. [PMID: 36983573 PMCID: PMC10055907 DOI: 10.3390/jpm13030392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/15/2023] [Accepted: 02/20/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND SARS-CoV-2 viral infection is a current and important topic for patients with comorbidities of type 2 diabetes and obesity, associated with increased risk of mortality and morbidity. This study aims to analyze, compare and describe admission parameters in patients with type 2 diabetes, obesity, and SARS-CoV-2 infection based on whether they received insulin therapy before hospital admission. METHODS Our study enrolled patients diagnosed with type 2 diabetes, obesity, and SARS-CoV-2 viral infection, 81 patients without insulin treatment before hospital admission, and 81 patients with insulin at "Gavril Curteanu" Municipal Clinical Hospital of Oradea, Romania, between August 2020 and March 2022. RT-PCR/rapid antigen tests were used for detecting SARS-CoV-2 viral infection. RESULTS The severe form of COVID-19 was found in 66% of all patients (65% in the group without insulin and 67% in the group with insulin). Oxygen saturation at the time of hospital admission was greater or equal to 90% in 62% of all patients. The most associated comorbidities we founded in this study were: hypertension in 75% of all patients (grade two hypertension 63% in the group without insulin and 64% in the group with insulin), ischemic heart disease in 35% of patients (25% in the group without insulin and 44% in the group with insulin, n = 0.008), heart failure in 9.3% of all patients (8.6% in the group without insulin and 10% in the group with insulin). CRP and procalcitonin are increased in both groups at hospital admission, with a slightly higher trend in the group with insulin therapy before hospital admission. We found that 56% of patients in the group with insulin treatment were with uncontrolled diabetes on admission. Only 10% of patients required a change in antidiabetic treatment with insulin therapy at discharge. In our study, 89% of all patients did not require short-term home oxygen therapy at discharge. CONCLUSIONS Antidiabetic therapy taken before hospital admission did not protect patients against cytokine storm in COVID-19, but is very important in the pathophysiological stage of comorbidities. Paraclinical parameters at hospitalization showed differences in correlation with oral antidiabetic treatment like metformin or insulin therapy. Changing the antidiabetic treatment for a small percentage of patients in the group who had not been receiving insulin therapy before discharge was necessary. It is necessary for future studies to see all changes involved in antidiabetic treatment in patients with diabetes type 2 and obesity after SARS-CoV2 viral infection and its long-term evolution.
Collapse
Affiliation(s)
- Patricia-Andrada Reștea
- Department of Preclinical Discipline, Doctoral School of Biomedical Science, Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania
| | - Mariana Mureșan
- Department of Preclinical Discipline, Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania
| | - Adrian Voicu
- Department II, Faculty of Pharmacy, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Tunde Jurca
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania
| | - Annamaria Pallag
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania
| | - Eleonora Marian
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania
| | - Laura Grațiela Vicaș
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania
| | - Ionuț I Jeican
- Department of Morphological Sciences, "Iuliu Hațieganu" University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
| | - Carmen-Bianca Crivii
- Department of Morphological Sciences, "Iuliu Hațieganu" University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
| |
Collapse
|
160
|
Bouhamdani N, Comeau D, Bourque C, Saulnier N. Encephalic nocardiosis after mild COVID-19: A case report. Front Neurol 2023; 14:1137024. [PMID: 36908618 PMCID: PMC9992866 DOI: 10.3389/fneur.2023.1137024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/02/2023] [Indexed: 02/24/2023] Open
Abstract
The COVID-19 pandemic and the associated post-acute sequelae of COVID-19 (PASC) have led to the identification of a complex disease phenotype that is associated with important changes in the immune system. Herein, we describe a unique case of Nocardia farcinica cerebral abscess in an individual with sudden immunodeficiency several months after mild COVID-19. Intravenous Bactrim and Imipenem were prescribed for 6 weeks. After this, a 12-month course of Bactrim and Clavulin was prescribed to be taken orally, given the N. farcinica infection at the level of the central nervous system. This case report highlights the need for future research into the pathophysiology of COVID-19 and PASC immune dysregulation in convalescent individuals. It also draws attention to the need for timely consideration of opportunistic infections in patients with a history of COVID-19.
Collapse
Affiliation(s)
- Nadia Bouhamdani
- Vitalité Health Network, Dr. Georges-L.-Dumont University Hospital Center, Research Sector, Moncton, NB, Canada
- Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
- Centre de Formation Médicale du Nouveau-Brunswick, Université de Moncton, Moncton, NB, Canada
| | - Dominique Comeau
- Vitalité Health Network, Dr. Georges-L.-Dumont University Hospital Center, Research Sector, Moncton, NB, Canada
| | - Christine Bourque
- Vitalité Health Network, Dr. Georges-L.-Dumont University Hospital Center, Research Sector, Moncton, NB, Canada
| | - Nancy Saulnier
- Vitalité Health Network, Dr. Georges-L.-Dumont University Hospital Center, Research Sector, Moncton, NB, Canada
| |
Collapse
|
161
|
Murali R, Wanjari UR, Mukherjee AG, Gopalakrishnan AV, Kannampuzha S, Namachivayam A, Madhyastha H, Renu K, Ganesan R. Crosstalk between COVID-19 Infection and Kidney Diseases: A Review on the Metabolomic Approaches. Vaccines (Basel) 2023; 11:vaccines11020489. [PMID: 36851366 PMCID: PMC9959335 DOI: 10.3390/vaccines11020489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes COVID-19, a respiratory disorder. Various organ injuries have been reported in response to this virus, including kidney injury and, in particular, kidney tubular injury. It has been discovered that infection with the virus does not only cause new kidney disease but also increases treatment difficulty and mortality rates in people with kidney diseases. In individuals hospitalized with COVID-19, urinary metabolites from several metabolic pathways are used to distinguish between patients with acute kidney injury (AKI) and those without. This review summarizes the pathogenesis, pathophysiology, treatment strategies, and role of metabolomics in relation to AKI in COVID-19 patients. Metabolomics is likely to play a greater role in predicting outcomes for patients with kidney disease and COVID-19 with varying levels of severity in the near future as data on metabolic profiles expand rapidly. Here, we also discuss the correlation between COVID-19 and kidney diseases and the available metabolomics approaches.
Collapse
Affiliation(s)
- Reshma Murali
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Uddesh Ramesh Wanjari
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Anirban Goutam Mukherjee
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
- Correspondence: (A.V.G.); (R.G.)
| | - Sandra Kannampuzha
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Arunraj Namachivayam
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Harishkumar Madhyastha
- Department of Cardiovascular Physiology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Kaviyarasi Renu
- Center of Molecular Medicine and Diagnostics (COMMAND), Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India
| | - Raja Ganesan
- Institute for Liver and Digestive Diseases, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
- Correspondence: (A.V.G.); (R.G.)
| |
Collapse
|
162
|
Roubinian NH, Vinson DR, Pai AP, Myers LC, Skarbinski J, Lee C, Mark DG, Liu VX. Risk of VTE in Nonrespiratory and Respiratory Presentations of COVID-19 in Critically Ill Patients. Chest 2023:S0012-3692(23)00188-5. [PMID: 36787875 PMCID: PMC9922435 DOI: 10.1016/j.chest.2023.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/25/2023] [Accepted: 02/01/2023] [Indexed: 02/14/2023] Open
Affiliation(s)
- Nareg H. Roubinian
- Division of Research, Kaiser Permanente Northern California, Oakland, CA,Department of Pulmonary/Critical Care, Kaiser Permanente Oakland Medical Center, Oakland, CA,CORRESPONDENCE TO: Nareg H. Roubinian, MD, MPHTM
| | - David R. Vinson
- Division of Research, Kaiser Permanente Northern California, Oakland, CA,Department of Emergency Medicine, Kaiser Permanente Roseville Medical Center, Roseville, CA
| | - Ashok P. Pai
- Department of Hematology/Oncology, Kaiser Permanente Oakland Medical Center, Oakland, CA
| | - Laura C. Myers
- Division of Research, Kaiser Permanente Northern California, Oakland, CA,Department of Pulmonary/Critical Care Medicine, Kaiser Permanente Walnut Creek, Walnut Creek, CA
| | - Jacek Skarbinski
- Division of Research, Kaiser Permanente Northern California, Oakland, CA,Department of Infectious Disease, Kaiser Permanente Oakland Medical Center, Oakland, CA
| | - Catherine Lee
- Division of Research, Kaiser Permanente Northern California, Oakland, CA
| | - Dustin G. Mark
- Division of Research, Kaiser Permanente Northern California, Oakland, CA,Department of Emergency Medicine, Kaiser Permanente Oakland Medical Center, Oakland, CA
| | - Vincent X. Liu
- Division of Research, Kaiser Permanente Northern California, Oakland, CA,Department of Pulmonary/Critical Care, Kaiser Permanente Santa Clara Medical Center, Santa Clara, CA
| |
Collapse
|
163
|
Vosko I, Zirlik A, Bugger H. Impact of COVID-19 on Cardiovascular Disease. Viruses 2023; 15:508. [PMID: 36851722 PMCID: PMC9962056 DOI: 10.3390/v15020508] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/30/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a viral infection with the novel severe acute respiratory distress syndrome corona virus 2 (SARS-CoV-2). Until now, more than 670 million people have suffered from COVID-19 worldwide, and roughly 7 million death cases were attributed to COVID-19. Recent evidence suggests an interplay between COVID-19 and cardiovascular disease (CVD). COVID-19 may serve as a yet underappreciated CVD risk modifier, including risk factors such as diabetes mellitus or arterial hypertension. In addition, recent data suggest that previous COVID-19 may increase the risk for many entities of CVD to an extent similarly observed for traditional cardiovascular (CV) risk factors. Furthermore, increased CVD incidence and worse clinical outcomes in individuals with preexisting CVD have been observed for myocarditis, acute coronary syndrome, heart failure (HF), thromboembolic complications, and arrhythmias. Direct and indirect mechanisms have been proposed by which COVID-19 may impact CVD and CV risk, including viral entry into CV tissue or by the induction of a massive systemic inflammatory response. In the current review, we provide an overview of the literature reporting an interaction between COVID-19 and CVD, review potential mechanisms underlying this interaction, and discuss preventive and treatment strategies and their interference with CVD that were evaluated since the onset of the COVID-19 pandemic.
Collapse
Affiliation(s)
| | | | - Heiko Bugger
- Department of Cardiology, Medical University of Graz, 8036 Graz, Austria
| |
Collapse
|
164
|
La Carrubba A, Veronese N, Di Bella G, Cusumano C, Di Prazza A, Ciriminna S, Ganci A, Naro L, Dominguez LJ, Barbagallo M. Prognostic Value of Magnesium in COVID-19: Findings from the COMEPA Study. Nutrients 2023; 15:830. [PMID: 36839188 PMCID: PMC9966815 DOI: 10.3390/nu15040830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/08/2023] Open
Abstract
Magnesium (Mg) plays a key role in infections. However, its role in coronavirus disease 2019 (COVID-19) is still underexplored, particularly in long-term sequelae. The aim of the present study was to examine the prognostic value of serum Mg levels in older people affected by COVID-19. Patients were divided into those with serum Mg levels ≤1.96 vs. >1.96 mg/dL, according to the Youden index. A total of 260 participants (mean age 65 years, 53.8% males) had valid Mg measurements. Serum Mg had a good accuracy in predicting in-hospital mortality (area under the curve = 0.83; 95% CI: 0.74-0.91). Low serum Mg at admission significantly predicted in-hospital death (HR = 1.29; 95% CI: 1.03-2.68) after adjusting for several confounders. A value of Mg ≤ 1.96 mg/dL was associated with a longer mean length of stay compared to those with a serum Mg > 1.96 (15.2 vs. 12.7 days). Low serum Mg was associated with a higher incidence of long COVID symptomatology (OR = 2.14; 95% CI: 1.30-4.31), particularly post-traumatic stress disorder (OR = 2.00; 95% CI: 1.24-16.40). In conclusion, low serum Mg levels were significant predictors of mortality, length of stay, and onset of long COVID symptoms, indicating that measuring serum Mg in COVID-19 may be helpful in the prediction of complications related to the disease.
Collapse
Affiliation(s)
- Anna La Carrubba
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties “G. D’Alessandro”, University of Palermo, 90127 Palermo, Italy
| | - Nicola Veronese
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties “G. D’Alessandro”, University of Palermo, 90127 Palermo, Italy
| | - Giovanna Di Bella
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties “G. D’Alessandro”, University of Palermo, 90127 Palermo, Italy
| | - Claudia Cusumano
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties “G. D’Alessandro”, University of Palermo, 90127 Palermo, Italy
| | - Agnese Di Prazza
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties “G. D’Alessandro”, University of Palermo, 90127 Palermo, Italy
| | - Stefano Ciriminna
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties “G. D’Alessandro”, University of Palermo, 90127 Palermo, Italy
| | - Antonina Ganci
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties “G. D’Alessandro”, University of Palermo, 90127 Palermo, Italy
| | - Liliana Naro
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties “G. D’Alessandro”, University of Palermo, 90127 Palermo, Italy
| | - Ligia J. Dominguez
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties “G. D’Alessandro”, University of Palermo, 90127 Palermo, Italy
- School of Medicine and Surgery, University of Enna “Kore”, 94100 Enna, Italy
| | - Mario Barbagallo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties “G. D’Alessandro”, University of Palermo, 90127 Palermo, Italy
| | | |
Collapse
|
165
|
Colonnello E, Criniti A, Lorusso E, Curreli M, Santulli M, Angeloni A, Gnessi L, Gandini O, Lubrano C. Thyroid hormones and platelet activation in COVID-19 patients. J Endocrinol Invest 2023; 46:261-269. [PMID: 36064879 PMCID: PMC9444103 DOI: 10.1007/s40618-022-01896-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/04/2022] [Indexed: 01/25/2023]
Abstract
PURPOSE To retrospectively describe the association between thyroid hormones (TH) and platelet activation, as represented by mean platelet volume (MPV), in a cohort of patients hospitalized for COVID-19 with no known thyroid disease, and to correlate these data with the severity of COVID-19 and the occurrence of death/ARDS (Acute Respiratory Distress Syndrome). METHODS 103 patients with real-time polymerase chain reaction (RT-PCR) testing-confirmed COVID-19 and hospitalized were enrolled. Serum samples were collected from patients upon admission before starting any treatment. Chi-squared test was used to determine the association between euthyroid sick syndrome (ESS) and COVID-19 severity. Multivariate logistic regression was performed to evaluate the best independent predictors of COVID-19 deaths/ARDS. RESULTS 39/103 (37.9%) of patients were found to have ESS, and this condition was an independent predictor for the severity of COVID-19 (p = 0.003). Lower TSH and lower FT3/FT4 ratio correlated with higher MPV (p = 0,001 and p = 0.010), with an opposite trend with respect to what has been documented in non-COVID patients. Increasing MPV and lower FT3 significantly increased the risk, in COVID-19 patients, of an adverse outcome of death/ARDS. CONCLUSION Increased platelet activation, as represented by increased MPV, has already been reported to correlate with COVID-19 severity, possibly as a consequence of cytokine release. We demonstrated, in a cohort of 103 patients with COVID-19, that MPV is inversely correlated to TH levels, in particular in the case of ESS, where downregulation of TH axis may occur in case of systemic cytokine inflammation and more severe outcomes (death/ARDS). That ESS itself may directly cause platelet activation, as demonstrated by higher MPV in these patients, is an interesting hypothesis which deserves further investigation.
Collapse
Affiliation(s)
- E Colonnello
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - A Criniti
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - E Lorusso
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - M Curreli
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - M Santulli
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - A Angeloni
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - L Gnessi
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - O Gandini
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - C Lubrano
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
166
|
Kaya AT, Akman B. Is a high chest CT severity score a risk factor for an increased incidence of long-term neuroimaging findings after COVID-19? J Stroke Cerebrovasc Dis 2023; 32:106920. [PMID: 36516593 PMCID: PMC9708621 DOI: 10.1016/j.jstrokecerebrovasdis.2022.106920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022] Open
Abstract
OBJECTIVES We aimed to determine the incidences of neuroimaging findings (NIF) and investigate the relationship between the course of pneumonia severity and neuroimaging findings. MATERIALS AND METHODS Our study was a retrospective analysis of 272 (>18 years) COVID-19 patients who were admitted between "March 11, 2021, and September 26, 2022". All patients underwent both chest CT and neuroimaging. The patient's chest CTs were evaluated for pneumonia severity using a severity score system (CT-SS). The incidence of NIF was calculated. NIF were categorized into two groups; neuroimaging positive (NIP) and neuroimaging negative (NIN). Consecutive CT-SS changes in positive and negative NIF patients were analyzed. RESULTS The median age of total patients was 71; IQR, 57-80. Of all patients, 56/272 (20.6%) were NIP. There was no significant relationship between NIP and mortality (p = 0.815) and ICU admission (p = 0.187). The incidences of NIF in our patients were as follows: Acute-subacute ischemic stroke: 47/272 (17.3%); Acute spontaneous intracranial hemorrhage: 13/272 (4.8%); Cerebral microhemorrhages: 10/272 (3.7%) and Cerebral venous sinus thrombosis: 3/25 (10.7%). Temporal change of CT-SSs, there was a statistically significant increase in the second and third CT-SSs compared to the first CT-SS in both patients with NIP and NIN. CONCLUSION Our results showed that since neurological damage can be seen in the late period and neurological damage may develop regardless of pneumonia severity.
Collapse
Affiliation(s)
- Ahmet Turan Kaya
- Department of Radiology, Amasya University, Faculty of Medicine, Amasya, Turkey.
| | - Burcu Akman
- Department of Radiology, Amasya University, Faculty of Medicine, Amasya, Turkey
| |
Collapse
|
167
|
Cireli E, Mertoğlu A. A Cross-Sectional Study for Determining the Role of High-Sensitivity Cardiac Troponin T in Predicting 4-Month Mortality during the First Wave of the COVID-19 Pandemic. TANAFFOS 2023; 22:200-208. [PMID: 38628878 PMCID: PMC11016924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 01/12/2022] [Indexed: 04/19/2024]
Abstract
Background Positivity of cardiac troponins is common in hospitalized COVID-19 patients and may serve as an additional risk stratification tool in everyday clinical settings. Since patients with elevated troponins have a higher risk of in-hospital mortality, troponins have prognostic importance. As well as in-hospital mortality, high-sensitive troponin T may reflect 4-month mortality. We analyzed the relationship between cardiac troponin T levels and 4-month mortality of COVID-19. Materials and Methods It was conducted as a retrospective cross-sectional study in Health Sciences University Dr. Suat Seren Chest Diseases and Chest Surgery Training and Research Hospital Izmir, Turkey, with COVID-19 pneumonia patients during the first wave of the pandemic. We analyzed their comorbidities, C-reactive protein, ferritin, aspartate transaminase, alanine transaminase, cardiac troponin T, N-terminal-prohormone B-type-natriuretic peptide, international normalized ratio; duration of hospital stay, and survival status. Results Factors associated with mortality were cardiac troponin T > 0.53 pg/dl (p = 0.009) and aspartate transaminase > 26.5 U/l (p = 0.012). The threshold for cardiac troponin T to predict 4-month mortality was 5.83pg/ml. Its sensitivity was 82.8% and its specificity was 66.4%. Conclusion Cardiac troponin T and AST are indicators that can be used to predict 4-month mortality in addition to showing in-hospital mortality. The threshold for cardiac troponin T to predict 4-month all-cause mortality is 5.83pg/ml. The mortality difference persists at the beginning, middle, and end of the 4 months. Reference thresholds likely underestimate the true prognostic extent of cardiac injury and lower cutoff values may show mortality.
Collapse
Affiliation(s)
- Emel Cireli
- Health Sciences University Dr Suat Seren Chest Diseases and Chest Surgery Training and Research Hospital, Izmir, Turkey
| | - Aydan Mertoğlu
- Health Sciences University Dr Suat Seren Chest Diseases and Chest Surgery Training and Research Hospital, Izmir, Turkey
| |
Collapse
|
168
|
Lee JH, Koh J, Jeon YK, Goo JM, Yoon SH. An Integrated Radiologic-Pathologic Understanding of COVID-19 Pneumonia. Radiology 2023; 306:e222600. [PMID: 36648343 PMCID: PMC9868683 DOI: 10.1148/radiol.222600] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 01/18/2023]
Abstract
This article reviews the radiologic and pathologic findings of the epithelial and endothelial injuries in COVID-19 pneumonia to help radiologists understand the fundamental nature of the disease. The radiologic and pathologic manifestations of COVID-19 pneumonia result from epithelial and endothelial injuries based on viral toxicity and immunopathologic effects. The pathologic features of mild and reversible COVID-19 pneumonia involve nonspecific pneumonia or an organizing pneumonia pattern, while the pathologic features of potentially fatal and irreversible COVID-19 pneumonia are characterized by diffuse alveolar damage followed by fibrosis or acute fibrinous organizing pneumonia. These pathologic responses of epithelial injuries observed in COVID-19 pneumonia are not specific to SARS-CoV-2 but rather constitute universal responses to viral pneumonia. Endothelial injury in COVID-19 pneumonia is a prominent feature compared with other types of viral pneumonia and encompasses various vascular abnormalities at different levels, including pulmonary thromboembolism, vascular engorgement, peripheral vascular reduction, a vascular tree-in-bud pattern, and lung perfusion abnormality. Chest CT with different imaging techniques (eg, CT quantification, dual-energy CT perfusion) can fully capture the various manifestations of epithelial and endothelial injuries. CT can thus aid in establishing prognosis and identifying patients at risk for deterioration.
Collapse
Affiliation(s)
- Jong Hyuk Lee
- From the Departments of Radiology (J.H.L., J.M.G., S.H.Y.) and
Pathology (J.K., Y.K.J.), Seoul National University Hospital, Seoul National
University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul 03080, Korea;
Department of Radiology, Seoul National University College of Medicine, Seoul,
Korea (J.M.G.); Institute of Radiation Medicine, Seoul National University
Medical Research Center, Seoul, Korea (J.M.G.); and Cancer Research Institute,
Seoul National University, Seoul, Korea (J.M.G.)
| | - Jaemoon Koh
- From the Departments of Radiology (J.H.L., J.M.G., S.H.Y.) and
Pathology (J.K., Y.K.J.), Seoul National University Hospital, Seoul National
University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul 03080, Korea;
Department of Radiology, Seoul National University College of Medicine, Seoul,
Korea (J.M.G.); Institute of Radiation Medicine, Seoul National University
Medical Research Center, Seoul, Korea (J.M.G.); and Cancer Research Institute,
Seoul National University, Seoul, Korea (J.M.G.)
| | - Yoon Kyung Jeon
- From the Departments of Radiology (J.H.L., J.M.G., S.H.Y.) and
Pathology (J.K., Y.K.J.), Seoul National University Hospital, Seoul National
University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul 03080, Korea;
Department of Radiology, Seoul National University College of Medicine, Seoul,
Korea (J.M.G.); Institute of Radiation Medicine, Seoul National University
Medical Research Center, Seoul, Korea (J.M.G.); and Cancer Research Institute,
Seoul National University, Seoul, Korea (J.M.G.)
| | - Jin Mo Goo
- From the Departments of Radiology (J.H.L., J.M.G., S.H.Y.) and
Pathology (J.K., Y.K.J.), Seoul National University Hospital, Seoul National
University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul 03080, Korea;
Department of Radiology, Seoul National University College of Medicine, Seoul,
Korea (J.M.G.); Institute of Radiation Medicine, Seoul National University
Medical Research Center, Seoul, Korea (J.M.G.); and Cancer Research Institute,
Seoul National University, Seoul, Korea (J.M.G.)
| | - Soon Ho Yoon
- From the Departments of Radiology (J.H.L., J.M.G., S.H.Y.) and
Pathology (J.K., Y.K.J.), Seoul National University Hospital, Seoul National
University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul 03080, Korea;
Department of Radiology, Seoul National University College of Medicine, Seoul,
Korea (J.M.G.); Institute of Radiation Medicine, Seoul National University
Medical Research Center, Seoul, Korea (J.M.G.); and Cancer Research Institute,
Seoul National University, Seoul, Korea (J.M.G.)
| |
Collapse
|
169
|
Uematsu H, Shinoda K, Saito A, Sakai K. Deep venous thrombosis in a kidney transplant recipient with COVID-19: a case report. CEN Case Rep 2023; 12:98-103. [PMID: 35972687 PMCID: PMC9379217 DOI: 10.1007/s13730-022-00724-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/21/2022] [Indexed: 02/04/2023] Open
Abstract
The outcomes of COVID-19 in kidney transplant recipients have shown high mortality. In addition to their immunocompromised states, kidney transplant recipients frequently have certain exacerbation risk comorbidities of COVID-19, such as diabetes mellitus, hypertension, and chronic kidney disease. Several concomitant diseases develop during the course of COVID-19, one of which is thromboembolism, which can potentially lead to a critical condition. However, thromboembolic complications in kidney transplant recipients with COVID-19 have not been fully addressed in previous studies. A 62-year-old man, who underwent kidney transplantation 17 years ago, was diagnosed with COVID-19 and was admitted to our hospital. Although the patient was in remission at the start of the hospitalization, his condition became severe on day 7 after admission, with fever, elevated white blood cell counts (10,000/μL) and a high C-reactive protein level (6.9 mg/dL). Although the patient was not under forced bed rest, an ultrasound study on day 10 detected deep venous thrombosis (DVT), with an elevated D-dimer level (6.2 µg/dL). We withdrew the mycophenolate mofetyl and the tacrolimus dosage but did not administer any specific treatment for COVID-19. The patient achieved successful clearance of SARS-CoV-2 on day 16. The DVT disappeared after systematic heparin treatment and oral rivaroxaban for 2 months. DVT occurred in a kidney transplant recipient with COVID-19 who was not bedridden and might manifest when the clinical status was exacerbated during hospitalization.
Collapse
Affiliation(s)
- Hikaru Uematsu
- Department of Nephrology, Faculty of Medicine, Toho University, 6-11-1 Omorinishi, Tokyo, 143-8541, Japan
| | - Kazunobu Shinoda
- Department of Nephrology, Faculty of Medicine, Toho University, 6-11-1 Omorinishi, Tokyo, 143-8541, Japan.
| | - Akinobu Saito
- Department of Nephrology, Faculty of Medicine, Toho University, 6-11-1 Omorinishi, Tokyo, 143-8541, Japan
| | - Ken Sakai
- Department of Nephrology, Faculty of Medicine, Toho University, 6-11-1 Omorinishi, Tokyo, 143-8541, Japan
| |
Collapse
|
170
|
Callen AL, Tanabe J, Thaker AA, Pollard R, Sauer B, Jones W, Pattee J, Steach B, Timpone VM. Evaluation of Cerebrovascular Reactivity and Vessel Wall Imaging in Patients With Prior COVID-19: A Prospective Case-Control MRI Study. AJR Am J Roentgenol 2023; 220:257-264. [PMID: 36000667 DOI: 10.2214/ajr.22.28267] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BACKGROUND. SARS-CoV-2 infection is associated with acute stroke, possibly caused by viral tropism to the vascular endothelium. Whether cerebrovascular endothelial dysfunction and inflammation persist after acute infection is poorly understood. OBJECTIVE. The purposes of this study were to assess the association between prior SARS-CoV-2 infection and cerebrovascular reactivity (CVR) and vessel wall imaging (VWI) abnormalities and to explore the association between CVR impairment and post-COVID neurologic conditions. METHODS. This prospective study included 15 participants with prior SARS-CoV-2 infection (11 women, four men; mean age, 43 years; mean time since infection, 238 days; three with prior critical illness, 12 with prior mild illness; seven with post-COVID neurologic conditions) and 10 control participants who had never had SARS-CoV-2 infection (two women, two men; mean age, 44 years) from July 1, 2021, to February 9, 2022. Participants underwent research MRI that included arterial spin labeling perfusion imaging with acetazolamide stimulus to measure cerebral blood flow (CBF) and calculate CVR. Examinations also included VWI, performed with a contrast-enhanced black-blood 3D T1-weighted sequence. An age- and sex-adjusted linear model was used to assess associations between CVR and prior infection. A t test was used to assess associations between CVR and post-COVID neurologic conditions in participants with previous infection. A difference of proportions test was used to assess associations between VWI abnormalities and infection status. RESULTS. Mean whole-cortex CBF after acetazolamide administration was greater in participants without previous infection than in participants with previous infection (73.8 ± 13.2 [SD] vs 60.5 ± 15.8 mL/100 gm/min; p = .04). Whole-brain CVR was lower in participants with previous infection than those without previous infection (difference, -8.9 mL/100 g/min; p < .001); significantly lower CVR was also observed in participants with previous infection after exclusion of those with prior critical illness. Among participants with previous infection, CVR was lower in those with than those without post-COVID neurologic conditions, although this difference was not significant (16.9 vs 21.0 mL/100 g/min; p = .22). Six of 15 (40%) participants with previous infection versus 1 of 10 (10%) participants without previous infection had at least one VWI abnormality (p = .18). All VWI abnormalities were consistent with atherosclerosis. CONCLUSION. SARS-CoV-2 infection is associated with chronic impairment of CVR. The mechanism is unknown from this study. CLINICAL IMPACT. Future studies are needed to determine the clinical implications of SARS-CoV-2-associated CVR impairment.
Collapse
Affiliation(s)
- Andrew L Callen
- Department of Radiology, University of Colorado School of Medicine, 12401 E 17th Ave, Mail Stop L954, Aurora, CO 80045
| | - Jody Tanabe
- Department of Radiology, University of Colorado School of Medicine, 12401 E 17th Ave, Mail Stop L954, Aurora, CO 80045
| | - Ashesh A Thaker
- Department of Radiology, University of Colorado School of Medicine, 12401 E 17th Ave, Mail Stop L954, Aurora, CO 80045
| | - Rebecca Pollard
- Department of Neurology, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Brian Sauer
- Department of Neurology, University of Colorado School of Medicine, Aurora, CO
| | - William Jones
- Department of Neurology, University of Colorado School of Medicine, Aurora, CO
| | - Jack Pattee
- Department of Radiology, University of Colorado School of Medicine, 12401 E 17th Ave, Mail Stop L954, Aurora, CO 80045
| | | | - Vincent M Timpone
- Department of Radiology, University of Colorado School of Medicine, 12401 E 17th Ave, Mail Stop L954, Aurora, CO 80045
| |
Collapse
|
171
|
Makarova YA, Ryabkova VA, Salukhov VV, Sagun BV, Korovin AE, Churilov LP. Atherosclerosis, Cardiovascular Disorders and COVID-19: Comorbid Pathogenesis. Diagnostics (Basel) 2023; 13:478. [PMID: 36766583 PMCID: PMC9914751 DOI: 10.3390/diagnostics13030478] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/19/2023] [Accepted: 01/26/2023] [Indexed: 02/01/2023] Open
Abstract
The article describes how atherosclerosis and coronavirus disease 19 (COVID-19) may affect each other. The features of this comorbid pathogenesis at various levels (vascular, cellular and molecular) are considered. A bidirectional influence of these conditions is described: the presence of cardiovascular diseases affects different individuals' susceptibility to viral infection. In turn, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can have a negative effect on the endothelium and cardiomyocytes, causing blood clotting, secretion of pro-inflammatory cytokines, and thus exacerbating the development of atherosclerosis. In addition to the established entry into cells via angiotensin-converting enzyme 2 (ACE2), other mechanisms of SARS-CoV-2 entry are currently under investigation, for example, through CD147. Pathogenesis of comorbidity can be determined by the influence of the virus on various links which are meaningful for atherogenesis: generation of oxidized forms of low-density lipoproteins (LDL), launch of a cytokine storm, damage to the endothelial glycocalyx, and mitochondrial injury. The transformation of a stable plaque into an unstable one plays an important role in the pathogenesis of atherosclerosis complications and can be triggered by COVID-19. The impact of SARS-CoV-2 on large vessels such as the aorta is more complex than previously thought considering its impact on vasa vasorum. Current information on the mutual influence of the medicines used in the treatment of atherosclerosis and acute COVID-19 is briefly summarized.
Collapse
Affiliation(s)
- Yulia A. Makarova
- Laboratory of the Microangiopathic Mechanisms of Atherogenesis, Saint Petersburg State University, 199034 Saint-Petersburg, Russia
| | - Varvara A. Ryabkova
- Laboratory of the Microangiopathic Mechanisms of Atherogenesis, Saint Petersburg State University, 199034 Saint-Petersburg, Russia
- M.V. Chernorutsky Department of Internal Medicine (Hospital Course), Pavlov First Saint Petersburg State Medical University, 197022 Saint-Petersburg, Russia
| | - Vladimir V. Salukhov
- N.S. Molchanov 1st Clinic for the Improvement of Physicians, S.M. Kirov Military Medical Academy, 194044 Saint-Petersburg, Russia
| | - Boris V. Sagun
- N.S. Molchanov 1st Clinic for the Improvement of Physicians, S.M. Kirov Military Medical Academy, 194044 Saint-Petersburg, Russia
| | - Aleksandr E. Korovin
- Laboratory of the Microangiopathic Mechanisms of Atherogenesis, Saint Petersburg State University, 199034 Saint-Petersburg, Russia
- N.S. Molchanov 1st Clinic for the Improvement of Physicians, S.M. Kirov Military Medical Academy, 194044 Saint-Petersburg, Russia
| | - Leonid P. Churilov
- Laboratory of the Microangiopathic Mechanisms of Atherogenesis, Saint Petersburg State University, 199034 Saint-Petersburg, Russia
- Department of Experimental Tuberculosis, Saint Petersburg Research Institute of Phthisiopulmonology, 191036 Saint-Petersburg, Russia
| |
Collapse
|
172
|
Freire APCF, Amin S, Lira FS, Morano AEVA, Pereira T, Coelho-E-Silva MJ, Caseiro A, Christofaro DGD, Dos Santos VR, Júnior OM, Pinho RA, Silva BSDA. Autonomic Function Recovery and Physical Activity Levels in Post-COVID-19 Young Adults after Immunization: An Observational Follow-Up Case-Control Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2251. [PMID: 36767620 PMCID: PMC9915325 DOI: 10.3390/ijerph20032251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/19/2023] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
Coronavirus disease 2019 (COVID-19) has detrimental multi-system consequences. Symptoms may appear during the acute phase of infection, but the literature on long-term recovery of young adults after mild to moderate infection is lacking. Heart rate variability (HRV) allows for the observation of autonomic nervous system (ANS) modulation post-SARS-CoV-2 infection. Since physical activity (PA) can help improve ANS modulation, investigating factors that can influence HRV outcomes after COVID-19 is essential to advancements in care and intervention strategies. Clinicians may use this research to aid in the development of non-medication interventions. At baseline, 18 control (CT) and 20 post-COVID-19 (PCOV) participants were observed where general anamnesis was performed, followed by HRV and PA assessment. Thus, 10 CT and 7 PCOV subjects returned for follow-up (FU) evaluation 6 weeks after complete immunization (two doses) and assessments were repeated. Over the follow-up period, a decrease in sympathetic (SNS) activity (mean heart rate: p = 0.0024, CI = -24.67--3.26; SNS index: p = 0.0068, CI = -2.50--0.32) and increase in parasympathetic (PNS) activity (mean RR: p = 0.0097, CI = 33.72-225.51; PNS index: p = 0.0091, CI = -0.20-1.47) were observed. At follow-up, HRV was not different between groups (p > 0.05). Additionally, no differences were observed in PA between moments and groups. This study provides evidence of ANS recovery after SARS-CoV-2 insult in young adults over a follow-up period, independent of changes in PA.
Collapse
Affiliation(s)
- Ana Paula Coelho Figueira Freire
- Department of Health Sciences, Central Washington University, Ellensburg, WA 98926, USA
- Physiotherapy Department, Universidade do Oeste Paulista (UNOESTE), Presidente Prudente 19050-920, Brazil
- Exercise and Immunometabolism Research Group, Postgraduate Program in Movement Sciences, Department of Physical Education, Universidade Estadual Paulista (UNESP), Presidente Prudente 19060-900, Brazil
| | - Shaan Amin
- Department of Health Sciences, Central Washington University, Ellensburg, WA 98926, USA
| | - Fabio Santos Lira
- Exercise and Immunometabolism Research Group, Postgraduate Program in Movement Sciences, Department of Physical Education, Universidade Estadual Paulista (UNESP), Presidente Prudente 19060-900, Brazil
- Faculty of Sport Science and Physical Education, University of Coimbra, CIDAF, 3000-456 Coimbra, Portugal
| | - Ana Elisa von Ah Morano
- Exercise and Immunometabolism Research Group, Postgraduate Program in Movement Sciences, Department of Physical Education, Universidade Estadual Paulista (UNESP), Presidente Prudente 19060-900, Brazil
| | - Telmo Pereira
- Faculty of Sport Science and Physical Education, University of Coimbra, CIDAF, 3000-456 Coimbra, Portugal
- Polytechnic of Coimbra, ESTESC, 3046-854 Coimbra, Portugal
- Laboratory for Applied Health Research (LabinSaúde), 3046-854 Coimbra, Portugal
| | - Manuel-João Coelho-E-Silva
- Faculty of Sport Science and Physical Education, University of Coimbra, CIDAF, 3000-456 Coimbra, Portugal
| | - Armando Caseiro
- Polytechnic of Coimbra, ESTESC, 3046-854 Coimbra, Portugal
- Laboratory for Applied Health Research (LabinSaúde), 3046-854 Coimbra, Portugal
- Molecular Physical-Chemistry R & D Unit, Faculty of Science and Technology, University of Coimbra, 3004-535 Coimbra, Portugal
| | - Diego Giulliano Destro Christofaro
- Postgraduate Program in Movement Sciences, Department of Physical Education, Universidade Estadual Paulista (UNESP), Presidente Prudente 19060-900, Brazil
| | - Vanessa Ribeiro Dos Santos
- Exercise and Immunometabolism Research Group, Postgraduate Program in Movement Sciences, Department of Physical Education, Universidade Estadual Paulista (UNESP), Presidente Prudente 19060-900, Brazil
| | - Osmar Marchioto Júnior
- Exercise and Immunometabolism Research Group, Postgraduate Program in Movement Sciences, Department of Physical Education, Universidade Estadual Paulista (UNESP), Presidente Prudente 19060-900, Brazil
| | - Ricardo Aurino Pinho
- Graduate Program in Health Sciences, School of Medicine, Pontificia Universidade Catolica Do Parana, Curitiba 80215-901, Brazil
| | - Bruna Spolador de Alencar Silva
- Exercise and Immunometabolism Research Group, Postgraduate Program in Movement Sciences, Department of Physical Education, Universidade Estadual Paulista (UNESP), Presidente Prudente 19060-900, Brazil
| |
Collapse
|
173
|
Bugatti A, Filippini F, Messali S, Giovanetti M, Ravelli C, Zani A, Ciccozzi M, Caruso A, Caccuri F. The D405N Mutation in the Spike Protein of SARS-CoV-2 Omicron BA.5 Inhibits Spike/Integrins Interaction and Viral Infection of Human Lung Microvascular Endothelial Cells. Viruses 2023; 15:332. [PMID: 36851546 PMCID: PMC9962894 DOI: 10.3390/v15020332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/19/2023] [Accepted: 01/22/2023] [Indexed: 01/26/2023] Open
Abstract
Severe COVID-19 is characterized by angiogenic features, such as intussusceptive angiogenesis, endothelialitis, and activation of procoagulant pathways. This pathological state can be ascribed to a direct SARS-CoV-2 infection of human lung ECs. Recently, we showed the capability of SARS-CoV-2 to infect ACE2-negative primary human lung microvascular endothelial cells (HL-mECs). This occurred through the interaction of an Arg-Gly-Asp (RGD) motif, endowed on the Spike protein at position 403-405, with αvβ3 integrin expressed on HL-mECs. HL-mEC infection promoted the remodeling of cells toward a pro-inflammatory and pro-angiogenic phenotype. The RGD motif is distinctive of SARS-CoV-2 Spike proteins up to the Omicron BA.1 subvariant. Suddenly, a dominant D405N mutation was expressed on the Spike of the most recently emerged Omicron BA.2, BA.4, and BA.5 subvariants. Here we demonstrate that the D405N mutation inhibits Omicron BA.5 infection of HL-mECs and their dysfunction because of the lack of Spike/integrins interaction. The key role of ECs in SARS-CoV-2 pathogenesis has been definitively proven. Evidence of mutations retrieving the capability of SARS-CoV-2 to infect HL-mECs highlights a new scenario for patients infected with the newly emerged SARS-CoV-2 Omicron subvariants, suggesting that they may display less severe disease manifestations than those observed with previous variants.
Collapse
Affiliation(s)
- Antonella Bugatti
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Federica Filippini
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Serena Messali
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Marta Giovanetti
- Laboratório de Flavivirus, Instituto Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil
- Department of Science and Technology for Humans and the Environment, University Campus Bio-Medico of Rome, 00128 Rome, Italy
| | - Cosetta Ravelli
- Section of General Pathology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Alberto Zani
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Massimo Ciccozzi
- Unit of Medical Statistics and Molecular Epidemiology, University Campus Bio-Medico of Rome, 00128 Rome, Italy
| | - Arnaldo Caruso
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
- Institute of Human Virology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Francesca Caccuri
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| |
Collapse
|
174
|
Mezine F, Guerin CL, Philippe A, Gendron N, Soret L, Sanchez O, Mirault T, Diehl JL, Chocron R, Boulanger CM, Smadja DM. Increased Circulating CD62E + Endothelial Extracellular Vesicles Predict Severity and in- Hospital Mortality of COVID-19 Patients. Stem Cell Rev Rep 2023; 19:114-119. [PMID: 35982357 PMCID: PMC9387889 DOI: 10.1007/s12015-022-10446-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2022] [Indexed: 01/29/2023]
Abstract
COVID-19 and infectious diseases have been included in strategic development goals (SDG) of United Nations (UN). Severe form of COVID-19 has been described as an endothelial disease. In order to better evaluate Covid-19 endotheliopathy, we characterized several subsets of circulating endothelial extracellular vesicles (EVs) at hospital admission among a cohort of 60 patients whose severity of COVID-19 was classified at the time of inclusion. Degree of COVID-19 severity was determined upon inclusion and categorized as moderate to severe in 40 patients and critical in 20 patients. We measured citrated plasma EVs expressing endothelial membrane markers. Endothelial EVs were defined as harboring VE-cadherin (CD144+), PECAM-1 (CD31 + CD41-) or E-selectin (CD62E+). An increase in CD62E + EV levels on admission to the hospital was significantly associated with critical disease. Moreover, Kaplan-Meier survival curves for CD62E + EV level showed that level ≥ 88,053 EVs/μL at admission was a significant predictor of in hospital mortality (p = 0.004). Moreover, CD62E + EV level ≥ 88,053 EV/μL was significantly associated with higher in-hospital mortality (OR 6.98, 95% CI 2.1-26.4, p = 0.002) in a univariate logistic regression model, while after adjustment to BMI CD62E + EV level ≥ 88,053 EV/μL was always significantly associated with higher in-hospital mortality (OR 5.1, 95% CI 1.4-20.0, p = 0.01). The present findings highlight the potential interest of detecting EVs expressing E-selectin (CD62) to discriminate Covid-19 patients at the time of hospital admission and identify individuals with higher risk of fatal outcome.
Collapse
Affiliation(s)
- Fariza Mezine
- Université Paris Cité, INSERM, PARCC, F-75015 Paris, France
| | - Coralie L. Guerin
- Cytometry core, Institut Curie, F-75005 Paris, France ,Université Paris Cité, INSERM, Innovative Therapies in Haemostasis, F-75006 Paris, France
| | - Aurélien Philippe
- Université Paris Cité, INSERM, Innovative Therapies in Haemostasis, F-75006 Paris, France ,Hematology department and Biosurgical research lab (Carpentier Foundation), AP-HP, Georges Pompidou European Hospital, F-75015 Paris, France
| | - Nicolas Gendron
- Université Paris Cité, INSERM, Innovative Therapies in Haemostasis, F-75006 Paris, France ,Hematology department and Biosurgical research lab (Carpentier Foundation), AP-HP, Georges Pompidou European Hospital, F-75015 Paris, France
| | - Lou Soret
- Université Paris Cité, INSERM, Innovative Therapies in Haemostasis, F-75006 Paris, France ,Hematology department and Biosurgical research lab (Carpentier Foundation), AP-HP, Georges Pompidou European Hospital, F-75015 Paris, France
| | - Olivier Sanchez
- Université Paris Cité, INSERM, Innovative Therapies in Haemostasis, F-75006 Paris, France ,Respiratory disease department and Biosurgical research lab (Carpentier Foundation), AP-HP, Georges Pompidou European Hospital, F-75015 Paris, France
| | - Tristan Mirault
- Université Paris Cité, INSERM, PARCC, F-75015 Paris, France ,Vascular medicine department, AP-HP, Georges Pompidou European Hospital, F-75015 Paris, France
| | - Jean-Luc Diehl
- Université Paris Cité, INSERM, Innovative Therapies in Haemostasis, F-75006 Paris, France ,Intensive care medicine department and Biosurgical research lab (Carpentier Foundation), AP-HP, Georges Pompidou European Hospital, F-75015 Paris, France
| | - Richard Chocron
- Université Paris Cité, INSERM, PARCC, F-75015 Paris, France ,Emergency department, AP-HP, Georges Pompidou European Hospital, F-75015 Paris, France
| | | | - David M. Smadja
- Université Paris Cité, INSERM, Innovative Therapies in Haemostasis, F-75006 Paris, France ,Hematology department and Biosurgical research lab (Carpentier Foundation), AP-HP, Georges Pompidou European Hospital, F-75015 Paris, France
| |
Collapse
|
175
|
Singh M, Pushpakumar S, Bard N, Zheng Y, Homme RP, Mokshagundam SPL, Tyagi SC. Simulation of COVID-19 symptoms in a genetically engineered mouse model: implications for the long haulers. Mol Cell Biochem 2023; 478:103-119. [PMID: 35731343 PMCID: PMC9214689 DOI: 10.1007/s11010-022-04487-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 05/30/2022] [Indexed: 01/24/2023]
Abstract
The ongoing pandemic (also known as coronavirus disease-19; COVID-19) by a constantly emerging viral agent commonly referred as the severe acute respiratory syndrome corona virus 2 or SARS-CoV-2 has revealed unique pathological findings from infected human beings, and the postmortem observations. The list of disease symptoms, and postmortem observations is too long to mention; however, SARS-CoV-2 has brought with it a whole new clinical syndrome in "long haulers" including dyspnea, chest pain, tachycardia, brain fog, exercise intolerance, and extreme fatigue. We opine that further improvement in delivering effective treatment, and preventive strategies would be benefited from validated animal disease models. In this context, we designed a study, and show that a genetically engineered mouse expressing the human angiotensin converting enzyme 2; ACE-2 (the receptor used by SARS-CoV-2 agent to enter host cells) represents an excellent investigative resource in simulating important clinical features of the COVID-19. The ACE-2 mouse model (which is susceptible to SARS-CoV-2) when administered with a recombinant SARS-CoV-2 spike protein (SP) intranasally exhibited a profound cytokine storm capable of altering the physiological parameters including significant changes in cardiac function along with multi-organ damage that was further confirmed via histological findings. More importantly, visceral organs from SP treated mice revealed thrombotic blood clots as seen during postmortem examination. Thus, the ACE-2 engineered mouse appears to be a suitable model for studying intimate viral pathogenesis thus paving the way for identification, and characterization of appropriate prophylactics as well as therapeutics for COVID-19 management.
Collapse
Affiliation(s)
- Mahavir Singh
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY, 40202, USA.
| | - Sathnur Pushpakumar
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Nia Bard
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Yuting Zheng
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Rubens P Homme
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Sri Prakash L Mokshagundam
- Division of Endocrinology, Metabolism and Diabetes and Robley Rex VA Medical Center, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Suresh C Tyagi
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| |
Collapse
|
176
|
Swisher JW, Weaver E. The Evolving Management and Treatment Options for Patients with Pulmonary Hypertension: Current Evidence and Challenges. Vasc Health Risk Manag 2023; 19:103-126. [PMID: 36895278 PMCID: PMC9990521 DOI: 10.2147/vhrm.s321025] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 02/01/2023] [Indexed: 03/06/2023] Open
Abstract
Pulmonary hypertension may develop as a disease process specific to pulmonary arteries with no identifiable cause or may occur in relation to other cardiopulmonary and systemic illnesses. The World Health Organization (WHO) classifies pulmonary hypertensive diseases on the basis of primary mechanisms causing increased pulmonary vascular resistance. Effective management of pulmonary hypertension begins with accurately diagnosing and classifying the disease in order to determine appropriate treatment. Pulmonary arterial hypertension (PAH) is a particularly challenging form of pulmonary hypertension as it involves a progressive, hyperproliferative arterial process that leads to right heart failure and death if untreated. Over the last two decades, our understanding of the pathobiology and genetics behind PAH has evolved and led to the development of several targeted disease modifiers that ameliorate hemodynamics and quality of life. Effective risk management strategies and more aggressive treatment protocols have also allowed better outcomes for patients with PAH. For those patients who experience progressive PAH with medical therapy, lung transplantation remains a life-saving option. More recent work has been directed at developing effective treatment strategies for other forms of pulmonary hypertension, such as chronic thromboembolic pulmonary hypertension (CTEPH) and pulmonary hypertension due to other lung or heart diseases. The discovery of new disease pathways and modifiers affecting the pulmonary circulation is an ongoing area of intense investigation.
Collapse
Affiliation(s)
- John W Swisher
- East Tennessee Pulmonary Hypertension Center, StatCare Pulmonary Consultants, Knoxville, TN, USA
| | - Eric Weaver
- East Tennessee Pulmonary Hypertension Center, StatCare Pulmonary Consultants, Knoxville, TN, USA
| |
Collapse
|
177
|
Gambardella J, Kansakar U, Sardu C, Messina V, Jankauskas SS, Marfella R, Maggi P, Wang X, Mone P, Paolisso G, Sorriento D, Santulli G. Exosomal miR-145 and miR-885 Regulate Thrombosis in COVID-19. J Pharmacol Exp Ther 2023; 384:109-115. [PMID: 35772782 PMCID: PMC9827505 DOI: 10.1124/jpet.122.001209] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 01/13/2023] Open
Abstract
We hypothesized that exosomal microRNAs could be implied in the pathogenesis of thromboembolic complications in coronavirus disease 2019 (COVID-19). We isolated circulating exosomes from patients with COVID-19, and then we divided our population in two arms based on the D-dimer level on hospital admission. We observed that exosomal miR-145 and miR-885 significantly correlate with D-dimer levels. Moreover, we demonstrate that human endothelial cells express the main cofactors needed for the internalization of the "Severe acute respiratory syndrome coronavirus 2" (SARS-CoV-2), including angiotensin converting enzyme 2, transmembrane protease serine 2, and CD-147. Interestingly, human endothelial cells treated with serum from COVID-19 patients release significantly less miR-145 and miR-885, exhibit increased apoptosis, and display significantly impaired angiogenetic properties compared with cells treated with non-COVID-19 serum. Taken together, our data indicate that exosomal miR-145 and miR-885 are essential in modulating thromboembolic events in COVID-19. SIGNIFICANCE STATEMENT: This work demonstrates for the first time that two specific microRNAs (namely miR-145 and miR-885) contained in circulating exosomes are functionally involved in thromboembolic events in COVID-19. These findings are especially relevant to the general audience when considering the emerging prominence of post-acute sequelae of COVID-19 systemic manifestations known as Long COVID.
Collapse
Affiliation(s)
- Jessica Gambardella
- Department of Medicine, Wilf Family Cardiovascular Research Institute (J.G., U.K., S.S.J., X.W., P.Mo.) and Department of Molecular Pharmacology, Einstein-Sinai Diabetes Research Center (ES-DRC), Institute for Neuroimmunology and Inflammation (INI), Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Aging Research (G.S.), Albert Einstein College of Medicine, New York City, New York; Department of Advanced Biomedical Sciences, International Translational Research and Medical Education (ITME) Consortium, "Federico II" University, Naples, Italy (J.G., D.S., G.S.); Department of Advanced Medical and Surgical Sciences (C.S., R.M., P. Ma., G.P.), and Department of Mental and Physical Health and Preventive Medicine (P.Ma.) University of Campania, Naples, Italy; Infectious Disease Unit, "Sant'Anna and San Sebastiano" Hospital, Caserta, Italy (V.M.)
| | - Urna Kansakar
- Department of Medicine, Wilf Family Cardiovascular Research Institute (J.G., U.K., S.S.J., X.W., P.Mo.) and Department of Molecular Pharmacology, Einstein-Sinai Diabetes Research Center (ES-DRC), Institute for Neuroimmunology and Inflammation (INI), Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Aging Research (G.S.), Albert Einstein College of Medicine, New York City, New York; Department of Advanced Biomedical Sciences, International Translational Research and Medical Education (ITME) Consortium, "Federico II" University, Naples, Italy (J.G., D.S., G.S.); Department of Advanced Medical and Surgical Sciences (C.S., R.M., P. Ma., G.P.), and Department of Mental and Physical Health and Preventive Medicine (P.Ma.) University of Campania, Naples, Italy; Infectious Disease Unit, "Sant'Anna and San Sebastiano" Hospital, Caserta, Italy (V.M.)
| | - Celestino Sardu
- Department of Medicine, Wilf Family Cardiovascular Research Institute (J.G., U.K., S.S.J., X.W., P.Mo.) and Department of Molecular Pharmacology, Einstein-Sinai Diabetes Research Center (ES-DRC), Institute for Neuroimmunology and Inflammation (INI), Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Aging Research (G.S.), Albert Einstein College of Medicine, New York City, New York; Department of Advanced Biomedical Sciences, International Translational Research and Medical Education (ITME) Consortium, "Federico II" University, Naples, Italy (J.G., D.S., G.S.); Department of Advanced Medical and Surgical Sciences (C.S., R.M., P. Ma., G.P.), and Department of Mental and Physical Health and Preventive Medicine (P.Ma.) University of Campania, Naples, Italy; Infectious Disease Unit, "Sant'Anna and San Sebastiano" Hospital, Caserta, Italy (V.M.)
| | - Vincenzo Messina
- Department of Medicine, Wilf Family Cardiovascular Research Institute (J.G., U.K., S.S.J., X.W., P.Mo.) and Department of Molecular Pharmacology, Einstein-Sinai Diabetes Research Center (ES-DRC), Institute for Neuroimmunology and Inflammation (INI), Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Aging Research (G.S.), Albert Einstein College of Medicine, New York City, New York; Department of Advanced Biomedical Sciences, International Translational Research and Medical Education (ITME) Consortium, "Federico II" University, Naples, Italy (J.G., D.S., G.S.); Department of Advanced Medical and Surgical Sciences (C.S., R.M., P. Ma., G.P.), and Department of Mental and Physical Health and Preventive Medicine (P.Ma.) University of Campania, Naples, Italy; Infectious Disease Unit, "Sant'Anna and San Sebastiano" Hospital, Caserta, Italy (V.M.)
| | - Stanislovas S Jankauskas
- Department of Medicine, Wilf Family Cardiovascular Research Institute (J.G., U.K., S.S.J., X.W., P.Mo.) and Department of Molecular Pharmacology, Einstein-Sinai Diabetes Research Center (ES-DRC), Institute for Neuroimmunology and Inflammation (INI), Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Aging Research (G.S.), Albert Einstein College of Medicine, New York City, New York; Department of Advanced Biomedical Sciences, International Translational Research and Medical Education (ITME) Consortium, "Federico II" University, Naples, Italy (J.G., D.S., G.S.); Department of Advanced Medical and Surgical Sciences (C.S., R.M., P. Ma., G.P.), and Department of Mental and Physical Health and Preventive Medicine (P.Ma.) University of Campania, Naples, Italy; Infectious Disease Unit, "Sant'Anna and San Sebastiano" Hospital, Caserta, Italy (V.M.)
| | - Raffaele Marfella
- Department of Medicine, Wilf Family Cardiovascular Research Institute (J.G., U.K., S.S.J., X.W., P.Mo.) and Department of Molecular Pharmacology, Einstein-Sinai Diabetes Research Center (ES-DRC), Institute for Neuroimmunology and Inflammation (INI), Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Aging Research (G.S.), Albert Einstein College of Medicine, New York City, New York; Department of Advanced Biomedical Sciences, International Translational Research and Medical Education (ITME) Consortium, "Federico II" University, Naples, Italy (J.G., D.S., G.S.); Department of Advanced Medical and Surgical Sciences (C.S., R.M., P. Ma., G.P.), and Department of Mental and Physical Health and Preventive Medicine (P.Ma.) University of Campania, Naples, Italy; Infectious Disease Unit, "Sant'Anna and San Sebastiano" Hospital, Caserta, Italy (V.M.)
| | - Paolo Maggi
- Department of Medicine, Wilf Family Cardiovascular Research Institute (J.G., U.K., S.S.J., X.W., P.Mo.) and Department of Molecular Pharmacology, Einstein-Sinai Diabetes Research Center (ES-DRC), Institute for Neuroimmunology and Inflammation (INI), Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Aging Research (G.S.), Albert Einstein College of Medicine, New York City, New York; Department of Advanced Biomedical Sciences, International Translational Research and Medical Education (ITME) Consortium, "Federico II" University, Naples, Italy (J.G., D.S., G.S.); Department of Advanced Medical and Surgical Sciences (C.S., R.M., P. Ma., G.P.), and Department of Mental and Physical Health and Preventive Medicine (P.Ma.) University of Campania, Naples, Italy; Infectious Disease Unit, "Sant'Anna and San Sebastiano" Hospital, Caserta, Italy (V.M.)
| | - Xujun Wang
- Department of Medicine, Wilf Family Cardiovascular Research Institute (J.G., U.K., S.S.J., X.W., P.Mo.) and Department of Molecular Pharmacology, Einstein-Sinai Diabetes Research Center (ES-DRC), Institute for Neuroimmunology and Inflammation (INI), Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Aging Research (G.S.), Albert Einstein College of Medicine, New York City, New York; Department of Advanced Biomedical Sciences, International Translational Research and Medical Education (ITME) Consortium, "Federico II" University, Naples, Italy (J.G., D.S., G.S.); Department of Advanced Medical and Surgical Sciences (C.S., R.M., P. Ma., G.P.), and Department of Mental and Physical Health and Preventive Medicine (P.Ma.) University of Campania, Naples, Italy; Infectious Disease Unit, "Sant'Anna and San Sebastiano" Hospital, Caserta, Italy (V.M.)
| | - Pasquale Mone
- Department of Medicine, Wilf Family Cardiovascular Research Institute (J.G., U.K., S.S.J., X.W., P.Mo.) and Department of Molecular Pharmacology, Einstein-Sinai Diabetes Research Center (ES-DRC), Institute for Neuroimmunology and Inflammation (INI), Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Aging Research (G.S.), Albert Einstein College of Medicine, New York City, New York; Department of Advanced Biomedical Sciences, International Translational Research and Medical Education (ITME) Consortium, "Federico II" University, Naples, Italy (J.G., D.S., G.S.); Department of Advanced Medical and Surgical Sciences (C.S., R.M., P. Ma., G.P.), and Department of Mental and Physical Health and Preventive Medicine (P.Ma.) University of Campania, Naples, Italy; Infectious Disease Unit, "Sant'Anna and San Sebastiano" Hospital, Caserta, Italy (V.M.)
| | - Giuseppe Paolisso
- Department of Medicine, Wilf Family Cardiovascular Research Institute (J.G., U.K., S.S.J., X.W., P.Mo.) and Department of Molecular Pharmacology, Einstein-Sinai Diabetes Research Center (ES-DRC), Institute for Neuroimmunology and Inflammation (INI), Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Aging Research (G.S.), Albert Einstein College of Medicine, New York City, New York; Department of Advanced Biomedical Sciences, International Translational Research and Medical Education (ITME) Consortium, "Federico II" University, Naples, Italy (J.G., D.S., G.S.); Department of Advanced Medical and Surgical Sciences (C.S., R.M., P. Ma., G.P.), and Department of Mental and Physical Health and Preventive Medicine (P.Ma.) University of Campania, Naples, Italy; Infectious Disease Unit, "Sant'Anna and San Sebastiano" Hospital, Caserta, Italy (V.M.)
| | - Daniela Sorriento
- Department of Medicine, Wilf Family Cardiovascular Research Institute (J.G., U.K., S.S.J., X.W., P.Mo.) and Department of Molecular Pharmacology, Einstein-Sinai Diabetes Research Center (ES-DRC), Institute for Neuroimmunology and Inflammation (INI), Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Aging Research (G.S.), Albert Einstein College of Medicine, New York City, New York; Department of Advanced Biomedical Sciences, International Translational Research and Medical Education (ITME) Consortium, "Federico II" University, Naples, Italy (J.G., D.S., G.S.); Department of Advanced Medical and Surgical Sciences (C.S., R.M., P. Ma., G.P.), and Department of Mental and Physical Health and Preventive Medicine (P.Ma.) University of Campania, Naples, Italy; Infectious Disease Unit, "Sant'Anna and San Sebastiano" Hospital, Caserta, Italy (V.M.)
| | - Gaetano Santulli
- Department of Medicine, Wilf Family Cardiovascular Research Institute (J.G., U.K., S.S.J., X.W., P.Mo.) and Department of Molecular Pharmacology, Einstein-Sinai Diabetes Research Center (ES-DRC), Institute for Neuroimmunology and Inflammation (INI), Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Aging Research (G.S.), Albert Einstein College of Medicine, New York City, New York; Department of Advanced Biomedical Sciences, International Translational Research and Medical Education (ITME) Consortium, "Federico II" University, Naples, Italy (J.G., D.S., G.S.); Department of Advanced Medical and Surgical Sciences (C.S., R.M., P. Ma., G.P.), and Department of Mental and Physical Health and Preventive Medicine (P.Ma.) University of Campania, Naples, Italy; Infectious Disease Unit, "Sant'Anna and San Sebastiano" Hospital, Caserta, Italy (V.M.)
| |
Collapse
|
178
|
Islahudin F, Low L, Saffian S. Factors of venous thromboembolism among COVID-19 patients. ASIAN JOURNAL OF PHARMACEUTICAL RESEARCH AND HEALTH CARE 2023. [DOI: 10.4103/ajprhc.ajprhc_13_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
179
|
Izzo C, Visco V, Gambardella J, Ferruzzi GJ, Rispoli A, Rusciano MR, Toni AL, Virtuoso N, Carrizzo A, Di Pietro P, Iaccarino G, Vecchione C, Ciccarelli M. Cardiovascular Implications of microRNAs in Coronavirus Disease 2019. J Pharmacol Exp Ther 2023; 384:102-108. [PMID: 35779946 DOI: 10.1124/jpet.122.001210] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/11/2022] [Accepted: 06/15/2022] [Indexed: 01/13/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic continues to be a global challenge due to resulting morbidity and mortality. Cardiovascular (CV) involvement is a crucial complication in coronavirus disease 2019 (COVID-19), and no strategies are available to prevent or specifically address CV events in COVID-19 patients. The identification of molecular partners contributing to CV manifestations in COVID-19 patients is crucial for providing early biomarkers, prognostic predictors, and new therapeutic targets. The current report will focus on the role of microRNAs (miRNAs) in CV complications associated with COVID-19. Indeed, miRNAs have been proposed as valuable biomarkers and predictors of both cardiac and vascular damage occurring in SARS-CoV-2 infection. SIGNIFICANCE STATEMENT: It is essential to identify the molecular mediators of coronavirus disease 2019 (COVID-19) cardiovascular (CV) complications. This report focused on the role of microRNAs in CV complications associated with COVID-19, discussing their potential use as biomarkers, prognostic predictors, and therapeutic targets.
Collapse
Affiliation(s)
- Carmine Izzo
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, Italy (C.I., V.V., G.J.F., A.R., M.R.R., A.L.T., A.C., P.D.P., C.V., M.C.); Department of Advanced Biomedical Sciences, "Federico II" University, Naples, Italy (J.G., G.I.); Department of Medicine, Einstein-Sinai Diabetes Research Center, The Fleischer Institute for Diabetes and Metabolism, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, New York (J.G.); Cardiology Unit, University Hospital "San Giovanni di Dio e Ruggi d'Aragona," Salerno, Italy (N.V.); and Vascular Physiopathology Unit, IRCCS Neuromed, Pozzilli, Italy (A.C., C.V.)
| | - Valeria Visco
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, Italy (C.I., V.V., G.J.F., A.R., M.R.R., A.L.T., A.C., P.D.P., C.V., M.C.); Department of Advanced Biomedical Sciences, "Federico II" University, Naples, Italy (J.G., G.I.); Department of Medicine, Einstein-Sinai Diabetes Research Center, The Fleischer Institute for Diabetes and Metabolism, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, New York (J.G.); Cardiology Unit, University Hospital "San Giovanni di Dio e Ruggi d'Aragona," Salerno, Italy (N.V.); and Vascular Physiopathology Unit, IRCCS Neuromed, Pozzilli, Italy (A.C., C.V.)
| | - Jessica Gambardella
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, Italy (C.I., V.V., G.J.F., A.R., M.R.R., A.L.T., A.C., P.D.P., C.V., M.C.); Department of Advanced Biomedical Sciences, "Federico II" University, Naples, Italy (J.G., G.I.); Department of Medicine, Einstein-Sinai Diabetes Research Center, The Fleischer Institute for Diabetes and Metabolism, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, New York (J.G.); Cardiology Unit, University Hospital "San Giovanni di Dio e Ruggi d'Aragona," Salerno, Italy (N.V.); and Vascular Physiopathology Unit, IRCCS Neuromed, Pozzilli, Italy (A.C., C.V.)
| | - Germano Junior Ferruzzi
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, Italy (C.I., V.V., G.J.F., A.R., M.R.R., A.L.T., A.C., P.D.P., C.V., M.C.); Department of Advanced Biomedical Sciences, "Federico II" University, Naples, Italy (J.G., G.I.); Department of Medicine, Einstein-Sinai Diabetes Research Center, The Fleischer Institute for Diabetes and Metabolism, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, New York (J.G.); Cardiology Unit, University Hospital "San Giovanni di Dio e Ruggi d'Aragona," Salerno, Italy (N.V.); and Vascular Physiopathology Unit, IRCCS Neuromed, Pozzilli, Italy (A.C., C.V.)
| | - Antonella Rispoli
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, Italy (C.I., V.V., G.J.F., A.R., M.R.R., A.L.T., A.C., P.D.P., C.V., M.C.); Department of Advanced Biomedical Sciences, "Federico II" University, Naples, Italy (J.G., G.I.); Department of Medicine, Einstein-Sinai Diabetes Research Center, The Fleischer Institute for Diabetes and Metabolism, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, New York (J.G.); Cardiology Unit, University Hospital "San Giovanni di Dio e Ruggi d'Aragona," Salerno, Italy (N.V.); and Vascular Physiopathology Unit, IRCCS Neuromed, Pozzilli, Italy (A.C., C.V.)
| | - Maria Rosaria Rusciano
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, Italy (C.I., V.V., G.J.F., A.R., M.R.R., A.L.T., A.C., P.D.P., C.V., M.C.); Department of Advanced Biomedical Sciences, "Federico II" University, Naples, Italy (J.G., G.I.); Department of Medicine, Einstein-Sinai Diabetes Research Center, The Fleischer Institute for Diabetes and Metabolism, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, New York (J.G.); Cardiology Unit, University Hospital "San Giovanni di Dio e Ruggi d'Aragona," Salerno, Italy (N.V.); and Vascular Physiopathology Unit, IRCCS Neuromed, Pozzilli, Italy (A.C., C.V.)
| | - Anna Laura Toni
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, Italy (C.I., V.V., G.J.F., A.R., M.R.R., A.L.T., A.C., P.D.P., C.V., M.C.); Department of Advanced Biomedical Sciences, "Federico II" University, Naples, Italy (J.G., G.I.); Department of Medicine, Einstein-Sinai Diabetes Research Center, The Fleischer Institute for Diabetes and Metabolism, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, New York (J.G.); Cardiology Unit, University Hospital "San Giovanni di Dio e Ruggi d'Aragona," Salerno, Italy (N.V.); and Vascular Physiopathology Unit, IRCCS Neuromed, Pozzilli, Italy (A.C., C.V.)
| | - Nicola Virtuoso
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, Italy (C.I., V.V., G.J.F., A.R., M.R.R., A.L.T., A.C., P.D.P., C.V., M.C.); Department of Advanced Biomedical Sciences, "Federico II" University, Naples, Italy (J.G., G.I.); Department of Medicine, Einstein-Sinai Diabetes Research Center, The Fleischer Institute for Diabetes and Metabolism, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, New York (J.G.); Cardiology Unit, University Hospital "San Giovanni di Dio e Ruggi d'Aragona," Salerno, Italy (N.V.); and Vascular Physiopathology Unit, IRCCS Neuromed, Pozzilli, Italy (A.C., C.V.)
| | - Albino Carrizzo
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, Italy (C.I., V.V., G.J.F., A.R., M.R.R., A.L.T., A.C., P.D.P., C.V., M.C.); Department of Advanced Biomedical Sciences, "Federico II" University, Naples, Italy (J.G., G.I.); Department of Medicine, Einstein-Sinai Diabetes Research Center, The Fleischer Institute for Diabetes and Metabolism, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, New York (J.G.); Cardiology Unit, University Hospital "San Giovanni di Dio e Ruggi d'Aragona," Salerno, Italy (N.V.); and Vascular Physiopathology Unit, IRCCS Neuromed, Pozzilli, Italy (A.C., C.V.)
| | - Paola Di Pietro
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, Italy (C.I., V.V., G.J.F., A.R., M.R.R., A.L.T., A.C., P.D.P., C.V., M.C.); Department of Advanced Biomedical Sciences, "Federico II" University, Naples, Italy (J.G., G.I.); Department of Medicine, Einstein-Sinai Diabetes Research Center, The Fleischer Institute for Diabetes and Metabolism, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, New York (J.G.); Cardiology Unit, University Hospital "San Giovanni di Dio e Ruggi d'Aragona," Salerno, Italy (N.V.); and Vascular Physiopathology Unit, IRCCS Neuromed, Pozzilli, Italy (A.C., C.V.)
| | - Guido Iaccarino
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, Italy (C.I., V.V., G.J.F., A.R., M.R.R., A.L.T., A.C., P.D.P., C.V., M.C.); Department of Advanced Biomedical Sciences, "Federico II" University, Naples, Italy (J.G., G.I.); Department of Medicine, Einstein-Sinai Diabetes Research Center, The Fleischer Institute for Diabetes and Metabolism, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, New York (J.G.); Cardiology Unit, University Hospital "San Giovanni di Dio e Ruggi d'Aragona," Salerno, Italy (N.V.); and Vascular Physiopathology Unit, IRCCS Neuromed, Pozzilli, Italy (A.C., C.V.)
| | - Carmine Vecchione
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, Italy (C.I., V.V., G.J.F., A.R., M.R.R., A.L.T., A.C., P.D.P., C.V., M.C.); Department of Advanced Biomedical Sciences, "Federico II" University, Naples, Italy (J.G., G.I.); Department of Medicine, Einstein-Sinai Diabetes Research Center, The Fleischer Institute for Diabetes and Metabolism, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, New York (J.G.); Cardiology Unit, University Hospital "San Giovanni di Dio e Ruggi d'Aragona," Salerno, Italy (N.V.); and Vascular Physiopathology Unit, IRCCS Neuromed, Pozzilli, Italy (A.C., C.V.)
| | - Michele Ciccarelli
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, Italy (C.I., V.V., G.J.F., A.R., M.R.R., A.L.T., A.C., P.D.P., C.V., M.C.); Department of Advanced Biomedical Sciences, "Federico II" University, Naples, Italy (J.G., G.I.); Department of Medicine, Einstein-Sinai Diabetes Research Center, The Fleischer Institute for Diabetes and Metabolism, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, New York (J.G.); Cardiology Unit, University Hospital "San Giovanni di Dio e Ruggi d'Aragona," Salerno, Italy (N.V.); and Vascular Physiopathology Unit, IRCCS Neuromed, Pozzilli, Italy (A.C., C.V.)
| |
Collapse
|
180
|
Galvin V, Cheek DJ, Zhang Y, Collins G, Gaskin D. Short Communication: Stellate Ganglion Blockade for Persistent Olfactory and Gustatory Symptoms Post-COVID-19. Local Reg Anesth 2023; 16:25-30. [PMID: 37162813 PMCID: PMC10164395 DOI: 10.2147/lra.s402197] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 04/25/2023] [Indexed: 05/11/2023] Open
Abstract
One hundred ninety-five patients presenting with post-COVID symptomology, including parosmia and dysgeusia, underwent reversible stellate ganglion blockade. Stellate ganglion blockade was performed at an outpatient facility, and patients were evaluated via survey at seven days post-injection. Of the 195 participants, ages ranged from 18-69 years of age with the breakdown of sexes being females n = 157 and males n = 38. The most significant finding was a reported improvement in olfaction post-injection in 87.4% of subjects. The effectiveness of this novel treatment for post-COVID is promising and warrants further investigation.
Collapse
Affiliation(s)
- Vaughna Galvin
- School of Nurse Anesthesia, Texas Christian University, Fort Worth, TX, USA
- Correspondence: Vaughna Galvin, School of Nurse Anesthesia, Annie Richardson Bass Building, 2800 West Bowie Street, Suite 3101, Fort Worth, TX, 76109, USA, Tel +1 817-257-7887, Fax +1 817-257-5472, Email
| | - Dennis J Cheek
- School of Nursing, Texas Christian University, Fort Worth, TX, USA
| | - Yan Zhang
- Harris College of Nursing and Health Sciences, Texas Christian University, Fort Worth, TX, USA
| | - Gregory Collins
- School of Nurse Anesthesia, Texas Christian University, Fort Worth, TX, USA
| | - David Gaskin
- Republic Pain Specialists, Physicians Centre Hospital, Bryan, TX, USA
| |
Collapse
|
181
|
Voci D, Götschi A, Held U, Bingisser R, Colucci G, Duerschmied D, Fumagalli RM, Gerber B, Hasse B, Keller DI, Konstantinides SV, Mach F, Rampini SK, Righini M, Robert-Ebadi H, Rosemann T, Roth-Zetzsche S, Sebastian T, Simon NR, Spirk D, Stortecky S, Vaisnora L, Kucher N, Barco S. Enoxaparin for outpatients with COVID-19: 90-day results from the randomised, open-label, parallel-group, multinational, phase III OVID trial. Thromb Res 2023; 221:157-163. [PMID: 36396519 PMCID: PMC9657896 DOI: 10.1016/j.thromres.2022.10.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/05/2022] [Accepted: 10/30/2022] [Indexed: 11/15/2022]
Abstract
INTRODUCTION The benefits of early thromboprophylaxis in symptomatic COVID-19 outpatients remain unclear. We present the 90-day results from the randomised, open-label, parallel-group, investigator-initiated, multinational OVID phase III trial. METHODS Outpatients aged 50 years or older with acute symptomatic COVID-19 were randomised to receive enoxaparin 40 mg for 14 days once daily vs. standard of care (no thromboprophylaxis). The primary outcome was the composite of untoward hospitalisation and all-cause death within 30 days from randomisation. Secondary outcomes included arterial and venous major cardiovascular events, as well as the primary outcome within 90 days from randomisation. The study was prematurely terminated based on statistical criteria after the predefined interim analysis of 30-day data, which has been previously published. In the present analysis, we present the final, 90-day data from OVID and we additionally investigate the impact of thromboprophylaxis on the resolution of symptoms. RESULTS Of the 472 patients included in the intention-to-treat population, 234 were randomised to receive enoxaparin and 238 no thromboprophylaxis. The median age was 57 (Q1-Q3: 53-62) years and 217 (46 %) were women. The 90-day primary outcome occurred in 11 (4.7 %) patients of the enoxaparin arm and in 11 (4.6 %) controls (adjusted relative risk 1.00; 95 % CI: 0.44-2.25): 3 events per group occurred after day 30. The 90-day incidence of cardiovascular events was 0.9 % in the enoxaparin arm vs. 1.7 % in controls (relative risk 0.51; 95 % CI: 0.09-2.75). Individual symptoms improved progressively within 90 days with no difference between groups. At 90 days, 42 (17.9 %) patients in the enoxaparin arm and 40 (16.8 %) controls had persistent respiratory symptoms. CONCLUSIONS In adult community patients with COVID-19, early thromboprophylaxis with enoxaparin did not improve the course of COVID-19 neither in terms of hospitalisation and death nor considering COVID-19-related symptoms.
Collapse
Affiliation(s)
- Davide Voci
- Department of Angiology, University Hospital Zurich, Zurich, Switzerland
| | - Andrea Götschi
- Department of Biostatistics at Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zurich, Switzerland
| | - Ulrike Held
- Department of Biostatistics at Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zurich, Switzerland
| | - Roland Bingisser
- Emergency Department, University Hospital Basel, Basel, Switzerland
| | - Giuseppe Colucci
- Service of Hematology, Clinica Luganese Moncucco, Lugano, Switzerland,University of Basel, Basel, Switzerland,Clinica Sant'Anna, Sorengo, Switzerland
| | - Daniel Duerschmied
- Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Germany,European Center for AngioScience (ECAS) and German Center for Cardiovascular Research (DZHK) partner site Heidelberg/Mannheim, Mannheim, Germany,Department of Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | | | - Bernhard Gerber
- Clinic of Hematology, Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, Bellinzona, Switzerland,University of Zurich, Zurich, Switzerland
| | - Barbara Hasse
- University of Zurich, Zurich, Switzerland,Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Switzerland
| | - Dagmar I. Keller
- University of Zurich, Zurich, Switzerland,Emergency Department, University Hospital Zurich, Zurich, Switzerland
| | - Stavros V. Konstantinides
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany,Department of Cardiology, Democritus University of Thrace, Komotini, Greece
| | - François Mach
- Cardiology Division, Geneva University Hospital, Geneva, Switzerland
| | - Silvana K. Rampini
- Division of Internal Medicine, University Hospital Zurich, Zurich, Switzerland
| | - Marc Righini
- Division of Angiology and Hemostasis, Department of Medicine, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
| | - Helia Robert-Ebadi
- Division of Angiology and Hemostasis, Department of Medicine, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
| | - Thomas Rosemann
- Institute of Primary Care, University of Zurich, Zurich, Switzerland
| | | | - Tim Sebastian
- Department of Angiology, University Hospital Zurich, Zurich, Switzerland
| | - Noemi R. Simon
- Emergency Department, University Hospital Basel, Basel, Switzerland
| | - David Spirk
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Stefan Stortecky
- Department of Cardiology, Inselspital Bern, University of Bern, Bern, Switzerland
| | - Lukas Vaisnora
- Department of Cardiology, Inselspital Bern, University of Bern, Bern, Switzerland
| | - Nils Kucher
- Department of Angiology, University Hospital Zurich, Zurich, Switzerland,University of Zurich, Zurich, Switzerland
| | - Stefano Barco
- Department of Angiology, University Hospital Zurich, Zurich, Switzerland,Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany,Corresponding author at: Department of Angiology, University Hospital Zurich, Raemistrasse 100, RAE C04, 8091 Zurich, Switzerland
| | | |
Collapse
|
182
|
Chen Z, Huang J, Zhang J, Xu Z, Li Q, Ouyang J, Yan Y, Sun S, Ye H, Wang F, Zhu J, Wang Z, Chao J, Pu Y, Gu Z. A storm in a teacup -- A biomimetic lung microphysiological system in conjunction with a deep-learning algorithm to monitor lung pathological and inflammatory reactions. Biosens Bioelectron 2023; 219:114772. [PMID: 36272347 DOI: 10.1016/j.bios.2022.114772] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/07/2022] [Accepted: 09/28/2022] [Indexed: 10/06/2022]
Abstract
Creating a biomimetic in vitro lung model to recapitulate the infection and inflammatory reactions has been an important but challenging task for biomedical researchers. The 2D based cell culture models - culturing of lung epithelium - have long existed but lack multiple key physiological conditions, such as the involvement of different types of immune cells and the creation of connected lung models to study viral or bacterial infection between different individuals. Pioneers in organ-on-a-chip research have developed lung alveoli-on-a-chip and connected two lung chips with direct tubing and flow. Although this model provides a powerful tool for lung alveolar disease modeling, it still lacks interactions among immune cells, such as macrophages and monocytes, and the mimic of air flow and aerosol transmission between lung-chips is missing. Here, we report the development of an improved human lung physiological system (Lung-MPS) with both alveolar and pulmonary bronchial chambers that permits the integration of multiple immune cells into the system. We observed amplified inflammatory signals through the dynamic interactions among macrophages, epithelium, endothelium, and circulating monocytes. Furthermore, an integrated microdroplet/aerosol transmission system was fabricated and employed to study the propagation of pseudovirus particles containing microdroplets in integrated Lung-MPSs. Finally, a deep-learning algorithm was developed to characterize the activation of cells in this Lung-MPS. This Lung-MPS could provide an improved and more biomimetic sensory system for the study of COVID-19 and other high-risk infectious lung diseases.
Collapse
Affiliation(s)
- Zaozao Chen
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, SiPaiLou#2, Nanjing, Jiangsu, 210096, China; Institute of Biomaterials and Medical Devices, Southeast University, Suzhou, Jiangsu, 215163, China
| | - Jie Huang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210000, China; Department of Respiratory and Critical Care Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, China
| | - Jing Zhang
- Institute of Biomaterials and Medical Devices, Southeast University, Suzhou, Jiangsu, 215163, China
| | - Zikang Xu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, SiPaiLou#2, Nanjing, Jiangsu, 210096, China
| | - Qiwei Li
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, SiPaiLou#2, Nanjing, Jiangsu, 210096, China
| | - Jun Ouyang
- Institute of Biomaterials and Medical Devices, Southeast University, Suzhou, Jiangsu, 215163, China
| | - Yuchuan Yan
- Institute of Biomaterials and Medical Devices, Southeast University, Suzhou, Jiangsu, 215163, China
| | - Shiqi Sun
- Institute of Biomaterials and Medical Devices, Southeast University, Suzhou, Jiangsu, 215163, China
| | - Huan Ye
- Institute of Biomaterials and Medical Devices, Southeast University, Suzhou, Jiangsu, 215163, China
| | - Fei Wang
- Institute of Biomaterials and Medical Devices, Southeast University, Suzhou, Jiangsu, 215163, China
| | - Jianfeng Zhu
- Institute of Biomaterials and Medical Devices, Southeast University, Suzhou, Jiangsu, 215163, China
| | - Zhangyan Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210000, China
| | - Jie Chao
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210000, China.
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210000, China.
| | - Zhongze Gu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, SiPaiLou#2, Nanjing, Jiangsu, 210096, China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210000, China.
| |
Collapse
|
183
|
Carey M, Alser O, Leist J, Sorrells K, Bankhead BK, Li W. Delayed onset phlegmasia cerulea dolens post-SARS-CoV-2 infection treated with minimally invasive clot retrieval technology. J Vasc Surg Cases Innov Tech 2022; 9:101082. [PMID: 36568022 PMCID: PMC9762486 DOI: 10.1016/j.jvscit.2022.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 11/19/2022] [Accepted: 11/22/2022] [Indexed: 12/23/2022] Open
Abstract
Coronavirus disease 2019 is associated with a significant venous thromboembolic risk. Phlegmasia cerulean dolens is a severe form of deep vein thrombosis that can lead to acute limb ischemia. In this report, we present a 58-year-old woman who developed a delayed-onset left lower extremity phlegmasia cerulean dolens 8 weeks after coronavirus disease 2019 onset that led to compartment syndrome and acute limb ischemia from external compression of the arterial vasculature from edematous muscle. The patient received an emergent minimally invasive percutaneous mechanical thrombectomy and four-compartment fasciotomy, resulting in adequate perfusion and ultimately made a full recovery.
Collapse
Affiliation(s)
- Michael Carey
- School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX
| | - Osaid Alser
- Department of Surgery, Texas Tech University Health Sciences Center, Lubbock, TX
| | - Jessica Leist
- Department of Surgery, Texas Tech University Health Sciences Center, Lubbock, TX
| | - Kelsee Sorrells
- Surgical ICU Services, University Medical Center, Lubbock, TX
| | - Brittany K. Bankhead
- Department of Surgery, Texas Tech University Health Sciences Center, Lubbock, TX
| | - Wei Li
- Department of Surgery, Texas Tech University Health Sciences Center, Lubbock, TX
- Correspondence: Wei Li, MD, MPH, MJ, RPVI, RVT, FACS, Department of Surgery, 3601 4th St, MS #8312, Texas Tech University Health Sciences Center, Lubbock, TX 79415
| |
Collapse
|
184
|
Kim WSH, Ji X, Roudaia E, Chen JJ, Gilboa A, Sekuler A, Gao F, Lin Z, Jegatheesan A, Masellis M, Goubran M, Rabin JS, Lam B, Cheng I, Fowler R, Heyn C, Black SE, Graham SJ, MacIntosh BJ. MRI Assessment of Cerebral Blood Flow in Nonhospitalized Adults Who Self-Isolated Due to COVID-19. J Magn Reson Imaging 2022. [PMID: 36472248 PMCID: PMC9877942 DOI: 10.1002/jmri.28555] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Neurological symptoms associated with coronavirus disease 2019 (COVID-19), such as fatigue and smell/taste changes, persist beyond infection. However, little is known of brain physiology in the post-COVID-19 timeframe. PURPOSE To determine whether adults who experienced flu-like symptoms due to COVID-19 would exhibit cerebral blood flow (CBF) alterations in the weeks/months beyond infection, relative to controls who experienced flu-like symptoms but tested negative for COVID-19. STUDY TYPE Prospective observational. POPULATION A total of 39 adults who previously self-isolated at home due to COVID-19 (41.9 ± 12.6 years of age, 59% female, 116.5 ± 62.2 days since positive diagnosis) and 11 controls who experienced flu-like symptoms but had a negative COVID-19 diagnosis (41.5 ± 13.4 years of age, 55% female, 112.1 ± 59.5 since negative diagnosis). FIELD STRENGTH AND SEQUENCES A 3.0 T; T1-weighted magnetization-prepared rapid gradient and echo-planar turbo gradient-spin echo arterial spin labeling sequences. ASSESSMENT Arterial spin labeling was used to estimate CBF. A self-reported questionnaire assessed symptoms, including ongoing fatigue. CBF was compared between COVID-19 and control groups and between those with (n = 11) and without self-reported ongoing fatigue (n = 28) within the COVID-19 group. STATISTICAL TESTS Between-group and within-group comparisons of CBF were performed in a voxel-wise manner, controlling for age and sex, at a family-wise error rate of 0.05. RESULTS Relative to controls, the COVID-19 group exhibited significantly decreased CBF in subcortical regions including the thalamus, orbitofrontal cortex, and basal ganglia (maximum cluster size = 6012 voxels and maximum t-statistic = 5.21). Within the COVID-19 group, significant CBF differences in occipital and parietal regions were observed between those with and without self-reported on-going fatigue. DATA CONCLUSION These cross-sectional data revealed regional CBF decreases in the COVID-19 group, suggesting the relevance of brain physiology in the post-COVID-19 timeframe. This research may help elucidate the heterogeneous symptoms of the post-COVID-19 condition. EVIDENCE LEVEL 2. TECHNICAL EFFICACY Stage 3.
Collapse
Affiliation(s)
- William S H Kim
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Xiang Ji
- LC Campbell Cognitive Neurology Research Group, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Eugenie Roudaia
- Rotman Research Institute, Baycrest Academy for Research and Education, Toronto, Ontario, Canada
| | - J Jean Chen
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Rotman Research Institute, Baycrest Academy for Research and Education, Toronto, Ontario, Canada.,Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Asaf Gilboa
- Rotman Research Institute, Baycrest Academy for Research and Education, Toronto, Ontario, Canada.,Department of Psychology, University of Toronto, Toronto, Ontario, Canada
| | - Allison Sekuler
- Rotman Research Institute, Baycrest Academy for Research and Education, Toronto, Ontario, Canada.,Department of Psychology, University of Toronto, Toronto, Ontario, Canada.,Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Ontario, Canada
| | - Fuqiang Gao
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada.,LC Campbell Cognitive Neurology Research Group, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Zhongmin Lin
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Aravinthan Jegatheesan
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Mario Masellis
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada.,LC Campbell Cognitive Neurology Research Group, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada.,Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Maged Goubran
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Harquail Centre for Neuromodulation, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Jennifer S Rabin
- Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada.,Harquail Centre for Neuromodulation, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Rehabilitation Sciences Institute, University of Toronto, Toronto, Ontario, Canada
| | - Benjamin Lam
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada.,LC Campbell Cognitive Neurology Research Group, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada.,Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Ivy Cheng
- Evaluative Clinical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Integrated Community Program, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Robert Fowler
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada.,Emergency & Critical Care Research Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Chris Heyn
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada
| | - Sandra E Black
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada.,LC Campbell Cognitive Neurology Research Group, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada.,Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Simon J Graham
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Bradley J MacIntosh
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Computational Radiology & Artificial Intelligence Unit, Division of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
185
|
Silva AVBDA, Campanati JDEAG, Barcelos IDES, Santos ACL, Deus UPDE, Soares TDEJ, Amaral LSDEB. COVID-19 and Acute Kidney Injury - Direct and Indirect Pathophysiological Mechanisms Underlying Lesion Development. AN ACAD BRAS CIENC 2022; 94:e20211501. [PMID: 36477239 DOI: 10.1590/0001-3765202220211501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/08/2022] [Indexed: 11/29/2022] Open
Abstract
COVID-19 is a pandemic disease caused by the SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2) responsible for millions of deaths worldwide. Although the respiratory system is the main target of COVID-19, the disease can affect other organs, including the kidneys. Acute Kidney Injury (AKI), commonly seen in patients infected with COVID-19, has a multifactorial cause. Several studies associate this injury with the direct involvement of the virus in renal cells and the indirect damage stimulated by the infection. The direct cytopathic effects of SARS-CoV-2 are due to the entry and replication of the virus in renal cells, changing several regulatory pathways, especially the renin-angiotensin-aldosterone system (RAAS), with repercussions on the kallikrein-kinin system (KKS). Furthermore, the virus can deregulate the immune system, leading to an exaggerated response of inflammatory cells, characterizing the state of hypercytokinemia. The such exaggerated inflammatory response is commonly associated with hemodynamic changes, reduced renal perfusion, tissue hypoxia, generation of reactive oxygen species (ROS), endothelial damage, and coagulopathies, which can result in severe damage to the renal parenchyma. Thereby, understanding the molecular mechanisms and pathophysiology of kidney injuries induced by SARS-COV-2 is of fundamental importance to obtaining new therapeutic insights for the prevention and management of AKI.
Collapse
Affiliation(s)
- Antônio V B DA Silva
- Universidade Federal da Bahia, Instituto Multidisciplinar em Saúde, 45029-094 Vitória da Conquista, BA, Brazil
| | - João DE A G Campanati
- Universidade Federal da Bahia, Instituto Multidisciplinar em Saúde, 45029-094 Vitória da Conquista, BA, Brazil
| | - Isadora DE S Barcelos
- Universidade Federal da Bahia, Instituto Multidisciplinar em Saúde, 45029-094 Vitória da Conquista, BA, Brazil
| | - Alberto C L Santos
- Universidade Federal da Bahia, Instituto Multidisciplinar em Saúde, 45029-094 Vitória da Conquista, BA, Brazil
| | - Uildson P DE Deus
- Universidade Federal da Bahia, Instituto Multidisciplinar em Saúde, 45029-094 Vitória da Conquista, BA, Brazil
| | - Telma DE J Soares
- Universidade Federal da Bahia, Instituto Multidisciplinar em Saúde, 45029-094 Vitória da Conquista, BA, Brazil
| | - Liliany S DE B Amaral
- Universidade Federal da Bahia, Instituto Multidisciplinar em Saúde, 45029-094 Vitória da Conquista, BA, Brazil
| |
Collapse
|
186
|
Sun H, Du Y, Kumar R, Buchkovich N, He P. Increased circulating microparticles contribute to severe infection and adverse outcomes of COVID-19 in patients with diabetes. Am J Physiol Heart Circ Physiol 2022; 323:H1176-H1193. [PMID: 36269646 PMCID: PMC9678425 DOI: 10.1152/ajpheart.00409.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Patients with diabetes infected with COVID-19 have greater mortality than those without comorbidities, but the underlying mechanisms remain unknown. This study aims to identify the mechanistic interactions between diabetes and severe COVID-19. Microparticles (MPs), the cell membrane-derived vesicles released on cell activation, are largely increased in patients with diabetes. To date, many mechanisms have been postulated for increased severity of COVID-19 in patients with underlying conditions, but the contributions of excessive MPs in patients with diabetes have been overlooked. This study characterizes plasma MPs from normal human subjects and patients with type 2 diabetes in terms of amount, cell origins, surface adhesive properties, ACE2 expression, spike protein binding capacity, and their roles in SARS-CoV-2 infection. Results showed that over 90% of plasma MPs express ACE2 that binds the spike protein of SARS-CoV-2. MPs in patients with diabetes increase 13-fold in quantity and 11-fold in adhesiveness when compared with normal subjects. Perfusion of human plasma with pseudo-typed SARS-CoV-2 virus or spike protein-bound MPs into human endothelial cell-formed microvessels-on-a chip demonstrated that MPs from patients with diabetes, not normal subjects, interact with endothelium and carry SARS-CoV-2 into cells through endocytosis, providing additional virus entry pathways and enhanced infection. Results also showed a large percentage of platelet-derived tissue factor-bearing MPs in diabetic plasma, which could contribute to thrombotic complications with SARS-CoV-2 infection. This study reveals a dual role of diabetic MPs in promoting SARS-CoV-2 entry and propagating vascular inflammation. These findings provide novel mechanistic insight into the high prevalence of COVID-19 in patients with diabetes and their propensity to develop severe vascular complications.NEW & NOTEWORTHY This study provides the first evidence that over 90% of human plasma microparticles express ACE2 that binds SARS-CoV-2 S protein with high affinity. Thus, the highly elevated adhesive circulating microparticles identified in patients with diabetes not only have greater SARS-CoV-2 binding capacity but also enable additional viral entry through virus-bound microparticle-endothelium interactions and enhanced infection. These findings reveal a novel mechanistic insight into the adverse outcomes of COVID-19 in patients with diabetes.
Collapse
Affiliation(s)
- Haoyu Sun
- 1Department of Cellular and Molecular Physiology, College of Medicine, Pennsylvania State University, Hershey, Pennsylvania
| | - Yong Du
- 1Department of Cellular and Molecular Physiology, College of Medicine, Pennsylvania State University, Hershey, Pennsylvania
| | - Rinki Kumar
- 2Department of Microbiology and Immunology, College of Medicine, Pennsylvania State University, Hershey, Pennsylvania
| | - Nicholas Buchkovich
- 2Department of Microbiology and Immunology, College of Medicine, Pennsylvania State University, Hershey, Pennsylvania
| | - Pingnian He
- 1Department of Cellular and Molecular Physiology, College of Medicine, Pennsylvania State University, Hershey, Pennsylvania
| |
Collapse
|
187
|
Hayashi H, Izumiya Y, Fukuda D, Wakita F, Mizobata Y, Fujii H, Yachi S, Takeyama M, Nishimoto Y, Tsujino I, Nakamura J, Yamamoto N, Nakata H, Ikeda S, Umetsu M, Aikawa S, Satokawa H, Okuno Y, Iwata E, Ogihara Y, Ikeda N, Kondo A, Iwai T, Yamada N, Ogawa T, Kobayashi T, Mo M, Yamashita Y. Real-World Management of Pharmacological Thromboprophylactic Strategies for COVID-19 Patients in Japan: From the CLOT-COVID Study. JACC. ASIA 2022; 2:897-907. [PMID: 36536621 PMCID: PMC9753959 DOI: 10.1016/j.jacasi.2022.09.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/06/2022] [Accepted: 09/06/2022] [Indexed: 12/23/2022]
Abstract
Background Data on prophylactic anticoagulation are important in understanding the current issues, unmet needs, and optimal management of Japanese COVID-19 patients. Objectives This study aimed to investigate the clinical management strategies for prophylactic anticoagulation of COVID-19 patients in Japan. Methods The CLOT-COVID study was a multicenter observational study that enrolled 2,894 consecutive hospitalized patients with COVID-19. The study population consisted of 2,889 patients (after excluding 5 patients with missing data); it was divided into 2 groups: patients with pharmacological thromboprophylaxis (n = 1,240) and those without (n = 1,649). Furthermore, we evaluated the 1,233 patients who received prophylactic anticoagulation-excluding 7 patients who could not be classified based on the intensity of their anticoagulants-who were then divided into 2 groups: patients receiving prophylactic anticoagulant doses (n = 889) and therapeutic anticoagulant doses (n = 344). Results The most common pharmacological thromboprophylaxis anticoagulant was unfractionated heparin (68.2%). The severity of COVID-19 at admission was a predictor of the implementation of pharmacological thromboprophylaxis in the multivariable analysis (moderate vs mild: OR: 16.6; 95% CI:13.2-21.0; P < 0.001, severe vs mild: OR: 342.6, 95% CI: 107.7-1090.2; P < 0.001). It was also a predictor of the usage of anticoagulants of therapeutic doses in the multivariable analysis (moderate vs mild: OR: 2.10; 95% CI: 1.46-3.02; P < 0.001, severe vs mild: OR: 5.96; 95% CI: 3.91-9.09; P < 0.001). Conclusions In the current real-world Japanese registry, pharmacological thromboprophylaxis, especially anticoagulants at therapeutic doses, was selectively implemented in COVID-19 patients with comorbidities and severe COVID-19 status at admission.
Collapse
Affiliation(s)
- Hiroya Hayashi
- Department of Cardiovascular Medicine, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan,Address for correspondence: Dr Hiroya Hayashi, Department of Cardiovascular Medicine, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahimachi, Abenoku, Osaka 545-8585, Japan
| | - Yasuhiro Izumiya
- Department of Cardiovascular Medicine, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Daiju Fukuda
- Department of Cardiovascular Medicine, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Fumiaki Wakita
- Department of Traumatology and Critical Care Medicine, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Yasumitsu Mizobata
- Department of Traumatology and Critical Care Medicine, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Hiromichi Fujii
- Department of Intensive Care Medicine, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Sen Yachi
- Japan Community Health Care Organization Tokyo Shinjuku Medical Center, Tokyo, Japan
| | - Makoto Takeyama
- Japan Community Health Care Organization Tokyo Shinjuku Medical Center, Tokyo, Japan
| | - Yuji Nishimoto
- Hyogo Prefectural Amagasaki General Medical Center, Amagasaki, Japan
| | | | | | | | | | - Satoshi Ikeda
- Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | | | | | | | | | - Eriko Iwata
- Nankai Medical Center Japan Community Health Care Organization, Saiki, Japan
| | | | | | - Akane Kondo
- Shikoku Medical Center for Children and Adults, Zentsuji, Japan
| | | | | | | | | | - Makoto Mo
- Yokohama Minami Kyosai Hospital, Yokohama, Japan
| | | | | |
Collapse
|
188
|
Ambrosino P, Sanduzzi Zamparelli S, Mosella M, Formisano R, Molino A, Spedicato GA, Papa A, Motta A, Di Minno MND, Maniscalco M. Clinical assessment of endothelial function in convalescent COVID-19 patients: a meta-analysis with meta-regressions. Ann Med 2022; 54:3234-3249. [PMID: 36382632 PMCID: PMC9673781 DOI: 10.1080/07853890.2022.2136403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Endothelial dysfunction has been proposed to play a key role in the pathogenesis of coronavirus disease 2019 (COVID-19) and its post-acute sequelae. Flow-mediated dilation (FMD) is recognized as an accurate clinical method to assess endothelial function. Thus, we performed a meta-analysis of the studies evaluating FMD in convalescent COVID-19 patients and controls with no history of COVID-19. METHODS A systematic literature search was conducted in the main scientific databases according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Using the random effects method, differences between cases and controls were expressed as mean difference (MD) with 95% confidence intervals (95% CI). The protocol was registered on PROSPERO with reference number CRD42021289684. RESULTS Twelve studies were included in the final analysis. A total of 644 convalescent COVID-19 patients showed significantly lower FMD values as compared to 662 controls (MD: -2.31%; 95% CI: -3.19, -1.44; p < 0.0001). Similar results were obtained in the sensitivity analysis of the studies that involved participants in either group with no cardiovascular risk factors or history of coronary artery disease (MD: -1.73%; 95% CI: -3.04, -0.41; p = 0.010). Interestingly, when considering studies separately based on enrolment within or after 3 months of symptom onset, results were further confirmed in both short- (MD: -2.20%; 95% CI: -3.35, -1.05; p < 0.0001) and long-term follow-up (MD: -2.53%; 95% CI: -4.19, -0.86; p = 0.003). Meta-regression models showed that an increasing prevalence of post-acute sequelae of COVID-19 was linked to a higher difference in FMD between cases and controls (Z-score: -2.09; p = 0.037). CONCLUSIONS Impaired endothelial function can be documented in convalescent COVID-19 patients, especially when residual clinical manifestations persist. Targeting endothelial dysfunction through pharmacological and rehabilitation strategies may represent an attractive therapeutic option.Key messagesThe mechanisms underlying the post-acute sequelae of coronavirus disease 2019 (COVID-19) have not been fully elucidated.Impaired endothelial function can be documented in convalescent COVID-19 patients for up to 1 year after infection, especially when residual clinical manifestations persist.Targeting endothelial dysfunction may represent an attractive therapeutic option in the post-acute phase of COVID-19.
Collapse
Affiliation(s)
- Pasquale Ambrosino
- Cardiac Rehabilitation Unit of Telese Terme Institute, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| | | | - Marco Mosella
- Neurological Rehabilitation Unit of Telese Terme Institute, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| | - Roberto Formisano
- Cardiac Rehabilitation Unit of Telese Terme Institute, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| | - Antonio Molino
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | | | - Antimo Papa
- Cardiac Rehabilitation Unit of Telese Terme Institute, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| | - Andrea Motta
- Institute of Biomolecular Chemistry, National Research Council, Pozzuoli, Italy
| | | | - Mauro Maniscalco
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy.,Pulmonary Rehabilitation Unit of Telese Terme Institute, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| |
Collapse
|
189
|
Vuorio A, Raal F, Kovanen PT. Familial Hypercholesterolemia Patients with COVID-19-Effective Cholesterol-Lowering Therapy is Urgent both during and after Infection. Rev Cardiovasc Med 2022; 23:410. [PMID: 39076654 PMCID: PMC11270387 DOI: 10.31083/j.rcm2312410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/16/2022] [Accepted: 11/04/2022] [Indexed: 07/31/2024] Open
Abstract
Heterozygous familial hypercholesterolemia (HeFH) patients are the prime example of subjects who are at high risk for both acute myocardial infarction (AMI) and ischemic stroke during, and post, SARS-CoV-2 infection. HeFH per se, if left untreated, results in premature clinical atherosclerosis often presenting in the fourth or fifth decade of life. The other concern in HeFH is endothelial dysfunction which is already evident from early childhood. In untreated HeFH patients, the severe hypercholesterolemia causes endothelial dysfunction from an early age, and as a result thereof, atherosclerotic lesions develop prematurely, particularly in the coronary arteries, and result in further endothelial dysfunction and inflammation in these critical segments of the arterial tree. As the pre-existing endothelial dysfunction in HeFH patients is most likely sensitive to further direct and indirect SARS-CoV-2 virus-dependent damage, we can infer that HeFH serves as an example of a comorbidity that predicts a poorer prognosis with COVID-19 infection. Indeed, a large US national database study showed that patients diagnosed with HeFH and SARS-CoV-2 infection had significantly increased Annualized Incidence Density Rates (AIDRs) of AMI when compared to matched HeFH controls not having been diagnosed with SARS-CoV-2 infection. Effective cholesterol lowering is essential for the prevention, or at least alleviation, of the detrimental effects of SARS-CoV-2 infection among HeFH patients. Due to the pre-existing subclinical or even clinical atherosclerotic cardiovascular disease in subjects with HeFH, cholesterol-lowering treatment needs to be continued or, better still, intensified during, and for an extended period post, SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Alpo Vuorio
- Mehiläinen Airport Health Centre, 01530 Vantaa, Finland
- Department of Forensic Medicine, University of Helsinki, 00100 Helsinki, Finland
| | - Frederick Raal
- Faculty of Health Sciences, University of Witwatersrand, 2193 Johannesburg, South Africa
| | | |
Collapse
|
190
|
Jing H, Wu X, Xiang M, Liu L, Novakovic VA, Shi J. Pathophysiological mechanisms of thrombosis in acute and long COVID-19. Front Immunol 2022; 13:992384. [PMID: 36466841 PMCID: PMC9709252 DOI: 10.3389/fimmu.2022.992384] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 10/27/2022] [Indexed: 08/02/2023] Open
Abstract
COVID-19 patients have a high incidence of thrombosis, and thromboembolic complications are associated with severe COVID-19 and high mortality. COVID-19 disease is associated with a hyper-inflammatory response (cytokine storm) mediated by the immune system. However, the role of the inflammatory response in thrombosis remains incompletely understood. In this review, we investigate the crosstalk between inflammation and thrombosis in the context of COVID-19, focusing on the contributions of inflammation to the pathogenesis of thrombosis, and propose combined use of anti-inflammatory and anticoagulant therapeutics. Under inflammatory conditions, the interactions between neutrophils and platelets, platelet activation, monocyte tissue factor expression, microparticle release, and phosphatidylserine (PS) externalization as well as complement activation are collectively involved in immune-thrombosis. Inflammation results in the activation and apoptosis of blood cells, leading to microparticle release and PS externalization on blood cells and microparticles, which significantly enhances the catalytic efficiency of the tenase and prothrombinase complexes, and promotes thrombin-mediated fibrin generation and local blood clot formation. Given the risk of thrombosis in the COVID-19, the importance of antithrombotic therapies has been generally recognized, but certain deficiencies and treatment gaps in remain. Antiplatelet drugs are not in combination with anticoagulant treatments, thus fail to dampen platelet procoagulant activity. Current treatments also do not propose an optimal time for anticoagulation. The efficacy of anticoagulant treatments depends on the time of therapy initiation. The best time for antithrombotic therapy is as early as possible after diagnosis, ideally in the early stage of the disease. We also elaborate on the possible mechanisms of long COVID thromboembolic complications, including persistent inflammation, endothelial injury and dysfunction, and coagulation abnormalities. The above-mentioned contents provide therapeutic strategies for COVID-19 patients and further improve patient outcomes.
Collapse
Affiliation(s)
- Haijiao Jing
- Department of Hematology, The First Hospital, Harbin Medical University, Harbin, China
| | - Xiaoming Wu
- Department of Hematology, The First Hospital, Harbin Medical University, Harbin, China
| | - Mengqi Xiang
- Department of Hematology, The First Hospital, Harbin Medical University, Harbin, China
| | - Langjiao Liu
- Department of Hematology, The First Hospital, Harbin Medical University, Harbin, China
| | - Valerie A. Novakovic
- Department of Research, VA Boston Healthcare System, Harvard Medical School, Boston, MA, United States
| | - Jialan Shi
- Department of Hematology, The First Hospital, Harbin Medical University, Harbin, China
- Department of Research, VA Boston Healthcare System, Harvard Medical School, Boston, MA, United States
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
191
|
Pelisek J, Reutersberg B, Greber UF, Zimmermann A. Vascular dysfunction in COVID-19 patients: update on SARS-CoV-2 infection of endothelial cells and the role of long non-coding RNAs. Clin Sci (Lond) 2022; 136:1571-1590. [PMID: 36367091 PMCID: PMC9652506 DOI: 10.1042/cs20220235] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 08/16/2023]
Abstract
Although COVID-19 is primarily a respiratory disease, it may affect also the cardiovascular system. COVID-19 patients with cardiovascular disorder (CVD) develop a more severe disease course with a significantly higher mortality rate than non-CVD patients. A common denominator of CVD is the dysfunction of endothelial cells (ECs), increased vascular permeability, endothelial-to-mesenchymal transition, coagulation, and inflammation. It has been assumed that clinical complications in COVID-19 patients suffering from CVD are caused by SARS-CoV-2 infection of ECs through the angiotensin-converting enzyme 2 (ACE2) receptor and the cellular transmembrane protease serine 2 (TMPRSS2) and the consequent dysfunction of the infected vascular cells. Meanwhile, other factors associated with SARS-CoV-2 entry into the host cells have been described, including disintegrin and metalloproteinase domain-containing protein 17 (ADAM17), the C-type lectin CD209L or heparan sulfate proteoglycans (HSPG). Here, we discuss the current data about the putative entry of SARS-CoV-2 into endothelial and smooth muscle cells. Furthermore, we highlight the potential role of long non-coding RNAs (lncRNAs) affecting vascular permeability in CVD, a process that might exacerbate disease in COVID-19 patients.
Collapse
Affiliation(s)
- Jaroslav Pelisek
- Department of Vascular Surgery, University Hospital Zürich, Zürich, Switzerland
| | | | - Urs F Greber
- Department of Molecular Life Sciences, University of Zürich, Switzerland
| | | |
Collapse
|
192
|
Mavraganis G, Dimopoulou MA, Delialis D, Bampatsias D, Patras R, Sianis A, Maneta E, Stamatelopoulos K, Georgiopoulos G. Clinical implications of vascular dysfunction in acute and convalescent COVID-19: A systematic review. Eur J Clin Invest 2022; 52:e13859. [PMID: 35986716 PMCID: PMC9539033 DOI: 10.1111/eci.13859] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/10/2022] [Accepted: 08/14/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Accumulating evidence suggests that endothelial dysfunction is implicated in the pathogenesis and severity of coronavirus disease 2019 (COVID-19). In this context, vascular impairment in COVID-19 might be associated with clinical manifestations and could refine risk stratification in these patients. METHODS This systematic review aims to synthesize current evidence on the frequency and the prognostic value of vascular dysfunction during acute and post-recovery COVID-19. After systematically searching the MEDLINE, clinicaltrials.gov and the Cochrane Library from 1 December 2019 until 05 March 2022, we identified 24 eligible studies with laboratory confirmed COVID-19 and a thorough examination of vascular function. Flow-mediated dilation (FMD) was assessed in 5 and 12 studies in acute and post-recovery phase respectively; pulse wave velocity (PWV) was the marker of interest in three studies in the acute and four studies in the post-recovery phase. RESULTS All studies except for one in the acute and in the post-recovery phase showed positive association between vascular dysfunction and COVID-19 infection. Endothelial dysfunction in two studies and increased arterial stiffness in three studies were related to inferior survival in COVID-19. DISCUSSION Overall, a detrimental effect of COVID-19 on markers of endothelial function and arterial stiffness that could persist even for months after the resolution of the infection and provide prognostic value was congruent across published studies. Further research is warranted to elucidate clinical implications of this association.
Collapse
Affiliation(s)
- Georgios Mavraganis
- Department of Clinical Therapeutics, Alexandra Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Maria-Angeliki Dimopoulou
- Department of Clinical Therapeutics, Alexandra Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Dimitrios Delialis
- Department of Clinical Therapeutics, Alexandra Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Dimitrios Bampatsias
- Department of Clinical Therapeutics, Alexandra Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Raphael Patras
- Department of Clinical Therapeutics, Alexandra Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Alexandros Sianis
- Department of Clinical Therapeutics, Alexandra Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Eleni Maneta
- Department of Clinical Therapeutics, Alexandra Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Kimon Stamatelopoulos
- Department of Clinical Therapeutics, Alexandra Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Georgios Georgiopoulos
- Department of Clinical Therapeutics, Alexandra Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece.,Department of Cardiovascular Imaging, School of Biomedical Engineering and Imaging Sciences, Guy's and St Thomas' NHS Foundation Trust, London, UK
| |
Collapse
|
193
|
Cheng M, Yang Z, Qiao L, Yang Y, Deng Y, Zhang C, Mi T. AGEs induce endothelial cells senescence and endothelial barrier dysfunction via miR-1-3p/MLCK signaling pathways. Gene 2022; 851:147030. [DOI: 10.1016/j.gene.2022.147030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 10/10/2022] [Accepted: 10/31/2022] [Indexed: 11/08/2022]
|
194
|
Ghaith HS, Gabra MD, Nafady MH, Elshawah HE, Negida A, Mushtaq G, Kamal MA. A Review of the Rational and Current Evidence on Colchicine for COVID-19. Curr Pharm Des 2022; 28:3194-3201. [PMID: 34895117 DOI: 10.2174/1381612827666211210142352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 11/11/2021] [Indexed: 02/08/2023]
Abstract
The current coronavirus disease (COVID-19) pandemic has affected millions of individuals worldwide. Despite extensive research efforts, few therapeutic options currently offer direct clinical benefits for COVID-19 patients. Despite the advances in our understanding of COVID-19, the mortality rates remain significantly high owing to the high viral transmission rates in several countries and the rise of various mutations in the SARS-CoV-2. One currently available and widely used drug that combines both anti-inflammatory and immunomodulatory actions is colchicine, which has been proposed as a possible treatment option for COVID-19. Colchicine still did not get much attention from the medical and scientific communities despite its antiinflammatory and immunomodulatory mechanisms of action and positive preliminary data from early trials. This literature review article provides the scientific rationale for repurposing colchicine as a potential therapy for COVID-19. Further, we summarize colchicine's mechanisms of action and possible roles in COVID-19 patients. Finally, we supplement this review with a summary of the doses, side effects, and early efficacy data from clinical trials to date. Despite the promising early findings from multiple observational and clinical trials about the potential of colchicine in COVID-19, the data from the RECOVERY trial, the largest COVID-19 randomized controlled trial (RCT) in the world, showed no evidence of clinical benefits in mortality, hospital stays, or disease progression (n = 11340 patients). However, multiple other smaller clinical trials showed significant clinical benefits. We conclude that while current evidence does not support the use of colchicine for treating COVID-19, the present body of evidence is heterogeneous and inconclusive. The drug cannot be used in clinical practice or abandoned from clinical research without additional large RCTs providing more robust evidence. At present, the drug should not be used except for investigational purposes.
Collapse
Affiliation(s)
| | | | - Mohamed H Nafady
- Faculty of Applied Medical Sciences, Misr University of Science and Technology, 6th October City, Egypt
| | | | - Ahmed Negida
- Faculty of Medicine, Zagazig University, Zagazig, Egypt.,School of Pharmacy and Biomedical Sciences, University of Portsmouth, United Kingdom
| | - Gohar Mushtaq
- Center for Scientific Research, Faculty of Medicine, Idlib University, Syria
| | - Mohammad Amjad Kamal
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, China.,King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia.,Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh.,Enzymoics, 7 Peterlee place, Hebersham, NSW 2770, Novel Global Community Educational Foundation, Australia
| |
Collapse
|
195
|
Festa J, Singh H, Hussain A, Da Boit M. Elderberries as a potential supplement to improve vascular function in a SARS-CoV-2 environment. J Food Biochem 2022; 46:e14091. [PMID: 35118699 DOI: 10.1111/jfbc.14091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/29/2021] [Accepted: 01/05/2022] [Indexed: 12/29/2022]
Abstract
Coronavirus disease 2019 (COVID-19) pandemic has been triggered by the severe acute respiratory syndrome coronavirus (SARS-CoV-2). Although recent studies demonstrate that SARS-CoV-2 possibly does not directly infect endothelial cells (EC), the endothelium may be affected as a secondary response due to the damage of neighboring cells, circulating pro-inflammatory cytokines, and/or other mechanisms. Long-term COVID-19 symptoms specifically nonrespiratory symptoms are due to the persistence of endothelial dysfunction (ED). Based on the literature, anthocyanins a major subgroup of flavonoid polyphenols found in berries, have been well researched for their vascular protective properties as well as the prevention of cardiovascular disease (CVD)-related deaths. Elderberries have been previously used as a natural remedy for treating influenza, cold, and consequently cardiovascular health due to a high content of cyanidin-3-glucoside (C3G) a major anthocyanin found in the human diet. The literature reported many studies demonstrating that EE has both antiviral and vascular protective properties that should be further investigated as a nutritional component used against the (in)direct effect of SARS-CoV-2 in vascular function. PRACTICAL APPLICATIONS: While previous work among the literature looks promising and builds a suggestion for investigating elderberry extract (EE) against COVID-19, further in vitro and in vivo research is required to fully evaluate EE mechanisms of action and its use as a supplement to aid current therapies.
Collapse
Affiliation(s)
- Joseph Festa
- Leicester School of Allied Health Sciences, De Montfort University, Leicester, UK
| | - Harprit Singh
- Leicester School of Allied Health Sciences, De Montfort University, Leicester, UK
| | - Aamir Hussain
- Leicester School of Allied Health Sciences, De Montfort University, Leicester, UK.,Department of Respiratory Sciences, College of Life Sciences, University of Leicester, Leicester, UK
| | - Mariasole Da Boit
- Leicester School of Allied Health Sciences, De Montfort University, Leicester, UK
| |
Collapse
|
196
|
Mild-to-Moderate COVID-19 Convalescents May Present Pro-Longed Endothelium Injury. J Clin Med 2022; 11:jcm11216461. [PMID: 36362687 PMCID: PMC9658558 DOI: 10.3390/jcm11216461] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/28/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022] Open
Abstract
Background: The SARS-CoV-2 pandemic posed a great threat to public health, healthcare systems and the economy worldwide. It became clear that, in addition to COVID-19 and acute disease, the condition that develops after recovery may also negatively impact survivors’ health and quality of life. The damage inflicted by the viral infection on endothelial cells was identified quite early on as a possible mechanism underlying the so-called post-COVID syndrome. It became an urgent matter to establish whether convalescents present chronic endothelial impairment, which could result in an increased risk of cardiovascular and thrombotic complications. Methods: In this study, we measured the levels of CRP, ICAM-1, VCAM-1, E-selectin and syndecan-1 as markers of inflammation and endothelial injury in generally healthy convalescents selected from blood donors and compared these to a healthy control group. Results: We found higher concentrations of E-selectin and a lower level of syndecan-1 in convalescents in comparison to those of the control group. Conclusion: Based on our results, it can be concluded that, at least 6 months after infection, there is only slight evidence of endothelial dysfunction in COVID-19 convalescents who do not suffer from other comorbidities related to endothelial impairment.
Collapse
|
197
|
Axelerad A, Stuparu AZ, Muja LF, Docu Axelerad S, Petrov SG, Gogu AE, Jianu DC. Narrative Review of New Insight into the Influence of the COVID-19 Pandemic on Cardiovascular Care. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:1554. [PMID: 36363511 PMCID: PMC9694465 DOI: 10.3390/medicina58111554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/21/2022] [Accepted: 10/26/2022] [Indexed: 09/10/2024]
Abstract
Background and Objectives: The purpose of this paper was to perform a literature review on the effects of the COVID-19 pandemic on cardiothoracic and vascular surgery care and departments. Materials and Methods: To conduct this evaluation, an electronic search of many databases was conducted, and the resulting papers were chosen and evaluated. Results: Firstly, we have addressed the impact of COVID-19 infection on the cardiovascular system from the pathophysiological and treatment points of view. Afterwards, we analyzed every cardiovascular disease that seemed to appear after a COVID-19 infection, emphasizing the treatment. In addition, we have analyzed the impact of the pandemic on the cardiothoracic and vascular departments in different countries and the transitions that appeared. Finally, we discussed the implications of the cardiothoracic and vascular specialists' and residents' work and studies on the pandemic. Conclusions: The global pandemic caused by SARS-CoV-2 compelled the vascular profession to review the treatment of certain vascular illnesses and find solutions to address the vascular consequences of COVID-19 infection. The collaboration between vascular surgeons, public health specialists, and epidemiologists must continue to investigate the impact of the pandemic and the response to the public health issue.
Collapse
Affiliation(s)
- Any Axelerad
- Department of Neurology, General Medicine Faculty, ‘Ovidius’ University, 900470 Constanta, Romania
- Department of Neurology, ‘Sf. Ap. Andrei’ County Clinical Emergency Hospital of Constanta, 900591 Constanta, Romania
| | - Alina Zorina Stuparu
- Department of Neurology, General Medicine Faculty, ‘Ovidius’ University, 900470 Constanta, Romania
- Department of Neurology, ‘Sf. Ap. Andrei’ County Clinical Emergency Hospital of Constanta, 900591 Constanta, Romania
| | - Lavinia Florenta Muja
- Department of Neurology, General Medicine Faculty, ‘Ovidius’ University, 900470 Constanta, Romania
- Department of Neurology, ‘Sf. Ap. Andrei’ County Clinical Emergency Hospital of Constanta, 900591 Constanta, Romania
| | | | - Silvia Georgeta Petrov
- Doctoral School of the Faculty of Psychology and Educational Sciences within the University of Bucharest, 050663 Bucharest, Romania
| | - Anca Elena Gogu
- Department of Neurology, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania
- Centre for Cognitive Research in Neuropsychiatric Pathology (Neuropsy-Cog), Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania
| | - Dragos Catalin Jianu
- Department of Neurology, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania
- Centre for Cognitive Research in Neuropsychiatric Pathology (Neuropsy-Cog), Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania
| |
Collapse
|
198
|
Lapadula G, Leone R, Bernasconi DP, Biondi A, Rossi E, D’Angiò M, Bottazzi B, Bettini LR, Beretta I, Garlanda C, Valsecchi MG, Mantovani A, Bonfanti P. Long pentraxin 3 (PTX3) levels predict death, intubation and thrombotic events among hospitalized patients with COVID-19. Front Immunol 2022; 13:933960. [PMID: 36389697 PMCID: PMC9651085 DOI: 10.3389/fimmu.2022.933960] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 10/17/2022] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND PTX3 is an important mediator of inflammation and innate immunity. We aimed at assessing its prognostic value in a large cohort of patients hospitalized with COVID-19. METHODS Levels of PTX3 were measured in 152 patients hospitalized with COVID-19 at San Gerardo Hospital (Monza, Italy) since March 2020. Cox regression was used to identify predictors of time from admission to in-hospital death or mechanical ventilation. Crude incidences of death were compared between patients with PTX3 levels higher or lower than the best cut-off estimated with the Maximally Selected Rank Statistics Method. RESULTS Upon admission, 22% of the patients required no oxygen, 46% low-flow oxygen, 30% high-flow nasal cannula or CPAP-helmet and 3% MV. Median level of PTX3 was 21.7 (IQR: 13.5-58.23) ng/ml. In-hospital mortality was 25% (38 deaths); 13 patients (8.6%) underwent MV. PTX3 was associated with risk of death (per 10 ng/ml, HR 1.08; 95%CI 1.04-1.11; P<0.001) and death/MV (HR 1.04; 95%CI 1.01-1.07; P=0.011), independently of other predictors of in-hospital mortality, including age, Charlson Comorbidity Index, D-dimer and C-reactive protein (CRP). Patients with PTX3 levels above the optimal cut-off of 39.32 ng/ml had significantly higher mortality than the others (55% vs 8%, P<0.001). Higher PTX3 plasma levels were found in 14 patients with subsequent thrombotic complications (median [IQR]: 51.4 [24.6-94.4] versus 21 [13.4-55.2]; P=0.049). CONCLUSIONS High PTX3 levels in patients hospitalized with COVID-19 are associated with a worse outcome. The evaluation of this marker could be useful in prognostic stratification and identification of patients who could benefit from immunomodulant therapy.
Collapse
Affiliation(s)
- Giuseppe Lapadula
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
- Department of Infectious Diseases, San Gerardo Hospital, Monza, Italy
| | | | - Davide Paolo Bernasconi
- Bicocca Bioinformatics Biostatistics and Bioimaging Center - B4, University of Milano–Bicocca, Milan, Italy
| | - Andrea Biondi
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
- Department of Pediatrics, European Reference Network (ERN) PaedCan, EuroBloodNet, MetabERN Fondazione Monza e Brianza per il Bambino e la sua Mamma (MBBM)/Ospedale San Gerardo, Monza, Italy
| | - Emanuela Rossi
- Bicocca Bioinformatics Biostatistics and Bioimaging Center - B4, University of Milano–Bicocca, Milan, Italy
| | - Mariella D’Angiò
- Department of Pediatrics, European Reference Network (ERN) PaedCan, EuroBloodNet, MetabERN Fondazione Monza e Brianza per il Bambino e la sua Mamma (MBBM)/Ospedale San Gerardo, Monza, Italy
| | | | - Laura Rachele Bettini
- Department of Pediatrics, European Reference Network (ERN) PaedCan, EuroBloodNet, MetabERN Fondazione Monza e Brianza per il Bambino e la sua Mamma (MBBM)/Ospedale San Gerardo, Monza, Italy
| | - Ilaria Beretta
- Department of Infectious Diseases, San Gerardo Hospital, Monza, Italy
| | - Cecilia Garlanda
- IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| | - Maria Grazia Valsecchi
- Bicocca Bioinformatics Biostatistics and Bioimaging Center - B4, University of Milano–Bicocca, Milan, Italy
| | - Alberto Mantovani
- IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
- William Harvey Research Institute, Queen Mary University, London, United Kingdom
| | - Paolo Bonfanti
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
- Department of Infectious Diseases, San Gerardo Hospital, Monza, Italy
| |
Collapse
|
199
|
Perchiazzi G, Larina A, Hansen T, Frithiof R, Hultström M, Lipcsey M, Pellegrini M. Chest dual-energy CT to assess the effects of steroids on lung function in severe COVID-19 patients. Crit Care 2022; 26:328. [PMID: 36284360 PMCID: PMC9595078 DOI: 10.1186/s13054-022-04200-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 10/12/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Steroids have been shown to reduce inflammation, hypoxic pulmonary vasoconstriction (HPV) and lung edema. Based on evidence from clinical trials, steroids are widely used in severe COVID-19. However, the effects of steroids on pulmonary gas volume and blood volume in this group of patients are unexplored. OBJECTIVE Profiting by dual-energy computed tomography (DECT), we investigated the relationship between the use of steroids in COVID-19 and distribution of blood volume as an index of impaired HPV. We also investigated whether the use of steroids influences lung weight, as index of lung edema, and how it affects gas distribution. METHODS Severe COVID-19 patients included in a single-center prospective observational study at the intensive care unit at Uppsala University Hospital who had undergone DECT were enrolled in the current study. Patients' cohort was divided into two groups depending on the administration of steroids. From each patient's DECT, 20 gas volume maps and the corresponding 20 blood volume maps, evenly distributed along the cranial-caudal axis, were analyzed. As a proxy for HPV, pulmonary blood volume distribution was analyzed in both the whole lung and the hypoinflated areas. Total lung weight, index of lung edema, was estimated. RESULTS Sixty patients were analyzed, whereof 43 received steroids. Patients not exposed to steroids showed a more extensive non-perfused area (19% vs 13%, p < 0.01) and less homogeneous pulmonary blood volume of hypoinflated areas (kurtosis: 1.91 vs 2.69, p < 0.01), suggesting a preserved HPV compared to patients treated with steroids. Moreover, patients exposed to steroids showed a significantly lower lung weight (953 gr vs 1140 gr, p = 0.01). A reduction in alveolar-arterial difference of oxygen followed the treatment with steroids (322 ± 106 mmHg at admission vs 267 ± 99 mmHg at DECT, p = 0.04). CONCLUSIONS The use of steroids might cause impaired HPV and might reduce lung edema in severe COVID-19. This is consistent with previous findings in other diseases. Moreover, a reduced lung weight, as index of decreased lung edema, and a more homogeneous distribution of gas within the lung were shown in patients treated with steroids. TRIAL REGISTRATION Clinical Trials ID: NCT04316884, Registered March 13, 2020.
Collapse
Affiliation(s)
- Gaetano Perchiazzi
- grid.8993.b0000 0004 1936 9457Anesthesiology and Intensive Care Medicine, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden ,grid.8993.b0000 0004 1936 9457Hedenstierna Laboratory, Department of Surgical Sciences, Uppsala University, Akademiska Sjukhuset, Ing 40, 3 tr, 751 85 Uppsala, Sweden ,grid.412354.50000 0001 2351 3333Department of Anesthesia, Operation and Intensive Care, Uppsala University Hospital, Uppsala, Sweden
| | - Aleksandra Larina
- grid.8993.b0000 0004 1936 9457Anesthesiology and Intensive Care Medicine, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden ,grid.412354.50000 0001 2351 3333Department of Anesthesia, Operation and Intensive Care, Uppsala University Hospital, Uppsala, Sweden
| | - Tomas Hansen
- grid.8993.b0000 0004 1936 9457Section of Radiology, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Robert Frithiof
- grid.8993.b0000 0004 1936 9457Anesthesiology and Intensive Care Medicine, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden ,grid.412354.50000 0001 2351 3333Department of Anesthesia, Operation and Intensive Care, Uppsala University Hospital, Uppsala, Sweden
| | - Michael Hultström
- grid.8993.b0000 0004 1936 9457Anesthesiology and Intensive Care Medicine, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden ,grid.412354.50000 0001 2351 3333Department of Anesthesia, Operation and Intensive Care, Uppsala University Hospital, Uppsala, Sweden ,grid.8993.b0000 0004 1936 9457Integrative Physiology, Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Miklos Lipcsey
- grid.8993.b0000 0004 1936 9457Anesthesiology and Intensive Care Medicine, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden ,grid.8993.b0000 0004 1936 9457Hedenstierna Laboratory, Department of Surgical Sciences, Uppsala University, Akademiska Sjukhuset, Ing 40, 3 tr, 751 85 Uppsala, Sweden ,grid.412354.50000 0001 2351 3333Department of Anesthesia, Operation and Intensive Care, Uppsala University Hospital, Uppsala, Sweden
| | - Mariangela Pellegrini
- grid.8993.b0000 0004 1936 9457Anesthesiology and Intensive Care Medicine, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden ,grid.8993.b0000 0004 1936 9457Hedenstierna Laboratory, Department of Surgical Sciences, Uppsala University, Akademiska Sjukhuset, Ing 40, 3 tr, 751 85 Uppsala, Sweden ,grid.412354.50000 0001 2351 3333Department of Anesthesia, Operation and Intensive Care, Uppsala University Hospital, Uppsala, Sweden
| |
Collapse
|
200
|
Shechter A, Yelin D, Margalit I, Abitbol M, Morelli O, Hamdan A, Vaturi M, Eisen A, Sagie A, Kornowski R, Shapira Y. Assessment of Adult Patients with Long COVID Manifestations Suspected as Cardiovascular: A Single-Center Experience. J Clin Med 2022; 11:jcm11206123. [PMID: 36294444 PMCID: PMC9605399 DOI: 10.3390/jcm11206123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/06/2022] [Accepted: 10/17/2022] [Indexed: 12/15/2022] Open
Abstract
Background: Persistent symptoms affect a subset of coronavirus disease 2019 (COVID-19) survivors. Some of these may be cardiovascular (CV)-related. Objective: To assess the burden of objective CV morbidity among, and to explore the short-term course experienced by, COVID-19 patients with post-infectious symptomatology suspected as CV. Methods: This was a single-center, retrospective analysis of consecutive adult patients with new-onset symptoms believed to be CV following recovery from COVID-19, who had been assessed at a dedicated ‘Cardio’-COVID clinic between June 2020 and June 2021. All participants were followed for 1 year for symptomatic course and the occurrence of new CV diagnoses and major adverse cardiovascular events (MACE). Results: A total of 96 patients (median age 54 (IQR, 44–64) years, 52 (54%) females) were included in the final analysis. Initial visits occurred within a median of 142 days after the diagnosis of acute COVID. Nearly all (99%) patients experienced a symptomatic acute illness, which was graded as severe in 26 (27%) cases according to the National Institutes of Health (NIH) criteria. Long-COVID symptoms included mainly dyspnea and fatigue. While the initial work-up was mostly normal, 45% of the 11 cardiac magnetic resonance studies performed revealed pathologies. New CV diagnoses were made in nine (9%) patients and mainly included myocarditis that later resolved. An abnormal spirometry was the only variable associated with these. No MACE were recorded. Fifty-two (54%) participants felt that their symptoms improved. No association was found between CV morbidity and symptomatic course. Conclusions: In our experience, long-COVID symptoms of presumed CV origin signified actual CV disease in a minority of patients who, irrespective of the final diagnosis, faced a fair 1-year prognosis.
Collapse
Affiliation(s)
- Alon Shechter
- Department of Cardiology, Rabin Medical Center, Petach Tikva 4941492, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv 6910203, Israel
- Correspondence: ; Tel.: +972-3-9377107; Fax: +972-3-9249850
| | - Dana Yelin
- Faculty of Medicine, Tel Aviv University, Tel Aviv 6910203, Israel
- Long-COVID Clinic, Rabin Medical Center, Petach Tikva 4941492, Israel
| | - Ili Margalit
- Faculty of Medicine, Tel Aviv University, Tel Aviv 6910203, Israel
- Long-COVID Clinic, Rabin Medical Center, Petach Tikva 4941492, Israel
| | - Merry Abitbol
- Department of Cardiology, Rabin Medical Center, Petach Tikva 4941492, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv 6910203, Israel
| | - Olga Morelli
- Department of Cardiology, Rabin Medical Center, Petach Tikva 4941492, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv 6910203, Israel
| | - Ashraf Hamdan
- Department of Cardiology, Rabin Medical Center, Petach Tikva 4941492, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv 6910203, Israel
| | - Mordehay Vaturi
- Department of Cardiology, Rabin Medical Center, Petach Tikva 4941492, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv 6910203, Israel
| | - Alon Eisen
- Department of Cardiology, Rabin Medical Center, Petach Tikva 4941492, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv 6910203, Israel
| | - Alex Sagie
- Department of Cardiology, Rabin Medical Center, Petach Tikva 4941492, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv 6910203, Israel
| | - Ran Kornowski
- Department of Cardiology, Rabin Medical Center, Petach Tikva 4941492, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv 6910203, Israel
| | - Yaron Shapira
- Department of Cardiology, Rabin Medical Center, Petach Tikva 4941492, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv 6910203, Israel
| |
Collapse
|