151
|
Jacoby RP, Millar AH, Taylor NL. Assessment of respiration in isolated plant mitochondria using Clark-type electrodes. Methods Mol Biol 2015; 1305:165-185. [PMID: 25910734 DOI: 10.1007/978-1-4939-2639-8_12] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Mitochondrial respiration involves two key gas exchanges, the consumption of oxygen and the release of carbon dioxide. The ability to measure the consumption of oxygen via Clark-type electrodes has been one of the key techniques for advancing our knowledge of mitochondrial function in whole organisms, tissue samples, cells, and isolated subcellular fractions. In plants, oxygen electrode analyses provided the first evidence for some of the unique respiratory properties of plant mitochondria. This chapter briefs the principles of respiration and oxidative phosphorylation, how oxygen consumption measurements can be used to assess the quality of isolated mitochondrial preparations, and how these measurements can answer important questions in plant biochemistry and physiology. Finally, it presents instructions on assembling the oxygen electrode apparatus and how to conduct various assays.
Collapse
Affiliation(s)
- Richard P Jacoby
- Plant Energy Biology, Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| | | | | |
Collapse
|
152
|
Hsieh WY, Liao JC, Hsieh MH. Dysfunctional mitochondria regulate the size of root apical meristem and leaf development in Arabidopsis. PLANT SIGNALING & BEHAVIOR 2015; 10:e1071002. [PMID: 26237004 PMCID: PMC4883911 DOI: 10.1080/15592324.2015.1071002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 07/04/2015] [Indexed: 05/23/2023]
Abstract
Mitochondria play an important role in maintaining metabolic and energy homeostasis in the plant cell. Thus, perturbation of mitochondrial structure and function will affect plant growth and development. Arabidopsis slow growth3 (slo3) is defective in At3g61360 that encodes a pentatricopeptide repeat (PPR) protein. Analysis of slo3 mitochondrial RNA metabolism revealed that the splicing of nad7 intron 2 is impaired, which leads to a dramatic reduction in complex I activity. So the SLO3 PPR protein is a splicing factor that is required for the removal of nad7 intron 2 in Arabidopsis. The slo3 mutant plants have obvious phenotypes with severe growth retardation and delayed development. The size of root apical meristem (RAM) is reduced and the production of meristem cells is decreased in slo3. Furthermore, the rosette leaves of slo3 are curled or crinkled, which may be derived from uneven growth of the leaf surface. The underlying mechanisms by which dysfunctional mitochondria affect these growth and developmental phenotypes have yet to be established. Nonetheless, plant hormone auxin is known to play an important role in orchestrating the development of RAM and leaf shape. It is possible that dysfunctional mitochondria may interact with auxin signaling pathways to regulate the boundary of RAM and the cell division arrest front during leaf growth in Arabidopsis.
Collapse
Affiliation(s)
- Wei-Yu Hsieh
- Institute of Plant and Microbial Biology; Academia Sinica; Taipei, Taiwan
| | - Jo-Chien Liao
- Institute of Plant and Microbial Biology; Academia Sinica; Taipei, Taiwan
| | - Ming-Hsiun Hsieh
- Institute of Plant and Microbial Biology; Academia Sinica; Taipei, Taiwan
| |
Collapse
|
153
|
Liang C, Zhang Y, Cheng S, Osorio S, Sun Y, Fernie AR, Cheung CYM, Lim BL. Impacts of high ATP supply from chloroplasts and mitochondria on the leaf metabolism of Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2015; 6:922. [PMID: 26579168 PMCID: PMC4623399 DOI: 10.3389/fpls.2015.00922] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 10/12/2015] [Indexed: 05/19/2023]
Abstract
Chloroplasts and mitochondria are the major ATP producing organelles in plant leaves. Arabidopsis thaliana purple acid phosphatase 2 (AtPAP2) is a phosphatase dually targeted to the outer membranes of both organelles and it plays a role in the import of selected nuclear-encoded proteins into these two organelles. Overexpression (OE) of AtPAP2 in A. thaliana accelerates plant growth and promotes flowering, seed yield, and biomass at maturity. Measurement of ADP/ATP/NADP(+)/NADPH contents in the leaves of 20-day-old OE and wild-type (WT) lines at the end of night and at 1 and 8 h following illumination in a 16/8 h photoperiod revealed that the ATP levels and ATP/NADPH ratios were significantly increased in the OE line at all three time points. The AtPAP2 OE line is therefore a good model to investigate the impact of high energy on the global molecular status of Arabidopsis. In this study, transcriptome, proteome, and metabolome profiles of the high ATP transgenic line were examined and compared with those of WT plants. A comparison of OE and WT at the end of the night provide valuable information on the impact of higher ATP output from mitochondria on plant physiology, as mitochondrial respiration is the major source of ATP in the dark in leaves. Similarly, comparison of OE and WT following illumination will provide information on the impact of higher energy output from chloroplasts on plant physiology. OE of AtPAP2 was found to significantly affect the transcript and protein abundances of genes encoded by the two organellar genomes. For example, the protein abundances of many ribosomal proteins encoded by the chloroplast genome were higher in the AtPAP2 OE line under both light and dark conditions, while the protein abundances of multiple components of the photosynthetic complexes were lower. RNA-seq data also showed that the transcription of the mitochondrial genome is greatly affected by the availability of energy. These data reflect that the transcription and translation of organellar genomes are tightly coupled with the energy status. This study thus provides comprehensive information on the impact of high ATP level on plant physiology, from organellar biology to primary and secondary metabolism.
Collapse
Affiliation(s)
- Chao Liang
- School of Biological Sciences, The University of Hong KongPokfulam, Hong Kong
| | - Youjun Zhang
- Max Planck Institute of Molecular Plant PhysiologyPotsdam-Golm, Germany
| | - Shifeng Cheng
- School of Biological Sciences, The University of Hong KongPokfulam, Hong Kong
| | - Sonia Osorio
- Departamento de Biología Molecular y Bioquímica, Instituto de Hortofruticultura Subtropical y Mediterranea, Universidad de Málaga-Consejo Superior de Investigaciones CientíficasMálaga, Spain
| | - Yuzhe Sun
- School of Biological Sciences, The University of Hong KongPokfulam, Hong Kong
| | | | - C. Y. M. Cheung
- Department of Chemical and Biomolecular Engineering, National University of SingaporeSingapore, Singapore
| | - Boon L. Lim
- School of Biological Sciences, The University of Hong KongPokfulam, Hong Kong
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong KongShatin, Hong Kong
- *Correspondence: Boon L. Lim,
| |
Collapse
|
154
|
Abstract
Respiratory measurement in plants is one of the commonly used techniques to assess metabolic activity and in vivo redox state of plant mitochondria. However, respiration rate monitoring of Arabidopsis (Arabidopsis thaliana) remains a challenge for researchers due to the small size of its organs. In this chapter we introduce adaptations to micro-respiratory technologies to study three tissues of special interest to plant biologists: leaf sections, root tips, and seeds in this model plant species. This assay opens up new possibilities to screen and study mutants and to identify differences in ecotypes or populations of plants.
Collapse
Affiliation(s)
- Yun Shin Sew
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| | | | | |
Collapse
|
155
|
Yang L, Zhang J, He J, Qin Y, Hua D, Duan Y, Chen Z, Gong Z. ABA-mediated ROS in mitochondria regulate root meristem activity by controlling PLETHORA expression in Arabidopsis. PLoS Genet 2014; 10:e1004791. [PMID: 25522358 PMCID: PMC4270459 DOI: 10.1371/journal.pgen.1004791] [Citation(s) in RCA: 164] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 10/01/2014] [Indexed: 11/19/2022] Open
Abstract
Although research has determined that reactive oxygen species (ROS) function as signaling molecules in plant development, the molecular mechanism by which ROS regulate plant growth is not well known. An aba overly sensitive mutant, abo8-1, which is defective in a pentatricopeptide repeat (PPR) protein responsible for the splicing of NAD4 intron 3 in mitochondrial complex I, accumulates more ROS in root tips than the wild type, and the ROS accumulation is further enhanced by ABA treatment. The ABO8 mutation reduces root meristem activity, which can be enhanced by ABA treatment and reversibly recovered by addition of certain concentrations of the reducing agent GSH. As indicated by low ProDR5:GUS expression, auxin accumulation/signaling was reduced in abo8-1. We also found that ABA inhibits the expression of PLETHORA1 (PLT1) and PLT2, and that root growth is more sensitive to ABA in the plt1 and plt2 mutants than in the wild type. The expression of PLT1 and PLT2 is significantly reduced in the abo8-1 mutant. Overexpression of PLT2 in an inducible system can largely rescue root apical meristem (RAM)-defective phenotype of abo8-1 with and without ABA treatment. These results suggest that ABA-promoted ROS in the mitochondria of root tips are important retrograde signals that regulate root meristem activity by controlling auxin accumulation/signaling and PLT expression in Arabidopsis.
Collapse
Affiliation(s)
- Li Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jing Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Junna He
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yingying Qin
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Deping Hua
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Ying Duan
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zhizhong Chen
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zhizhong Gong
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
- National Center for Plant Gene Research, Beijing, China
- * E-mail:
| |
Collapse
|
156
|
Dahan J, Tcherkez G, Macherel D, Benamar A, Belcram K, Quadrado M, Arnal N, Mireau H. Disruption of the CYTOCHROME C OXIDASE DEFICIENT1 gene leads to cytochrome c oxidase depletion and reorchestrated respiratory metabolism in Arabidopsis. PLANT PHYSIOLOGY 2014; 166:1788-802. [PMID: 25301889 PMCID: PMC4256860 DOI: 10.1104/pp.114.248526] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Accepted: 10/09/2014] [Indexed: 05/20/2023]
Abstract
Cytochrome c oxidase is the last respiratory complex of the electron transfer chain in mitochondria and is responsible for transferring electrons to oxygen, the final acceptor, in the classical respiratory pathway. The essentiality of this step makes it that depletion in complex IV leads to lethality, thereby impeding studies on complex IV assembly and respiration plasticity in plants. Here, we characterized Arabidopsis (Arabidopsis thaliana) embryo-lethal mutant lines impaired in the expression of the CYTOCHROME C OXIDASE DEFICIENT1 (COD1) gene, which encodes a mitochondria-localized PentatricoPeptide Repeat protein. Although unable to germinate under usual conditions, cod1 homozygous embryos could be rescued from immature seeds and developed in vitro into slow-growing bush-like plantlets devoid of a root system. cod1 mutants were defective in C-to-U editing events in cytochrome oxidase subunit2 and NADH dehydrogenase subunit4 transcripts, encoding subunits of respiratory complex IV and I, respectively, and consequently lacked cytochrome c oxidase activity. We further show that respiratory oxygen consumption by cod1 plantlets is exclusively associated with alternative oxidase activity and that alternative NADH dehydrogenases are also up-regulated in these plants. The metabolomics pattern of cod1 mutants was also deeply altered, suggesting that alternative metabolic pathways compensated for the probable resulting restriction in NADH oxidation. Being the first complex IV-deficient mutants described in higher plants, cod1 lines should be instrumental to future studies on respiration homeostasis.
Collapse
Affiliation(s)
- Jennifer Dahan
- AgroParisTech and Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1318, Institut Jean-Pierre Bourgin, F-78000 Versailles, France (J.D., K.B., M.Q., N.A., H.M.);Institut de Biologie des Plantes, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8618, and Plateforme Métabolisme-Métabolome, Institut Fédératif de Recherche 87, Université Paris-Sud, 91405 Orsay cedex, France (G.T.);Institut Universitaire de France, 75005 Paris, France (G.T.); andUniversité d'Angers, Unité Mixte de Recherche 1345, Institut de Recherche en Horticulture et Semences, Angers 49045, France (D.M., A.B.)
| | - Guillaume Tcherkez
- AgroParisTech and Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1318, Institut Jean-Pierre Bourgin, F-78000 Versailles, France (J.D., K.B., M.Q., N.A., H.M.);Institut de Biologie des Plantes, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8618, and Plateforme Métabolisme-Métabolome, Institut Fédératif de Recherche 87, Université Paris-Sud, 91405 Orsay cedex, France (G.T.);Institut Universitaire de France, 75005 Paris, France (G.T.); andUniversité d'Angers, Unité Mixte de Recherche 1345, Institut de Recherche en Horticulture et Semences, Angers 49045, France (D.M., A.B.)
| | - David Macherel
- AgroParisTech and Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1318, Institut Jean-Pierre Bourgin, F-78000 Versailles, France (J.D., K.B., M.Q., N.A., H.M.);Institut de Biologie des Plantes, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8618, and Plateforme Métabolisme-Métabolome, Institut Fédératif de Recherche 87, Université Paris-Sud, 91405 Orsay cedex, France (G.T.);Institut Universitaire de France, 75005 Paris, France (G.T.); andUniversité d'Angers, Unité Mixte de Recherche 1345, Institut de Recherche en Horticulture et Semences, Angers 49045, France (D.M., A.B.)
| | - Abdelilah Benamar
- AgroParisTech and Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1318, Institut Jean-Pierre Bourgin, F-78000 Versailles, France (J.D., K.B., M.Q., N.A., H.M.);Institut de Biologie des Plantes, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8618, and Plateforme Métabolisme-Métabolome, Institut Fédératif de Recherche 87, Université Paris-Sud, 91405 Orsay cedex, France (G.T.);Institut Universitaire de France, 75005 Paris, France (G.T.); andUniversité d'Angers, Unité Mixte de Recherche 1345, Institut de Recherche en Horticulture et Semences, Angers 49045, France (D.M., A.B.)
| | - Katia Belcram
- AgroParisTech and Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1318, Institut Jean-Pierre Bourgin, F-78000 Versailles, France (J.D., K.B., M.Q., N.A., H.M.);Institut de Biologie des Plantes, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8618, and Plateforme Métabolisme-Métabolome, Institut Fédératif de Recherche 87, Université Paris-Sud, 91405 Orsay cedex, France (G.T.);Institut Universitaire de France, 75005 Paris, France (G.T.); andUniversité d'Angers, Unité Mixte de Recherche 1345, Institut de Recherche en Horticulture et Semences, Angers 49045, France (D.M., A.B.)
| | - Martine Quadrado
- AgroParisTech and Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1318, Institut Jean-Pierre Bourgin, F-78000 Versailles, France (J.D., K.B., M.Q., N.A., H.M.);Institut de Biologie des Plantes, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8618, and Plateforme Métabolisme-Métabolome, Institut Fédératif de Recherche 87, Université Paris-Sud, 91405 Orsay cedex, France (G.T.);Institut Universitaire de France, 75005 Paris, France (G.T.); andUniversité d'Angers, Unité Mixte de Recherche 1345, Institut de Recherche en Horticulture et Semences, Angers 49045, France (D.M., A.B.)
| | - Nadège Arnal
- AgroParisTech and Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1318, Institut Jean-Pierre Bourgin, F-78000 Versailles, France (J.D., K.B., M.Q., N.A., H.M.);Institut de Biologie des Plantes, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8618, and Plateforme Métabolisme-Métabolome, Institut Fédératif de Recherche 87, Université Paris-Sud, 91405 Orsay cedex, France (G.T.);Institut Universitaire de France, 75005 Paris, France (G.T.); andUniversité d'Angers, Unité Mixte de Recherche 1345, Institut de Recherche en Horticulture et Semences, Angers 49045, France (D.M., A.B.)
| | - Hakim Mireau
- AgroParisTech and Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1318, Institut Jean-Pierre Bourgin, F-78000 Versailles, France (J.D., K.B., M.Q., N.A., H.M.);Institut de Biologie des Plantes, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8618, and Plateforme Métabolisme-Métabolome, Institut Fédératif de Recherche 87, Université Paris-Sud, 91405 Orsay cedex, France (G.T.);Institut Universitaire de France, 75005 Paris, France (G.T.); andUniversité d'Angers, Unité Mixte de Recherche 1345, Institut de Recherche en Horticulture et Semences, Angers 49045, France (D.M., A.B.)
| |
Collapse
|
157
|
Hsu YW, Wang HJ, Hsieh MH, Hsieh HL, Jauh GY. Arabidopsis mTERF15 is required for mitochondrial nad2 intron 3 splicing and functional complex I activity. PLoS One 2014; 9:e112360. [PMID: 25402171 PMCID: PMC4234379 DOI: 10.1371/journal.pone.0112360] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 10/03/2014] [Indexed: 01/08/2023] Open
Abstract
Mitochondria play a pivotal role in most eukaryotic cells, as they are responsible for the generation of energy and diverse metabolic intermediates for many cellular events. During endosymbiosis, approximately 99% of the genes encoded by the mitochondrial genome were transferred into the host nucleus, and mitochondria import more than 1000 nuclear-encoded proteins from the cytosol to maintain structural integrity and fundamental functions, including DNA replication, mRNA transcription and RNA metabolism of dozens of mitochondrial genes. In metazoans, a family of nuclear-encoded proteins called the mitochondrial transcription termination factors (mTERFs) regulates mitochondrial transcription, including transcriptional termination and initiation, via their DNA-binding activities, and the dysfunction of individual mTERF members causes severe developmental defects. Arabidopsis thaliana and Oryza sativa contain 35 and 48 mTERFs, respectively, but the biological functions of only a few of these proteins have been explored. Here, we investigated the biological role and molecular mechanism of Arabidopsis mTERF15 in plant organelle metabolism using molecular genetics, cytological and biochemical approaches. The null homozygous T-DNA mutant of mTERF15, mterf15, was found to result in substantial retardation of both vegetative and reproductive development, which was fully complemented by the wild-type genomic sequence. Surprisingly, mitochondria-localized mTERF15 lacks obvious DNA-binding activity but processes mitochondrial nad2 intron 3 splicing through its RNA-binding ability. Impairment of this splicing event not only disrupted mitochondrial structure but also abolished the activity of mitochondrial respiratory chain complex I. These effects are in agreement with the severe phenotype of the mterf15 homozygous mutant. Our study suggests that Arabidopsis mTERF15 functions as a splicing factor for nad2 intron 3 splicing in mitochondria, which is essential for normal plant growth and development.
Collapse
Affiliation(s)
- Ya-Wen Hsu
- Institute of Plant Biology, National Taiwan University, Taipei, 116, Taiwan, ROC
- Institute of Plant and Microbial Biology, Academia Sinica, Nankang, Taipei, 11529, Taiwan, ROC
| | - Huei-Jing Wang
- Institute of Plant and Microbial Biology, Academia Sinica, Nankang, Taipei, 11529, Taiwan, ROC
| | - Ming-Hsiun Hsieh
- Institute of Plant and Microbial Biology, Academia Sinica, Nankang, Taipei, 11529, Taiwan, ROC
| | - Hsu-Liang Hsieh
- Institute of Plant Biology, National Taiwan University, Taipei, 116, Taiwan, ROC
| | - Guang-Yuh Jauh
- Institute of Plant and Microbial Biology, Academia Sinica, Nankang, Taipei, 11529, Taiwan, ROC
- Biotechnology Center, National Chung-Hsing University, Taichung, 402, Taiwan, ROC
- * E-mail:
| |
Collapse
|
158
|
Zhang B, Van Aken O, Thatcher L, De Clercq I, Duncan O, Law SR, Murcha MW, van der Merwe M, Seifi HS, Carrie C, Cazzonelli C, Radomiljac J, Höfte M, Singh KB, Van Breusegem F, Whelan J. The mitochondrial outer membrane AAA ATPase AtOM66 affects cell death and pathogen resistance in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 80:709-727. [PMID: 25227923 DOI: 10.1111/tpj.12665] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 08/27/2014] [Accepted: 08/29/2014] [Indexed: 06/03/2023]
Abstract
One of the most stress-responsive genes encoding a mitochondrial protein in Arabidopsis (At3g50930) has been annotated as AtBCS1 (cytochrome bc1 synthase 1), but was previously functionally uncharacterised. Here, we show that the protein encoded by At3g50930 is present as a homo-multimeric protein complex on the outer mitochondrial membrane and lacks the BCS1 domain present in yeast and mammalian BCS1 proteins, with the sequence similarity restricted to the AAA ATPase domain. Thus we propose to re-annotate this protein as AtOM66 (Outer Mitochondrial membrane protein of 66 kDa). While transgenic plants with reduced AtOM66 expression appear to be phenotypically normal, AtOM66 over-expression lines have a distinct phenotype, showing strong leaf curling and reduced starch content. Analysis of mitochondrial protein content demonstrated no detectable changes in mitochondrial respiratory complex protein abundance. Consistent with the stress inducible expression pattern, over-expression lines of AtOM66 are more tolerant to drought stress but undergo stress-induced senescence earlier than wild type. Genome-wide expression analysis revealed a constitutive induction of salicylic acid-related (SA) pathogen defence and cell death genes in over-expression lines. Conversely, expression of SA marker gene PR-1 was reduced in atom66 plants, while jasmonic acid response genes PDF1.2 and VSP2 have increased transcript abundance. In agreement with the expression profile, AtOM66 over-expression plants show increased SA content, accelerated cell death rates and are more tolerant to the biotrophic pathogen Pseudomonas syringae, but more susceptible to the necrotrophic fungus Botrytis cinerea. In conclusion, our results demonstrate a role for AtOM66 in cell death and amplifying SA signalling.
Collapse
Affiliation(s)
- Botao Zhang
- ARC Centre of Excellence in Plant Energy Biology, University of Western Australia, Bayliss Building M316, 35 Stirling Highway, Crawley, WA, 6009, Australia; Department of Botany, ARC Centre of Excellence in Plant Energy Biology, School of Life Science, La Trobe University, Bundoora, Vic., 3086, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
159
|
Pan X, Chen Z, Yang X, Liu G. Arabidopsis voltage-dependent anion channel 1 (AtVDAC1) is required for female development and maintenance of mitochondrial functions related to energy-transaction. PLoS One 2014; 9:e106941. [PMID: 25192453 PMCID: PMC4156401 DOI: 10.1371/journal.pone.0106941] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 08/10/2014] [Indexed: 11/18/2022] Open
Abstract
The voltage-dependent anion channels (VDACs), prominently localized in the outer mitochondrial membrane, play important roles in the metabolite exchange, energy metabolism and mitochondria-mediated apoptosis process in mammalian cells. However, relatively little is known about the functions of VDACs in plants. To further investigate the function of AtVDAC1 in Arabidopsis, we analyzed a T-DNA insertion line for the AtVDAC1 gene. The knock-out mutant atvdac1 showed reduced seed set due to a large number of undeveloped ovules in siliques. Genetic analyses indicated that the mutation of AtVDAC1 affected female fertility and belonged to a sporophytic mutation. Abnormal ovules in the process of female gametogenesis were observed using a confocal laser scanning microscope. Interestingly, both mitochondrial transmembrane potential (ΔΨ) and ATP synthesis rate were obviously reduced in the mitochondria isolated from atvdac1 plants.
Collapse
Affiliation(s)
- Xiaodi Pan
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Ziwei Chen
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xueyong Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Guoqin Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
- * E-mail:
| |
Collapse
|
160
|
Li XJ, Zhang YF, Hou M, Sun F, Shen Y, Xiu ZH, Wang X, Chen ZL, Sun SSM, Small I, Tan BC. Small kernel 1 encodes a pentatricopeptide repeat protein required for mitochondrial nad7 transcript editing and seed development in maize (Zea mays) and rice (Oryza sativa). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 79:797-809. [PMID: 24923534 DOI: 10.1111/tpj.12584] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 05/29/2014] [Accepted: 06/03/2014] [Indexed: 05/02/2023]
Abstract
RNA editing modifies cytidines (C) to uridines (U) at specific sites in the transcripts of mitochondria and plastids, altering the amino acid specified by the DNA sequence. Here we report the identification of a critical editing factor of mitochondrial nad7 transcript via molecular characterization of a small kernel 1 (smk1) mutant in Zea mays (maize). Mutations in Smk1 arrest both the embryo and endosperm development. Cloning of Smk1 indicates that it encodes an E-subclass pentatricopeptide repeat (PPR) protein that is targeted to mitochondria. Loss of SMK1 function abolishes the C → U editing at the nad7-836 site, leading to the retention of a proline codon that is edited to encode leucine in the wild type. The smk1 mutant showed dramatically reduced complex-I assembly and NADH dehydrogenase activity, and abnormal biogenesis of the mitochondria. Analysis of the ortholog in Oryza sativa (rice) reveals that rice SMK1 has a conserved function in C → U editing of the mitochondrial nad7-836 site. T-DNA knock-out mutants showed abnormal embryo and endosperm development, resulting in embryo or seedling lethality. The leucine at NAD7-279 is highly conserved from bacteria to flowering plants, and analysis of genome sequences from many plants revealed a molecular coevolution between the requirement for C → U editing at this site and the existence of an SMK1 homolog. These results demonstrate that Smk1 encodes a PPR-E protein that is required for nad7-836 editing, and this editing is critical to NAD7 function in complex-I assembly in mitochondria, and hence to embryo and endosperm development in maize and rice.
Collapse
Affiliation(s)
- Xiao-Jie Li
- School of Life Sciences, Tsinghua University, Beijing, 100084, China; Shenzhen Key Laboratory of Super Hybrid Rice Research, Division of Life & Health Sciences, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China; State Key Lab of Agrobiotechnology, Institute of Plant Molecular Biology and Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T, Hong Kong
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
161
|
Arenas-M A, Zehrmann A, Moreno S, Takenaka M, Jordana X. The pentatricopeptide repeat protein MEF26 participates in RNA editing in mitochondrial cox3 and nad4 transcripts. Mitochondrion 2014; 19 Pt B:126-34. [PMID: 25173472 DOI: 10.1016/j.mito.2014.08.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 08/16/2014] [Accepted: 08/20/2014] [Indexed: 11/15/2022]
Abstract
In angiosperms most members of the large nuclear-encoded family of pentatricopeptide repeat (PPR) proteins are predicted to play relevant roles in the maturation of organellar RNAs. Here we report the novel Mitochondrial Editing Factor 26, a DYW-PPR protein involved in RNA editing at two sites. While at one site, cox3-311, editing is abolished in the absence of MEF26, the other site, nad4-166, is still partially edited. These sites share similar cis-elements and application of the recently proposed amino acid code for RNA recognition by PPR proteins ranks them at first and second positions of the most probable targets.
Collapse
Affiliation(s)
- Anita Arenas-M
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Casilla 114-D, Santiago, Chile.
| | - Anja Zehrmann
- Molekulare Botanik, Universität Ulm, 89069 Ulm, Germany.
| | - Sebastian Moreno
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Casilla 114-D, Santiago, Chile.
| | | | - Xavier Jordana
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Casilla 114-D, Santiago, Chile.
| |
Collapse
|
162
|
Colas des Francs-Small C, Falcon de Longevialle A, Li Y, Lowe E, Tanz SK, Smith C, Bevan MW, Small I. The Pentatricopeptide Repeat Proteins TANG2 and ORGANELLE TRANSCRIPT PROCESSING439 Are Involved in the Splicing of the Multipartite nad5 Transcript Encoding a Subunit of Mitochondrial Complex I. PLANT PHYSIOLOGY 2014; 165:1409-1416. [PMID: 24958715 PMCID: PMC4119027 DOI: 10.1104/pp.114.244616] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 06/18/2014] [Indexed: 05/04/2023]
Abstract
Pentatricopeptide repeat proteins constitute a large family of RNA-binding proteins in higher plants (around 450 genes in Arabidopsis [Arabidopsis thaliana]), mostly targeted to chloroplasts and mitochondria. Many of them are involved in organelle posttranscriptional processes, in a very specific manner. Splicing is necessary to remove the group II introns, which interrupt the coding sequences of several genes encoding components of the mitochondrial respiratory chain. The nad5 gene is fragmented in five exons, belonging to three distinct transcription units. Its maturation requires two cis- and two trans-splicing events. These steps need to be performed in a very precise order to generate a functional transcript. Here, we characterize two pentatricopeptide repeat proteins, ORGANELLE TRANSCRIPT PROCESSING439 and TANG2, and show that they are involved in the removal of nad5 introns 2 and 3, respectively. To our knowledge, they are the first two specific nad5 splicing factors found in plants so far.
Collapse
Affiliation(s)
- Catherine Colas des Francs-Small
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia 6009, Australia (C.C.d.F.-S., A.F.d.L., E.L., S.K.T., I.S.); andDepartment of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom (Y.L., C.S., M.W.B.)
| | - Andéol Falcon de Longevialle
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia 6009, Australia (C.C.d.F.-S., A.F.d.L., E.L., S.K.T., I.S.); andDepartment of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom (Y.L., C.S., M.W.B.)
| | - Yunhai Li
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia 6009, Australia (C.C.d.F.-S., A.F.d.L., E.L., S.K.T., I.S.); andDepartment of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom (Y.L., C.S., M.W.B.)
| | - Elizabeth Lowe
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia 6009, Australia (C.C.d.F.-S., A.F.d.L., E.L., S.K.T., I.S.); andDepartment of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom (Y.L., C.S., M.W.B.)
| | - Sandra K Tanz
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia 6009, Australia (C.C.d.F.-S., A.F.d.L., E.L., S.K.T., I.S.); andDepartment of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom (Y.L., C.S., M.W.B.)
| | - Caroline Smith
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia 6009, Australia (C.C.d.F.-S., A.F.d.L., E.L., S.K.T., I.S.); andDepartment of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom (Y.L., C.S., M.W.B.)
| | - Michael W Bevan
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia 6009, Australia (C.C.d.F.-S., A.F.d.L., E.L., S.K.T., I.S.); andDepartment of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom (Y.L., C.S., M.W.B.)
| | - Ian Small
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia 6009, Australia (C.C.d.F.-S., A.F.d.L., E.L., S.K.T., I.S.); andDepartment of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom (Y.L., C.S., M.W.B.)
| |
Collapse
|
163
|
Ng S, De Clercq I, Van Aken O, Law SR, Ivanova A, Willems P, Giraud E, Van Breusegem F, Whelan J. Anterograde and retrograde regulation of nuclear genes encoding mitochondrial proteins during growth, development, and stress. MOLECULAR PLANT 2014; 7:1075-93. [PMID: 24711293 DOI: 10.1093/mp/ssu037] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Mitochondrial biogenesis and function in plants require the expression of over 1000 nuclear genes encoding mitochondrial proteins (NGEMPs). The expression of these genes is regulated by tissue-specific, developmental, internal, and external stimuli that result in a dynamic organelle involved in both metabolic and a variety of signaling processes. Although the metabolic and biosynthetic machinery of mitochondria is relatively well understood, the factors that regulate these processes and the various signaling pathways involved are only beginning to be identified at a molecular level. The molecular components of anterograde (nuclear to mitochondrial) and retrograde (mitochondrial to nuclear) signaling pathways that regulate the expression of NGEMPs interact with chloroplast-, growth-, and stress-signaling pathways in the cell at a variety of levels, with common components involved in transmission and execution of these signals. This positions mitochondria as important hubs for signaling in the cell, not only in direct signaling of mitochondrial function per se, but also in sensing and/or integrating a variety of other internal and external signals. This integrates and optimizes growth with energy metabolism and stress responses, which is required in both photosynthetic and non-photosynthetic cells.
Collapse
Affiliation(s)
- Sophia Ng
- ARC Centre of Excellence in Plant Energy Biology, University of Western Australia, Australia Joint Research Laboratory in Genomics and Nutriomics, College of Life Sciences, Zhejiang University, Hangzhou, 310058, P.R. China
| | - Inge De Clercq
- Department of Plant Systems Biology, VIB, and Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052 Gent, Belgium
| | - Olivier Van Aken
- ARC Centre of Excellence in Plant Energy Biology, University of Western Australia, Australia
| | - Simon R Law
- Department of Botany, ARC Centre of Excellence in Plant Energy Biology, School of Life Science, La Trobe University, Bundoora 3086, Victoria, Australia
| | - Aneta Ivanova
- Department of Botany, ARC Centre of Excellence in Plant Energy Biology, School of Life Science, La Trobe University, Bundoora 3086, Victoria, Australia
| | - Patrick Willems
- Department of Plant Systems Biology, VIB, and Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052 Gent, Belgium Department of Medical Protein Research and Department of Biochemistry, 9000 Ghent, Belgium
| | - Estelle Giraud
- ARC Centre of Excellence in Plant Energy Biology, University of Western Australia, Australia Present address: Illumina, ANZ, 1 International Court, Scoresby Victoria 3179, Australia
| | - Frank Van Breusegem
- Department of Plant Systems Biology, VIB, and Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052 Gent, Belgium
| | - James Whelan
- Department of Botany, ARC Centre of Excellence in Plant Energy Biology, School of Life Science, La Trobe University, Bundoora 3086, Victoria, Australia
| |
Collapse
|
164
|
Wallström SV, Florez-Sarasa I, Araújo WL, Escobar MA, Geisler DA, Aidemark M, Lager I, Fernie AR, Ribas-Carbó M, Rasmusson AG. Suppression of NDA-type alternative mitochondrial NAD(P)H dehydrogenases in arabidopsis thaliana modifies growth and metabolism, but not high light stimulation of mitochondrial electron transport. PLANT & CELL PHYSIOLOGY 2014; 55:881-96. [PMID: 24486764 PMCID: PMC4016682 DOI: 10.1093/pcp/pcu021] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2013] [Accepted: 01/16/2014] [Indexed: 05/18/2023]
Abstract
The plant respiratory chain contains several pathways which bypass the energy-conserving electron transport complexes I, III and IV. These energy bypasses, including type II NAD(P)H dehydrogenases and the alternative oxidase (AOX), may have a role in redox stabilization and regulation, but current evidence is inconclusive. Using RNA interference, we generated Arabidopsis thaliana plants simultaneously suppressing the type II NAD(P)H dehydrogenase genes NDA1 and NDA2. Leaf mitochondria contained substantially reduced levels of both proteins. In sterile culture in the light, the transgenic lines displayed a slow growth phenotype, which was more severe when the complex I inhibitor rotenone was present. Slower growth was also observed in soil. In rosette leaves, a higher NAD(P)H/NAD(P)⁺ ratio and elevated levels of lactate relative to sugars and citric acid cycle metabolites were observed. However, photosynthetic performance was unaffected and microarray analyses indicated few transcriptional changes. A high light treatment increased AOX1a mRNA levels, in vivo AOX and cytochrome oxidase activities, and levels of citric acid cycle intermediates and hexoses in all genotypes. However, NDA-suppressing plants deviated from the wild type merely by having higher levels of several amino acids. These results suggest that NDA suppression restricts citric acid cycle reactions, inducing a shift towards increased levels of fermentation products, but do not support a direct association between photosynthesis and NDA proteins.
Collapse
Affiliation(s)
- Sabá V. Wallström
- Department of Biology, Lund University, Biology building A, Sölvegatan 35, SE-22362 Lund, Sweden
| | - Igor Florez-Sarasa
- Grup de Recerca en Biologia de les Plantes en Condicions Mediterrànies, Universitat de les Illes Balears, Ctra Valldemossa Km. 7,5, 07122 Palma de Mallorca, Spain
- Present address: Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Wagner L. Araújo
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
- Present address: Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-000 Viçosa, Minas Gerais, Brasil
| | - Matthew A. Escobar
- Department of Biological Sciences, California State University San Marcos, 333 S. Twin Oaks Valley Road, San Marcos, CA 92096, USA
| | - Daniela A. Geisler
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Mari Aidemark
- Department of Biology, Lund University, Biology building A, Sölvegatan 35, SE-22362 Lund, Sweden
| | - Ida Lager
- Department of Biology, Lund University, Biology building A, Sölvegatan 35, SE-22362 Lund, Sweden
| | - Alisdair R. Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Miquel Ribas-Carbó
- Grup de Recerca en Biologia de les Plantes en Condicions Mediterrànies, Universitat de les Illes Balears, Ctra Valldemossa Km. 7,5, 07122 Palma de Mallorca, Spain
| | - Allan G. Rasmusson
- Department of Biology, Lund University, Biology building A, Sölvegatan 35, SE-22362 Lund, Sweden
| |
Collapse
|
165
|
Cytoplasmic male sterility and mitochondrial metabolism in plants. Mitochondrion 2014; 19 Pt B:166-71. [PMID: 24769053 DOI: 10.1016/j.mito.2014.04.009] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Revised: 03/31/2014] [Accepted: 04/14/2014] [Indexed: 11/24/2022]
Abstract
Cytoplasmic male sterility (CMS) is a common feature encountered in plant species. It is the result of a genomic conflict between the mitochondrial and the nuclear genomes. CMS is caused by mitochondrial encoded factors which can be counteracted by nuclear encoded factors restoring male fertility. Despite extensive work, the molecular mechanism of male sterility still remains unknown. Several studies have suggested the involvement of respiration on the disruption of pollen production through an energy deficiency. By comparing recent works on CMS and respiratory mutants, we suggest that the "ATP hypothesis" might not be as obvious as previously suggested.
Collapse
|
166
|
Tohge T, de Souza LP, Fernie AR. Genome-enabled plant metabolomics. J Chromatogr B Analyt Technol Biomed Life Sci 2014; 966:7-20. [PMID: 24811977 DOI: 10.1016/j.jchromb.2014.04.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 03/31/2014] [Accepted: 04/03/2014] [Indexed: 12/12/2022]
Abstract
The grand challenge currently facing metabolomics is that of comprehensitivity whilst next generation sequencing and advanced proteomics methods now allow almost complete and at least 50% coverage of their respective target molecules, metabolomics platforms at best offer coverage of just 10% of the small molecule complement of the cell. Here we discuss the use of genome sequence information as an enabling tool for peak identity and for translational metabolomics. Whilst we argue that genome information is not sufficient to compute the size of a species metabolome it is highly useful in predicting the occurrence of a wide range of common metabolites. Furthermore, we describe how via gene functional analysis in model species the identity of unknown metabolite peaks can be resolved. Taken together these examples suggest that genome sequence information is current (and likely will remain), a highly effective tool in peak elucidation in mass spectral metabolomics strategies.
Collapse
Affiliation(s)
- Takayuki Tohge
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm 14476, Germany
| | - Leonardo Perez de Souza
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm 14476, Germany
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm 14476, Germany.
| |
Collapse
|
167
|
Cohen S, Zmudjak M, Colas des Francs-Small C, Malik S, Shaya F, Keren I, Belausov E, Many Y, Brown GG, Small I, Ostersetzer-Biran O. nMAT4, a maturase factor required for nad1 pre-mRNA processing and maturation, is essential for holocomplex I biogenesis in Arabidopsis mitochondria. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 78:253-68. [PMID: 24506473 DOI: 10.1111/tpj.12466] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 01/17/2014] [Accepted: 01/28/2014] [Indexed: 05/23/2023]
Abstract
Group II introns are large catalytic RNAs that are found in bacteria and organellar genomes of lower eukaryotes, but are particularly prevalent within mitochondria in plants, where they are present in many critical genes. The excision of plant mitochondrial introns is essential for respiratory functions, and is facilitated in vivo by various protein cofactors. Typical group II introns are classified as mobile genetic elements, consisting of the self-splicing ribozyme and its own intron-encoded maturase protein. A hallmark of maturases is that they are intron-specific, acting as cofactors that bind their intron-containing pre-RNAs to facilitate splicing. However, the degeneracy of the mitochondrial introns in plants and the absence of cognate intron-encoded maturase open reading frames suggest that their splicing in vivo is assisted by 'trans'-acting protein factors. Interestingly, angiosperms harbor several nuclear-encoded maturase-related (nMat) genes that contain N-terminal mitochondrial localization signals. Recently, we established the roles of two of these paralogs in Arabidopsis, nMAT1 and nMAT2, in the splicing of mitochondrial introns. Here we show that nMAT4 (At1g74350) is required for RNA processing and maturation of nad1 introns 1, 3 and 4 in Arabidopsis mitochondria. Seed germination, seedling establishment and development are strongly affected in homozygous nmat4 mutants, which also show modified respiration phenotypes that are tightly associated with complex I defects.
Collapse
Affiliation(s)
- Sigal Cohen
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Givat-Ram, Jerusalem, 91904, Israel
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
168
|
Zubo YO, Potapova TV, Yamburenko MV, Tarasenko VI, Konstantinov YM, Börner T. Inhibition of the electron transport strongly affects transcription and transcript levels in Arabidopsis mitochondria. Mitochondrion 2014; 19 Pt B:222-30. [PMID: 24699356 DOI: 10.1016/j.mito.2014.03.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 03/17/2014] [Accepted: 03/24/2014] [Indexed: 12/14/2022]
Abstract
Mitochondrial transcription rate and RNA steady-state levels were examined in shoots of Arabidopsis seedlings. The shoots were treated with inhibitors of complex III and IV of the cytochrome pathway (CP) and with an inhibitor of the alternative oxidase (AOX) of the mitochondrial electron transport chain. The inhibition of AOX and CP complexes III and IV affected transcription and transcript levels in different ways. CP and AOX inhibitors had opposite effects. Our data support the idea that the redox state of the electron transport chain is involved in the regulation of mitochondrial gene expression at transcriptional and post-transcriptional levels.
Collapse
Affiliation(s)
- Yan O Zubo
- Institute of Biology-Genetics, Humboldt University, Chaussestr. 117, 10115 Berlin, Germany
| | - Tatyana V Potapova
- Institute of Biology-Genetics, Humboldt University, Chaussestr. 117, 10115 Berlin, Germany; The Siberian Institute of Plant Physiology and Biochemistry SB RAS, Lermontova St., 132, Irkutsk 664033, Russia
| | - Maria V Yamburenko
- Institute of Biology-Genetics, Humboldt University, Chaussestr. 117, 10115 Berlin, Germany
| | - Vladislav I Tarasenko
- The Siberian Institute of Plant Physiology and Biochemistry SB RAS, Lermontova St., 132, Irkutsk 664033, Russia
| | - Yuri M Konstantinov
- Institute of Biology-Genetics, Humboldt University, Chaussestr. 117, 10115 Berlin, Germany; The Siberian Institute of Plant Physiology and Biochemistry SB RAS, Lermontova St., 132, Irkutsk 664033, Russia; The Irkutsk State University, Sukhe-Batar St., 5, Irkutsk 664033, Russia
| | - Thomas Börner
- Institute of Biology-Genetics, Humboldt University, Chaussestr. 117, 10115 Berlin, Germany.
| |
Collapse
|
169
|
Gehl B, Lee CP, Bota P, Blatt MR, Sweetlove LJ. An Arabidopsis stomatin-like protein affects mitochondrial respiratory supercomplex organization. PLANT PHYSIOLOGY 2014; 164:1389-400. [PMID: 24424325 PMCID: PMC3938628 DOI: 10.1104/pp.113.230383] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Stomatins belong to the band-7 protein family, a diverse group of conserved eukaryotic and prokaryotic membrane proteins involved in the formation of large protein complexes as protein-lipid scaffolds. The Arabidopsis (Arabidopsis thaliana) genome contains two paralogous genes encoding stomatin-like proteins (SLPs; AtSLP1 and AtSLP2) that are phylogenetically related to human SLP2, a protein involved in mitochondrial fusion and protein complex formation in the mitochondrial inner membrane. We used reverse genetics in combination with biochemical methods to investigate the function of AtSLPs. We demonstrate that both SLPs localize to mitochondrial membranes. SLP1 migrates as a large (approximately 3 MDa) complex in blue-native gel electrophoresis. Remarkably, slp1 knockout mutants have reduced protein and activity levels of complex I and supercomplexes, indicating that SLP affects the assembly and/or stability of these complexes. These findings point to a role for SLP1 in the organization of respiratory supercomplexes in Arabidopsis.
Collapse
|
170
|
Chen W, Taylor NL, Chi Y, Millar AH, Lambers H, Finnegan PM. The metabolic acclimation of Arabidopsis thaliana to arsenate is sensitized by the loss of mitochondrial LIPOAMIDE DEHYDROGENASE2, a key enzyme in oxidative metabolism. PLANT, CELL & ENVIRONMENT 2014; 37:684-695. [PMID: 23961884 DOI: 10.1111/pce.12187] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 08/12/2013] [Accepted: 08/15/2013] [Indexed: 06/02/2023]
Abstract
Mitochondrial lipoamide dehydrogenase is essential for the activity of four mitochondrial enzyme complexes central to oxidative metabolism. The reduction in protein amount and enzyme activity caused by disruption of mitochondrial LIPOAMIDE DEHYDROGENASE2 enhanced the arsenic sensitivity of Arabidopsis thaliana. Both arsenate and arsenite inhibited root elongation, decreased seedling size and increased anthocyanin production more profoundly in knockout mutants than in wild-type seedlings. Arsenate also stimulated lateral root formation in the mutants. The activity of lipoamide dehydrogenase in isolated mitochondria was sensitive to arsenite, but not arsenate, indicating that arsenite could be the mediator of the observed phenotypes. Steady-state metabolite abundances were only mildly affected by mutation of mitochondrial LIPOAMIDE DEHYDROGENASE2. In contrast, arsenate induced the remodelling of metabolite pools associated with oxidative metabolism in wild-type seedlings, an effect that was enhanced in the mutant, especially around the enzyme complexes containing mitochondrial lipoamide dehydrogenase. These results indicate that mitochondrial lipoamide dehydrogenase is an important protein for determining the sensitivity of oxidative metabolism to arsenate in Arabidopsis.
Collapse
Affiliation(s)
- Weihua Chen
- School of Plant Biology, The University of Western Australia, Crawley (Perth), Western Australia, 6009, Australia; Institute of Agriculture, The University of Western Australia, Crawley (Perth), Western Australia, 6009, Australia
| | | | | | | | | | | |
Collapse
|
171
|
Braun HP, Binder S, Brennicke A, Eubel H, Fernie AR, Finkemeier I, Klodmann J, König AC, Kühn K, Meyer E, Obata T, Schwarzländer M, Takenaka M, Zehrmann A. The life of plant mitochondrial complex I. Mitochondrion 2014; 19 Pt B:295-313. [PMID: 24561573 DOI: 10.1016/j.mito.2014.02.006] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 01/28/2014] [Accepted: 02/12/2014] [Indexed: 12/29/2022]
Abstract
The mitochondrial NADH dehydrogenase complex (complex I) of the respiratory chain has several remarkable features in plants: (i) particularly many of its subunits are encoded by the mitochondrial genome, (ii) its mitochondrial transcripts undergo extensive maturation processes (e.g. RNA editing, trans-splicing), (iii) its assembly follows unique routes, (iv) it includes an additional functional domain which contains carbonic anhydrases and (v) it is, indirectly, involved in photosynthesis. Comprising about 50 distinct protein subunits, complex I of plants is very large. However, an even larger number of proteins are required to synthesize these subunits and assemble the enzyme complex. This review aims to follow the complete "life cycle" of plant complex I from various molecular perspectives. We provide arguments that complex I represents an ideal model system for studying the interplay of respiration and photosynthesis, the cooperation of mitochondria and the nucleus during organelle biogenesis and the evolution of the mitochondrial oxidative phosphorylation system.
Collapse
Affiliation(s)
- Hans-Peter Braun
- Institut für Pflanzengenetik, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany.
| | - Stefan Binder
- Molekulare Botanik, Universität Ulm, Albert-Einstein-Allee 11, 89069 Ulm, Germany
| | - Axel Brennicke
- Molekulare Botanik, Universität Ulm, Albert-Einstein-Allee 11, 89069 Ulm, Germany
| | - Holger Eubel
- Institut für Pflanzengenetik, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Iris Finkemeier
- Plant Sciences, Ludwig Maximilians Universität München, Grosshadernerstr. 2-4, 82152 Planegg-Martinsried, Germany
| | - Jennifer Klodmann
- Institut für Pflanzengenetik, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| | - Ann-Christine König
- Plant Sciences, Ludwig Maximilians Universität München, Grosshadernerstr. 2-4, 82152 Planegg-Martinsried, Germany
| | - Kristina Kühn
- Institut für Biologie/Molekulare Zellbiologie der Pflanzen, Humboldt Universität zu Berlin, Philippstraße 13, 10115 Berlin, Germany
| | - Etienne Meyer
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Toshihiro Obata
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Markus Schwarzländer
- INRES - Chemical Signalling, Rheinische Friedrich-Wilhelms-Universität Bonn, Friedrich-Ebert-Allee 144, D-53113 Bonn, Germany
| | - Mizuki Takenaka
- Molekulare Botanik, Universität Ulm, Albert-Einstein-Allee 11, 89069 Ulm, Germany
| | - Anja Zehrmann
- Molekulare Botanik, Universität Ulm, Albert-Einstein-Allee 11, 89069 Ulm, Germany
| |
Collapse
|
172
|
Zhu Q, Dugardeyn J, Zhang C, Mühlenbock P, Eastmond PJ, Valcke R, De Coninck B, Oden S, Karampelias M, Cammue BPA, Prinsen E, Van Der Straeten D. The Arabidopsis thaliana RNA editing factor SLO2, which affects the mitochondrial electron transport chain, participates in multiple stress and hormone responses. MOLECULAR PLANT 2014; 7:290-310. [PMID: 23990142 DOI: 10.1093/mp/sst102] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Recently, we reported that the novel mitochondrial RNA editing factor SLO2 is essential for mitochondrial electron transport, and vital for plant growth through regulation of carbon and energy metabolism. Here, we show that mutation in SLO2 causes hypersensitivity to ABA and insensitivity to ethylene, suggesting a link with stress responses. Indeed, slo2 mutants are hypersensitive to salt and osmotic stress during the germination stage, while adult plants show increased drought and salt tolerance. Moreover, slo2 mutants are more susceptible to Botrytis cinerea infection. An increased expression of nuclear-encoded stress-responsive genes, as well as mitochondrial-encoded NAD genes of complex I and genes of the alternative respiratory pathway, was observed in slo2 mutants, further enhanced by ABA treatment. In addition, H2O2 accumulation and altered amino acid levels were recorded in slo2 mutants. We conclude that SLO2 is required for plant sensitivity to ABA, ethylene, biotic, and abiotic stress. Although two stress-related RNA editing factors were reported very recently, this study demonstrates a unique role of SLO2, and further supports a link between mitochondrial RNA editing events and stress response.
Collapse
Affiliation(s)
- Qiang Zhu
- Laboratory of Functional Plant Biology, Department of Physiology, Ghent University, K.L. Ledeganckstraat 35, B-9000 Ghent, Belgium
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
173
|
Araújo WL, Nunes-Nesi A, Fernie AR. On the role of plant mitochondrial metabolism and its impact on photosynthesis in both optimal and sub-optimal growth conditions. PHOTOSYNTHESIS RESEARCH 2014; 119:141-156. [PMID: 23456269 DOI: 10.1007/s11120-013-9807-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 02/18/2013] [Indexed: 06/01/2023]
Abstract
Given that the pathways of photosynthesis and respiration catalyze partially opposing processes, it follows that their relative activities must be carefully regulated within plant cells. Recent evidence has shown that the components of the mitochondrial electron transport chain are essential for the proper maintenance of intracellular redox gradients, to allow considerable rates of photorespiration and in turn efficient photosynthesis. Thus considerable advances have been made in understanding the interaction between respiration and photosynthesis during the last decades and the potential mechanisms linking mitochondrial function and photosynthetic efficiency will be reviewed. Despite the fact that manipulation of various steps of mitochondrial metabolism has been demonstrated to alter photosynthesis under optimal growth conditions, it is likely that these changes will, by and large, not be maintained under sub-optimal situations. Therefore producing plants to meet this aim remains a critical challenge. It is clear, however, that although there have been a range of studies analysing changes in respiratory and photosynthetic rates in response to light, temperature and CO2, our knowledge of the environmental impact on these processes and its linkage still remains fragmented. We will also discuss the metabolic changes associated to plant respiration and photosynthesis as important components of the survival strategy as they considerably extend the period that a plant can withstand to a stress situation.
Collapse
Affiliation(s)
- Wagner L Araújo
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, 36570-000, Brazil
| | | | | |
Collapse
|
174
|
Welchen E, García L, Mansilla N, Gonzalez DH. Coordination of plant mitochondrial biogenesis: keeping pace with cellular requirements. FRONTIERS IN PLANT SCIENCE 2014; 4:551. [PMID: 24409193 PMCID: PMC3884152 DOI: 10.3389/fpls.2013.00551] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 12/23/2013] [Indexed: 05/20/2023]
Abstract
Plant mitochondria are complex organelles that carry out numerous metabolic processes related with the generation of energy for cellular functions and the synthesis and degradation of several compounds. Mitochondria are semiautonomous and dynamic organelles changing in shape, number, and composition depending on tissue or developmental stage. The biogenesis of functional mitochondria requires the coordination of genes present both in the nucleus and the organelle. In addition, due to their central role, all processes held inside mitochondria must be finely coordinated with those in other organelles according to cellular demands. Coordination is achieved by transcriptional control of nuclear genes encoding mitochondrial proteins by specific transcription factors that recognize conserved elements in their promoter regions. In turn, the expression of most of these transcription factors is linked to developmental and environmental cues, according to the availability of nutrients, light-dark cycles, and warning signals generated in response to stress conditions. Among the signals impacting in the expression of nuclear genes, retrograde signals that originate inside mitochondria help to adjust mitochondrial biogenesis to organelle demands. Adding more complexity, several nuclear encoded proteins are dual localized to mitochondria and either chloroplasts or the nucleus. Dual targeting might establish a crosstalk between the nucleus and cell organelles to ensure a fine coordination of cellular activities. In this article, we discuss how the different levels of coordination of mitochondrial biogenesis interconnect to optimize the function of the organelle according to both internal and external demands.
Collapse
Affiliation(s)
- Elina Welchen
- Instituto de Agrobiotecnología del Litoral–Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional del LitoralSanta Fe, Argentina
- Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del LitoralSanta Fe, Argentina
- *Correspondence: Elina Welchen and Daniel H. Gonzalez, Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, CC 242 Paraje El Pozo, 3000 Santa Fe, Argentina e-mail: ;
| | - Lucila García
- Instituto de Agrobiotecnología del Litoral–Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional del LitoralSanta Fe, Argentina
- Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del LitoralSanta Fe, Argentina
| | - Natanael Mansilla
- Instituto de Agrobiotecnología del Litoral–Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional del LitoralSanta Fe, Argentina
- Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del LitoralSanta Fe, Argentina
| | - Daniel H. Gonzalez
- Instituto de Agrobiotecnología del Litoral–Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional del LitoralSanta Fe, Argentina
- Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del LitoralSanta Fe, Argentina
- *Correspondence: Elina Welchen and Daniel H. Gonzalez, Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, CC 242 Paraje El Pozo, 3000 Santa Fe, Argentina e-mail: ;
| |
Collapse
|
175
|
Murcha MW, Kubiszewski-Jakubiak S, Wang Y, Whelan J. Evidence for interactions between the mitochondrial import apparatus and respiratory chain complexes via Tim21-like proteins in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2014; 5:82. [PMID: 24653731 PMCID: PMC3949100 DOI: 10.3389/fpls.2014.00082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Accepted: 02/21/2014] [Indexed: 05/06/2023]
Abstract
The mitochondrial import machinery and the respiratory chain complexes of the inner membrane are highly interdependent for the efficient import and assembly of nuclear encoded respiratory chain components and for the generation of a proton motive force essential for protein translocation into or across the inner membrane. In plant and non-plant systems functional, physical, and evolutionary associations have been observed between proteins of the respiratory chain and protein import apparatus. Here we identify two novel Tim21-like proteins encoded by At2g40800 and At3g56430 that are imported into the mitochondrial inner membrane. We propose that Tim21-like proteins may associate with respiratory chain Complex I, III, in addition to the TIM17:23 translocase of the inner membrane. These results are discussed further with regards to the regulation of mitochondrial activity and biogenesis.
Collapse
Affiliation(s)
- Monika W. Murcha
- ARC Centre of Excellence in Plant Energy Biology, The University of Western AustraliaPerth, WA, Australia
- *Correspondence: Monika W. Murcha, ARC Centre of Excellence in Plant Energy Biology, University of Western Australia, MCS Building M316, 35 Stirling Highway, Crawley, Perth, WA 6009, Australia e-mail:
| | | | - Yan Wang
- ARC Centre of Excellence in Plant Energy Biology, The University of Western AustraliaPerth, WA, Australia
| | - James Whelan
- Department of Botany, ARC Centre of Excellence in Plant Energy Biology, School of Life Sciences, La Trobe UniversityBundoora, VIC, Australia
| |
Collapse
|
176
|
Sun F, Liang C, Whelan J, Yang J, Zhang P, Lim BL. Global transcriptome analysis of AtPAP2--overexpressing Arabidopsis thaliana with elevated ATP. BMC Genomics 2013; 14:752. [PMID: 24180234 PMCID: PMC3829102 DOI: 10.1186/1471-2164-14-752] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 10/19/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND AtPAP2 is a purple acid phosphatase that is targeted to both chloroplasts and mitochondria. Over-expression (OE) lines of AtPAP2 grew faster, produced more seeds, and contained higher leaf sucrose and glucose contents. The present study aimed to determine how high energy status affects leaf and root transcriptomes. RESULTS ATP and ADP levels in the OE lines are 30-50% and 20-50% higher than in the wild-type (WT) plants. Global transcriptome analyses indicated that transcriptional regulation does play a role in sucrose and starch metabolism, nitrogen, potassium and iron uptake, amino acids and secondary metabolites metabolism when there is an ample supply of energy. While the transcript abundance of genes encoding protein components of photosystem I (PS I), photosystem II (PS II) and light harvesting complex I (LHCI) were unaltered, changes in transcript abundance for genes encoding proteins of LHCII are significant. The gene expressions of most enzymes of the Calvin cycle, glycolysis and the tricarboxylic acid (TCA) cycle were unaltered, as these enzymes are known to be regulated by light/redox status or allosteric modulation by the products (e.g. citrate, ATP/ADP ratio), but not at the level of transcription. CONCLUSIONS AtPAP2 overexpression resulted in a widespread reprogramming of the transcriptome in the transgenic plants, which is characterized by changes in the carbon, nitrogen, potassium, and iron metabolism. The fast-growing AtPAP2 OE lines provide an interesting tool for studying the regulation of energy system in plant.
Collapse
Affiliation(s)
- Feng Sun
- School of Biological Sciences, the University of Hong Kong, Pokfulam, Hong Kong, China
| | - Chao Liang
- School of Biological Sciences, the University of Hong Kong, Pokfulam, Hong Kong, China
| | - James Whelan
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, WA 6009, Australia
- Botany Department, School of Life Science, La Trobe University, Bundoora 3086 Victoria, Australia
| | - Jun Yang
- National Laboratory of Plant Molecular Genetics and National Center for Plant Gene Research (Shanghai), Institute of Plant Physiology & Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China
| | - Peng Zhang
- National Laboratory of Plant Molecular Genetics and National Center for Plant Gene Research (Shanghai), Institute of Plant Physiology & Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China
| | - Boon Leong Lim
- School of Biological Sciences, the University of Hong Kong, Pokfulam, Hong Kong, China
- Partner State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| |
Collapse
|
177
|
Sew YS, Ströher E, Holzmann C, Huang S, Taylor NL, Jordana X, Millar AH. Multiplex micro-respiratory measurements of Arabidopsis tissues. THE NEW PHYTOLOGIST 2013; 200:922-932. [PMID: 23834713 DOI: 10.1111/nph.12394] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 05/29/2013] [Indexed: 05/08/2023]
Abstract
Researchers often want to study the respiratory properties of individual parts of plants in response to a range of treatments. Arabidopsis is an obvious model for this work; however, because of its size, it represents a challenge for gas exchange measurements of respiration. The combination of micro-respiratory technologies with multiplex assays has the potential to bridge this gap, and make measurements possible in this model plant species. We show the adaptation of the commercial technology used for mammalian cell respiration analysis to study three critical tissues of interest: leaf sections, root tips and seeds. The measurement of respiration in single leaf discs has allowed the age dependence of the respiration rate in Arabidopsis leaves across the rosette to be observed. The oxygen consumption of single root tips from plate-grown seedlings shows the enhanced respiration of root tips and their time-dependent susceptibility to salinity. The monitoring of single Arabidopsis seeds shows the kinetics of respiration over 48 h post-imbibition, and the effect of the phytohormones gibberellic acid (GA3 ) and abscisic acid (ABA) on respiration during seed germination. These studies highlight the potential for multiplexed micro-respiratory assays to study oxygen consumption in Arabidopsis tissues, and open up new possibilities to screen and study mutants and to identify differences in ecotypes or populations of different plant species.
Collapse
Affiliation(s)
- Yun Shin Sew
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Bayliss Building M316, 35 Stirling Highway, Crawley, WA, 6009, Australia
- Centre for Comparative Analysis of Biomolecular Networks (CABiN), The University of Western Australia, Bayliss Building M316, 35 Stirling Highway, Crawley, WA, 6009, Australia
| | - Elke Ströher
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Bayliss Building M316, 35 Stirling Highway, Crawley, WA, 6009, Australia
- Centre for Comparative Analysis of Biomolecular Networks (CABiN), The University of Western Australia, Bayliss Building M316, 35 Stirling Highway, Crawley, WA, 6009, Australia
| | - Cristián Holzmann
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Bayliss Building M316, 35 Stirling Highway, Crawley, WA, 6009, Australia
- Millenium Nucleus in Plant Functional Genomics, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidád Católica de Chile, Casilla 114-D, Santiago, Chile
| | - Shaobai Huang
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Bayliss Building M316, 35 Stirling Highway, Crawley, WA, 6009, Australia
- Centre for Comparative Analysis of Biomolecular Networks (CABiN), The University of Western Australia, Bayliss Building M316, 35 Stirling Highway, Crawley, WA, 6009, Australia
| | - Nicolas L Taylor
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Bayliss Building M316, 35 Stirling Highway, Crawley, WA, 6009, Australia
- Centre for Comparative Analysis of Biomolecular Networks (CABiN), The University of Western Australia, Bayliss Building M316, 35 Stirling Highway, Crawley, WA, 6009, Australia
| | - Xavier Jordana
- Millenium Nucleus in Plant Functional Genomics, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidád Católica de Chile, Casilla 114-D, Santiago, Chile
| | - A Harvey Millar
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Bayliss Building M316, 35 Stirling Highway, Crawley, WA, 6009, Australia
- Centre for Comparative Analysis of Biomolecular Networks (CABiN), The University of Western Australia, Bayliss Building M316, 35 Stirling Highway, Crawley, WA, 6009, Australia
| |
Collapse
|
178
|
Pineau B, Bourge M, Marion J, Mauve C, Gilard F, Maneta-Peyret L, Moreau P, Satiat-Jeunemaître B, Brown SC, De Paepe R, Danon A. The importance of cardiolipin synthase for mitochondrial ultrastructure, respiratory function, plant development, and stress responses in Arabidopsis. THE PLANT CELL 2013; 25:4195-208. [PMID: 24151294 PMCID: PMC3877823 DOI: 10.1105/tpc.113.118018] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Cardiolipin (CL) is the signature phospholipid of the mitochondrial inner membrane. In animals and yeast (Saccharomyces cerevisiae), CL depletion affects the stability of respiratory supercomplexes and is thus crucial to the energy metabolism of obligate aerobes. In eukaryotes, the last step of CL synthesis is catalyzed by CARDIOLIPIN SYNTHASE (CLS), encoded by a single-copy gene. Here, we characterize a cls mutant in Arabidopsis thaliana, which is devoid of CL. In contrast to yeast cls, where development is little affected, Arabidopsis cls seedlings are slow developing under short-day conditions in vitro and die if they are transferred to long-day (LD) conditions. However, when transferred to soil under LD conditions under low light, cls plants can reach the flowering stage, but they are not fertile. The cls mitochondria display abnormal ultrastructure and reduced content of respiratory complex I/complex III supercomplexes. The marked accumulation of tricarboxylic acid cycle derivatives and amino acids demonstrates mitochondrial dysfunction. Mitochondrial and chloroplastic antioxidant transcripts are overexpressed in cls leaves, and cls protoplasts are more sensitive to programmed cell death effectors, UV light, and heat shock. Our results show that CLS is crucial for correct mitochondrial function and development in Arabidopsis under both optimal and stress conditions.
Collapse
Affiliation(s)
- Bernard Pineau
- Institut de Biologie des Plantes, Saclay Plant Science, Université de Paris-Sud XI, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8618, 91405 Orsay cedex, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
179
|
Wydro MM, Sharma P, Foster JM, Bych K, Meyer EH, Balk J. The evolutionarily conserved iron-sulfur protein INDH is required for complex I assembly and mitochondrial translation in Arabidopsis [corrected]. THE PLANT CELL 2013; 25:4014-27. [PMID: 24179128 PMCID: PMC3877808 DOI: 10.1105/tpc.113.117283] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Revised: 09/29/2013] [Accepted: 10/15/2013] [Indexed: 05/03/2023]
Abstract
The assembly of respiratory complexes is a multistep process, requiring coordinate expression of mitochondrial and nuclear genes and cofactor biosynthesis. We functionally characterized the iron-sulfur protein required for NADH dehydrogenase (INDH) in the model plant Arabidopsis thaliana. An indh knockout mutant lacked complex I but had low levels of a 650-kD assembly intermediate, similar to mutations in the homologous NUBPL (nucleotide binding protein-like) in Homo sapiens. However, heterozygous indh/+ mutants displayed unusual phenotypes during gametogenesis and resembled mutants in mitochondrial translation more than mutants in complex I. Gradually increased expression of INDH in indh knockout plants revealed a significant delay in reassembly of complex I, suggesting an indirect role for INDH in the assembly process. Depletion of INDH protein was associated with decreased (35)S-Met labeling of translation products in isolated mitochondria, whereas the steady state levels of several mitochondrial transcripts were increased. Mitochondrially encoded proteins were differentially affected, with near normal levels of cytochrome c oxidase subunit2 and Nad7 but little Nad6 protein in the indh mutant. These data suggest that INDH has a primary role in mitochondrial translation that underlies its role in complex I assembly.
Collapse
Affiliation(s)
- Mateusz M. Wydro
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | - Pia Sharma
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | - Jonathan M. Foster
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | - Katrine Bych
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | - Etienne H. Meyer
- Max Planck Institute for Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany
| | - Janneke Balk
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
- Department of Biological Chemistry, John Innes Centre, Norwich NR4 7UH, United Kingdom
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| |
Collapse
|
180
|
De Clercq I, Vermeirssen V, Van Aken O, Vandepoele K, Murcha MW, Law SR, Inzé A, Ng S, Ivanova A, Rombaut D, van de Cotte B, Jaspers P, Van de Peer Y, Kangasjärvi J, Whelan J, Van Breusegem F. The membrane-bound NAC transcription factor ANAC013 functions in mitochondrial retrograde regulation of the oxidative stress response in Arabidopsis. THE PLANT CELL 2013; 25:3472-90. [PMID: 24045019 PMCID: PMC3809544 DOI: 10.1105/tpc.113.117168] [Citation(s) in RCA: 277] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 08/06/2013] [Accepted: 08/26/2013] [Indexed: 05/18/2023]
Abstract
Upon disturbance of their function by stress, mitochondria can signal to the nucleus to steer the expression of responsive genes. This mitochondria-to-nucleus communication is often referred to as mitochondrial retrograde regulation (MRR). Although reactive oxygen species and calcium are likely candidate signaling molecules for MRR, the protein signaling components in plants remain largely unknown. Through meta-analysis of transcriptome data, we detected a set of genes that are common and robust targets of MRR and used them as a bait to identify its transcriptional regulators. In the upstream regions of these mitochondrial dysfunction stimulon (MDS) genes, we found a cis-regulatory element, the mitochondrial dysfunction motif (MDM), which is necessary and sufficient for gene expression under various mitochondrial perturbation conditions. Yeast one-hybrid analysis and electrophoretic mobility shift assays revealed that the transmembrane domain-containing no apical meristem/Arabidopsis transcription activation factor/cup-shaped cotyledon transcription factors (ANAC013, ANAC016, ANAC017, ANAC053, and ANAC078) bound to the MDM cis-regulatory element. We demonstrate that ANAC013 mediates MRR-induced expression of the MDS genes by direct interaction with the MDM cis-regulatory element and triggers increased oxidative stress tolerance. In conclusion, we characterized ANAC013 as a regulator of MRR upon stress in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Inge De Clercq
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Vanessa Vermeirssen
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Olivier Van Aken
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley 6009, Western Australia, Australia
| | - Klaas Vandepoele
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Monika W. Murcha
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley 6009, Western Australia, Australia
| | - Simon R. Law
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley 6009, Western Australia, Australia
| | - Annelies Inzé
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Sophia Ng
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley 6009, Western Australia, Australia
| | - Aneta Ivanova
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley 6009, Western Australia, Australia
| | - Debbie Rombaut
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Brigitte van de Cotte
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Pinja Jaspers
- Plant Biology, Department of Biological and Environmental Sciences, University of Helsinki, FI-00014 Helsinki, Finland
| | - Yves Van de Peer
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Jaakko Kangasjärvi
- Plant Biology, Department of Biological and Environmental Sciences, University of Helsinki, FI-00014 Helsinki, Finland
| | - James Whelan
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley 6009, Western Australia, Australia
- Department of Botany, School of Life Science, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Frank Van Breusegem
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| |
Collapse
|
181
|
Surrogate mutants for studying mitochondrially encoded functions. Biochimie 2013; 100:234-42. [PMID: 23994752 DOI: 10.1016/j.biochi.2013.08.019] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 08/18/2013] [Indexed: 11/24/2022]
Abstract
Although chloroplast transformation is possible in some plant species, it is extremely difficult to create or select mutations in plant mitochondrial genomes, explaining why few genetic studies of mitochondrially encoded functions exist. In recent years it has become clear that many nuclear genes encode factors with key functions in organelle gene expression, and that often their action is restricted to a single organelle gene or transcript. Mutations in one of these nuclear genes thus leads to a specific primary defect in expression of a single organelle gene, and the nuclear mutation can be used as a surrogate for a phenotypically equivalent mutation in the organelle genome. These surrogate mutations often result in defective assembly of respiratory complexes, and lead to severe phenotypes including reduced growth and fertility, or even embryo-lethality. A wide collection of such mutants is now available, and this review summarises the progress in basic knowledge of mitochondrial biogenesis they have contributed to and points out areas where this resource has not been exploited yet.
Collapse
|
182
|
Zmudjak M, Colas des Francs-Small C, Keren I, Shaya F, Belausov E, Small I, Ostersetzer-Biran O. mCSF1, a nucleus-encoded CRM protein required for the processing of many mitochondrial introns, is involved in the biogenesis of respiratory complexes I and IV in Arabidopsis. THE NEW PHYTOLOGIST 2013; 199:379-394. [PMID: 23646912 DOI: 10.1111/nph.12282] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 02/28/2013] [Indexed: 05/20/2023]
Abstract
The coding regions of many mitochondrial genes in plants are interrupted by intervening sequences that are classified as group II introns. Their splicing is essential for the expression of the genes they interrupt and hence for respiratory function, and is facilitated by various protein cofactors. Despite the importance of these cofactors, only a few of them have been characterized. CRS1-YhbY domain (CRM) is a recently recognized RNA-binding domain that is present in several characterized splicing factors in plant chloroplasts. The Arabidopsis genome encodes 16 CRM proteins, but these are largely uncharacterized. Here, we analyzed the intracellular location of one of these hypothetical proteins in Arabidopsis, mitochondrial CAF-like splicing factor 1 (mCSF1; At4 g31010), and analyzed the growth phenotypes and organellar activities associated with mcsf1 mutants in plants. Our data indicated that mCSF1 resides within mitochondria and its functions are essential during embryogenesis. Mutant plants with reduced mCSF1 displayed inhibited germination and retarded growth phenotypes that were tightly associated with reduced complex I and IV activities. Analogously to the functions of plastid-localized CRM proteins, analysis of the RNA profiles in wildtype and mcsf1 plants showed that mCSF1 acts in the splicing of many of the group II intron RNAs in Arabidopsis mitochondria.
Collapse
Affiliation(s)
- Michal Zmudjak
- Institute of Plant Sciences, Agricultural Research Organization (ARO), Volcani Center, Bet Dagan, 50250, Israel
- Department of Plant Sciences, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - Catherine Colas des Francs-Small
- Australian Research Council (ARC) Centre of Excellence in Plant Energy Biology, University of Western Australia, 35 Stirling Highway, Crawley, 6009, WA, Australia
| | - Ido Keren
- Center for Plant Science Innovation, University of Nebraska, Lincoln, NE 68588-0660, USA
| | - Felix Shaya
- Institute of Plant Sciences, Agricultural Research Organization (ARO), Volcani Center, Bet Dagan, 50250, Israel
| | - Eduard Belausov
- Institute of Plant Sciences, Agricultural Research Organization (ARO), Volcani Center, Bet Dagan, 50250, Israel
| | - Ian Small
- Australian Research Council (ARC) Centre of Excellence in Plant Energy Biology, University of Western Australia, 35 Stirling Highway, Crawley, 6009, WA, Australia
| | - Oren Ostersetzer-Biran
- Institute of Plant Sciences, Agricultural Research Organization (ARO), Volcani Center, Bet Dagan, 50250, Israel
| |
Collapse
|
183
|
Andrade PB, Barbosa M, Matos RP, Lopes G, Vinholes J, Mouga T, Valentão P. Valuable compounds in macroalgae extracts. Food Chem 2013; 138:1819-28. [DOI: 10.1016/j.foodchem.2012.11.081] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 10/20/2012] [Accepted: 11/12/2012] [Indexed: 10/27/2022]
|
184
|
Huang S, Millar AH. Succinate dehydrogenase: the complex roles of a simple enzyme. CURRENT OPINION IN PLANT BIOLOGY 2013; 16:344-349. [PMID: 23453781 DOI: 10.1016/j.pbi.2013.02.007] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 02/05/2013] [Accepted: 02/08/2013] [Indexed: 06/01/2023]
Abstract
Succinate dehydrogenase (SDH) oxidises succinate to fumarate as a component of the tricarboxylic acid cycle and ubiquinone to ubiquinol in the mitochondrial electron transport chain. Studies of SDH mutants have revealed far-reaching effects of altering succinate oxidation in plant cells. The plant SDH complex composition, structure and assembly are all beginning to be understood but the implications of the divergence across eukaryotes is still unclear. We propose an integration of the reported physiological roles of SDH in plants which influence photosynthesis, the function of stomata, root elongation and fungal defence. Future SDH research needed in plants should involve tissue-specific studies of mutants, analysis of the pathways induced by succinate-dependent reactive oxygen species generation and assessment of the impact of succinate accumulation on metabolism.
Collapse
Affiliation(s)
- Shaobai Huang
- ARC Centre of Excellence in Plant Energy Biology and Centre for Comparative Analysis of Biomolecular Networks-CABiN, The University of Western Australia, Western Australia, Australia
| | | |
Collapse
|
185
|
Abstract
SIGNIFICANCE For a plant to grow and develop, energy and appropriate building blocks are a fundamental requirement. Mitochondrial respiration is a vital source for both. The delicate redox processes that make up respiration are affected by the plant's changing environment. Therefore, mitochondrial regulation is critically important to maintain cellular homeostasis. This involves sensing signals from changes in mitochondrial physiology, transducing this information, and mounting tailored responses, by either adjusting mitochondrial and cellular functions directly or reprogramming gene expression. RECENT ADVANCES Retrograde (RTG) signaling, by which mitochondrial signals control nuclear gene expression, has been a field of very active research in recent years. Nevertheless, no mitochondrial RTG-signaling pathway is yet understood in plants. This review summarizes recent advances toward elucidating redox processes and other bioenergetic factors as a part of RTG signaling of plant mitochondria. CRITICAL ISSUES Novel insights into mitochondrial physiology and redox-regulation provide a framework of upstream signaling. On the other end, downstream responses to modified mitochondrial function have become available, including transcriptomic data and mitochondrial phenotypes, revealing processes in the plant that are under mitochondrial control. FUTURE DIRECTIONS Drawing parallels to chloroplast signaling and mitochondrial signaling in animal systems allows to bridge gaps in the current understanding and to deduce promising directions for future research. It is proposed that targeted usage of new technical approaches, such as quantitative in vivo imaging, will provide novel leverage to the dissection of plant mitochondrial signaling.
Collapse
|
186
|
Hauler A, Jonietz C, Stoll B, Stoll K, Braun HP, Binder S. RNA Processing Factor 5 is required for efficient 5' cleavage at a processing site conserved in RNAs of three different mitochondrial genes in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 74:593-604. [PMID: 23398165 DOI: 10.1111/tpj.12143] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 01/30/2013] [Accepted: 02/04/2013] [Indexed: 05/27/2023]
Abstract
The 5' ends of many mitochondrial transcripts are generated post-transcriptionally. Recently, we identified three RNA PROCESSING FACTORs required for 5' end maturation of different mitochondrial mRNAs in Arabidopsis thaliana. All of these factors are pentatricopeptide repeat proteins (PPRPs), highly similar to RESTORERs OF FERTILTY (RF), that rescue male fertility in cytoplasmic male-sterile lines from different species. Therefore, we suggested a general role of these RF-like PPRPs in mitochondrial 5' processing. We now identified RNA PROCESSING FACTOR 5, a PPRP not classified as an RF-like protein, required for the efficient 5' maturation of the nad6 and atp9 mRNAs as well as 26S rRNA. The precursor molecules of these RNAs share conserved sequence elements, approximately ranging from positions -50 to +9 relative to mature 5' mRNA termini, suggesting these sequences to be at least part of the cis elements required for processing. The knockout of RPF5 has only a moderate influence on 5' processing of atp9 mRNA, whereas the generation of the mature nad6 mRNA and 26S rRNA is almost completely abolished in the mutant. The latter leads to a 50% decrease of total 26S rRNA species, resulting in an imbalance between the large rRNA and 18S rRNA. Despite these severe changes in RNA levels and in the proportion between the 26S and 18S rRNAs, mitochondrial protein levels appear to be unaltered in the mutant, whereas seed germination capacity is markedly reduced.
Collapse
Affiliation(s)
- Aron Hauler
- Institut Molekulare Botanik, Universität Ulm, D-89069, Ulm, Germany
| | | | | | | | | | | |
Collapse
|
187
|
Yoshida K, Noguchi K, Motohashi K, Hisabori T. Systematic Exploration of Thioredoxin Target Proteins in Plant Mitochondria. ACTA ACUST UNITED AC 2013; 54:875-92. [DOI: 10.1093/pcp/pct037] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
188
|
Vanlerberghe GC. Alternative oxidase: a mitochondrial respiratory pathway to maintain metabolic and signaling homeostasis during abiotic and biotic stress in plants. Int J Mol Sci 2013; 14:6805-47. [PMID: 23531539 PMCID: PMC3645666 DOI: 10.3390/ijms14046805] [Citation(s) in RCA: 428] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Revised: 03/08/2013] [Accepted: 03/12/2013] [Indexed: 02/07/2023] Open
Abstract
Alternative oxidase (AOX) is a non-energy conserving terminal oxidase in the plant mitochondrial electron transport chain. While respiratory carbon oxidation pathways, electron transport, and ATP turnover are tightly coupled processes, AOX provides a means to relax this coupling, thus providing a degree of metabolic homeostasis to carbon and energy metabolism. Beside their role in primary metabolism, plant mitochondria also act as "signaling organelles", able to influence processes such as nuclear gene expression. AOX activity can control the level of potential mitochondrial signaling molecules such as superoxide, nitric oxide and important redox couples. In this way, AOX also provides a degree of signaling homeostasis to the organelle. Evidence suggests that AOX function in metabolic and signaling homeostasis is particularly important during stress. These include abiotic stresses such as low temperature, drought, and nutrient deficiency, as well as biotic stresses such as bacterial infection. This review provides an introduction to the genetic and biochemical control of AOX respiration, as well as providing generalized examples of how AOX activity can provide metabolic and signaling homeostasis. This review also examines abiotic and biotic stresses in which AOX respiration has been critically evaluated, and considers the overall role of AOX in growth and stress tolerance.
Collapse
Affiliation(s)
- Greg C Vanlerberghe
- Department of Biological Sciences and Department of Cell and Systems Biology, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C1A4, Canada.
| |
Collapse
|
189
|
Huang S, Taylor NL, Ströher E, Fenske R, Millar AH. Succinate dehydrogenase assembly factor 2 is needed for assembly and activity of mitochondrial complex II and for normal root elongation in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 73:429-41. [PMID: 23036115 DOI: 10.1111/tpj.12041] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 09/22/2012] [Accepted: 09/27/2012] [Indexed: 05/25/2023]
Abstract
Mitochondria complex II (succinate dehydrogenase, SDH) plays a central role in respiratory metabolism as a component of both the electron transport chain and the tricarboxylic acid cycle. We report the identification of an SDH assembly factor by analysis of T-DNA insertions in At5g51040, a protein with unknown function that was identified by mass spectrometry analysis as a low abundance mitochondrial protein. This gene is co-expressed with a number of genes encoding mitochondrial proteins, including SDH1-1, and has low partial sequence similarity to human SDHAF2, a protein required for flavin-adenine dinucleotide (FAD) insertion into SDH. In contrast to observations of other SDH deficient lines in Arabidopsis, the sdhaf2 line did not affect photosynthetic rate or stomatal conductance, but instead showed inhibition of primary root elongation with early lateral root emergence, presumably due to the low SDH activity caused by the reduced abundance of SDHAF2. Both roots and leaves showed succinate accumulation but different responses in the abundance of other organic acids and amino acids assayed. Isolated mitochondria showed lowered SDH1 protein abundance, lowered maximal SDH activity and less protein-bound flavin-adenine dinucleotide (FAD) at the molecular mass of SDH1 in the gel separation. The short root phenotype and SDH function of sdhaf2 was fully complemented by transformation with SDHAF2. Application of the SDH inhibitor, malonate, phenocopied the sdhaf2 root architecture in WT. Whole root respiratory assays showed no difference between WT and sdhaf2, but micro-respirometry of the tips of roots clearly showed low oxygen consumption in sdhaf2 which could explain a metabolic deficit responsible for root tip growth.
Collapse
Affiliation(s)
- Shaobai Huang
- Australian Research Council Centre of Excellence in Plant Energy Biology and Centre for Comparative Analysis of Biomolecular Networks, The University of Western Australia, Bayliss Building M316,35 Stirling Highway, Crawley, WA 6009, Australia
| | | | | | | | | |
Collapse
|
190
|
Shah JK, Cochrane DW, De Paepe R, Igamberdiev AU. Respiratory complex I deficiency results in low nitric oxide levels, induction of hemoglobin and upregulation of fermentation pathways. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 63:185-90. [PMID: 23266363 DOI: 10.1016/j.plaphy.2012.11.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 11/26/2012] [Indexed: 05/09/2023]
Abstract
The cytoplasmic male-sterile (CMS) mutant of Nicotiana sylvestris which lacks NAD7, one of the subunits of respiratory complex I (NADH: ubiquinone oxidoreductase, EC 1.6.5.3), is characterized by very low (~10 times lower as compared to the wild type plants) emissions of nitric oxide (NO) under hypoxic conditions. The level of the non-symbiotic class 1 hemoglobin, as shown by Western blotting, is increased compared to the wild type plants not only under hypoxia but this protein reveals its marked expression in the CMS mutant even under normoxic conditions. The activity of aconitase (EC 4.2.1.3) is low in the CMS mutant, especially in the mitochondrial compartment, which indicates the suppression of the tricarboxylic acid cycle. The CMS mutant exhibits the severalfold higher activities of alcohol dehydrogenase (EC 1.1.1.1) and lactate dehydrogenase (EC 1.1.1.27) under the normoxic conditions as compared to the wild type plants. It is concluded that the lack of functional complex I results in upregulation of the pathways of hypoxic metabolism which include both fermentation of pyruvate and scavenging of NO by the non-symbiotic hemoglobin.
Collapse
Affiliation(s)
- Jay K Shah
- Department of Biology, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada
| | | | | | | |
Collapse
|
191
|
Toda T, Fujii S, Noguchi K, Kazama T, Toriyama K. Rice MPR25 encodes a pentatricopeptide repeat protein and is essential for RNA editing of nad5 transcripts in mitochondria. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 72:450-60. [PMID: 22747551 DOI: 10.1111/j.1365-313x.2012.05091.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Pentatricopeptide repeat (PPR) proteins are involved in the modification of organelle transcripts. In this study, we investigated the molecular function in rice of the mitochondrial PPR-encoding gene MITOCHONDRIAL PPR25 (MPR25), which belongs to the E subgroup of the PPR family. A Tos17 knockout mutant of MPR25 exhibited growth retardation and pale-green leaves with reduced chlorophyll content during the early stages of plant development. The photosynthetic rate in the mpr25 mutant was significantly decreased, especially under strong light conditions, although the respiration rate did not differ from that of wild-type plants. MPR25 was preferentially expressed in leaves. FLAG-tagged MPR25 accumulated in mitochondria but not in chloroplasts. Direct sequencing revealed that the mpr25 mutant fails to edit a C-U RNA editing site at nucleotide 1580 of nad5, which encodes a subunit of complex I (NADH dehydrogenase) of the respiratory chain in mitochondria. RNA editing of this site is responsible for a change in amino acid from serine to leucine. Recombinant MPR25 directly interacted with the proximal region of the editing site of nad5 transcripts. However, the NADH dehydrogenase activity of complex I was not affected in the mutant. By contrast, genes encoding alternative NADH dehydrogenases and alternative oxidase were up-regulated. The mpr25 mutant may therefore provide new information on the coordinated interaction between mitochondria and chloroplasts.
Collapse
MESH Headings
- Amino Acid Substitution
- Cell Respiration
- Chloroplasts/genetics
- Chloroplasts/metabolism
- Gene Expression Regulation, Plant/genetics
- Gene Knockout Techniques
- Light
- Mitochondria/genetics
- Mitochondria/metabolism
- Mitochondrial Proteins/genetics
- Mitochondrial Proteins/metabolism
- Mutagenesis, Insertional
- NADH Dehydrogenase/genetics
- NADH Dehydrogenase/metabolism
- Oryza/enzymology
- Oryza/genetics
- Oryza/growth & development
- Oryza/radiation effects
- Oxidoreductases/genetics
- Oxidoreductases/metabolism
- Phenotype
- Photosynthesis
- Plant Components, Aerial/enzymology
- Plant Components, Aerial/genetics
- Plant Components, Aerial/growth & development
- Plant Components, Aerial/radiation effects
- Plant Proteins/genetics
- Plant Proteins/metabolism
- Plant Roots/enzymology
- Plant Roots/genetics
- Plant Roots/growth & development
- Plant Roots/radiation effects
- Protein Transport
- RNA Editing
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Plant/genetics
- RNA, Plant/metabolism
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Recombinant Fusion Proteins
- Seedlings/enzymology
- Seedlings/genetics
- Seedlings/growth & development
- Seedlings/radiation effects
- Sequence Analysis, DNA
Collapse
Affiliation(s)
- Takushi Toda
- Laboratory of Environmental Plant Biotechnology, Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-Amamiyamachi, Sendai 981-8555, Japan
| | | | | | | | | |
Collapse
|
192
|
Abstract
For optimal plant growth and development, cellular nitrogen (N) metabolism must be closely coordinated with other metabolic pathways, and mitochondria are thought to play a central role in this process. Recent studies using genetically modified plants have provided insight into the role of mitochondria in N metabolism. Mitochondrial metabolism is linked with N assimilation by amino acid, carbon (C) and redox metabolism. Mitochondria are not only an important source of C skeletons for N incorporation, they also produce other necessary metabolites and energy used in N remobilization processes. Nitric oxide of mitochondrial origin regulates respiration and influences primary N metabolism. Here, we discuss the changes in mitochondrial metabolism during ammonium or nitrate nutrition and under low N conditions. We also describe the involvement of mitochondria in the redistribution of N during senescence. The aim of this review was to demonstrate the role of mitochondria as an integration point of N cellular metabolism.
Collapse
Affiliation(s)
- Bożena Szal
- Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland.
| | | |
Collapse
|
193
|
Zhu Q, H. Meyer E, Van Der Straeten D. Functional analysis of SLO2 provides new insight into the role of plant PPR proteins. PLANT SIGNALING & BEHAVIOR 2012; 7:1209-11. [PMID: 22902704 PMCID: PMC3493397 DOI: 10.4161/psb.21430] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
PPR (Pentatricopeptide repeat) proteins are mainly involved in RNA metabolism. In Arabidopsis, the PPR family is composed of more than 450 members; however, only few of them were functionally characterized. In a previous report, ( 1) we identified a novel mitochondrial PPR RNA editing factor, named SLO2, which is responsible for 7 editing events in Arabidopsis. Loss-of-function mutation in SLO2 results in plant growth retardation, and delayed development, and leads to the dysfunction of mitochondrial complex I, III and IV. slo2 is the first example of a single gene mutation affecting 3 complexes of the mitochondrial electron transport chain. This Short Communication discusses the conservation of upstream regions of editing sites affected by SLO2 and illustrates the effect of mutation of SLO2 on activation of the alternative pathway. We also reflect upon the implications and perspectives of these findings.
Collapse
Affiliation(s)
- Qiang Zhu
- Laboratory of Functional Plant Biology; Department of Physiology; Ghent University; Ghent, Belgium
| | - Etienne H. Meyer
- Institut de Biologie Moléculaire des Plantes (IBMP) du CNRS; Strasbourg cedex, France
| | - Dominique Van Der Straeten
- Laboratory of Functional Plant Biology; Department of Physiology; Ghent University; Ghent, Belgium
- Correspondence to: Dominique Van Der Straeten,
| |
Collapse
|
194
|
Pereira DM, Vinholes J, de Pinho PG, Valentão P, Mouga T, Teixeira N, Andrade PB. A gas chromatography–mass spectrometry multi-target method for the simultaneous analysis of three classes of metabolites in marine organisms. Talanta 2012; 100:391-400. [DOI: 10.1016/j.talanta.2012.08.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 08/03/2012] [Accepted: 08/03/2012] [Indexed: 12/28/2022]
|
195
|
Zhu Q, Dugardeyn J, Zhang C, Takenaka M, Kühn K, Craddock C, Smalle J, Karampelias M, Denecke J, Peters J, Gerats T, Brennicke A, Eastmond P, Meyer EH, Van Der Straeten D. SLO2, a mitochondrial pentatricopeptide repeat protein affecting several RNA editing sites, is required for energy metabolism. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 71:836-49. [PMID: 22540321 DOI: 10.1111/j.1365-313x.2012.05036.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Pentatricopeptide repeat (PPR) proteins belong to a family of approximately 450 members in Arabidopsis, of which few have been characterized. We identified loss of function alleles of SLO2, defective in a PPR protein belonging to the E+ subclass of the P-L-S subfamily. slo2 mutants are characterized by retarded leaf emergence, restricted root growth, and late flowering. This phenotype is enhanced in the absence of sucrose, suggesting a defect in energy metabolism. The slo2 growth retardation phenotypes are largely suppressed by supplying sugars or increasing light dosage or the concentration of CO₂. The SLO2 protein is localized in mitochondria. We identified four RNA editing defects and reduced editing at three sites in slo2 mutants. The resulting amino acid changes occur in four mitochondrial proteins belonging to complex I of the electron transport chain. Both the abundance and activity of complex I are highly reduced in the slo2 mutants, as well as the abundance of complexes III and IV. Moreover, ATP, NAD+, and sugar contents were much lower in the mutants. In contrast, the abundance of alternative oxidase was significantly enhanced. We propose that SLO2 is required for carbon energy balance in Arabidopsis by maintaining the abundance and/or activity of complexes I, III, and IV of the mitochondrial electron transport chain.
Collapse
Affiliation(s)
- Qiang Zhu
- Laboratory of Functional Plant Biology, Department of Physiology, Ghent University, K L Ledeganckstraat 35, B-9000 Ghent, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
196
|
Kim M, Lee U, Small I, des Francs-Small CC, Vierling E. Mutations in an Arabidopsis mitochondrial transcription termination factor-related protein enhance thermotolerance in the absence of the major molecular chaperone HSP101. THE PLANT CELL 2012; 24:3349-65. [PMID: 22942382 PMCID: PMC3462636 DOI: 10.1105/tpc.112.101006] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 08/01/2012] [Accepted: 08/14/2012] [Indexed: 05/18/2023]
Abstract
The molecular chaperone heat shock protein101 (HSP101) is required for acquired thermotolerance in plants and other organisms. To identify factors that interact with HSP101 or that are involved in thermotolerance, we screened for extragenic suppressors of a dominant-negative allele of Arabidopsis thaliana HSP101, hot1-4. One suppressor, shot1 (for suppressor of hot1-4 1), encodes a mitochondrial transcription termination factor (mTERF)-related protein, one of 35 Arabidopsis mTERFs about which there is limited functional data. Missense (shot1-1) and T-DNA insertion (shot1-2) mutants suppress the hot1-4 heat-hypersensitive phenotype. Furthermore, shot1-2 suppresses other heat-sensitive mutants, and shot1-2 alone is more heat tolerant than the wild type. SHOT1 resides in mitochondria, indicating it functions independently of cytosolic/nuclear HSP101. Microarray analysis suggests altered mitochondrial function and/or retrograde signaling in shot1-2 increases transcripts of other HSPs and alters expression of redox-related genes. Reduced oxidative damage is the likely cause of shot1 thermotolerance, indicating HSP101 repairs protein oxidative damage and/or reduced oxidative damage allows recovery in the absence of HSP101. Changes in organelle-encoded transcripts in shot1 demonstrate that SHOT1 is involved in organelle gene regulation. The heat tolerance of shot1 emphasizes the importance of mitochondria in stress tolerance, and defining its function may provide insights into control of oxidative damage for engineering stress-resistant plants.
Collapse
Affiliation(s)
- Minsoo Kim
- School of Plant Sciences, University of Arizona, Tucson, Arizona 85721
| | - Ung Lee
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721
| | - Ian Small
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley 6009, Western Australia, Australia
| | - Catherine Colas des Francs-Small
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley 6009, Western Australia, Australia
| | - Elizabeth Vierling
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts 01003
- Address correspondence to
| |
Collapse
|
197
|
Keren I, Tal L, des Francs-Small CC, Araújo WL, Shevtsov S, Shaya F, Fernie AR, Small I, Ostersetzer-Biran O. nMAT1, a nuclear-encoded maturase involved in the trans-splicing of nad1 intron 1, is essential for mitochondrial complex I assembly and function. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 71:413-26. [PMID: 22429648 DOI: 10.1111/j.1365-313x.2012.04998.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Mitochondrial genomes (mtDNAs) in angiosperms contain numerous group II-type introns that reside mainly within protein-coding genes that are required for organellar genome expression and respiration. While splicing of group II introns in non-plant systems is facilitated by proteins encoded within the introns themselves (maturases), the mitochondrial introns in plants have diverged and have lost the vast majority of their intron-encoded ORFs. Only a single maturase gene (matR) is retained in plant mtDNAs, but its role(s) in the splicing of mitochondrial introns is currently unknown. In addition to matR, plants also harbor four nuclear maturase genes (nMat 1 to 4) encoding mitochondrial proteins that are expected to act in the splicing of group II introns. Recently, we established the role of one of these proteins, nMAT2, in the splicing of several mitochondrial introns in Arabidopsis. Here, we show that nMAT1 is required for trans-splicing of nad1 intron 1 and also functions in cis-splicing of nad2 intron 1 and nad4 intron 2. Homozygous nMat1 plants show retarded growth and developmental phenotypes, modified respiration activities and altered stress responses that are tightly correlated with mitochondrial complex I defects.
Collapse
Affiliation(s)
- Ido Keren
- Institute of Plant Sciences, Agricultural Research Organizaion, Volcani Center, Bet Dagan 50250, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
198
|
Geisler DA, Päpke C, Obata T, Nunes-Nesi A, Matthes A, Schneitz K, Maximova E, Araújo WL, Fernie AR, Persson S. Downregulation of the δ-subunit reduces mitochondrial ATP synthase levels, alters respiration, and restricts growth and gametophyte development in Arabidopsis. THE PLANT CELL 2012; 24:2792-811. [PMID: 22805435 PMCID: PMC3426115 DOI: 10.1105/tpc.112.099424] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The mitochondrial ATP synthase (F(1)F(o) complex) is an evolutionary conserved multimeric protein complex that synthesizes the main bulk of cytosolic ATP, but the regulatory mechanisms of the subunits are only poorly understood in plants. In yeast, the δ-subunit links the membrane-embedded F(o) part to the matrix-facing central stalk of F(1). We used genetic interference and an inhibitor to investigate the molecular function and physiological impact of the δ-subunit in Arabidopsis thaliana. Delta mutants displayed both male and female gametophyte defects. RNA interference of delta resulted in growth retardation, reduced ATP synthase amounts, and increased alternative oxidase capacity and led to specific long-term increases in Ala and Gly levels. By contrast, inhibition of the complex using oligomycin triggered broad metabolic changes, affecting glycolysis and the tricarboxylic acid cycle, and led to a successive induction of transcripts for alternative respiratory pathways and for redox and biotic stress-related transcription factors. We conclude that (1) the δ-subunit is essential for male gametophyte development in Arabidopsis, (2) a disturbance of the ATP synthase appears to lead to an early transition phase and a long-term metabolic steady state, and (3) the observed long-term adjustments in mitochondrial metabolism are linked to reduced growth and deficiencies in gametophyte development.
Collapse
Affiliation(s)
- Daniela A. Geisler
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, D-14476 Potsdam-Golm, Germany
| | - Carola Päpke
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, D-14476 Potsdam-Golm, Germany
| | - Toshihiro Obata
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, D-14476 Potsdam-Golm, Germany
| | - Adriano Nunes-Nesi
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, D-14476 Potsdam-Golm, Germany
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-000 Minas Gerais, Brazil
| | - Annemarie Matthes
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, D-14476 Potsdam-Golm, Germany
| | - Kay Schneitz
- Entwicklungsbiologie der Pflanzen, Technische Universität München, 85354 Freising, Germany
| | - Eugenia Maximova
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, D-14476 Potsdam-Golm, Germany
| | - Wagner L. Araújo
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, D-14476 Potsdam-Golm, Germany
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-000 Minas Gerais, Brazil
| | - Alisdair R. Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, D-14476 Potsdam-Golm, Germany
| | - Staffan Persson
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, D-14476 Potsdam-Golm, Germany
- Address correspondence to
| |
Collapse
|
199
|
Finnegan PM, Chen W. Arsenic toxicity: the effects on plant metabolism. Front Physiol 2012; 3:182. [PMID: 22685440 PMCID: PMC3368394 DOI: 10.3389/fphys.2012.00182] [Citation(s) in RCA: 375] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2012] [Accepted: 05/17/2012] [Indexed: 12/17/2022] Open
Abstract
The two forms of inorganic arsenic, arsenate (AsV) and arsenite (AsIII), are easily taken up by the cells of the plant root. Once in the cell, AsV can be readily converted to AsIII, the more toxic of the two forms. AsV and AsIII both disrupt plant metabolism, but through distinct mechanisms. AsV is a chemical analog of phosphate that can disrupt at least some phosphate-dependent aspects of metabolism. AsV can be translocated across cellular membranes by phosphate transport proteins, leading to imbalances in phosphate supply. It can compete with phosphate during phosphorylation reactions, leading to the formation of AsV adducts that are often unstable and short-lived. As an example, the formation and rapid autohydrolysis of AsV-ADP sets in place a futile cycle that uncouples photophosphorylation and oxidative phosphorylation, decreasing the ability of cells to produce ATP and carry out normal metabolism. AsIII is a dithiol reactive compound that binds to and potentially inactivates enzymes containing closely spaced cysteine residues or dithiol co-factors. Arsenic exposure generally induces the production of reactive oxygen species that can lead to the production of antioxidant metabolites and numerous enzymes involved in antioxidant defense. Oxidative carbon metabolism, amino acid and protein relationships, and nitrogen and sulfur assimilation pathways are also impacted by As exposure. Readjustment of several metabolic pathways, such as glutathione production, has been shown to lead to increased arsenic tolerance in plants. Species- and cultivar-dependent variation in arsenic sensitivity and the remodeling of metabolite pools that occurs in response to As exposure gives hope that additional metabolic pathways associated with As tolerance will be identified.
Collapse
Affiliation(s)
- Patrick M. Finnegan
- Faculty of Natural and Agricultural Sciences, School of Plant Biology and Institute of Agriculture, The University of Western AustraliaCrawley, WA, Australia
| | - Weihua Chen
- Faculty of Natural and Agricultural Sciences, School of Plant Biology and Institute of Agriculture, The University of Western AustraliaCrawley, WA, Australia
| |
Collapse
|
200
|
Wang Y, Carrie C, Giraud E, Elhafez D, Narsai R, Duncan O, Whelan J, Murcha MW. Dual location of the mitochondrial preprotein transporters B14.7 and Tim23-2 in complex I and the TIM17:23 complex in Arabidopsis links mitochondrial activity and biogenesis. THE PLANT CELL 2012; 24:2675-95. [PMID: 22730406 PMCID: PMC3406907 DOI: 10.1105/tpc.112.098731] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Interactions between the respiratory chain and protein import complexes have been previously reported in Saccharomyces cerevisiae, but the biological significance of such interactions remains unknown. Characterization of two mitochondrial preprotein and amino acid transport proteins from Arabidopsis thaliana, NADH dehydrogenase B14.7 like (B14.7 [encoded by At2g42210]) and Translocase of the inner membrane subunit 23-2 (Tim23-2 [encoded by At1g72750]), revealed both proteins are present in respiratory chain complex I and the Translocase of the Inner Membrane 17:23. Whereas depletion of B14.7 by T-DNA insertion is lethal, Tim23-2 can be depleted without lethality. Subtle overexpression of Tim23-2 results in a severe delayed growth phenotype and revealed an unexpected, inverse correlation between the abundance of Tim23-2 and the abundance of respiratory complex I. This newly discovered relationship between protein import and respiratory function was confirmed through the investigation of independent complex I knockout mutants, which were found to have correspondingly increased levels of Tim23-2. This increase in Tim23-2 was also associated with delayed growth phenotypes, increased abundance of other import components, and an increased capacity for mitochondrial protein import. Analysis of the Tim23-2-overexpressing plants through global quantitation of transcript abundance and in-organelle protein synthesis assays revealed widespread alterations in transcript abundance of genes encoding mitochondrial proteins and altered rates of mitochondrial protein translation, indicating a pivotal relationship between the machinery of mitochondrial biogenesis and mitochondrial function.
Collapse
Affiliation(s)
- Yan Wang
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley 6009, Western Australia, Australia
| | - Chris Carrie
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley 6009, Western Australia, Australia
| | - Estelle Giraud
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley 6009, Western Australia, Australia
| | - Dina Elhafez
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley 6009, Western Australia, Australia
| | - Reena Narsai
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley 6009, Western Australia, Australia
- Centre for Computational Systems Biology, University of Western Australia, Crawley 6009, Western Australia, Australia
| | - Owen Duncan
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley 6009, Western Australia, Australia
| | - James Whelan
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley 6009, Western Australia, Australia
| | - Monika W. Murcha
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley 6009, Western Australia, Australia
- Address correspondence to
| |
Collapse
|