151
|
Manzanedo C, Aguilar MA, Rodríguez-Arias M, Navarro M, Miñarro J. 7-Nitroindazole blocks conditioned place preference but not hyperactivity induced by morphine. Behav Brain Res 2004; 150:73-82. [PMID: 15033281 DOI: 10.1016/s0166-4328(03)00225-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2003] [Revised: 06/30/2003] [Accepted: 06/30/2003] [Indexed: 10/27/2022]
Abstract
The effects of 7-nitroindazole (7-NI), a neural nitric oxide synthase (nNOS) inhibitor, on spontaneous locomotor activity, morphine-induced hyperactivity, acquisition of place conditioning and morphine-induced conditioned place preference (CPP) were evaluated in male mice. In experiment 1, animals treated with 7-NI (25, 50 and 100mg/kg), morphine (40 mg/kg) or morphine (40 mg/kg) plus 7-NI (25, 50 or 100mg/kg) were placed in an actimeter for 3h. In experiment 2, animals treated with the same drugs and doses were conditioned following an unbiased procedure. 7-NI did not affect the spontaneous locomotor activity or hyperactivity induced by morphine. However, the moderate and high doses of 7-NI produced conditioned place aversion (CPA) and the lowest dose blocked morphine-induced CPP. Our results suggest that nitric oxide is involved in the rewarding properties of morphine but not in its motor effects.
Collapse
Affiliation(s)
- Carmen Manzanedo
- Departamento de Psicobiología, Facultad de Psicología, Universidad Complutense de Madrid, 28223 Madrid, Spain
| | | | | | | | | |
Collapse
|
152
|
Matarredona ER, Murillo-Carretero M, Moreno-López B, Estrada C. Nitric oxide synthesis inhibition increases proliferation of neural precursors isolated from the postnatal mouse subventricular zone. Brain Res 2004; 995:274-84. [PMID: 14672818 DOI: 10.1016/j.brainres.2003.10.010] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The subventricular zone (SVZ) of rodents retains the capacity to generate new neurons throughout the entire life of the animal. Neural progenitors of the SVZ survive and proliferate in vitro in the presence of epidermal growth factor (EGF). Nitric oxide (NO) has been shown to participate in neural tissue formation during development and to have antiproliferative actions, mediated in part by inhibition of the EGF receptor. Based on these findings, we have investigated the possible effects of endogenously produced and exogenously added NO on SVZ cell proliferation and differentiation. Explants were obtained from postnatal mouse SVZ and cultured in the presence of EGF. Cells migrated out of the explants and proliferated in culture, as assessed by bromodeoxyuridine (BrdU) incorporation. After 72 h in vitro, the colonies formed around the explants were constituted by cells of neuronal or glial lineages, as well as undifferentiated progenitors. Immunoreactivity for the neuronal isoform of NO synthase was observed in neuronal cells with long varicose processes. Cultures treated with the NOS inhibitor N(omega)-nitro-L-arginine methyl ester (L-NAME) showed an increase in the percentage of BrdU-immunoreactive cells, whereas treatment with the NO donor diethylenetriamine-nitric oxide adduct (DETA-NO) led to a decrease in cell proliferation, without affecting apoptosis. The differentiation pattern was also altered by L-NAME treatment resulting in an enlargement of the neuronal population. The results suggest that endogenous NO may contribute to postnatal neurogenesis by modulating the proliferation and fate of SVZ progenitor cells.
Collapse
|
153
|
Fernández-Vizarra P, Fernández AP, Castro-Blanco S, Encinas JM, Serrano J, Bentura ML, Muñoz P, Martínez-Murillo R, Rodrigo J. Expression of nitric oxide system in clinically evaluated cases of Alzheimer's disease. Neurobiol Dis 2004; 15:287-305. [PMID: 15006699 DOI: 10.1016/j.nbd.2003.10.010] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2003] [Revised: 10/14/2003] [Accepted: 10/18/2003] [Indexed: 11/18/2022] Open
Abstract
The expression of neuronal nitric oxide (nNOS) and inducible nitric oxide (iNOS) as isoforms of the nitric oxide synthase (NOS) as well as nitrotyrosine as an end product of protein nitration was analyzed in sections of temporal cortex taken from postmortem brains of patients with Alzheimer's disease (AD). The patients were evaluated by the Clinical Dementia Rating scale (CDR0-CDR3) and studied in the Memory and Aging Project (MAP) of the Washington University Alzheimer Disease Research Center (ADCR). With the use of immunocytochemical procedures, neurons immunoreactive to nNOS were found to show large and small multipolar and pyramidal morphologies over the entire chronic AD evolution. The iNOS and nitrotyrosine immunoreactivities were also found in pyramidal-like cortical neurons and glial cells. Here, we speculate on the interaction among all specific neurodegenerative changes in AD and nitric oxide as an additional contribution to neuronal death in AD.
Collapse
Affiliation(s)
- P Fernández-Vizarra
- Department of Neuroanatomy and Cell Biology, Instituto Cajal (CSIC), E-28002 Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
154
|
Encinas JM, Fernández AP, Salas E, Castro-Blanco S, Muñoz P, Rodrigo J, Serrano J. Nitric oxide synthase and NADPH-diaphorase after acute hypobaric hypoxia in the rat caudate putamen. Exp Neurol 2004; 186:33-45. [PMID: 14980808 DOI: 10.1016/j.expneurol.2003.09.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2003] [Revised: 09/25/2003] [Accepted: 09/26/2003] [Indexed: 10/26/2022]
Abstract
Changes in the production system of nitric oxide (NO), a multifunctional biological messenger known to participate in blood-flow regulation, neuromodulation, and neuroprotection or neurotoxicity, were investigated in the caudate putamen of adult rats submitted to hypobaric hypoxia. Employing immunohistochemistry, Western blotting, enzymatic assay, and NADPH-diaphorase staining, we demonstrate that neuronal nitric oxide synthase (nNOS) expression and constitutive nitric oxide synthase (cNOS) activity were transiently activated by 7 h of exposure to a simulated altitude of 8325 m (27,000 ft). In addition, endothelial nitric oxide synthase (eNOS) immunoreactivity and blood vessel NADPH-diaphorase staining peaked immediately after the hypoxic stimulus, whereas inducible nitric oxide synthase (iNOS) expression and activity remained unaltered. Nitrotyrosine formation, a marker of protein nitration, was evaluated by immunohistochemistry and Western blotting, and was found to increase parallel to nitric oxide synthesis. We conclude that the nitric oxide system undergoes significant transient alterations in the caudate putamen of adult rats submitted to acute hypobaric hypoxia.
Collapse
Affiliation(s)
- Juan Manuel Encinas
- Departamento de Neuroanatomía y Biología Celular, Instituto de Neurobiología Ramón y Cajal, CSIC, E-28002 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
155
|
White AR, Curtis SA, Walker RJ. Evidence for a possible role for nitric oxide in the modulation of heart activity in Achatina fulica and Helix aspersa. Comp Biochem Physiol C Toxicol Pharmacol 2004; 137:95-108. [PMID: 15050921 DOI: 10.1016/j.cca.2003.11.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2003] [Revised: 11/24/2003] [Accepted: 11/25/2003] [Indexed: 10/26/2022]
Abstract
The effects of nitric oxide (NO) donors, S-nitroso-N-acetylpenicillamine, S-nitroso-l-glutathione, sodium nitroprusside and sodium nitrite were investigated on the activity of the isolated hearts of Achatina fulica and Helix aspersa. NO donors inhibited heart activity in a concentration-dependent manner. The only exception was sodium nitroprusside, which excited H. aspersa heart. The inhibitory effects of these NO donors were reduced by the NO scavenger, methylene blue, the guanylyl cyclase inhibitor, 1H-(1,2,4) Oxadiazolo(4,3-a)quinoxalin-1-one (ODQ), and potentiated by 8-Br-cGMP and the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (IBMX). Acetylcholine also inhibited the heart activity, and this inhibition was reduced by methylene blue and ODQ. Positive NADPH-diaphorase staining was located in the outer pericardial layer of the heart of A. fulica. The present results provide evidence that NO may modulate the activity of gastropod hearts, and this modulation may modify the inhibitory action of acetylcholine on heart activity.
Collapse
Affiliation(s)
- A R White
- School of Biological Sciences, Biomedical Sciences Building, University of Southampton, Bassett Crescent East, Southampton SO16 7PX, UK
| | | | | |
Collapse
|
156
|
Moreno-López B, Romero-Grimaldi C, Noval JA, Murillo-Carretero M, Matarredona ER, Estrada C. Nitric oxide is a physiological inhibitor of neurogenesis in the adult mouse subventricular zone and olfactory bulb. J Neurosci 2004; 24:85-95. [PMID: 14715941 PMCID: PMC6729566 DOI: 10.1523/jneurosci.1574-03.2004] [Citation(s) in RCA: 182] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The subventricular zone of the rodent brain retains the capacity of generating new neurons in adulthood. The newly formed neuroblasts migrate rostrally toward the olfactory bulb, where they differentiate as granular and periglomerular interneurons. The reported presence of differentiated neurons expressing the neuronal isoform of nitric oxide synthase (NOS) in the periphery of the neurogenic region and the organization of their varicose axons as a network in which the precursors are immersed raised the hypothesis that endogenous nitric oxide (NO) may participate in the control of neurogenesis in the subventricular zone. Systemic administration of the NOS inhibitors N(omega)-nitro-L-arginine methyl ester or 7-nitroindazole to adult mice produced a dose- and time-dependent increase in the number of mitotic cells in the subventricular zone, rostral migratory stream, and olfactory bulb, but not in the dentate gyrus of the hippocampus, without affecting apoptosis. In the subventricular zone, this effect was exerted selectively on a precursor subpopulation expressing nestin but not neuronal or glial cell-specific proteins. In addition, in the olfactory bulb, analysis of maturation markers in the newly generated neurons indicated that chronic NOS inhibition caused a delay in neuronal differentiation. Postmitotic cell survival and migration were not affected when NO production was impaired. Our results suggest that NO, produced by nitrergic neurons in the adult mouse subventricular zone and olfactory bulb, exerts a negative control on the size of the undifferentiated precursor pool and promotes neuronal differentiation.
Collapse
|
157
|
Sahraei H, Poorheidari G, Foadaddini M, Khoshbaten A, Asgari A, Noroozzadeh A, Ghoshooni H, Firoozabadi SH, Zarrindast MR. Effects of nitric oxide on morphine self-administration in rat. Pharmacol Biochem Behav 2004; 77:111-6. [PMID: 14724048 DOI: 10.1016/j.pbb.2003.10.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Previous studies have reported that morphine exerts its effects in part through the release of nitric oxide (NO). In the present study, the effects of acute and chronic administration of the NO precursor, L-arginine and NO synthase (NOS) inhibitor, L-nitro-amino-methyl-ester (L-NAME) on morphine self-administration in rats were investigated. The animals were initially trained to press a lever using food as reinforcer. Rats were surgically prepared with a chronic Silastic catheter implanted in the external jugular vein. Five days after surgery, they were trained to press a lever for drug self-administration. The present data indicate that L-arginine (0.05, 0.1, and 0.15 mg/kg/injection) but not L-NAME (0.05, 0.1, and 0.15 mg/kg/injection) induced self-administration behavior and increased locomotion. The response induced by L-arginine (0.1 mg/kg/injection) was reduced by pretreatment with L-NAME (5, 10, and 15 mg/kg ip). Both the acute (5, 10, and 15 mg/kg ip) and the chronic (200 mg/kg ip; twice daily for 4 days) administration of L-arginine reduced morphine self-administration. However, acute (5, 10, and 20 mg/kg ip) and chronic (50 mg/kg ip; twice daily for 4 days) administration of L-NAME increased morphine self-administration significantly. It can be concluded that NO may have a role in morphine self-administration.
Collapse
Affiliation(s)
- Hedayat Sahraei
- Department of Physiology, Baghyatallah (a.s.) University of Medical Sciences, Tehran, Iran
| | | | | | | | | | | | | | | | | |
Collapse
|
158
|
Rodrigo J, Fernández-Vizarra P, Castro-Blanco S, Bentura ML, Nieto M, Gómez-Isla T, Martínez-Murillo R, MartInez A, Serrano J, Fernández AP. Nitric oxide in the cerebral cortex of amyloid-precursor protein (SW) Tg2576 transgenic mice. Neuroscience 2004; 128:73-89. [PMID: 15450355 DOI: 10.1016/j.neuroscience.2004.06.030] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2004] [Indexed: 01/12/2023]
Abstract
Changes in the amyloid-peptide (Abeta), neuronal and inducible nitric oxide (NO)synthase (nNOS, iNOS), nitrotyrosine, glial fibrillary acidic protein, and lectin from Lycopersicon esculentum (tomato) were investigated in the cerebral cortex of transgenic mice (Tg2576) to amyloid precursor protein (APP), by immunohistochemistry (bright light, confocal, and electron microscopy). The expression of nitrergic proteins and synthesis of nitric oxide were analyzed by immunoblotting and NOS activity assays, respectively. The cerebral cortex of these transgenic mice showed an age-dependent progressive increase in intraneuronal aggregates of Abeta-peptide and extracellular formation of senile plaques surrounded by numerous microglial and reactive astrocytes. Basically, no changes to nNOS reactivity or expression were found in the cortical mantle of either wild or transgenic mice. This reactivity in wild mice corresponded to numerous large type I and small type II neurons. The transgenic mice showed swollen, twisted, and hypertrophic preterminal and terminal processes of type I neurons, and an increase of the type II neurons. The calcium-dependent NOS enzymatic activity was higher in wild than in the transgenic mice. The iNOS reactivity, expression and calcium-independent enzymatic activity increased in transgenic mice with respect to wild mice, and were related to cortical neurons and microglial cells. The progressive elevation of NO production resulted in a specific pattern of protein nitration in reactive astrocytes. The ultrastructural study carried out in the cortical mantle showed that the neurons contained intracellular aggregates of Abeta-peptide associated with the endoplasmic reticulum, mitochondria, and Golgi apparatus. The endothelial vascular cells also contained Abeta-peptide deposits. This transgenic model might contribute to understand the role of the nitrergic system in the biological changes related to neuropathological progression of Alzheimer's disease.
Collapse
Affiliation(s)
- J Rodrigo
- Department of Neuroanatomy and Cell Biology, Instituto Cajal, CSIC, Doctor Arce Avenue 37, 28002 Madrid, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
159
|
Okada D, Yap CC, Kojima H, Kikuchi K, Nagano T. Distinct glutamate receptors govern differential levels of nitric oxide production in a layer-specific manner in the rat cerebellar cortex. Neuroscience 2004; 125:461-72. [PMID: 15062988 DOI: 10.1016/j.neuroscience.2004.01.052] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2004] [Indexed: 11/25/2022]
Abstract
To evaluate roles of nitric oxide (NO) in neural functions, it is critical to know how neural inputs activate neuronal NO synthase in individual sites. Although NMDA receptor-dependent mechanism well explains postsynaptic, robust NO production, this sole mechanism does not explain some aspects of NO production in the brain, such as the low-level production of NO and the mechanism for presynaptic NO production. We hypothesized that the glutamate receptor involved in NO production is site-specific and controls the initial NO concentration in each site. We visualized NO production mediated by NMDA, AMPA and type-1 metabotropic glutamate (mGlu-1) receptors in rat cerebellar slices and granule cells in culture, with an NO-specific fluorescent indicator, diaminofluorescein-2. AMPA receptor, but not NMDA or mGlu-1 receptor, was responsible for NO production at parallel fiber terminals, which was blocked by CNQX, tetrodotoxin or voltage-dependent calcium channel blockers. More numbers of electrical stimulation were required for NO production in the molecular layer than in other layers, suggesting that AMPA receptor activation generates NO at lower concentrations through a remote interaction with NO synthase. Although Purkinje cell does not express NO synthase, we detected NO production in Purkinje cell layer following electrical stimulation in the white matter at 50 Hz, but not at 10 Hz. This NO production was tetrodotoxin-sensitive, suggesting occurrence in the basket cell terminals, and required synergistic activation of mGlu-1 and NMDA receptors. In the granule cell layer, activation of AMPA or mGlu-1 receptor produced NO uniformly, while NMDA receptor activation produced NO in discontinuous areas of this layer. Thus, distinct glutamate receptors, including non-NMDA receptors, govern occurrence and level of NO production in a layer-specific manner.
Collapse
Affiliation(s)
- D Okada
- Laboratory for Memory and Learning, Brain Science Institute, RIKEN, Wako, Saitama 351-0198, Japan.
| | | | | | | | | |
Collapse
|
160
|
Fernández AP, Serrano J, Castro S, Salazar FJ, López JC, Rodrigo J, Nava E. Distribution of nitric oxide synthases and nitrotyrosine in the kidney of spontaneously hypertensive rats. J Hypertens 2003; 21:2375-88. [PMID: 14654759 DOI: 10.1097/00004872-200312000-00027] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVES To study the cellular distribution and the expression of the major isoforms of NO synthase (NOS) and of nitrotyrosine in the kidney in spontaneous hypertension. DESIGN AND METHODS We have studied by immunohistochemistry the location of the endothelial (eNOS), neuronal (nNOS) and inducible (iNOS) isoforms and nitrotyrosine in kidney slices from normotensive Wistar-Kyoto (WKY) rats and spontaneously hypertensive rats (SHR) using specific antibodies. In order to quantify the expression of these proteins, we have analyzed dissected renal cortical and medullary sections by means of Western blot. RESULTS Tubular cells were immunoreactive to nNOS and more numerous in the renal medulla of the SHR compared with that of the WKY, specifically in the outer medulla and the papillary region. Western blot also showed higher expression of nNOS in the renal medulla, but not the renal cortex of the SHR. In contrast, iNOS and eNOS distribution and expression were similar in the kidneys of WKY rats and SHR. Immunohistochemistry showed immunoreactive cells to nitrotyrosine in a variety of renal cells similarly distributed in SHR and WKY kidneys. Western analysis detected three proteins of 14.5, 23.7 and 39 kDa immunoreactive to nitrotyrosine, showing a higher expression in the renal cortex compared to the renal medulla. CONCLUSIONS The expression of nNOS is higher in the renal medulla of the SHR, and the distribution of eNOS, iNOS and nitrotyrosine is similar in SHR and WKY rats. It is proposed that the higher expression of the neuronal isoform in the medullary tubular cells is a protective mechanism aimed to improve renal function in spontaneous hypertension.
Collapse
|
161
|
von Bohlen und Halbach O. Nitric oxide imaging in living neuronal tissues using fluorescent probes. Nitric Oxide 2003; 9:217-28. [PMID: 14996429 DOI: 10.1016/j.niox.2004.01.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2003] [Revised: 01/13/2004] [Indexed: 11/16/2022]
Abstract
Nitric oxide (NO) is a major modulator of neural functions. Since NO is a gaseous molecule with very short half-life, the spatial distribution of NO and its relationship to neuronal activity are difficult to resolve. Non-invasive and direct visualization of NO in neuronal tissues had been hampered by the lack of a suitable method to identify NO directly. A fluorescent indicator, which directly detects NO under physiological conditions, would be advantageous. Several indicators for direct detection of NO have been developed, which react with NO by forming a fluorescent complex. However, some of these dyes have cytotoxic properties or have been found to be rather unspecific under certain conditions. Fortunately, some of the indicators, which change their fluorescent pattern in the presence of NO, appear to be promising for the visualization of NO. Since little is known about the spatial spread and the temporal aspects of NO release after a specific stimulus, the use of the specific and non-toxic fluorescent NO indicators could provide a potentially powerful tool to study these aspects of NO release in neuronal tissues in vitro and in vivo. Such measurements, especially in combination with electrophysiological recordings, would greatly further NO research. In addition, based on their fluorescent pattern, these NO-sensitive dyes can be distinguished from the calcium-sensitive dye Fura-2, which allows NO-imaging together with calcium-imaging. This article summarizes recent advances and current trends in the visualization of NO in living neuronal tissues.
Collapse
Affiliation(s)
- Oliver von Bohlen und Halbach
- Interdisciplinary Center for Neurosciences (IZN), Department of Neuroanatomy, University of Heidelberg, Im Neuenheimer Feld 307, 69120 Heidelberg, Germany.
| |
Collapse
|
162
|
Guirado S, Real MA, Olmos JL, Dávila JC. Distinct types of nitric oxide-producing neurons in the developing and adult mouse claustrum. J Comp Neurol 2003; 465:431-44. [PMID: 12966566 DOI: 10.1002/cne.10835] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We studied at the light and electron microscopic levels the nitric oxide-producing neurons in the mouse claustrum. Nicotinamide adenine dinucleotide phosphate (NADPH)-diaphorase histochemistry and neuronal nitric oxide synthase (nNOS) immunohistochemical staining were used to reveal putative nitrergic neurons. We also analyzed colocalization of nNOS with the inhibitory neurotransmitter gamma-aminobutyric acid (GABA) as well as the ontogenesis of the nNOS-immunoreactive neurons, providing evidence for different populations of nitrergic neurons in the mouse claustrum. The general staining pattern was similar for the histochemical and the immunohistochemical methods, resulting in neuron and neuropil staining throughout the whole claustrum. We described two populations of nitric oxide-producing neurons in the mouse claustrum on the basis of a different level of nNOS expression. Densely nNOS-stained neurons were mostly GABA immunoreactive, displayed ultrastructural features typically seen in aspiny neurons, and may originate in the subpallium; they were first seen in the claustrum at embryonic stage 17.5 and probably represent local inhibitory interneurons. Densely stained cells were found from rostral to caudal levels throughout the dorsal claustrum and the endopiriform nucleus. Lightly nNOS-stained neurons, on the other hand, were more numerous than densely stained ones, especially in the dorsal claustrum. These claustral lightly stained cells, barely observed in the NADPH-diaphorase reacted sections, were mostly non-GABAergic, and appeared earlier during ontogenesis than densely stained cells (at embryonic stages 15.5-16.5). We suggest that these neurons are probably projection neurons.
Collapse
Affiliation(s)
- Salvador Guirado
- Departamento de Biología Celular, Genética y Fisiología, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos, 29071 Málaga, Spain.
| | | | | | | |
Collapse
|
163
|
Yao ST, Gourine AV, Spyer KM, Barden JA, Lawrence AJ. Localisation of p2x2 receptor subunit immunoreactivity on nitric oxide synthase expressing neurones in the brain stem and hypothalamus of the rat: a fluorescence immunohistochemical study. Neuroscience 2003; 121:411-9. [PMID: 14521999 DOI: 10.1016/s0306-4522(03)00435-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A large body of evidence suggests that nitric oxide (NO) and ATP act as neurotransmitters in the regulatory mechanisms concerning several autonomic functions at the level of both the hypothalamus and the brain stem. In the present study, we investigated whether neuronal NO synthase containing neurones also express P2X(2) receptor subunit of the ATP-gated ion channel via double-labelling fluorescence immunohistochemistry. Our data demonstrate that a high percentage of neuronal NO synthase-immunoreactive neurones are also P2X(2)-immunoreactive in the rostral ventrolateral medulla (98%) and supraoptic nucleus of the hypothalamus (92%). Significant numbers of neuronal NO synthase-immunoreactive neurones are also P2X(2)-immunoreactive in the subpostremal (48%) and commissural (65%) subdivisions of the nucleus tractus solitarius. In the caudal ventrolateral medulla and raphe obscurus, 96% and 89%, respectively, of neuronal NO synthase containing neurones also express P2X(2) receptor subunit. In contrast to the supraoptic nucleus, there was a lower percentage of co-localisation between NO synthase and P2X(2) receptor subunit in the paraventricular nucleus of the hypothalamus. In summary, this study demonstrates for the first time that there is a widespread co-localisation of neuronal NO synthase and P2X(2) receptor subunit in the hypothalamus and brain stem of the rat. Further studies are required to elucidate whether NO and ATP functionally interact within the hypothalamus and the brain stem.
Collapse
Affiliation(s)
- S T Yao
- Department of Pharmacology, Monash University, P.O. Box 13E, Clayton, Victoria 3800, Australia.
| | | | | | | | | |
Collapse
|
164
|
Madrigal JLM, Moro MA, Lizasoain I, Lorenzo P, Fernández AP, Rodrigo J, Boscá L, Leza JC. Induction of cyclooxygenase-2 accounts for restraint stress-induced oxidative status in rat brain. Neuropsychopharmacology 2003; 28:1579-1588. [PMID: 12784118 DOI: 10.1038/sj.npp.1300187] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cyclooxygenase (COX) is the rate-limiting enzyme in the metabolism of arachidonic acid into prostanoids. Although it is constitutively expressed in brain neurons, the inducible isoform (COX-2) is also upregulated in pathological conditions such as seizures, ischemia or some degenerative diseases. To assess whether COX-2 is regulated after stress, we have used adult male Wistar rats, some of which were immobilized during 6 h. An increase in PGE2 concentration occurs in brain cortex after 2-6 h of the onset of stress as well as an enhancement of COX-2 protein. Immunohistochemical studies indicate that COX-2 is expressed in the cortex and hippocampus after stress in cells with morphology of neurons. Administration of PDTC (150 mg/kg), an inhibitor of the transcription factor NF-kappaB or MK-801 (0.2 mg/kg), an N-methyl-D-aspartate receptor blocker, prevents both stress-induced increase in COX-2 activity and protein levels, suggesting an implication of these factors in the mechanism by which stress induces COX-2 in brain. To assess if COX-2 accounts for the oxidative status seen in brain after stress, a group of animals were i.p. injected with NS-398, a specific COX-2 inhibitor 1 h prior to the onset of stress. NS-398 (5 mg/kg) decreases stress-induced malondialdehyde accumulation in cortex as well as prevents the stress-induced oxidation of glutathione. Finally, NS-398 reduced Ca2+-independent inducible nitric oxide synthase (iNOS, NOS-2) activity and lowered the stress-induced accumulation of NO metabolite levels in cortex. These effects of NS-398 seem to be due to the specific inhibition of COX-2, since it has no effect on stress-induced corticosterone release, glutamate release, and NF-kappaB activation. These findings are discussed as possible damaging and/or adaptive roles for stress-induced COX-2 in the brain.
Collapse
Affiliation(s)
- José L M Madrigal
- Department of Pharmacology, Faculty of Medicine, University of Complutense, 28040 Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
165
|
Packer MA, Stasiv Y, Benraiss A, Chmielnicki E, Grinberg A, Westphal H, Goldman SA, Enikolopov G. Nitric oxide negatively regulates mammalian adult neurogenesis. Proc Natl Acad Sci U S A 2003; 100:9566-71. [PMID: 12886012 PMCID: PMC170958 DOI: 10.1073/pnas.1633579100] [Citation(s) in RCA: 236] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Neural progenitor cells are widespread throughout the adult central nervous system but only give rise to neurons in specific loci. Negative regulators of neurogenesis have therefore been postulated, but none have yet been identified as subserving a significant role in the adult brain. Here we report that nitric oxide (NO) acts as an important negative regulator of cell proliferation in the adult mammalian brain. We used two independent approaches to examine the function of NO in adult neurogenesis. In a pharmacological approach, we suppressed NO production in the rat brain by intraventricular infusion of an NO synthase inhibitor. In a genetic approach, we generated a null mutant neuronal NO synthase knockout mouse line by targeting the exon encoding active center of the enzyme. In both models, the number of new cells generated in neurogenic areas of the adult brain, the olfactory subependyma and the dentate gyrus, was strongly augmented, which indicates that division of neural stem cells in the adult brain is controlled by NO and suggests a strategy for enhancing neurogenesis in the adult central nervous system.
Collapse
Affiliation(s)
- Michael A Packer
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | | | | | | | | | | | | | |
Collapse
|
166
|
Encinas JM, Serrano J, Bentura ML, Castro-Blanco S, Fernández AP, Rodrigo J. Nitric Oxide System and Protein Nitration are Modified by an Acute Hypobaric Hypoxia in the Adult Rat Hippocampus. J Neuropathol Exp Neurol 2003; 62:863-77. [PMID: 14503642 DOI: 10.1093/jnen/62.8.863] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Changes in the nitric oxide system of the hippocampus from rats submitted to hypobaric hypoxia were investigated. Adult rats were exposed to a simulated altitude of 8,325 m (27,000 ft) for 7 h and killed after 0 h, 1, 3, 5, 10 and 20 days of reoxygenation. The number of neuronal nitric oxide synthase immunoreactive neurons and their dendritic plexus, as well as neuronal nitric oxide synthase immunoblotting densitometry and calcium-dependent activity increased from 0 h to 3 days of reoxygenation. In addition, endothelial nitric oxide synthase immunoreactivity peaked after 7 h of hypobaric hypoxia. Nitrotyrosine immunoreactivity showed an increase in the pyramidal cells of CA2-CA3 and in glial cells surrounding the blood vessels after 0 h, 1 and 3 days of reoxygenation. Immunoblotting densitometry of 1 of the 2 nitrotyrosine-immunoreactive bands detected also increased after 0 h and 1 day of reoxygenation. Inducible nitric oxide synthase immunoreactivity was found only in some blood vessels after 0 h, 1 and 3 days of reoxygenation, but no changes in inducible nitric oxide synthase activity or immunoblotting were detected. We conclude that transient activation of the nitric oxide system constitutes a hippocampal response to hypobaric hypoxia.
Collapse
Affiliation(s)
- Juan Manuel Encinas
- Department of Neuroanatomy and Cell Biology of the Instituto de Neurobiología Ramón y Cajal, CSIC, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
167
|
Rhyu IJ, Nahm SS, Hwang SJ, Kim H, Suh YS, Oda SI, Frank TC, Abbott LC. Altered neuronal nitric oxide synthase expression in the cerebellum of calcium channel mutant mice. Brain Res 2003; 977:129-40. [PMID: 12834873 DOI: 10.1016/s0006-8993(03)02403-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Tottering, rolling Nagoya, and leaner mutant mice all exhibit cerebellar ataxia to varying degrees, from mild (tottering mice) to severe (leaner mice). Collectively, these mice are regarded as tottering locus mutants because each of these mutant mice expresses a different autosomal recessive mutation in the gene coding for the alpha(1A) calcium ion channel protein, which is the pore forming subunit for P/Q-type high voltage activated calcium ion channels. These mutant mice all exhibit varying degrees of cerebellar dysfunction and neuronal cell death. Nitric oxide (NO) is an important messenger molecule in the central nervous system, especially in the cerebellum, and it is produced via the enzyme, nitric oxide synthase (NOS). We investigated expression of neuronal-NOS (n-NOS) in the cerebella of all three mutant mice, as revealed by NADPH-diaphorase (NADPH-d) histochemical staining, quantitation of n-NOS protein using Western blotting and quantitation of n-NOS mRNA using in situ hybridization. The expression of n-NOS mRNA and protein as well as the NADPH-d histochemical reaction were elevated in tottering and rolling Nagoya cerebella. n-NOS mRNA and the NADPH-d histochemical reaction were decreased in the leaner cerebellum, but the leaner mouse n-NOS protein concentration was not significantly different compared to age- and gender-matched controls. These findings suggest that NO may act as an important mediator in the production of the neuropathology observed in these mutant mice.
Collapse
Affiliation(s)
- Im Joo Rhyu
- Institute of Human Genetics and Department of Anatomy, Korea University College of Medicine, 126-1 Anam-Dong 5-Ga, Seongbuk-Ku, Seoul 136-705, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
168
|
Serrano J, Encinas JM, Salas E, Fernández AP, Castro-Blanco S, Fernández-Vizarra P, Bentura ML, Rodrigo J. Hypobaric hypoxia modifies constitutive nitric oxide synthase activity and protein nitration in the rat cerebellum. Brain Res 2003; 976:109-19. [PMID: 12763628 DOI: 10.1016/s0006-8993(03)02691-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Ischemic hypoxia provokes alterations in the production system of nitric oxide in the cerebellum. We hypothesize that the nitric oxide system may undergo modifications due to hypobaric hypoxia and that may play a role in high altitude pathophysiology. Therefore, changes in the nitric oxide system of the cerebellum of rats submitted to acute hypobaric hypoxia were investigated. Adult rats were exposed for 7 h to a simulated altitude of 8235 m (27000 ft.) and then killed after 0 h or 1, 3, 5 and 10 days of reoxygenation. Nitric oxide synthase calcium-dependent and -independent activity, immunoblotting and immunohistochemistry of neuronal, endothelial, and inducible nitric oxide synthase, and nitrotyrosine were evaluated. Immunoreactivity for neuronal nitric oxide synthase slightly increased in the baskets of the Purkinje cell layer and in the granule cells, after 0 h of reoxygenation, although no changes in neuronal nitric oxide synthase immunoblotting densitometry were detected. Calcium-dependent activity significantly rose after 0 h of reoxygenation, reaching control levels in the following points, and being coincident with a peak of eNOS expression. Nitrotyrosine formation showed significant increments after 0 h and 1 day of reoxygenation. Nitrotyrosine immunoreactivity showed an intracellular location change in the neurons of the cerebellar nuclei and in addition, an appearance of nitration in the soma of the Purkinje cells was detected. No changes in inducible nitric oxide synthase activity, immunoblotting or immunohistochemistry were detected. We conclude that at least part of the nitric oxide system is involved in cerebellum responses to hypobaric hypoxia.
Collapse
Affiliation(s)
- Julia Serrano
- Department of Neuroanatomy and Cell Biology, Instituto Cajal, CSIC, Doctor Arce Av. 37, E-28002 Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
169
|
Onal A, Delen Y, Ulker S, Soykan N. Agmatine attenuates neuropathic pain in rats: possible mediation of nitric oxide and noradrenergic activity in the brainstem and cerebellum. Life Sci 2003; 73:413-28. [PMID: 12759136 DOI: 10.1016/s0024-3205(03)00297-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Effect of agmatine (10-400 mg/kg) on neuropathic pain in a rat model produced by loose ligatures around the common sciatic nerve was studied. The involvement of possible alterations in nitric oxide (NO) levels [measured as its stable metabolites nitrate + nitrite] and in noradrenergic activity [measured as norepinephrine and 3-methoxy-4-hydroxyphenylethylene glycol (MHPG) levels] in this effect was also investigated biochemically in the brainstem and cerebellum. Agmatine increased the neuropathic pain threshold at 300 and 400 mg/kg. There was almost a twofold increase in nitrate + nitrite levels in the brainstem and cerebellum of the rats with neuropathic pain and agmatine decreased the high nitrate + nitrite levels only in the brainstem at 300 mg/kg and both in the brainstem and cerebellum at 400 mg/kg. Ligation of sciatic nerve resulted in almost twofold increase in norepinephrine and MHPG levels only in the brainstem of the rats. Agmatine decreased MHPG levels at 300 and 400 mg/kg, however it decreased norepinephrine levels only at the higher dose. These findings indicate that agmatine decreases neuropathic pain, an effect which may involve the reduction of NO levels and noradrenergic activity in the brain.
Collapse
Affiliation(s)
- Aytül Onal
- Department of Pharmacology, Faculty of Medicine, Ege University 35100, Izmir, Turkey.
| | | | | | | |
Collapse
|
170
|
Fernández AP, Alonso D, Lisazoaín I, Serrano J, Leza JC, Bentura ML, López JC, Manuel Encinas J, Fernández-Vizarra P, Castro-Blanco S, Martínez A, Martinez-Murillo R, Lorenzo P, Pedrosa JA, Peinado MA, Rodrigo J. Postnatal changes in the nitric oxide system of the rat cerebral cortex after hypoxia during delivery. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2003; 142:177-92. [PMID: 12711369 DOI: 10.1016/s0165-3806(03)00068-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The impact of hypoxia in utero during delivery was correlated with the immunocytochemistry, expression and activity of the neuronal (nNOS) and inducible (iNOS) isoforms of the nitric oxide synthase enzyme as well as with the reactivity and expression of nitrotyrosine as a marker of protein nitration during early postnatal development of the cortex. The expression of nNOS in both normal and hypoxic animals increased during the first few postnatal days, reaching a peak at day P5, but a higher expression was consistently found in hypoxic brain. This expression decreased progressively from P7 to P20, but was more prominent in the hypoxic group. Immunoreactivity for iNOS was also higher in the cortex of the hypoxic rats and was more evident between days P0 and P5, decreasing dramatically between P10 and P20 in both groups of rats. Two nitrated proteins of 52 and 38 kDa, were also identified. Nitration of the 52-kDa protein was more intense in the hypoxic animals than in the controls, increasing from P0 to P7 and then decreasing progressively to P20. The 38-kDa nitrated protein was seen only from P10 to P20, and its expression was more intense in control than in the hypoxic group. These results suggest that the NO system may be involved in neuronal maturation and cortical plasticity over postnatal development. Overproduction of NO in the brain of hypoxic animals may constitute an effort to re-establish normal blood flow and may also trigger a cascade of free-radical reactions, leading to modifications in the cortical plasticity.
Collapse
Affiliation(s)
- Ana Patricia Fernández
- Neuroanatomy and Cell Biology Department, Instituto Cajal (CSIC), Avenida del Doctor Arce 37, 28002, Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
171
|
Serrano J, Encinas JM, Fernández AP, Castro-Blanco S, Alonso D, Fernández-Vizarra P, Richart A, Bentura ML, Santacana M, Cuttitta F, Martínez A, Rodrigo J. Distribution of immunoreactivity for the adrenomedullin binding protein, complement factor H, in the rat brain. Neuroscience 2003; 116:947-62. [PMID: 12617936 DOI: 10.1016/s0306-4522(02)00773-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Adrenomedullin is a multifunctional amidated peptide that has been found in most nuclei of the CNS, where it plays a neuromodulatory role. An adrenomedullin binding protein has recently been found in plasma and characterized as complement factor H. This regulator of the complement system inhibits the progression of the complement cascade and modulates the function of adrenomedullin. Our study shows the ample distribution of factor H immunoreactivity in neurons of telencephalon, diencephalon, mesencephalon, pons, medulla, and cerebellum in the rat CNS, using immunohistochemical techniques for both light and electron microscopy. Factor H immunoreactivity was found in the cytoplasm, but nuclear staining was also a common finding. Some blood vessels and glial cells were also immunoreactive for factor H. Colocalization studies by double immunofluorescence followed by confocal microscopy revealed frequent coexistence of factor H and adrenomedullin immunoreactivities, thus providing morphological evidence for the potential interaction of these molecules in the CNS. The presence of factor H immunoreactivity in glial cells was confirmed by colocalization with glial fibrillary acidic protein. In summary, factor H is highly expressed in the CNS where it could play important roles in regulating adrenomedullin actions and contributing to an intracerebral complement system.
Collapse
Affiliation(s)
- J Serrano
- Department of Neuroanatomy and Cell Biology, Cajal Institute, CSIC, Avenue Doctor Arce 37, E-28002 Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
172
|
Villena A, Díaz F, Vidal L, Moreno M, Pérez de Vargas I. Quantitative age-related changes in NADPH-diaphorase-positive neurons in the ventral lateral geniculate nucleus. Neurosci Res 2003; 46:63-72. [PMID: 12725913 DOI: 10.1016/s0168-0102(03)00030-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Age-related changes in nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) were examined in the rat ventral lateral geniculate nucleus (vLGN) using histochemical methods. Eighteen rats aged 3, 24, and 26 months were studied using quantitative methods to investigate the number of neurons per mm(2), the cross-sectional area, and the orientation of dendritic processes of NADPH-d-positive neurons. We have described three types of neurons: types A and B are both located in the lateral and medial vLGN (vLGN-l and vLGN-m, respectively), and type C neurons over the optic tract. The number of NADPH-d-positive neurons was significantly reduced in the old rats (-39%) when compared with controls (3-month-old rats). The quantitative analysis of cell areas revealed a significant decrease of somatic size in type B neurons, both in the lateral and medial vLGN, and in C neurons; however, type A neurons did not show significant changes. By quantifying the orientation of dendritic processes, we observed a predominant dorsolateral orientation in type A and B neurons. During aging, there are no changes in the dendritic orientation of neurons located in the vLGN-m; however, vLGN-l neurons show an increase in dendritic processes with dorsoventral orientation. In type C neurons, our results show that 87.4% of dendritic processes are lateromedially oriented at 26 months old. Therefore, the types A and B neurons behave differently during senescence. Type A neurons do not change in size, but those located in the vLGN-l modify the orientation of their dendritic processes; however, type B neurons, reduce their size and those located in the vLGN-l also modify their dendritic process orientation. Finally, the type C neurons modify their size and dendritic process.
Collapse
Affiliation(s)
- Alicia Villena
- Department of Histology and Pathology, School of Medicine, University of Málaga, 29071 Málaga, Spain.
| | | | | | | | | |
Collapse
|
173
|
Rivier C. Role of nitric oxide in regulating the rat hypothalamic-pituitary-adrenal axis response to endotoxemia. Ann N Y Acad Sci 2003; 992:72-85. [PMID: 12794048 DOI: 10.1111/j.1749-6632.2003.tb03139.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
This work examines the role of nitric oxide (NO) in the periphery (i.e., on the pituitary) and the brain (particularly on corticotropin-releasing factor [CRF] and vasopressin [VP] neurons in the paraventricular nucleus [PVN] of the hypothalamus) as a modulator of the ACTH response to lipopolysaccharide. We previously showed that NO restricted the pituitary response to VP while it facilitated the synthesis of PVN CRF and VP. In our experience, only relatively high doses of lipopolysaccharide (>50 microg/kg, injected intravenously [i.v.]) cause detectable increases in PVN neuronal activation. Our hypothesis, therefore, was that pituitary NO-VP interactions would predominate in rats injected with a low dose of lipopolysaccharide (0.5 microg/kg, i.v.) while the stimulatory influence of the gas on PVN neuronal activity would play an important role following i.v. injection of a large dose of lipopolysaccharide (50 microg/kg, i.v.). We observed that the ability of 0.5 microg/kg lipopolysaccharide to release ACTH was significantly enhanced by the subcutaneous (s.c.), but not the intracerebroventricular (i.c.v.) injection of L-NAME, an arginine derivative that blocks NO synthesis. The effect of s.c. L-NAME was reversed by immunoneutralization of endogenous VP, which indicated that in this model, the ability of lipopolysaccharide to release ACTH depended, at least in part, on the influence exerted by NO on the pituitary response to VP. In rats injected with the high lipopolysaccharide dose, the s.c. injection of L-NAME decreased plasma ACTH levels compared to those in rats pretreated with the vehicle. The effect of s.c. L-NAME was not significantly altered by VP antibodies. These results indicate that in this model, the primary influence of NO was exerted in the PVN and/or its afferents and that it did not depend on a peripheral, VP-mediated effect of the gas. On the one hand, these data are at odds with our finding that the i.c.v. injection of L-NAME only marginally altered the ACTH response to the large dose of lipopolysaccharide. As i.c.v. injected L-NAME should have primarily decreased hypothalamic, but not pituitary NOS, its only modest influence on ACTH release may have been due to a balance between stimulating and inhibiting effects of NO within the brain. As high doses of lipopolysaccharide increase brain levels of prostaglandin, monoamine, and proinflammatory cytokines, it will be important to investigate the influence exerted by NO on these secretagogues and on their interactions with PVN CRF and VP neurons, which may help us resolve the issues raised by our results. Collectively, these data support our hypothesis that the mechanisms mediating the ACTH response to a low lipopolysaccharide concentration involve the inhibitory VP-mediated influence of NO on pituitary activity. By contrast, the stimulatory effect of high doses of lipopolysaccharide on ACTH release depends, at least in part, on the ability of NO to upregulate PVN neuronal activity.
Collapse
Affiliation(s)
- Catherine Rivier
- The Clayton Foundation Laboratories for Peptide Biology, The Salk Institute, La Jolla, California 92037, USA.
| |
Collapse
|
174
|
Castro-Blanco S, Encinas JM, Serrano J, Alonso D, Gómez MB, Sánchez J, Ríos-Tejada F, Fernández-Vizarra P, Fernández AP, Martínez-Murillo R, Rodrigo J. Expression of nitrergic system and protein nitration in adult rat brains submitted to acute hypobaric hypoxia. Nitric Oxide 2003; 8:182-201. [PMID: 12826067 DOI: 10.1016/s1089-8603(03)00003-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Changes in the nitric oxide (NO) system of the rat cerebral cortex were investigated by immunohistochemistry, immunoblotting, and NO synthase (NOS) activity assays in adult rats submitted for 30 min to hypoxia, in a hypobaric chamber at a simulated altitude of 38,000 ft (11000 m) (154.9 mm Hg). The cerebral cortex was studied after different survival times, 0 and 24 h, 5, 8, 15, and 30 days of reoxygenation. This situation led to morphological alterations in the large type I interneurons, as well as immunoreactive changes in the appearance and number of the small neurons (type II), both containing neuronal NOS (nNOS). Some of these small neurons showed immunoreactive cytoplasm and short processes; others, the more numerous during all reoxygenation periods, contained the immunoreactive product mainly related to a perinuclear ring. Ultrastructurally, these small neurons exhibited changes in nuclear structures as in the shape of the nuclear membrane, in the distribution of heterochromatin, and in the nucleolar morphology. The reaction product for nitrotyrosine, as a marker of protein nitration, showed modifications in distribution of the immunoreactive product. No expression was found for inducible NOS (iNOS). All these modifications were accompanied by increased nNOS and nitrotyrosine production as demonstrated by Western blotting and calcium-dependent activity, returning to control conditions after 30 days of reoxygenation, suggesting a reversible NO mechanism of action.
Collapse
Affiliation(s)
- Susana Castro-Blanco
- Department of Neuroanatomy and Cell Biology, Instituto de Neurobiologia Santiago Ramón y Cajal, CSIC, E-28002 Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
175
|
Gholami A, Zarrindast MR, Sahraei H, Haerri-Rohani A. Nitric oxide within the ventral tegmental area is involved in mediating morphine reward. Eur J Pharmacol 2003; 458:119-28. [PMID: 12498915 DOI: 10.1016/s0014-2999(02)02696-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In the present study, the effects of intra-ventral tegmental area injection of L-arginine, a nitric oxide (NO) precursor, and N(G)-nitro-L-arginine methyl ester (L-NAME), a nitric oxide synthase (NOS) inhibitor, on morphine-induced conditioned place preference in male Wistar rats were investigated. Our data showed that subcutaneous (s.c.) injection of morphine sulphate (0.5-10 mg/kg) significantly increased the time spent in the drug-paired compartment in a dose-dependent manner. Intra-ventral tegmental area administration of a low dose of L-arginine (0.05 microg/rat) with an ineffective dose of morphine (0.5 mg/kg) elicited significant conditioned place preference; however, a higher dose of L-arginine (0.1 microg/rat) reduced the morphine response. Intra-ventral tegmental area administration of L-NAME (0.03 and 0.1 microg/rat) decreased the acquisition of morphine (7.5 mg/kg)-induced place preference. The response to different doses of L-arginine was decreased by L-NAME (0.03 microg/rat). L-Arginine and L-NAME by themselves did not elicit any effect on place conditioning; however, intra-ventral tegmental area administration of L-arginine (0.01-0.1 microg/rat) and a higher dose of L-NAME (0.1 microg/rat) significantly decreased the expression of morphine (7.5 mg/kg)-induced place preference. The attenuation of already established morphine-induced place preference on the test day by L-arginine was inhibited by L-NAME (0.03 microg/rat). The results indicate that NO may be involved in the acquisition and expression of morphine-induced place preference.
Collapse
Affiliation(s)
- Azam Gholami
- Department of Biology, Faculty of Science, Tehran University, Tehran, Iran
| | | | | | | |
Collapse
|
176
|
Martinelli GPT, Friedrich VL, Holstein GR. L-citrulline immunostaining identifies nitric oxide production sites within neurons. Neuroscience 2002; 114:111-22. [PMID: 12207959 DOI: 10.1016/s0306-4522(02)00238-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The cellular and subcellular localization of L-citrulline was analyzed in the adult rat brain and compared with that of traditional markers for the presence of nitric oxide synthase. Light, transmission electron, and confocal laser scanning microscopy were used to study tissue sections processed for immunocytochemistry employing a monoclonal antibody against L-citrulline or polyclonal anti-neuronal nitric oxide synthase sera, and double immunofluorescence to detect neuronal nitric oxide synthase and L-citrulline co-localization. The results demonstrate that the same CNS regions and cell types are labeled by neuronal nitric oxide synthase polyclonal antisera and L-citrulline monoclonal antibodies, using both immunocytochemistry and immunofluorescence. Short-term pretreatment with a nitric oxide synthase inhibitor reduces L-citrulline immunostaining, but does not affect neuronal nitric oxide synthase immunoreactivity. In the vestibular brainstem, double immunofluorescence studies show that many, but not all, neuronal nitric oxide synthase-positive cells co-express L-citrulline, and that local intracellular patches of intense L-citrulline accumulation are present in some neurons. Conversely, all L-citrulline-labeled neurons co-express neuronal nitric oxide synthase. Cells expressing neuronal nitric oxide synthase alone are interpreted as neurons with the potential to produce nitric oxide under other stimulus conditions, and the subcellular foci of enhanced L-citrulline staining are viewed as intracellular sites of nitric oxide production. This interpretation is supported by ultrastructural observations of subcellular foci with enhanced L-citrulline and/or neuronal nitric oxide synthase staining that are located primarily at postsynaptic densities and portions of the endoplasmic reticulum. We conclude that nitric oxide is produced and released at focal sites within neurons that are identifiable using L-citrulline as a marker.
Collapse
Affiliation(s)
- G P T Martinelli
- Department of Neurology, Mount Sinai School of Medicine, Box 1140, One Gustave Levy Place, New York, NY 10029, USA
| | | | | |
Collapse
|
177
|
Suzuki M, Tabuchi M, Ikeda M, Tomita T. Concurrent formation of peroxynitrite with the expression of inducible nitric oxide synthase in the brain during middle cerebral artery occlusion and reperfusion in rats. Brain Res 2002; 951:113-20. [PMID: 12231464 DOI: 10.1016/s0006-8993(02)03145-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Peroxynitrite is assumed to play a crucial role in brain damage associated with the overproduction of nitric oxide (NO). The purpose of this study is to examine time-dependent changes of nitrite and nitrate (NOx) concentration in the circulation, and peroxynitrite formation as well as the expression of inducible nitric oxide synthase (iNOS) in the penumbra of rat brains during transient middle cerebral artery occlusion (MCAO) of Wistar rat for 2 h and reperfusion for 4-70 h. NOx concentration in the circulation was continuously monitored at the right jugular vein by microdialysis. The expression of iNOS was detected at 22-70 h after reperfusion in vascular walls and the cortex. Nitrotyrosine, a marker of peroxynitrite, appeared 4 h after reperfusion in the cortex, increasing substantially at 22-46 h in vascular walls. NOx level in dialysate increased immediately after MCAO. After a gradual decrease, the level increased again 4 h after reperfusion, reaching a maximum at 46 h. Brain myeloperoxidase activity, a marker of neutrophil infiltration, was not detected 4 h after reperfusion, but greatly increased at 22 h and then decreased. These results suggest that a marked increase of NOx level in the circulation might reflect the expression of iNOS, while neuronal NOS may contribute to peroxynitrite formation in the cortex observed at an earlier phase of reperfusion. This study indicates that monitoring NOx level in the circulation serves to assess the progress of stroke, and to determine appropriate therapeutic measures.
Collapse
Affiliation(s)
- Motohisa Suzuki
- Graduate School of Health Sciences, University of Shizuoka, 52-1, Yada, Shizuoka 422-8526, Japan
| | | | | | | |
Collapse
|
178
|
Serrano J, Alonso D, Encinas JM, Lopez JC, Fernandez AP, Castro-Blanco S, Fernández-Vizarra P, Richart A, Bentura ML, Santacana M, Uttenthal LO, Cuttitta F, Rodrigo J, Martinez A. Adrenomedullin expression is up-regulated by ischemia-reperfusion in the cerebral cortex of the adult rat. Neuroscience 2002; 109:717-31. [PMID: 11927154 DOI: 10.1016/s0306-4522(01)00532-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Changes in the pattern of adrenomedullin expression in the rat cerebral cortex after ischemia-reperfusion were studied by light and electron microscopic immunohistochemistry using a specific antibody against human adrenomedullin (22-52). Animals were subjected to 30 min of oxygen and glucose deprivation in a perfusion model simulating global cerebral ischemia, and the cerebral cortex was studied after 0, 2, 4, 6, 8, 10 or 12 h of reperfusion. Adrenomedullin immunoreactivity was elevated in certain neuronal structures after 6-12 h of reperfusion as compared with controls. Under these conditions, numerous large pyramidal neurons and some small neurons were intensely stained in all cortical layers. The number of immunoreactive pre- and post-synaptic structures increased with the reperfusion time. Neurons immunoreactive for adrenomedullin presented a normal morphology whereas non-immunoreactive neurons were clearly damaged, suggesting a potential cell-specific protective role for adrenomedullin. The number and intensity of immunoreactive endothelial cells were also progressively elevated as the reperfusion time increased. In addition, the perivascular processes of glial cells and/or pericytes followed a similar pattern, suggesting that adrenomedullin may act as a vasodilator in the cerebrocortical circulation. In summary, adrenomedullin expression is elevated after the ischemic insult and seems to be part of CNS response mechanism to hypoxic injury.
Collapse
Affiliation(s)
- J Serrano
- Department of Neuroanatomy and Cell Biology, Instituto Cajal. Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
179
|
Li SM, Ren YH, Zheng JW. Effect of 7-nitroindazole on drug-priming reinstatement of D-methamphetamine-induced conditioned place preference. Eur J Pharmacol 2002; 443:205-6. [PMID: 12044811 DOI: 10.1016/s0014-2999(02)01580-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The study investigated the role of nitric oxide (NO) in the relapse to drug-seeking behavior induced by D-methamphetamine. After the induction of D-methamphetamine (1 mg/kg) conditioned place preference, the rewarding effect became extinct 6 weeks later. The extinguished place preference was reinstated by D-methamphetamine (0.125 mg/kg) injection, an effect which was attenuated by 7-nitroindazole (12.5 and 25 mg/kg) pretreatment. The results demonstrate that NO is involved in relapse primed by D-methamphetamine injection.
Collapse
Affiliation(s)
- Su-Min Li
- Department of Neuropharmacology, National Institute on Drug Dependence, Peking University, 38 Xueyuan Road, Beijing 100083, PR China
| | | | | |
Collapse
|
180
|
Necchi D, Virgili M, Monti B, Contestabile A, Scherini E. Regional alterations of the NO/NOS system in the aging brain: a biochemical, histochemical and immunochemical study in the rat. Brain Res 2002; 933:31-41. [PMID: 11929633 DOI: 10.1016/s0006-8993(02)02302-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We have used several approaches (immunohistochemistry and enzyme histochemistry, Western blotting, biochemical assay of Ca(2+)-dependent catalytic activity) in order to detect differences in neuronal nitric oxide synthase (nNOS) expression and activity in various brain regions of young-adult (4-month-old) and aged (28-month-old) rats. In most of the brain regions examined (striatum, neocortex, olfactory cortex and hippocampus) some significant decrease in the density per unit area of nNOS neurons, detected either through immunohistochemistry or enzyme histochemistry, was observed in aged rats. However, only in the striatum and olfactory cortex this was accompanied by a significant decrease of the catalytic activity of the constitutive, Ca(2+)-dependent NOS form. In these two regions, the relative level of expression of nNOS protein was also significantly decreased, as assessed by Western blotting of proteic extracts from young-adult and aged rats. Other observed differences were a paler stain of neurons in some brain areas of the aged rats and differences of cellular compartmentalization of the protein in the same rats, as assessed through confocal microscopy. The present observations demonstrate that the expression and activity of nNOS show regionally-specific alterations in the brain of aged healthy rats, with a trend towards decrease, rather than toward increase as suggested by some previous reports. Therefore, hypotheses implicating nitric oxide increase in brain aging should be reconsidered on the basis of a clear-cut distinction between the physiological and the pathological aspects of the aging process.
Collapse
Affiliation(s)
- Daniela Necchi
- Department of Animal Biology, University of Pavia, Pavia, Italy
| | | | | | | | | |
Collapse
|
181
|
Chen J, Daggett H, De Waard M, Heinemann SH, Hoshi T. Nitric oxide augments voltage-gated P/Q-type Ca(2+) channels constituting a putative positive feedback loop. Free Radic Biol Med 2002; 32:638-49. [PMID: 11909698 DOI: 10.1016/s0891-5849(02)00748-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
P/Q-type Ca(2+) channels, which are postulated to play major roles in synaptic transmission, are regulated in a variety of ways. Ca(2+) currents through P/Q-type Ca(2+) channels (Ca(v)2.1/beta(1a)/alpha(2)delta) heterologously expressed in mammalian cells were recorded using the whole-cell patch clamp method. The oxidant H(2)O(2) increased the current amplitude and the effect was reversed by the reducing agent dithiothreitol (DTT). The stimulatory effect of H(2)O(2) on the Ca(2+) current was mimicked by the NO donors, SNAP, and diethylamine NONOate, and reversed by the reducing agent DTT. The presence of a soluble guanylate cyclase inhibitor did not abolish the ability of SNAP to increase the Ca(2+) current. Adenovirus-mediated overexpression of nitric oxide synthase in combination with application of the Ca(2+) ionophore A23187 also increased the Ca(2+) current amplitude and the effect was again reversed by DTT. The NOS inhibitor L-NAME abolished the stimulatory effect of A23187, and A23187 did not change the Ca(2+) currents in the cells treated with control adenovirus particles. The time course of the decline of the Ca(2+) current, but not of the Ba(2+) current, in response to repeated depolarization was markedly slowed by adenovirus-mediated overexpression of nitric oxide synthase. The results demonstrate that nitric oxide enhances the channel activity by promoting oxidation and suggest that Ca(2+), nitric oxide synthase, and nitric oxide could constitute a positive feedback loop for regulation of voltage-gated P/Q-type Ca(2+) channels.
Collapse
Affiliation(s)
- Jianguo Chen
- Department of Physiology and Biophysics, The University of Iowa, Iowa City, IA, USA
| | | | | | | | | |
Collapse
|
182
|
Alonso D, Serrano J, Rodríguez I, Ruíz-Cabello J, Fernández AP, Encinas JM, Castro-Blanco S, Bentura ML, Santacana M, Richart A, Fernández-Vizarra P, Uttenthal LO, Rodrigo J. Effects of oxygen and glucose deprivation on the expression and distribution of neuronal and inducible nitric oxide synthases and on protein nitration in rat cerebral cortex. J Comp Neurol 2002; 443:183-200. [PMID: 11793355 DOI: 10.1002/cne.10111] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Changes in the nitric oxide (NO) system of the rat cerebral cortex were investigated by immunohistochemistry, immunoblotting, NO synthase (NOS) activity assay, and magnetic resonance imaging (MRI) in an experimental model of global cerebral ischemia and reperfusion. Brains were perfused transcardially with an oxygenated plasma substitute and subjected to 30 minutes of oxygen and glucose deprivation, followed by reperfusion for up to 12 hours with oxygenated medium containing glucose. A sham group was perfused without oxygen or glucose deprivation, and a further group was treated with the NOS inhibitor N(omega)-nitro-L-arginine methyl ester (L-NAME) before and during perfusion. Global ischemia led to cerebrocortical injury as shown by diffusion MRI. This was accompanied by increasing morphologic changes in the large type I interneurons expressing neuronal NOS (nNOS) and the appearance of nNOS immunoreactivity in small type II neurons. The nNOS-immunoreactive band and calcium-dependent NOS activity showed an initial increase, followed by a fall after 6 hours of reperfusion. Inducible NOS immunoreactivity appeared in neurons, especially pyramidal cells of layers IV-V, after 4 hours of reperfusion, with corresponding changes on immunoblotting and in calcium-independent NOS activity. Immunoreactive protein nitrotyrosine, present in the nuclear area of neurons in nonperfused controls and sham-perfused animals, showed changes in intensity and distribution, appearing in the neuronal processes during the reperfusion period. Prior and concurrent L-NAME administration blocked the changes on diffusion MRI and attenuated the morphologic changes, suggesting that NO and consequent peroxynitrite formation during ischemia-reperfusion contributes to cerebral injury.
Collapse
Affiliation(s)
- David Alonso
- Department of Neuroanatomy and Cell Biology, Instituto de Neurobiología "Santiago Ramón y Cajal," CSIC, E-28002 Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
183
|
Pearse DD, Bushell G, Leah JD. Jun, Fos and Krox in the thalamus after C-fiber stimulation: coincident-input-dependent expression, expression across somatotopic boundaries, and nucleolar translocation. Neuroscience 2002; 107:143-59. [PMID: 11744254 DOI: 10.1016/s0306-4522(01)00320-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Expression of the inducible transcription factors Jun, Fos and Krox is commonly used to map neurons in the brain that are activated by sensory inputs. However, some neurons known to be electrically excited by such inputs do not always express these factors. In particular, stimulation of hindlimb sensory nerve C-fibers induces expression of c-Fos in the medial thalamus (the mediodorsal, intermediodorsal, centrolateral and centromedial), but not in the lateral thalamus (the ventroposterolateral, ventroposteromedial and posterior group). We hypothesized that c-Fos expression might only occur in these lateral areas after more complex stimulation patterns, or that only other transcription factors can be induced in these areas by such stimuli. Thus we examined the effects of single, repeated and coincident C-fiber inputs on expression of six inducible transcription factors in the medial, lateral and reticular thalamus of the rat. A weak C-fiber input caused by noxious mechanical stimulation of the skin of one hindpaw did not induce expression of c-Fos, FosB, Krox-20 or Krox-24; but it did reduce the basal expressions of c-Jun and JunD in both the medial and lateral areas. An intense input produced by electrical stimulation of all the C-fibers in one sciatic nerve also failed to induce expression of c-Fos, FosB, Krox-20 or Krox-24 in the medial or lateral areas. However, in the medial thalamus it increased c-Jun and reduced the basal expression of JunD, whereas in the lateral thalamus it had no effect on c-Jun but again reduced the basal expression of JunD. With repeated stimulation, i.e. when the noxious stimulus was applied to the contralateral hindpaw 6 h after the sciatic stimulation, there was again no induction of c-Fos, FosB or Krox-20 in the medial thalamus; but there was an increase in c-Jun and Krox-24, and a decrease in JunD levels. In the lateral thalamus the repeated stimulation again failed to induce c-Fos, but the expressions of FosB, c-Jun and Krox-24 were increased, and that of JunD was again reduced. With coincident stimulation, i.e. when a stimulus was applied to each hindpaw simultaneously, c-Fos and Krox-24 remained absent; but there was a marked induction of FosB and Krox-20, a strong repression of c-Jun, and no effect or a reduction of the basal levels of JunD. This coincident stimulation also caused FosB to appear in the nucleolus of many thalamic neurons. MK-801, but not L-NAME, blocked all these changes. In summary, noxious stimulation affects the expression of all transcription factors in the medial, lateral and reticular thalamus in a complex manner depending upon the inducible transcription factor considered, the thalamic nucleus, and the stimulation paradigm. The expression of some transcription factors uniquely after simultaneous inputs suggests they act as coincidence detectors at the gene level.
Collapse
Affiliation(s)
- D D Pearse
- School of Biomolecular and Biomedical Sciences, Griffith University, 4111, Nathan, Australia
| | | | | |
Collapse
|
184
|
Moreno N, López JM, Sánchez-Camacho C, González A. Development of NADPH-diaphorase/nitric oxide synthase in the brain of the urodele amphibian Pleurodeles waltl. J Chem Neuroanat 2002; 23:105-21. [PMID: 11841915 DOI: 10.1016/s0891-0618(01)00146-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
In the present study, the ontogenesis of nitrergic neurons has been studied in the urodele amphibian Pleurodeles waltl by means of NADPH-diaphorase (NADPHd) histochemistry and neuronal nitric oxide synthase (NOS) immunohistochemistry. Embryonic and larval stages were studied. Except for the olfactory fibers and glomeruli, both methods were equally suitable to reveal nitrergic structures in the brain. The earliest positive neurons were observed in the inferior reticular nucleus (Ri) in the caudal rhombencephalon at embryonic stage 30. At stage 33b, weakly reactive cells appeared in the tegmentum of the mesencephalon and isthmus, in the ventral hypothalamus (VH), and in the proximity of the solitary tract (sol). At initial larval stages (stages 34-38), two new groups appeared in the caudal telencephalon (future amygdaloid complex (Am)) and in the middle reticular nucleus (Rm) of the rhombencephalon. During the active larval life (stages 39-55c) the nitrergic system developed progressively both in number of cells and fiber tracts. At stages 39-42 reactive cells were found in the inner granular layer (igl) of the olfactory bulb, the telencephalic pallium, the pretectal region, the optic tectum (OT) and retina. New populations of nitrergic cells appear during the second half of the larval period (stages 52-55). Rostrally, reactive cells were found in the telencephalic diagonal band (DB) nucleus, medial septum and in the thalamic eminence (TE), whereas caudally cells appeared in the raphe (Ra) and the descending trigeminal nucleus (Vd). The last changes occurred during the juvenile period (metamorphic climax), when cells of the spinal cord (sc) and the preoptic area became positive. The sequence of appearance of nitrergic cells revealed a first involvement of this system in reticulospinal control, likely influencing locomotor behavior. As development proceeds, cells in different sensory systems expressed progressively nitric oxide synthase in a pattern that shows many similarities with amniotes.
Collapse
Affiliation(s)
- N Moreno
- Department of Cell Biology, Faculty of Biology, University Complutense, 28040, Madrid, Spain
| | | | | | | |
Collapse
|
185
|
Orsini C, Izzo E, Koob GF, Pulvirenti L. Blockade of nitric oxide synthesis reduces responding for cocaine self-administration during extinction and reinstatement. Brain Res 2002; 925:133-40. [PMID: 11792361 DOI: 10.1016/s0006-8993(01)03267-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Nitric oxide is a gaseous neurotransmitter that plays a significant role in various forms of synaptic plasticity and may play a role in the behavioral effects of psychostimulant drugs and in cocaine addiction. The course of drug addiction consists of different phases. Relapse into drug-seeking behavior following a period of abstinence is believed to represent one of the major factors leading to the perpetuation of the addictive cycle. In this respect, experimental extinction procedures provide a measure of the motivational properties of drugs as reflected by the persistence of drug-seeking behavior in the absence of the drug and by the reinstatement of responding by non-contingent drug administration. Pretreatment with the nitric oxide synthase inhibitor L-NG-nitroarginine methyl ester (L-NAME, 50 mg/kg IP twice daily for 4 days) impaired responding for cocaine self-administration when the drug was available and the increase of drug-seeking behavior upon abrupt cessation of cocaine availability observed in control rats was significantly reduced after treatment with L-NAME. In addition, the priming effect of a non-contingent injection of cocaine on extinguished cocaine self-administration was also diminished by the same treatment. The acquisition of cocaine self-administration, in contrast, was not affected by treatment with L-NAME. These observations lend further support to the hypothesis of the involvement of nitric oxide in cocaine addiction and extend previous findings to components of the cocaine addictive cycle associated with relapse.
Collapse
Affiliation(s)
- Cristina Orsini
- Department of Neuropharmacology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
186
|
Lazarov NE. Comparative analysis of the chemical neuroanatomy of the mammalian trigeminal ganglion and mesencephalic trigeminal nucleus. Prog Neurobiol 2002; 66:19-59. [PMID: 11897404 DOI: 10.1016/s0301-0082(01)00021-1] [Citation(s) in RCA: 192] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A characteristic peculiarity of the trigeminal sensory system is the presence of two distinct populations of primary afferent neurons. Most of their cell bodies are located in the trigeminal ganglion (TG) but part of them lie in the mesencephalic trigeminal nucleus (MTN). This review compares the neurochemical content of central versus peripheral trigeminal primary afferent neurons. In the TG, two subpopulations of primary sensory neurons, containing immunoreactive (IR) material, are identified: a number of glutamate (Glu)-, substance P (SP)-, neurokinin A (NKA)-, calcitonin gene-related peptide (CGRP)-, cholecystokinin (CCK)-, somatostatin (SOM)-, vasoactive intestinal polypeptide (VIP)- and galanin (GAL)-IR ganglion cells with small and medium-sized somata, and relatively less numerous larger-sized neuropeptide Y (NPY)- and peptide 19 (PEP 19)-IR trigeminal neurons. In addition, many nitric oxide synthase (NOS)- and parvalbumin (PV)-IR cells of all sizes as well as fewer, mostly large, calbindin D-28k (CB)-containing neurons are seen. The majority of the large ganglion cells are surrounded by SP-, CGRP-, SOM-, CCK-, VIP-, NOS- and serotonin (SER)-IR perisomatic networks. In the MTN, the main subpopulation of large-sized neurons display Glu-immunoreactivity. Additionally, numerous large MTN neurons exhibit PV- and CB-immunostaining. On the other hand, certain small MTN neurons, most likely interneurons, are found to be GABAergic. Furthermore, NOS-containing neurons can be detected in the caudal and the mesencephalic-pontine junction portions of the nucleus. Conversely, no immunoreactivity to any of the examined neuropeptides is observed in the cell bodies of MTN neurons but these are encircled by peptidergic, catecholaminergic, serotonergic and nitrergic perineuronal arborizations in a basket-like manner. Such a discrepancy in the neurochemical features suggests that the differently fated embryonic migration, synaptogenesis, and peripheral and central target field innervation can possibly affect the individual neurochemical phenotypes of trigeminal primary afferent neurons.
Collapse
Affiliation(s)
- Nikolai E Lazarov
- Department of Anatomy, Faculty of Medicine, Thracian University, 11 Armejska Street, BG-6003 Stara Zagora, Bulgaria.
| |
Collapse
|
187
|
Alonso D, Encinas JM, Uttenthal LO, Boscá L, Serrano J, Fernández AP, Castro-Blanco S, Santacana M, Bentura ML, Richart A, Fernández-Vizarra P, Rodrigo J. Coexistence of translocated cytochrome c and nitrated protein in neurons of the rat cerebral cortex after oxygen and glucose deprivation. Neuroscience 2002; 111:47-56. [PMID: 11955711 DOI: 10.1016/s0306-4522(01)00571-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Changes in the distribution of immunoreactive cytochrome c and protein nitration were studied in the rat cerebral cortex after oxygen and glucose deprivation by bright field, confocal and electron microscopy. In control cerebral cortex, nitrotyrosine immunoreactivity indicating protein nitration was found mostly in the neuronal nuclear region, with only a small amount distributed in the cytosol, whereas cytochrome c immunoreactivity was found at the inner membrane and in the intermembrane space of the mitochondria. During the recovery phase after oxygen and glucose deprivation, cytochrome c immunoreactivity was released from the intermembrane space of swollen mitochondria into the surrounding cytosol. The cytosol now also displayed nitrotyrosine immunoreactivity, which had diminished in the nuclear region. Both immunoreactivities were dispersed throughout the soma and processes of the cortical neurons. These changes were largely prevented by the administration of cyclosporin A, which inhibits both the mitochondrial permeability transition and the neuronal isoform of nitric oxide synthase while blocking the induction of the inducible isoform. Ischemia/reperfusion injury increases the production of nitric oxide, reactive oxygen species and intracellular factors that damage the mitochondria and liberate apoptotic factors. We suggest that translocation of cytochrome c from the mitochondria to the cytosol, which has been shown to precede the mitochondrial permeability transition, could result from peroxynitrite-mediated nitration. This phenomenon is attenuated by cyclosporin A administration, suggesting a neuroprotective role for this agent.
Collapse
Affiliation(s)
- D Alonso
- Departamento de Neuroanatomía y Biología Celular, Instituto Cajal (CSIC), Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
188
|
Abstract
cGMP has been implicated in the regulation of many essential functions in the brain, such as synaptic plasticity, phototransduction, olfaction, and behavioral state. Cyclic nucleotide phosphodiesterase (PDE) hydrolysis of cGMP is the major mechanism underlying the clearance of cGMP and is likely to be important in any process that depends on intracellular cGMP. PDE9A has the highest affinity for cGMP of any PDE, and here we studied the localization of this enzyme in the rat brain using in situ hybridization. PDE9A mRNA is widely distributed throughout the brain with varying regional expression. The pattern of PDE9A mRNA expression closely resembles that of soluble guanylyl cyclase (sGC) in the rat brain, suggesting a possible functional association or coupling of these two enzymes in the regulation of cGMP levels. Most of the brain areas expressing PDE9A mRNA also contain neuronal nitric oxide synthase (NOS), the enzymatic source of NO and the principal activator of sGC. PDE9A is the only cGMP-specific PDE with significant expression in the forebrain, and as such is likely to play an important role in NO-cGMP signaling.
Collapse
|
189
|
Weiss ML, Chowdhury SI, Patel KP, Kenney MJ, Huang J. Neural circuitry of the kidney: NO-containing neurons. Brain Res 2001; 919:269-82. [PMID: 11701139 DOI: 10.1016/s0006-8993(01)03030-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The neurons synthesizing nitric oxide (NO) that are part of the renal sympathetic pathways were located by double-staining for the neuronal isoform of nitric oxide synthase (nNOS) using immunocytochemistry to identify NO-synthesizing neurons and transneuronal tracing following infection of the left kidney with pseudorabies virus (PRV). Following kidney injection with PRV, the animals survived 4-day post-inoculation prior to sacrifice and tissue processing. PRV-infected neurons that double-stained for nNOS were found in the paraventricular hypothalamic nucleus (PVN), the raphe obscurus nucleus (ROb), the ventromedial medulla (VMM), the rostral ventrolateral medulla (rVLM) and the A5 cell group. In the thoracolumbar spinal cord, nNOS neurons co-localized with PRV-infected cells in the dorsal horn in laminae I, III-V ipsilateral to the injected kidney and in lamina X, the intermediolateral cell column, the lateral funiculus, the intercalated nucleus and the central autonomic area. We conclude that NO synthesizing cells may significantly affect renal autonomic pathways in the rat by interacting with the renal sensory and sympathomotor circuitry at multiple sites.
Collapse
Affiliation(s)
- M L Weiss
- Departments of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506-5602, USA.
| | | | | | | | | |
Collapse
|
190
|
Abstract
Most forms of hypertension are associated with a wide variety of functional changes in the hypothalamus. Alterations in the following substances are discussed: catecholamines, acetylcholine, angiotensin II, natriuretic peptides, vasopressin, nitric oxide, serotonin, GABA, ouabain, neuropeptide Y, opioids, bradykinin, thyrotropin-releasing factor, vasoactive intestinal polypeptide, tachykinins, histamine, and corticotropin-releasing factor. Functional changes in these substances occur throughout the hypothalamus but are particularly prominent rostrally; most lead to an increase in sympathetic nervous activity which is responsible for the rise in arterial pressure. A few appear to be depressor compensatory changes. The majority of the hypothalamic changes begin as the pressure rises and are particularly prominent in the young rat; subsequently they tend to fluctuate and overall to diminish with age. It is proposed that, with the possible exception of the Dahl salt-sensitive rat, the hypothalamic changes associated with hypertension are caused by renal and intrathoracic cardiopulmonary afferent stimulation. Renal afferent stimulation occurs as a result of renal ischemia and trauma as in the reduced renal mass rat. It is suggested that afferents from the chest arise, at least in part, from the observed increase in left auricular pressure which, it is submitted, is due to the associated documented impaired ability to excrete sodium. It is proposed, therefore, that the hypothalamic changes in hypertension are a link in an integrated compensatory natriuretic response to the kidney's impaired ability to excrete sodium.
Collapse
Affiliation(s)
- H E de Wardener
- Department of Clinical Chemistry, Imperial College School of Medicine, Charing Cross Campus, London, United Kingdom.
| |
Collapse
|
191
|
Casado M, Callejas NA, Rodrigo J, Zhao X, Dey SK, Boscá L, Martín-Sanz P. Contribution of cyclooxygenase 2 to liver regeneration after partial hepatectomy. FASEB J 2001; 15:2016-2018. [PMID: 11511527 DOI: 10.1096/fj.01-0158fje] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Partial hepatectomy (PH) triggers a rapid regenerative response in the remaining tissue to reinstate the organ function and the cell numbers. Among the molecules that change in the course of regeneration is an accumulation of prostaglandin E2 in the sera of rats with PH. Analysis of the cyclooxygenase (COX) isoenzymes in the remnant liver showed the preferential expression of COX-2 in hepatocytes. Cultured regenerating hepatocytes expressed significant levels of COX-2, a process that was not observed in the sham counterparts. Maximal expression of COX-2 was detected 16 h after PH with increased levels present even at 96 h. Pharmacological inhibition of COX-2 activity with NS398 shunted the up-regulation of cell proliferation after PH, which suggests a positive interaction of prostaglandins with the progression of the cell cycle. Similar results were obtained after PH of mice lacking the COX-2 gene. The expression of COX-2 in regenerating liver was concomitant with a decrease in CCAAT-enhancer binding protein (C/EBP-a) level and an increase in the expression of C/EBP-b and C/EBP-d. These results suggest a contribution of the enhanced synthesis of prostaglandins to liver regeneration observed after PH.
Collapse
Affiliation(s)
- M Casado
- Instituto de Bioquímica, Centro Mixto CSIC-UCM, Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
192
|
Rodrigo J, Alonso D, Fernández AP, Serrano J, Richart A, López JC, Santacana M, Martínez-Murillo R, Bentura ML, Ghiglione M, Uttenthal LO. Neuronal and inducible nitric oxide synthase expression and protein nitration in rat cerebellum after oxygen and glucose deprivation. Brain Res 2001; 909:20-45. [PMID: 11478918 DOI: 10.1016/s0006-8993(01)02613-0] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
A perfusion model of global cerebral ischemia was used for the immunohistochemical study of changes in the glutamate-nitric oxide (NO) system in the rat cerebellum and cerebellar nuclei during a 0-14 h reperfusion period after 30 min of oxygen and glucose deprivation, with and without administration of 1.5 mM N(omega)-nitro-L-arginine methyl ester (L-NAME). While immunostaining for N-methyl-D-aspartate receptor subunit 1 (NMDAR1) showed no marked changes during the reperfusion period, neuronal NO synthase (nNOS) immunostaining increased in stellate and basket cells, granule cells and neurons of the cerebellar nuclei. However, global cerebellar nNOS concentrations determined by Western blotting remained largely unchanged in comparison with actin expression. Inducible NOS (iNOS) immunostaining appeared in Purkinje cells and neurons of the cerebellar nuclei after 2-4 h of reperfusion and intensified during the 6-14 h period. This was reflected by an increase in global cerebellar iNOS expression determined by Western blotting. Immunostaining for protein nitrotyrosine was seen in Purkinje cells, stellate and basket cells, neurons of the cerebellar nuclei and glial cells in controls, and showed a progressive translocation in Purkinje cells and neurons of the cerebellar nuclei from an initial perinuclear or nuclear location towards the periphery. At the end of the reperfusion period the Purkinje cell apical dendrites were notably retracted and tortuous. Prior and concurrent L-NAME administration eliminated nitrotyrosine immunostaining in controls and blocked or reduced most of the postischemic changes observed. The results suggest that while nNOS expression may be modified in certain cells, iNOS is induced after a 2-4 h period, and that changes in protein nitration may be associated with changes in cell morphology.
Collapse
Affiliation(s)
- J Rodrigo
- Department of Neuroanatomy and Cell Biology, Instituto Cajal (CSIC), Avenida del Doctor Arce 37, E-28002, Madrid, Spain.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
193
|
Sánchez-Islas E, León-Olea M. Histochemical and immunohistochemical localization of neuronal nitric oxide synthase in the olfactory epithelium of the axolotl, Ambystoma mexicanum. Nitric Oxide 2001; 5:302-16. [PMID: 11485369 DOI: 10.1006/niox.2001.0347] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aim of this study was to describe the anatomic distribution of neuronal nitric oxide synthase immunoreactivity (nNOS-IR) and nicotinamide-adenine dinucleotide phosphate-diaphorase (NADPH-d) staining in the olfactory epithelium of the axolotl, juvenile, and neotenic adult, Ambystoma mexicanum. Nitric oxide (NO, nitrogen monoxide) is a widespread molecule that has been identified both as a neuromodulator and as an intracellular messenger. In the olfactory system, NO has been proposed to play a role in olfactory transduction. Nitric oxide synthase (NOS) can be detected by histochemical (NADPH-d) and immunohistochemical techniques. NADPH-d staining has been described in olfactory receptor neurons (ORN) of several species; however, nNOS-IR has not always been found at ORN. Present results show intense NADPH-d staining and nNOS-IR in the dendrites and cell bodies of ORN in both the nasal cavity and the vomeronasal organ of axolotls. Unilateral olfactory axotomy was conducted to confirm that labels were at ORN. Two weeks after this procedure an important decrease in NADPH-d staining and nNOS-IR was observed. The remaining labels were mostly in basal cells. By 5 weeks postaxotomy both labels were almost totally absent. Thus, both NADPH-d staining and nNOS-IR were mainly localized in ORN. NADPH-d staining and nNOS-IR were also found in nerve fibers surrounding arterioles, as well as in secretory and duct cells of the Bowman's glands. This last anatomical localization suggests that in the A. mexicanum NO might be involved in functions other than only olfactory transduction, such as regulation of local blood flow, glandular secretion, and ORN development.
Collapse
Affiliation(s)
- E Sánchez-Islas
- Laboratorio de Histología y Microscopía Electrónica, División de Neurociencias, Instituto Nacional de Psiquiatría, Av. México-Xochimilco No. 101, México, 14370 D.F, México
| | | |
Collapse
|
194
|
Grassi S, Pettorossi VE. Synaptic plasticity in the medial vestibular nuclei: role of glutamate receptors and retrograde messengers in rat brainstem slices. Prog Neurobiol 2001; 64:527-53. [PMID: 11311461 DOI: 10.1016/s0301-0082(00)00070-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The analysis of cellular-molecular events mediating synaptic plasticity within vestibular nuclei is an attempt to explain the mechanisms underlying vestibular plasticity phenomena. The present review is meant to illustrate the main results, obtained in vitro, on the mechanisms underlying long-term changes in synaptic strength within the medial vestibular nuclei. The synaptic plasticity phenomena taking place at the level of vestibular nuclei could be useful for adapting and consolidating the efficacy of vestibular neuron responsiveness to environmental requirements, as during visuo-vestibular recalibration and vestibular compensation. Following a general introduction on the most salient features of vestibular compensation and visuo-vestibular adaptation, which are two plastic events involving neuronal circuitry within the medial vestibular nuclei, the second and third sections describe the results from rat brainstem slice studies, demonstrating the possibility to induce long-term potentiation and depression in the medial vestibular nuclei, following high frequency stimulation of the primary vestibular afferents. In particular the mechanisms sustaining the induction and expression of vestibular long-term potentiation and depression, such as the role of various glutamate receptors and retrograde messengers have been described. The relevant role of the interaction between the platelet-activating factor, acting as a retrograde messenger, and the presynaptic metabotropic glutamate receptors, in determining the full expression of vestibular long-term potentiation is also underlined. In addition, the mechanisms involved in vestibular long-term potentiation have been compared with those leading to long-term potentiation in the hippocampus to emphasize the most significant differences emerging from vestibular studies. The fourth part, describes recent results demonstrating the essential role of nitric oxide, another retrograde messenger, in the induction of vestibular potentiation. Finally the fifth part suggests the possible functional significance of different action times of the two retrograde messengers and metabotropic glutamate receptors, which are involved in mediating the presynaptic mechanism sustaining vestibular long-term potentiation.
Collapse
Affiliation(s)
- S Grassi
- Dipartimento di Medicina Interna, Sezione di Fisiologia Umana, Università di Perugia, I-06100, Perugia, Italy.
| | | |
Collapse
|
195
|
Nylén A, Skagerberg G, Alm P, Larsson B, Holmqvist B, Andersson KE. Nitric oxide synthase in the hypothalamic paraventricular nucleus of the female rat; organization of spinal projections and coexistence with oxytocin or vasopressin. Brain Res 2001; 908:10-24. [PMID: 11457427 DOI: 10.1016/s0006-8993(01)02539-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We investigated the distributions and interrelations of neuronal nitric oxide (NO) synthase- (nNOS), oxytocin- (OT), and 8-arginine vasopressin- (AVP) immunoreactive (IR) neurons in the paraventricular nucleus (PVN), and the occurrence and distribution of nNOS spinally projecting neurons in the PVN of the female rat. Using double labelling immunohistochemistry, we mapped the distribution of nNOS-, OT- and AVP-immunoreactive (IR) neuronal cell bodies in the different parts of the PVN. About 80% of nNOS-IR cell bodies were magnocellular. About 30% of the nNOS-IR cell bodies were OT-IR, colocalization being most frequent in the rostral parts. In comparison, only approximately 3% of all nNOS-IR cell bodies were AVP-IR, evenly distributed throughout the PVN. True Blue (TB), administered unilaterally into the spinal cord, disclosed that most spinally projecting cell bodies in the PVN were localized in caudal parts. Combined TB tracing and nNOS immunohistochemistry showed that approximately 30% of spinally projecting neurons in the PVN were nNOS-IR, and that approximately 40% of these were magnocellular. Ipsilateral nNOS spinal projections were about eight times more frequent than the contralateral nNOS projections. The study describes the detailed neuroanatomical organization of nNOS neurons coexpressing OT or AVP, and of nNOS spinally projecting neurons within defined parts of the PVN. In contrast to the paraventriculo-spinal system in general, we show that the nNOS paraventriculo-spinal pathway to a large extent originates in magnocellular cell bodies. The results suggest that NO is an important messenger in the paraventriculo-spinal pathway that may in part act in concert with OT.
Collapse
Affiliation(s)
- A Nylén
- Department of Clinical Pharmacology, Lund University Hospital, S-221 85, Lund, Sweden
| | | | | | | | | | | |
Collapse
|
196
|
Moreno-López B, Escudero M, De Vente J, Estrada C. Morphological identification of nitric oxide sources and targets in the cat oculomotor system. J Comp Neurol 2001; 435:311-24. [PMID: 11406814 DOI: 10.1002/cne.1032] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Nitric oxide (NO) production by specific neurons in the prepositus hypoglossi (PH) nucleus is necessary for the correct performance of eye movements in alert cats. In an attempt to characterize the morphological substrate of this NO function, the distribution of nitrergic neurons and NO-responding neurons has been investigated in different brainstem structures related to eye movements. Nitrergic neurons were stained by either immunohistochemistry for NO synthase I or histochemistry for reduced nicotinamide adenine dinucleotide phosphate (NADPH) diaphorase. The NO targets were identified by cyclic guanosine monophosphate (cGMP) immunohistochemistry in animals treated with a NO donor immediately before fixation of the brain. Connectivity between cells of the NO-cGMP pathway was analyzed by injections of the retrograde tracers horseradish peroxidase or fast blue in different structures. The motor nuclei commanding extraocular muscles did not contain elements of the NO-cGMP pathway, except for some scattered nitrergic neurons in the most caudal part of the abducens nucleus. The PH nucleus contained the largest number of nitrergic cell bodies and a rich neuropil, distributed in two groups in medial and lateral positions in the caudal part, and one central group in the rostral part of the nucleus. An abundant cGMP positive neuropil was the only NO-sensitive element in the PH nucleus, where no cGMP-producing neuronal cell bodies were observed. The opposite disposition was found in the marginal zone between the PH and the medial vestibular nuclei, with a large number of NO-sensitive cGMP-producing neurons and almost no nitrergic cells. Both nitrergic and NO-sensitive cell bodies were found in the medial and inferior vestibular nuclei and in the superior colliculus, whereas the lateral geniculate nucleus contained nitrergic neuropil and a large number of NO-sensitive cell bodies. Some of the cGMP-positive neurons in the marginal zone and medial vestibular nucleus projected to the PH nucleus, predominantly to the ipsilateral side. These morphological findings may help to explain the mechanism of action of NO in the oculomotor system.
Collapse
Affiliation(s)
- B Moreno-López
- Area de Fisiología, Facultad de Medicina, Universidad de Cádiz, Plaza Fragela 9, 11003 Cádiz, Spain
| | | | | | | |
Collapse
|
197
|
Ito M. Cerebellar long-term depression: characterization, signal transduction, and functional roles. Physiol Rev 2001; 81:1143-95. [PMID: 11427694 DOI: 10.1152/physrev.2001.81.3.1143] [Citation(s) in RCA: 600] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cerebellar Purkinje cells exhibit a unique type of synaptic plasticity, namely, long-term depression (LTD). When two inputs to a Purkinje cell, one from a climbing fiber and the other from a set of granule cell axons, are repeatedly associated, the input efficacy of the granule cell axons in exciting the Purkinje cell is persistently depressed. Section I of this review briefly describes the history of research around LTD, and section II specifies physiological characteristics of LTD. Sections III and IV then review the massive data accumulated during the past two decades, which have revealed complex networks of signal transduction underlying LTD. Section III deals with a variety of first messengers, receptors, ion channels, transporters, G proteins, and phospholipases. Section IV covers second messengers, protein kinases, phosphatases and other elements, eventually leading to inactivation of DL-alpha-amino-3-hydroxy-5-methyl-4-isoxazolone-propionate-selective glutamate receptors that mediate granule cell-to-Purkinje cell transmission. Section V defines roles of LTD in the light of the microcomplex concept of the cerebellum as functionally eliminating those synaptic connections associated with errors during repeated exercises, while preserving other connections leading to the successful execution of movements. Section VI examines the validity of this microcomplex concept based on the data collected from recent numerous studies of various forms of motor learning in ocular reflexes, eye-blink conditioning, posture, locomotion, and hand/arm movements. Section VII emphasizes the importance of integrating studies on LTD and learning and raises future possibilities of extending cerebellar research to reveal memory mechanisms of implicit learning in general.
Collapse
Affiliation(s)
- M Ito
- Brain Science Institute, RIKEN, Wako, Saitama, Japan.
| |
Collapse
|
198
|
Kowiański P, Timmermans JP, Moryś J. Differentiation in the immunocytochemical features of intrinsic and cortically projecting neurons in the rat claustrum -- combined immunocytochemical and axonal transport study. Brain Res 2001; 905:63-71. [PMID: 11423080 DOI: 10.1016/s0006-8993(01)02408-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Retrograde axonal transport method of the fluorescent tracer FluoroGold (FG) was combined with immunocytochemistry to investigate the occurrence of nitric oxide synthase (NOS), somatostatin (SOM), neuropeptide Y (NPY) and vasoactive intestinal peptide (VIP) in both intrinsic and cortically projecting neurons of the rat claustrum. Only NOS was detected in both the scattered projecting neurons and internal neurons of the claustrum. Approximately 20% of NOS-immunoreactive neurons in the claustrum were also retrogradely labeled with FG after tracer injections into the frontal cortex. The other substances were exclusively confined to the population of interneurons, which mainly displayed an oval, round or fusiform shape and a medium size. Apart from the neuronal somata, the proximal parts of the dendritic arborization were clearly visible. The immunoreactive neurons were randomly distributed in the claustrum and their neuronal size and shape did not differ in the various parts of the studied structure. Co-localization of NOS and SOM or NOS and NPY was reported. In conclusion, SOM, VIP and NPY do not appear to play a significant role in the claustro-cortical projection but are most probably involved in modulation and information transfer in the claustrum. The appearance of NOS in both cortically projecting and intrinsic neurons of the claustrum may be indicative of a fundamentally different role in the functioning of the claustro-cortical loop.
Collapse
Affiliation(s)
- P Kowiański
- Department of Anatomy and Neurobiology, Medical University of Gdańsk, 1 Debinki St., 80-211, Gdańsk, Poland.
| | | | | |
Collapse
|
199
|
Terada H, Nagai T, Okada S, Kimura H, Kitahama K. Ontogenesis of neurons immunoreactive for nitric oxide synthase in rat forebrain and midbrain. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2001; 128:121-37. [PMID: 11412898 DOI: 10.1016/s0165-3806(01)00162-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We studied the immunohistochemical localization of neuronal nitric oxide synthase (nNOS) in the developing rat brain on embryonic days 13 (E13), 15 (E15), 17 (E17) and 19 (E19) and postnatal days 0 (P0), 7 (P7) and 14 (P14). A few neurons positive for nNOS were first detected at E15 in the hypothalamus and pons. At E17, many positive cells became detectable in the thalamus. At E19, the positive cells in these three regions were rapidly increased in number, and a few positive neurons were also observed in such regions as the cerebral cortex and striatum. Positive cells in the hypothalamus tended to locate ventrolaterally. Positive neurons, stained very intensely as in adult rats, were seen in the pedunculopontine tegmental nucleus, laterodorsal tegmental nucleus and parafascicular nucleus. Two weeks after birth, positive neurons of larger somata with many processes were distributed widely in the cerebral cortex and hippocampus. The present study indicates that, in the forebrain and midbrain, the distribution pattern of nNOS-containing neurons is fundamentally completed by E19.
Collapse
Affiliation(s)
- H Terada
- Pediatric Clinic, Meiwa Hospital, 4-31 Agenaruo, Nishinomiya, Hyogo 663-8186, Japan.
| | | | | | | | | |
Collapse
|
200
|
Druga R, Syka J. Effect of auditory cortex lesions on NADPH-diaphorase staining in the inferior colliculus of rat. Neuroreport 2001; 12:1555-9. [PMID: 11409715 DOI: 10.1097/00001756-200106130-00009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Projections from the auditory cortex (AC) in the rat terminate in the dorsal cortex (DC) and in the external cortex (EC) of the inferior colliculus (IC), areas which exhibit a moderate number of nicotinamide-adenine dinucleotide phosphate-diaphorase (NADPH-d) positive neurons. NADPH-d co-localizes with nitric oxide synthase, which is responsible for the production of the transcellular messenger, nitric oxide. Changes in NADPH-d staining in the IC were found after unilateral lesions of the AC. Lesions resulted in a reduction in NADPH-d staining in neurons and neuropil within the ipsilateral DC and EC with the maximum reduction occurring 3-4 days after lesion. The reduction in NADPH-d staining in the contralateral IC was less pronounced. Lesions affecting auditory areas Te 1 and Te 3 produced the largest decrease in NADPH-d staining in neurons and neuropil. This finding may be related to the abolition of the influence of glutamatergic corticocollicular and commissural pathways.
Collapse
Affiliation(s)
- R Druga
- Department of Functional Anatomy 2nd Medical Faculty, Charles University, Prague, Czech Republic
| | | |
Collapse
|