151
|
Guo X, Sha Y, Pu X, Xu Y, Yao L, Liu X, He Y, Hu J, Wang J, Li S, Chen G. Coevolution of Rumen Epithelial circRNAs with Their Microbiota and Metabolites in Response to Cold-Season Nutritional Stress in Tibetan Sheep. Int J Mol Sci 2022; 23:ijms231810488. [PMID: 36142400 PMCID: PMC9499677 DOI: 10.3390/ijms231810488] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/02/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
This study explores the effects of the coevolution of the host genome (the first genome) and gut microbiome (the second genome) on nutrition stress in Tibetan sheep during the cold season. The rumen epithelial tissue of six Tibetan sheep (Oula-type) was collected as experimental samples during the cold and warm seasons and the study lasted for half a year. The cDNA library was constructed and subjected to high-throughput sequencing. The circRNAs with significant differential expression were identified through bioinformatics analysis and functional prediction, and verified by real-time quantitative PCR (qRT-PCR). The results showed that a total of 56 differentially expressed (DE) circRNAs of rumen epithelial tissue were identified using RNA-seq technology, among which 29 were significantly upregulated in the cold season. The circRNA-miRNA regulatory network showed that DE circRNAs promoted the adaptation of Tibetan sheep in the cold season by targeting miR-150 and oar-miR-370-3p. The results of correlation analysis among circRNAs, microbiota, and metabolites showed that the circRNA NC_040275.1:28680890|28683112 had a very significant positive correlation with acetate, propionate, butyrate, and total volatile fatty acid (VFA) (p < 0.01), and had a significant positive correlation with Ruminococcus-1 (p < 0.05). In addition, circRNA NC_040256.1:78451819|78454934 and metabolites were enriched in the same KEGG pathway biosynthesis of amino acids (ko01230). In conclusion, the host genome and rumen microbiome of Tibetan sheep co-encoded a certain glycoside hydrolase (β-glucosidase) and coevolved efficient VFA transport functions and amino acid anabolic processes; thus, helping Tibetan sheep adapt to nutrient stress in the cold season in high-altitude areas.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiu Liu
- Correspondence: (X.L.); (G.C.)
| | | | | | | | | | | |
Collapse
|
152
|
Barco A, Kullmann B, Knebelsberger T, Sarrazin V, Kuhs V, Kreutle A, Pusch C, Thiel R. Detection of fish species from marine protected areas of the North Sea using environmental DNA. JOURNAL OF FISH BIOLOGY 2022; 101:722-727. [PMID: 35598112 DOI: 10.1111/jfb.15111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
This report describe the first application of environmental DNA-metabarcoding approach for the assessment of fish species diversity in two marine protected areas of the North Sea: the Doggerbank and the Sylt Outer Reef. We collected 64 water samples and detected 24 fish species. We discuss qualitative differences between MPAs and compare the results with those obtained from bottom-trawl surveys in the same areas. We found three additional species to those documented in the same year with trawls, including the critically endangered European eel.
Collapse
Affiliation(s)
| | - Björn Kullmann
- State Research Centre for Agriculture and Fisheries Mecklenburg-Vorpommern, Institute of Fisheries, Rostock, Germany
| | | | - Victoria Sarrazin
- University of Hamburg, Department of Biology, Biodiversity Research, Hamburg, Germany
| | - Vanessa Kuhs
- Leibniz Institute for the Analysis of Biodiversity Change, Centre for Taxonomy and Morphology, Zoological Museum, Hamburg, Germany
| | - Axel Kreutle
- Federal Agency for Nature Conservation (BfN), Island of Vilm, Putbus (Lauterbach), Germany
| | - Christian Pusch
- Federal Agency for Nature Conservation (BfN), Island of Vilm, Putbus (Lauterbach), Germany
| | - Ralf Thiel
- University of Hamburg, Department of Biology, Biodiversity Research, Hamburg, Germany
- Leibniz Institute for the Analysis of Biodiversity Change, Centre for Taxonomy and Morphology, Zoological Museum, Hamburg, Germany
| |
Collapse
|
153
|
Hoban ML, Whitney J, Collins AG, Meyer C, Murphy KR, Reft AJ, Bemis KE. Skimming for barcodes: rapid production of mitochondrial genome and nuclear ribosomal repeat reference markers through shallow shotgun sequencing. PeerJ 2022; 10:e13790. [PMID: 35959477 PMCID: PMC9359134 DOI: 10.7717/peerj.13790] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 07/05/2022] [Indexed: 01/17/2023] Open
Abstract
DNA barcoding is critical to conservation and biodiversity research, yet public reference databases are incomplete. Existing barcode databases are biased toward cytochrome oxidase subunit I (COI) and frequently lack associated voucher specimens or geospatial metadata, which can hinder reliable species assignments. The emergence of metabarcoding approaches such as environmental DNA (eDNA) has necessitated multiple marker techniques combined with barcode reference databases backed by voucher specimens. Reference barcodes have traditionally been generated by Sanger sequencing, however sequencing multiple markers is costly for large numbers of specimens, requires multiple separate PCR reactions, and limits resulting sequences to targeted regions. High-throughput sequencing techniques such as genome skimming enable assembly of complete mitogenomes, which contain the most commonly used barcoding loci (e.g., COI, 12S, 16S), as well as nuclear ribosomal repeat regions (e.g., ITS1&2, 18S). We evaluated the feasibility of genome skimming to generate barcode references databases for marine fishes by assembling complete mitogenomes and nuclear ribosomal repeats. We tested genome skimming across a taxonomically diverse selection of 12 marine fish species from the collections of the National Museum of Natural History, Smithsonian Institution. We generated two sequencing libraries per species to test the impact of shearing method (enzymatic or mechanical), extraction method (kit-based or automated), and input DNA concentration. We produced complete mitogenomes for all non-chondrichthyans (11/12 species) and assembled nuclear ribosomal repeats (18S-ITS1-5.8S-ITS2-28S) for all taxa. The quality and completeness of mitogenome assemblies was not impacted by shearing method, extraction method or input DNA concentration. Our results reaffirm that genome skimming is an efficient and (at scale) cost-effective method to generate all mitochondrial and common nuclear DNA barcoding loci for multiple species simultaneously, which has great potential to scale for future projects and facilitate completing barcode reference databases for marine fishes.
Collapse
Affiliation(s)
- Mykle L. Hoban
- Hawai‘i Institute of Marine Biology, University of Hawai‘i at Mānoa, Kāne‘ohe, Hawai‘i, United States of America
| | - Jonathan Whitney
- Pacific Islands Fisheries Science Center, National Oceanic and Atmospheric Administration, Honolulu, Hawai‘i, United States of America
| | - Allen G. Collins
- NOAA National Systematics Laboratory, Natural Museum of Natural History, Smithsonian Institution, Washington, D.C., United States of America
| | - Christopher Meyer
- Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, D.C., United States of America
| | - Katherine R. Murphy
- Laboratories of Analytical Biology, National Museum of Natural History, Smithsonian Institution, Washington, D.C., United States of America
| | - Abigail J. Reft
- NOAA National Systematics Laboratory, Natural Museum of Natural History, Smithsonian Institution, Washington, D.C., United States of America
| | - Katherine E. Bemis
- NOAA National Systematics Laboratory, Natural Museum of Natural History, Smithsonian Institution, Washington, D.C., United States of America
| |
Collapse
|
154
|
Tsuji S, Murakami H, Masuda R. Analysis of the Persistence and Particle Size Distributional Shift of Sperm-Derived Environmental DNA to Monitor Jack Mackerel Spawning Activity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:10754-10763. [PMID: 35866659 DOI: 10.1021/acs.est.2c01904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Environmental DNA (eDNA) analysis holds great promise as an efficient and noninvasive method to monitor not only the distribution of organisms but also their spawning activity. In eDNA analysis-based monitoring of spawning activity, the detection of sperm-derived eDNA is a key point; however, its characteristics and dynamics are completely unknown. The present study focuses on the persistence and particle size distribution (PSD) of eDNA derived from the sperm of Japanese jack mackerel. First, we investigated the time-dependent degradation and the PSD of sperm-derived eDNA by artificially adding sperm to seawater. Next, we kept fish in tanks and examined the changes in eDNA concentration and PSD before and after spawning. The results of two experiments showed that the degradation of sperm-derived eDNA proceeded rapidly, with PSD shifting to a smaller size regardless of the DNA region (Cyt b or ITS1). Additionally, it was shown that the nuclei and mitochondria released from sperm through degradation had a size distribution that was not simply dependent on each organelle size. These results will contribute to elucidating the characteristics and dynamics of eDNA specifically during the spawning season and to further developing eDNA analysis as a powerful tool for the monitoring of spawning activity.
Collapse
Affiliation(s)
- Satsuki Tsuji
- Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Hiroaki Murakami
- Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto, Kyoto 606-8502, Japan
| | - Reiji Masuda
- Maizuru Fisheries Research Station, Field Science Education and Research Center, Kyoto University, Maizuru, Kyoto 625-0086, Japan
| |
Collapse
|
155
|
Banerjee P, Stewart KA, Dey G, Antognazza CM, Sharma RK, Maity JP, Saha S, Doi H, de Vere N, Chan MWY, Lin PY, Chao HC, Chen CY. Environmental DNA analysis as an emerging non-destructive method for plant biodiversity monitoring: a review. AOB PLANTS 2022; 14:plac031. [PMID: 35990516 PMCID: PMC9389569 DOI: 10.1093/aobpla/plac031] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Environmental DNA (eDNA) analysis has recently transformed and modernized biodiversity monitoring. The accurate detection, and to some extent quantification, of organisms (individuals/populations/communities) in environmental samples is galvanizing eDNA as a successful cost and time-efficient biomonitoring technique. Currently, eDNA's application to plants remains more limited in implementation and scope compared to animals and microorganisms. This review evaluates the development of eDNA-based methods for (vascular) plants, comparing its performance and power of detection with that of traditional methods, to critically evaluate and advise best-practices needed to innovate plant biomonitoring. Recent advancements, standardization and field applications of eDNA-based methods have provided enough scope to utilize it in conservation biology for numerous organisms. Despite our review demonstrating only 13% of all eDNA studies focus on plant taxa to date, eDNA has considerable environmental DNA has considerable potential for plants, where successful detection of invasive, endangered and rare species, and community-level interpretations have provided proof-of-concept. Monitoring methods using eDNA were found to be equal or more effective than traditional methods; however, species detection increased when both methods were coupled. Additionally, eDNA methods were found to be effective in studying species interactions, community dynamics and even effects of anthropogenic pressure. Currently, elimination of potential obstacles (e.g. lack of relevant DNA reference libraries for plants) and the development of user-friendly protocols would greatly contribute to comprehensive eDNA-based plant monitoring programs. This is particularly needed in the data-depauperate tropics and for some plant groups (e.g., Bryophytes and Pteridophytes). We further advocate to coupling traditional methods with eDNA approaches, as the former is often cheaper and methodologically more straightforward, while the latter offers non-destructive approaches with increased discrimination ability. Furthermore, to make a global platform for eDNA, governmental and academic-industrial collaborations are essential to make eDNA surveys a broadly adopted and implemented, rapid, cost-effective and non-invasive plant monitoring approach.
Collapse
Affiliation(s)
- Pritam Banerjee
- Department of Biomedical Sciences, Graduate Institute of Molecular Biology, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan
| | - Kathryn A Stewart
- Institute of Environmental Science, Leiden University, 2333 CC Leiden, The Netherlands
| | - Gobinda Dey
- Department of Biomedical Sciences, Graduate Institute of Molecular Biology, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan
| | - Caterina M Antognazza
- Department of Theoretical and Applied Science, University of Insubria, Via J.H. Dunant, 3, 21100 Varese, Italy
| | - Raju Kumar Sharma
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan
| | - Jyoti Prakash Maity
- Department of Chemistry, School of Applied Sciences, KIIT Deemed to be University, Bhubaneswar, Odisha 751024, India
| | - Santanu Saha
- Post Graduate Department of Botany, Bidhannagar College, Salt Lake City, Kolkata 700064, India
| | - Hideyuki Doi
- Graduate School of Information Science, University of Hyogo, 7-1-28 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Natasha de Vere
- Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen K
| | - Michael W Y Chan
- Department of Biomedical Sciences, Graduate Institute of Molecular Biology, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan
| | - Pin-Yun Lin
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan
| | - Hung-Chun Chao
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan
| | | |
Collapse
|
156
|
Jo T, Yamanaka H. Fine‐tuning the performance of abundance estimation based on environmental
DNA
(
eDNA
) focusing on
eDNA
particle size and marker length. Ecol Evol 2022. [DOI: 10.1002/ece3.9234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Toshiaki Jo
- Faculty of Advanced Science and Technology Ryukoku University Otsu City Japan
- Ryukoku Center for Biodiversity Science Otsu City Japan
- Research Fellow of Japan Society for the Promotion of Science Chiyoda‐ku Japan
| | - Hiroki Yamanaka
- Faculty of Advanced Science and Technology Ryukoku University Otsu City Japan
- Ryukoku Center for Biodiversity Science Otsu City Japan
| |
Collapse
|
157
|
Boyi JO, Heße E, Rohner S, Säurich J, Siebert U, Gilles A, Lehnert K. Deciphering Eurasian otter (
Lutra lutra
L.) and seal (
Phoca vitulina
L.;
Halichoerus grypus
F.) diet: metabarcoding tailored for fresh and saltwater fish species. Mol Ecol 2022; 31:5089-5106. [DOI: 10.1111/mec.16635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 07/13/2022] [Accepted: 07/25/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Joy Ometere Boyi
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Foundation Büsum Germany
| | - Eileen Heße
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Foundation Büsum Germany
| | - Simon Rohner
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Foundation Büsum Germany
| | - Josefin Säurich
- Institute for Animal Breeding and Genetics, University of Veterinary Medicine Hannover, Foundation Hannover Germany
| | - Ursula Siebert
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Foundation Büsum Germany
| | - Anita Gilles
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Foundation Büsum Germany
| | - Kristina Lehnert
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Foundation Büsum Germany
| |
Collapse
|
158
|
Thompson LR, Anderson SR, Den Uyl PA, Patin NV, Lim SJ, Sanderson G, Goodwin KD. Tourmaline: A containerized workflow for rapid and iterable amplicon sequence analysis using QIIME 2 and Snakemake. Gigascience 2022; 11:giac066. [PMID: 35902092 PMCID: PMC9334028 DOI: 10.1093/gigascience/giac066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 02/28/2022] [Accepted: 06/15/2022] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Amplicon sequencing (metabarcoding) is a common method to survey diversity of environmental communities whereby a single genetic locus is amplified and sequenced from the DNA of whole or partial organisms, organismal traces (e.g., skin, mucus, feces), or microbes in an environmental sample. Several software packages exist for analyzing amplicon data, among which QIIME 2 has emerged as a popular option because of its broad functionality, plugin architecture, provenance tracking, and interactive visualizations. However, each new analysis requires the user to keep track of input and output file names, parameters, and commands; this lack of automation and standardization is inefficient and creates barriers to meta-analysis and sharing of results. FINDINGS We developed Tourmaline, a Python-based workflow that implements QIIME 2 and is built using the Snakemake workflow management system. Starting from a configuration file that defines parameters and input files-a reference database, a sample metadata file, and a manifest or archive of FASTQ sequences-it uses QIIME 2 to run either the DADA2 or Deblur denoising algorithm; assigns taxonomy to the resulting representative sequences; performs analyses of taxonomic, alpha, and beta diversity; and generates an HTML report summarizing and linking to the output files. Features include support for multiple cores, automatic determination of trimming parameters using quality scores, representative sequence filtering (taxonomy, length, abundance, prevalence, or ID), support for multiple taxonomic classification and sequence alignment methods, outlier detection, and automated initialization of a new analysis using previous settings. The workflow runs natively on Linux and macOS or via a Docker container. We ran Tourmaline on a 16S ribosomal RNA amplicon data set from Lake Erie surface water, showing its utility for parameter optimization and the ability to easily view interactive visualizations through the HTML report, QIIME 2 viewer, and R- and Python-based Jupyter notebooks. CONCLUSION Automated workflows like Tourmaline enable rapid analysis of environmental amplicon data, decreasing the time from data generation to actionable results. Tourmaline is available for download at github.com/aomlomics/tourmaline.
Collapse
Affiliation(s)
- Luke R Thompson
- Northern Gulf Institute, Mississippi State University, Mississippi State, MS 39762, USA
- Ocean Chemistry and Ecosystems Division, Atlantic Oceanographic and Meteorological Laboratory, National Oceanic and Atmospheric Administration, Miami, FL 33149, USA
| | - Sean R Anderson
- Northern Gulf Institute, Mississippi State University, Mississippi State, MS 39762, USA
- Ocean Chemistry and Ecosystems Division, Atlantic Oceanographic and Meteorological Laboratory, National Oceanic and Atmospheric Administration, Miami, FL 33149, USA
| | - Paul A Den Uyl
- Cooperative Institute for Great Lakes Research, University of Michigan, Ann Arbor, MI 48108, USA
| | - Nastassia V Patin
- Ocean Chemistry and Ecosystems Division, Atlantic Oceanographic and Meteorological Laboratory, National Oceanic and Atmospheric Administration, Miami, FL 33149, USA
- Cooperative Institute for Marine and Atmospheric Studies, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL 33149, USA
| | - Shen Jean Lim
- Ocean Chemistry and Ecosystems Division, Atlantic Oceanographic and Meteorological Laboratory, National Oceanic and Atmospheric Administration, Miami, FL 33149, USA
- Cooperative Institute for Marine and Atmospheric Studies, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL 33149, USA
| | - Grant Sanderson
- Marine Science Department, University of Hawaii, Hilo, HI 96720, USA
| | - Kelly D Goodwin
- Ocean Chemistry and Ecosystems Division, Atlantic Oceanographic and Meteorological Laboratory, National Oceanic and Atmospheric Administration, Miami, FL 33149, USA
| |
Collapse
|
159
|
Dawan J, Ahn J. Application of DNA barcoding for ensuring food safety and quality. Food Sci Biotechnol 2022; 31:1355-1364. [PMID: 36060568 PMCID: PMC9433498 DOI: 10.1007/s10068-022-01143-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/29/2022] [Accepted: 07/18/2022] [Indexed: 11/29/2022] Open
Abstract
With increasing international food trade, food quality and safety are high priority worldwide. The consumption of contaminated and adulterated food can cause serious health problems such as infectious diseases and allergies. Therefore, the authentication and traceability systems are needed to improve food safety. The mitochondrial DNA can be used for species authentication of food and food products. Effective DNA barcode markers have been developed to correctly identify species. The US FDA approved to the use of DNA barcoding for various food products. The DNA barcoding technology can be used as a regulatory tool for identification and authenticity. The application of DNA barcoding can reduce the microbiological and toxicological risks associated with the consumption of food and food products. DNA barcoding can be a gold-standard method in food authenticity and fraud detection. This review describes the DNA barcoding method for preventing food fraud and adulteration in meat, fish, and medicinal plants.
Collapse
|
160
|
Wang Q, Wang Z, Zheng K, Zhang P, Shen L, Chen W, Fan P, Zhang L. Assessing the Diet of a Predator Using a DNA Metabarcoding Approach. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.902412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The diet of top predators is vital information needed to determine their ecological function and for their conservation management. However, the elusive habit and low population density of many predators constrains determination of their diets. While the morphological identification of scat contents is the traditional method, DNA metabarcoding has lately proven a more efficient and accurate method of identifying prey taxa. We applied DNA metabarcoding to analyzing the diet of the Eurasian otter (Lutra lutra), a top predator in freshwater ecosystems, using 12S and 16S rRNA mitochondrial primers target vertebrate prey. Diet did not vary among different data removal thresholds of 0.1, 1, 3, and 5%, comprising fishes (>90%), amphibians and birds (>2%), and occasionally mammals (<2%). Both 12S and 16S primers revealed similar otter diets, indicating that a single set of primers with a higher threshold is cost-effective for detecting the main prey taxa. Using 12S primers and a 5% threshold, we found no seasonal variation of otter diet in the Tangjiahe National Nature Reserve. A different prey community was found outside the reserve, which resulted in different prey composition for otters. However, prey taxon richness was not different between otters in- and outside the reserve. Otters preferred Schizothorax spp., the largest-sized fish species in the reserve, whereas they mainly preyed on Triplophysa bleekeri, a small-sized fish species, outside the reserve. Otters’ flexible feeding strategy reflect their high adaptability. However, greater human disturbance outside the reserve may present significant challenges to otters by altering prey communities and reducing prey profitability. Combining fecal DNA metabarcoding and local fish survey will provide opportunities for more detailed studies on the impact of different levels of human disturbances on prey communities and otters.
Collapse
|
161
|
Metabarcoding of Fish Larvae in the Merbok River Reveals Species Diversity and Distribution Along its Mangrove Environment. Zool Stud 2022; 60:e76. [PMID: 35774258 DOI: 10.6620/zs.2021.60-76] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 10/11/2021] [Indexed: 01/24/2023]
Abstract
The Merbok River (north-west of Peninsular Malaysia) is a mangrove estuary that provides habitat for over 100 species of fish, which are economically and ecologically important. Threats such as habitat loss and overfishing are becoming a great concern for fisheries conservation and management. The identification of larval fish in this estuarine system is important to complement information on the adults. This is because the data could inform the spawning behaviour, reproductive biology, selection of nursery grounds and migration route of fish. Such information is invaluable for fisheries and aquatic environmental monitoring, and thus for their conservation and management. However, identifying fish larvae is a challenging task based only on morphology and even traditional DNA barcoding. To address this, DNA metabarcoding was utilised to detect the diversity of fish in the Merbok River. To complete the study, the fish larvae were collected at six sampling sites of the river. The extracted larval DNA was amplified for the Cytochrome Oxidase subunit 1 (COI) and 12S ribosomal RNA (12S rRNA) genes based on the metabarcoding approach using shotgun sequencing on the next-generation sequencing (NGS) Illumina MiSeq platform. Eighty-nine species from 65 genera and 41 families were detected, with Oryzias javanicus, Oryzias dancena, Lutjanus argentimaculatus and Lutjanus malabaricus among the most common species. The lower diversity observed from previous morphological studies is suggested to be mainly due to seasonal variation over the sampling period between the two methods and limited 12S rRNA sequences in current databases. The metabarcode data and a validation Sanger sequencing step using 15 species-specific primer pairs detected three species in common: Oryzias javanicus, Decapterus maruadsi and Pennahia macrocephalus. Several discrepancies observed between the two molecular approaches could be attributed to contaminants during sampling and DNA extraction, which could mask the presence of target species, especially when DNA from the contaminants is more abundant than the target organisms. In conclusion, this rapid and cost-effective identification method using DNA metabarcoding allowed the detection of numerous fish species from bulk larval samples in the Merbok River. This method can be applied to other sites and other organisms of interest.
Collapse
|
162
|
Shen M, Xiao N, Zhao Z, Guo N, Luo Z, Sun G, Li J. eDNA metabarcoding as a promising conservation tool to monitor fish diversity in Beijing water systems compared with ground cages. Sci Rep 2022; 12:11113. [PMID: 35773335 PMCID: PMC9247089 DOI: 10.1038/s41598-022-15488-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 06/24/2022] [Indexed: 11/09/2022] Open
Abstract
Fish diversity, an important indicator of the health of aquatic ecosystems, is declining sharply due to water pollution, overfishing, climate change, and species invasion. For protecting fish diversity, effective surveying and monitoring are prerequisites. In this study, eDNA (environmental DNA) metabarcoding and ground cages were used to survey the fish diversity of the Chaobai and Beiyun Rivers in Beijing. Based on the two methods, we identified 40 species, belonging to 35 genera, 18 families, and six orders. The richness of fish identified by eDNA metabarcoding was significantly higher than that captured by ground cages in both rivers. The fish captured by the ground cage method were all recognized by eDNA metabarcoding, except Squalidus wolterstorffi and Saurogobio dabryi, which were captured only in ground cages. The correlation of relative abundance between the two methods was affected by the properties of the rivers, such as the flow rate. Fish caught by ground cage in the Beiyun River were identified by eDNA, but not in the Chaobai River. Our results also suggest that the Chaobai River has higher fish diversity than the Beiyun River and different community assemblage. In addition to differences in the natural properties of the focal rivers, the development of urbanization is also an important contributor to different community structures overserved. eDNA metabarcoding as a new survey tool has great application prospects, it provides certain theoretical data and methodological references for the protection and management of river fish diversity.
Collapse
Affiliation(s)
- Mei Shen
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 8 Dayangfang, Beijing, 100012, China
| | - Nengwen Xiao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 8 Dayangfang, Beijing, 100012, China.
| | - Ziyi Zhao
- Lanzhou University, Lanzhou, 730000, China
| | - Ningning Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 8 Dayangfang, Beijing, 100012, China
| | - Zunlan Luo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 8 Dayangfang, Beijing, 100012, China
| | - Guang Sun
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 8 Dayangfang, Beijing, 100012, China
| | - Junsheng Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 8 Dayangfang, Beijing, 100012, China
| |
Collapse
|
163
|
Chan AHE, Saralamba N, Saralamba S, Ruangsittichai J, Chaisiri K, Limpanont Y, Charoennitiwat V, Thaenkham U. Sensitive and accurate DNA metabarcoding of parasitic helminth mock communities using the mitochondrial rRNA genes. Sci Rep 2022; 12:9947. [PMID: 35705676 PMCID: PMC9200835 DOI: 10.1038/s41598-022-14176-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/02/2022] [Indexed: 11/17/2022] Open
Abstract
Next-generation sequencing technologies have accelerated the pace of helminth DNA metabarcoding research, enabling species detection in bulk community samples. However, finding suitable genetic markers with robust species-level resolution and primers targeting a broad species range among parasitic helminths are some of the challenges faced. This study aimed to demonstrate the potential use of the mitochondrial 12S and 16S rRNA genes for parasitic helminth (nematodes, trematodes, cestodes) DNA metabarcoding. To demonstrate the robustness of the 12S and 16S rRNA genes for DNA metabarcoding, we determined the proportion of species successfully recovered using mock helminth communities without environment matrix and mock helminth communities artificially spiked with environmental matrices. The environmental matrices are human fecal material, garden soil, tissue, and pond water. Our results revealed the robustness of the mitochondrial rRNA genes, through the high sensitivity of the 12S rRNA gene, and the effectiveness of the 12S and 16S primers targeting platyhelminths. With the mitochondrial rRNA genes, a broad range of parasitc helminths were successfully detected to the species level. The potential of the mitochondrial rRNA genes for helminth DNA metabarcoding was demonstrated, providing a valuable gateway for future helminth DNA metabarcoding applications like helminth detection and biodiversity studies.
Collapse
Affiliation(s)
- Abigail Hui En Chan
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Naowarat Saralamba
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Sompob Saralamba
- Mathematical and Economic Modelling (MAEMOD), Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Jiraporn Ruangsittichai
- Department of Medical Entomology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Kittipong Chaisiri
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Yanin Limpanont
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | | | - Urusa Thaenkham
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
164
|
Li M, Hong L, Ye W, Wang Z, Shen H. Phyllosphere bacterial and fungal communities vary with host species identity, plant traits and seasonality in a subtropical forest. ENVIRONMENTAL MICROBIOME 2022; 17:29. [PMID: 35681245 PMCID: PMC9185928 DOI: 10.1186/s40793-022-00423-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 05/31/2022] [Indexed: 05/21/2023]
Abstract
BACKGROUND Phyllosphere microbes play important roles in host plant performance and fitness. Recent studies have suggested that tropical and temperate forests harbor diverse phyllosphere bacterial and fungal communities and their assembly is driven by host species identity and plant traits. However, no study has yet examined how seasonality (e.g. dry vs. wet seasons) influences phyllosphere microbial community assembly in natural forests. In addition, in subtropical forests characterized as the transitional zonal vegetation type from tropical to temperate forests, how tree phyllosphere microbial communities are assembled remains unknown. In this study, we quantified bacterial and fungal community structure and diversity on the leaves of 45 tree species with varying phylogenetic identities and importance values within a 20-ha lower subtropical evergreen broad-leaved forest plot in dry and wet seasons. We explored if and how the microbial community assembly varies with host species identity, plant traits and seasonality. RESULTS Phyllosphere microbial communities in the subtropical forest are more abundant and diverse than those in tropical and temperate forests, and the tree species share a "core microbiome" in either bacteria or fungi. Variations in phyllosphere bacterial and fungal community assembly are explained more by host species identity than by seasonality. There is a strong clustering of the phyllosphere microbial assemblage amongst trees by seasonality, and the seasonality effects are more pronounced on bacterial than fungal community assembly. Host traits have different effects on community compositions and diversities of both bacteria and fungi, and among them calcium concentration and importance value are the most powerful explaining variables for bacteria and fungi, respectively. There are significant evolutionary associations between host species and phyllosphere microbiome. CONCLUSIONS Our results suggest that subtropical tree phyllosphere microbial communities vary with host species identity, plant traits and seasonality. Host species identity, compared to seasonality, has greater effects on phyllosphere microbial community assembly, and such effects differ between bacterial and fungal communities. These findings advance our understanding of the patterns and drivers of phyllosphere microbial community assembly in zonal forests at a global scale.
Collapse
Affiliation(s)
- Mengjiao Li
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden/Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, 510650 China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Lan Hong
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225 China
| | - Wanhui Ye
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden/Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, 510650 China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458 China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Zhangming Wang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden/Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, 510650 China
| | - Hao Shen
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden/Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, 510650 China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458 China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049 China
| |
Collapse
|
165
|
Lavergne E, Kume M, Ahn H, Henmi Y, Terashima Y, Ye F, Kameyama S, Kai Y, Kadowaki K, Kobayashi S, Yamashita Y, Kasai A. Effects of forest cover on richness of threatened fish species in Japan. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2022; 36:e13847. [PMID: 34668598 PMCID: PMC9299902 DOI: 10.1111/cobi.13849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 05/09/2023]
Abstract
Estuaries--one of the most vulnerable ecosystems globally--face anthropogenic threats, including biodiversity loss and the collapse of sustainable fisheries. Determining the factors contributing to the maintenance of estuarine biodiversity, especially that of fish, is vital for promoting estuarine conservation and sustainability. We used environmental DNA metabarcoding analysis to determine fish species composition in 22 estuaries around Japan and measured watershed-scale land-use factors (e.g., population size, urban area percentage, and forest area percentage). We sought to test the hypothesis that the richness of the most vulnerable estuarine fish species (i.e., registered by the Japanese Ministry of the Environment in the national species red-list) is determined by watershed-scale land-use factors. The richness of such species was greater, where forest cover was highest; thus, forest cover contributes to their conservation. The proportion of agriculture cover was associated with low species richness of red-listed fishes (redundancy analysis, adjusted R2 = 43.9% of total variance, df = 5, F = 5.3843, p = 0.0001). The number of red-listed species increased from 3 to 11 along a watershed land-use gradient ranging from a high proportion of agriculture cover to a large proportion of forest cover. Furthermore, the results showed that throughout Japan all the examined watersheds that were covered by >74.8% forest had more than the average (6.7 species per site) richness of red-listed fish species. This result can be attributed to the already high average forest cover in Japan of 67.2%. Our results demonstrate how the land use of watersheds can affect the coastal sea environment and its biodiversity and suggest that proper forest management in conjunction with land-use management may be of prime importance for threatened fish species and coastal ecosystems in general.
Collapse
Affiliation(s)
- Edouard Lavergne
- Field Science Education and Research Center (FSERC)Kyoto UniversityKyotoJapan
- Research and Educational Unit for Studies on Connectivity of Hills, Humans and OceansKyoto UniversityKyotoJapan
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), Institut Universitaire Européen de la Mer (IUEM)Université de Bretagne OccidentalePlouzanéFrance
- Plastic@SeaBanyuls‐sur‐MerFrance
| | - Manabu Kume
- Field Science Education and Research Center (FSERC)Kyoto UniversityKyotoJapan
- Research and Educational Unit for Studies on Connectivity of Hills, Humans and OceansKyoto UniversityKyotoJapan
| | - Hyojin Ahn
- Research and Educational Unit for Studies on Connectivity of Hills, Humans and OceansKyoto UniversityKyotoJapan
- Faculty of Fisheries SciencesHokkaido UniversityHakodateJapan
| | - Yumi Henmi
- Field Science Education and Research Center (FSERC)Kyoto UniversityKyotoJapan
- Research and Educational Unit for Studies on Connectivity of Hills, Humans and OceansKyoto UniversityKyotoJapan
| | - Yuki Terashima
- Research and Educational Unit for Studies on Connectivity of Hills, Humans and OceansKyoto UniversityKyotoJapan
| | - Feng Ye
- Research and Educational Unit for Studies on Connectivity of Hills, Humans and OceansKyoto UniversityKyotoJapan
- Biodiversity DivisionNational Institute for Environmental Studies (NIES)TsukubaJapan
| | - Satoshi Kameyama
- Biodiversity DivisionNational Institute for Environmental Studies (NIES)TsukubaJapan
| | - Yoshiaki Kai
- Field Science Education and Research Center (FSERC)Kyoto UniversityKyotoJapan
| | - Kohmei Kadowaki
- Field Science Education and Research Center (FSERC)Kyoto UniversityKyotoJapan
- The Hakubi Center for Advanced ResearchGraduate School of Agriculture, Kyoto UniversityKyotoJapan
| | - Shiho Kobayashi
- Field Science Education and Research Center (FSERC)Kyoto UniversityKyotoJapan
| | - Yoh Yamashita
- Field Science Education and Research Center (FSERC)Kyoto UniversityKyotoJapan
- Research and Educational Unit for Studies on Connectivity of Hills, Humans and OceansKyoto UniversityKyotoJapan
| | - Akihide Kasai
- Faculty of Fisheries SciencesHokkaido UniversityHakodateJapan
| |
Collapse
|
166
|
Teal CN, Coykendall DK, Campbell MR, Eardley DL, Delomas TA, Shira JT, Schill DJ, Bonar SA, Culver M. Sex-specific markers undetected in green sunfish Lepomis cyanellus using restriction-site associated DNA sequencing. JOURNAL OF FISH BIOLOGY 2022; 100:1528-1540. [PMID: 35439326 DOI: 10.1111/jfb.15063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 04/11/2022] [Indexed: 06/14/2023]
Abstract
We used restriction-site associated DNA sequencing for SNP discovery and genotyping of known-sex green sunfish Lepomis cyanellus DNA samples to search for sex-diagnostic single nucleotide polymorphisms (SNPs) and restriction-site associated sequences present in one sex and absent in the other. The bioinformatic analyses discovered candidate SNPs and sex-specific restriction-site associated sequences that fit patterns of male or female heterogametic sex determination systems. However, when primers were developed and tested, no candidates reliably identified phenotypic sex. The top performing SNP candidate (ZW_218) correlated with phenotypic sex 63.0% of the time and the presence-absence loci universally amplified in both sexes. We recommend further investigations that interrogate a larger fraction of the L. cyanellus genome. Additionally, studies on the effect of temperature and rearing density on sex determination, as well as breeding of sex-reversed individuals, could provide more insights into the sex determination system of L. cyanellus.
Collapse
Affiliation(s)
- Chad N Teal
- Arizona Cooperative Fish and Wildlife Research Unit, School of Natural Resources and the Environment, Tucson, Arizona, USA
| | - D Katharine Coykendall
- Pacific States Marine Fisheries Commission, Eagle Fish Genetics Lab, Eagle, Idaho, USA
- Idaho Department of Fish and Game, Eagle Fish Genetics Lab, Eagle, Idaho, USA
| | - Matthew R Campbell
- Idaho Department of Fish and Game, Eagle Fish Genetics Lab, Eagle, Idaho, USA
| | - Daniel L Eardley
- Pacific States Marine Fisheries Commission, Eagle Fish Genetics Lab, Eagle, Idaho, USA
- Idaho Department of Fish and Game, Eagle Fish Genetics Lab, Eagle, Idaho, USA
| | - Thomas A Delomas
- Pacific States Marine Fisheries Commission, Eagle Fish Genetics Lab, Eagle, Idaho, USA
- Idaho Department of Fish and Game, Eagle Fish Genetics Lab, Eagle, Idaho, USA
| | - James T Shira
- University of Arizona Genetics Core, Tucson, Arizona, USA
| | | | - Scott A Bonar
- US Geological Survey, Arizona Cooperative Fish and Wildlife Research Unit, School of Natural Resources and the Environment, University of Arizona, ENR2, Tucson, Arizona, USA
| | - Melanie Culver
- US Geological Survey, Arizona Cooperative Fish and Wildlife Research Unit, School of Natural Resources and the Environment, University of Arizona, ENR2, Tucson, Arizona, USA
| |
Collapse
|
167
|
Minamoto T. Environmental DNA analysis for macro-organisms: species distribution and more. DNA Res 2022; 29:6598799. [PMID: 35652724 PMCID: PMC9187915 DOI: 10.1093/dnares/dsac018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/31/2022] [Indexed: 11/14/2022] Open
Abstract
In an era of severe biodiversity loss, biological monitoring is becoming increasingly essential. The analysis of environmental DNA (eDNA) has emerged as a new approach that could revolutionize the biological monitoring of aquatic ecosystems. Over the past decade, macro-organismal eDNA analysis has undergone significant developments and is rapidly becoming established as the golden standard for non-destructive and non-invasive biological monitoring. In this review, I summarize the development of macro-organismal eDNA analysis to date and the techniques used in this field. I also discuss the future perspective of these analytical methods in combination with sophisticated analytical techniques for DNA research developed in the fields of molecular biology and molecular genetics, including genomics, epigenomics, and single-cell technologies. eDNA analysis, which to date has been used primarily for determining the distribution of organisms, is expected to develop into a tool for elucidating the physiological state and behaviour of organisms. The fusion of microbiology and macrobiology through an amalgamation of these technologies is anticipated to lead to the future development of an integrated biology.
Collapse
Affiliation(s)
- Toshifumi Minamoto
- Graduate School of Human Development and Environment, Kobe University , Kobe, Hyogo 657-8501, Japan
| |
Collapse
|
168
|
Miya M, Sado T, Oka SI, Fukuchi T. The use of citizen science in fish eDNA metabarcoding for evaluating regional biodiversity in a coastal marine region: A pilot study. METABARCODING AND METAGENOMICS 2022. [DOI: 10.3897/mbmg.6.80444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
To test the feasibility of a citizen science program for fish eDNA metabarcoding in coastal marine environments, we recruited six groups of voluntary citizens for a science education course at a natural history museum. We held a seminar on eDNA and a workshop for seawater sampling and on-site filtration using syringes and filter cartridges for the participants. After that, they selected single survey sites following the guidelines for conducting a safe field trip. They performed seawater sampling and on-site filtration at these sites during their summer holidays. The six selected sites unexpectedly included diverse coastal habitats within a 40 km radius, located at temperate latitudes in central Japan (~35°N). After the field trips, they returned filtered cartridges to the museum, and we extracted eDNA from the filters. We performed fish eDNA metabarcoding, along with data analysis. Consequently, we identified 140 fish species across 66 families and 118 genera from the six samples, with species richness ranging from 14 to 66. Despite its limited sample size, such a diverse taxonomic range of fish species exhibited spatial biodiversity patterns within the region, which are consistent with species distribution. These include north-south and urbanization gradients of species richness, geographic structure of the fish communities, and varying salinity preferences of the component species. This case study demonstrates the potential of fish eDNA metabarcoding as an educational and scientific tool to raise public awareness and perform large-scale citizen science initiatives encompassing regional, national, or global fauna.
Collapse
|
169
|
Shinohara N, Hongo Y, Ichinokawa M, Nishijima S, Sawayama S, Kurogi H, Uto Y, Mita H, Ishii M, Kusano A, Akimoto S. Similar fish species composition despite larger environmental heterogeneity during severe hypoxia in a coastal ecosystem. Ecol Evol 2022; 12:e8884. [PMID: 35600699 PMCID: PMC9108318 DOI: 10.1002/ece3.8884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 11/30/2022] Open
Abstract
Environmental heterogeneity is one of the most influential factors that create compositional variation among local communities. Greater compositional variation is expected when an environmental gradient encompasses the most severe conditions where species sorting is more likely to operate. However, evidence for stronger species sorting at severer environment has typically been obtained for less mobile organisms and tests are scarce for those with higher dispersal ability that allows individuals to sensitively respond to environmental stress. Here, with the dynamics of fish communities in a Japanese bay revealed by environmental DNA metabarcoding analyses as a model case, we tested the hypothesis that larger environmental heterogeneity caused by severe seasonal hypoxia (lower concentration of oxygen in bottom waters in summer) leads to larger variation of species composition among communities. During summer, fish species richness was lower in the bottom layer, suggesting the severity of the hypoxic bottom water. In contrast to the prediction, we found that although the environmental parameters of bottom and surface water was clearly distinct in summer, fish species composition was more similar between the two layers. Our null model analysis suggested that the higher compositional similarity during hypoxia season was not a result of the sampling effect reflecting differences in the alpha or gamma diversity. Furthermore, a shift in the species occurrence from bottom to surface layers was observed during hypoxia season, which was consistent across species, suggesting that the severe condition in the bottom adversely affected fish species irrespective of their identity. These results suggest that larger environmental heterogeneity does not necessarily lead to higher compositional variation once the environmental gradient encompasses extremely severe conditions. This is most likely because individual organisms actively avoided the severity quasi‐neutrally, which induced mass effect‐like dispersal and lead to the mixing of species composition across habitats. By showing counter evidence against the prevailing view, we provide novel insights into how species sorting by environment acts in heterogeneous and severe conditions.
Collapse
Affiliation(s)
- Naoto Shinohara
- Fisheries Resources Institute Japan Fisheries Research and Education Agency Yokohama Japan
| | - Yuki Hongo
- Fisheries Resources Institute Japan Fisheries Research and Education Agency Yokohama Japan
| | - Momoko Ichinokawa
- Fisheries Resources Institute Japan Fisheries Research and Education Agency Yokohama Japan
| | - Shota Nishijima
- Fisheries Resources Institute Japan Fisheries Research and Education Agency Yokohama Japan
| | - Shuhei Sawayama
- Fisheries Resources Institute Japan Fisheries Research and Education Agency Yokohama Japan
| | - Hiroaki Kurogi
- Fisheries Resources Institute Japan Fisheries Research and Education Agency Yokohama Japan
| | - Yasuyuki Uto
- Marine Industries Promotion Division Chiba Prefectural Government Chiba Japan
| | - Hisanori Mita
- Chiba Prefectural Fisheries Research Center Chiba Japan
| | | | - Akane Kusano
- Fisheries Division Environment and Agriculture Bureau Kanagawa Prefectural Government Yokohama Japan
| | - Seiji Akimoto
- Fisheries Research Institute of Kanagawa Prefecture Yokohama Japan
| |
Collapse
|
170
|
Osathanunkul M, Madesis P. Environmental DNA detection of giant snakehead in Thailand's major rivers for wild stock assessment. PLoS One 2022; 17:e0267667. [PMID: 35536840 PMCID: PMC9089910 DOI: 10.1371/journal.pone.0267667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 04/12/2022] [Indexed: 11/30/2022] Open
Abstract
Capture-based aquaculture is now gaining much attention in Southeast Asia. This system was used to produce several fish species with social and economic implications, including the giant snakehead (Channa micropeltes). As wild harvesting of organisms for seed stock is one of main practices in capture-based aquaculture, abundance and distribution of the wild stock are essential for both environmental impact evaluation and stock management. Mark and recapture, visual observation and physical capture of target species are costly, ineffective, and labour intensive for fish surveys in several cases. Detection of target organisms using eDNA (environmental DNA) could be a good alternative as it has proved to be a non-invasive, rapid, and sensitive method for aquatic species monitoring and surveying. Here, we developed a TaqMan assay that targets the 16S region of giant snakehead DNA to amplify eDNA captured in water samples. 300 µl of water samples were collected from 15 sites located in the Chao Phraya River Basin (Ping, Wang, Yom, Nan, and Chao Phraya River) and filtered with 0.7 µm glass fibre membrane filter. Giant snakehead eDNA was detected in most tributaries (60%) with concentrations ranging from 74.0 copies/ml in Wang River sites to 7.4 copies/ml in Nan River sites. As intensification of capture-based aquaculture could lead to depleting of wild fish stocks, urgent management is needed. However, the existing conventional approaches for assessment of fish overexploitation, survey and monitoring have several limitations.
Collapse
Affiliation(s)
- Maslin Osathanunkul
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Research Center in Bioresources for Agriculture, Industry and Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Panagiotis Madesis
- Institute of Applied Biosciences, Centre for Research & Technology Hellas (CERTH), Thessaloniki, Greece
- Laboratory of Molecular Biology of Plants, Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, Volos, Magnesia, Greece
| |
Collapse
|
171
|
Bohmann K, Elbrecht V, Carøe C, Bista I, Leese F, Bunce M, Yu DW, Seymour M, Dumbrell AJ, Creer S. Strategies for sample labelling and library preparation in DNA metabarcoding studies. Mol Ecol Resour 2022; 22:1231-1246. [PMID: 34551203 PMCID: PMC9293284 DOI: 10.1111/1755-0998.13512] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 09/07/2021] [Accepted: 09/14/2021] [Indexed: 11/26/2022]
Abstract
Metabarcoding of DNA extracted from environmental or bulk specimen samples is increasingly used to profile biota in basic and applied biodiversity research because of its targeted nature that allows sequencing of genetic markers from many samples in parallel. To achieve this, PCR amplification is carried out with primers designed to target a taxonomically informative marker within a taxonomic group, and sample-specific nucleotide identifiers are added to the amplicons prior to sequencing. The latter enables assignment of the sequences back to the samples they originated from. Nucleotide identifiers can be added during the metabarcoding PCR and during "library preparation", that is, when amplicons are prepared for sequencing. Different strategies to achieve this labelling exist. All have advantages, challenges and limitations, some of which can lead to misleading results, and in the worst case compromise the fidelity of the metabarcoding data. Given the range of questions addressed using metabarcoding, ensuring that data generation is robust and fit for the chosen purpose is critically important for practitioners seeking to employ metabarcoding for biodiversity assessments. Here, we present an overview of the three main workflows for sample-specific labelling and library preparation in metabarcoding studies on Illumina sequencing platforms; one-step PCR, two-step PCR, and tagged PCR. Further, we distill the key considerations for researchers seeking to select an appropriate metabarcoding strategy for their specific study. Ultimately, by gaining insights into the consequences of different metabarcoding workflows, we hope to further consolidate the power of metabarcoding as a tool to assess biodiversity across a range of applications.
Collapse
Affiliation(s)
- Kristine Bohmann
- Faculty of Health and Medical SciencesSection for Evolutionary GenomicsGlobe InstituteUniversity of CopenhagenCopenhagenDenmark
| | - Vasco Elbrecht
- Department of Environmental Systems ScienceETH ZurichZürichSwitzerland
| | - Christian Carøe
- Faculty of Health and Medical SciencesSection for Evolutionary GenomicsGlobe InstituteUniversity of CopenhagenCopenhagenDenmark
| | - Iliana Bista
- Department of GeneticsUniversity of CambridgeCambridgeUK
- Tree of LifeWellcome Sanger InstituteHinxtonUK
| | - Florian Leese
- Aquatic Ecosystem ResearchFaculty of BiologyUniversity of Duisburg‐EssenEssenGermany
| | - Michael Bunce
- Trace and Environmental DNA (TrEnD) LaboratorySchool of Molecular and Life SciencesCurtin UniversityPerthWAAustralia
| | - Douglas W. Yu
- State Key Laboratory of Genetic Resources and EvolutionKunming Institute of ZoologyChinese Academy of SciencesKunmingChina
- School of Biological SciencesNorwich Research ParkUniversity of East AngliaNorwichUK
- Center for Excellence in Animal Evolution and GeneticsChinese Academy of SciencesKunming YunnanChina
| | - Mathew Seymour
- Department of EcologySwedish University of Agricultural SciencesUppsalaSweden
| | | | - Simon Creer
- Molecular Ecology and Evolution GroupSchool of Natural SciencesBangor UniversityGwyneddUK
| |
Collapse
|
172
|
Lin Y, Li J, Wang Z, Zhang S, Wang K, Li X. A Comparison of Fish Diversity in Rocky Reef Habitats by Multi-Mesh Gillnets and Environmental DNA Metabarcoding. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.874558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This study was undertaken in order to explore the practical effectiveness of the environmental DNA (eDNA) metabarcoding approach in evaluating fish composition and diversity in a high heterogeneous rocky reef habitat. We assessed the fish composition and diversity characteristics of the rocky reef habitat at Dachen Islands, Taizhou and the Zhejiang Province in China in November 2020 by comparing two methods: multi-mesh gillnets and eDNA. A comparative analysis was carried out on the fish composition and diversity characteristics gained under the two methods by using taxonomy, ecotypes and diversity indices. The results showed that there were 28 species of fish collected through gillnets, distributed under 24 genera, 19 families, 6 orders and one class. Among them, 4, 18, and 6 species of near-surface, near groundfish and groundfish were found, respectively, with Thryssa mystax, Johnius belangerii, and Sebastiscus marmoratus being the dominant species in each water layer. A total of 81 species of fish detected by eDNA metabarcoding belonging to 67 genera, 46 families, 15 orders and 2 classes. The near-surface, near groundfish and groundfish species were 17, 42, and 22, with Thryssa vitrirostris, Benthosema pterotum, Harpadon nehereus, and Dasyatis akajei being the dominant species in each water layer. Twenty species (71.4%) and 41 species (50.6%) of reef fish were counted by gillnets and eDNA, respectively. The results showed that multi-mesh gillnets can accurately obtain information on fish composition in rocky reef habitats, but with some selectivity. The eDNA technology can detect species not collected by gillnets, but the number of species detected in areas with fast water velocity is significantly less than other eDNA stations where the water velocity is slow. In summary, the combination of traditional nets and eDNA will provide more information on taxonomic diversity and population biomass, transforming natural resource management and ecological studies of fish communities on a larger spatial and temporal scale.
Collapse
|
173
|
Richards JL, Sheng V, Chung HWY, Liu M, Tsang RHH, McIlroy SE, Baker D. Development of an eDNA‐based survey method for urban fish markets. Methods Ecol Evol 2022. [DOI: 10.1111/2041-210x.13842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- John L. Richards
- Swire Institute of Marine Science, School of Biological Sciences The University of Hong Kong Pokfulam Road Hong Kong SAR
| | - Victoria Sheng
- Swire Institute of Marine Science, School of Biological Sciences The University of Hong Kong Pokfulam Road Hong Kong SAR
| | - Haze Wing Yi Chung
- Swire Institute of Marine Science, School of Biological Sciences The University of Hong Kong Pokfulam Road Hong Kong SAR
| | - Min Liu
- State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences Xiamen University Xiamen Fujian China
| | - Rainbow Hin Hung Tsang
- Swire Institute of Marine Science, School of Biological Sciences The University of Hong Kong Pokfulam Road Hong Kong SAR
| | - Shelby E. McIlroy
- Swire Institute of Marine Science, School of Biological Sciences The University of Hong Kong Pokfulam Road Hong Kong SAR
| | - David Baker
- Swire Institute of Marine Science, School of Biological Sciences The University of Hong Kong Pokfulam Road Hong Kong SAR
| |
Collapse
|
174
|
Sato Y, Hermawan I, Kakita T, Okano S, Imai H, Nagai H, Kimura R, Yamashiro T, Kajita T, Toma C. Analysis of human clinical and environmental Leptospira to elucidate the eco-epidemiology of leptospirosis in Yaeyama, subtropical Japan. PLoS Negl Trop Dis 2022; 16:e0010234. [PMID: 35358181 PMCID: PMC8970387 DOI: 10.1371/journal.pntd.0010234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 02/05/2022] [Indexed: 01/10/2023] Open
Abstract
Background Leptospirosis, a zoonosis caused by species in the spirochete genus Leptospira, is endemic to the Yaeyama region in Okinawa, subtropical Japan. Species of the P1 subclade “virulent” group, within the genus Leptospira, are the main etiological agents of leptospirosis in Okinawa. However, their environmental persistence is poorly understood. This study used a combination of bacterial isolation and environmental DNA (eDNA) metabarcoding methods to understand the eco-epidemiology of leptospirosis in this endemic region. Findings Polymerase chain reaction (PCR) characterized twelve human clinical L. interrogans isolates belonging to the P1 subclade “virulent” subgroup and 11 environmental soil isolates of the P1subclade “low virulent” subgroup (genetically related to L. kmetyi, n = 1; L. alstonii, n = 4; L. barantonii, n = 6) from the Yaeyama region targeting four virulence-related genes (lipL32, ligA, ligB and lpxD1). Clinical isolates were PCR positive for at least three targeted genes, while all environmental isolates were positive only for lipL32. Analysis of infected renal epithelial cells with selected clinical and environmental strains, revealed the disassembly of cell-cell junctions for the Hebdomadis clinical strain serogroup. Comparison of leptospiral eDNA during winter and summer identified operational taxonomic units corresponding to the species isolated from soil samples (L. kmetyi and L. barantonii) and additional P2 subclade species (L. licerasiae, L. wolffii-related, among others) that were not detected by soil cultivation. Total Leptospira read counts were higher in summer than in winter and the analysis of leptospiral/animal eDNA relationship suggested Rattus spp. as a potential reservoir animal. Conclusion Our study demonstrated high environmental Leptospira diversity in the Yaeyama region, particularly during summer, when most of the leptospirosis cases are reported. In addition, several Leptospira species with pathogenic potential were identified that have not yet been reported in Yaeyama; however, the environmental persistence of P1 subclade species previously isolated from human clinical cases in this region was absent, suggesting the need of further methodology development and surveillance. Leptospirosis is a widespread bacterial zoonosis and one of the most important acute febrile infectious disease in tropical and subtropical regions, which is difficult to differentiate from other infectious diseases common in these regions. Leptospirosis is endemic to Okinawa prefecture, the southernmost prefecture of Japan, where the infection occurs mainly after recreational activities in rivers in the northern part of Okinawa Main Island and the Yaeyama region. This study combined several methods such as bacterial isolation from soil and environmental DNA metabarcoding from river water samples to understand the persistence of Leptospira outside the human host, leptospiral diversity in the environment, and their potential reservoir animals in the wild environment of the Yaeyama region. Although this study didn’t confirm the environmental persistence of Leptospira species previously isolated from clinical cases, several newly reported Leptospira species with pathogenic potential from the Yaeyama region suggested the need for continual surveillance to improve leptospirosis control and prevention in this region.
Collapse
Affiliation(s)
- Yukuto Sato
- Research Laboratory Center, Faculty of Medicine, University of the Ryukyus, Nishihara, Okinawa, Japan
- Center for Strategic Research Project, Organization for Research Promotion, University of the Ryukyus, Nishihara, Okinawa, Japan
- * E-mail: (YS); (CT)
| | - Idam Hermawan
- Department of Bacteriology, Graduate School of Medicine, University of the Ryukyus, Nishihara, Okinawa, Japan
| | - Tetsuya Kakita
- Department of Biological Sciences, Okinawa Prefectural Institute of Health and Environment, Uruma-shi, Okinawa, Japan
| | - Sho Okano
- Department of Biological Sciences, Okinawa Prefectural Institute of Health and Environment, Uruma-shi, Okinawa, Japan
| | - Hideyuki Imai
- Department of Chemistry, Biology and Marine Science; Faculty of Science, University of the Ryukyus, Nishihara, Japan
| | - Hiroto Nagai
- Department of Chemistry, Biology and Marine Science; Faculty of Science, University of the Ryukyus, Nishihara, Japan
| | - Ryosuke Kimura
- Department of Human Biology and Anatomy, Graduate School of Medicine, University of the Ryukyus, Nishihara, Okinawa, Japan
| | - Tetsu Yamashiro
- Department of Bacteriology, Graduate School of Medicine, University of the Ryukyus, Nishihara, Okinawa, Japan
| | - Tadashi Kajita
- Iriomote Station, Tropical Biosphere Research Center, University of the Ryukyus, Taketomi, Okinawa, Japan
- United Graduate School of Agricultural Science, Kagoshima University, Kagoshima, Japan
| | - Claudia Toma
- Department of Bacteriology, Graduate School of Medicine, University of the Ryukyus, Nishihara, Okinawa, Japan
- * E-mail: (YS); (CT)
| |
Collapse
|
175
|
Svenningsen AKN, Pertoldi C, Bruhn D. eDNA Metabarcoding Benchmarked towards Conventional Survey Methods in Amphibian Monitoring. Animals (Basel) 2022; 12:ani12060763. [PMID: 35327161 PMCID: PMC8944553 DOI: 10.3390/ani12060763] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 03/07/2022] [Accepted: 03/16/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Amphibian species are declining worldwide, and precise monitoring is key to ensuring timely protection and thereby ceasing deteriorating populations. Conventional monitoring methods are invasive, time-consuming, and dependent on expert knowledge. eDNA methods have been suggested as a replacement for or supplement to conventional survey methods. The present study assessed amphibian detection of conventional survey methods and eDNA metabarcoding in Danish lakes and ponds to address how the application of eDNA surveys can supplement the currently applied methodology. The study found eDNA metabarcoding to detect five out of six species detected through conventional methods. Furthermore, it is expected that the results in the present study reflect the time of sampling for the applied methods. The findings in the present study indicate that eDNA metabarcoding detects multiple Danish amphibian species and can produce knowledge on the occurrence and distribution for amphibian species. Implementing it as a supplement for conventional survey methods in nature monitoring will enable a higher frequency of monitoring and yield knowledge of species composition. Abstract A keystone in protection work is accurate and thorough the monitoring of amphibian species, and the currently applied conventional survey methods are invasive, time-consuming, and dependent on expert knowledge. Research suggests that eDNA metabarcoding is a precise and cost-efficient method that could supplement the currently applied methods. The present study assessed the efficiency of conventional survey methods and eDNA metabarcoding in terms of species richness, the average number of detected species per site, the relative frequency of species occurrence, and the similarity of applied methods. The study found eDNA metabarcoding surveys to detect Lissotriton vulgaris (smooth newt), Triturus cristatus (great crested newt), Rana arvalis (moor frog), Rana temporaria (common frog), and Bufo bufo (common toad), as well as an average of 0.9 species per site, reflecting the species composition at the time of sampling in mid-July 2020. In addition to the species mentioned above, the conventional survey detected Epidalea calamita (natterjack toad) and an average of 1.7 species per site, reflecting the species composition at the time of sampling in early June 2020. The similarity between the methods applied in the present study was 27%, thus indicating a large number of unique observations of both eDNA metabarcoding and conventional surveys. The differences in detection can most likely be explained by the time of sampling, which was conducted a month apart. eDNA metabarcoding was efficient in detecting multiple amphibian species and produced unique observations that were not detected using conventional survey methods. Applying eDNA techniques as a supplement will most likely produce important knowledge on species distribution and presence, as well as enable more frequent monitoring due to cost efficiency and disturbance.
Collapse
Affiliation(s)
- Anne Katrine Nørgaard Svenningsen
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, DK-9220 Aalborg, Denmark; (C.P.); (D.B.)
- Correspondence:
| | - Cino Pertoldi
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, DK-9220 Aalborg, Denmark; (C.P.); (D.B.)
- Aalborg Zoo, Mølleparkvej 63, DK-9000 Aalborg, Denmark
| | - Dan Bruhn
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, DK-9220 Aalborg, Denmark; (C.P.); (D.B.)
| |
Collapse
|
176
|
Davies CS, Worsley SF, Maher KH, Komdeur J, Burke T, Dugdale HL, Richardson DS. Immunogenetic variation shapes the gut microbiome in a natural vertebrate population. MICROBIOME 2022; 10:41. [PMID: 35256003 PMCID: PMC8903650 DOI: 10.1186/s40168-022-01233-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND The gut microbiome (GM) can influence many biological processes in the host, impacting its health and survival, but the GM can also be influenced by the host's traits. In vertebrates, Major Histocompatibility Complex (MHC) genes play a pivotal role in combatting pathogens and are thought to shape the host's GM. Despite this-and the documented importance of both GM and MHC variation to individual fitness-few studies have investigated the association between the GM and MHC in the wild. RESULTS We characterised MHC class I (MHC-I), MHC class II (MHC-II) and GM variation in individuals within a natural population of the Seychelles warbler (Acrocephalus sechellensis). We determined how the diversity and composition of the GM varied with MHC characteristics, in addition to environmental factors and other host traits. Our results show that the presence of specific MHC alleles, but not MHC diversity, influences both the diversity and composition of the GM in this population. MHC-I alleles, rather than MHC-II alleles, had the greatest impact on the GM. GM diversity was negatively associated with the presence of three MHC-I alleles (Ase-ua3, Ase-ua4, Ase-ua5), and one MHC-II allele (Ase-dab4), while changes in GM composition were associated with the presence of four different MHC-I alleles (Ase-ua1, Ase-ua7, Ase-ua10, Ase-ua11). There were no associations between GM diversity and TLR3 genotype, but GM diversity was positively correlated with genome-wide heterozygosity and varied with host age and field period. CONCLUSIONS These results suggest that components of the host's immune system play a role in shaping the GM of wild animals. Host genotype-specifically MHC-I and to a lesser degree MHC-II variation-can modulate the GM, although whether this occurs directly, or indirectly through effects on host health, is unclear. Importantly, if immune genes can regulate host health through modulation of the microbiome, then it is plausible that the microbiome could also influence selection on immune genes. As such, host-microbiome coevolution may play a role in maintaining functional immunogenetic variation within natural vertebrate populations. Video abstract.
Collapse
Affiliation(s)
- Charli S Davies
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norfolk, NR4 7TJ, UK.
- NERC Biomolecular Analysis Facility, Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK.
| | - Sarah F Worsley
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norfolk, NR4 7TJ, UK
| | - Kathryn H Maher
- NERC Biomolecular Analysis Facility, Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK
| | - Jan Komdeur
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, P.O. Box 11103, 9700 CC, Groningen, The Netherlands
| | - Terry Burke
- NERC Biomolecular Analysis Facility, Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK
| | - Hannah L Dugdale
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, P.O. Box 11103, 9700 CC, Groningen, The Netherlands
- Faculty of Biological Sciences, School of Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - David S Richardson
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norfolk, NR4 7TJ, UK
- Nature Seychelles, Roche Caiman, Mahé, Republic of Seychelles
| |
Collapse
|
177
|
Development of Quantitative Real-Time PCR for Detecting Environmental DNA Derived from Marine Macrophytes and Its Application to a Field Survey in Hiroshima Bay, Japan. WATER 2022. [DOI: 10.3390/w14050827] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The sequestration and storage of carbon dioxide by marine macrophytes is called blue carbon; this ecosystem function of coastal marine ecosystems constitutes an important countermeasure to global climate change. The contribution of marine macrophytes to blue carbon requires a detailed examination of the organic carbon stock released by these macrophytes. Here, we introduce a quantitative real-time polymerase chain reaction (qPCR)-based environmental DNA (eDNA) system for the species-specific detection of marine macrophytes. and report its application in a field survey in Hiroshima Bay, Japan. A method of qPCR-based quantification was developed for mangrove, seagrass, Phaeophyceae, Rhodophyta and Chlorophyta species, or species-complex, collected from the Japanese coast to investigate their dynamics after they wither and die in the marine environment. A trial of the designed qPCR system was conducted using sediment samples from Hiroshima Bay. Ulva spp. were abundant in coastal areas of the bay, yet their eDNA in the sediments was scarce. In contrast, Zostera marina and the Sargassum subgenus Bactrophycus spp. were found at various sites in the bay, and high amounts of their eDNA were detected in the sediments. These results suggest that the fate of macrophyte-derived organic carbon after death varies among species.
Collapse
|
178
|
Richardson RT. Controlling critical mistag‐associated false discoveries in metagenetic data. Methods Ecol Evol 2022. [DOI: 10.1111/2041-210x.13838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Rodney T. Richardson
- Appalachian Laboratory University of Maryland Center for Environmental Science Frostburg MD USA
| |
Collapse
|
179
|
Hashizume H, Taga S, Sakata MK, Taha MHM, Siddig EE, Minamoto T, Fahal AH, Kaneko S. Detection of multiple mycetoma pathogens using fungal metabarcoding analysis of soil DNA in an endemic area of Sudan. PLoS Negl Trop Dis 2022; 16:e0010274. [PMID: 35275915 PMCID: PMC8942264 DOI: 10.1371/journal.pntd.0010274] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 03/23/2022] [Accepted: 02/23/2022] [Indexed: 01/14/2023] Open
Abstract
Mycetoma is a tropical disease caused by several fungi and bacteria present in the soil. Fungal mycetoma and eumycetoma are especially challenging to treat; therefore, prevention, early diagnosis, and early treatment are important, but it is also necessary to understand the geographic distribution of these pathogenic fungi. In this study, we used DNA metabarcoding methodology to identify fungal species from soil samples. Soil sampling was implemented at seven villages in an endemic area of Sennar State in Sudan in 2019, and ten sampling sites were selected in each village according to land-use conditions. In total, 70 soil samples were collected from ground surfaces, and DNA in the soil was extracted with a combined method of alkaline DNA extraction and a commercial soil DNA extraction kit. The region for universal primers was selected to be the ribosomal internal transcribed spacer one region for metabarcoding. After the second PCR for DNA library preparation, the amplicon-based DNA analysis was performed using next-generation sequencing with two sets of universal primers. A total of twelve mycetoma-causative fungal species were identified, including the prime agent, Madurella mycetomatis, and additional pathogens, Falciformispora senegalensis and Falciformispora tompkinsii, in 53 soil samples. This study demonstrated that soil DNA metabarcoding can elucidate the presence of multiple mycetoma-causative fungi, which may contribute to accurate diagnosis for patient treatment and geographical mapping. Mycetoma, a chronic subcutaneous and cutaneous disease, designated as a "neglected tropical disease," is prevalent in dry and hot climates. Fungal mycetoma is caused by more than 50 species of soil-dwelling pathogenic fungi, and its diagnosis and treatment can be challenging. The prevention of infection and early diagnosis and treatment are essential, and for this purpose, environmental assessment to understand the fungal habitat is necessary. In this study, we performed DNA metabarcoding analysis using next-generation sequencing (NGS) for mycetoma pathogens from environmental soil samples in Sudan. The results suggest that multiple causative agents of fungal mycetoma are widespread regardless of the environment and can be a source of infection anywhere in an endemic area. Based on the results of this study, we expect that the investigation of fungi in soil using NGS technology may help identify infection routes and create risk maps for the prevention of mycetoma.
Collapse
Affiliation(s)
- Hiroki Hashizume
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
- Department of Ecoepidemiology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| | - Suguru Taga
- Department of Ecoepidemiology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| | - Masayuki K. Sakata
- Graduate School of Human Development and Environment, Kobe University, Kobe, Japan
| | | | | | - Toshifumi Minamoto
- Graduate School of Human Development and Environment, Kobe University, Kobe, Japan
| | | | - Satoshi Kaneko
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
- Department of Ecoepidemiology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
- * E-mail:
| |
Collapse
|
180
|
Sakata MK, Kawata MU, Kurabayashi A, Kurita T, Nakamura M, Shirako T, Kakehashi R, Nishikawa K, Hossman MY, Nishijima T, Kabamoto J, Miya M, Minamoto T. Development and evaluation of PCR primers for environmental DNA (eDNA) metabarcoding of Amphibia. METABARCODING AND METAGENOMICS 2022. [DOI: 10.3897/mbmg.6.76534] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Biodiversity monitoring is important for the conservation of natural ecosystems in general, but particularly for amphibians, whose populations are pronouncedly declining. However, amphibians’ ecological traits (e.g. nocturnal or aquatic) often prevent their precise monitoring. Environmental DNA (eDNA) metabarcoding – analysis of extra-organismal DNA released into the environment – allows the easy and effective monitoring of the biodiversity of aquatic organisms. Here, we developed and tested the utility of original PCR primer sets. First, we conducted in vitro PCR amplification tests with universal primer candidates using total DNA extracted from amphibian tissues. Five primer sets successfully amplified the target DNA fragments (partial 16S rRNA gene fragments of 160–311 bp) from all 16 taxa tested (from the three living amphibian orders Anura, Caudata and Gymnophiona). Next, we investigated the taxonomic resolution retrieved using each primer set. The results revealed that the universal primer set “Amph16S” had the highest resolution amongst the tested sets. Finally, we applied Amph16S to the water samples collected in the field and evaluated its detection capability by comparing the species detected using eDNA and physical survey (capture-based sampling and visual survey) in multiple agricultural ecosystems across Japan (160 sites in 10 areas). The eDNA metabarcoding with Amph16S detected twice as many species as the physical surveys (16 vs. 8 species, respectively), indicating the effectiveness of Amph16S in biodiversity monitoring and ecological research for amphibian communities.
Collapse
|
181
|
Kawashima T, Yoshida MA, Miyazawa H, Nakano H, Nakano N, Sakamoto T, Hamada M. Observing Phylum-Level Metazoan Diversity by Environmental DNA Analysis at the Ushimado Area in the Seto Inland Sea. Zoolog Sci 2022; 39:157-165. [DOI: 10.2108/zs210073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 12/06/2021] [Indexed: 11/17/2022]
Affiliation(s)
- Takeshi Kawashima
- National Institute of Genetics, Yata 1111, Mishima, Shizuoka 411-8540, Japan
| | - Masa-aki Yoshida
- Marine Biological Science Section, Education and Research Center Biological Resources, Faculty of Life and Environmental Science, Shimane University, Shimane 685-0024, Japan
| | - Hideyuki Miyazawa
- National Institute of Genetics, Yata 1111, Mishima, Shizuoka 411-8540, Japan
| | - Hiroaki Nakano
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1, Shimoda, Shizuoka 415-0025, Japan
| | - Natumi Nakano
- Department of Biology, Nara Medical University, Nara 634-8521, Japan
| | - Tatsuya Sakamoto
- Ushimado Marine Institute, Okayama University, Okayama 701-4303, Japan
| | - Mayuko Hamada
- Ushimado Marine Institute, Okayama University, Okayama 701-4303, Japan
| |
Collapse
|
182
|
Tabassum N, Lee JH, Lee SR, Kim JU, Park H, Kim HW, Kim JH. Molecular Diet Analysis of Adélie Penguins ( Pygoscelis adeliae) in the Ross Sea Using Fecal DNA. BIOLOGY 2022; 11:biology11020182. [PMID: 35205051 PMCID: PMC8869225 DOI: 10.3390/biology11020182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/21/2022] [Accepted: 01/21/2022] [Indexed: 11/17/2022]
Abstract
Simple Summary The diet of Adélie penguins, Pygoscelis adeliae, in the Ross Sea was studied applying quantitative polymerase chain reaction (qPCR) protocols to their feces. Two krill species (Euphausia superba and Euphausia crystallorophias) and notothenioid fish (mainly Pleuragramma antarctica and Pagothenia borchgrevinki) were among the most abundant components of the diet. The composition of the two krill species and notothenioid fish was found to be strongly related to the geographic characteristics of the Ross Sea. Abstract The diet of Adélie penguins, Pygoscelis adeliae, is a useful indicator in understanding the ecological conditions of their habitats. The diets of Adélie penguins were studied using metabarcoding and quantitative PCR (qPCR) analyses of fecal DNA from seven habitats along the Ross Sea region. Using metabarcoding analysis with dual universal primers (18Sv9 and miniFish), the overall diet composition and detailed information about piscine prey were clearly elucidated. It was found that two krill species (Euphausia superba and Euphausia crystallorophias) and notothenioid fish were the most abundant in the diets of Adélie penguins. Among the notothenioid prey, Pleuragramma antarctica (56.50%) and Pagothenia borchgrevinki (18.21%) were the two most abundant species. qPCR analysis showed a significant geographic difference in the composition of main prey. Penguins inhabiting outbound parts of the Ross Sea (Capes Adare (CA) and Duke of York Island (DY)) mainly preyed on E. superba, without any significant changes in prey composition. By contrast, those inhabiting the inbound parts of the Ross Sea (Edmonson Point (EP) and Inexpressible Island (II)) preyed on E. crystallorophias and notothenioid fish rather than E. superba. Compared with the outbound habitats, prey compositions for penguins inhabiting the inbound regions were significantly different year to year, which was presumably due to the food availability based on the annual environmental and meteorological conditions of the coastal region along with the inbound parts of the Ross Sea.
Collapse
Affiliation(s)
- Nazia Tabassum
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Korea; (N.T.); (S.-R.L.)
| | - Ji-Hyun Lee
- Department of Marine Biology, Pukyong National University, Busan 48516, Korea;
| | - Soo-Rin Lee
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Korea; (N.T.); (S.-R.L.)
| | - Jong-U Kim
- Division of Life Science, Korea Polar Research Institute, Incheon 21990, Korea;
| | - Hyun Park
- Department of Biotechnology, Korea University, Seoul 02841, Korea;
| | - Hyun-Woo Kim
- Department of Marine Biology, Pukyong National University, Busan 48516, Korea;
- Marine Integrated Biomedical Technology Center, National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Korea
- Correspondence: (H.-W.K.); (J.-H.K.)
| | - Jeong-Hoon Kim
- Division of Life Science, Korea Polar Research Institute, Incheon 21990, Korea;
- Correspondence: (H.-W.K.); (J.-H.K.)
| |
Collapse
|
183
|
Keck F, Blackman RC, Bossart R, Brantschen J, Couton M, Hürlemann S, Kirschner D, Locher N, Zhang H, Altermatt F. Meta-analysis shows both congruence and complementarity of DNA and eDNA metabarcoding to traditional methods for biological community assessment. Mol Ecol 2022; 31:1820-1835. [PMID: 35075700 PMCID: PMC9303474 DOI: 10.1111/mec.16364] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 01/11/2022] [Accepted: 01/17/2022] [Indexed: 11/29/2022]
Abstract
DNA metabarcoding is increasingly used for the assessment of aquatic communities, and numerous studies have investigated the consistency of this technique with traditional morpho‐taxonomic approaches. These individual studies have used DNA metabarcoding to assess diversity and community structure of aquatic organisms both in marine and freshwater systems globally over the last decade. However, a systematic analysis of the comparability and effectiveness of DNA‐based community assessment across all of these studies has hitherto been lacking. Here, we performed the first meta‐analysis of available studies comparing traditional methods and DNA metabarcoding to measure and assess biological diversity of key aquatic groups, including plankton, microphytobentos, macroinvertebrates, and fish. Across 215 data sets, we found that DNA metabarcoding provides richness estimates that are globally consistent to those obtained using traditional methods, both at local and regional scale. DNA metabarcoding also generates species inventories that are highly congruent with traditional methods for fish. Contrastingly, species inventories of plankton, microphytobenthos and macroinvertebrates obtained by DNA metabarcoding showed pronounced differences to traditional methods, missing some taxa but at the same time detecting otherwise overseen diversity. The method is generally sufficiently advanced to study the composition of fish communities and replace more invasive traditional methods. For smaller organisms, like macroinvertebrates, plankton and microphytobenthos, DNA metabarcoding may continue to give complementary rather than identical estimates compared to traditional approaches. Systematic and comparable data collection will increase the understanding of different aspects of this complementarity, and increase the effectiveness of the method and adequate interpretation of the results.
Collapse
Affiliation(s)
- François Keck
- Eawag: Swiss Federal Institute of Aquatic Science and Technology, Department of Aquatic Ecology, Überlandstrasse 133, CH-8600, Dübendorf, Switzerland
| | - Rosetta C Blackman
- Eawag: Swiss Federal Institute of Aquatic Science and Technology, Department of Aquatic Ecology, Überlandstrasse 133, CH-8600, Dübendorf, Switzerland.,Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstr. 190, CH-8057, Zürich, Switzerland.,Research Priority Programme Global Change and Biodiversity (URPP-GCB), University of Zurich, Winterthurerstr. 190, CH-8057, Zürich, Switzerland
| | - Raphael Bossart
- Eawag: Swiss Federal Institute of Aquatic Science and Technology, Department of Aquatic Ecology, Überlandstrasse 133, CH-8600, Dübendorf, Switzerland
| | - Jeanine Brantschen
- Eawag: Swiss Federal Institute of Aquatic Science and Technology, Department of Aquatic Ecology, Überlandstrasse 133, CH-8600, Dübendorf, Switzerland.,Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstr. 190, CH-8057, Zürich, Switzerland.,Research Priority Programme Global Change and Biodiversity (URPP-GCB), University of Zurich, Winterthurerstr. 190, CH-8057, Zürich, Switzerland
| | - Marjorie Couton
- Eawag: Swiss Federal Institute of Aquatic Science and Technology, Department of Aquatic Ecology, Überlandstrasse 133, CH-8600, Dübendorf, Switzerland
| | - Samuel Hürlemann
- Eawag: Swiss Federal Institute of Aquatic Science and Technology, Department of Aquatic Ecology, Überlandstrasse 133, CH-8600, Dübendorf, Switzerland
| | - Dominik Kirschner
- Eawag: Swiss Federal Institute of Aquatic Science and Technology, Department of Aquatic Ecology, Überlandstrasse 133, CH-8600, Dübendorf, Switzerland.,Landscape Ecology, Institute of Terrestrial Ecosystems, Department of Environmental System Science, ETH Zürich, Universitätstr. 16, 8092, Zürich, Switzerland.,Landscape Ecology, Land Change Science, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, 8903, Birmensdorf, Switzerland
| | - Nadine Locher
- Eawag: Swiss Federal Institute of Aquatic Science and Technology, Department of Aquatic Ecology, Überlandstrasse 133, CH-8600, Dübendorf, Switzerland
| | - Heng Zhang
- Eawag: Swiss Federal Institute of Aquatic Science and Technology, Department of Aquatic Ecology, Überlandstrasse 133, CH-8600, Dübendorf, Switzerland.,Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstr. 190, CH-8057, Zürich, Switzerland.,Research Priority Programme Global Change and Biodiversity (URPP-GCB), University of Zurich, Winterthurerstr. 190, CH-8057, Zürich, Switzerland
| | - Florian Altermatt
- Eawag: Swiss Federal Institute of Aquatic Science and Technology, Department of Aquatic Ecology, Überlandstrasse 133, CH-8600, Dübendorf, Switzerland.,Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstr. 190, CH-8057, Zürich, Switzerland.,Research Priority Programme Global Change and Biodiversity (URPP-GCB), University of Zurich, Winterthurerstr. 190, CH-8057, Zürich, Switzerland
| |
Collapse
|
184
|
Ragot R, Villemur R. eDNA profiling of mammals, birds, and fish of surface waters by mitochondrial metagenomics: application for source tracking of fecal contamination in surface waters. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:72. [PMID: 34997305 DOI: 10.1007/s10661-021-09668-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 11/27/2021] [Indexed: 06/14/2023]
Abstract
Knowing the composition of animals present in aquatic ecosystems can tell us about the anthropic pressures on these environments. One of these pressures is the occurrence of fecal contamination. However, this contamination can originate from more than one animal species in areas where urban and agricultural activities overlap. Mitochondrial DNA (mtDNA) has become the standard barcoding tool to identify the presence of animal species in environment. Amplicon-sequencing metagenomics is a powerful approach to derive the animal profile in an environment. However, PCR primers targeting mtDNA of a broad range of animals are highly degenerate or generate short DNA fragments that could cause ambiguous affiliation. Here we report the development of a new set of primers targeting the mitochondrial 16S ribosomal RNA genes of a broad range of terrestrial and aquatic animals, which include mammals, birds, and fishes. These primers successfully amplified mtDNA from environmental DNA (eDNA) extracted from surface waters. Sequencing the resulting amplicons revealed the presence of mammals and birds that may contribute in fecal contamination of surface water. In one of the river samples high in fecal indicator bacteria, human and bovine mtDNA accounted for 40.5% and 4.1% of the sequences, respectively, suggesting fecal contamination by these two animals. These findings indicate that our PCR primers coupled with amplicon-sequencing metagenomics contribute in profiling the animal diversity in the surface waters and its surrounding. This approach could be a valuable tool to identify simultaneously the potential contribution of various animals as sources of fecal contamination in surface waters.
Collapse
Affiliation(s)
- Rose Ragot
- INRS Centre Armand-Frappier Santé Biotechnologie, 531 Boulevard des Prairies, Laval, QC, H7V 1B7, Canada
| | - Richard Villemur
- INRS Centre Armand-Frappier Santé Biotechnologie, 531 Boulevard des Prairies, Laval, QC, H7V 1B7, Canada.
| |
Collapse
|
185
|
Miya M. Environmental DNA Metabarcoding: A Novel Method for Biodiversity Monitoring of Marine Fish Communities. ANNUAL REVIEW OF MARINE SCIENCE 2022; 14:161-185. [PMID: 34351788 DOI: 10.1146/annurev-marine-041421-082251] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Environmental DNA (eDNA) is genetic material that has been shed from macroorganisms. It has received increased attention as an indirect marker for biodiversity monitoring. This article reviews the current status of eDNA metabarcoding (simultaneous detection of multiple species) as a noninvasive and cost-effective approach for monitoring marine fish communities and discusses the prospects for this growing field. eDNA metabarcoding coamplifies short fragments of fish eDNA across a wide variety of taxa and, coupled with high-throughput sequencing technologies, allows massively parallel sequencing to be performed simultaneously for dozens to hundreds of samples. It can predict species richness in a given area, detect habitat segregation and biogeographic patterns from small to large spatial scales, and monitor the spatiotemporal dynamics of fish communities. In addition, it can detect an anthropogenic impact on fish communities through evaluation of their functional diversity. Recognizing the strengths and limitations of eDNA metabarcoding will help ensure that continuous biodiversity monitoring at multiple sites will be useful for ecosystem conservation and sustainable use of fishery resources, possibly contributing to achieving the targets of the United Nations' Sustainable Development Goal 14 for 2030.
Collapse
Affiliation(s)
- Masaki Miya
- Natural History Museum and Institute, Chiba, Chiba 260-8682, Japan;
| |
Collapse
|
186
|
Cowart DA, Murphy KR, Cheng CHC. Environmental DNA from Marine Waters and Substrates: Protocols for Sampling and eDNA Extraction. Methods Mol Biol 2022; 2498:225-251. [PMID: 35727547 DOI: 10.1007/978-1-0716-2313-8_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Environmental DNA (eDNA) analysis has emerged in recent years as a powerful tool for the detection, monitoring, and characterization of aquatic metazoan communities, including vulnerable species. The rapid rate of adopting the eDNA approach across diverse habitats and taxonomic groups attests to its value for a wide array of investigative goals, from understanding natural or changing biodiversity to informing on conservation efforts at local and global scales. Regardless of research objectives, eDNA workflows commonly include the following essential steps: environmental sample acquisition, processing and preservation of samples, and eDNA extraction, followed by eDNA sequencing library preparation, high-capacity sequencing and sequence data analysis, or other methods of genetic detection. In this chapter, we supply instructional details for the early steps in the workflow to facilitate researchers considering adopting eDNA analysis to address questions in marine environments. Specifically, we detail sampling, preservation, extraction, and quantification protocols for eDNA originating from marine water, shallow substrates, and deeper sediments. eDNA is prone to degradation and loss, and to contamination through improper handling; these factors crucially influence the outcome and validity of an eDNA study. Thus, we also provide guidance on avoiding these pitfalls. Following extraction, purified eDNA is often sequenced on massively parallel sequencing platforms for comprehensive faunal diversity assessment using a metabarcoding or metagenomic approach, or for the detection and quantification of specific taxa by qPCR methods. These components of the workflow are project-specific and thus not included in this chapter. Instead, we briefly touch on the preparation of eDNA libraries and discuss comparisons between sequencing approaches to aid considerations in project design.
Collapse
Affiliation(s)
- Dominique A Cowart
- Company for Open Ocean Observations and Logging (COOOL), Saint Leu, La Réunion, France
| | - Katherine R Murphy
- Laboratories of Analytical Biology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - C-H Christina Cheng
- Department of Evolution, Ecology, and Behavior, University of Illinois at Urbana - Champaign, Urbana, IL, USA.
| |
Collapse
|
187
|
Ankley PJ, Xie Y, Havens S, Peters L, Timlick L, Rodriguez-Gil JL, Giesy JP, Palace VP. RNA metabarcoding helps reveal zooplankton community response to environmental stressors. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118446. [PMID: 34737027 DOI: 10.1016/j.envpol.2021.118446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 10/08/2021] [Accepted: 10/29/2021] [Indexed: 06/13/2023]
Abstract
DNA metabarcoding can provide a high-throughput and rapid method for characterizing responses of communities to environmental stressors. However, within bulk samples, DNA metabarcoding hardly distinguishes live from the dead organisms. Here, both DNA and RNA metabarcoding were applied and compared in experimental freshwater mesocosms conducted for assessment of ecotoxicological responses of zooplankton communities to remediation treatment until 38 days post oil-spill. Furthermore, a novel indicator of normalized vitality (NV), sequence counts of RNA metabarcoding normalized by that of DNA metabarcoding, was developed for assessment of ecological responses. DNA and RNA metabarcoding detected similar taxa richness and rank of relative abundances. Both DNA and RNA metabarcoding demonstrated slight shifts in measured α-diversities in response to treatments. NV presented relatively greater magnitudes of differential responses of community compositions to treatments compared to DNA or RNA metabarcoding. NV declined from the start of the experiment (3 days pre-spill) to the end (38 days post-spill). NV also differed between Rotifer and Arthropoda, possibly due to differential life histories and sizes of organisms. NV could be a useful indicator for characterizing ecological responses to anthropogenic influence; however, the biology of target organisms and subsequent RNA production need to be considered.
Collapse
Affiliation(s)
- Phillip J Ankley
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Yuwei Xie
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
| | - Sonya Havens
- IISD Experimental Lakes Area Inc, Winnipeg, Manitoba, Canada
| | - Lisa Peters
- University of Manitoba, Winnipeg, Manitoba, Canada
| | - Lauren Timlick
- IISD Experimental Lakes Area Inc, Winnipeg, Manitoba, Canada
| | | | - John P Giesy
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; Department of Environmental Sciences, Baylor University, Waco, TX, USA.
| | - Vince P Palace
- IISD Experimental Lakes Area Inc, Winnipeg, Manitoba, Canada; University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
188
|
Qian Y, Okano K, Kodato M, Arai M, Yanagiya T, Li Q, Amano C, Ruike K, Itayama T, Iwami N, Utsumi M, Lei Z, Zhang Z, Sugiura N, Shimizu K. Dynamics of the prokaryotic and eukaryotic microbial community during a cyanobacterial bloom. Biosci Biotechnol Biochem 2021; 86:78-91. [PMID: 34661632 DOI: 10.1093/bbb/zbab179] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/06/2021] [Indexed: 11/14/2022]
Abstract
Toxic cyanobacterial blooms frequently develop in eutrophic freshwater bodies worldwide. Microcystis species produce microcystins (MCs) as a cyanotoxin. Certain bacteria that harbor the mlr gene cluster, especially mlrA, are capable of degrading MCs. However, MC-degrading bacteria may possess or lack mlr genes (mlr+ and mlr- genotypes, respectively). In this study, we investigated the genotype that predominantly contributes to biodegradation and cyanobacterial predator community structure with change in total MC concentration in an aquatic environment. The 2 genotypes coexisted but mlr+ predominated, as indicated by the negative correlation between mlrA gene copy abundance and total MC concentration. At the highest MC concentrations, predation pressure by Phyllopoda, Copepoda, and Monogononta (rotifers) was reduced; thus, MCs may be toxic to cyanobacterial predators. The results suggest that cooperation between MC-degrading bacteria and predators may reduce Microcystis abundance and MC concentration.
Collapse
Affiliation(s)
- Yilin Qian
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan
| | - Kunihiro Okano
- Department of Biological Environment, Faculty of Bioresource Sciences, Akita Prefectural University, Nakano Shimoshinjo, Akita City, Akita, Japan
| | - Miwa Kodato
- Faculty of Life Sciences, Toyo University, Gunma, Japan
| | - Michiko Arai
- Faculty of Life Sciences, Toyo University, Gunma, Japan
| | - Takeru Yanagiya
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan
| | - Qintong Li
- Faculty of Life Sciences, Toyo University, Gunma, Japan
| | - Chie Amano
- Faculty of Life Sciences, Toyo University, Gunma, Japan
- Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Kakeru Ruike
- Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan
| | - Tomoaki Itayama
- Graduate School of Engineering, Nagasaki University, Nagasaki, Japan
| | - Norio Iwami
- School of Science and Engineering, Meisei University, Hino, Tokyo, Japan
| | - Motoo Utsumi
- Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan
- Sustainability Research Center, University of Tsukuba, Ibaraki, Japan
| | - Zhongfang Lei
- Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan
| | - Zhenya Zhang
- Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan
| | - Norio Sugiura
- Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan
| | - Kazuya Shimizu
- Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan
| |
Collapse
|
189
|
Fish Diversity Monitored by Environmental DNA in the Yangtze River Mainstream. FISHES 2021. [DOI: 10.3390/fishes7010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Surveys and assessments based on environmental DNA are not only efficient and time-saving, but also cause less harm to monitoring targets. Environmental DNA has become a common tool for the assessment and monitoring of aquatic organisms. In this study, we investigated fish resources in the Yangtze River mainstream using environmental DNA, and the variations in fish during two seasons (spring and autumn) were compared. The results showed that 13 species were identified in spring, and nine species of fish were identified in autumn. The fish with higher eDNA detection were Sinibotia superciliaris, Tachysurus fulvidraco, Cyprinus carpio, Ctenopharyngodon Idella, Monopterus albus, Acanthogobius hasta, Saurogobio dabryi, Oncorhynchus mykiss, Mugil cephalus, Odontamblyopus rubicundus. Seasonal variation between spring and autumn was not significant, and the environmental factors had different effects on fish assemblages during the two seasons. Our study used the eDNA technique to monitor the composition of fish in the spring and autumn in the Yangtze River mainstream, providing a new technology for the long-term management and protection of fishery resources in the region. Of course, problems such as pollution and insufficient databases are the current shortcomings of environmental DNA, which will be the focus of our future research and study.
Collapse
|
190
|
Rumen Fermentation-Microbiota-Host Gene Expression Interactions to Reveal the Adaptability of Tibetan Sheep in Different Periods. Animals (Basel) 2021; 11:ani11123529. [PMID: 34944301 PMCID: PMC8697948 DOI: 10.3390/ani11123529] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/29/2021] [Accepted: 12/07/2021] [Indexed: 01/03/2023] Open
Abstract
Simple Summary The Qinghai-Tibet Plateau has a unique ecological environment, involving high altitude, low oxygen levels, strong ultraviolet rays, and severe imbalances in seasonal forage supply, which poses a serious threat to the livestock that feeds on natural pastures to maintain their survival. We have carried out a long-term follow-up study on rumen fermentation characteristics, the microbiota, and rumen epithelial gene expression of local Tibetan sheep. Correlation analysis showed that there were interactions among rumen fermentation characteristics, the microbiota, and host gene expression, mainly by adjusting the amino acid metabolism pathway and energy metabolism pathway to improve energy utilization. At the same time, we adjusted the balance of the rumen “core microbiota”, which was regulated to promote the development of rumen and maintain the homeostasis of rumen environment (which relies Tibetan sheep can better adapt to the harsh environment in different periods of the Qinghai-Tibet Plateau). This provides a theoretical basis for the breeding and management of Tibetan sheep on the Qinghai-Tibet Plateau. Abstract As an important ruminant on the Qinghai-Tibet Plateau, Tibetan sheep can maintain their population reproduction rate in the harsh high-altitude environment of low temperature and low oxygen, which relies on their special plateau adaptations mechanism that they have formed for a long time. Microbiomes (known as “second genomes”) are closely related to the nutrient absorption, adaptability, and health of the host. In this study, rumen fermentation characteristics, the microbiota, and rumen epithelial gene expression of Tibetan sheep in various months were analyzed. The results show that the rumen fermentation characteristics of Tibetan sheep differed in different months. The total SCFAs (short-chain fatty acids), acetate, propionate, and butyrate concentrations were highest in October and lowest in June. The CL (cellulase) activity was highest in February, while the ACX (acid xylanase) activity was highest in April. In addition, the diversity and abundance of rumen microbes differed in different months. Bacteroidetes (53.4%) and Firmicutes (27.4%) were the dominant phyla. Prevotella_1 and Rikenellaceae_RC9_gut_group were the dominant genera. The abundance of Prevotella_1 was highest in June (27.8%) and lowest in December (17.8%). In addition, the expression of CLAUDIN4 (Claudin-4) and ZO1 (Zonula occludens 1) was significantly higher in April than in August and December, while the expression of SGLT1 (Sodium glucose linked transporter 1) was highest in August. Correlation analysis showed that there were interactions among rumen fermentation characteristics, the microbiota, and host gene expression, mainly by adjusting the amino acid metabolism pathway and energy metabolism pathway to improve energy utilization. At the same time, we adjusted the balance of the rumen “core microbiota” to promote the development of rumen and maintain the homeostasis of rumen environment, which makes Tibetan sheep better able to adapt to the harsh environment in different periods of the Qinghai-Tibet Plateau.
Collapse
|
191
|
Rivera SF, Rimet F, Vasselon V, Vautier M, Domaizon I, Bouchez A. Fish eDNA metabarcoding from aquatic biofilm samples: Methodological aspects. Mol Ecol Resour 2021; 22:1440-1453. [PMID: 34863036 DOI: 10.1111/1755-0998.13568] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/22/2021] [Accepted: 11/25/2021] [Indexed: 01/04/2023]
Abstract
Fish eDNA metabarcoding is usually performed from filtered water samples. The volume of filtered water depends on the study scope and can rapidly become time consuming according to the number of samples that have to be processed. To avoid time allocated to filtration, passive DNA samplers have been used to recover fish eDNA from marine environments faster. In freshwater ecosystems, aquatic biofilms were used to catch eDNA from macroinvertebrates. Here, we test the capacity of aquatic biofilms to entrap fish eDNA in a large lake and, therefore, the possibility to perform fish eDNA metabarcoding from this matrix compared to the traditional fish eDNA approach from filtered water samples. Methodological aspects of the use of aquatic biofilms for fish eDNA metabarcoding (e.g. PCR replicates, biological replicates, bioinformatics pipeline, reference database and taxonomic assignment) were validated against a mock community. When using biofilms from habitats sheltered from wind and waves, biofilm and water approach provided similar inventories. Richness and diversity were comparable between both approaches. Approaches differed only for rare taxa. Our results illustrate the capacity of aquatic biofilms to act as passive eDNA samplers of fish eDNA and, therefore, the possibility to use biofilms to monitor fish communities efficiently from biofilms. Furthermore, our results open up avenues of research to study a diversity of biological groups (among which bioindicators as diatoms, macroinvertebrates and fish) from eDNA isolated from a single environmental matrix reducing sampling efforts, analysis time and costs.
Collapse
Affiliation(s)
- Sinziana F Rivera
- INRA, UMR CARRTEL, Université Savoie Mont-Blanc, Thonon-les-Bains, France
| | - Frédéric Rimet
- INRA, UMR CARRTEL, Université Savoie Mont-Blanc, Thonon-les-Bains, France
| | | | - Marine Vautier
- INRA, UMR CARRTEL, Université Savoie Mont-Blanc, Thonon-les-Bains, France
| | - Isabelle Domaizon
- INRA, UMR CARRTEL, Université Savoie Mont-Blanc, Thonon-les-Bains, France
| | - Agnès Bouchez
- INRA, UMR CARRTEL, Université Savoie Mont-Blanc, Thonon-les-Bains, France
| |
Collapse
|
192
|
Monitoring fish communities through environmental DNA metabarcoding in the fish pass system of the second largest hydropower plant in the world. Sci Rep 2021; 11:23167. [PMID: 34848787 PMCID: PMC8632987 DOI: 10.1038/s41598-021-02593-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 11/08/2021] [Indexed: 12/26/2022] Open
Abstract
The Itaipu Hydroelectric Power Plant is the second largest in the world in power generation. The artificial barrier created by its dam imposes an obstacle for fish migration. Thus, in 2002, a fish pass system, named Piracema Channel, was built to allow fish to access areas upstream of the reservoir. We tested the potential of environmental DNA metabarcoding to monitor the impact of both the dam and associated fish pass system in the Paraná River fish communities and to compare it with traditional monitoring methods. Using a fragment of the 12S gene, we characterized richness and community composition based on amplicon sequence variants, operational taxonomic units, and zero-radius OTUs. We combined GenBank and in-house data for taxonomic assignment. We found that different bioinformatics approaches showed similar results. Also, we found a decrease in fish diversity from 2019 to 2020 probably due to the recent extreme drought experienced in southeastern Brazil. The highest alpha diversity was recorded in the mouth of the fish pass system, located in a protected valley with the highest environmental heterogeneity. Despite the clear indication that the reference databases need to be continuously improved, our results demonstrate the analytical efficiency of the metabarcoding to monitor fish species.
Collapse
|
193
|
Monuki K, Barber PH, Gold Z. eDNA captures depth partitioning in a kelp forest ecosystem. PLoS One 2021; 16:e0253104. [PMID: 34735443 PMCID: PMC8568143 DOI: 10.1371/journal.pone.0253104] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 10/12/2021] [Indexed: 01/04/2023] Open
Abstract
Environmental DNA (eDNA) metabarcoding is an increasingly important tool for surveying biodiversity in marine ecosystems. However, the scale of temporal and spatial variability in eDNA signatures, and how this variation may impact eDNA-based marine biodiversity assessments, remains uncertain. To address this question, we systematically examined variation in vertebrate eDNA signatures across depth (0 m to 10 m) and horizontal space (nearshore kelp forest and surf zone) over three successive days in Southern California. Across a broad range of teleost fish and elasmobranchs, results showed significant variation in species richness and community assemblages between surface and depth, reflecting microhabitat depth preferences of common Southern California nearshore rocky reef taxa. Community assemblages between nearshore and surf zone sampling stations at the same depth also differed significantly, consistent with known habitat preferences. Additionally, assemblages also varied across three sampling days, but 69% of habitat preferences remained consistent. Results highlight the sensitivity of eDNA in capturing fine-scale vertical, horizontal, and temporal variation in marine vertebrate communities, demonstrating the ability of eDNA to capture a highly localized snapshot of marine biodiversity in dynamic coastal environments.
Collapse
Affiliation(s)
- Keira Monuki
- Ecology and Evolutionary Biology, University of California, Los Angeles, California, United States of America
| | - Paul H. Barber
- Ecology and Evolutionary Biology, University of California, Los Angeles, California, United States of America
| | - Zachary Gold
- Ecology and Evolutionary Biology, University of California, Los Angeles, California, United States of America
| |
Collapse
|
194
|
Lee HT, Liao CH, Hsu TH. Environmental DNA (eDNA) Metabarcoding in the Fish Market and Nearby Seafood Restaurants in Taiwan Reveals the Underestimation of Fish Species Diversity in Seafood. BIOLOGY 2021; 10:1132. [PMID: 34827127 PMCID: PMC8614924 DOI: 10.3390/biology10111132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 10/29/2021] [Accepted: 11/03/2021] [Indexed: 01/08/2023]
Abstract
Seafood, especially the traditional one in Taiwan, is rarely sourced from a fixed species and routinely from similar species depending on their availability. Hence, the species composition of seafood can be complicated. While a DNA-based approach has been routinely utilized for species identification, a large scale of seafood identification in fish markets and restaurants could be challenging (e.g., elevated cost and time-consuming only for a limited number of species identification). In the present study, we aimed to identify the majority of fish species potentially consumed in fish markets and nearby seafood restaurants using environmental DNA (eDNA) metabarcoding. Four eDNA samplings from a local fish market and nearby seafood restaurants were conducted using Sterivex cartridges. Nineteen universal primers previously validated for fish species identification were utilized to amplify the fragments of mitochondrial DNA (12S, COI, ND5) of species in eDNA samples and sequenced with NovaSeq 6000 sequencing. A total of 153 fish species have been identified based on 417 fish related operational taxonomic units (OTUs) generated from 50,534,995 reads. Principal Coordinate Analysis (PCoA) further showed the differences in fish species between the sampling times and sampling sites. Of these fish species, 22 chondrichthyan fish, 14 Anguilliformes species, and 15 Serranidae species were respectively associated with smoked sharks, braised moray eels, and grouper fish soups. To our best knowledge, this work represents the first study to demonstrate the feasibility of a large scale of seafood identification using eDNA metabarcoding approach. Our findings also imply the species diversity in traditional seafood might be seriously underestimated and crucial for the conservation and management of marine resources.
Collapse
Affiliation(s)
- Hung-Tai Lee
- Department of Environmental Biology and Fisheries Science, National Taiwan Ocean University, Keelung 20224, Taiwan; (H.-T.L.); (C.-H.L.)
| | - Cheng-Hsin Liao
- Department of Environmental Biology and Fisheries Science, National Taiwan Ocean University, Keelung 20224, Taiwan; (H.-T.L.); (C.-H.L.)
| | - Te-Hua Hsu
- Department of Aquaculture, National Taiwan Ocean University, Keelung 20224, Taiwan
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 20224, Taiwan
| |
Collapse
|
195
|
Lee CI, Wang FY, Liu MY, Chou TK, Liao TY. DNA metabarcoding for dietary analysis of Holland's carp (Spinibarbus hollandi) to evaluate the threat to native fishes in Taiwan. JOURNAL OF FISH BIOLOGY 2021; 99:1668-1676. [PMID: 34392529 DOI: 10.1111/jfb.14875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 06/20/2021] [Accepted: 08/08/2021] [Indexed: 06/13/2023]
Abstract
DNA metabarcoding analysis for gut contents has been shown to compensate the disadvantage of traditionally morphological identification and offer higher resolution of prey items in an efficient way. Holland's carp (Spinibarbus hollandi) is a freshwater fish native to southern and eastern Taiwan. In the past two decades, this species has been introduced as a sport fish into the river basins of northern and western Taiwan. The large body size and active predation make it a potential threat for native fishes, but which native species are preyed by Holland's carp remains unknown. In this study, the diet from the gut contents of Holland's carp from the Zhonggang River, an invaded basin, was examined using DNA metabarcoding from 51 individuals and by morphological examinations on 140 samples. Detritus of plants were found in 83.6% samples (117 individuals). Twenty fish species of seven families were identified by DNA metabarcoding, including species of all water layers. Taiwan torrent carp (Acrossocheilus paradoxus) and Rhinogobius spp. are the most common prey items. Based on the results of this study, Holland's carp is considered an opportunistic omnivore because of its diverse diet items, which is an important trait for successful invasive fish species. The population decline of Opsariichthys pachycephalus may not result from the invasion of Holland's carps. Nonetheless, the time lag between successful invasion and the samplings of this study may be a concern because the population size of O. pachycephalus may have declined and become difficult to prey. The Holland's carps consumed the least species in winter; nonetheless, the occurrence frequencies of preys among seasons were not significantly different probably because of limited temperature fluctuation. The smallest Holland's carps consumed the least prey species compared to other size categories, similar to the relationship of prey species number to size of invasive largemouth bass (Micropterus salmoides).
Collapse
Affiliation(s)
- Chien-I Lee
- Department of Oceanography, NSYSU, Kaohsiung, Taiwan
| | - Feng-Yu Wang
- Taiwan Ocean Research Institute, Kaohsiung, Taiwan
| | - Min-Yun Liu
- Taiwan Ocean Research Institute, Kaohsiung, Taiwan
| | - Tak-Kei Chou
- Department of Oceanography, NSYSU, Kaohsiung, Taiwan
| | - Te-Yu Liao
- Department of Oceanography, NSYSU, Kaohsiung, Taiwan
| |
Collapse
|
196
|
Stauffer S, Jucker M, Keggin T, Marques V, Andrello M, Bessudo S, Cheutin M, Borrero‐Pérez GH, Richards E, Dejean T, Hocdé R, Juhel J, Ladino F, Letessier TB, Loiseau N, Maire E, Mouillot D, Mutis Martinezguerra M, Manel S, Polanco Fernández A, Valentini A, Velez L, Albouy C, Pellissier L, Waldock C. How many replicates to accurately estimate fish biodiversity using environmental DNA on coral reefs? Ecol Evol 2021; 11:14630-14643. [PMID: 34765130 PMCID: PMC8571620 DOI: 10.1002/ece3.8150] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/31/2021] [Accepted: 09/08/2021] [Indexed: 01/22/2023] Open
Abstract
Quantifying fish species diversity in rich tropical marine environments remains challenging. Environmental DNA (eDNA) metabarcoding is a promising tool to face this challenge through the filtering, amplification, and sequencing of DNA traces from water samples. However, because eDNA concentration is low in marine environments, the reliability of eDNA to detect species diversity can be limited. Using an eDNA metabarcoding approach to identify fish Molecular Taxonomic Units (MOTUs) with a single 12S marker, we aimed to assess how the number of sampling replicates and filtered water volume affect biodiversity estimates. We used a paired sampling design of 30 L per replicate on 68 reef transects from 8 sites in 3 tropical regions. We quantified local and regional sampling variability by comparing MOTU richness, compositional turnover, and compositional nestedness. We found strong turnover of MOTUs between replicated pairs of samples undertaken in the same location, time, and conditions. Paired samples contained non-overlapping assemblages rather than subsets of one another. As a result, non-saturated localized diversity accumulation curves suggest that even 6 replicates (180 L) in the same location can underestimate local diversity (for an area <1 km). However, sampling regional diversity using ~25 replicates in variable locations (often covering 10 s of km) often saturated biodiversity accumulation curves. Our results demonstrate variability of diversity estimates possibly arising from heterogeneous distribution of eDNA in seawater, highly skewed frequencies of eDNA traces per MOTU, in addition to variability in eDNA processing. This high compositional variability has consequences for using eDNA to monitor temporal and spatial biodiversity changes in local assemblages. Avoiding false-negative detections in future biomonitoring efforts requires increasing replicates or sampled water volume to better inform management of marine biodiversity using eDNA.
Collapse
Affiliation(s)
- Salomé Stauffer
- Landscape EcologyInstitute of Terrestrial EcosystemsDepartment of Environmental Systems ScienceETH ZürichZürichSwitzerland
| | - Meret Jucker
- Landscape EcologyInstitute of Terrestrial EcosystemsDepartment of Environmental Systems ScienceETH ZürichZürichSwitzerland
| | - Thomas Keggin
- Landscape EcologyInstitute of Terrestrial EcosystemsDepartment of Environmental Systems ScienceETH ZürichZürichSwitzerland
- Unit of Land Change ScienceSwiss Federal Research Institute WSLBirmensdorfSwitzerland
| | - Virginie Marques
- MARBECUniv. MontpellierCNRSIFREMERIRDMontpellierFrance
- CEFEUniv. MontpellierCNRSEPHE‐PSL UniversityIRDUniv. Paul Valéry Montpellier 3MontpellierFrance
| | - Marco Andrello
- Institute for the Study of Anthropic Impacts and Sustainability in the Marine EnvironmentNational Research CouncilRomeItaly
| | - Sandra Bessudo
- Fundación Malpelo y otros ecosistemas marinosBogotáColombia
| | | | - Giomar Helena Borrero‐Pérez
- Instituto de Investigaciones Marinas y Costeras‐INVEMAR Museo de Historia Natural Marina de Colombia (MHNMC)Santa MartaColombia
| | - Eilísh Richards
- Landscape EcologyInstitute of Terrestrial EcosystemsDepartment of Environmental Systems ScienceETH ZürichZürichSwitzerland
| | | | - Régis Hocdé
- MARBECUniv. MontpellierCNRSIFREMERIRDMontpellierFrance
| | | | - Felipe Ladino
- Fundación Malpelo y otros ecosistemas marinosBogotáColombia
| | - Tom B. Letessier
- Institute of ZoologyZoological Society of LondonLondonUK
- Marine Futures LabUniversity of Western AustraliaCrawleyWAAustralia
| | | | - Eva Maire
- Lancaster Environment CentreLancaster UniversityLancasterUK
| | | | - Maria Mutis Martinezguerra
- Instituto de Investigaciones Marinas y Costeras‐INVEMAR Museo de Historia Natural Marina de Colombia (MHNMC)Santa MartaColombia
| | - Stéphanie Manel
- CEFEUniv. MontpellierCNRSEPHE‐PSL UniversityIRDUniv. Paul Valéry Montpellier 3MontpellierFrance
| | - Andrea Polanco Fernández
- Instituto de Investigaciones Marinas y Costeras‐INVEMAR Museo de Historia Natural Marina de Colombia (MHNMC)Santa MartaColombia
| | | | - Laure Velez
- MARBECUniv. MontpellierCNRSIFREMERIRDMontpellierFrance
| | - Camille Albouy
- IFREMERunité Écologie et Modèles pour l’HalieutiqueNantesFrance
| | - Loïc Pellissier
- Landscape EcologyInstitute of Terrestrial EcosystemsDepartment of Environmental Systems ScienceETH ZürichZürichSwitzerland
- Unit of Land Change ScienceSwiss Federal Research Institute WSLBirmensdorfSwitzerland
| | - Conor Waldock
- Landscape EcologyInstitute of Terrestrial EcosystemsDepartment of Environmental Systems ScienceETH ZürichZürichSwitzerland
- Unit of Land Change ScienceSwiss Federal Research Institute WSLBirmensdorfSwitzerland
| |
Collapse
|
197
|
Fukaya K, Kondo NI, Matsuzaki SS, Kadoya T. Multispecies site occupancy modelling and study design for spatially replicated environmental DNA metabarcoding. Methods Ecol Evol 2021. [DOI: 10.1111/2041-210x.13732] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Keiichi Fukaya
- National Institute for Environmental Studies Tsukuba Japan
| | | | | | - Taku Kadoya
- National Institute for Environmental Studies Tsukuba Japan
| |
Collapse
|
198
|
Wanzenböck J, Hopfinger M, Wanzenböck S, Fuxjäger L, Rund H, Lamatsch DK. First successful hybridization experiment between native European weatherfish (Misgurnus fossilis) and non-native Oriental weatherfish (M. anguillicaudatus) reveals no evidence for postzygotic barriers. NEOBIOTA 2021. [DOI: 10.3897/neobiota.69.67708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The European weatherfish Misgurnus fossilis (Linnaeus, 1758) is a threatened freshwater species in large parts of Europe and might come under pressure from currently establishing exotic weatherfish species. Additional threats might arise if those species hybridize which has been questioned in previous research. Regarding the hybridization of M. fossilis × M. anguillicaudatus (Cantor, 1842), we demonstrate that despite the considerable genetic distance between parental species, the estimated long divergence time and different ploidy levels do not represent a postzygotic barrier for hybridization of the European and Oriental weatherfish. The paternal species can be easily differentiated based on external pigment patterns with hybrids showing intermediate patterns. No difference in standard metabolic rate, indicating a lack of hybrid vigour, renders predictions of potential threats to the European weatherfish from hybridization with the Oriental weatherfish difficult. Therefore, the genetic and physiological basis of invasiveness via hybridization remains elusive in Misgurnus species and requires further research. The existence of prezygotic reproductive isolation mechanisms and the fertility of F1 hybrids remains to be tested to predict the potential threats of globally invasive Oriental weatherfish species.
Collapse
|
199
|
Buchner D, Macher TH, Beermann AJ, Werner MT, Leese F. Standardized high-throughput biomonitoring using DNA metabarcoding: Strategies for the adoption of automated liquid handlers. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2021; 8:100122. [PMID: 36156998 PMCID: PMC9488008 DOI: 10.1016/j.ese.2021.100122] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/26/2021] [Accepted: 08/26/2021] [Indexed: 05/11/2023]
Abstract
Reliable and comprehensive monitoring data are required to trace and counteract biodiversity loss. High-throughput metabarcoding using DNA extracted from community samples (bulk) or from water or sediment (environmental DNA) has revolutionized biomonitoring, given the capability to assess biodiversity across the tree of life rapidly with feasible effort and at a modest price. DNA metabarcoding can be upscaled to process hundreds of samples in parallel. However, while automated high-throughput analysis workflows are well-established in the medical sector, manual sample processing still predominates in biomonitoring laboratory workflows limiting the upscaling and standardization for routine monitoring applications. Here we present an automated, scalable, and reproducible metabarcoding workflow to extract DNA from bulk samples, perform PCR and library preparation on a liquid handler. Key features are the independent sample replication throughout the workflow and the use of many negative controls for quality assurance and quality control. We generated two datasets: i) a validation dataset consisting of 42 individual arthropod specimens of different species, and ii) a routine monitoring dataset consisting of 60 stream macroinvertebrate bulk samples. As a marker, we used the mitochondrial COI gene. Our results show that the developed single-deck workflow is free of laboratory-derived contamination and produces highly consistent results. Minor deviations between replicates are mostly due to stochastic differences for low abundant OTUs. Thus, we successfully demonstrated that robotic liquid handling can be used reliably from DNA extraction to final library preparation on a single deck, thereby substantially increasing throughput, reducing costs, and increasing data robustness for biodiversity assessments and monitoring.
Collapse
Affiliation(s)
- Dominik Buchner
- University of Duisburg-Essen, Aquatic Ecosystem Research, Universitätsstr. 5, 45141, Essen, Germany
| | - Till-Hendrik Macher
- University of Duisburg-Essen, Aquatic Ecosystem Research, Universitätsstr. 5, 45141, Essen, Germany
| | - Arne J. Beermann
- University of Duisburg-Essen, Aquatic Ecosystem Research, Universitätsstr. 5, 45141, Essen, Germany
- University of Duisburg-Essen, Centre for Water and Environmental Research (ZWU), Universitätsstr. 3, 45141, Essen, Germany
| | - Marie-Thérése Werner
- University of Duisburg-Essen, Aquatic Ecosystem Research, Universitätsstr. 5, 45141, Essen, Germany
| | - Florian Leese
- University of Duisburg-Essen, Aquatic Ecosystem Research, Universitätsstr. 5, 45141, Essen, Germany
- University of Duisburg-Essen, Centre for Water and Environmental Research (ZWU), Universitätsstr. 3, 45141, Essen, Germany
- Corresponding author. University of Duisburg-Essen, Aquatic Ecosystem Research, Universitätsstr. 5, 45141 Essen, Germany.
| |
Collapse
|
200
|
Collins RA, Trauzzi G, Maltby KM, Gibson TI, Ratcliffe FC, Hallam J, Rainbird S, Maclaine J, Henderson PA, Sims DW, Mariani S, Genner MJ. Meta-Fish-Lib: A generalised, dynamic DNA reference library pipeline for metabarcoding of fishes. JOURNAL OF FISH BIOLOGY 2021; 99:1446-1454. [PMID: 34269417 DOI: 10.1111/jfb.14852] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/06/2021] [Accepted: 07/12/2021] [Indexed: 06/13/2023]
Abstract
The accuracy and reliability of DNA metabarcoding analyses depend on the breadth and quality of the reference libraries that underpin them. However, there are limited options available to obtain and curate the huge volumes of sequence data that are available on public repositories such as NCBI and BOLD. Here, we provide a pipeline to download, clean and annotate mitochondrial DNA sequence data for a given list of fish species. Features of this pipeline include (a) support for multiple metabarcode markers; (b) searches on species synonyms and taxonomic name validation; (c) phylogeny assisted quality control for identification and removal of misannotated sequences; (d) automatically generated coverage reports for each new GenBank release update; and (e) citable, versioned DOIs. As an example we provide a ready-to-use curated reference library for the marine and freshwater fishes of the U.K. To augment this reference library for environmental DNA metabarcoding specifically, we generated 241 new MiFish-12S sequences for 88 U.K. marine species, and make available new primer sets useful for sequencing these. This brings the coverage of common U.K. species for the MiFish-12S fragment to 93%, opening new avenues for scaling up fish metabarcoding across wide spatial gradients. The Meta-Fish-Lib reference library and pipeline is hosted at https://github.com/genner-lab/meta-fish-lib.
Collapse
Affiliation(s)
- Rupert A Collins
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Giulia Trauzzi
- School of Biological Sciences, University of Bristol, Bristol, UK
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Katherine M Maltby
- Centre for Environment, Fisheries and Aquaculture Science, Lowestoft, UK
| | - Thomas I Gibson
- Molecular Ecology and Fisheries Genetics Laboratory, Bangor University School of Natural Sciences, Environment Centre Wales, Bangor, UK
| | | | - Jane Hallam
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Sophie Rainbird
- Marine Biological Association of the United Kingdom, Plymouth, UK
| | - James Maclaine
- Department of Life Sciences, The Natural History Museum, London, UK
| | | | - David W Sims
- Marine Biological Association of the United Kingdom, Plymouth, UK
- Ocean and Earth Science, University of Southampton, National Oceanography Centre Southampton, Southampton, UK
| | - Stefano Mariani
- Ecosystems & Environment Research Centre, School of Environment & Life Sciences, University of Salford, Salford, UK
- School of Biological & Environmental Sciences, Liverpool John Moores University, Liverpool, UK
| | - Martin J Genner
- School of Biological Sciences, University of Bristol, Bristol, UK
| |
Collapse
|