151
|
Markov AV, Kel AE, Salomatina OV, Salakhutdinov NF, Zenkova MA, Logashenko EB. Deep insights into the response of human cervical carcinoma cells to a new cyano enone-bearing triterpenoid soloxolone methyl: a transcriptome analysis. Oncotarget 2019; 10:5267-5297. [PMID: 31523389 PMCID: PMC6731101 DOI: 10.18632/oncotarget.27085] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 06/19/2019] [Indexed: 02/07/2023] Open
Abstract
Semisynthetic triterpenoids, bearing cyano enone functionality in ring A, are considered now as novel promising anti-tumor agents. However, despite the large-scale studies, their effects on cervical carcinoma cells and, moreover, mechanisms underlying cell death activation by such compounds in this cell type have not been fully elucidated. In this work, we attempted to reconstitute the key pathways and master regulators involved in the response of human cervical carcinoma KB-3-1 cells to the novel glycyrrhetinic acid derivative soloxolone methyl (SM) by a transcriptomic approach. Functional annotation of differentially expressed genes, analysis of their cis- regulatory sequences and protein-protein interaction network clearly indicated that stress of endoplasmic reticulum (ER) is the central event triggered by SM in the cells. A range of key ER stress sensors and transcription factor AP-1 were identified as upstream transcriptional regulators, controlling the response of the cells to SM. Additionally, by using Gene Expression Omnibus data, we showed the ability of SM to modulate the expression of key genes involved in regulation of the high proliferative rate of cervical carcinoma cells. Further Connectivity Map analysis revealed similarity of SM's effects with known ER stress inducers thapsigargin and geldanamycin, targeting SERCA and Grp94, respectively. According to the molecular docking study, SM could snugly fit into the active sites of these proteins in the positions very close to that of both inhibitors. Taken together, our findings provide a basis for the better understanding of the intracellular processes in tumor cells switched on in response to cyano enone-bearing triterpenoids.
Collapse
Affiliation(s)
- Andrey V Markov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russian Federation
| | - Alexander E Kel
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russian Federation.,geneXplain GmbH, Wolfenbüttel 38302, Germany
| | - Oksana V Salomatina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russian Federation.,N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russian Federation
| | - Nariman F Salakhutdinov
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russian Federation
| | - Marina A Zenkova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russian Federation
| | - Evgeniya B Logashenko
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russian Federation
| |
Collapse
|
152
|
Edgar JA. L-ascorbic acid and the evolution of multicellular eukaryotes. J Theor Biol 2019; 476:62-73. [DOI: 10.1016/j.jtbi.2019.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 05/10/2019] [Accepted: 06/02/2019] [Indexed: 12/26/2022]
|
153
|
Li C, Huang Z, Gu L. SETD2 reduction adversely affects the development of mouse early embryos. J Cell Biochem 2019; 121:797-803. [PMID: 31407364 DOI: 10.1002/jcb.29325] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/15/2019] [Indexed: 01/03/2023]
Abstract
SET domain-containing protein 2 (SETD2), the protein of regulating trimethylation status of histone H3 at lysine 36 (H3K36), participates in the maintenance of chromatin architecture, transcription elongation, genome stability, and other biological events. However, its function in preimplantation embryos is still obscure. In this study, specific small interfering RNA was employed to investigate the functions of SETD2. We find that deletion of SETD2 results in the developmental delay of mouse early embryos, indicative of the compromised developmental potential. Remarkably, SETD2 knockdown induces the accumulation of the DNA lesions and apoptotic blastomeres in early embryos. In addition, the methylation level of H3K36 is significantly reduced in two-cell embryos depleted of SETD2. In summary, our data indicate that SETD2 maintains genome stability perhaps via regulating trimethylation status of H3K36, consequently controlling the embryo quality. These findings pave the avenue for understanding the cross-talk between epigenome and SETD2 during early embryo development.
Collapse
Affiliation(s)
- Chunling Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Zhenyue Huang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Ling Gu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
154
|
Abstract
Repair of damaged DNA plays a crucial role in maintaining genomic integrity and normal cell function. The base excision repair (BER) pathway is primarily responsible for removing modified nucleobases that would otherwise cause deleterious and mutagenic consequences and lead to disease. The BER process is initiated by a DNA glycosylase, which recognizes and excises the target nucleobase lesion, and is completed via downstream enzymes acting in a well-coordinated manner. A majority of our current understanding about how BER enzymes function comes from in vitro studies using free duplex DNA as a simplified model. In eukaryotes, however, BER is challenged by the packaging of genomic DNA into chromatin. The fundamental structural repeating unit of chromatin is the nucleosome, which presents a more complex substrate context than free duplex DNA for repair. In this chapter, we discuss how BER enzymes, particularly glycosylases, engage in the context of packaged DNA with insights obtained from both in vivo and in vitro studies. Furthermore, we review factors and mechanisms that can modify chromatin architecture and/or influence DNA accessibility to BER machinery, such as the geometric location of the damage site, nucleosomal DNA unwrapping, histone post-translational modifications, histone variant incorporation, and chromatin remodeling.
Collapse
Affiliation(s)
- Chuxuan Li
- Department of Chemistry, Brown University, Providence, RI, United States
| | - Sarah Delaney
- Department of Chemistry, Brown University, Providence, RI, United States.
| |
Collapse
|
155
|
Crump NT, Milne TA. Why are so many MLL lysine methyltransferases required for normal mammalian development? Cell Mol Life Sci 2019; 76:2885-2898. [PMID: 31098676 PMCID: PMC6647185 DOI: 10.1007/s00018-019-03143-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 05/10/2019] [Indexed: 12/12/2022]
Abstract
The mixed lineage leukemia (MLL) family of proteins became known initially for the leukemia link of its founding member. Over the decades, the MLL family has been recognized as an important class of histone H3 lysine 4 (H3K4) methyltransferases that control key aspects of normal cell physiology and development. Here, we provide a brief history of the discovery and study of this family of proteins. We address two main questions: why are there so many H3K4 methyltransferases in mammals; and is H3K4 methylation their key function?
Collapse
Affiliation(s)
- Nicholas T Crump
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, NIHR Oxford Biomedical Research Centre Haematology Theme, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Thomas A Milne
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, NIHR Oxford Biomedical Research Centre Haematology Theme, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
156
|
Linscott ML, Chung WCJ. TET1 regulates fibroblast growth factor 8 transcription in gonadotropin releasing hormone neurons. PLoS One 2019; 14:e0220530. [PMID: 31361780 PMCID: PMC6667164 DOI: 10.1371/journal.pone.0220530] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 07/17/2019] [Indexed: 12/18/2022] Open
Abstract
Fibroblast growth factor 8 (FGF8) is a potent morphogen that regulates the ontogenesis of gonadotropin-releasing hormone (GnRH) neurons, which control the hypothalamus-pituitary-gonadal (HPG) axis, and therefore reproductive success. Indeed, FGF8 and FGFR1 deficiency severely compromises vertebrate reproduction in mice and humans and is associated with Kallmann Syndrome (KS), a congenital disease characterized by hypogonadotropic hypogonadism associated with anosmia. Our laboratory demonstrated that FGF8 signaling through FGFR1, both of which are KS-related genes, is necessary for proper GnRH neuron development in mice and humans. Here, we investigated the possibility that non-genetic factors, such as the epigenome, may contribute to KS onset. For this purpose, we developed an embryonic explant model, utilizing the mouse olfactory placode (OP), the birthplace of GnRH neurons. We show that TET1, which converts 5-methylcytosine residues (5mC) to 5-hydroxymethylated cytosines (5hmC), controls transcription of Fgf8 during GnRH neuron ontogenesis. Through MeDIP and ChIP RT-qPCR we found that TET1 bound to specific CpG islands on the Fgf8 promoter. We found that the temporal expression of Fgf8 correlates with not only TET1 binding, but also with 5hmC enrichment. siRNA knockdown of Tet1 reduced Fgf8 and Fgfr1 mRNA expression. During this time period, Fgf8 also switched histone status, most likely via recruitment of EZH2, a major component of the polycomb repressor complex-2 (PRC2) at E13.5. Together, these studies underscore the significance of epigenetics and chromatin modifications to temporally regulated genes involved in KS.
Collapse
Affiliation(s)
- Megan L. Linscott
- Department of Biological Sciences, Kent State University, Kent, Ohio, United States of America
| | - Wilson C. J. Chung
- Department of Biological Sciences, Kent State University, Kent, Ohio, United States of America
- School of Biomedical Sciences, Kent State University, Kent, Ohio, United States of America
| |
Collapse
|
157
|
Kim T, Seo HD, Hennighausen L, Lee D, Kang K. Octopus-toolkit: a workflow to automate mining of public epigenomic and transcriptomic next-generation sequencing data. Nucleic Acids Res 2019; 46:e53. [PMID: 29420797 PMCID: PMC5961211 DOI: 10.1093/nar/gky083] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 01/30/2018] [Indexed: 01/05/2023] Open
Abstract
Octopus-toolkit is a stand-alone application for retrieving and processing large sets of next-generation sequencing (NGS) data with a single step. Octopus-toolkit is an automated set-up-and-analysis pipeline utilizing the Aspera, SRA Toolkit, FastQC, Trimmomatic, HISAT2, STAR, Samtools, and HOMER applications. All the applications are installed on the user's computer when the program starts. Upon the installation, it can automatically retrieve original files of various epigenomic and transcriptomic data sets, including ChIP-seq, ATAC-seq, DNase-seq, MeDIP-seq, MNase-seq and RNA-seq, from the gene expression omnibus data repository. The downloaded files can then be sequentially processed to generate BAM and BigWig files, which are used for advanced analyses and visualization. Currently, it can process NGS data from popular model genomes such as, human (Homo sapiens), mouse (Mus musculus), dog (Canis lupus familiaris), plant (Arabidopsis thaliana), zebrafish (Danio rerio), fruit fly (Drosophila melanogaster), worm (Caenorhabditis elegans), and budding yeast (Saccharomyces cerevisiae) genomes. With the processed files from Octopus-toolkit, the meta-analysis of various data sets, motif searches for DNA-binding proteins, and the identification of differentially expressed genes and/or protein-binding sites can be easily conducted with few commands by users. Overall, Octopus-toolkit facilitates the systematic and integrative analysis of available epigenomic and transcriptomic NGS big data.
Collapse
Affiliation(s)
- Taemook Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Hogyu David Seo
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Lothar Hennighausen
- Laboratory of Genetics and Physiology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Daeyoup Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Keunsoo Kang
- Department of Microbiology, Dankook University, Cheonan 31116, Republic of Korea
| |
Collapse
|
158
|
Abstract
KDM5 family members (A, B, C and D) that demethylate H3K4me3 have been shown to be involved in human cancers. Here we performed screening for KDM5A inhibitors from chemical libraries using the AlphaScreen method and identified a battery of screening hits that inhibited recombinant KDM5A. These compounds were further subjected to cell-based screening using a reporter gene that responded to KDM5A inhibition and 6 compounds were obtained as candidate inhibitors. When further confirmation of their inhibition activity on cellular KDM5A was made by immunostaining H3K4me3 in KDM5A-overexpressing cells, ryuvidine clearly repressed H3K4me3 demethylation. Ryuvidine prevented generation of gefitinib-tolerant human small-cell lung cancer PC9 cells and also inhibited the growth of the drug-tolerant cells at concentrations that did not affect the growth of parental PC9 cells. Ryuvidine inhibited not only KDM5A but also recombinant KDM5B and C; KDM5B was the most sensitive to the inhibitor. These results warrant that ryuvidine may serve as a lead compound for KDM5 targeted therapeutics.
Collapse
|
159
|
Ward NP, DeNicola GM. Sulfur metabolism and its contribution to malignancy. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 347:39-103. [PMID: 31451216 DOI: 10.1016/bs.ircmb.2019.05.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Metabolic dysregulation is an appreciated hallmark of cancer and a target for therapeutic intervention. Cellular metabolism involves a series of oxidation/reduction (redox) reactions that yield the energy and biomass required for tumor growth. Cells require diverse molecular species with constituent sulfur atoms to facilitate these processes. For humans, this sulfur is derived from the dietary consumption of the proteinogenic amino acids cysteine and methionine, as only lower organisms (e.g., bacteria, fungi, and plants) can synthesize them de novo. In addition to providing the sulfur required to sustain redox chemistry, the metabolism of these sulfur-containing amino acids yield intermediate metabolites that constitute the cellular antioxidant system, mediate inter- and intracellular signaling, and facilitate the epigenetic regulation of gene expression, all of which contribute to tumorigenesis.
Collapse
Affiliation(s)
- Nathan P Ward
- Department of Cancer Physiology, Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Gina M DeNicola
- Department of Cancer Physiology, Moffitt Cancer Center and Research Institute, Tampa, FL, United States.
| |
Collapse
|
160
|
Hernández-Saavedra D, Moody L, Xu GB, Chen H, Pan YX. Epigenetic Regulation of Metabolism and Inflammation by Calorie Restriction. Adv Nutr 2019; 10:520-536. [PMID: 30915465 PMCID: PMC6520046 DOI: 10.1093/advances/nmy129] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 11/26/2018] [Accepted: 12/17/2018] [Indexed: 12/16/2022] Open
Abstract
Chronic caloric restriction (CR) without malnutrition is known to affect different cellular processes such as stem cell function, cell senescence, inflammation, and metabolism. Despite the differences in the implementation of CR, the reduction of calories produces a widespread beneficial effect in noncommunicable chronic diseases, which can be explained by improvements in immuno-metabolic adaptation. Cellular adaptation that occurs in response to dietary patterns can be explained by alterations in epigenetic mechanisms such as DNA methylation, histone modifications, and microRNA. In this review, we define these modifications and systematically summarize the current evidence related to CR and the epigenome. We then explain the significance of genome-wide epigenetic modifications in the context of disease development. Although substantial evidence exists for the widespread effect of CR on longevity, there is no consensus regarding the epigenetic regulations of the underlying cellular mechanisms that lead to improved health. We provide compelling evidence that CR produces long-lasting epigenetic effects that mediate expression of genes related to immuno-metabolic processes. Epigenetic reprogramming of the underlying chronic low-grade inflammation by CR can lead to immuno-metabolic adaptations that enhance quality of life, extend lifespan, and delay chronic disease onset.
Collapse
Affiliation(s)
| | | | - Guanying Bianca Xu
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Hong Chen
- Division of Nutritional Sciences,Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Yuan-Xiang Pan
- Division of Nutritional Sciences,Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL,Address correspondence to Y-XP (e-mail: )
| |
Collapse
|
161
|
Elías-Villalobos A, Barrales RR, Ibeas JI. Chromatin modification factors in plant pathogenic fungi: Insights from Ustilago maydis. Fungal Genet Biol 2019; 129:52-64. [PMID: 30980908 DOI: 10.1016/j.fgb.2019.04.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 03/25/2019] [Accepted: 04/08/2019] [Indexed: 01/10/2023]
Abstract
Adaptation to the environment is a requirement for the survival of every organism. For pathogenic fungi this also implies coping with the different conditions that occur during the infection cycle. After detecting changes to external media, organisms must modify their gene expression patterns in order to accommodate the new circumstances. Control of gene expression is a complex process that involves the coordinated action of multiple regulatory elements. Chromatin modification is a well-known mechanism for controlling gene expression in response to environmental changes in all eukaryotes. In pathogenic fungi, chromatin modifications are known to play crucial roles in controlling host interactions and their virulence capacity, yet little is known about the specific genes they directly target and to which signals they respond. The smut fungus Ustilago maydis is an excellent model system in which multiple molecular and cellular approaches are available to study biotrophic interactions. Many target genes regulated during the infection process have been well studied, however, how they are controlled and specifically how chromatin modifications affect gene regulation in the context of infection is not well known in this organism. Here, we analyse the presence of chromatin modifying enzymes and complexes in U. maydis and discuss their putative roles in this plant pathogen in the context of findings from other organisms, including other plant pathogens such as Magnaporthe oryzae and Fusarium graminearum. We propose U. maydis as a remarkable organism with interesting chromatin features, which would allow finding new functions of chromatin modifications during plant pathogenesis.
Collapse
Affiliation(s)
- Alberto Elías-Villalobos
- Centre de Recherche en Biologie cellulaire de Montpellier (CRBM), UMR5237-Centre National de la Recherche Scientifique-Université de Montpellier, Montpellier, France.
| | - Ramón R Barrales
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide, de Sevilla-Consejo Superior de Investigaciones Científicas-Junta de Andalucía, Sevilla, Spain.
| | - José I Ibeas
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide, de Sevilla-Consejo Superior de Investigaciones Científicas-Junta de Andalucía, Sevilla, Spain
| |
Collapse
|
162
|
Gupta R, Saha P, Sen T, Sen N. An augmentation in histone dimethylation at lysine nine residues elicits vision impairment following traumatic brain injury. Free Radic Biol Med 2019; 134:630-643. [PMID: 30790655 PMCID: PMC6588499 DOI: 10.1016/j.freeradbiomed.2019.02.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 01/16/2019] [Accepted: 02/13/2019] [Indexed: 12/26/2022]
Abstract
Traumatic Brain Injury (TBI) affects more than 1.7 million Americans each year and about 30% of TBI-patients having visual impairments. The loss of retinal ganglion cells (RGC) in the retina and axonal degeneration in the optic nerve have been attributed to vision impairment following TBI; however, the molecular mechanism has not been elucidated. Here we have shown that an increase in histone di-methylation at lysine 9 residue (H3K9Me2), synthesized by the catalytic activity of a histone methyltransferase, G9a is responsible for RGC loss and axonal degeneration in the optic nerve following TBI. To elucidate the molecular mechanism, we found that an increase in H3K9Me2 results in the induction of oxidative stress both in the RGC and optic nerve by decreasing the mRNA level of antioxidants such as Superoxide dismutase (sod) and catalase through impairing the transcriptional activity of Nuclear factor E2-related factor 2 (Nrf2) via direct interaction. The induction of oxidative stress is associated with death in RGC and oligodendrocyte precursor cells (OPCs). The death in OPCs is correlated with a reduction in myelination, and the expression of myelin binding protein (MBP) in association with degeneration of neurofilaments in the optic nerve. This event allied to an impairment of the retrograde transport of axons and loss of nerve fiber layer in the optic nerve following TBI. An administration of G9a inhibitor, UNC0638 attenuates the induction of H3K9Me2 both in RGC and optic nerve and subsequently activates Nrf2 to reduce oxidative stress. This event was concomitant with the rescue in the loss of retinal thickness, attenuation in optic nerve degeneration and improvement in the retrograde transport of axons following TBI.
Collapse
Affiliation(s)
- Rajaneesh Gupta
- Department of Neurological Surgery, University of Pittsburgh, 200 Lothrop Street, Scaife Hall, Pittsburgh, 15213, USA
| | - Pampa Saha
- Department of Neurological Surgery, University of Pittsburgh, 200 Lothrop Street, Scaife Hall, Pittsburgh, 15213, USA
| | - Tanusree Sen
- Department of Neurological Surgery, University of Pittsburgh, 200 Lothrop Street, Scaife Hall, Pittsburgh, 15213, USA
| | - Nilkantha Sen
- Department of Neurological Surgery, University of Pittsburgh, 200 Lothrop Street, Scaife Hall, Pittsburgh, 15213, USA.
| |
Collapse
|
163
|
Yang K, Prasse C, Greenberg MM. Effect of Histone Lysine Methylation on DNA Lesion Reactivity in Nucleosome Core Particles. Chem Res Toxicol 2019; 32:910-916. [PMID: 30916939 DOI: 10.1021/acs.chemrestox.9b00049] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Lysine methylation is a common post-translational histone modification that regulates transcription and gene expression. The lysine residues in the histone tail also react with damaged nucleotides in chromatin, including abasic sites and N7-methyl-2'-deoxyguanosine, the major product of DNA methylating agents. Lysine monomethylation transforms the ε-amine into a secondary amine, which could be more nucleophilic and/or basic than the ε-amine in lysine, and therefore more reactive with damaged DNA. The effect of lysine methylation on the reactivity with abasic sites and N7-methyl-2'-deoxyguanosine was examined in nucleosome core particles using a methylated lysine analogue derived from cysteine. ε-Amine methylation increases the rate constant for abasic site reaction within nucleosome core particles. Reactivity at the two positions examined increased less than twofold. Mechanistic experiments indicate that faster β-elimination from an intermediate iminium ion accounts for accelerated abasic reactivity. The rate constants for nucleophilic attack (Schiff base/iminium ion formation) by the lysine and methylated lysine analogues are indistinguishable. Similarly, the rate constants describing nucleophilic attack by the lysine and methylated lysine analogues on β-2'-fluoro-N7-methyl-2'-deoxyguanosine to form DNA-protein cross-links are also within experimental error of one another. These data indicate that abasic site containing DNA will be destabilized by lysine methylation. However, these experiments do not indicate that DNA-protein cross-link formation, a recently discovered form of damage resulting from N7-guanine methylation, will be affected by this post-translational modification.
Collapse
Affiliation(s)
- Kun Yang
- Department of Chemistry , Johns Hopkins University , Baltimore , Maryland 21218 , United States
| | - Carsten Prasse
- Department of Environmental Health and Engineering , Johns Hopkins University , Baltimore , Maryland 21218 , United States
| | - Marc M Greenberg
- Department of Chemistry , Johns Hopkins University , Baltimore , Maryland 21218 , United States
| |
Collapse
|
164
|
Ye C, Sutter BM, Wang Y, Kuang Z, Zhao X, Yu Y, Tu BP. Demethylation of the Protein Phosphatase PP2A Promotes Demethylation of Histones to Enable Their Function as a Methyl Group Sink. Mol Cell 2019; 73:1115-1126.e6. [PMID: 30772176 PMCID: PMC6628921 DOI: 10.1016/j.molcel.2019.01.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 11/29/2018] [Accepted: 01/08/2019] [Indexed: 12/21/2022]
Abstract
Dysregulation of chromatin methylation is associated with defects in cellular differentiation as well as a variety of cancers. How cells regulate the opposing activities of histone methyltransferase and demethylase enzymes to set the methylation status of the epigenome for proper control of gene expression and metabolism remains poorly understood. Here, we show that loss of methylation of the major phosphatase PP2A in response to methionine starvation activates the demethylation of histones through hyperphosphorylation of specific demethylase enzymes. In parallel, this regulatory mechanism enables cells to preserve SAM by increasing SAH to limit SAM consumption by methyltransferase enzymes. Mutants lacking the PP2A methyltransferase or the effector H3K36 demethylase Rph1 exhibit elevated SAM levels and are dependent on cysteine due to reduced capacity to sink the methyl groups of SAM. Therefore, PP2A directs the methylation status of histones by regulating the phosphorylation status of histone demethylase enzymes in response to SAM levels.
Collapse
Affiliation(s)
- Cunqi Ye
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9038, USA
| | - Benjamin M Sutter
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9038, USA
| | - Yun Wang
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9038, USA
| | - Zheng Kuang
- Department of Immunology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9093, USA
| | - Xiaozheng Zhao
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9038, USA
| | - Yonghao Yu
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9038, USA
| | - Benjamin P Tu
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9038, USA.
| |
Collapse
|
165
|
Abstract
In the past few decades, the field of neuroepigenetics has investigated how the brain encodes information to form long-lasting memories that lead to stable changes in behaviour. Activity-dependent molecular mechanisms, including, but not limited to, histone modification, DNA methylation and nucleosome remodelling, dynamically regulate the gene expression required for memory formation. Recently, the field has begun to examine how a learning experience is integrated at the level of both chromatin structure and synaptic physiology. Here, we provide an overview of key established epigenetic mechanisms that are important for memory formation. We explore how epigenetic mechanisms give rise to stable alterations in neuronal function by modifying synaptic structure and function, and highlight studies that demonstrate how manipulating epigenetic mechanisms may push the boundaries of memory.
Collapse
Affiliation(s)
- Rianne R Campbell
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, Center for Addiction Neuroscience, Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
| | - Marcelo A Wood
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, Center for Addiction Neuroscience, Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA.
| |
Collapse
|
166
|
Naik R, Galande S. SATB family chromatin organizers as master regulators of tumor progression. Oncogene 2019; 38:1989-2004. [PMID: 30413763 DOI: 10.1038/s41388-018-0541-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/30/2018] [Accepted: 09/02/2018] [Indexed: 02/07/2023]
Abstract
SATB (Special AT-rich binding protein) family proteins have emerged as key regulators that integrate higher-order chromatin organization with the regulation of gene expression. Studies over the past decade have elucidated the specific roles of SATB1 and SATB2, two closely related members of this family, in cancer progression. SATB family chromatin organizers play diverse and important roles in regulating the dynamic equilibrium of apoptosis, cell invasion, metastasis, proliferation, angiogenesis, and immune modulation. This review highlights cellular and molecular events governed by SATB1 influencing the structural organization of chromatin and interacting with several co-activators and co-repressors of transcription towards tumor progression. SATB1 expression across tumor cell types generates cellular and molecular heterogeneity culminating in tumor relapse and metastasis. SATB1 exhibits dynamic expression within intratumoral cell types regulated by the tumor microenvironment, which culminates towards tumor progression. Recent studies suggested that cell-specific expression of SATB1 across tumor recruited dendritic cells (DC), cytotoxic T lymphocytes (CTL), T regulatory cells (Tregs) and tumor epithelial cells along with tumor microenvironment act as primary determinants of tumor progression and tumor inflammation. In contrast, SATB2 is differentially expressed in an array of cancer types and is involved in tumorigenesis. Survival analysis for patients across an array of cancer types correlated with expression of SATB family chromatin organizers suggested tissue-specific expression of SATB1 and SATB2 contributing to disease prognosis. In this context, it is pertinent to understand molecular players, cellular pathways, genetic and epigenetic mechanisms governed by cell types within tumors regulated by SATB proteins. We propose that patient survival analysis based on the expression profile of SATB chromatin organizers would facilitate their unequivocal establishment as prognostic markers and therapeutic targets for cancer therapy.
Collapse
Affiliation(s)
- Rutika Naik
- Centre of Excellence in Epigenetics, Department of Biology, Indian Institute of Science Education and Research, Pune, 411008, India
| | - Sanjeev Galande
- Centre of Excellence in Epigenetics, Department of Biology, Indian Institute of Science Education and Research, Pune, 411008, India.
| |
Collapse
|
167
|
Abstract
The advent of locus-specific protein recruitment technologies has enabled a new class of studies in chromatin biology. Epigenome editors enable biochemical modifications of chromatin at almost any specific endogenous locus. Their locus specificity unlocks unique information including the functional roles of distinct modifications at specific genomic loci. Given the growing interest in using these tools for biological and translational studies, there are many specific design considerations depending on the scientific question or clinical need. Here we present and discuss important design considerations and challenges regarding the biochemical and locus specificities of epigenome editors. These include how to account for the complex biochemical diversity of chromatin; control for potential interdependency of epigenome editors and their resultant modifications; avoid sequestration effects; quantify the locus specificity of epigenome editors; and improve locus specificity by considering concentration, affinity, avidity, and sequestration effects.
Collapse
|
168
|
Scorza P, Duarte CS, Hipwell AE, Posner J, Ortin A, Canino G, Monk C. Research Review: Intergenerational transmission of disadvantage: epigenetics and parents' childhoods as the first exposure. J Child Psychol Psychiatry 2019; 60:119-132. [PMID: 29473646 PMCID: PMC6107434 DOI: 10.1111/jcpp.12877] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/18/2018] [Indexed: 01/07/2023]
Abstract
BACKGROUND For decades, economists and sociologists have documented intergenerational transmission of socioeconomic disadvantage, demonstrating that economic, political, and social factors contribute to 'inherited hardship'. Drawing on biological factors, the developmental origins of adult health and disease model posits that fetal exposure to maternal prenatal distress associated with socioeconomic disadvantage compromises offspring's neurodevelopment, affecting short- and long-term physical and mental health, and thereby psychosocial standing and resources. Increasing evidence suggests that mother-to-child influence occurs prenatally, in part via maternal and offspring atypical HPA axis regulation, with negative effects on the maturation of prefrontal and subcortical neural circuits in the offspring. However, even this in utero timeframe may be insufficient to understand biological aspects of the transmission of factors contributing to disadvantage across generations. METHODS We review animal studies and emerging human research indicating that parents' childhood experiences may transfer epigenetic marks that could impact the development of their offspring independently of and in interaction with their offspring's perinatal and early childhood direct exposures to stress stemming from socioeconomic disadvantage and adversity. RESULTS Animal models point to epigenetic mechanisms by which traits that could contribute to disadvantage may be transmitted across generations. However, epigenetic pathways of parental childhood experiences influencing child outcomes in the next generation are only beginning to be studied in humans. With a focus on translational research, we point to design features and methodological considerations for human cohort studies to be able to test the intergenerational transmission hypothesis, and we illustrate this with existing longitudinal studies. CONCLUSIONS Epigenetic intergenerational transmission, if at play in human populations, could have policy implications in terms of reducing the continuation of disadvantage across generations. Further research is needed to address this gap in the understanding of the perpetuation of compromised lives across generations.
Collapse
Affiliation(s)
- Pamela Scorza
- Department of Psychiatry, Columbia University Medical Center, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - Cristiane S Duarte
- Department of Psychiatry, Columbia University Medical Center, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - Alison E Hipwell
- Department of Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jonathan Posner
- Department of Psychiatry, Columbia University Medical Center, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - Ana Ortin
- Department of Psychology, Hunter College, City University of New York, New York, NY, USA
| | - Glorisa Canino
- School of Medicine, University of Puerto Rico, San Juan, PR, USA
| | - Catherine Monk
- New York State Psychiatric Institute, New York, NY, USA
- Departments of Psychiatry and Obstetrics and Gynecology, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
169
|
Phillips NLH, Roth TL. Animal Models and Their Contribution to Our Understanding of the Relationship Between Environments, Epigenetic Modifications, and Behavior. Genes (Basel) 2019; 10:genes10010047. [PMID: 30650619 PMCID: PMC6357183 DOI: 10.3390/genes10010047] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 12/29/2018] [Accepted: 01/10/2019] [Indexed: 12/12/2022] Open
Abstract
The use of non-human animals in research is a longstanding practice to help us understand and improve human biology and health. Animal models allow researchers, for example, to carefully manipulate environmental factors in order to understand how they contribute to development, behavior, and health. In the field of behavioral epigenetics such approaches have contributed novel findings of how the environment physically interacts with our genes, leading to changes in behavior and health. This review highlights some of this research, focused on prenatal immune challenges, environmental toxicants, diet, and early-life stress. In conjunction, we also discuss why animal models were integral to these discoveries and the translational relevance of these discoveries.
Collapse
Affiliation(s)
- Natalia Ledo Husby Phillips
- Department of Psychological and Brain Sciences, University of Delaware, 108 Wolf Hall, Newark, DE 19716, USA.
| | - Tania L Roth
- Department of Psychological and Brain Sciences, University of Delaware, 108 Wolf Hall, Newark, DE 19716, USA.
| |
Collapse
|
170
|
Zerkalenkova E, Lebedeva S, Kazakova A, Tsaur G, Starichkova Y, Timofeeva N, Soldatkina O, Aprelova E, Popov A, Ponomareva N, Baidun L, Meyer C, Novichkova G, Maschan M, Maschan A, Marschalek R, Olshanskaya Y. Acute myeloid leukemia with t(10;11)(p11-12;q23.3): Results of Russian Pediatric AML registration study. Int J Lab Hematol 2019; 41:287-292. [PMID: 30624859 DOI: 10.1111/ijlh.12969] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 11/29/2018] [Accepted: 12/04/2018] [Indexed: 01/04/2023]
Abstract
INTRODUCTION Translocations involving the KMT2A gene (also known as MLL) are frequently diagnosed in pediatric acute leukemia cases with either lymphoblastic or myeloid origin. KMT2A is translocated to multiple partner genes, including MLLT10/AF10 localizing at chromosomal band 10p12. KMT2A-MLLT10 is one of the common chimeric genes diagnosed in acute leukemia with KMT2A rearrangement (8%), especially in acute myeloid leukemia (AML; 18%). MLLT10 is localized in very close proximity to two other KMT2A partner genes at 10p11-12-NEBL and ABI1, so they could not be distinguished by conventional cytogenetics. METHODS In this work, we present a cohort of 28 patients enrolled into Russian Pediatric AML registration study carrying rearrangements between chromosomal regions 11q23.3 and 10p11-12. G-banding, FISH, reverse transcription PCR, and long-distance inverse PCR were used to characterize the KMT2A gene rearrangements in these patients. RESULTS We demonstrate that 25 patients harbor the KMT2A-MLLT10 rearrangement, while three patients show the rare KMT2A rearrangements (2× KMT2A-NEBL; 1× KMT2A-ABI1). CONCLUSIONS Therefore, the combination of cytogenetic and molecular genetic methods is of high importance in diagnosing cases with t(10;11)(p11-12;q23.3).
Collapse
Affiliation(s)
- Elena Zerkalenkova
- Dmitry Rogachev National Medical and Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Svetlana Lebedeva
- Dmitry Rogachev National Medical and Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia.,Department of Fundamental Medicine, Moscow State University named after M.V. Lomonosov, Moscow, Russia
| | - Anna Kazakova
- Dmitry Rogachev National Medical and Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Grigory Tsaur
- Regional Children's Hospital No. 1, Yekaterinburg, Russia.,Research Institute of Medical Cell Technologies, Yekaterinburg, Russia
| | - Yulia Starichkova
- Dmitry Rogachev National Medical and Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Natalia Timofeeva
- Dmitry Rogachev National Medical and Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Olga Soldatkina
- Dmitry Rogachev National Medical and Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Evgenia Aprelova
- Dmitry Rogachev National Medical and Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Aleksandr Popov
- Dmitry Rogachev National Medical and Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | | | | | - Claus Meyer
- Institute of Pharmaceutical Biology, Diagnostic Centre of Acute Leukemia (DCAL), Goethe-University of Frankfurt, Frankfurt/Main, Germany
| | - Galina Novichkova
- Dmitry Rogachev National Medical and Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Michael Maschan
- Dmitry Rogachev National Medical and Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Aleksey Maschan
- Dmitry Rogachev National Medical and Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Rolf Marschalek
- Institute of Pharmaceutical Biology, Diagnostic Centre of Acute Leukemia (DCAL), Goethe-University of Frankfurt, Frankfurt/Main, Germany
| | - Yulia Olshanskaya
- Dmitry Rogachev National Medical and Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| |
Collapse
|
171
|
Kurnaeva MA, Sheval EV, Musinova YR, Vassetzky YS. Tat basic domain: A "Swiss army knife" of HIV-1 Tat? Rev Med Virol 2019; 29:e2031. [PMID: 30609200 DOI: 10.1002/rmv.2031] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/05/2018] [Accepted: 12/06/2018] [Indexed: 01/16/2023]
Abstract
Tat (transactivator of transcription) regulates transcription from the HIV provirus. It plays a crucial role in disease progression, supporting efficient replication of the viral genome. Tat also modulates many functions in the host genome via its interaction with chromatin and proteins. Many of the functions of Tat are associated with its basic domain rich in arginine and lysine residues. It is still unknown why the basic domain exhibits so many diverse functions. However, the highly charged basic domain, coupled with the overall structural flexibility of Tat protein itself, makes the basic domain a key player in binding to or associating with cellular and viral components. In addition, the basic domain undergoes diverse posttranslational modifications, which further expand and modulate its functions. Here, we review the current knowledge of Tat basic domain and its versatile role in the interaction between the virus and the host cell.
Collapse
Affiliation(s)
- Margarita A Kurnaeva
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Eugene V Sheval
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.,Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia.,LIA 1066 LFR2O French-Russian Joint Cancer Research Laboratory, CNRS, Villejuif, France
| | - Yana R Musinova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.,LIA 1066 LFR2O French-Russian Joint Cancer Research Laboratory, CNRS, Villejuif, France.,Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | - Yegor S Vassetzky
- LIA 1066 LFR2O French-Russian Joint Cancer Research Laboratory, CNRS, Villejuif, France.,Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia.,Nuclear Organization and Pathologies, CNRS, UMR8126, Université Paris-Sud, Institut Gustave Roussy, Villejuif, France
| |
Collapse
|
172
|
Chamani IJ, Keefe DL. Epigenetics and Female Reproductive Aging. Front Endocrinol (Lausanne) 2019; 10:473. [PMID: 31551923 PMCID: PMC6736555 DOI: 10.3389/fendo.2019.00473] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 06/28/2019] [Indexed: 12/12/2022] Open
Abstract
With more women than ever waiting until a more advanced age to have children, there exists a newfound urgency to identify the various implications aging has on human reproduction, and understand the disrupted biological processes that result in these changes. In this review, we focus on one recent area of study: the age related epigenetic changes that have been found in female reproductive organs, and the effect these changes may contribute to reproductive outcomes.
Collapse
Affiliation(s)
| | - David L. Keefe
- Department of Obstetrics and Gynecology, New York University School of Medicine, New York, NY, United States
- *Correspondence: David L. Keefe
| |
Collapse
|
173
|
MicroRNAs derived from the insect virus HzNV-1 promote lytic infection by suppressing histone methylation. Sci Rep 2018; 8:17817. [PMID: 30546025 PMCID: PMC6292938 DOI: 10.1038/s41598-018-35782-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 11/06/2018] [Indexed: 12/19/2022] Open
Abstract
Heliothis zea nudivirus-1 (HzNV-1) is an insect virus that can induce both lytic and latent infections in various insect cell lines. During latent infection, several microRNAs (miRNAs) are produced from persistency-associated gene 1 (pag1) as the only detectable HzNV-1 transcript. Previous studies have shown that the pag1 gene suppresses the immediate-early gene hhi1 and promotes host switching into a latent infection via miRNAs derived from pag1. Although other functions of the miRNAs derived from pag1 have not yet been elucidated, several studies have suggested that miRNAs encoded from latency-associated genes can regulate histone-associated enzymes. Because pag1 is a noncoding transcript, it potentially regulates host chromatin structure through miRNAs upon infection. Nevertheless, the exact mechanism by which pag1 alters viral infections remains unknown. In this study, we found that the pag1-encoded miRNA miR-420 suppresses expression of the histone modification-associated enzyme su(var)3-9. Therefore, this miRNA causes histone modification to promote HzNV-1 infection. These results suggest that HzNV-1 may directly influence epigenetic regulation in host cells through interactions with pag1 miRNAs to promote lytic infection. This study provides us with a better understanding of both the HzNV-1 infection pathway and the relationship between viral miRNAs and epigenetic regulation.
Collapse
|
174
|
Dong C, Dong G, Li L, Zhu L, Tempel W, Liu Y, Huang R, Min J. An asparagine/glycine switch governs product specificity of human N-terminal methyltransferase NTMT2. Commun Biol 2018; 1:183. [PMID: 30417120 PMCID: PMC6214909 DOI: 10.1038/s42003-018-0196-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 10/15/2018] [Indexed: 01/11/2023] Open
Abstract
α-N-terminal methylation of proteins is an important post-translational modification that is catalyzed by two different N-terminal methyltransferases, namely NTMT1 and NTMT2. Previous studies have suggested that NTMT1 is a tri-methyltransferase, whereas NTMT2 is a mono-methyltransferase. Here, we report the first crystal structures, to our knowledge, of NTMT2 in binary complex with S-adenosyl-L-methionine as well as in ternary complex with S-adenosyl-L-homocysteine and a substrate peptide. Our structural observations combined with biochemical studies reveal that NTMT2 is also able to di-/tri-methylate the GPKRIA peptide and di-methylate the PPKRIA peptide, otherwise it is predominantly a mono-methyltransferase. The residue N89 of NTMT2 serves as a gatekeeper residue that regulates the binding of unmethylated versus monomethylated substrate peptide. Structural comparison of NTMT1 and NTMT2 prompts us to design a N89G mutant of NTMT2 that can profoundly alter its catalytic activities and product specificities. Cheng Dong et al. resolve the crystal structure of NTMT2, presenting the molecular basis for substrate recognition. Using structural and biochemical studies, they identified a specific residue within NTMT2 that controls its binding affinity to unmethylated or monomethylated substrates.
Collapse
Affiliation(s)
- Cheng Dong
- Structural Genomics Consortium, University of Toronto, Toronto, M5G1L7, ON, Canada
| | - Guangping Dong
- Department of Medicinal Chemistry and Molecular Pharmacology, Center for Cancer Research, Institute for Drug Discovery, Purdue University, West Lafayette, IN, 47907, USA
| | - Li Li
- Structural Genomics Consortium, University of Toronto, Toronto, M5G1L7, ON, Canada
| | - Licheng Zhu
- Structural Genomics Consortium, University of Toronto, Toronto, M5G1L7, ON, Canada.,School of Life Sciences, Jinggangshan University, 343009, Ji'an, Jiangxi, China
| | - Wolfram Tempel
- Structural Genomics Consortium, University of Toronto, Toronto, M5G1L7, ON, Canada
| | - Yanli Liu
- Structural Genomics Consortium, University of Toronto, Toronto, M5G1L7, ON, Canada
| | - Rong Huang
- Department of Medicinal Chemistry and Molecular Pharmacology, Center for Cancer Research, Institute for Drug Discovery, Purdue University, West Lafayette, IN, 47907, USA.
| | - Jinrong Min
- Structural Genomics Consortium, University of Toronto, Toronto, M5G1L7, ON, Canada. .,Department of Physiology, University of Toronto, Toronto, M5S 1A8, ON, Canada.
| |
Collapse
|
175
|
Zheng Y, Li B, Wang J, Xiong Y, Wang K, Qi Y, Sun H, Wu L, Yang L. Identification of SUV39H2 as a potential oncogene in lung adenocarcinoma. Clin Epigenetics 2018; 10:129. [PMID: 30348215 PMCID: PMC6198372 DOI: 10.1186/s13148-018-0562-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 10/09/2018] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND SUV39H2 (suppressor of variegation 3-9 homolog 2), which introduces H3K9me3 to induce transcriptional repression, has been reported to play critical roles in heterochromatin maintenance, DNA repair, and recently, carcinogenesis. Dysregulation of SUV39H2 expression has been observed in several types of cancers. However, neither the genomic landscape nor the clinical significance of SUV39H2 in lung adenocarcinoma has been probed comprehensively. METHODS In this research, we conducted bioinformatics analysis to primarily sort out potential genes with dysregulated expressions. After we identified SUV39H2, RNA-seq was performed for a high-throughput evaluation of altered gene expression and dysregulated pathways, followed by a series of validations via RT-qPCR and bioinformatics analyses. Finally, to assess the potential oncogenic role of SUV39H2, we employed the invasion assay and clone formation assay in vitro and tumorigenesis assays in mouse models in vivo. RESULTS Through bioinformatics analyses, we found that SUV39H2 underwent a severe upregulation in the tumor tissue, which was also confirmed in the surgically removed tissues. Overexpression of SUV39H2 was mainly associated with its amplification and with shorter patient overall survival. Then, the RNA-seq demonstrated that TPM4, STOM, and OPTN might be affected by the loss of function of SUV39H2. Finally, in vitro and in vivo experiments with SUV39H2 knockdown all suggested a potential role of SUV39H2 in both carcinogenesis and metastasis. CONCLUSIONS SUV39H2 expression was elevated in lung adenocarcinoma. TPM4, OPTN, and STOM were potentially regulated by SUV39H2. SUV39H2 might be a potential oncogene in lung adenocarcinoma, mediating tumorigenesis and metastasis.
Collapse
Affiliation(s)
- Yu Zheng
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Baihui Li
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Jian Wang
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Yanjuan Xiong
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Kaiyuan Wang
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Ying Qi
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Houfang Sun
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Lei Wu
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Lili Yang
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China. .,National Clinical Research Center for Cancer, Tianjin, China. .,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China. .,Tianjin's Clinical Research Center for Cancer, Tianjin, China. .,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China.
| |
Collapse
|
176
|
Zhang D, Dong Y, Zhao Y, Zhou C, Qian Y, Hegde ML, Wang H, Han S. Sinomenine hydrochloride sensitizes cervical cancer cells to ionizing radiation by impairing DNA damage response. Oncol Rep 2018; 40:2886-2895. [PMID: 30226618 PMCID: PMC6151895 DOI: 10.3892/or.2018.6693] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 09/03/2018] [Indexed: 02/01/2023] Open
Abstract
The use of plant-based compounds derived from traditional medicine to improve human diseases has been gaining momentum, due to their high bioavailability and moderate adverse effects. Sinomenine is one such biomonomer alkali compound derived from Sinomenium acutum and is known for its anti-inflammatory and antitumor effects. However, the molecular mechanism(s) of its antitumor properties are not fully characterized. In the present study, we evaluated the radiosensitizing effects of the water-soluble sinomenine, sinomenine hydrochloride (SH) in human cervical cancer cell line (HeLa). SH sensitized HeLa cells to ionizing radiation (IR) by promoting accumulation of IR-induced DNA double-strand breaks (DSBs) and also by interfering with DNA damage checkpoint activation. We then investigated the molecular mechanisms underlying the SH-mediated cellular sensitization to IR and found that SH inhibited the expression of DNA damage response (DDR) factors Ku80 and Rad51 at the transcription level. Finally, the radiosensitizing activity of SH was confirmed in a cervical cancer mouse xenograft model. The combinatorial treatment of SH and IR significantly slowed the tumor growth rate compared with IR alone. Collectively, our study not only provides molecular insights into the novel role of SH in cellular response to IR, but also suggests a therapeutic potential of SH as a radiosensitizer in cervical cancer therapy.
Collapse
Affiliation(s)
- Dan Zhang
- Department of Oncology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yiping Dong
- Department of Oncology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Ying Zhao
- Department of Oncology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Congya Zhou
- Department of Oncology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yuanjie Qian
- Department of Oncology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Muralidhar L Hegde
- Department of Radiation Oncology, Methodist Hospital Research Institute, Houston, TX 77030, USA
| | - Haibo Wang
- Department of Oncology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Suxia Han
- Department of Oncology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
177
|
Zhou X, Sen I, Lin XX, Riedel CG. Regulation of Age-related Decline by Transcription Factors and Their Crosstalk with the Epigenome. Curr Genomics 2018; 19:464-482. [PMID: 30258277 PMCID: PMC6128382 DOI: 10.2174/1389202919666180503125850] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 04/20/2018] [Accepted: 04/30/2018] [Indexed: 12/16/2022] Open
Abstract
Aging is a complex phenomenon, where damage accumulation, increasing deregulation of biological pathways, and loss of cellular homeostasis lead to the decline of organismal functions over time. Interestingly, aging is not entirely a stochastic process and progressing at a constant rate, but it is subject to extensive regulation, in the hands of an elaborate and highly interconnected signaling network. This network can integrate a variety of aging-regulatory stimuli, i.e. fertility, nutrient availability, or diverse stresses, and relay them via signaling cascades into gene regulatory events - mostly of genes that confer stress resistance and thus help protect from damage accumulation and homeostasis loss. Transcription factors have long been perceived as the pivotal nodes in this network. Yet, it is well known that the epigenome substantially influences eukaryotic gene regulation, too. A growing body of work has recently underscored the importance of the epigenome also during aging, where it not only undergoes drastic age-dependent changes but also actively influences the aging process. In this review, we introduce the major signaling pathways that regulate age-related decline and discuss the synergy between transcriptional regulation and the epigenetic landscape.
Collapse
Affiliation(s)
| | | | | | - Christian G. Riedel
- Address correspondence to this author at the Integrated Cardio Metabolic Centre (ICMC), Department of Biosciences and Nutrition, Karolinska Institutet, Blickagången 6, Novum, 7 floor Huddinge, Stockholm 14157, Sweden; Tel: +46-736707008; E-mail:
| |
Collapse
|
178
|
Lee H, Lee HJ, Jung JH, Shin EA, Kim SH. Melatonin disturbs SUMOylation-mediated crosstalk between c-Myc and nestin via MT1 activation and promotes the sensitivity of paclitaxel in brain cancer stem cells. J Pineal Res 2018; 65:e12496. [PMID: 29654697 DOI: 10.1111/jpi.12496] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 04/03/2018] [Indexed: 02/06/2023]
Abstract
Here the underlying antitumor mechanism of melatonin and its potency as a sensitizer of paclitaxel was investigated in X02 cancer stem cells. Melatonin suppressed sphere formation and induced G2/M arrest in X02 cells expressing nestin, CD133, CXCR4, and SOX-2 as biomarkers of stemness. Furthermore, melatonin reduced the expression of CDK2, CDK4, cyclin D1, cyclin E, and c-Myc and upregulated cyclin B1 in X02 cells. Notably, genes of c-Myc related mRNAs were differentially expressed in melatonin-treated X02 cells by microarray analysis. Consistently, melatonin reduced the expression of c-Myc at mRNA and protein levels, which was blocked by MG132. Of note, overexpression of c-Myc increased the expression of nestin, while overexpression of nestin enhanced c-Myc through crosstalk despite different locations, nucleus, and cytoplasm. Interestingly, melatonin attenuated small ubiquitin-related modifier-1 (SUMO-1) more than SUMO-2 or SUMO-3 and disturbed nuclear translocation of nestin for direct binding to c-Myc by SUMOylation of SUMO-1 protein by immunofluorescence and immunoprecipitation. Also, melatonin reduced trimethylated histone H3K4me3 and H3K36me3 more than dimethylation in X02 cells by Western blotting and chromatin immunoprecipitation assay. Notably, melatonin upregulated MT1, not MT2, in X02 cells and melatonin receptor inhibitor luzindole blocked the ability of melatonin to decrease the expression of nestin, p-c-Myc(S62), and c-Myc. Furthermore, melatonin promoted cytotoxicity, sub-G1 accumulation, and apoptotic body formation by Paclitaxcel in X02 cells. Taken together, these findings suggest that melatonin inhibits stemness via suppression of c-Myc, nestin, and histone methylation via MT1 activation and promotes anticancer effect of Paclitaxcel in brain cancer stem cells.
Collapse
Affiliation(s)
- Hyemin Lee
- College of Korean Medicine, Kyung Hee University, Seoul, Korea
| | - Hyo-Jung Lee
- College of Korean Medicine, Kyung Hee University, Seoul, Korea
| | - Ji Hoon Jung
- College of Korean Medicine, Kyung Hee University, Seoul, Korea
| | - Eun Ah Shin
- College of Korean Medicine, Kyung Hee University, Seoul, Korea
| | - Sung-Hoon Kim
- College of Korean Medicine, Kyung Hee University, Seoul, Korea
| |
Collapse
|
179
|
Kurup JT, Kidder BL. Identification of H4K20me3- and H3K4me3-associated RNAs using CARIP-Seq expands the transcriptional and epigenetic networks of embryonic stem cells. J Biol Chem 2018; 293:15120-15135. [PMID: 30115682 DOI: 10.1074/jbc.ra118.004974] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Indexed: 11/06/2022] Open
Abstract
RNA has been shown to interact with various proteins to regulate chromatin dynamics and gene expression. However, it is unknown whether RNAs associate with epigenetic marks such as post-translational modifications of histones, including histone 4 lysine 20 trimethylation (H4K20me3) or trimethylated histone 3 lysine 4 (H3K4me3), to regulate chromatin and gene expression. Here, we used chromatin-associated RNA immunoprecipitation (CARIP) followed by next-generation sequencing (CARIP-Seq) to survey RNAs associated with H4K20me3- and H3K4me3-marked chromatin on a global scale in embryonic stem (ES) cells. We identified thousands of mRNAs and noncoding RNAs that associate with H4K20me3- and H3K4me3-marked chromatin. H4K20me3- and H3K4me3-interacting RNAs are involved in chromatin organization and modification and RNA processing, whereas H4K20me3-only RNAs are involved in cell motility and differentiation, and H3K4me3-only RNAs are involved in metabolic processes and RNA processing. Expression of H3K4me3-associated RNAs is enriched in ES cells, whereas expression of H4K20me3-associated RNAs is enriched in ES cells and differentiated cells. H4K20me3- and H3K4me3-interacting RNAs originate from genes that co-localize with features of active chromatin, including transcriptional machinery and active promoter regions, and the histone modification H3K36me3 in gene body regions. We also found that H4K20me3 and H3K4me3 are associated with distinct gene features including transcripts of greater length and exon number relative to unoccupied transcripts. H4K20me3- and H3K4me3-marked chromatin is also associated with processed RNAs (exon transcripts) relative to unspliced pre-mRNA and ncRNA transcripts. In summary, our results provide evidence that H4K20me3- and H3K4me3-associated RNAs represent a distinct subnetwork of the ES cell transcriptional repertoire.
Collapse
Affiliation(s)
- Jiji T Kurup
- From the Department of Oncology and.,the Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan 48201
| | - Benjamin L Kidder
- From the Department of Oncology and .,the Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan 48201
| |
Collapse
|
180
|
Dutta S, Mitra M, Agarwal P, Mahapatra K, De S, Sett U, Roy S. Oxidative and genotoxic damages in plants in response to heavy metal stress and maintenance of genome stability. PLANT SIGNALING & BEHAVIOR 2018; 13:e1460048. [PMID: 29621424 PMCID: PMC6149466 DOI: 10.1080/15592324.2018.1460048] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 03/28/2018] [Indexed: 05/17/2023]
Abstract
Plants, being sessile in nature, are constantly exposed to various environmental stresses, such as solar UV radiations, soil salinity, drought and desiccation, rehydration, low and high temperatures and other vast array of air and soil borne chemicals, industrial waste products, metals and metalloids. These agents, either directly or indirectly via the induction of oxidative stress and overproduction of reactive oxygen species (ROS), frequently perturb the chemical or physical structures of DNA and induce both cytotoxic or genotoxic stresses. Such condition, in turn, leads to genome instability and thus eventually severely affecting plant health and crop yield. With the growing industrialization process and non-judicious use of chemical fertilizers, the heavy metal mediated chemical toxicity has become one of the major environmental threats for the plants around the globe. The heavy metal ions cause damage to the structural, enzymatic and non-enzymatic components of plant cell, often resulting in loss of cell viability, thus negatively impacting plant growth and development. Plants have also evolved with an extensive and highly efficient mechanism to respond and adapt under such heavy metal toxicity mediated stress conditions. In addition to morpho-anatomical, hormonal and biochemical responses, at the molecular level, plants respond to heavy metal stress induced oxidative and genotoxic damage via the rapid change in the expression of the responsive genes at the transcriptional level. Various families of transcription factors play crucial role in triggering such responses. Apart from transcriptional response, epigenetic modifications have also been found to be essential for maintenance of plant genome stability under genotoxic stress. This review represents a comprehensive survey of recent advances in our understanding of plant responses to heavy metal mediated toxicity in general with particular emphasis on the transcriptional and epigenetic responses and highlights the importance of understanding the potential targets in the associated pathways for improved stress tolerance in crops.
Collapse
Affiliation(s)
- Subhajit Dutta
- Department of Botany, UGC Centre of Advanced Studies, The University of Burdwan, Golapbag campus, Burdwan – 713104, West Bengal, India
| | - Mehali Mitra
- Department of Botany, UGC Centre of Advanced Studies, The University of Burdwan, Golapbag campus, Burdwan – 713104, West Bengal, India
| | - Puja Agarwal
- Department of Botany, UGC Centre of Advanced Studies, The University of Burdwan, Golapbag campus, Burdwan – 713104, West Bengal, India
| | - Kalyan Mahapatra
- Department of Botany, UGC Centre of Advanced Studies, The University of Burdwan, Golapbag campus, Burdwan – 713104, West Bengal, India
| | - Sayanti De
- Department of Botany, UGC Centre of Advanced Studies, The University of Burdwan, Golapbag campus, Burdwan – 713104, West Bengal, India
| | - Upasana Sett
- Department of Botany, UGC Centre of Advanced Studies, The University of Burdwan, Golapbag campus, Burdwan – 713104, West Bengal, India
| | - Sujit Roy
- Department of Botany, UGC Centre of Advanced Studies, The University of Burdwan, Golapbag campus, Burdwan – 713104, West Bengal, India
| |
Collapse
|
181
|
Hirano T, Mori S, Kagechika H. Recent Advances in Chemical Tools for the Regulation and Study of Protein Lysine Methyltransferases. CHEM REC 2018; 18:1745-1759. [DOI: 10.1002/tcr.201800034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 07/17/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Tomoya Hirano
- Institute of Biomaterials and BioengineeringTokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku Tokyo 101-0062 Japan
| | - Shuichi Mori
- Institute of Biomaterials and BioengineeringTokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku Tokyo 101-0062 Japan
| | - Hiroyuki Kagechika
- Institute of Biomaterials and BioengineeringTokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku Tokyo 101-0062 Japan
| |
Collapse
|
182
|
Hirano T, Fujiwara T, Niwa H, Hirano M, Ohira K, Okazaki Y, Sato S, Umehara T, Maemoto Y, Ito A, Yoshida M, Kagechika H. Development of Novel Inhibitors for Histone Methyltransferase SET7/9 based on Cyproheptadine. ChemMedChem 2018; 13:1530-1540. [PMID: 29882380 DOI: 10.1002/cmdc.201800233] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 06/04/2018] [Indexed: 12/19/2022]
Abstract
The histone methyltransferase SET7/9 methylates not only histone but also non-histone proteins as substrates, and therefore, SET7/9 inhibitors are considered candidates for the treatment of diseases. Previously, our group identified cyproheptadine, used clinically as a serotonin receptor antagonist and histamine receptor (H1) antagonist, as a novel scaffold of the SET7/9 inhibitor. In this work, we focused on dibenzosuberene as a substructure of cyproheptadine and synthesized derivatives with various functional groups. Among them, the compound bearing a 2-hydroxy group showed the most potent activity. On the other hand, a 3-hydroxy group or another hydrophilic functional group such as acetamide decreased the activity. Structural analysis clarified a rationale for the improved potency only by tightly restricted location and type of the hydrophilic group. In addition, a SET7/9 loop, which was only partially visible in the complex with cyproheptadine, became more clearly visible in the complex with 2-hydroxycyproheptadine. These results are expected to be helpful for further structure-based development of SET7/9 inhibitors.
Collapse
Affiliation(s)
- Tomoya Hirano
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-0062, Japan
| | - Takashi Fujiwara
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-0062, Japan
| | - Hideaki Niwa
- Epigenetics Drug Discovery Unit, RIKEN Center for Life Science Technologies (CLST), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Michitake Hirano
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-0062, Japan
| | - Kasumi Ohira
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-0062, Japan
| | - Yusuke Okazaki
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-0062, Japan
| | - Shin Sato
- Epigenetics Drug Discovery Unit, RIKEN Center for Life Science Technologies (CLST), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Takashi Umehara
- Epigenetics Drug Discovery Unit, RIKEN Center for Life Science Technologies (CLST), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Yuki Maemoto
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Akihiro Ito
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan.,Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science (CSRS), 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Minoru Yoshida
- Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science (CSRS), 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.,Drug Discovery Platforms Cooperation Division, RIKEN Center for Sustainable Resource Science (CSRS), 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.,Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Hiroyuki Kagechika
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-0062, Japan
| |
Collapse
|
183
|
Abstract
Pheochromocytomas and paragangliomas (PPGLs) are neuroendocrine tumors arising in the medullae of the adrenal glands or in paraganglia. The knowledge of the tumor biology of these lesions has increased dramatically during the past two decades and more than a dozen recurrently mutated genes have been identified. Different clusters have been described that share epigenetic signatures. Mutations in the succinate dehydrogenase complex subunit genes play a pivotal role in reprogramming the epigenetic state of these tumors by inhibiting epigenetic regulators such as TET enzymes and histone demethylases. Another subgroup of tumors carries hypomethylated genomes, and overexpression of several micro-RNAs has been described. While much remains to be investigated regarding the epigenetics of PPGLs, it is clear that it plays an important role in PPGL biology.
Collapse
Affiliation(s)
- Peyman Björklund
- Experimental Surgery, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden.
| | - Samuel Backman
- Experimental Surgery, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
184
|
Lin Z, Jia H, Hong L, Zheng Y, Shao W, Ren X, Zhu W, Lu L, Lu M, Zhang J, Chen J. Prognostic impact of SET domain-containing protein 8 and protein arginine methyltransferase 5 in patients with hepatocellular carcinoma following curative resection. Oncol Lett 2018; 16:3665-3673. [PMID: 30127976 PMCID: PMC6096198 DOI: 10.3892/ol.2018.9083] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 04/04/2018] [Indexed: 12/12/2022] Open
Abstract
Histone methyltransferases are important determinants of the initiation and progression of hepatocellular carcinoma (HCC) and represent promising therapeutic targets. However, whether the expression profile of multiple histone methyltransferases represents a poorer prognosis is entirely unknown. The aim of the present study was to investigate the association between histone methylation and HCC phenotype, and the prognostic value of combining expression levels of SET domain-containing protein 8 (SET8) with protein arginine methyltransferase 5 (PRMT5) in patients with HCC following curative resection. The retrospective study included 195 consecutive patients who had undergone hepatectomy for HCC. Immunohistochemical staining for SET8 and PRMT5 was performed on paraffin-embedded tumor tissue microarrays. Expression was analyzed for correlations with clinicopathological features, marker co-expression and patients' survival by univariate and multivariate analyses. Positive SET8 expression was noted in 104 patients (53.3%), and was associated with PRMT5 expression (n=106, 54.4%, P<0.05). Immunohistochemical analysis demonstrated that high expression of SET8 and PRMT5 was significantly associated with poor overall survival (OS, P<0.001) and time to recurrence (TTR, P<0.001). Multivariate Cox analysis revealed that SET8 and PRMT5, along with vascular invasion, tumor size and tumor number, were independent prognostic factors for OS and TTR. The combination of SET8 and PRMT5 demonstrated an improved capacity to predict patient mortality and disease recurrence (P=0.002 and P=0.004, respectively), particularly for the prediction of early recurrence (P<0.001). In conclusion, high expression of SET8 combined with PRMT5 was associated with a high rate of recurrence and poor survival in patients with HCC. The independent pattern of histone methylation represents a novel insight into tumor progression and therapeutic targets for HCC.
Collapse
Affiliation(s)
- Zhifei Lin
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Huliang Jia
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Liang Hong
- Department of Infectious Diseases, Ruian People's Hospital, Wenzhou, Zhejiang 325200, P.R. China
| | - Yahui Zheng
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Weiqin Shao
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Xudong Ren
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Wenwei Zhu
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Lu Lu
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Ming Lu
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Jubo Zhang
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Jinhong Chen
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| |
Collapse
|
185
|
Ducsay CA, Goyal R, Pearce WJ, Wilson S, Hu XQ, Zhang L. Gestational Hypoxia and Developmental Plasticity. Physiol Rev 2018; 98:1241-1334. [PMID: 29717932 PMCID: PMC6088145 DOI: 10.1152/physrev.00043.2017] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Hypoxia is one of the most common and severe challenges to the maintenance of homeostasis. Oxygen sensing is a property of all tissues, and the response to hypoxia is multidimensional involving complicated intracellular networks concerned with the transduction of hypoxia-induced responses. Of all the stresses to which the fetus and newborn infant are subjected, perhaps the most important and clinically relevant is that of hypoxia. Hypoxia during gestation impacts both the mother and fetal development through interactions with an individual's genetic traits acquired over multiple generations by natural selection and changes in gene expression patterns by altering the epigenetic code. Changes in the epigenome determine "genomic plasticity," i.e., the ability of genes to be differentially expressed according to environmental cues. The genomic plasticity defined by epigenomic mechanisms including DNA methylation, histone modifications, and noncoding RNAs during development is the mechanistic substrate for phenotypic programming that determines physiological response and risk for healthy or deleterious outcomes. This review explores the impact of gestational hypoxia on maternal health and fetal development, and epigenetic mechanisms of developmental plasticity with emphasis on the uteroplacental circulation, heart development, cerebral circulation, pulmonary development, and the hypothalamic-pituitary-adrenal axis and adipose tissue. The complex molecular and epigenetic interactions that may impact an individual's physiology and developmental programming of health and disease later in life are discussed.
Collapse
Affiliation(s)
- Charles A. Ducsay
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Ravi Goyal
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - William J. Pearce
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Sean Wilson
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Xiang-Qun Hu
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Lubo Zhang
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| |
Collapse
|
186
|
Jiang P, Wang S, Zheng H, Li H, Zhang F, Su Y, Xu Z, Lin H, Qian Q, Ding Y. SIP1 participates in regulation of flowering time in rice by recruiting OsTrx1 to Ehd1. THE NEW PHYTOLOGIST 2018; 219:422-435. [PMID: 29611871 PMCID: PMC6001661 DOI: 10.1111/nph.15122] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 02/20/2018] [Indexed: 05/12/2023]
Abstract
Flowering time (heading date) in rice (Oryza sativa) is an important agronomic trait that determines yield. The levels of histone H3 lysine 4 trimethylation (H3K4me3) modulated by TRITHORAX-like proteins regulate gene transcription, flowering time and environmental stress responses. However, plant TRITHORAX-like proteins have no known DNA-binding domain, and therefore the mechanism that gives sequence specificity to these proteins remains unclear. Here, we show that the rice TRITHORAX-like protein OsTrx1 is recruited to its target, Early heading date 1 (Ehd1), by the C2H2 zinc finger protein SDG723/OsTrx1/OsSET33 Interaction Protein 1 (SIP1). SIP1 binds to the promoter of Ehd1 and interacts with OsTrx1. Mutations in SIP1 led to a late heading date under long-day and short-day conditions. Defects in OsTrx1 or SIP1 led to reduced H3K4me3 levels at Ehd1, thus reducing Ehd1 expression. Together, our results show that the transcription factor SIP1 interacts with OxTrx1, allowing OsTrx1 to specifically target Ehd1, altering H3K4me3 levels, increasing Ehd1 expression and thereby promoting flowering.
Collapse
Affiliation(s)
- Pengfei Jiang
- CAS Center for Excellence in Molecular Plant SciencesSchool of Life SciencesUniversity of Science & Technology of ChinaHefeiAnhui230027China
- School of Life SciencesAnhui Agricultural UniversityHefeiAnhui230036China
| | - Shiliang Wang
- CAS Center for Excellence in Molecular Plant SciencesSchool of Life SciencesUniversity of Science & Technology of ChinaHefeiAnhui230027China
- School of Life SciencesAnhui Agricultural UniversityHefeiAnhui230036China
| | - Han Zheng
- CAS Center for Excellence in Molecular Plant SciencesSchool of Life SciencesUniversity of Science & Technology of ChinaHefeiAnhui230027China
| | - Hao Li
- Key Laboratory of Rice Genetic Breeding of Anhui ProvinceRice Research InstituteAnhui Academy of Agricultural SciencesHefei230031China
| | - Fei Zhang
- CAS Center for Excellence in Molecular Plant SciencesSchool of Life SciencesUniversity of Science & Technology of ChinaHefeiAnhui230027China
| | - Yanhua Su
- CAS Center for Excellence in Molecular Plant SciencesSchool of Life SciencesUniversity of Science & Technology of ChinaHefeiAnhui230027China
| | - Zuntao Xu
- CAS Center for Excellence in Molecular Plant SciencesSchool of Life SciencesUniversity of Science & Technology of ChinaHefeiAnhui230027China
| | - Haiyan Lin
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteChinese Academy of Agricultural SciencesHangzhou310006China
| | - Qian Qian
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteChinese Academy of Agricultural SciencesHangzhou310006China
| | - Yong Ding
- CAS Center for Excellence in Molecular Plant SciencesSchool of Life SciencesUniversity of Science & Technology of ChinaHefeiAnhui230027China
| |
Collapse
|
187
|
Recent advances in vertebrate and invertebrate transgenerational immunity in the light of ecology and evolution. Heredity (Edinb) 2018; 121:225-238. [PMID: 29915335 DOI: 10.1038/s41437-018-0101-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 05/06/2018] [Accepted: 05/31/2018] [Indexed: 12/18/2022] Open
Abstract
Parental experience with parasites and pathogens can lead to increased offspring resistance to infection, through a process known as transgenerational immune priming (TGIP). Broadly defined, TGIP occurs across a wide range of taxa, and can be viewed as a type of phenotypic plasticity, with hosts responding to the pressures of relevant local infection risk by altering their offspring's immune defenses. There are ever increasing examples of both invertebrate and vertebrate TGIP, which go beyond classical examples of maternal antibody transfer. Here we critically summarize the current evidence for TGIP in both invertebrates and vertebrates. Mechanisms underlying TGIP remain elusive in many systems, but while it is unlikely that they are conserved across the range of organisms with TGIP, recent insight into epigenetic modulation may challenge this view. We place TGIP into a framework of evolutionary ecology, discussing costs and relevant environmental variation. We highlight how the ecology of species or populations should affect if, where, when, and how TGIP is realized. We propose that the field can progress by incorporating evolutionary ecology focused designs to the study of the so far well chronicled, but mostly descriptive TGIP, and how rapidly developing -omic methods can be employed to further understand TGIP across taxa.
Collapse
|
188
|
Kim HM, Beese-Sims SE, Colaiácovo MP. Fanconi Anemia FANCM/FNCM-1 and FANCD2/FCD-2 Are Required for Maintaining Histone Methylation Levels and Interact with the Histone Demethylase LSD1/SPR-5 in Caenorhabditis elegans. Genetics 2018; 209:409-423. [PMID: 29588287 PMCID: PMC5972417 DOI: 10.1534/genetics.118.300823] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 03/22/2018] [Indexed: 11/18/2022] Open
Abstract
The histone demethylase LSD1 was originally discovered by removing methyl groups from di- and monomethylated histone H3 lysine 4 (H3K4me2/1). Several studies suggest that LSD1 plays roles in meiosis as well as in the epigenetic regulation of fertility given that, in its absence, there is evidence of a progressive accumulation of H3K4me2 and increased sterility through generations. In addition to the progressive sterility phenotype observed in the mutants, growing evidence for the importance of histone methylation in the regulation of DNA damage repair has attracted more attention to the field in recent years. However, we are still far from understanding the mechanisms by which histone methylation is involved in DNA damage repair, and only a few studies have focused on the roles of histone demethylases in germline maintenance. Here, we show that the histone demethylase LSD1/CeSPR-5 interacts with the Fanconi anemia (FA) protein FANCM/CeFNCM-1 using biochemical, cytological, and genetic analyses. LSD1/CeSPR-5 is required for replication stress-induced S phase-checkpoint activation, and its absence suppresses the embryonic lethality and larval arrest observed in fncm-1 mutants. FANCM/CeFNCM-1 relocalizes upon hydroxyurea exposure and colocalizes with FANCD2/CeFCD-2 and LSD1/CeSPR-5, suggesting coordination between this histone demethylase and FA components to resolve replication stress. Surprisingly, the FA pathway is required for H3K4me2 maintenance, regardless of the presence of replication stress. Our study reveals a connection between FA and epigenetic maintenance and therefore provides new mechanistic insight into the regulation of histone methylation in DNA repair.
Collapse
Affiliation(s)
- Hyun-Min Kim
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115
- School of Pharmaceutical Science and Technology, Tianjin University, 300072, China
| | - Sara E Beese-Sims
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115
| | | |
Collapse
|
189
|
Huang Y, Chang Z, Li X, Liang S, Yi Y, Wu L. Integrated multifactor analysis explores core dysfunctional modules in autism spectrum disorder. Int J Biol Sci 2018; 14:811-818. [PMID: 29989084 PMCID: PMC6036758 DOI: 10.7150/ijbs.24624] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 03/14/2018] [Indexed: 12/26/2022] Open
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental disease in early childhood, and growing up to be a major cause of disability in children. However, the underlying molecular mechanism of ASD remains elusive. Hence, we represented integrated multifactor analysis exploring dysfunctional modules based on RNA-Seq data from corpus callosum in 6 patients with ASD and 6 normal individuals. According to protein-protein interactions (PPIs) and WGCNA, we performed co-expression modules analysis for ASD-associated genes, and identified 25 modules with differentially expressed genes (DEGs), observing that genes in these modules were significantly involved in various biological processes in nervous system, sensory system, phylogenetic system and variety of signaling pathways. Then, based on transcriptional and post-transcriptional regulations, integrating transcription factor (TF)-target and RNA-associated interactions, significant regulators of co-expression modules were identified as pivot regulators, including 67 pivot TFs, 13 pivot miRNAs and 6 pivot lncRNAs. GO and KEGG pathway enrichment analysis demonstrated that the pivot miRNAs significantly enriched in neural or mental-associated biological progresses. The pivot TFs were mainly involved in various regulation of transcription, immune system and organs development. Finally, our work deciphered a multifactor dysfunctional co-expression subnetwork involved in ASD, helps uncover core dysfunctional modules for this disease and improves our understanding of its underlying molecular mechanism.
Collapse
Affiliation(s)
- Yan Huang
- Department of Child and Adolescent Health, School of Public Health, Harbin Medical University, Harbin, China
| | - Zhenghong Chang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Xiaodan Li
- Department of Child and Adolescent Health, School of Public Health, Harbin Medical University, Harbin, China
| | - Shuang Liang
- Department of Child and Adolescent Health, School of Public Health, Harbin Medical University, Harbin, China
| | - Ying Yi
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Lijie Wu
- Department of Child and Adolescent Health, School of Public Health, Harbin Medical University, Harbin, China
| |
Collapse
|
190
|
Abstract
Electro photonic imaging (EPI) is being researched relative to its application for yoga therapy. Three parameters of interest in EPI measurements are as follows: Communication energy (C), integral or normalized area (IA), and Entropy (E). It is important to note that C indicates the total energy of communication for the organ system; IA is an indication of total amount of energy that is available for the organ system while entropy is an indication of the amount of coherence of the energy. Coherence and entropy are inversely related; this means less the entropy, more the coherence and vice versa. Illustrative cases of successful therapy with yoga practices in a wide variety of abnormal conditions are examined, and in every case, entropy is shown to decrease for the affected organ system while communication energy stays within stable range. Relative to the electromagnetic (Rubik) and living matrix (Oschman) models, it is suggested that the regulation of energy, its coherence in the biological system and interaction with life processes provide the basis for model building and design of health-promoting procedures. Further, this approach is examined relative to yoga theory, traditional medicine systems, and scientific developments in the field of gene expression and neuroplasticity and a generalized model that we call Unified System of Medicine is proposed. This model has direct implications on methods used to control the environmental factors to get robust results from EPI application for therapeutic purposes. Implications for furthering research in yoga therapy using EPI and implications of EPI as a translational technology between traditional medicine systems and modern medicine is discussed.
Collapse
Affiliation(s)
| | - Konstantin Korotkov
- Department of Innovation Technologies, Research Institute of Physical Culture and Sport, St. Petersburg, Russia
| | | |
Collapse
|
191
|
Liu Y, Huang Y. Uncovering the mechanistic basis for specific recognition of monomethylated H3K4 by the CW domain of Arabidopsis histone methyltransferase SDG8. J Biol Chem 2018; 293:6470-6481. [PMID: 29496997 PMCID: PMC5925821 DOI: 10.1074/jbc.ra117.001390] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 02/26/2018] [Indexed: 01/07/2023] Open
Abstract
Chromatin consists of DNA and histones, and specific histone modifications that determine chromatin structure and activity are regulated by three types of proteins, called writer, reader, and eraser. Histone reader proteins from vertebrates, vertebrate-infecting parasites, and higher plants possess a CW domain, which has been reported to read histone H3 lysine 4 (H3K4). The CW domain of Arabidopsis SDG8 (also called ASHH2), a histone H3 lysine 36 methyltransferase, preferentially binds monomethylated H3K4 (H3K4me1), unlike the mammalian CW domain protein, which binds trimethylated H3K4 (H3K4me3). However, the molecular basis of the selective binding by the CW domain of SDG8 (SDG8-CW) remains unclear. Here, we solved the 1.6-Å-resolution structure of SDG8-CW in complex with H3K4me1, which revealed that residues in the C-terminal α-helix of SDG8-CW determine binding specificity for low methylation levels at H3K4. Moreover, substitutions of key residues, specifically Ile-915 and Asn-916, converted SDG8-CW binding preference from H3K4me1 to H3K4me3. Sequence alignment and mutagenesis studies revealed that the CW domain of SDG725, the homolog of SDG8 in rice, shares the same binding preference with SDG8-CW, indicating that preference for low methylated H3K4 by the CW domain of ASHH2 homologs is conserved among higher-order plants. Our findings provide first structural insights into the molecular basis for specific recognition of monomethylated H3K4 by the H3K4me1 reader protein SDG8 from Arabidopsis.
Collapse
Affiliation(s)
- Yanchao Liu
- From the State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Science Research Center, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 201210, China
| | - Ying Huang
- From the State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Science Research Center, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 201210, China, To whom correspondence should be addressed. Tel.:
86-20778200; Fax:
86-20778200; E-mail:
| |
Collapse
|
192
|
Wang L, Xu Z, Khawar MB, Liu C, Li W. The histone codes for meiosis. Reproduction 2018; 154:R65-R79. [PMID: 28696245 DOI: 10.1530/rep-17-0153] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Revised: 06/10/2017] [Accepted: 06/19/2017] [Indexed: 12/28/2022]
Abstract
Meiosis is a specialized process that produces haploid gametes from diploid cells by a single round of DNA replication followed by two successive cell divisions. It contains many special events, such as programmed DNA double-strand break (DSB) formation, homologous recombination, crossover formation and resolution. These events are associated with dynamically regulated chromosomal structures, the dynamic transcriptional regulation and chromatin remodeling are mainly modulated by histone modifications, termed 'histone codes'. The purpose of this review is to summarize the histone codes that are required for meiosis during spermatogenesis and oogenesis, involving meiosis resumption, meiotic asymmetric division and other cellular processes. We not only systematically review the functional roles of histone codes in meiosis but also discuss future trends and perspectives in this field.
Collapse
Affiliation(s)
- Lina Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Zhiliang Xu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China.,Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | | | - Chao Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Wei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China
| |
Collapse
|
193
|
Ng GYQ, Yun-An L, Sobey CG, Dheen T, Fann DYW, Arumugam TV. Epigenetic regulation of inflammation in stroke. Ther Adv Neurol Disord 2018; 11:1756286418771815. [PMID: 29774056 PMCID: PMC5949939 DOI: 10.1177/1756286418771815] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 03/29/2018] [Indexed: 12/30/2022] Open
Abstract
Despite extensive research, treatments for clinical stroke are still limited only to the administration of tissue plasminogen activator and the recent introduction of mechanical thrombectomy, which can be used in only a limited proportion of patients due to time constraints. A plethora of inflammatory events occur during stroke, arising in part due to the body's immune response to brain injury. Neuroinflammation contributes significantly to neuronal cell death and the development of functional impairment and death in stroke patients. Therefore, elucidating the molecular and cellular mechanisms underlying inflammatory damage following stroke injury will be essential for the development of useful therapies. Research findings increasingly point to the likelihood that epigenetic mechanisms play a role in the pathophysiology of stroke. Epigenetics involves the differential regulation of gene expression, including those involved in brain inflammation and remodelling after stroke. Hence, it is conceivable that epigenetic mechanisms may contribute to differential interindividual vulnerability and injury responses to cerebral ischaemia. In this review, we summarize recent findings on the emerging role of epigenetics in the regulation of neuroinflammation in stroke. We also discuss potential epigenetic targets that may be assessed for the development of stroke therapies.
Collapse
Affiliation(s)
- Gavin Yong-Quan Ng
- Department of Physiology, Yong Loo Lin School Medicine, National University of Singapore, Singapore
| | - Lim Yun-An
- Department of Physiology, Yong Loo Lin School Medicine, National University of Singapore, Singapore
| | - Christopher G. Sobey
- Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Bundoora, Australia
| | - Thameem Dheen
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - David Yang-Wei Fann
- Department of Physiology, Yong Loo Lin School Medicine, National University of Singapore, Singapore
| | - Thiruma V. Arumugam
- Department of Physiology, Yong Loo Lin School Medicine, National University of Singapore, Medical Drive, MD9, Singapore School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea Neurobiology/Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore
| |
Collapse
|
194
|
Simithy J, Sidoli S, Garcia BA. Integrating Proteomics and Targeted Metabolomics to Understand Global Changes in Histone Modifications. Proteomics 2018. [PMID: 29512899 DOI: 10.1002/pmic.201700309] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The chromatin fiber is the control panel of eukaryotic cells. Chromatin is mostly composed of DNA, which contains the genetic instruction for cell phenotype, and histone proteins, which provide the scaffold for chromatin folding and part of the epigenetic inheritance. Histone writers/erasers "flag" chromatin regions by catalyzing/removing covalent histone post-translational modifications (PTMs). Histone PTMs chemically contribute to chromatin relaxation or compaction and recruit histone readers to modulate DNA readout. The precursors of protein PTMs are mostly small metabolites. For instance, acetyl-CoA is used for acetylation, ATP for phosphorylation, and S-adenosylmethionine for methylation. Interestingly, PTMs such as acetylation can occur at neutral pH also without their respective enzyme when the precursor is sufficiently concentrated. Therefore, it is essential to differentially quantify the contribution of histone writers/erasers versus the effect of local concentration of metabolites to understand the primary regulation of histone PTM abundance. Aberrant phenotypes such as cancer cells have misregulated metabolism and thus the composition and the modulation of chromatin is not only driven by enzymatic tuning. In this review, the latest advances in mass spectrometry (MS) to analyze histone PTMs and the most adopted quantification methods for related metabolites, both necessary to understand PTM relative changes, are discussed.
Collapse
Affiliation(s)
- Johayra Simithy
- Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Simone Sidoli
- Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Benjamin A Garcia
- Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
195
|
Gourbal B, Pinaud S, Beckers GJM, Van Der Meer JWM, Conrath U, Netea MG. Innate immune memory: An evolutionary perspective. Immunol Rev 2018; 283:21-40. [DOI: 10.1111/imr.12647] [Citation(s) in RCA: 155] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Benjamin Gourbal
- Interactions Hosts Pathogens Environments UMR 5244; University of Perpignan Via Domitia; CNRS; IFREMER, Univ. Montpellier; Perpignan France
| | - Silvain Pinaud
- Interactions Hosts Pathogens Environments UMR 5244; University of Perpignan Via Domitia; CNRS; IFREMER, Univ. Montpellier; Perpignan France
| | | | - Jos W. M. Van Der Meer
- Department of Internal Medicine and Radboud Center for Infectious Diseases; Radboud University Medical Center; Nijmegen The Netherlands
| | - Uwe Conrath
- Department of Plant Physiology; RWTH Aachen University; Aachen Germany
| | - Mihai G. Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases; Radboud University Medical Center; Nijmegen The Netherlands
- Department for Genomics & Immunoregulation, Life and Medical Sciences Institute (LIMES); University of Bonn; Bonn Germany
| |
Collapse
|
196
|
Xu C, Cao H, Xu E, Zhang S, Hu Y. Genome-Wide Identification of Arabidopsis LBD29 Target Genes Reveals the Molecular Events behind Auxin-Induced Cell Reprogramming during Callus Formation. PLANT & CELL PHYSIOLOGY 2018; 59:744-755. [PMID: 29121271 DOI: 10.1093/pcp/pcx168] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 10/27/2017] [Indexed: 05/18/2023]
Abstract
Auxin-induced callus formation represents an important cell reprogramming process during in vitro regeneration of plants, in which the pericycle or pericycle-like cells within plant organs are reprogrammed into the pluripotent cell mass termed callus that is generally required for subsequent regeneration of root or shoot. However, the molecular events behind cell reprogramming during auxin-induced callus formation are largely elusive. We previously identified that auxin-induced LATERAL ORGAN BOUNDARIES DOMAIN (LBD) transcription factors act as the master regulators to trigger auxin-induced callus formation. Here, by ChIP-seq (chromatin immunoprecipitation-based sequencing) and RNA sequencing approaches, we identified the potential LBD29 target genes at the genome-wide level and outlined the molecular events of LBD-triggered cell reprogramming during callus formation. We showed that LBD29 preferentially bound to the G-box (CACGTG) and TGGGC[C/T] motifs and potentially targeted >350 genes, among which the genes related to methylation, reactive oxygen species (ROS) metabolism, cell wall hydrolysis and lipid metabolism were rapidly activated, while most of the light-responsive genes were suppressed by LBD29. Further examination of a few representative genes validated that they were targeted by LBD29 and participated in the regulation of cell reprogramming during callus formation. Our data not only outline a framework of the early molecular events behind auxin-induced cell reprogramming of callus formation, but also provide a valuable resource for identification of genes that regulate cell fate switch during in vitro regeneration of plants.
Collapse
Affiliation(s)
- Chongyi Xu
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Huifen Cao
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Enjun Xu
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Shiqi Zhang
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuxin Hu
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- National Center for Plant Gene Research, Beijing 100093, China
| |
Collapse
|
197
|
Levin M, Stark M, Assaraf YG. The JmjN domain as a dimerization interface and a targeted inhibitor of KDM4 demethylase activity. Oncotarget 2018; 9:16861-16882. [PMID: 29682190 PMCID: PMC5908291 DOI: 10.18632/oncotarget.24717] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 02/25/2018] [Indexed: 12/14/2022] Open
Abstract
Histone methylation is regulated to shape the epigenome by modulating DNA compaction, thus playing central roles in fundamental chromatin-based processes including transcriptional regulation, DNA repair and cell proliferation. Histone methylation is erased by demethylases including the well-established KDM4 subfamily members, however, little is known about their dimerization capacity and its impact on their demethylase activity. Using the powerful bimolecular fluorescence complementation technique, we herein show the in situ formation of human KDM4A and KDM4C homodimers and heterodimers in nuclei of live transfectant cells and evaluate their H3K9me3 demethylation activity. Using size exclusion HPLC as well as Western blot analysis, we show that endogenous KDM4C undergoes dimerization under physiological conditions. Importantly, we identify the JmjN domain as the KDM4C dimerization interface and pin-point specific charged residues therein to be essential for this dimerization. We further demonstrate that KDM4A/C dimerization is absolutely required for their demethylase activity which was abolished by the expression of free JmjN peptides. In contrast, KDM4B does not dimerize and functions as a monomer, and hence was not affected by free JmjN expression. KDM4 proteins are overexpressed in numerous malignancies and their pharmacological inhibition or depletion in cancer cells was shown to impair tumor cell proliferation, invasion and metastasis. Thus, the KDM4 dimer-interactome emerging from the present study bears potential implications for cancer therapeutics via selective inhibition of KDM4A/C demethylase activity using JmjN-based peptidomimetics.
Collapse
Affiliation(s)
- May Levin
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Michal Stark
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
198
|
Diao L, Su H, Wei G, Li T, Gao Y, Zhao G, Guo Z. Prognostic Value of microRNA 502 Binding Site SNP in the 3′-Untranslated Region of the SET8 Gene in Patients with Non-Hodgkin's Lymphoma. TUMORI JOURNAL 2018. [DOI: 10.1177/1660.18180] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Lanping Diao
- Department of Hematology, Hebei Medical University Affiliated North China Petroleum Bureau General Hospital, Cangzhou
| | - Huiling Su
- Department of Oncology, Hebei Medical University Affiliated North China Petroleum Bureau General Hospital, Cangzhou
| | - Guangchuan Wei
- Department of Ophthalmology, Hebei Medical University Affiliated North China Petroleum Bureau General Hospital, Cangzhou
| | - Tao Li
- Department of Epidemiology and Statistics, College of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Yuhuan Gao
- Department of Hematology, Hebei Medical University Affiliated North China Petroleum Bureau General Hospital, Cangzhou
| | - Guimin Zhao
- Department of Hematology, Hebei Medical University Affiliated North China Petroleum Bureau General Hospital, Cangzhou
| | - Zhanjun Guo
- Department of Gastroenterology and Hepatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang
| |
Collapse
|
199
|
PIP2 epigenetically represses rRNA genes transcription interacting with PHF8. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:266-275. [DOI: 10.1016/j.bbalip.2017.12.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 12/05/2017] [Accepted: 12/09/2017] [Indexed: 02/01/2023]
|
200
|
Mansouri L, Wierzbinska JA, Plass C, Rosenquist R. Epigenetic deregulation in chronic lymphocytic leukemia: Clinical and biological impact. Semin Cancer Biol 2018; 51:1-11. [PMID: 29427646 DOI: 10.1016/j.semcancer.2018.02.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 12/12/2017] [Accepted: 02/05/2018] [Indexed: 01/01/2023]
Abstract
Deregulated transcriptional control caused by aberrant DNA methylation and/or histone modifications is a hallmark of cancer cells. In chronic lymphocytic leukemia (CLL), the most common adult leukemia, the epigenetic 'landscape' has added a new layer of complexity to our understanding of this clinically and biologically heterogeneous disease. Early studies identified aberrant DNA methylation, often based on single gene promoter analysis with both biological and clinical impact. Subsequent genome-wide profiling studies revealed differential DNA methylation between CLLs and controls and in prognostics subgroups of the disease. From these studies, it became apparent that DNA methylation in regions outside of promoters, such as enhancers, is important for the regulation of coding genes as well as for the regulation of non-coding RNAs. Although DNA methylation profiles are reportedly stable over time and in relation to therapy, a higher epigenetic heterogeneity or 'burden' is seen in more aggressive CLL subgroups, albeit as non-recurrent 'passenger' events. More recently, DNA methylation profiles in CLL analyzed in relation to differentiating normal B-cell populations revealed that the majority of the CLL epigenome reflects the epigenomes present in the cell of origin and that only a small fraction of the epigenetic alterations represents truly CLL-specific changes. Furthermore, CLL patients can be grouped into at least three clinically relevant epigenetic subgroups, potentially originating from different cells at various stages of differentiation and associated with distinct outcomes. In this review, we summarize the current understanding of the DNA methylome in CLL, the role of histone modifying enzymes, highlight insights derived from animal models and attempts made to target epigenetic regulators in CLL along with the future directions of this rapidly advancing field.
Collapse
Affiliation(s)
- Larry Mansouri
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Sweden; Department of Molecular Medicine and Surgery, Karolinska Institutet, Sweden
| | - Justyna Anna Wierzbinska
- Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Christoph Plass
- Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Richard Rosenquist
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Sweden; Department of Molecular Medicine and Surgery, Karolinska Institutet, Sweden.
| |
Collapse
|