151
|
Liang G, Ai Q, Yu D. Uncovering miRNAs involved in crosstalk between nutrient deficiencies in Arabidopsis. Sci Rep 2015; 5:11813. [PMID: 26134148 PMCID: PMC4488870 DOI: 10.1038/srep11813] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 05/19/2015] [Indexed: 11/24/2022] Open
Abstract
Integrating carbon (C), nitrogen (N), and sulfur (S) metabolism is essential for the growth and development of living organisms. MicroRNAs (miRNAs) play key roles in regulating nutrient metabolism in plants. However, how plant miRNAs mediate crosstalk between different nutrient metabolic pathways is unclear. In this study, deep sequencing of Arabidopsis thaliana small RNAs was used to reveal miRNAs that were differentially expressed in response to C, N, or S deficiency. Comparative analysis revealed that the targets of the differentially expressed miRNAs are involved in different cellular responses and metabolic processes, including transcriptional regulation, auxin signal transduction, nutrient homeostasis, and regulation of development. C, N, and S deficiency specifically induced miR169b/c, miR826 and miR395, respectively. In contrast, miR167, miR172, miR397, miR398, miR399, miR408, miR775, miR827, miR841, miR857, and miR2111 are commonly suppressed by C, N, and S deficiency. In particular, the miRNAs that are induced specifically by a certain nutrient deficiency are often suppressed by other nutrient deficiencies. Further investigation indicated that the modulation of nutrient-responsive miRNA abundance affects the adaptation of plants to nutrient starvation conditions. This study revealed that miRNAs function as important regulatory nodes of different nutrient metabolic pathways.
Collapse
Affiliation(s)
- Gang Liang
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Qin Ai
- 1] Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China [2] University of Chinese Academy of Sciences, Beijing 100049, China
| | - Diqiu Yu
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| |
Collapse
|
152
|
Trevisan S, Manoli A, Ravazzolo L, Botton A, Pivato M, Masi A, Quaggiotti S. Nitrate sensing by the maize root apex transition zone: a merged transcriptomic and proteomic survey. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:3699-715. [PMID: 25911739 PMCID: PMC4473975 DOI: 10.1093/jxb/erv165] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Nitrate is an essential nutrient for plants, and crops depend on its availability for growth and development, but its presence in agricultural soils is far from stable. In order to overcome nitrate fluctuations in soil, plants have developed adaptive mechanisms allowing them to grow despite changes in external nitrate availability. Nitrate can act as both nutrient and signal, regulating global gene expression in plants, and the root tip has been proposed as the sensory organ. A set of genome-wide studies has demonstrated several nitrate-regulated genes in the roots of many plants, although only a few studies have been carried out on distinct root zones. To unravel new details of the transcriptomic and proteomic responses to nitrate availability in a major food crop, a double untargeted approach was conducted on a transition zone-enriched root portion of maize seedlings subjected to differing nitrate supplies. The results highlighted a complex transcriptomic and proteomic reprogramming that occurs in response to nitrate, emphasizing the role of this root zone in sensing and transducing nitrate signal. Our findings indicated a relationship of nitrate with biosynthesis and signalling of several phytohormones, such as auxin, strigolactones, and brassinosteroids. Moreover, the already hypothesized involvement of nitric oxide in the early response to nitrate was confirmed with the use of nitric oxide inhibitors. Our results also suggested that cytoskeleton activation and cell wall modification occurred in response to nitrate provision in the transition zone.
Collapse
Affiliation(s)
- Sara Trevisan
- Department of Agriculture, Food, Natural Resources, Animals and Environment, University of Padova, Agripolis, Viale dell'Università, 16, 35020 Legnaro (PD), Italy
| | - Alessandro Manoli
- Department of Agriculture, Food, Natural Resources, Animals and Environment, University of Padova, Agripolis, Viale dell'Università, 16, 35020 Legnaro (PD), Italy
| | - Laura Ravazzolo
- Department of Agriculture, Food, Natural Resources, Animals and Environment, University of Padova, Agripolis, Viale dell'Università, 16, 35020 Legnaro (PD), Italy
| | - Alessandro Botton
- Department of Agriculture, Food, Natural Resources, Animals and Environment, University of Padova, Agripolis, Viale dell'Università, 16, 35020 Legnaro (PD), Italy
| | - Micaela Pivato
- Department of Agriculture, Food, Natural Resources, Animals and Environment, University of Padova, Agripolis, Viale dell'Università, 16, 35020 Legnaro (PD), Italy Proteomics Centre of Padova University, VIMM and Padova University Hospital, Via Giuseppe Orus, 2, 35129 Padova, Italy
| | - Antonio Masi
- Department of Agriculture, Food, Natural Resources, Animals and Environment, University of Padova, Agripolis, Viale dell'Università, 16, 35020 Legnaro (PD), Italy
| | - Silvia Quaggiotti
- Department of Agriculture, Food, Natural Resources, Animals and Environment, University of Padova, Agripolis, Viale dell'Università, 16, 35020 Legnaro (PD), Italy
| |
Collapse
|
153
|
Koeslin-Findeklee F, Rizi VS, Becker MA, Parra-Londono S, Arif M, Balazadeh S, Mueller-Roeber B, Kunze R, Horst WJ. Transcriptomic analysis of nitrogen starvation- and cultivar-specific leaf senescence in winter oilseed rape (Brassica napus L.). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 233:174-185. [PMID: 25711825 DOI: 10.1016/j.plantsci.2014.11.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 11/05/2014] [Indexed: 06/04/2023]
Abstract
High nitrogen (N) efficiency, characterized by high grain yield under N limitation, is an important agricultural trait in Brassica napus L. cultivars related to delayed senescence of older leaves during reproductive growth (a syndrome called stay-green). The aim of this study was thus to identify genes whose expression is specifically altered during N starvation-induced leaf senescence and that can be used as markers to distinguish cultivars at early stages of senescence prior to chlorophyll loss. To this end, the transcriptomes of leaves of two B. napus cultivars differing in stay-green characteristics and N efficiency were analyzed 4 days after the induction of senescence by either N starvation, leaf shading or detaching. In addition to N metabolism genes, N starvation mostly (and specifically) repressed genes related to photosynthesis, photorespiration and cell-wall structure, while genes related to mitochondrial electron transport and flavonoid biosynthesis were predominately up-regulated. A kinetic study over a period of 12 days with four B. napus cultivars differing in their stay-green characteristics confirmed the cultivar-specific regulation of six genes in agreement with their senescence behavior: the senescence regulator ANAC029, the anthocyanin synthesis-related genes ANS and DFR-like1, the ammonium transporter AMT1;4, the ureide transporter UPS5, and SPS1 involved in sucrose biosynthesis. The identified genes represent markers for the detection of cultivar-specific differences in N starvation-induced leaf senescence and can thus be employed as valuable tools in B. napus breeding.
Collapse
Affiliation(s)
- Fabian Koeslin-Findeklee
- Institute of Plant Nutrition, Leibniz University of Hannover, Herrenhäuser Str. 2, D-30419 Hannover, Germany
| | - Vajiheh Safavi Rizi
- Institute of Biology, Dahlem Centre of Plant Sciences, Free University Berlin, Albrecht-Thaer-Weg 6, D-14195 Berlin, Germany
| | - Martin A Becker
- Institute of Plant Nutrition, Leibniz University of Hannover, Herrenhäuser Str. 2, D-30419 Hannover, Germany
| | - Sebastian Parra-Londono
- Institute of Plant Nutrition, Leibniz University of Hannover, Herrenhäuser Str. 2, D-30419 Hannover, Germany
| | - Muhammad Arif
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany; Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | - Salma Balazadeh
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany; Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | - Bernd Mueller-Roeber
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany; Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | - Reinhard Kunze
- Institute of Biology, Dahlem Centre of Plant Sciences, Free University Berlin, Albrecht-Thaer-Weg 6, D-14195 Berlin, Germany
| | - Walter J Horst
- Institute of Plant Nutrition, Leibniz University of Hannover, Herrenhäuser Str. 2, D-30419 Hannover, Germany.
| |
Collapse
|
154
|
Zhao W, Yang X, Yu H, Jiang W, Sun N, Liu X, Liu X, Zhang X, Wang Y, Gu X. RNA-Seq-based transcriptome profiling of early nitrogen deficiency response in cucumber seedlings provides new insight into the putative nitrogen regulatory network. PLANT & CELL PHYSIOLOGY 2015; 56:455-67. [PMID: 25432971 DOI: 10.1093/pcp/pcu172] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Nitrogen (N) is both an important macronutrient and a signal for plant growth and development. However, the early regulatory mechanism of plants in response to N starvation is not well understood, especially in cucumber, an economically important crop that normally consumes excessive N during production. In this study, the early time-course transcriptome response of cucumber leaves under N deficiency was monitored using RNA sequencing (RNA-Seq). More than 23,000 transcripts were examined in cucumber leaves, of which 364 genes were differentially expressed in response to N deficiency. Based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway database, gene ontology (GO) and protein-protein interaction analysis, 64 signaling-related N-deficiency-responsive genes were identified. Furthermore, the potential regulatory mechanisms of anthocyanin accumulation, Chl decline and cell wall remodeling were assessed at the transcription level. Increased ascorbic acid synthesis was identified in cucumber seedlings and fruit under N-deficient conditions, and a new corresponding regulatory hypothesis has been proposed. A data cross-comparison between model plants and cucumber was made, and some common and specific N-deficient response mechanisms were found in the present study. Our study provides novel insights into the responses of cucumber to nitrogen starvation at the global transcriptome level, which are expected to be highly useful for dissecting the N response pathways in this major vegetable and for improving N fertilization practices.
Collapse
Affiliation(s)
- Wenchao Zhao
- Key Laboratory of Horticultural Crops Genetic Improvement (Ministry of Agriculture), Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 12 Zhongguancun S. St., Beijing 100081, China Beijing Key Laboratory for Agriculture Application and New Technology, Plant Science and Technology College, Beijing University of Agriculture, Beijing 102206, China These authors contributed equally to this work
| | - Xueyong Yang
- Key Laboratory of Horticultural Crops Genetic Improvement (Ministry of Agriculture), Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 12 Zhongguancun S. St., Beijing 100081, China These authors contributed equally to this work
| | - Hongjun Yu
- Key Laboratory of Horticultural Crops Genetic Improvement (Ministry of Agriculture), Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 12 Zhongguancun S. St., Beijing 100081, China These authors contributed equally to this work
| | - Weijie Jiang
- Key Laboratory of Horticultural Crops Genetic Improvement (Ministry of Agriculture), Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 12 Zhongguancun S. St., Beijing 100081, China
| | - Na Sun
- Key Laboratory of Horticultural Crops Genetic Improvement (Ministry of Agriculture), Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 12 Zhongguancun S. St., Beijing 100081, China
| | - Xiaoran Liu
- Key Laboratory of Horticultural Crops Genetic Improvement (Ministry of Agriculture), Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 12 Zhongguancun S. St., Beijing 100081, China
| | - Xiaolin Liu
- Key Laboratory of Horticultural Crops Genetic Improvement (Ministry of Agriculture), Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 12 Zhongguancun S. St., Beijing 100081, China
| | - Xiaomeng Zhang
- Key Laboratory of Horticultural Crops Genetic Improvement (Ministry of Agriculture), Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 12 Zhongguancun S. St., Beijing 100081, China
| | - Yan Wang
- Key Laboratory of Horticultural Crops Genetic Improvement (Ministry of Agriculture), Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 12 Zhongguancun S. St., Beijing 100081, China
| | - Xingfang Gu
- Key Laboratory of Horticultural Crops Genetic Improvement (Ministry of Agriculture), Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 12 Zhongguancun S. St., Beijing 100081, China
| |
Collapse
|
155
|
Zhong L, Chen D, Min D, Li W, Xu Z, Zhou Y, Li L, Chen M, Ma Y. AtTGA4, a bZIP transcription factor, confers drought resistance by enhancing nitrate transport and assimilation in Arabidopsis thaliana. Biochem Biophys Res Commun 2015; 457:433-9. [PMID: 25596127 DOI: 10.1016/j.bbrc.2015.01.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Accepted: 01/05/2015] [Indexed: 01/20/2023]
Abstract
To cope with environmental stress caused by global climate change and excessive nitrogen application, it is important to improve water and nitrogen use efficiencies in crop plants. It has been reported that higher nitrogen uptake could alleviate the damaging impact of drought stress. However, there is scant evidence to explain how nitrogen uptake affects drought resistance. In this study we observed that bZIP transcription factor AtTGA4 (TGACG motif-binding factor 4) was induced by both drought and low nitrogen stresses, and that overexpression of AtTGA4 simultaneously improved drought resistance and reduced nitrogen starvation in Arabidopsis. Following drought stress there were higher nitrogen and proline contents in transgenic AtTGA4 plants than in wild type controls, and activity of the key enzyme nitrite reductase (NIR) involved in nitrate assimilation processes was also higher. Expressions of the high-affinity nitrate transporter genes NRT2.1 and NRT2.2 and nitrate reductase genes NIA1 and NIA2 in transgenic plants were all higher than in wild type indicating that higher levels of nitrate transport and assimilation activity contributed to enhanced drought resistance of AtTGA4 transgenic plants. Thus genetic transformation with AtTGA4 may provide a new approach to simultaneously improve crop tolerance to drought and low nitrogen stresses.
Collapse
Affiliation(s)
- Li Zhong
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Guizhou Institute of Prataculture, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou 550006, China
| | - Dandan Chen
- College of Life Sciences, Northwest A&F University, Yangling, Shanxi 712100, China
| | - Donghong Min
- College of Life Sciences, Northwest A&F University, Yangling, Shanxi 712100, China
| | - Weiwei Li
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhaoshi Xu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yongbin Zhou
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Liancheng Li
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ming Chen
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Youzhi Ma
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
156
|
Kulcheski FR, Côrrea R, Gomes IA, de Lima JC, Margis R. NPK macronutrients and microRNA homeostasis. FRONTIERS IN PLANT SCIENCE 2015; 6:451. [PMID: 26136763 PMCID: PMC4468412 DOI: 10.3389/fpls.2015.00451] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 06/02/2015] [Indexed: 05/02/2023]
Abstract
Macronutrients are essential elements for plant growth and development. In natural, non-cultivated systems, the availability of macronutrients is not a limiting factor of growth, due to fast recycling mechanisms. However, their availability might be an issue in modern agricultural practices, since soil has been frequently over exploited. From a crop management perspective, the nitrogen (N), phosphorus (P), and potassium (K) are three important limiting factors and therefore frequently added as fertilizers. NPK are among the nutrients that have been reported to alter post-embryonic root developmental processes and consequently, impairs crop yield. To cope with nutrients scarcity, plants have evolved several mechanisms involved in metabolic, physiological, and developmental adaptations. In this scenario, microRNAs (miRNAs) have emerged as additional key regulators of nutrients uptake and assimilation. Some studies have demonstrated the intrinsic relation between miRNAs and their targets, and how they can modulate plants to deal with the NPK availability. In this review, we focus on miRNAs and their regulation of targets involved in NPK metabolism. In general, NPK starvation is related with miRNAs that are involved in root-architectural changes and uptake activity modulation. We further show that several miRNAs were discovered to be involved in plant-microbe symbiosis during N and P uptake, and in this way we present a global view of some studies that were conducted in the last years. The integration of current knowledge about miRNA-NPK signaling may help future studies to focus in good candidates genes for the development of important tools for plant nutritional breeding.
Collapse
Affiliation(s)
- Franceli R. Kulcheski
- Departamento de Biofísica, Laboratório de Genomas e Populações de Plantas, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto AlegreBrazil
| | - Régis Côrrea
- Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de JaneiroBrazil
| | - Igor A. Gomes
- Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de JaneiroBrazil
| | - Júlio C. de Lima
- Laboratório de Genética Molecular, Instituto de Ciências Biológicas, Universidade de Passo Fundo, Passo FundoBrazil
| | - Rogerio Margis
- Departamento de Biofísica, Laboratório de Genomas e Populações de Plantas, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto AlegreBrazil
- *Correspondence: Rogerio Margis, Departamento de Biofísica, Laboratório de Genomas e Populações de Plantas, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves 9500, Setor IV, Prédio 43431, Sala 213, Porto Alegre, RS, CEP, Brazil
| |
Collapse
|
157
|
Reddy MM, Ulaganathan K. Nitrogen Nutrition, Its Regulation and Biotechnological Approaches to Improve Crop Productivity. ACTA ACUST UNITED AC 2015. [DOI: 10.4236/ajps.2015.618275] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
158
|
Reda M. Response of nitrate reductase activity and NIA genes expression in roots of Arabidopsis hxk1 mutant treated with selected carbon and nitrogen metabolites. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 230:51-8. [PMID: 25480007 DOI: 10.1016/j.plantsci.2014.10.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 10/22/2014] [Accepted: 10/24/2014] [Indexed: 05/24/2023]
Abstract
In plants sugar sensing and signal transduction involves pathways dependent or independent on HXK1 as a glucose sensor. Research was conducted to determine which pathway is responsible for regulation of the nitrate reduction. The effect of selected carbon and nitrogen metabolites on nitrate reductase (NR) activity in Arabidopsis thaliana wild type (WT) and hxk1 mutant roots was studied. Exogenously supplied sugar, sucrose (Suc) and organic acid, 2-oxoglutarate (2-OG) led to an increase in the total and actual activity of NR. It was due to both the increase in expression of NIA genes and NR activation state. The stimulatory effect of Suc and 2-OG on nitrate reduction was less pronounced in hxk1 mutant roots with T-DNA insertion in the AtHXK1 gene encoding hexokinase1 (HXK1) and characterized by reduced hexokinase activity and root level of G6P and F6P. On the other hand, it was shown that exogenous glucose did not mimic Suc-mediated NR activation in Arabidopsis roots. Taken together, this data suggest that the Suc signaling pathway might be independent from hexose's sensor dependent mechanism.
Collapse
Affiliation(s)
- Małgorzata Reda
- Department of Plant Molecular Physiology, Institute of Experimental Biology, University of Wrocław, Kanonia 6/8, 50-328 Wrocław, Poland.
| |
Collapse
|
159
|
Euring D, Bai H, Janz D, Polle A. Nitrogen-driven stem elongation in poplar is linked with wood modification and gene clusters for stress, photosynthesis and cell wall formation. BMC PLANT BIOLOGY 2014; 14:391. [PMID: 25547614 PMCID: PMC4302602 DOI: 10.1186/s12870-014-0391-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 12/18/2014] [Indexed: 05/05/2023]
Abstract
BACKGROUND Nitrogen is an important nutrient, often limiting plant productivity and yield. In poplars, woody crops used as feedstock for renewable resources and bioenergy, nitrogen fertilization accelerates growth of the young, expanding stem internodes. The underlying molecular mechanisms of nitrogen use for extension growth in poplars are not well understood. The aim of this study was to dissect the nitrogen-responsive transcriptional network in the elongation zone of Populus trichocarpa in relation to extension growth and cell wall properties. RESULTS Transcriptome analyses in the first two internodes of P. trichocarpa stems grown without or with nitrogen fertilization (5 mM NH4NO3) revealed 1037 more than 2-fold differentially expressed genes (DEGs). Co-expression analysis extracted a network containing about one-third of the DEGs with three main complexes of strongly clustered genes. These complexes represented three main processes that were responsive to N-driven growth: Complex 1 integrated growth processes and stress suggesting that genes with established functions in abiotic and biotic stress are also recruited to coordinate growth. Complex 2 was enriched in genes with decreased transcript abundance and functionally annotated as photosynthetic hub. Complex 3 was a hub for secondary cell wall formation connecting well-known transcription factors that control secondary cell walls with genes for the formation of cellulose, hemicelluloses, and lignin. Anatomical and biochemical analysis supported that N-driven growth resulted in early secondary cell wall formation in the elongation zone with thicker cell walls and increased lignin. These alterations contrasted the N influence on the secondary xylem, where thinner cell walls with lower lignin contents than in unfertilized trees were formed. CONCLUSION This study uncovered that nitrogen-responsive elongation growth of poplar internodes is linked with abiotic stress, suppression of photosynthetic genes and stimulation of genes for cell wall formation. Anatomical and biochemical analysis supported increased accumulation of cell walls and secondary metabolites in the elongation zone. The finding of a nitrogen-responsive cell wall hub may have wider implications for the improvement of tree nitrogen use efficiency and opens new perspectives on the enhancement of wood composition as a feedstock for biofuels.
Collapse
Affiliation(s)
- Dejuan Euring
- Forest Botany and Tree Physiology, Georg-August Universität Göttingen, Büsgenweg 2, 37077 Göttingen, Germany
| | - Hua Bai
- Forest Botany and Tree Physiology, Georg-August Universität Göttingen, Büsgenweg 2, 37077 Göttingen, Germany
| | - Dennis Janz
- Forest Botany and Tree Physiology, Georg-August Universität Göttingen, Büsgenweg 2, 37077 Göttingen, Germany
| | - Andrea Polle
- Forest Botany and Tree Physiology, Georg-August Universität Göttingen, Büsgenweg 2, 37077 Göttingen, Germany
| |
Collapse
|
160
|
Coneva V, Simopoulos C, Casaretto JA, El-Kereamy A, Guevara DR, Cohn J, Zhu T, Guo L, Alexander DC, Bi YM, McNicholas PD, Rothstein SJ. Metabolic and co-expression network-based analyses associated with nitrate response in rice. BMC Genomics 2014; 15:1056. [PMID: 25471115 PMCID: PMC4301927 DOI: 10.1186/1471-2164-15-1056] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 11/27/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Understanding gene expression and metabolic re-programming that occur in response to limiting nitrogen (N) conditions in crop plants is crucial for the ongoing progress towards the development of varieties with improved nitrogen use efficiency (NUE). To unravel new details on the molecular and metabolic responses to N availability in a major food crop, we conducted analyses on a weighted gene co-expression network and metabolic profile data obtained from leaves and roots of rice plants adapted to sufficient and limiting N as well as after shifting them to limiting (reduction) and sufficient (induction) N conditions. RESULTS A gene co-expression network representing clusters of rice genes with similar expression patterns across four nitrogen conditions and two tissue types was generated. The resulting 18 clusters were analyzed for enrichment of significant gene ontology (GO) terms. Four clusters exhibited significant correlation with limiting and reducing nitrate treatments. Among the identified enriched GO terms, those related to nucleoside/nucleotide, purine and ATP binding, defense response, sugar/carbohydrate binding, protein kinase activities, cell-death and cell wall enzymatic activity are enriched. Although a subset of functional categories are more broadly associated with the response of rice organs to limiting N and N reduction, our analyses suggest that N reduction elicits a response distinguishable from that to adaptation to limiting N, particularly in leaves. This observation is further supported by metabolic profiling which shows that several compounds in leaves change proportionally to the nitrate level (i.e. higher in sufficient N vs. limiting N) and respond with even higher levels when the nitrate level is reduced. Notably, these compounds are directly involved in N assimilation, transport, and storage (glutamine, asparagine, glutamate and allantoin) and extend to most amino acids. Based on these data, we hypothesize that plants respond by rapidly mobilizing stored vacuolar nitrate when N deficit is perceived, and that the response likely involves phosphorylation signal cascades and transcriptional regulation. CONCLUSIONS The co-expression network analysis and metabolic profiling performed in rice pinpoint the relevance of signal transduction components and regulation of N mobilization in response to limiting N conditions and deepen our understanding of N responses and N use in crops.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Steven J Rothstein
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada.
| |
Collapse
|
161
|
Lezhneva L, Kiba T, Feria-Bourrellier AB, Lafouge F, Boutet-Mercey S, Zoufan P, Sakakibara H, Daniel-Vedele F, Krapp A. The Arabidopsis nitrate transporter NRT2.5 plays a role in nitrate acquisition and remobilization in nitrogen-starved plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 80:230-41. [PMID: 25065551 DOI: 10.1111/tpj.12626] [Citation(s) in RCA: 200] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 06/26/2014] [Accepted: 07/21/2014] [Indexed: 05/20/2023]
Abstract
Nitrogen is a key mineral nutrient playing a crucial role in plant growth and development. Understanding the mechanisms of nitrate uptake from the soil and distribution through the plant in response to nitrogen starvation is an important step on the way to improve nitrogen uptake and utilization efficiency for better growth and productivity of plants, and to prevent negative effects of nitrogen fertilizers on the environment and human health. In this study, we show that Arabidopsis NITRATE TRANSPORTER 2.5 (NRT2.5) is a plasma membrane-localized high-affinity nitrate transporter playing an essential role in adult plants under severe nitrogen starvation. NRT2.5 expression is induced under nitrogen starvation and NRT2.5 becomes the most abundant transcript amongst the seven NRT2 family members in shoots and roots of adult plants after long-term starvation. GUS reporter analyses showed that NRT2.5 is expressed in the epidermis and the cortex of roots at the root hair zone and in minor veins of mature leaves. Reduction of NRT2.5 expression resulted in a decrease in high-affinity nitrate uptake without impacting low-affinity uptake. In the background of the high-affinity nitrate transporter mutant nrt2.4, an nrt2.5 mutation reduced nitrate levels in the phloem of N-starved plants further than in the single nrt2.4 mutants. Growth analyses of multiple mutants between NRT2.1, NRT2.2, NRT2.4, and NRT2.5 revealed that NRT2.5 is required to support growth of nitrogen-starved adult plants by ensuring the efficient uptake of nitrate collectively with NRT2.1, NRT2.2 and NRT2.4 and by taking part in nitrate loading into the phloem during nitrate remobilization.
Collapse
Affiliation(s)
- Lina Lezhneva
- Institut National de la Recherche Agronomique (INRA), UMR1318, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, RD10, Versailles, F-78000, France; AgroParisTech, Institut Jean-Pierre Bourgin, RD10, Versailles, F-78000, France
| | | | | | | | | | | | | | | | | |
Collapse
|
162
|
Vidal EA, Moyano TC, Canales J, Gutiérrez RA. Nitrogen control of developmental phase transitions in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:5611-8. [PMID: 25129132 DOI: 10.1093/jxb/eru326] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Nitrogen (N) is an essential macronutrient and a key structural component of macromolecules in plants. N nutrients and metabolites can act as signals that impact on many aspects of plant biology. The plant life cycle involves a series of developmental phase transitions that must be tightly coordinated to external and internal cues in order to ensure plant survival and reproduction. N availability is one of the factors controlling phase changes. In this review, we integrate and summarize the known effects of N over different developmental stages in plants. Substantial advances have been made in our understanding of signalling and N-responsive gene regulatory networks. We focus on the molecular mechanisms underlying N regulation of developmental transitions and the role of putative new regulators that might link N availability to pathways controlling Arabidopsis growth and development from seed germination through the plant reproductive transition.
Collapse
Affiliation(s)
- Elena A Vidal
- FONDAP Center for Genome Regulation, Millennium Nucleus Center for Plant Functional Genomics, Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Tomás C Moyano
- FONDAP Center for Genome Regulation, Millennium Nucleus Center for Plant Functional Genomics, Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Javier Canales
- FONDAP Center for Genome Regulation, Millennium Nucleus Center for Plant Functional Genomics, Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rodrigo A Gutiérrez
- FONDAP Center for Genome Regulation, Millennium Nucleus Center for Plant Functional Genomics, Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
163
|
Simons M, Saha R, Guillard L, Clément G, Armengaud P, Cañas R, Maranas CD, Lea PJ, Hirel B. Nitrogen-use efficiency in maize (Zea mays L.): from 'omics' studies to metabolic modelling. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:5657-71. [PMID: 24863438 DOI: 10.1093/jxb/eru227] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In this review, we will present the latest developments in systems biology with particular emphasis on improving nitrogen-use efficiency (NUE) in crops such as maize and demonstrating the application of metabolic models. The review highlights the importance of improving NUE in crops and provides an overview of the transcriptome, proteome, and metabolome datasets available, focusing on a comprehensive understanding of nitrogen regulation. 'Omics' data are hard to interpret in the absence of metabolic flux information within genome-scale models. These models, when integrated with 'omics' data, can serve as a basis for generating predictions that focus and guide further experimental studies. By simulating different nitrogen (N) conditions at a pseudo-steady state, the reactions affecting NUE and additional gene regulations can be determined. Such models thus provide a framework for improving our understanding of the metabolic processes underlying the more efficient use of N-based fertilizers.
Collapse
Affiliation(s)
- Margaret Simons
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Rajib Saha
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Lenaïg Guillard
- Adaptation des Plantes à leur Environnement, Unité Mixte de Recherche 1318, INRA-Agro-ParisTech, Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique (INRA), Centre de Versailles-Grignon, RD 10, 78026 Versailles cedex, France
| | - Gilles Clément
- Plateau Technique Spécifique de Chimie du Végétal, Institut National de la Recherche Agronomique (INRA), Centre de Versailles-Grignon, Unité Mixte de Recherche 1318, INRA-Agro-ParisTech, Route de St Cyr, F-78026 Versailles Cedex, France
| | - Patrick Armengaud
- Adaptation des Plantes à leur Environnement, Unité Mixte de Recherche 1318, INRA-Agro-ParisTech, Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique (INRA), Centre de Versailles-Grignon, RD 10, 78026 Versailles cedex, France
| | - Rafael Cañas
- Adaptation des Plantes à leur Environnement, Unité Mixte de Recherche 1318, INRA-Agro-ParisTech, Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique (INRA), Centre de Versailles-Grignon, RD 10, 78026 Versailles cedex, France
| | - Costas D Maranas
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Peter J Lea
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Bertrand Hirel
- Adaptation des Plantes à leur Environnement, Unité Mixte de Recherche 1318, INRA-Agro-ParisTech, Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique (INRA), Centre de Versailles-Grignon, RD 10, 78026 Versailles cedex, France
| |
Collapse
|
164
|
Fukushima A, Kusano M. A network perspective on nitrogen metabolism from model to crop plants using integrated 'omics' approaches. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:5619-30. [PMID: 25129130 DOI: 10.1093/jxb/eru322] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Nitrogen (N), as an essential element in amino acids, nucleotides, and proteins, is a key factor in plant growth and development. Omics approaches such as metabolomics and transcriptomics have become a promising way to inspect complex network interactions in N metabolism and can be used for monitoring the uptake and regulation, translocation, and remobilization of N. In this review, the authors highlight recent progress in omics approaches, including transcript profiling using microarrays and deep sequencing, and show recent technical developments in metabolite profiling for N studies. Further, network analysis studies including network inference methods with correlations, information-theoretic measures, and a network concept to examine gene expression clusters in relation to N regulatory systems in plants are introduced, and integrating network inference methods and integrated networks using multiple omics data are discussed. Finally, this review summarizes recent omics application examples using metabolite and/or transcript profiling analysis to elucidate the regulation of N metabolism and signalling and the coordination of N and carbon metabolism in model plants (Arabidopsis and rice), crops (tomato, maize, and legumes), and trees (Populus).
Collapse
Affiliation(s)
- Atsushi Fukushima
- RIKEN Center for Sustainable Resource Science (CSRS), 1-7-22 Suehirocho, Tsurumi, Yokohama 230-0045, Japan JST, National Bioscience Database Center (NBDC), 5-3, Yonbancho, Chiyoda, Tokyo 102-0081, Japan
| | - Miyako Kusano
- RIKEN Center for Sustainable Resource Science (CSRS), 1-7-22 Suehirocho, Tsurumi, Yokohama 230-0045, Japan Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
165
|
de Jong M, George G, Ongaro V, Williamson L, Willetts B, Ljung K, McCulloch H, Leyser O. Auxin and strigolactone signaling are required for modulation of Arabidopsis shoot branching by nitrogen supply. PLANT PHYSIOLOGY 2014; 166:384-95. [PMID: 25059707 PMCID: PMC4149722 DOI: 10.1104/pp.114.242388] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 07/21/2014] [Indexed: 05/20/2023]
Abstract
The degree of shoot branching is strongly affected by environmental conditions, such as nutrient availability. Here we demonstrate that nitrate limitation reduces shoot branching in Arabidopsis (Arabidopsis thaliana) both by delaying axillary bud activation and by attenuating the basipetal sequence of bud activation that is triggered following floral transition. Ammonium supply has similar effects, suggesting that they are caused by plant nitrogen (N) status, rather than direct nitrate signaling. We identify increased auxin export from active shoot apices, resulting in increased auxin in the polar auxin transport stream of the main stem, as a likely cause for the suppression of basal branches. Consistent with this idea, in the auxin response mutant axr1 and the strigolactone biosynthesis mutant more axillary growth1, increased retention of basal branches on low N is associated with a failure to increase auxin in the main stem. The complex interactions between the hormones that regulate branching make it difficult to rule out other mechanisms of N action, such as up-regulation of strigolactone synthesis. However, the proposed increase in auxin export from active buds can also explain how reduced shoot branching is achieved without compromising root growth, leading to the characteristic shift in relative biomass allocation to the root when N is limiting.
Collapse
Affiliation(s)
- Maaike de Jong
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, United Kingdom (M.d.J., H.M., O.L.);Department of Biology, University of York, York YO10 5DD, United Kingdom (G.G., V.O., L.W., B.W., O.L.); andUmeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umea, Sweden (K.L.)
| | - Gilu George
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, United Kingdom (M.d.J., H.M., O.L.);Department of Biology, University of York, York YO10 5DD, United Kingdom (G.G., V.O., L.W., B.W., O.L.); andUmeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umea, Sweden (K.L.)
| | - Veronica Ongaro
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, United Kingdom (M.d.J., H.M., O.L.);Department of Biology, University of York, York YO10 5DD, United Kingdom (G.G., V.O., L.W., B.W., O.L.); andUmeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umea, Sweden (K.L.)
| | - Lisa Williamson
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, United Kingdom (M.d.J., H.M., O.L.);Department of Biology, University of York, York YO10 5DD, United Kingdom (G.G., V.O., L.W., B.W., O.L.); andUmeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umea, Sweden (K.L.)
| | - Barbara Willetts
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, United Kingdom (M.d.J., H.M., O.L.);Department of Biology, University of York, York YO10 5DD, United Kingdom (G.G., V.O., L.W., B.W., O.L.); andUmeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umea, Sweden (K.L.)
| | - Karin Ljung
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, United Kingdom (M.d.J., H.M., O.L.);Department of Biology, University of York, York YO10 5DD, United Kingdom (G.G., V.O., L.W., B.W., O.L.); andUmeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umea, Sweden (K.L.)
| | - Hayley McCulloch
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, United Kingdom (M.d.J., H.M., O.L.);Department of Biology, University of York, York YO10 5DD, United Kingdom (G.G., V.O., L.W., B.W., O.L.); andUmeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umea, Sweden (K.L.)
| | - Ottoline Leyser
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, United Kingdom (M.d.J., H.M., O.L.);Department of Biology, University of York, York YO10 5DD, United Kingdom (G.G., V.O., L.W., B.W., O.L.); andUmeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umea, Sweden (K.L.)
| |
Collapse
|
166
|
Balazadeh S, Schildhauer J, Araújo WL, Munné-Bosch S, Fernie AR, Proost S, Humbeck K, Mueller-Roeber B. Reversal of senescence by N resupply to N-starved Arabidopsis thaliana: transcriptomic and metabolomic consequences. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:3975-92. [PMID: 24692653 PMCID: PMC4106441 DOI: 10.1093/jxb/eru119] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Leaf senescence is a developmentally controlled process, which is additionally modulated by a number of adverse environmental conditions. Nitrogen shortage is a well-known trigger of precocious senescence in many plant species including crops, generally limiting biomass and seed yield. However, leaf senescence induced by nitrogen starvation may be reversed when nitrogen is resupplied at the onset of senescence. Here, the transcriptomic, hormonal, and global metabolic rearrangements occurring during nitrogen resupply-induced reversal of senescence in Arabidopsis thaliana were analysed. The changes induced by senescence were essentially in keeping with those previously described; however, these could, by and large, be reversed. The data thus indicate that plants undergoing senescence retain the capacity to sense and respond to the availability of nitrogen nutrition. The combined data are discussed in the context of the reversibility of the senescence programme and the evolutionary benefit afforded thereby. Future prospects for understanding and manipulating this process in both Arabidopsis and crop plants are postulated.
Collapse
Affiliation(s)
- Salma Balazadeh
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Straße 24-25, Haus 20, D-14476 Potsdam-Golm, Germany Max-Planck Institute of Molecular Plant Physiology, Plant Signalling Group, Am Muehlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Jörg Schildhauer
- Martin-Luther-University Halle-Wittenberg, Institute of Biology, Weinbergweg 10, D-06120 Halle, Germany
| | - Wagner L Araújo
- Max-Planck Institute of Molecular Plant Physiology, Central Metabolism Group, Am Muehlenberg 1, D-14476 Potsdam-Golm, Germany Max-Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-000 Viçosa, MG, Brasil
| | - Sergi Munné-Bosch
- Departament de Biologia Vegetal, Universitat de Barcelona, Facultat de Biologia, 08028 Barcelona, Spain
| | - Alisdair R Fernie
- Max-Planck Institute of Molecular Plant Physiology, Central Metabolism Group, Am Muehlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Sebastian Proost
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Straße 24-25, Haus 20, D-14476 Potsdam-Golm, Germany Max-Planck Institute of Molecular Plant Physiology, Plant Signalling Group, Am Muehlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Klaus Humbeck
- Martin-Luther-University Halle-Wittenberg, Institute of Biology, Weinbergweg 10, D-06120 Halle, Germany
| | - Bernd Mueller-Roeber
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Straße 24-25, Haus 20, D-14476 Potsdam-Golm, Germany Max-Planck Institute of Molecular Plant Physiology, Plant Signalling Group, Am Muehlenberg 1, D-14476 Potsdam-Golm, Germany
| |
Collapse
|
167
|
Zhang S, Jiang H, Zhao H, Korpelainen H, Li C. Sexually different physiological responses of Populus cathayana to nitrogen and phosphorus deficiencies. TREE PHYSIOLOGY 2014; 34:343-54. [PMID: 24739232 DOI: 10.1093/treephys/tpu025] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Previous studies have shown that there are significant sexual differences in the morphological and physiological responses of Populus cathayana Rehder under stressful conditions. However, little is known about sex-specific differences in responses to nutrient deficiencies. In this study, the effects of nitrogen (N) and phosphorus (P) deficiencies on the morphological, physiological and chloroplast ultrastructural traits of P. cathayana males and females were investigated. The results showed that N and P deficiencies significantly decreased plant growth, foliar N and P contents, chlorophyll content, photosynthesis, and instantaneous photosynthetic N- and P-use efficiencies (PNUE and PPUE) in both sexes. Males had higher photosynthesis, higher PNUE and PPUE rates, and a lower accumulation of plastoglobules in chloroplasts than did females when exposed to N- and P-deficiency conditions. Nitrogen-deficient males had higher glutamate dehydrogenase and peroxidase activities, and a more intact chloroplast ultrastructure, but less starch accumulation than did N-deficient females. Phosphorus-deficient males had higher nitrate reductase, glutamine synthetase and acid phosphatase activities, but a lower foliar N : P ratio and less PSII damage than did P-deficient females. These results suggest that N and P deficiencies cause greater negative effects on females than on males, and that the different sexes of P. cathayana may employ different strategies to cope with N and P deficiencies.
Collapse
Affiliation(s)
- Sheng Zhang
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China
| | | | | | | | | |
Collapse
|
168
|
Gelli M, Duo Y, Konda AR, Zhang C, Holding D, Dweikat I. Identification of differentially expressed genes between sorghum genotypes with contrasting nitrogen stress tolerance by genome-wide transcriptional profiling. BMC Genomics 2014; 15:179. [PMID: 24597475 PMCID: PMC4029069 DOI: 10.1186/1471-2164-15-179] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 02/21/2014] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Sorghum is an important cereal crop, which requires large quantities of nitrogen fertilizer for achieving commercial yields. Identification of the genes responsible for low-N tolerance in sorghum will facilitate understanding of the molecular mechanisms of low-N tolerance, and also facilitate the genetic improvement of sorghum through marker-assisted selection or gene transformation. In this study we compared the transcriptomes of root tissues from seven sorghum genotypes having differential response to low-N stress. RESULTS Illumina RNA-sequencing detected several common differentially expressed genes (DEGs) between four low-N tolerant sorghum genotypes (San Chi San, China17, KS78 and high-NUE bulk) and three sensitive genotypes (CK60, BTx623 and low-NUE bulk). In sensitive genotypes, N-stress increased the abundance of DEG transcripts associated with stress responses including oxidative stress and stimuli were abundant. The tolerant genotypes adapt to N deficiency by producing greater root mass for efficient uptake of nutrients. In tolerant genotypes, higher abundance of transcripts related to high affinity nitrate transporters (NRT2.2, NRT2.3, NRT2.5, and NRT2.6) and lysine histidine transporter 1 (LHT1), may suggest an improved uptake efficiency of inorganic and organic forms of nitrogen. Higher abundance of SEC14 cytosolic factor family protein transcript in tolerant genotypes could lead to increased membrane stability and tolerance to N-stress. CONCLUSIONS Comparison of transcriptomes between N-stress tolerant and sensitive genotypes revealed several common DEG transcripts. Some of these DEGs were evaluated further by comparing the transcriptomes of genotypes grown under full N. The DEG transcripts showed higher expression in tolerant genotypes could be used for transgenic over-expression in sensitive genotypes of sorghum and related crops for increased tolerance to N-stress, which results in increased nitrogen use efficiency for sustainable agriculture.
Collapse
Affiliation(s)
- Malleswari Gelli
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE 68588, USA
| | - Yongchao Duo
- School of Biological Sciences, University of Nebraska, Lincoln, NE 68588, USA
- Center for Plant Science Innovation, University of Nebraska, Lincoln, NE 68588, USA
| | - Anji Reddy Konda
- Department of Biochemistry, University of Nebraska, Lincoln, NE 68588, USA
| | - Chi Zhang
- School of Biological Sciences, University of Nebraska, Lincoln, NE 68588, USA
- Center for Plant Science Innovation, University of Nebraska, Lincoln, NE 68588, USA
| | - David Holding
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE 68588, USA
- Center for Plant Science Innovation, University of Nebraska, Lincoln, NE 68588, USA
| | - Ismail Dweikat
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE 68588, USA
| |
Collapse
|
169
|
Krapp A, David LC, Chardin C, Girin T, Marmagne A, Leprince AS, Chaillou S, Ferrario-Méry S, Meyer C, Daniel-Vedele F. Nitrate transport and signalling in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:789-98. [PMID: 24532451 DOI: 10.1093/jxb/eru001] [Citation(s) in RCA: 269] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Plants have developed adaptive responses allowing them to cope with nitrogen (N) fluctuation in the soil and maintain growth despite changes in external N availability. Nitrate is the most important N form in temperate soils. Nitrate uptake by roots and its transport at the whole-plant level involves a large panoply of transporters and impacts plant performance. Four families of nitrate-transporting proteins have been identified so far: nitrate transporter 1/peptide transporter family (NPF), nitrate transporter 2 family (NRT2), the chloride channel family (CLC), and slow anion channel-associated homologues (SLAC/SLAH). Nitrate transporters are also involved in the sensing of nitrate. It is now well established that plants are able to sense external nitrate availability, and hence that nitrate also acts as a signal molecule that regulates many aspects of plant intake, metabolism, and gene expression. This review will focus on a global picture of the nitrate transporters so far identified and the recent advances in the molecular knowledge of the so-called primary nitrate response, the rapid regulation of gene expression in response to nitrate. The recent discovery of the NIN-like proteins as master regulators for nitrate signalling has led to a new understanding of the regulation cascade.
Collapse
Affiliation(s)
- Anne Krapp
- Institut National de la Recherche Agronomique (INRA), UMR1318, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, RD10, F-78000 Versailles, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
170
|
Shankar A, Srivastava AK, Yadav AK, Sharma M, Pandey A, Raut VV, Das MK, Suprasanna P, Pandey GK. Whole genome transcriptome analysis of rice seedling reveals alterations in Ca(2+) ion signaling and homeostasis in response to Ca(2+) deficiency. Cell Calcium 2014; 55:155-65. [PMID: 24814644 DOI: 10.1016/j.ceca.2014.02.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Revised: 01/18/2014] [Accepted: 02/13/2014] [Indexed: 10/25/2022]
Abstract
Ca(2+) is an essential inorganic macronutrient, involved in regulating major physiological processes in plants. It has been well established as a second messenger and is predominantly stored in the cell wall, endoplasmic reticulum, mitochondria and vacuoles. In the cytosol, the concentration of this ion is maintained at nano-molar range. Upon requirement, Ca(2+) is released from intra-cellular as well as extracellular compartments such as organelles and cell wall. In this study, we report for the first time, a whole genome transcriptome response to short (5 D) and long (14 D) term Ca(2+) starvation and restoration in rice. Our results manifest that short and long term Ca(2+) starvation involves a very different response in gene expression with respect to both the number and function of genes involved. A larger number of genes were up- or down-regulated after 14 D (5588 genes) than after 5 D (798 genes) of Ca(2+) starvation. The functional classification of these genes indicated their connection with various metabolic pathways, ion transport, signal transduction, transcriptional regulation, and other processes related to growth and development. The results obtained here will enable to understand how changes in Ca(2+) concentration or availability are interpreted into adaptive responses in plants.
Collapse
Affiliation(s)
- Alka Shankar
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi 110021, India.
| | - Ashish Kumar Srivastava
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai 400085, India.
| | - Akhilesh K Yadav
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi 110021, India.
| | - Manisha Sharma
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi 110021, India.
| | - Amita Pandey
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi 110021, India.
| | - Vaibhavi V Raut
- Radioanalytical Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India.
| | - Mirnal K Das
- Radioanalytical Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India.
| | - Penna Suprasanna
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai 400085, India.
| | - Girdhar K Pandey
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi 110021, India.
| |
Collapse
|
171
|
He H, Liang G, Li Y, Wang F, Yu D. Two young MicroRNAs originating from target duplication mediate nitrogen starvation adaptation via regulation of glucosinolate synthesis in Arabidopsis thaliana. PLANT PHYSIOLOGY 2014; 164:853-65. [PMID: 24367020 PMCID: PMC3912111 DOI: 10.1104/pp.113.228635] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 12/22/2013] [Indexed: 05/18/2023]
Abstract
Nitrogen is an essential macronutrient required for plant growth and development. A number of genes respond to nitrogen starvation conditions. However, the functions of most of these nitrogen starvation-responsive genes are unclear. Our recent survey suggested that many microRNAs (miRNAs) are responsive to nitrogen starvation in Arabidopsis thaliana. Here, we identified a new miRNA (miR5090) from the complementary transcript of the MIR826 gene. Further investigation uncovered that both miRNA genes recently evolved from the inverse duplication of their common target gene, ALKENYL HYDROXALKYL PRODUCING2 (AOP2). Similar to miR826, miR5090 is induced by nitrogen starvation. By contrast, the AOP2 transcript level was negatively correlated with miR826 and miR5090 under nitrogen starvation. GUS-fused AOP2 expression suggested that AOP2 was posttranscriptionally suppressed by miR826 and miR5090. miRNA transgenic plants with significantly low AOP2 expression accumulated fewer Met-derived glucosinolates, phenocopying the aop2 mutants. Most glucosinolate synthesis-associated genes were repressed under nitrogen starvation conditions. Furthermore, miRNA transgenic plants with less glucosinolate displayed enhanced tolerance to nitrogen starvation, including high biomass, more lateral roots, increased chlorophyll, and decreased anthocyanin. Meanwhile, nitrogen starvation-responsive genes were up-regulated in transgenic plants, implying improved nitrogen uptake activity. Our study reveals a mechanism by which Arabidopsis thaliana regulates the synthesis of glucosinolates to adapt to environmental changes in nitrogen availability.
Collapse
MESH Headings
- Adaptation, Physiological/drug effects
- Adaptation, Physiological/genetics
- Arabidopsis/drug effects
- Arabidopsis/genetics
- Arabidopsis/physiology
- Arabidopsis Proteins/genetics
- Base Sequence
- Chromatography, High Pressure Liquid
- Gene Duplication
- Gene Expression Regulation, Plant/drug effects
- Genes, Plant
- Genome, Plant/genetics
- Glucosinolates/biosynthesis
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Molecular Sequence Data
- Nitrogen/deficiency
- Nitrogen/pharmacology
- Phenotype
- Plants, Genetically Modified
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Sequence Homology, Nucleic Acid
- Transcription, Genetic/drug effects
Collapse
|
172
|
Takatani N, Ito T, Kiba T, Mori M, Miyamoto T, Maeda SI, Omata T. Effects of high CO2 on growth and metabolism of Arabidopsis seedlings during growth with a constantly limited supply of nitrogen. PLANT & CELL PHYSIOLOGY 2014; 55:281-92. [PMID: 24319077 PMCID: PMC3913441 DOI: 10.1093/pcp/pct186] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2013] [Accepted: 11/29/2013] [Indexed: 05/22/2023]
Abstract
Elevated CO2 has been reported to stimulate plant growth under nitrogen-sufficient conditions, but the effects of CO2 on growth in a constantly nitrogen-limited state, which is relevant to most natural habitats of plants, remain unclear. Here, we maintained Arabidopsis seedlings under such conditions by growing a mutant with reduced nitrate uptake activity on a medium containing nitrate as the sole nitrogen source. Under nitrogen-sufficient conditions (i.e. in the presence of ammonium), growth of shoots and roots of both the wild type (WT) and the mutant was increased approximately 2-fold by elevated CO2. Growth stimulation of shoots and roots by elevated CO2 was observed in the WT growing with nitrate as the sole nitrogen source, but in the mutant grown with nitrate, the high-CO2 conditions stimulated only the growth of roots. In the mutant, elevated CO2 caused well-known symptoms of nitrogen-starved plants, including decreased shoot/root ratio, reduced nitrate content and accumulation of anthocyanin, but also had an increased Chl content in the shoot, which was contradictory to the known effect of nitrogen depletion. A high-CO2-responsive change specific to the mutant was not observed in the levels of the major metabolites, although CO2 responses were observed in the WT and the mutant. These results indicated that elevated CO2 causes nitrogen limitation in the seedlings grown with a constantly limited supply of nitrogen, but the Chl content and the root biomass of the plant increase to enhance the activities of both photosynthesis and nitrogen uptake, while maintaining normal metabolism and response to high CO2.
Collapse
Affiliation(s)
- Nobuyuki Takatani
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601 Japan
| | - Takuro Ito
- Institute for Advanced Biosciences, Keio University, 246-2 Mizukami, Kakuganji, Tsuruoka, Yamagata, 997-0052 Japan
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, 252-8520 Japan
- PRESTO, Japan Science and Technology Agency, Kawaguchi, 332-0012 Japan
| | - Takatoshi Kiba
- RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045 Japan
| | - Marie Mori
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601 Japan
| | - Tetsuro Miyamoto
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601 Japan
| | - Shin-ichi Maeda
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601 Japan
| | - Tatsuo Omata
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601 Japan
- *Corresponding author: E-mail, ; Fax, +81-52-789-4107
| |
Collapse
|
173
|
Hachiya T, Sugiura D, Kojima M, Sato S, Yanagisawa S, Sakakibara H, Terashima I, Noguchi K. High CO2 triggers preferential root growth of Arabidopsis thaliana via two distinct systems under low pH and low N stresses. PLANT & CELL PHYSIOLOGY 2014; 55:269-80. [PMID: 24401956 PMCID: PMC3913443 DOI: 10.1093/pcp/pcu001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 12/17/2013] [Indexed: 05/04/2023]
Abstract
Biomass allocation between shoots and roots is an important strategy used by plants to optimize growth in various environments. Root to shoot mass ratios typically increase in response to high CO2, a trend particularly evident under abiotic stress. We investigated this preferential root growth (PRG) in Arabidopsis thaliana plants cultivated under low pH/high CO2 or low nitrogen (N)/high CO2 conditions. Previous studies have suggested that changes in plant hormone, carbon (C) and N status may be related to PRG. We therefore examined the mechanisms underlying PRG by genetically modifying cytokinin (CK) levels, C and N status, and sugar signaling, performing sugar application experiments and determining primary metabolites, plant hormones and expression of related genes. Both low pH/high CO2 and low N/high CO2 stresses induced increases in lateral root (LR) number and led to high C/N ratios; however, under low pH/high CO2 conditions, large quantities of C were accumulated, whereas under low N/high CO2 conditions, N was severely depleted. Analyses of a CK-deficient mutant and a starchless mutant, in conjunction with sugar application experiments, revealed that these stresses induce PRG via different mechanisms. Metabolite and hormone profile analysis indicated that under low pH/high CO2 conditions, excess C accumulation may enhance LR number through the dual actions of increased auxin and decreased CKs.
Collapse
Affiliation(s)
- Takushi Hachiya
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045 Japan
| | - Daisuke Sugiura
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Mikiko Kojima
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045 Japan
| | - Shigeru Sato
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
| | - Shuichi Yanagisawa
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
| | - Hitoshi Sakakibara
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045 Japan
| | - Ichiro Terashima
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Ko Noguchi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| |
Collapse
|
174
|
de Jong F, Thodey K, Lejay LV, Bevan MW. Glucose elevates NITRATE TRANSPORTER2.1 protein levels and nitrate transport activity independently of its HEXOKINASE1-mediated stimulation of NITRATE TRANSPORTER2.1 expression. PLANT PHYSIOLOGY 2014; 164:308-20. [PMID: 24272701 PMCID: PMC3875810 DOI: 10.1104/pp.113.230599] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 11/20/2013] [Indexed: 05/19/2023]
Abstract
Mineral nutrient uptake and assimilation is closely coordinated with the production of photosynthate to supply nutrients for growth. In Arabidopsis (Arabidopsis thaliana), nitrate uptake from the soil is mediated by genes encoding high- and low-affinity transporters that are transcriptionally regulated by both nitrate and photosynthate availability. In this study, we have studied the interactions of nitrate and glucose (Glc) on gene expression, nitrate transport, and growth using glucose-insensitive2-1 (gin2-1), which is defective in sugar responses. We confirm and extend previous work by showing that HEXOKINASE1-mediated oxidative pentose phosphate pathway (OPPP) metabolism is required for Glc-mediated NITRATE TRANSPORTER2.1 (NRT2.1) expression. Treatment with pyruvate and shikimate, two products derived from intermediates of the OPPP that are destined for amino acid production, restores wild-type levels of NRT2.1 expression, suggesting that metabolites derived from OPPP metabolism can, together with Glc, directly stimulate high levels of NRT2.1 expression. Nitrate-mediated NRT2.1 expression is not influenced by gin2-1, showing that Glc does not influence NRT2.1 expression through nitrate-mediated mechanisms. We also show that Glc stimulates NRT2.1 protein levels and transport activity independently of its HEXOKINASE1-mediated stimulation of NRT2.1 expression, demonstrating another possible posttranscriptional mechanism influencing nitrate uptake. In gin2-1 plants, nitrate-responsive biomass growth was strongly reduced, showing that the supply of OPPP metabolites is essential for assimilating nitrate for growth.
Collapse
|
175
|
Reguera M, Peleg Z, Abdel-Tawab YM, Tumimbang EB, Delatorre CA, Blumwald E. Stress-induced cytokinin synthesis increases drought tolerance through the coordinated regulation of carbon and nitrogen assimilation in rice. PLANT PHYSIOLOGY 2013; 163:1609-22. [PMID: 24101772 PMCID: PMC3850209 DOI: 10.1104/pp.113.227702] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 10/02/2013] [Indexed: 05/03/2023]
Abstract
The effects of water deficit on carbon and nitrogen metabolism were investigated in flag leaves of wild-type and transgenic rice (Oryza sativa japonica 'Kitaake') plants expressing ISOPENTENYLTRANSFERASE (IPT; encoding the enzyme that mediates the rate-limiting step in cytokinin synthesis) under the control of P(SARK), a maturation- and stress-induced promoter. While the wild-type plants displayed inhibition of photosynthesis and nitrogen assimilation during water stress, neither carbon nor nitrogen assimilation was affected by stress in the transgenic P(SARK)::IPT plants. In the transgenic plants, photosynthesis was maintained at control levels during stress and the flag leaf showed increased sucrose (Suc) phosphate synthase activity and reduced Suc synthase and invertase activities, leading to increased Suc contents. The sustained carbon assimilation in the transgenic P(SARK)::IPT plants was well correlated with enhanced nitrate content, higher nitrate reductase activity, and sustained ammonium contents, indicating that the stress-induced cytokinin synthesis in the transgenic plants played a role in maintaining nitrate acquisition. Protein contents decreased and free amino acids increased in wild-type plants during stress, while protein content was preserved in the transgenic plants. Our results indicate that the stress-induced cytokinin synthesis in the transgenic plants promoted sink strengthening through a cytokinin-dependent coordinated regulation of carbon and nitrogen metabolism that facilitates an enhanced tolerance of the transgenic plants to water deficit.
Collapse
Affiliation(s)
- Maria Reguera
- Department of Plant Sciences, University of California, Davis, California 95616
| | | | | | - Ellen B. Tumimbang
- Department of Plant Sciences, University of California, Davis, California 95616
| | | | - Eduardo Blumwald
- Department of Plant Sciences, University of California, Davis, California 95616
| |
Collapse
|
176
|
Luo J, Li H, Liu T, Polle A, Peng C, Luo ZB. Nitrogen metabolism of two contrasting poplar species during acclimation to limiting nitrogen availability. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:4207-24. [PMID: 23963674 PMCID: PMC3808312 DOI: 10.1093/jxb/ert234] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
To investigate N metabolism of two contrasting Populus species in acclimation to low N availability, saplings of slow-growing species (Populus popularis, Pp) and a fast-growing species (Populus alba × Populus glandulosa, Pg) were exposed to 10, 100, or 1000 μM NH4NO3. Despite greater root biomass and fine root surface area in Pp, lower net influxes of NH4(+) and NO3(-) at the root surface were detected in Pp compared to those in Pg, corresponding well to lower NH4(+) and NO3(-) content and total N concentration in Pp roots. Meanwhile, higher stable N isotope composition (δ(15)N) in roots and stronger responsiveness of transcriptional regulation of 18 genes involved in N metabolism were found in roots and leaves of Pp compared to those of Pg. These results indicate that the N metabolism of Pp is more sensitive to decreasing N availability than that of Pg. In both species, low N treatments decreased net influxes of NH4(+) and NO3(-), root NH4(+) and foliar NO3(-) content, root NR activities, total N concentration in roots and leaves, and transcript levels of most ammonium (AMTs) and nitrate (NRTs) transporter genes in leaves and genes involved in N assimilation in roots and leaves. Low N availability increased fine root surface area, foliar starch concentration, δ(15)N in roots and leaves, and transcript abundance of several AMTs (e.g. AMT1;2) and NRTs (e.g. NRT1;2 and NRT2;4B) in roots of both species. These data indicate that poplar species slow down processes of N acquisition and assimilation in acclimation to limiting N supply.
Collapse
Affiliation(s)
- Jie Luo
- College of Life Sciences and State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Hong Li
- Key Laboratory of Applied Entomology, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Tongxian Liu
- Key Laboratory of Applied Entomology, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Andrea Polle
- Büsgen-Institute, Department of Forest Botany and Tree Physiology, Georg-August University, Büsgenweg 2, 37077 Göttingen, Germany
| | - Changhui Peng
- Key Laboratory of Environment and Ecology in Western China of Ministry of Education, College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Zhi-Bin Luo
- College of Life Sciences and State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, PR China
- Key Laboratory of Environment and Ecology in Western China of Ministry of Education, College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| |
Collapse
|
177
|
Klemens PA, Patzke K, Deitmer J, Spinner L, Le Hir R, Bellini C, Bedu M, Chardon F, Krapp A, Neuhaus HE. Overexpression of the vacuolar sugar carrier AtSWEET16 modifies germination, growth, and stress tolerance in Arabidopsis. PLANT PHYSIOLOGY 2013; 163:1338-52. [PMID: 24028846 PMCID: PMC3813654 DOI: 10.1104/pp.113.224972] [Citation(s) in RCA: 192] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 09/11/2013] [Indexed: 05/18/2023]
Abstract
Here, we report that SUGARS WILL EVENTUALLY BE EXPORTED TRANSPORTER (SWEET16) from Arabidopsis (Arabidopsis thaliana) is a vacuole-located carrier, transporting glucose (Glc), fructose (Fru), and sucrose (Suc) after heterologous expression in Xenopus laevis oocytes. The SWEET16 gene, similar to the homologs gene SWEET17, is mainly expressed in vascular parenchyma cells. Application of Glc, Fru, or Suc, as well as cold, osmotic stress, or low nitrogen, provoke the down-regulation of SWEET16 messenger RNA accumulation. SWEET16 overexpressors (35SPro:SWEET16) showed a number of peculiarities related to differences in sugar accumulation, such as less Glc, Fru, and Suc at the end of the night. Under cold stress, 35SPro:SWEET16 plants are unable to accumulate Fru, while under nitrogen starvation, both Glc and Fru, but not Suc, were less abundant. These changes of individual sugars indicate that the consequences of an increased SWEET16 activity are dependent upon the type of external stimulus. Remarkably, 35SPro:SWEET16 lines showed improved germination and increased freezing tolerance. The latter observation, in combination with the modified sugar levels, points to a superior function of Glc and Suc for frost tolerance. 35SPro:SWEET16 plants exhibited increased growth efficiency when cultivated on soil and showed improved nitrogen use efficiency when nitrate was sufficiently available, while under conditions of limiting nitrogen, wild-type biomasses were higher than those of 35SPro:SWEET16 plants. Our results identify SWEET16 as a vacuolar sugar facilitator, demonstrate the substantial impact of SWEET16 overexpression on various critical plant traits, and imply that SWEET16 activity must be tightly regulated to allow optimal Arabidopsis development under nonfavorable conditions.
Collapse
|
178
|
Distelbarth H, Nägele T, Heyer AG. Responses of antioxidant enzymes to cold and high light are not correlated to freezing tolerance in natural accessions of Arabidopsis thaliana. PLANT BIOLOGY (STUTTGART, GERMANY) 2013; 15:982-990. [PMID: 23578291 DOI: 10.1111/j.1438-8677.2012.00718.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 11/06/2012] [Indexed: 06/02/2023]
Abstract
Low temperatures and high light cause imbalances in primary and secondary reactions of photosynthesis, and thus can result in oxidative stress. Plants employ a range of low-molecular weight antioxidants and antioxidant enzymes to prevent oxidative damage, and antioxidant defence is considered an important component of stress tolerance. To figure out whether oxidative stress and antioxidant defence are key factors defining the different cold acclimation capacities of natural accessions of the model plant Arabidopsis thaliana, we investigated hydrogen peroxide (H2 O2 ) production, antioxidant enzyme activity and lipid peroxidation during a time course of cold treatment and exposure to high light in four differentially cold-tolerant natural accessions of Arabidopsis (C24, Nd, Rsch, Te) that span the European distribution range of the species. All accessions except Rsch (from Russia) had elevated H2 O2 in the cold, indicating that production of reactive oxygen species is part of the cold response in Arabidopsis. Glutathione reductase activity increased in all but Rsch, while ascorbate peroxidase and superoxide dismutase were unchanged and catalase decreased in all but Rsch. Under high light, the Scandinavian accession Te had elevated levels of H2 O2 . Te appeared most sensitive to oxidative stress, having higher malondialdehyde (MDA) levels in the cold and under high light, while only high light caused elevated MDA in the other accessions. Although the most freezing-tolerant, Te had the highest sensitivity to oxidative stress. No correlation was found between freezing tolerance and activity of antioxidant enzymes in the four accessions investigated, arguing against a key role for antioxidant defence in the differential cold acclimation capacities of Arabidopsis accessions.
Collapse
Affiliation(s)
- H Distelbarth
- Department of Plant Biotechnology, Institute of Biology, University of Stuttgart, Stuttgart, Germany
| | | | | |
Collapse
|
179
|
Wei H, Yordanov YS, Georgieva T, Li X, Busov V. Nitrogen deprivation promotes Populus root growth through global transcriptome reprogramming and activation of hierarchical genetic networks. THE NEW PHYTOLOGIST 2013; 200:483-497. [PMID: 23795675 DOI: 10.1111/nph.12375] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 05/20/2013] [Indexed: 05/07/2023]
Abstract
We show a distinct and previously poorly characterized response of poplar (Populus tremula × Populus alba) roots to low nitrogen (LN), which involves activation of root growth and significant transcriptome reprogramming. Analysis of the temporal patterns of enriched ontologies among the differentially expressed genes revealed an ordered assembly of functionally cohesive biological events that aligned well with growth and morphological responses. A core set of 28 biological processes was significantly enriched across the whole studied period and 21 of these were also enriched in the roots of Arabidopsis thaliana during the LN response. More than half (15) of the 28 processes belong to gene ontology (GO) terms associated with signaling and signal transduction pathways, suggesting the presence of conserved signaling mechanisms triggered by LN. A reconstruction of genetic regulatory network analysis revealed a sub-network centered on a PtaNAC1 (P. tremula × alba NAM, ATAF, CUC 1) transcription factor. PtaNAC1 root-specific up-regulation increased root biomass and significantly changed the expression of the connected hub genes specifically under LN. Our results provide evidence that the root response to LN involves hierarchically structured genetic networks centered on key regulatory factors. Targeting these factors via genetic engineering or breeding approaches can allow dynamic adjustment of root architecture in response to variable nitrogen availabilities in the soil.
Collapse
Affiliation(s)
- Hairong Wei
- School of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, 49931-1295, USA
- Biotechnology Research Center, Michigan Technological University, 1400 Townsend Drive, Houghton, MI, 49931, USA
- Computer Science, Michigan Technological University, 1400 Townsend Drive, Houghton, MI, 49931, USA
| | - Yordan S Yordanov
- School of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, 49931-1295, USA
| | - Tatyana Georgieva
- School of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, 49931-1295, USA
| | - Xiang Li
- Computer Science, Michigan Technological University, 1400 Townsend Drive, Houghton, MI, 49931, USA
| | - Victor Busov
- School of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, 49931-1295, USA
- Biotechnology Research Center, Michigan Technological University, 1400 Townsend Drive, Houghton, MI, 49931, USA
| |
Collapse
|
180
|
Reda M. Regulation of nitrate reduction in Arabidopsis WT and hxk1 mutant under C and N metabolites. PHYSIOLOGIA PLANTARUM 2013; 149:260-272. [PMID: 23480350 DOI: 10.1111/ppl.12045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 02/07/2013] [Accepted: 02/15/2013] [Indexed: 06/01/2023]
Abstract
As in plants sugar sensing and signal transduction involve pathways dependent or independent on hexokinase 1 (HXK1) as a glucose sensor, research was conducted to determine which pathway is responsible for regulation of the nitrate reduction. An Arabidopsis mutant with T-DNA insertion in the AtHXK1 gene and defects in glucose signaling (hxk1) was used to determine nitrate reductase (NR) activity, NIA genes expression in leaves after 8-h treatment with sugars (glucose and sucrose), organic acids [2-oxoglutarate (2OG)] and amino acids (glutamine and glutamate). Sugars, especially sucrose, caused induction of NR actual activity accompanied by an increase of the NR activation state, indicating the posttranslational nature of the modifications. Those modifications were observed in wild-type (WT) and hxk1 leaves, suggesting that regulation of NR activity by sugars does not involve HXK1 as a glucose sensor. Moreover, sugars enhanced expression of NIA genes. However, a higher level of NIA transcripts did not lead to an increase of total NR activity in sugar-treated plants. This may suggest that posttranslational modification of NR is fundamental regulatory mechanisms controlling NR activity in response to C metabolites. Treatment of plants with 2-OG also modified NR through the posttranslational modifications. Elevation of actual NR activity and the enzyme activation state in WT and hxk1 leaves was observed. Amino acids caused a decrease of NIA gene expression and NR activities in WT and hxk1 leaves indicating that mutation in the hexokinase-dependent glucose signaling pathway did not interrupt the amino acid feedback regulation of NR.
Collapse
Affiliation(s)
- Małgorzata Reda
- Department of Plant Molecular Physiology, Institute of Experimental Biology, Wrocław University, Wrocław, 50-328, Poland
| |
Collapse
|
181
|
Liseron-Monfils C, Bi YM, Downs GS, Wu W, Signorelli T, Lu G, Chen X, Bondo E, Zhu T, Lukens LN, Colasanti J, Rothstein SJ, Raizada MN. Nitrogen transporter and assimilation genes exhibit developmental stage-selective expression in maize (Zea mays L.) associated with distinct cis-acting promoter motifs. PLANT SIGNALING & BEHAVIOR 2013; 8:26056. [PMID: 24270626 PMCID: PMC4091066 DOI: 10.4161/psb.26056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Nitrogen is considered the most limiting nutrient for maize (Zea mays L.), but there is limited understanding of the regulation of nitrogen-related genes during maize development. An Affymetrix 82K maize array was used to analyze the expression of ≤ 46 unique nitrogen uptake and assimilation probes in 50 maize tissues from seedling emergence to 31 d after pollination. Four nitrogen-related expression clusters were identified in roots and shoots corresponding to, or overlapping, juvenile, adult, and reproductive phases of development. Quantitative real time PCR data was consistent with the existence of these distinct expression clusters. Promoters corresponding to each cluster were screened for over-represented cis-acting elements. The 8-bp distal motif of the Arabidopsis 43-bp nitrogen response element (NRE) was over-represented in nitrogen-related maize gene promoters. This conserved motif, referred to here as NRE43-d8, was previously shown to be critical for nitrate-activated transcription of nitrate reductase (NIA1) and nitrite reductase (NIR1) by the NIN-LIKE PROTEIN 6 (NLP6) in Arabidopsis. Here, NRE43-d8 was over-represented in the promoters of maize nitrate and ammonium transporter genes, specifically those that showed peak expression during early-stage vegetative development. This result predicts an expansion of the NRE-NLP6 regulon and suggests that it may have a developmental component in maize. We also report leaf expression of putative orthologs of nitrite transporters (NiTR1), a transporter not previously reported in maize. We conclude by discussing how each of the four transcriptional modules may be responsible for the different nitrogen uptake and assimilation requirements of leaves and roots at different stages of maize development.
Collapse
Affiliation(s)
| | - Yong-Mei Bi
- Department of Molecular and Cellular Biology; University of Guelph; Guelph, ON Canada
| | - Gregory S Downs
- Department of Plant Agriculture; University of Guelph; Guelph, ON Canada
| | - Wenqing Wu
- Department of Molecular and Cellular Biology; University of Guelph; Guelph, ON Canada
| | - Tara Signorelli
- Department of Molecular and Cellular Biology; University of Guelph; Guelph, ON Canada
| | - Guangwen Lu
- Department of Molecular and Cellular Biology; University of Guelph; Guelph, ON Canada
| | - Xi Chen
- Syngenta Biotechnology Inc.; Research Triangle Park; Greensboro, NC USA
| | - Eddie Bondo
- Syngenta Biotechnology Inc.; Research Triangle Park; Greensboro, NC USA
| | - Tong Zhu
- Syngenta Biotechnology Inc.; Research Triangle Park; Greensboro, NC USA
| | - Lewis N Lukens
- Department of Plant Agriculture; University of Guelph; Guelph, ON Canada
| | - Joseph Colasanti
- Department of Molecular and Cellular Biology; University of Guelph; Guelph, ON Canada
| | - Steven J Rothstein
- Department of Molecular and Cellular Biology; University of Guelph; Guelph, ON Canada
| | - Manish N Raizada
- Department of Plant Agriculture; University of Guelph; Guelph, ON Canada
- Correspondence to: Manish N Raizada,
| |
Collapse
|
182
|
Fischer JJ, Beatty PH, Good AG, Muench DG. Manipulation of microRNA expression to improve nitrogen use efficiency. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2013; 210:70-81. [PMID: 23849115 DOI: 10.1016/j.plantsci.2013.05.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 04/24/2013] [Accepted: 05/16/2013] [Indexed: 05/02/2023]
Abstract
Nitrogen is the key limiting nutrient required for plant growth. The application of nitrogen-based fertilizers to crops has risen dramatically in recent years, resulting in significant yield increases. However, increased production has come at the cost of substantial negative environmental consequences. Higher crop production costs, increased consumption of food and fertilizer, and a growing global population have led to calls for a "second green revolution" using modern genetic manipulation techniques to improve the production, yield, and quality of crops. Considerable research is being directed toward the study and engineering of nitrogen use efficiency in crop plants. The end goal is to reduce the amount of nitrogen-based fertilizer used and thereby reduce production costs and environmental damage while increasing yields. In this review, we present an overview of recent advances in understanding the regulation of nitrogen metabolism by the action of microRNAs with a view toward engineering crops with increased nitrogen use efficiency.
Collapse
Affiliation(s)
- Jeffrey J Fischer
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, AB, Canada T2N 1N4
| | | | | | | |
Collapse
|
183
|
Schlüter U, Colmsee C, Scholz U, Bräutigam A, Weber APM, Zellerhoff N, Bucher M, Fahnenstich H, Sonnewald U. Adaptation of maize source leaf metabolism to stress related disturbances in carbon, nitrogen and phosphorus balance. BMC Genomics 2013; 14:442. [PMID: 23822863 PMCID: PMC3716532 DOI: 10.1186/1471-2164-14-442] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 06/21/2013] [Indexed: 12/01/2022] Open
Abstract
Background Abiotic stress causes disturbances in the cellular homeostasis. Re-adjustment of balance in carbon, nitrogen and phosphorus metabolism therefore plays a central role in stress adaptation. However, it is currently unknown which parts of the primary cell metabolism follow common patterns under different stress conditions and which represent specific responses. Results To address these questions, changes in transcriptome, metabolome and ionome were analyzed in maize source leaves from plants suffering low temperature, low nitrogen (N) and low phosphorus (P) stress. The selection of maize as study object provided data directly from an important crop species and the so far underexplored C4 metabolism. Growth retardation was comparable under all tested stress conditions. The only primary metabolic pathway responding similar to all stresses was nitrate assimilation, which was down-regulated. The largest group of commonly regulated transcripts followed the expression pattern: down under low temperature and low N, but up under low P. Several members of this transcript cluster could be connected to P metabolism and correlated negatively to different phosphate concentration in the leaf tissue. Accumulation of starch under low temperature and low N stress, but decrease in starch levels under low P conditions indicated that only low P treated leaves suffered carbon starvation. Conclusions Maize employs very different strategies to manage N and P metabolism under stress. While nitrate assimilation was regulated depending on demand by growth processes, phosphate concentrations changed depending on availability, thus building up reserves under excess conditions. Carbon and energy metabolism of the C4 maize leaves were particularly sensitive to P starvation.
Collapse
Affiliation(s)
- Urte Schlüter
- Department of Biology, Division of Biochemistry, Friedrich-Alexander-University Erlangen-Nuremberg, Staudtstr, 5, 91058, Erlangen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
184
|
Takehisa H, Sato Y, Antonio BA, Nagamura Y. Global transcriptome profile of rice root in response to essential macronutrient deficiency. PLANT SIGNALING & BEHAVIOR 2013; 8:e24409. [PMID: 23603969 PMCID: PMC3907390 DOI: 10.4161/psb.24409] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 03/21/2013] [Accepted: 03/22/2013] [Indexed: 05/18/2023]
Abstract
Deficiency of the three essential macronutrients, nitrogen, phosphorus and potassium, leads to large reduction in crop growth and yield. To characterize the molecular genetic basis of adaptation to macronutrient deprivation, we performed microarray analysis of rice root at 6 and 24 h after nitrogen, phosphorus and potassium deficiency treatments. The transcriptome response to nitrogen depletion occurred more rapidly than corresponding responses to phosphorus and potassium deprivation. We identified several genes important for response and adaptation to each nutrient deficiency. Furthermore, we found that signaling via reactive oxygen species is a common feature in response to macronutrient deficiency and signaling via jasmonic acid is associated with potassium depletion response. These results will facilitate deeper understanding of nutrient utilization of plants.
Collapse
|
185
|
Leaf Fructose Content Is Controlled by the Vacuolar Transporter SWEET17 in Arabidopsis. Curr Biol 2013; 23:697-702. [DOI: 10.1016/j.cub.2013.03.021] [Citation(s) in RCA: 163] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 02/15/2013] [Accepted: 03/08/2013] [Indexed: 11/16/2022]
|
186
|
Interrelationship of Bradyrhizobium sp. and plant growth-promoting bacteria in cowpea: Survival and symbiotic performance. J Microbiol 2013; 51:49-55. [DOI: 10.1007/s12275-013-2335-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 09/07/2012] [Indexed: 10/27/2022]
|
187
|
Krapp A, Castaings L. [Plant adaptation to nitrogen availability]. Biol Aujourdhui 2013; 206:323-35. [PMID: 23419259 DOI: 10.1051/jbio/2012031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2012] [Indexed: 11/15/2022]
Abstract
Nitrogen is an essential macronutrient for plant development and productivity. The adaptation toward changes in nitrogen availability in the soil is crucial for the immobile plant. Nitrate is the primary nitrogen source in temperate climate. Nitrate transport and assimilation are discussed with emphasis on the adaptation to nitrogen starvation. The integration of nitrogen metabolism with primary and secondary metabolism and the homeostasis with other nutrients are discussed. However, nitrate is not only a nutrient, but also a signaling molecule acting on multiple levels. The molecular players involved in the regulatory network are discussed.
Collapse
Affiliation(s)
- Anne Krapp
- Institut National de la Recherche Agronomique INRA, UMR1318, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, RD10 78000 Versailles, France.
| | | |
Collapse
|
188
|
Watanabe A, Okazaki K, Watanabe T, Osaki M, Shinano T. Metabolite profiling of mizuna ( Brassica rapa L. var. Nipponsinica) to evaluate the effects of organic matter amendments. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:1009-1016. [PMID: 23244647 DOI: 10.1021/jf3039132] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Organic matter amendment is an essential agricultural protocol to improve soil function and carbon sequestration. However, the effect of organic matter amendments on crop quality has not been well-defined. This study applied gas chromatography-mass spectrometry to investigate the metabolite profiling of mizuna ( Brassica rapa L. var. Nipponsinica) with different organic matter amendments with respect to quality and quantity. Principal component analysis showed that 33.4, 15.6, and 6.6% of the total variance was attributable to the plant N concentration, fast-release organic fertilizer (fish cake), chicken droppings), and rapeseed cake), and manure application (fresh and dried), respectively. The peak areas of 18 and 15 compounds were significantly altered under organic fertilizer and manure amendment, respectively, compared with pure chemical fertilizer amendment. The compounds altered with manure amendment were similar to those reported in previous studies using other species. This study is the first to show clear metabolic alterations in plants through the amendment of fast-release organic fertilizer. Mizuna is a unique plant species that responds to both organic fertilizer and manure. These observations are useful to clarify the effect of organic matter amendment and quality control in farming systems using organic matter.
Collapse
Affiliation(s)
- Ayano Watanabe
- Food and Agricultural Materials Inspection Center, Saitama-shi 330-9731, Japan
| | | | | | | | | |
Collapse
|
189
|
Sardans J, Peñuelas J. The role of plants in the effects of global change on nutrient availability and stoichiometry in the plant-soil system. PLANT PHYSIOLOGY 2012; 160:1741-61. [PMID: 23115250 PMCID: PMC3510107 DOI: 10.1104/pp.112.208785] [Citation(s) in RCA: 133] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 10/29/2012] [Indexed: 05/21/2023]
Affiliation(s)
- Jordi Sardans
- Consejo Superior de Investigaciones Científicas, Global Ecology Unit, Centre de Recerca Ecològica i Aplicacions Forestats-Centre d'Estudis Avançats de Blanes-Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08913, Catalonia, Spain.
| | | |
Collapse
|
190
|
Liang G, He H, Yu D. Identification of nitrogen starvation-responsive microRNAs in Arabidopsis thaliana. PLoS One 2012; 7:e48951. [PMID: 23155433 PMCID: PMC3498362 DOI: 10.1371/journal.pone.0048951] [Citation(s) in RCA: 169] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 10/02/2012] [Indexed: 01/23/2023] Open
Abstract
microRNAs (miRNAs) are a class of negative regulators that take part in many processes such as growth and development, stress responses, and metabolism in plants. Recently, miRNAs were shown to function in plant nutrient metabolism. Moreover, several miRNAs were identified in the response to nitrogen (N) deficiency. To investigate the functions of other miRNAs in N deficiency, deep sequencing technology was used to detect the expression of small RNAs under N-sufficient and -deficient conditions. The results showed that members from the same miRNA families displayed differential expression in response to N deficiency. Upon N starvation, the expression of miR169, miR171, miR395, miR397, miR398, miR399, miR408, miR827, and miR857 was repressed, whereas those of miR160, miR780, miR826, miR842, and miR846 were induced. miR826, a newly identified N-starvation-induced miRNA, was found to target the AOP2 gene. Among these N-starvation-responsive miRNAs, several were involved in cross-talk among responses to different nutrient (N, P, S, Cu) deficiencies. miR160, miR167, and miR171 could be responsible for the development of Arabidopsis root systems under N-starvation conditions. In addition, twenty novel miRNAs were identified and nine of them were significantly responsive to N-starvation. This study represents comprehensive expression profiling of N-starvation-responsive miRNAs and advances our understanding of the regulation of N homeostasis mediated by miRNAs.
Collapse
Affiliation(s)
- Gang Liang
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Hua He
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, China
- The Graduate School of the Chinese Academy of Sciences, Beijing, China
| | - Diqiu Yu
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, China
- * E-mail:
| |
Collapse
|
191
|
Schlüter U, Mascher M, Colmsee C, Scholz U, Bräutigam A, Fahnenstich H, Sonnewald U. Maize source leaf adaptation to nitrogen deficiency affects not only nitrogen and carbon metabolism but also control of phosphate homeostasis. PLANT PHYSIOLOGY 2012; 160:1384-406. [PMID: 22972706 PMCID: PMC3490595 DOI: 10.1104/pp.112.204420] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2012] [Accepted: 09/12/2012] [Indexed: 05/18/2023]
Abstract
Crop plant development is strongly dependent on the availability of nitrogen (N) in the soil and the efficiency of N utilization for biomass production and yield. However, knowledge about molecular responses to N deprivation derives mainly from the study of model species. In this article, the metabolic adaptation of source leaves to low N was analyzed in maize (Zea mays) seedlings by parallel measurements of transcriptome and metabolome profiling. Inbred lines A188 and B73 were cultivated under sufficient (15 mM) or limiting (0.15 mM) nitrate supply for up to 30 d. Limited availability of N caused strong shifts in the metabolite profile of leaves. The transcriptome was less affected by the N stress but showed strong genotype- and age-dependent patterns. N starvation initiated the selective down-regulation of processes involved in nitrate reduction and amino acid assimilation; ammonium assimilation-related transcripts, on the other hand, were not influenced. Carbon assimilation-related transcripts were characterized by high transcriptional coordination and general down-regulation under low-N conditions. N deprivation caused a slight accumulation of starch but also directed increased amounts of carbohydrates into the cell wall and secondary metabolites. The decrease in N availability also resulted in accumulation of phosphate and strong down-regulation of genes usually involved in phosphate starvation response, underlining the great importance of phosphate homeostasis control under stress conditions.
Collapse
|
192
|
Leyva-González MA, Ibarra-Laclette E, Cruz-Ramírez A, Herrera-Estrella L. Functional and transcriptome analysis reveals an acclimatization strategy for abiotic stress tolerance mediated by Arabidopsis NF-YA family members. PLoS One 2012; 7:e48138. [PMID: 23118940 PMCID: PMC3485258 DOI: 10.1371/journal.pone.0048138] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 09/20/2012] [Indexed: 11/22/2022] Open
Abstract
Nuclear Factor Y (NF-Y) is a heterotrimeric complex formed by NF-YA/NF-YB/NF-YC subunits that binds to the CCAAT-box in eukaryotic promoters. In contrast to other organisms, in which a single gene encodes each subunit, in plants gene families of over 10 members encode each of the subunits. Here we report that five members of the Arabidopsis thaliana NF-YA family are strongly induced by several stress conditions via transcriptional and miR169-related post-transcriptional mechanisms. Overexpression of NF-YA2, 7 and 10 resulted in dwarf late-senescent plants with enhanced tolerance to several types of abiotic stress. These phenotypes are related to alterations in sucrose/starch balance and cell elongation observed in NF-YA overexpressing plants. The use of transcriptomic analysis of transgenic plants that express miR169-resistant versions of NF-YA2, 3, 7, and 10 under an estradiol inducible system, as well as a dominant-repressor version of NF-YA2 revealed a set of genes, whose promoters are enriched in NF-Y binding sites (CCAAT-box) and that may be directly regulated by the NF-Y complex. This analysis also suggests that NF-YAs could participate in modulating gene regulation through positive and negative mechanisms. We propose a model in which the increase in NF-YA transcript levels in response to abiotic stress is part of an adaptive response to adverse environmental conditions in which a reduction in plant growth rate plays a key role.
Collapse
Affiliation(s)
| | | | | | - Luis Herrera-Estrella
- Laboratorio Nacional de Genómica para la Biodiversidad (LANGEBIO), Centro de Investigación y Estudios Avanzados Irapuato, Irapuato, Guanajuato, México
- * E-mail:
| |
Collapse
|
193
|
Amiour N, Imbaud S, Clément G, Agier N, Zivy M, Valot B, Balliau T, Armengaud P, Quilleré I, Cañas R, Tercet-Laforgue T, Hirel B. The use of metabolomics integrated with transcriptomic and proteomic studies for identifying key steps involved in the control of nitrogen metabolism in crops such as maize. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:5017-33. [PMID: 22936829 DOI: 10.1093/jxb/ers186] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Linking plant phenotype to gene and protein expression and also to metabolite synthesis and accumulation is one of the main challenges for improving agricultural production worldwide. Such a challenge is particularly relevant to crop nitrogen use efficiency (NUE). Here, the differences in leaf gene transcript, protein, and metabolite accumulation in maize subjected to long-term nitrogen (N)-deficient growth conditions at two important stages of plant development have been studied. The impact of N deficiency was examined at the transcriptomic, proteomic, and metabolomic levels. It was found that a number of key plant biological functions were either up- or down-regulated when N was limiting, including major alterations to photosynthesis, carbon (C) metabolism, and, to a lesser extent, downstream metabolic pathways. It was also found that the impact of the N deficiency stress resembled the response of plants to a number of other biotic and abiotic stresses, in terms of transcript, protein, and metabolite accumulation. The genetic and metabolic alterations were different during the N assimilation and the grain-filling period, indicating that plant development is an important component for identifying the key elements involved in the control of plant NUE. It was also found that integration of the three 'omics' studies is not straightforward, since different levels of regulation seem to occur in a stepwise manner from gene expression to metabolite accumulation. The potential use of these 'omics' studies is discussed with a view to improve our understanding of whole plant nitrogen economics, which should have applications in breeding and agronomy.
Collapse
Affiliation(s)
- Nardjis Amiour
- Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, Centre de Versailles-Grignon, UR 511, Route de St Cyr, F-78026 Versailles Cedex, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
194
|
Engelsberger WR, Schulze WX. Nitrate and ammonium lead to distinct global dynamic phosphorylation patterns when resupplied to nitrogen-starved Arabidopsis seedlings. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 69:978-95. [PMID: 22060019 PMCID: PMC3380553 DOI: 10.1111/j.1365-313x.2011.04848.x] [Citation(s) in RCA: 167] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Accepted: 11/03/2011] [Indexed: 05/04/2023]
Abstract
Nitrogen is an essential macronutrient for plant growth and development. Inorganic nitrogen and its assimilation products control various metabolic, physiological and developmental processes. Although the transcriptional responses induced by nitrogen have been extensively studied in the past, our work here focused on the discovery of candidate proteins for regulatory events that are complementary to transcriptional changes. Most signaling pathways involve modulation of protein abundance and/or activity by protein phosphorylation. Therefore, we analyzed the dynamic changes in protein phosphorylation in membrane and soluble proteins from plants exposed to rapid changes in nutrient availability over a time course of 30 min. Plants were starved of nitrogen and subsequently resupplied with nitrogen in the form of nitrate or ammonium. Proteins with maximum change in their phosphorylation level at up to 5 min after nitrogen resupply (fast responses) included GPI-anchored proteins, receptor kinases and transcription factors, while proteins with maximum change in their phosphorylation level after 10 min of nitrogen resupply (late responses) included proteins involved in protein synthesis and degradation, as well as proteins with functions in central metabolism and hormone metabolism. Resupply of nitrogen in the form of nitrate or ammonium resulted in distinct phosphorylation patterns, mainly of proteins with signaling functions, transcription factors and transporters.
Collapse
Affiliation(s)
| | - Waltraud X Schulze
- Max Planck Institut für Molekulare PflanzenphysiologieAm Mühlenberg 1, 14476 Golm, Germany
| |
Collapse
|